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Abstract. The new parallel multiclass logistic regression algorithm (PAR-MC-
LR) aims at classifying a very large number of images with very-high-dimensional
signatures into many classes. We extend the two-class logistic regression algorithm
(LR) in several ways to develop the new multiclass LR for efficiently classify-
ing large image datasets into hundreds of classes. We propose the balanced batch
stochastic gradient descend of logistic regression (BBatch-LR-SGD) for trainning
two-class classifiers used in the one-versus-all strategy of the multiclass problems
and the parallel training process of classifiers with several multi-core computers.
The numerical test results on ImageNet datasets show that our algorithm is efficient
compared to the state-of-the-art linear classifiers.

Keywords: Logistic regression (LR), Stochastic gradient descent (SGD), Multi-
class, Parallel algorithm, Large scale image classification.

1 Introduction

The image classification is to automatically assign predefined categories to images. Its
applications include handwriting character recognition, zip code recognition for postal
mail sorting, numeric entries in forms filled up by hand, fingerprint recognition, face
recognition, auto-tagging images and so on. The image classification task involves two
main steps as follows: extracting features and building codebook, training classifiers.
Recently, the local image features and bag-of-words (BoW) models are used at the first
step of state-of-the-art image classification. The most popular local image features are
scalable invariant feature transform descriptors - SIFT [1], speeded up robust Features
- SURF [2] and dense SIFT - DSIFT [3]. These feature extraction methods are locally
based on the appearance of the object at particular interest points, invariant to image
scale, rotation and also robust to changes in illumination, noise, occlusion. And then,
k-means algorithm [4] performs the clustering task on descriptors to form visual words
from the local descriptors. The representation of the image for classification is the bag-
of-words is constructed from the counting of the occurrence of words in a histogram like
fashion. The step of the feature extraction and the BoW representation leads to datasets
with very large number of dimensions (e.g. thousands of dimensions). The support vec-
tor machine algorithms [5] are suited for dealing with very-high-dimensional datasets.
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However there are also many classes in the images classification (e.g. Caltech with
101 classes [6], Caltech with 256 classes [7] having hundreds of classes) and ImageNet
dataset [8] with more than 14 million images in 21,841 classes. It makes the complexity
of image classification become very hard. This challenge motivates us to study an effi-
cient algorithm in both computation time and classification accuracy. In this paper, we
propose the extensions of the stochastic gradient descend (SGD [9], [10]) to develop
the new parallel multiclass SGD of logistic regression (PAR-MC-LR) for efficiently
classifying large image datasets into many classes. Our contributions include:

1. the balanced batch stochastic gradient descend of logistic regression (BBatch-LR-
SGD) for very large number of classes,

2. the parallel training process of classifiers with several multi-core computers.

The numerical test results on ImageNet datasets [8] show that our PAR-MC-LR al-
gorithm is efficient compared to the state-of-the-art linear classifiers.

The remainder of this paper is organized as follows. Section 2 briefly presents the
stochastic gradient descend algorithm of logistic regression (LR-SGD) for two-class
problems. Section 3 describes how to extend the LR-SGD algorithm for dealing very
large number of classes. Section 4 presents evaluation results, before the conclusions
and future work.

2 Logistic Regression for Two-Class Problems

Let us consider a linear binary classification task with m datapoints xi (i = 1, . . . ,m)
in the n-dimensional input space Rn, having corresponding labels yi = ±1. Logistic
regression (LR) tries to learn classification models (i.e. parameter vector w ∈ Rn) to
maximize the likelihood of the data. The probability of a datapoint being drawn from
the positive class is:

p(yi =+1/xi) =
1

1+ e−(w.xi)
(1)

And then, the probability of a datapoint being drawn from the negative class is:

p(yi =−1/xi) = 1− p(yi =+1/xi) = 1− 1

1+ e−(w.xi)
=

1

1+ e(w.xi)
(2)

The probabilities in (1) and (2) are rewritten in:

p(yi/xi) =
1

1+ e−yi(w.xi)
(3)

And then the log likelihood of data is as follow:

log(p(yi/xi)) = log(
1

1+ e−yi(w.xi)
) =−log(1+ e−yi(w.xi)) (4)
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The regularized LR method aims to use Tikhonov regularization in a trade-off with
maximizing likelihood and the over-confident generalization. The regularization strat-
egy is to impose a penalty on the magnitude of the parameter values w. The LR algo-
rithm simultaneously tries to maximize the log likelihood of the data and minimize the
L2 norm of the parameter vector w. And then, it yields an unconstrained problem (5):

min Ψ (w, [x,y]) =
λ
2
‖w‖2 +

1
m

m

∑
i=1

log(1+ e−yi(w.xi)) (5)

The LR formula (5) uses the logistic loss function L(w, [xi,yi]) = log(1+ e−yi(w.xi)).
The solution of the unconstrained problem (5) can be also obtained by the stochastic
gradient descent method [9], [10]. The stochastic gradient descent for the logistic re-
gression is denoted by (LR-SGD). The LR-SGD updatesw on T iterations (epochs) with
a learning rate η . For each iteration t, the LR-SGD uses a single randomly datapoint
(xt ,yt ) to compute the sub-gradient ∇tΨ(w, [xt ,yt ]) and update wt+1 as follows:

wt+1 = wt −ηt∇tΨ(w, [xt ,yt ]) = wt −ηt(λwt +∇tL(w, [xt ,yt ])) (6)

∇tL(w, [xt ,yt ]) = ∇t log(1+ e−yt(w.xt )) =− ytxt
1+ eyt(w.xt )

(7)

The LR-SGD using the update rule (6) is described in algorithm 1.

Algorithm 1. LR-SGD algorithm
input :

training dataset D
positive constant λ > 0
number of epochs T

output:
hyperplane w

1 begin
2 init w1 = 0
3 for t ← 1 to T do
4 randomly pick a datapoint [xt ,yt ] from training dataset D
5 set ηt =

1
λ t

6 update wt+1 = wt −ηt(λwt − ytxt
1+eyt (w.xt )

)

7 end
8 return wt+1

9 end
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3 Extentions of Logistic Regression to Large Number of Classes

There are several extensions of a binary classification LR to multi-class (k classes,
k≥ 3) classification tasks. The state-of-the-art multi-class are categorized into two types
of approaches. The first one is considering the multi-class case in one optimization
problem [11], [12], [13]. The second one is decomposing multi-class into a series of
binary classifiers, including one-versus-all [5], one-versus-one [14] and Decision Di-
rected Acyclic Graph [15].

In practice, one-versus-all, one-versus-one are the most popular methods due to their
simplicity. Let us consider k classes (k > 2). The one-versus-all strategy builds k dif-
ferent classifiers where the ith classifier separates the ith class from the rest. The one-
versus-one strategy constructs k(k−1)/2 classifiers, using all the binary pairwise com-
binations of the k classes. The class is then predicted with a majority vote.

When dealing with very large number of classes, e.g. hundreds of classes, the one-
versus-one strategy is too expensive because it needs to train many thousands of binary
classifiers. Therefore, the one-versus-all strategy becomes popular in this case. And
then, our multiclass LR-SGD algorithms also use the one-versus-all approach to train
independently k binary classifiers. Therefore, the multiclass LR-SGD algorithms using
one-versus-all lead to the two problems:

1. the LR-SGD algorithms deal with the imbalanced datasets for building binary clas-
sifiers,

2. the LR-SGD algorithms also take very long time to train very large number of
binary classifiers in sequential mode using a single processor.

Due to these problems, we propose two ways for creating the new multiclass LR-
SGD algorithms being able to handle very large number of classes in the high speed.
The first one is to build balanced classifiers with sampling strategy. The second one is
to parallelize the training task of all classifiers with several multi-core machines.

3.1 Balanced Batch of Logistic Regression

In the one-versus-all approach, the learning task of LR-SGD is try to separate the ith

class (positive class) from the k−1 others classes (negative class). For very large num-
ber of classes, e.g. 100 classes, this leads to the extreme unbalance between the positive
and the negative class. The problem is well-known as the class imbalance. The problem
of LR-SGD comes from line 4 of algorithm 1. For dealing with hundreds classses, the
probability for a positive datapoint sampled is very small (about 0.01) compared with
the large chance for a negative datapoint sampled (e.g. 0.99). And then, the LR-SGD
concentrates mostly on the errors produced by the nagative datapoints. Therefore, the
LR-SGD has difficulty to separate the positive class from the negative class.

As summarized by the review papers of [16], [17], [18] and the very comprehensive
papers of [19], [20], solutions to the class imbalance problems were proposed both at
the data and algorithmic level. At the data level, these algorithms change the class distri-
bution, including over-sampling the minority class [21] or under-sampling the majority
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class [22], [23]. At the algorithmic level, the solution is to re-balance the error rate by
weighting each type of error with the corresponding cost.

Our balanced batch LR-SGD (denoted by LR-BBatch-SGD) belongs to the first ap-
proach. For separating the ith class (positive class) from the rest (negative class), the
class prior probabilities in this context are highly unequal (e.g. the distribution of the
positive class is 1% in the 100 classes classification problem), and then over-sampling
the minority class is very expensive. We propose the LR-BBatch-SGD algorithm using
under-sampling the majority class (negative class). Our modification of algorithm 1 is
to use a balanced batch (instead of a datapoint at line 4 of algorithm 1) to update the w
at epoch t. We also propose to modify the updating rule (line 6 of algorithm 1) using
the skewed costs as follows:

wt+1 =

{

wt −ηtλwt +ηt
1

|D+ |
yt xt

1+eyt (w.xt )
i f yt =+1

wt −ηtλwt +ηt
1

|D−|
yt xt

1+eyt (w.xt )
i f yt =−1

(8)

where |D+| is the cardinality of the positive class D+ and |D−| is the cardinality of the
negative class D−.

The LR-BBatch-SGD (as shown in algorithm 2) is to separate the ith class (positive
class) from the rest (negative class), using under-sampling the negative class (balanced
batch) and the skewed costs in (8).

Algorithm 2. LR-BBatch-SGD algorithm
input :

training data of the positive class D+

training data of the negative class D−
positive constant λ > 0
number of epochs T

output:
hyperplane w

1 begin
2 init w1 = 0
3 for t ← 1 to T do
4 creating a balanced batch Bbatch by sampling without replacement D′

− from

dataset D− (with |D′
−| = sqrt |D−|

|D+| ) and a datapoint from dataset D+

5 set ηt =
1
λ t

6 for [xi,yi] in Bbatch do
7 update wt+1 using rule 8
8 end
9 end

10 return wt+1

11 end
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3.2 Parallel LR-BBatch-SGD Training

Although LR-BBatch-SGD deals with very large dataset with high speed, but it does
not take the benefits of HPC. Furthermore, LR-BBatch-SGD trains independently k
binary classifiers for k classes problems. This is a nice property for parallel learning.
Our investigation aims at speedup training tasks of multi-class LR-BBatch-SGD with
several multi-processor computers. The idea is to learn k binary classifiers in parallel.

The parallel programming is currently based on two major models, Message Passing
Interface (MPI) [24] and Open Multiprocessing (OpenMP) [25]. MPI is a standard-
ized and portable message-passing mechanism for distributed memory systems. MPI
remains the dominant model (high performance, scalability, and portability) used in
high-performance computing today. However, one MPI process loads the whole dataset
into memory during learning tasks, thus the parallel algorithm with k MPI processes
requires k main memory rooms for storing k datasets, making it wasteful. The simplest
development of parallel LR-BBatch-SGD algorithm is based on the shared memory
multiprocessing programming model OpenMP that does not require large amount of
memory (although the parallel in MPI is more efficient than OpenMP). The parallel
learning for LR-BBatch-SGD is described in algorithm 3.

Algorithm 3. Parallel LR-BBatch-SGD training
input : D the training dataset with k classes
output: LR-SGD model

1 Learning:
2 #pragma omp parallel for
3 for ci ← 1 to k do /* class ci */
4 training LR-BBatch-SGD(ci−vs−all)
5 end

4 Evaluation

In order to evaluate the performance of the new parallel multiclass logistic regression
algorithm (PAR-MC-LR) for classifying large amounts of images into many classes, we
have implemented PAR-MC-LR in C/C++ using the SGD library [10]. Our comparison
is reported in terms of correctness and training time. We are interested in two recent
algorithms, LIBLINEAR (a library for large linear classification [26]) and OCAS (an
optimized cutting plane algorithm for SVM [27]) because they are well-known as highly
efficient standard linear SVM.

LIBLINEAR and OCAS use the default parameter valueC = 1000, our Par-MC-LR
is trained the balanced batch stochastic gradient descend of logistic regression using
T = 50 epochs and regularization term λ = 0.0001.

All experiments are run on machine Linux Fedora 20, Intel(R) Core i7-4790 CPU,
3.6 GHz, 4 cores and 32 GB main memory.
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4.1 Datasets

The PAR-MC-LR algorithm is designed for the large number of images with many
classes, so we have evaluated its performance on the three following datasets.

ImageNet 10
This dataset contains the 10 largest classes from ImageNet [8], including 24,807 images
with size 2.4 GB). In each class, we sample 90% images for training and 10% images
for testing (with random guess 10%). First, we construct BoW of every image using
dense SIFT descriptor (extracting SIFT on a dense grid of locations at a fixed scale and
orientation) and 5,000 codewords. Then, we use feature mapping from [28] to get the
high-dimensional image representation in 15,000 dimensions. This feature mapping has
been proven to give a good image classification performance with linear classifiers [28].
We end up with 2.6 GB of training data.

ImageNet 100
This dataset contains the 100 largest classes from ImageNet [8], including 183,116
images with size 23.6 GB. In each class, we sample 50% images for training and 50%
images for testing (with random guess 1%). We also construct BoW of every image
using dense SIFT descriptor and 5,000 codewords. For feature mapping, we use the
same method as we do with ImageNet 10. The final size of training data is 8 GB.

ILSVRC 2010
This dataset contains 1,000 classes from ImageNet [8], including 1.2M images (∼ 126
GB) for training, 50 K images (∼ 5.3 GB) for validation and 150 K images (∼ 16 GB)
for testing. We use BoW feature set provided by [8] and the method reported in [29] to
encode every image as a vector in 21,000 dimensions. We take roughly 900 images per
class for training dataset, so the total training images is 887,816 and the training data
size is about 12.5 GB. All testing samples are used to test SVM models. Note that the
random guess performance of this dataset is 0.1%.

4.2 Classificaton Results

Firstly, we are interested in the performance comparison in terms of training time. We
try to vary the number of OpenMP threads (1, 4, 8 threads) for all training tasks of our
parallel algorithm PAR-MC-LR. Due to the PC (Intel(R) Core i7-4790 CPU, 4 cores)
used in the experimental setup, the PAR-MC-LR is fastest by setting 8 OpenMP threads.

Table 1. Training time (minutes) on ImageNet 10

# OpenMP threads

Algorithm 1 4 8

OCAS 106.67
LIBLINEAR 2.02
PAR-MC-LR 2.24 0.80 0.76
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Fig. 1. Training time (minutes) on ImageNet-10

Table 2. Training time (minutes) on ImageNet 100

# OpenMP threads

Algorithm 1 4 8

OCAS 1016.35
LIBLINEAR 30.41
Par-MC-LR 23.40 8.09 6.55

For the small multi-class dataset as ImageNet 10, the training time of algorithms in
table 1 and figure 1 show that our PAR-MC-LR with 8 OpenMP threads is 139.7 times
faster than OCAS and 2.64 times faster than LIBLINEAR.

Table 2 and figure 2 present the training time on ImageNet 100 with large number
of classes. Once again, the PAR-MC-LR achieves a significant speed-up in learning
process using 8 OpenMP threads. It is 155.1 times faster than OCAS and 4.64 times
faster than LIBLINEAR.

Table 3. Training time (minutes) on ILSVRC 2010.

# OpenMP threads

Algorithm 1 4 8

OCAS N/A
LIBLINEAR 3106.48
Par-MC-LR 153.58 40.59 37.91

ILSVRC 2010 has large amount of images (more than 1 million images) and very
large number of classes (1000 classes). Therefore, OCAS has not finished the learning
task in several days. LIBLINEAR takes 3,106.48 minutes (about 2 days and 4 hours)
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Fig. 2. Training time (minutes) on ImageNet-100

Fig. 3. Training time (minutes) on ImageNet-1000

to train the classification model for this dataset. Our PAR-MC-LR algorithm with 8
OpenMP threads performs the learning task in 37.59 minutes. This indicates that the
PAR-MC-LR is 81.95 times faster than LIBLINEAR.

The classification results in terms of accuracy are presented in table 4 and figure 4.
On the small datasets ImageNet 10 and medium dataset ImageNet 100, The Par-MC-
LR outperforms OCAS in the classification accuracy. The PAR-MC-LR achieves very
competitive performances compared to LIBLINEAR. It is more accurate than LIBLIN-
EAR on ImageNet 10 while making more classification mistakes than LIBLINEAR on
ImageNet 100.

ILSVRC 2010 is a large dataset (with more than 1 million images and 1,000 classes).
Thus, it is very difficult for many state-of-the-art algorithms to obtain a high rate in clas-
sification performance. In particular, with the feature set provided by ILSVRC 2010
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Table 4. Overall classification accuracy (%)

Dataset ImageNet
10

ImageNet
100

ILSVRC
1000

OCAS 72.07 52.75 N/A
LIBLINEAR 75.09 54.07 21.11
Par-MC-LR 75.21 52.91 21.90

Fig. 4. Overall classification accuracy (%)

competition the state-of-the-art system [8,30] reports an accuracy of approximately 19
% (it is far above random guess, 0.1 %). And now our PAR-MC-LR algorithm gives
a higher accuracy rate than [8,30] with the same feature set (21.90 % vs. 19 %). The
relative improvement is more than 15 %. Moreover, the PAR-MC-LR outperforms LI-
BLINEAR (+0.79 %, the relative improvement is more than 3.7 %). Note that the PAR-
MC-LR learns much faster than LIBLINEAR while yielding a higher correctness rate.
These results show that our PAR-MC-LR has a great ability to scale-up to full ImageNet
dataset.

5 Conclusion and Future Works

We have presented the new parallel multiclass logistic regression algorithm that achieves
high performances for classifying large amounts of images intomany classes. The bal-
anced batch stochastic gradient descend of logistic regression is proposed for trainning
two-class classifiers used in the multiclass problems. The parallel multiclass algorithm
is also developped for efficiently classifying large image datasets into very large number
of classes on multi-core computers. Our algorithm is evaluated on the 10, 100 largest
classes of ImageNet and ILSVRC 2010 dataset. By setting the number of OpenMP
threads to 8 on PC (Intel Core i7-4790 CPU, 3.6 GHz), our algorithm achieves a sig-
nificant speedup in training time without (or very few) compromise the classification
accuracy. It is a roadmap towards very large scale visual classification.
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In the future, we will develop a hybrid MPI/OpenMP parallel logistic regression for
efficiently dealing with large scale multiclass problems and also intend to provide more
empirical test on full dataset with 21,000 classes of ImageNet.
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