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Abstract. Consider a project consisting of a set of n operations to be
performed. Some pairs {j, j′} of operations are incompatible, which can
have two different meanings. On the one hand, it can be allowed to
perform j and j′ at common time periods. In such a case, incompatibility
costs are encountered and penalized in the objective function. On the
other hand, it can be strictly forbidden to perform j and j′ concurrently.
In such a case, the overall project duration has to be minimized. In
this paper, three project scheduling problems (P1), (P2) and (P3) are
considered. It will be showed that tabu search relying on graph coloring
models is a very competitive method for such problems. The overall
approach is called graph coloring tabu search and denoted GCTS.

Keywords: Graph coloring, tabu search, project scheduling, combina-
torial optimization, metaheuristics.

1 Introduction

Firstly, consider a project (P1) consisting in n operations to be performed within
k time periods, assuming that each operation has a duration of at most one time
period. When an operation is assigned to a specific period, an assignment cost
is encountered. In addition, for some pairs of operations, an incompatibility cost
is encountered if they are performed at the same period. The goal is to assign a
period to each operation while minimizing the costs. Secondly, consider problem
(P2), which is an extension of (P1). For each operation, its duration is known
as an integer number of time periods, and preemptions are allowed at integer
points of time. The goal is to assign the required number of periods to each
operation while minimizing the costs. Thirdly, consider problem (P3), which
consists in a set of operations to be performed, assuming the processing time
of each operation is at most one time period. Precedence and incompatibility
constraints between operations have to be satisfied. The goal is to assign a time
period to each operation while minimizing the duration of the project.

Given a graph G = (V,E) with vertex set V and edge set E, the k-coloring
problem (k-GCP) consists in assigning an integer (called color) in {1, . . . , k}
to every vertex such that two adjacent vertices have different colors. The graph
coloring problem (GCP) consists in finding a k-coloring with the smallest possible
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value of k (the optimal value is denoted χ(G)). Both problems are NP-hard [10]
and many heuristics were proposed to solve them. It will be showed that problem
(P1) (resp. (P2) and (P3)) can be modeled as an extension of the graph coloring
problem (resp. graph multi-coloring problem, mixed graph coloring problem).

Problems (P1), (P2) and (P3) are new and there is no literature on it, ex-
cept [3,22,30] on which this paper strongly relies. For a recent survey on graph
coloring, the reader is referred to [21]. Relevant references for the multi-coloring
problem with applications in scheduling are [5,9,12]. For more information on the
mixed graph coloring problem and some applications in scheduling, the reader is
referred to [1,8,13,26]. Graph coloring approaches for management and schedul-
ing problems are given in [15,28,29]. The reader desiring a review on scheduling
models and algorithms is referred to [24]. The reader interested in a general
project management book with applications to planning and scheduling is re-
ferred to [17]. Finally, the reader interested in project scheduling is referred to
[6,16,18,19].

The literature shows that tabu search has obtained competitive results for
(P1), (P2) and (P3). Let f be an objective function to minimize. Starting from
an initial solution, a local search generates at each iteration a neighbor solution
s′ from a current solution s by performing a move m (i.e. a slight modification
on s). In a descent local search, the best move is performed at each iteration
and the process stops when the first local optimum is reached. To escape from
a local optimum, in a tabu search, when a move m is performed to generate
s′ from s, then the reverse move is forbidden for tab (parameter) iterations. At
each iteration, the best non tabu move is performed. The process is stopped for
example when a time limit is reached. The reader interested in a recent book on
metaheuristics is referred to [11], and to [27] for guidelines on an efficient design
of metaheuristics according to various criteria.

In this work, it is showed that the project scheduling problems (P1), (P2) and
(P3) can be efficiently tackled with a tabu search metaheuristic relying on graph
coloring models. The resulting overall approach is called graph coloring tabu
search and denoted GCTS. In this paper, GCTS is adapted to (P1) in Section 2
(relying on [30]), to (P2) in Section 3 (relying on [3]), and to (P3) in Section 4
(relying on [22]). The reader is referred to the above mentioned three references
to have detailed information on the NP-hard state, the complexity issues, the
literature review, the generation of the instances, the experimental conditions
and the presentation of the results. For each problem, the main numerical results
will highlight the efficiency of GCTS. A conclusion is provided in Section 5.

2 Problem (P1)

2.1 Presentation of the Problem

Consider a project which consists of a set V of n operations to be performed.
The project manager provides a target number k of time periods within which the
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project has to be performed. It is assumed that: each time period has the same
duration (e.g. a working day); there is no precedence constraint between opera-
tions; each operation has a duration of at most one time period. Let c(j, j′) ≥ 0
denote an incompatibility cost between operations j and j′, which is to be paid if
j and j′ are performed at the same time period. The incompatibility cost c(j, j′)
represents for example that the same staff has to perform operations j and j′,
thus additional human resources must be hired in order to be able to perform
both operations at the same period. In addition, for each operation j and each
time period t, an assignment cost a(j, t) has to be paid if j is performed at period
t. a(j, t) represents for example the cost of the staff and machines which have to
perform operation j at period t. The goal is to assign a time period t ∈ {1, . . . , k}
to each operation j ∈ V while minimizing the total costs.

A solution using k periods can be generated by the use of a function per :
V −→ {1, . . . , k}. The value per(j) of an operation j is the period assigned to j.
With each period t can be associated a set Ct that contains the set of operations
performed at period t. Thus, a solution s can be denoted s = (C1, . . . , Ck), and
the associated encountered costs are described in Equation (1). (P1) consists in
finding a solution with k periods which minimizes these costs.

f(s) =

k∑

t=1

∑

j∈Ct

a(j, t) +

n−1∑

j=1

∑

j′∈{j+1,...,n}∩Cper(j)

c(j, j′) (1)

2.2 Graph Coloring Model Based on the k-GCP

Let I(j) denote the set of operations j′ such that c(j, j′) > 0. From the input data
of problem (P1), an incompatibility graph G = (V,E) can be built as follows. A
vertex j is associated with each operation j, and an edge [j, j′] is drawn each time
j′ ∈ I(j) (but not more than one edge between two vertices). A color t represents
a time period t. Coloring G with k colors while minimizing the number of con-
flicting edges (which is exactly the k-GCP) is equivalent to assign a time period
t ∈ {1, . . . , k} to each operation while minimizing the number of incompatibili-
ties. (P1) is actually an extension of the k-GCP, because the latter is a subcase
of the former where a(j, t) = 0 (∀j, t), and c(j, j′) = 1 (∀j with j′ ∈ I(j)). From
now on, the project scheduling terminology (e.g., operations, time periods) and
the graph coloring terminology (e.g., vertices, colors) are indifferently used.

2.3 Tabu Search

An efficient approach for the k-GCP consists in giving a color to each vertex
while minimizing the number of conflicts (a conflict occurs if two adjacent ver-
tices have the same color). If this number reaches 0, a legal k-coloring is found.
In such a context, a straightforward move is to change the color of a conflict-
ing vertex [14]. For (P1), the search space is the set of k-partitions of V and the
objective function to minimize is the total cost f . A move consists in changing the
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period assigned to an operation. In order to avoid testing every possible move
at each iteration, only the q% (parameter tuned to 40%) most costly operations
are considered for a move at each iteration. If operation j moves from Ct to Ct′

when going from the current solution s to the neighbor solution s′, it is forbid-
den to put j back in Ct during tab(j, Ct) iterations as described in Equation (2),
where R(u, v) randomly returns an integer in interval [u, v] (uniform distribu-
tion), and (u, v, α) are parameters tuned to (10, 20, 15). The maximum is used
to enforce tab(j, Ct) to be positive. The last term of Equation (2) represents the
improvement Imp(s, s′) of f when moving from s to s′. If s′ is better than s,
Imp(s, s′) is positive and the reverse of the performed move will be forbidden
for a larger number of iterations than if Imp(s, s′) < 0. In addition, if the di-
versity of the visited solutions is below a predetermined threshold, tab(j, Ct) is
augmented from that time (for all j and t), and if the diversity becomes above
the threshold, the tabu durations are reduced from that time. Note that a di-
versification mechanism also favors moves which are unlikely to be performed.

tab(j, Ct) = max

{

1, R(u, v) + α · f(s)− f(s′)
f(s)

}

(2)

2.4 Results

The stopping condition of each method is a time limit T of one hour on an Intel
Pentium 4 (4.00 GHz, RAM 1024 Mo DDR2). The following methods GR, DLS,
GCTS and AMA are compared on instances derived from the well-known graph
coloring benchmark instances [21]. Note that GR and DLS are restarted as long
as T is not reached, and the best encountered solution is returned.

– GR: a greedy constructive heuristic working as follows. Let J be the set
of scheduled operations. Start with an empty solution s (i.e. J = ∅). Then,
while s does not contain n operations, do: (1) randomly select an unscheduled
operation j; (2) a time period t ∈ {1, . . . , k} is assigned to j such that the
augmentation of the costs is as small as possible.

– GCTS: as described in Subsection 2.3.
– DLS: a descent local search derived from GCTS by setting q = 100% (i.e.

considering all the possible moves at each iteration), without tabu tenures.
– AMA: an adaptive memory algorithm [25], where at each generation, an

offspring solution s is built from a central memory M (containing 10 solu-
tions), then s is improved with a tabu search procedure relying on GCTS,
and finally s is used to update the content of M .

For a fixed value of k, Table 1 reports the average results (over 10 runs) obtained
with the above methods. Let f (GCTS) be the average value of the solution re-
turned by GCTS (rounded to the nearest integer) over the considered number
of runs. f (GR), f (DLS) and f (AMA) are similarly defined. From left to right, the
columns indicate: the instance name (incompatibility graph), its number n of
operations, its density d (average number of edges between a pair of vertices),



Graph Coloring Tabu Search for Project Scheduling 111

the considered value of k, f (GCTS), and the percentage gap between f (GR) (resp.
f (DLS) and f (AMA)) and f (GCTS). Average gaps are indicated in the last line.
It can be observed that f (GCTS) clearly outperforms the other methods.

Table 1. Results on the (P1) instances

Graph G n d k f(GCTS) GR DLS AMA

DSJC1000.1 1000 0.1 13 241601 57.23% 28.49% 5.42%

DSJC1000.5 1000 0.5 55 250977 33.30% 18.43% -0.28%

DSJC1000.9 1000 0.9 149 166102 10.30% 11.35% -4.98%

DSJC500.5 500 0.5 32 98102 55.03% 34.76% 3.50%

DSJC500.9 500 0.9 84 64224 43.69% 42.71% 2.69%

flat1000 50 0 1000 0.49 33 665449 24.97% 10.82% -0.82%

flat1000 60 0 1000 0.49 40 462612 28.63% 14.16% -1.18%

flat1000 76 0 1000 0.49 55 246157 32.15% 18.23% -1.92%

flat300 28 0 300 0.48 19 62862 51.20% 29.19% 1.50%

le450 15c 450 0.16 10 149041 40.75% 20.45% 2.86%

le450 15d 450 0.17 10 146696 42.89% 22.49% 5.19%

le450 25c 450 0.17 17 72974 39.99% 27.11% 21.32%

le450 25d 450 0.17 17 70852 43.40% 29.40% 23.28%

Average 38.73% 23.66% 4.35%

3 Problem (P2)

3.1 Presentation of the Problem

(P2) is an extension of (P1) where the duration of an operation j is not limited to
one time period, but to pj (integer) periods. Preemptions are allowed at integer
time points. The goal is to assign pj (not necessarily consecutive) periods to
each operation j while minimizing assignment and incompatibility costs. The
assignment cost a(j, t) is defined as in Subsection 2.1. In addition, let cm(j, j′) >
0 (with m ∈ N

�) denote the incompatibility cost between incompatible operations
j and j′, which is to be paid if j and j′ have m common time periods. From
a practical standpoint, it is reasonable to assume that cm+1(j, j′) ≥ cm(j, j′)
(∀m). For compatible operations j and j′, cmj,j′ = 0 (∀m).

In order to represent a solution s, with each time period t ∈ {1, . . . , k} is
associated a set Ct containing the operations which are performed at period t.
Each operation j has to belong to pj sets of type Ct in order to be totally per-
formed. Let δmj,j′ = 1 if operations j and j′ are performed within m common time
periods, and 0 otherwise. Thus, a solution s can be denoted s = (C1, . . . , Ck),
and the associated objective function f(s) to minimize is presented in Equation
(3).

f(s) =
∑

t

∑

j∈Ct

a(j, t) +
∑

j<j′,m

cm(j, j′) · δmj,j′ (3)



112 N. Zufferey

3.2 Graph Coloring Model Based on the Multi-coloring Problem

In the k-multi-coloring problem, each vertex j has to receive a predefined number
pj of colors in {1, . . . , k} such that adjacent vertices have no common color. A
conflict occurs if two adjacent vertices have at least one color in common. The
graph multi-coloring problem consists in finding the smallest k for which a k-
multi-coloring exists. Among the few existing methods for the multi-coloring
problem, tabu search was shown to provide very competitive results [5,7].

A vertex represents an operation, a color is a time period, and the required
number pj of colors to assign to vertex j is the duration of operation j. In
contrast with the k-multi-coloring problem, conflicts are allowed in (P2), but lead
to incompatibility costs. In addition, assignment costs are also considered (while
they are all equal in the k-multi-coloring problem and can thus be ignored).
Therefore, (P2) is an extension of the k-multi-coloring problem.

3.3 Tabu Search

A feasible solution is any assignment of the correct number of colors to each
vertex. The initial solution is a random assignment of pj colors to each vertex j.
A neighbor solution is produced by changing exactly one color on a vertex. Thus,
a move (j, t, t′) consists in replacing, for a single operation j, a time period t with
another time period t′. Assume that move (j, t, t′) has just been performed. The
moves (j, t, t′) and (j, t′, t) are then forbidden for tab (parameter) iterations,
where tab is tuned in interval [1, 50] depending on the instance size n.

In order to avoid exhaustive search at each iteration (i.e. evaluating all the
possible moves), it is proposed to control the size of the evaluated set of candidate
moves by two sensitive parameters N and K, which respectively indicate the
considered proportion of operations and time periods. It was observed that the
larger is n, the smaller should be N .

3.4 Results

The stopping condition of all (meta)heuristics is a time limit of T seconds, where
T depends on the number n of vertices of the graph. T = 300 for n ≤ 30, 600
for n = 50, 1200 for n = 100, and 3600 for n = 200. The following methods GR,
DLS and GCTS are compared on randomly generated instances. Note that GR
and DLS are restarted as long as T is not reached, and the best encountered
solution is returned.

– GR: a greedy constructive algorithm working as follows. At each step, fully
color a vertex while minimizing the augmentation of the costs.

– GCTS: as described in Subsection 3.3.
– DLS: a descent local search derived from GCTS by setting N = K = 100%

(an exhaustive search is performed at each iteration), without tabu tenures.
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– GLS: a genetic local search algorithm, where at each generation, offspring
solutions are built from a central memory M (containing 6 solutions), then
these solutions are improved with a tabu search procedure relying on GCTS,
and finally they are used to replace the solutions of M (except the best one).

The tests were executed on an Intel R© CoreTM i7-2620M CPU @ 2.70GHz with
4GB of RAM (DDR3). For each instance is reported the very best objective func-
tion value f� ever found by any algorithm during all the performed tests. Results
on linear instances are reported in Table 2. The instance name is straightfor-
ward. For example, instance n10-d80-k14-p2-P5 has n = 10 operations, a density
d = 80%, k = 14 allowed time periods, and each operation j has a duration pj in
interval [p, P ] = [2, 5]. On these linear instances, it was possible to use CPLEX
12.4 (during 4 hours, which is above T for any instance) to compute a lower (resp.
upper) bound LB (resp. UB) on f . For each instance, the percentage gap of each
method (with respect to f�) is given (averaged over 10 runs). The following ob-
servations can be made: (1) CPLEX can provide optimal solution for very small
instances only (as LB = UB only for the instances with n = 10); (2) GR and
DLS performs very poorly, especially with larger n values; (3) GCTS and GLS
have comparable performances, with a slight advantage toGLS, which highlights
the benefit of the recombination operator when jointly used with GCTS.

Table 2. Results on the (P2) linear instances

Instance f� LB UB GR DLS GCTS GLS

n10-d50-k9-p2-P5 62.37 62.37 62.37 84.60% 0.00% 0.00% 0.00%

n10-d80-k14-p2-P5 44.66 44.66 44.66 181.40% 3.90% 0.20% 0.00%

n20-d50-k14-p2-P5 81.99 67.68 82.49 217.60% 2.90% 1.40% 0.50%

n20-d80-k17-p2-P5 181.12 95.2 199.17 138.90% 2.40% 1.30% 0.70%

n30-d50-k20-p2-P6 146.02 68.77 171.37 348.20% 14.40% 1.60% 1.90%

n30-d80-k30-p3-P6 438.28 73.53 640.02 166.30% 8.80% 0.60% 1.00%

n50-d20-k17-p2-P6 134.16 81.73 162.46 531.90% 29.30% 16.80% 3.50%

n50-d50-k22-p1-P4 85.94 38.73 183.59 1075.20% 43.20% 2.40% 3.00%

n100-d20-k20-p1-P5 170.84 85.18 449.86 1096.50% 66.30% 7.70% 7.50%

n200-d20-k25-p1-P5 883.17 100.91 ∞ 696.10% 65.30% 1.80% 3.70%

Average 453.67% 23.65% 3.38% 2.18%

4 Problem (P3)

4.1 Presentation of the Problem

(P3) is an extension of (P1) where incompatibility costs are replaced with in-
compatibility constraints, assignment costs are ignored, precedence constraints
have to be satisfied, and the total duration k of the project has to be minimized.
An incompatibility constraint between operations j and j′ is denoted by [j, j′].
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For each operation j is given a set P (j) ⊂ V of immediate predecessor operations.
If j′ ∈ P (j), it means that operation j′ has to be completely performed before
j starts. Such a precedence constraint is denoted by (j′, j). The goal is to assign
a time period t to each operation j while minimizing the total duration of the
project, and satisfying the incompatibility and precedence constraints.

Let (P
(k)
3 ) be the problem of searching for a feasible solution using k time

periods. As explained in Subsection 2.1, such a solution can be generated by
using a function per, and the notation s = (C1, . . . , Ck) can be used. Problem
(P3) consists in finding a feasible solution s using k time periods with the smallest

value of k. Starting with k = n, one can tackle (P3) by solving a series of (P
(k)
3 )

with decreasing values of k, and the process stops when it is not possible to find
a feasible solution with k time periods.

4.2 Graph Coloring Model Based on the Mixed GCP

A mixed graph G = (V,E,A) is a graph with vertex set V , edge set E, and arc set
A. By definition, an edge [x, y] is not oriented and an arc (x, y) is an oriented edge
(from x to y). In theMGCP (mixed graph coloring problem), the goal is to assign
a color to every vertex while using a minimum number of colors and satisfying the
incompatibility constraints (i.e., two adjacent vertices must get different colors).
In addition, for every arc (x, y), the precedence constraint col(x) < col(y) has to
be respected (where col(x) is the color assigned to x). For (P3), there is a conflict
between vertices x and y if one of the following conditions is true: (1) y ∈ I(x)
(i.e. x and y are incompatible) and col(x) = col(y) (incompatibility violation);
(2) y ∈ P (x) and col(x) ≤ col(y) (precedence violation). In both cases, x and y
are conflicting vertices. In case (1), the conflict occurs on edge [x, y], and in case
(2), it occurs on arc (x, y).

From the input data of problem (P3), one can construct a mixed graph G =
(V,E,A) as follows: vertex j represents operation j; if j′ ∈ I(j), then edge [j, j′]
is drawn to represent an incompatibility (at most one edge between two vertices);
if j′′ ∈ P (j), then an arc (j′′, j) is drawn to represent a precedence constraint.
In addition, a color t can be associated with each time period t. Coloring G
with k colors while trying to minimize the number of conflicts is equivalent to
assigning a time period t ∈ {1, . . . , k} to each operation while trying to minimize
the number of violations of incompatibility and precedence constraints.

4.3 Tabu Search

GCTS is derived from the tabu search approach proposed for the k-GCP in [2].

The search space is the set of partial but legal solutions of (P
(k)
3 ), and the objec-

tive function f to minimize is the number of operations without an associated
time period. Formally, any solution s can be denoted by s = (C1, . . . , Ck;OUT ),
where Ct is the set of operations performed at time period t (without the
occurrence of any conflict), and |OUT | has to be minimized (all the vertices
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without a time period are in OUT ). Note that if |OUT | = 0, it means that a
feasible solution has been found with k periods, and the process is restarted with
k − 1 periods, and so on until no feasible solution is found. Then, the provided
number of periods will be the last number for which a feasible solution has been
found.

A move consists in assigning a time period t to an operation j belonging to
OUT . If it creates conflicting operations (in Ct), their associated time period t is
removed (i.e., such conflicting vertices are moved from Ct to OUT ). When a time
period t is assigned to an operation j, it is then tabu to remove t from j during
tab (parameter) iterations. At each iteration, the best (according to function g
defined below) neighbor solution s′ of the current solution s is determined (ties
are broken randomly), such that either s′ is a non-tabu solution, or f(s′) < f�,
where f� is the value of the best solution s� encountered so far during the search.
If operation j is removed from OUT when switching from s to s′, it is forbidden
to put j back into OUT during tab(j) = R(u, v) + γ · nc iterations, where nc is
the number of conflicts in s, and function R(u, v) is defined as in Subsection 2.3.
Parameters u, v and γ are respectively tuned to 0, 9 and 0.6.

Let s be the current solution. Note that f may give the same value to several
candidate neighbor solutions of s. At each iteration, in order to better discrim-
inate the choice of a neighbor solution, another objective function g is used
instead of f (thus, g is only used to evaluate candidate neighbor solutions).
More precisely, a conflict can be due to an incompatibility constraint violation
or to a precedence constraint violation. It was observed that it is better to
give different weights to these two types of conflicts. Given a partial solution
s = (C1, . . . , Ck;OUT ), an operation j ∈ OUT and a time period t ∈ {1, . . . , k},
two quantities are computed: (1) A(j, t) is the set of incompatible operations
which will be put in OUT if time period t is assigned to operation j; (2) B(j, t)
is the set of operations, involved in precedence constraint violations, which will
be put in OUT if time period t is given to operation j. At each step of GCTS,
the move which minimizes g(j, t) = α · |A(j, t)|+ β · |B(j, t)| is performed, where
α and β are parameters tuned to 4 and 1, respectively. With such an objective
function g, it is very quick and accurate to evaluate a neighbor solution.

4.4 Results

The stopping condition of all (meta)heuristics is a time limit of T = 3600 seconds.
The following methods GR, GCTS and V NS are compared on instances derived
from the well-known graph coloring benchmark instances [21]. Note that GR
is restarted as long as T is not reached, and the best encountered solution is
returned.

– GR: a greedy constructive algorithm derived from [4] and working as follows.
At each step, select a vertex j and assign to it the smallest possible color
without creating any conflict. If it is not possible, put j in OUT .

– GCTS: as described in Subsection 4.3.
– V NS: a variable neighborhood search [23], using GCTS as intensification

procedure.
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Our algorithms were implemented in C++ and run on a computer with the
following properties: Processor Intel Core2 Duo Processor E6700 (2.66GHz, 4MB
Cache, 1066MHz FSB), RAM 2GB DDR2 667 ECC Dual Channel Memory
(2x1GB). The results are presented in Table 3. The five first columns respectively
indicate the following information: the name of the graph, the number n of
vertices, the smallest number of colors k� for which a legal k�-coloring was found
by an algorithm or the chromatic number χ(G) if it is known, the edge density d,

and the arc density d̂. The last three columns respectively indicate the smallest
number of colors for which a legal coloring was found by GR, GCTS, and V NS,
with the number of successes among five runs in brackets. As expected, larger d
and d̂ values lead to a larger number of used colors. One can observe that GCTS
outperforms both GR and V NS.

Table 3. Results on the (P3) instances

Graph n k� d d̂ GR GCTS V NS

DSJC250.1 250 8 0.1 0.005 9 (5) 8 (5) 8 (5)

0.1 30 (5) 30 (5) 30 (5)

DSJC250.5 250 28 0.5 0.005 36 (5) 30 (1) 31 (4)

0.01 39 (5) 35 (5) 38 (1)

DSJC250.9 250 72 0.9 0.005 89 (5) 78 (5) 82 (3)

0.01 95 (5) 91 (2) 97 (1)

DSJR500.1 500 12 0.03 0.005 12 (5) 12 (5) 12 (5)

0.1 19 (5) 19 (5) 19 (5)

DSJR500.1c 500 85 0.97 0.005 183 (5) 187 (1) 186 (1)

0.01 279 (5) 285 (3) 285 (4)

DSJR500.5 500 122 0.47 0.005 137 (5) 132 (5) 138 (1)

0.01 146 (5) 149 (1) 148 (2)

le450 15c 450 15 0.16 0.005 24 (5) 18 (5) 18 (2)

0.01 25 (5) 21 (5) 22 (4)

le450 15d 450 15 0.17 0.005 24 (5) 18 (5) 18 (2)

0.01 25 (5) 20 (1) 22 (1)

le450 25c 450 25 0.17 0.005 29 (5) 28 (5) 27 (1)

0.01 30 (5) 29 (5) 29 (4)

le450 25d 450 25 0.17 0.005 29 (5) 28 (5) 28 (5)

0.01 30 (5) 29 (5) 29 (4)

flat300 20 0 300 20 0.47 0.005 40 (5) 27 (3) 27 (1)

0.01 42 (5) 32 (1) 40 (3)

flat300 26 0 300 26 0.48 0.005 41 (5) 34 (4) 35 (1)

0.01 42 (5) 38 (5) 42 (2)

flat300 28 0 300 28 0.48 0.005 40 (5) 35 (5) 35 (2)

0.01 44 (5) 40 (1) 45 (1)

5 Conclusion

In this work, GCTS is discussed (with a unified view), which is a tabu search
approach relying on graph coloring models. It was showed that GCTS was effi-
ciently adapted to three project scheduling problems. This success mainly relies
on four aspects:
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– the use of graph coloring models to represent the considered problem and
its solutions;

– the use of an auxiliary objective function instead of the provided one (e.g.,
for problem (P3), fix k and minimize OUT , instead of minimizing k directly);

– the use of moves focusing on the costly operations (if costs have to be mini-
mized) or on the removal of conflicts (if constraint violations are penalized);

– an efficient management of the tabu durations (e.g., depending on the quality
of the performed moves).

This paper contributes to build bridges between the graph coloring and the
project scheduling communities. An avenue of research consists in reducing the
dimension of the project graph before triggering the solution methods (e.g., [20]).
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