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1 Introduction

We classify elliptic fibrations on the singular K3 surface X associated with the
Laurent polynomial
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In order to compute the Néron–Severi lattice, the Picard number, and other basic
properties of an algebraic surface, it is useful to identify an elliptic fibration on the
surface. Moreover, in view of different applications, one may be interested in finding
all the elliptic fibrations of a certain type. The fibrations of rank 0 and maximal
torsion lead more easily to the determination of the L-series of the variety (Bertin
2010). Those of positive rank lead to symplectic automorphisms of infinite order
of the variety. Lenstra’s Elliptic Curve Method (ECM) for finding small factors of
large numbers originally used elliptic curves on Q with a torsion-group of order 12
or 16 and rank � 1 on Q (Montgomery 1987; Atkin and Morain 1993). One way
to obtain infinite families of such curves is to use fibrations of modular surfaces, as
explained by Elkies (2007).

If the Picard number of a K3 surface is large, there may be an infinite
number of elliptic fibrations, but there is only a finite number of fibrations up to
automorphisms, as proved by Sterk (1985). Oguiso used a geometric method to
classify elliptic fibrations in Oguiso (1989). Some years later, Nishiyama (1996)
proposed a lattice-theoretic technique to produce such classifications, recovering
Oguiso’s results and classifying other Kummer and K3 surfaces. Since then, results
of the same type have been obtained by various authors (Kumar 2014; Elkies and
Schütt 2014; Bertin and Lecacheux 2013).

Recently, the work of Braun et al. (2013) described three possible classifications
of elliptic fibrations on a K3 surface, shining a new light on the meaning of
what is a class of equivalence of elliptic fibrations. In particular, they proposed
a J1-classification of elliptic fibrations up to automorphisms of the surface and
a J2-classification of the frame lattices of the fibrations. For our K3 surface, the
two classifications coincide. Thus, it is particularly interesting to exhibit here an
J2-classification by the Kneser–Nishiyama method, since in general it is not easy to
obtain the J1-classification. This topic will be explained in detail in Section 2.

Section 3 is devoted to a toric presentation of the surface X, following ideas of
Karp et al. (2013), based on the classification of reflexive polytopes in dimension 3.
More precisely, the Newton polytope of X is in the same class as the reflexive
polytope of index 1529. Since, according to Karp et al. (2013), there is an S4 action
on the vertices of polytope 1529 and its polar dual, there is a symplectic action of
S4 on X: This action will be described on specific fibrations. One of them gives
the transcendental lattice TX D h6i ˚ h2i: We may use these fibrations to relate X
to a modular elliptic surface analyzed by Beauville in Beauville (1982). We also
describe a presentation of X found in Garbagnati and Sarti (2009), which represents
X as a K3 surface with a prescribed abelian symplectic automorphism group.

The main results of the paper are obtained by Nishiyama’s method and are
summarized in Section 4, Theorem 4.2.

Theorem 1.1. The classification up to automorphisms of the elliptic fibrations on
X is given in Table 1. Each elliptic fibration is given with the Dynkin diagrams
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characterizing its reducible fibers and the rank and torsion of its Mordell–Weil
group. More precisely, we obtained 52 elliptic fibrations on X, including 17
fibrations of rank 2 and one of rank 3.

Due to the high number of different elliptic fibrations, we give only a few cases
of computing the torsion. These cases have been selected to give an idea of the
various methods involved. Notice the case of fibrations #22 and #22b exhibiting
two elliptic fibrations with the same singular fibers and torsion but not isomorphic.
Corresponding to these different fibrations we give some particularly interesting
Weierstrass models; it is possible to make an exhaustive list.

2 Classification of Elliptic Fibrations on K3 Surfaces

Let S be a smooth complex compact projective surface.

Definition 2.1. A surface S is a K3 surface if its canonical bundle and its irregular-
ity are trivial, that is, if KS ' OS and h1;0.S/ D 0.

Definition 2.2. A flat surjective map E W S ! P1 is called an elliptic fibration if:

1) the generic fiber of E is a smooth curve of genus 1;
2) there exists at least one section s W P1 ! S for E .

In particular, we choose one section of E , which we refer to as the zero section.
We always denote by F the class of the fiber of an elliptic fibration and by O the
curve (and the class of this curve) which is the image of s in S.

The group of the sections of an elliptic fibration E is called the Mordell–Weil
group and is denoted by MW.E/.

A generic K3 surface does not admit elliptic fibrations, but if the Picard number
of the K3 is sufficiently large, it is known that the surface must admit at least
one elliptic fibration (see Proposition 2.3). On the other hand, it is known that a
K3 surface admits a finite number of elliptic fibrations up to automorphisms (see
Proposition 2.5). Thus, a very natural problem is to classify the elliptic fibrations on
a given K3 surface. This problem has been discussed in several papers, starting in
the Eighties. There are essentially two different ways to classify elliptic fibrations on
K3 surfaces described in Oguiso (1989) and Nishiyama (1996). In some particular
cases, a third method can be applied; see Kumar (2014). First, however, we must
introduce a different problem: “What does it mean to ‘classify’ elliptic fibrations?”
A deep and interesting discussion of this problem is given in Braun et al. (2013),
where the authors introduce three different types of classifications of elliptic
fibrations and prove that under certain (strong) conditions these three different
classifications collapse to a unique one. We observe that it was already known by
Oguiso (1989) that in general these three different classifications do not collapse to
a unique one. We now summarize the results by Braun et al. (2013) and the types of
classifications.
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2.1 Types of Classifications of Elliptic Fibrations
on K3 Surfaces

In this section we recall some of the main results on elliptic fibrations on K3 surfaces
(for example, compare Schütt and Shioda 2010), and we introduce the different
classifications of elliptic fibrations discussed in Braun et al. (2013).

2.1.1 The Sublattice U and the J0-Classification

Let S be a K3 surface and E W S ! P1 be an elliptic fibration on S. Let F 2
NS.S/ be the class of the fiber of E . Then F is a nef divisor which defines the map
�jFj W S ! P.H0.S; F/�/ which sends every point p 2 S to .s0.p/ W s1.p/ W : : : W
sr.p//, where fsigiD1;:::r is a basis of H0.S; F/, i.e. a basis of sections of the line
bundle associated to the divisor F. The map �jFj is the elliptic fibration E . Hence,
every elliptic fibration on a K3 surface is uniquely associated with an irreducible
nef divisor (with trivial self-intersection). Since E W S ! P1 admits a section, there
exists a rational curve which intersects every fiber in one point. Its class in NS.S/

is denoted by O and has the following intersection properties O2 D �2 (since O
is a rational curve) and FO D 1 (since O is a section). Thus, the elliptic fibration
E W S ! P1 (with a chosen section, as in Definition 2.2) is uniquely associated with
a pair of divisors .F; O/. This pair of divisors spans a lattice which is isometric to

U, represented by the matrix

�
0 1

1 0

�
, (considering the basis F, F C O). Hence each

elliptic fibration is associated to a chosen embedding of U in NS.S/.
On the other hand, the following result holds:

Proposition 2.3 (Kondo (1992, Lemma 2.1) and Nikulin (1980a, Corollary
1.13.15)). Let S be a K3 surface, such that there exists a primitive embedding
' W U ,! NS.S/. Then S admits an elliptic fibration.

Let S be a K3 surface with Picard number �.S/ � 13. Then, there is a primitive
embedding of U in NS.S/ and hence S admits at least one elliptic fibration.

A canonical embedding of U in NS.S/ is defined as follows: Let us denote by
b1 and b2 the unique two primitive vectors of U with trivial self-intersection. An
embedding of U in NS.S/ is called canonical if the image of b1 in NS.S/ is a nef
divisor and the image of b2 � b1 in NS.S/ is an effective irreducible divisor.

The first naive classification of the elliptic fibrations that one can consider is the
classification described above, roughly speaking: two fibrations are different if they
correspond to different irreducible nef divisors with trivial self-intersections. This
essentially coincides with the classification of the canonical embeddings of U in
NS.S/.

Following Braun et al. (2013) we call this classification the J0-classification of
the elliptic fibrations on S.
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Clearly, it is possible (and indeed likely, if the Picard number is sufficiently
large) that there is an infinite number of irreducible nef divisors with trivial self-
intersection and also infinitely many copies of U canonically embedded in NS.S/.
Thus, it is possible that there is an infinite number of fibrations in curves of genus 1
on S and moreover an infinite number of elliptic fibrations on S.

2.1.2 Automorphisms and the J1-Classification

The automorphism group of a variety transforms the variety to itself preserving
its structure, but moves points and subvarieties on the variety. Thus, if one is
considering a variety with a nontrivial automorphism group, one usually classifies
objects on the variety up to automorphisms.

Let S be a K3 surface with a sufficiently large Picard number (at least 2). Then
the automorphism group of S is in general nontrivial, and it is often of infinite order.
More precisely, if �.S/ D 2, then the automorphism group of S is finite if and only
if there is a vector with self-intersection either 0 or �2 in the Néron–Severi group.
If �.S/ � 3, then the automorphism group of S is finite if and only if the Néron–
Severi group is isometric to a lattice contained in a known finite list of lattices, cf.
Kondo (1989). Let us assume that S admits more than one elliptic fibration (up to
the J0-classification defined above). This means that there exist at least two elliptic
fibrations E W S ! P1 and E 0 W S ! P1 such that F ¤ F0 2 NS.S/, where F (resp. F0)
is the class of the fiber of the fibration E (resp. E 0). By the previous observation, it
seems very natural to consider E and E 0 equivalent if there exists an automorphism
of S which sends E to E 0. This is the idea behind the J1-classification of the elliptic
fibrations introduced in Braun et al. (2013).

Definition 2.4. The J1-classification of the elliptic fibrations on a K3 surface is the
classification of elliptic fibrations up to automorphisms of the surface. To be more
precise: E is J1-equivalent to E 0 if and only if there exists g 2 Aut.S/ such that
E D E 0 ı g.

We observe that if two elliptic fibrations on a K3 surface are equivalent up
to automorphism, then all their geometric properties (the type and the number
of singular fibers, the properties of the Mordell–Weil group and the intersection
properties of the sections) coincide. This is true essentially by definition, since an
automorphism preserves all the “geometric” properties of subvarieties on S.

The advantages of the J1-classification with respect to the J0-classification are
essentially two. The first is more philosophical: in several contexts, to classify an
object on varieties means to classify the object up to automorphisms of the variety.
The second is more practical and is based on an important result by Sterk: the
J1-classification must have a finite number of classes:

Proposition 2.5 (Sterk (1985)). Up to automorphisms, there exists a finite number
of elliptic fibrations on a K3 surface.
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2.1.3 The Frame Lattice and the J2-Classification

The main problem of the J1-classification is that it is difficult to obtain a
J1-classification of elliptic fibrations on K3 surfaces, since it is in general difficult
to give a complete description of the automorphism group of a K3 surface and the
orbit of divisors under this group. An intermediate classification can be introduced,
the J2-classification. The J2-classification is not as fine as the J1-classification,
and its geometric meaning is not as clear as the meanings of the classifications
introduced above. However, the J2-classification can be described in a very natural
way in the context of lattice theory, and there is a standard method to produce it.

Since the J2-classification is essentially the classification of certain lattices
strictly related to the elliptic fibrations, we recall here some definitions and
properties of lattices related to an elliptic fibration.

We have already observed that every elliptic fibration on S is associated with an
embedding � W U ,! NS.S/.

Definition 2.6. The orthogonal complement of �.U/ in NS.S/, �.U/?NS.S/ , is
denoted by WE and called the frame lattice of E .

The frame lattice of E encodes essentially all the geometric properties of E , as
we explain now. We recall that the irreducible components of the reducible fibers
which do not meet the zero section generate a root lattice, which is the direct sum
of certain Dynkin diagrams. Let us consider the root lattice .WE/root of WE . Then
the lattice .WE/root is exactly the direct sum of the Dynkin diagram corresponding
to the reducible fibers. To be more precise if the lattice E8 (resp. E7, E6, Dn, n � 4,
Am, m � 3) is a summand of the lattice .WE/root, then the fibration E admits a
fiber of type II� (resp. IV�, III�, I�

n�4, ImC1). However, the lattices A1 and A2 can be
associated with two different types of reducible fibers, i.e. with I2 and III and with I3

and IV , respectively. We cannot distinguish between these two different cases using
lattice theory. Moreover, the singular non-reducible fibers of an elliptic fibration can
be either of type I1 or of type II.

Given an elliptic fibration E on a K3 surface S, the lattice Tr.E/ WD U ˚ .WE/root

is often called the trivial lattice (see Schütt and Shioda 2010, Lemma 8.3 for a more
detailed discussion).

Let us now consider the Mordell–Weil group of an elliptic fibration E on a
K3 surface S: its properties are also encoded in the frame WE , indeed MW.E/ D
WE=.WE/root. In particular,

rank.MW.E// D rank.WE/ � rank..WE/root/ and

.MW.E//tors D .WE/root=.WE/root;

where, for every sublattice L � NS.S/, L denotes the primitive closure of L in NS.S/,
i.e. L WD .L ˝ Q/ \ NS.S/.

Definition 2.7. The J2-classification of elliptic fibrations on a K3 surface is the
classification of their frame lattices.
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It appears now clear that if two elliptic fibrations are identified by the
J2-classification, they have the same trivial lattice and the same Mordell–Weil
group (since these objects are uniquely determined by the frame of the elliptic
fibration).

We observe that if E and E 0 are identified by the J1-classification, then there
exists an automorphism g 2 Aut.S/, such that E D E 0 ı g. The automorphism
g induces an isometry g� on NS.S/ and it is clear that g� W WE ! WE 0 is an
isometry. Thus the elliptic fibrations E and E 0 have isometric frame lattices and
so are J2-equivalent.

The J2-classification is not as fine as the J1-classification; indeed, if
h W WE ! WE 0 is an isometry, a priori there is no reason to conclude that there
exists an automorphism g 2 Aut.S/ such that g�

jWE
D h; indeed, comparing

the J1-classification given in Oguiso (1989) and the J2-classification given in
Nishiyama (1996) for the Kummer surface of the product of two non-isogenous
elliptic curves, one can check that the first one is more fine than the second one.

The advantage of the J2-classification sits in its strong relation with the lattice
theory; indeed, there is a method which allows one to obtain the J2-classification
of elliptic fibration on several K3 surfaces. This method is presented in Nishiyama
(1996) and will be described in this paper in Section 4.1.

2.1.4 Results on the Different Classification Types

One of the main results of Braun et al. (2013) is about the relations among the
various types of classifications of elliptic fibrations on K3 surfaces. First we observe
that there exists two surjective maps J0 ! J1 and J0 ! J2, which are in fact
quotient maps (cf. Braun et al. 2013, Formulae (54) and (57)). This induces a map
J1 ! J2 which is not necessarily a quotient map.

The Braun et al. (2013, Proposition C’) gives a bound for the number of
different elliptic fibrations up to the J1-classification, which are identified by the
J2-classification. As a Corollary the following is proved:

Corollary 2.8 (Braun et al. (2013, Corollary D)). Let S.a;b;c/ be a K3 surface such

that the transcendental lattice of S is isometric to

�
2a b
b 2c

�
. If .a; b; c/ is one of the

following .1; 0; 1/, .1; 1; 1/, .2; 0; 1/, .2; 1; 1/, .3; 0; 1/, .3; 1; 1/, .4; 0; 1/, .5; 1; 1/,
.6; 1; 1/, .3; 2; 1/, then J1 ' J2.

2.2 A Classification Method for Elliptic Fibrations
on K3 Surfaces

The first paper about the classification of elliptic fibrations on K3 surfaces is due
to Oguiso (1989). He gives a J1-classification of the elliptic fibrations on the
Kummer surface of the product of two non-isogenous elliptic curves. The method
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proposed in Oguiso (1989) is very geometric: it is strictly related to the presence
of a certain automorphism (a non-symplectic involution) on the K3 surface. Since
one has to require that the K3 surface admits this special automorphism, the method
suggested in Oguiso (1989) can be generalized only to certain special K3 surfaces
(see Kloosterman 2006; Comparin and Garbagnati 2014).

Seven years after the paper (Oguiso 1989), a different method was proposed by
Nishiyama in Nishiyama (1996). This method is less geometric and more related
to the lattice structure of the K3 surfaces and of the elliptic fibrations. Nishiyama
applied this method in order to obtain a J2-classification of the elliptic fibrations,
both on the K3 surface already considered in Oguiso (1989) and on other K3
surfaces (cyclic quotients of the product of two special elliptic curves) to which the
method by Oguiso cannot be applied. Later, in Bertin and Lecacheux (2013),
the method is used to give a J2-classification of elliptic fibrations on a K3 surface
whose transcendental lattice is h4i ˚ h2i.

The main idea of Nishiyama’s method is the following: we consider a K3 surface
S and its transcendental lattice TS. Then we consider a lattice T such that: T is
negative definite; rank.T/ D rank.TS/ C 4; the discriminant group and form of T
are the same as the ones of TS. We consider primitive embeddings of � W T ,! L,
where L is a Niemeier lattice. The orthogonal complement of �.T/ in L is in fact the
frame of an elliptic fibration on S.

The classification of the primitive embeddings of T in L for every Niemeier lattice
L coincides with the J2-classification of the elliptic fibrations on S. We will give
more details on Nishiyama’s method in Section 4.1.

Since this method is related only to the lattice properties of the surface, a priori
one cannot expect to find a J1-classification by using only this method.

Thanks to Corollary 2.8, (see Braun et al. 2013) the results obtained by
Nishiyama’s method are sometimes stronger than expected. In particular, we will
see that in our case (as in the case described in Bertin and Lecacheux 2013)
the classification that we obtain for the elliptic fibrations on a certain K3 surface
using the Nishiyama’s method is in fact a J1-classification (and not only a J2-
classification).

2.3 Torsion Part of the Mordell–Weil Group
of an Elliptic Fibration

In Section 4.2, we will classify elliptic fibrations on a certain K3 surface, determin-
ing both the trivial lattice and the Mordell–Weil group. A priori, steps (8) and (9)
of the algorithm presented in Section 4.1 completely determine the Mordell–Weil
group. In any case, we can deduce some information on the torsion part of the
Mordell–Weil group by considering only the properties of the reducible fibers of
the elliptic fibration. This makes the computation easier, so here we collect some
results on the relations between the reducible fibers of a fibration and the torsion
part of the Mordell–Weil group.
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First, we recall that a section meets every fiber in exactly one smooth point, so a
section meets every reducible fiber in one point of a component with multiplicity 1
(we recall that the fibers of type I�

n , II�, III�, IV� have reducible components with
multiplicity greater than 1). We will call the component of a reducible fiber which
meets the zero section the zero component or trivial component.

Every section (being a rational point of an elliptic curve defined over k.P1/)
induces an automorphism of every fiber, in particular of every reducible fiber. Thus,
the presence of an n-torsion section implies that all the reducible fibers of the
fibration admit Z=nZ as subgroup of the automorphism group. In particular, this
implies the following (well-known) result:

Proposition 2.9 (cf. Schütt and Shioda (2010, Section 7.2)). Let E W S ! P1 be
an elliptic fibration and let MW.E/tors the torsion part of the Mordell–Weil group.

If there is a fiber of type II�, then MW.E/tors D 0.
If there is a fiber of type III�, then MW.E/tors � .Z=2Z/.
If there is a fiber of type IV�, then MW.E/tors � .Z=3Z/.
If there is a fiber of type I�

n and n is an even number, then MW.E/tors � .Z=2Z/2.
If there is a fiber of type I�

n and n is an odd number, then MW.E/tors � .Z=4Z/.

2.3.1 Covers of Universal Modular Elliptic Surfaces

The theory of universal elliptic surfaces parametrizing elliptic curves with pre-
scribed torsion can also be useful when finding the torsion subgroup of a few elliptic
fibrations on the list. It relies on the following definition/proposition.

Proposition 2.10 (See Couveignes and Edixhoven (2011, 2.1.4) or Shioda
(1972)). Let � W X ! B be an elliptic fibration on a surface X. Assume � has
a section of order N, for some N 2 N, with N � 4. Then X is a cover of the
universal modular elliptic surface, EN ; of level N.

After studying the possible singular fibers of the universal surfaces above, one gets
the following.

Proposition 2.11. Let EN be the universal modular elliptic surface of level N. The
following hold:

i) If N � 5, then EN admits only semi-stable singular fibers. They are all of type
Im with mjN.

ii) The surface E4 is a rational elliptic surface with singular fibers I�
1 ; I4; I1.

2.3.2 Height Formula for Elliptic Fibrations

The group structure of the Mordell–Weil group is the group structure of the rational
points of the elliptic curve defined over the function field of the basis of the fibration.
It is also possible to equip the Mordell–Weil group of a pairing taking values in
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Q, which transforms the Mordell–Weil group to a Q-lattice. Here we recall the
definitions and the main properties of this pairing. For a more detailed description,
we refer to Schütt and Shioda (2010) and to the original paper (Shioda 1990).

Definition 2.12. Let E W S ! C be an elliptic fibration and let O be the zero section.
The height pairing is the Q-valued pairing, < �; � >W MW.E/ � MW.E/ ! Q

defined on the sections of an elliptic fibration as follows:

< P; Q >D �.S/ C P � O C Q � O �
X
c2C

contrc.P; Q/;

where �.S/ is the holomorphic characteristic of the surface S, � is the intersec-
tion form on NS.S/, C D fc 2 C such that the fiber E�1.c/ is reducibleg and
contrc.P; Q/ is a contribution which depends on the type of the reducible fiber and
on the intersection of P and Q with such a fiber as described in Schütt and Shioda
(2010, Table 4).

The value h.P/ WD< P; P >D 2�.S/ C 2P � O � P
c2C contrc.P; P/; is called the

height of the section P.

We observe that the height formula is induced by the projection of the intersec-
tion form on NS.S/ ˝ Q to the orthogonal complement of the trivial lattice Tr.E/

(cf. Schütt and Shioda 2010, Section 11).

Proposition 2.13 (Schütt and Shioda (2010, Section 11.6)). Let P 2 MW.E/ be
a section of the elliptic fibration E W S ! C. The section P is a torsion section if and
only if h.P/ D 0.

3 The K3 Surface X

The goal of this paper is the classification of the elliptic fibrations on the unique K3
surface X such that TX ' h6i ˚ h2i. This surface is interesting for several reasons,
and we will present it from different points of view.

3.1 A Toric Hypersurface and the Symmetric Group S4

Let N be a lattice isomorphic to Zn. The dual lattice M of N is given by Hom.N;Z/;
it is also isomorphic to Zn. We write the pairing of v 2 N and w 2 M as hv; wi.

Given a lattice polytope ˘ in N, we define its polar polytope ˘ı to be ˘ı D
fw 2M j hv; wi � �1 8 v 2 Kg. If ˘ı is also a lattice polytope, we say that ˘
is a reflexive polytope and that ˘ and ˘ı are a mirror pair. A reflexive polytope
must contain 0; furthermore, 0 is the only interior lattice point of the polytope.
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Reflexive polytopes have been classified in one, two, three, and four dimensions. In
three dimensions, there are 4319 reflexive polytopes, up to an overall isomorphism
preserving lattice structure (Kreuzer and Skarke 1998, 2000). The database of
reflexive polytopes is incorporated in the open-source computer algebra software
(Stein et al. 2014).

Now, consider the one-parameter family of K3 surfaces given by

x C 1

x
C y C 1

y
C z C 1

z
C x

y
C y

x
C y

z
C z

y
C x

z
C z

x
C �: (1)

This family of K3 surfaces was first studied in Verrill (1996), where its Picard–
Fuchs equation was computed. A general member of the family has Picard lattice
given by U ˚ h6i.

The Newton polytope ˘ı determined by the family of polynomials in Equation 1
is a reflexive polytope with 12 vertices and 14 facets. This polytope has the greatest
number of facets of any three-dimensional reflexive polytope; furthermore, there is a
unique three-dimensional reflexive polytope with this property, up to isomorphism.
In the database of reflexive polytopes found in Stein et al. (2014), this polytope has
index 1529.

We illustrate its polar polytope ˘ next to ˘ı in Figures 1 and 2.
Let us recall some standard constructions and notations involving toric varieties.

A cone in N is a subset of the real vector space NR D N ˝ R generated by
nonnegative R-linear combinations of a set of vectors fv1; : : : ; vmg � N. We
assume that cones are strongly convex, that is, they contain no line through the
origin. Note that each face of a cone is a cone. fan † consists of a finite collection of
cones such that each face of a cone in the fan is also in the fan, and any pair of cones
in the fan intersects in a common face. We say † is simplicial if the generators of

Fig. 1 ˘ (reflexive polytope
2355)
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Fig. 2 ˘ı (reflexive polytope
1529)

each cone in † are linearly independent over R. If every element of NR belongs to
some cone in †, we say † is complete. A fan † defines a toric variety V†. If the
fan is complete, we may describe V† using homogeneous coordinates, in a process
analogous to the construction of Pn as a quotient space of .C�/n. The homogeneous
coordinates have one coordinate zj for each generator of a one-dimensional cone
of †.

We may obtain a fan R from a mirror pair of reflexive polytopes in two equivalent
ways. We may take cones over the faces of ˘ � NR, or we may take the normal fan
to the polytope ˘ı � MR. Let † be a simplicial refinement of R such that the one-
dimensional cones of † are generated by the nonzero lattice points vk, k D 1 : : : q,
of ˘; we call such a refinement a maximal projective subdivision. Then the variety
V† is an orbifold. Then in homogeneous coordinates, we have one coordinate zk for
each nonzero lattice point in ˘. We may describe the anticanonical hypersurfaces in
homogeneous coordinates using polynomials of the form:

p D
X

x2˘ı\M

cx

qY
kD1

zhvk;xiC1
k : (2)

Here the cx are arbitrary coefficients. Note that p has one monomial for each lattice
point of ˘ı. If the reflexive polytope ˘ is three-dimensional, V† is smooth and
smooth anticanonical hypersurfaces in V† are K3 surfaces (see Cox and Katz 1999
for details).

The orientation-preserving symmetry group of ˘ and ˘ı is the symmetric
group S4. This group acts transitively on the vertices of ˘ı. As the authors of Karp
et al. (2013) observe, by setting the coefficients cx corresponding to the vertices of
˘ı to 1 and the coefficient corresponding to the origin to a parameter �, we obtain a
naturally one-parameter family of K3 hypersurfaces with generic Picard rank 19:
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p D
0
@ X

x2vertices.˘ı/

qY
kD1

zhvk ;xiC1
k

1
A C �z1 : : : zq: (3)

Equation 3 is simply Equation 1 in homogeneous coordinates.
If we view S4 as acting on the vertices of ˘ rather than the vertices of ˘ı, we

obtain a permutation of the homogeneous coordinates zk. The authors of Karp et al.
(2013) show that this action of S4 restricts to a symplectic action on each K3 surface
in the pencil given by Equation 3; in particular, we have a symplectic action of S4

on X. In the affine coordinates of Equation 1, the group action is generated by an
element s2 of order 2 which acts by .x; y; z/ 7! .1=x; 1=z; 1=y/ and an element s4 of
order 4 which acts by .x; y; z/ 7! .x=y; x=z; x/.

3.2 The K3 Surface X

Definition 3.1. Let X be the K3 surface defined by F D 0, where F is the
numerator of

x C 1

x
C y C 1

y
C z C 1

z
C x

y
C y

x
C y

z
C z

y
C x

z
C z

x
:

The K3 surface X is the special member of the family of K3 surfaces described in (1)
which is obtained by setting � D 0.

We will use three elements of the symplectic group S4: the three-cycle s3 given
by .x; y; z/ 7! .y; z; x/; the four-cycle s4 and the two-cycle s2:

We describe explicitly a first elliptic fibration, which gives the main properties
of X:

3.3 A Fibration Invariant by s3

We use the following factorizations

F D .x C y C z C 1/ .xy C yz C zx/ C .x C y C z � 3/ xyz (4)

F .x C y C z/ D .x C y C z � 1/2xyz C .x C y C z C 1/.x C y/.y C z/.z C x/:

(5)

If w D xCyC z; we see that w is invariant under the action of s3: If we substitute
w � x � y for z, we obtain the equation of an elliptic curve, so the morphism

E W X ! P1
w (6)
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.x; y; z/ 7! w D x C y C z

is an elliptic fibration of X.
We use the birational transformation

x D �v C .w C 1/u

u.w � 3/
; y D �v.w C 1/ � u2

v.w � 3/

with inverse

u D �..w � 3/x C .w C 1//..w � 3/y C .w C 1//;

v D ..w � 3/x C .w C 1//2..w � 3/y C .w C 1//

to obtain the Weierstrass equation

v2 C �
w2 C 3

�
uv C �

w2 � 1
�2

v D u3: (7)

Notice the torsion points .u D 0; v D 0/ and
�
u D 0; v D �.w2 � 1/2

�
of order

3 and the 3 points of order 2 with u-coordinate �1
4

�
w2 � 1

�2
,� .w � 1/2, and

� .w C 1/2 :

We use also the Weierstrass form

�2 D �
�
� � .w � 3/ .w C 1/3

� �
� � .w C 3/ .w � 1/3

�
(8)

with

u D 1

4

�
� � �

w2 � 1
�2

�
; v D 1

8

�
� � �

w2 C 3
�

� C �
w2 � 1

�3
�

:

The singular fibers are of type I6 for w D �1; 1; 1 and I2 for w D 3; �3; 0:

So the trivial lattice of this fibration is Tr.E/ D U ˚ A˚3
5 ˚ A˚3

1 . Hence the
Picard number of X is 20 and rank.MW.E// D 0. So X is a singular K3 surface.
This elliptic fibration is contained in the Shimada and Zhang (2001, Table 2 line 4)
and thus its transcendental lattice is h6i ˚ h2i.

Moreover, all the fibers have split multiplicative reduction and thus the Néron
Severi group is generated by curves defined on Q.

Remark 3.2. We have already observed that X is a special member of the one-
dimensional family of K3 surfaces defined by Equation 1. Indeed, the transcendental
lattice of X is primitively embedded in U ˚ h6i by the vectors .1; 1; 0/; .0; 0; 1/.

This gives the following proposition:

Proposition 3.3. The Néron–Severi group of the K3 surface X has rank 20 and is
generated by divisors which are defined over Q. The transcendental lattice of X is

TX '
�

2 0

0 6

	
:
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Remark 3.4. The equation (8) is the universal elliptic curve with torsion group
Z=2Z � Z=6Z and is in fact equivalent to the equation given in Kubert (1976).Thus
this fibration can be called modular: we can view the base curve .P1

w/ as the modular

curve X	 with 	 D f
�

a b
c d

	
2 Sl2 .Z/ ; a � 1 mod 6; c � 0 mod 6; b � 0 mod 2g.

By (5) we can easily obtain the equation

.w � 1/2 xyz C .w C 1/ .x C y/ .y C z/ .z C x/ D 0

and realize X by a base change of the modular rational elliptic surface E6 described
by Beauville in Beauville (1982). We can prove that on the fiber, the automorphism
s3 corresponds to adding a 3-torsion point.

3.4 A Fibration Invariant by s4

If t D y
zx ; we see that t is invariant under the action of s4: Substituting tzx for y

in F, we obtain the equation of an elliptic curve. Using standard transformations
(as in Kumar 2014(39.2); Atkin and Morain 1993 or Cassels 1991) we obtain the
Weierstrass model

v2 D u
�
u2 � 2t

�
t2 C 1

�
u C t2.t C 1/4

�
:

The point Qt D �
u D t.t C 1/2; v D 2t2.t C 1/2

�
is of order 4:

The point Pt D .u D .t C 1/2 ; v D .t2 C 1/ .t C 1/2/ is of infinite order.
The singular fibers are 2I�

1 .t D 0; 1/ C I8 .t D �1/ C 2I1

�
t2 C t C 1 D 0

�
:

One can prove that on the fiber, s4 corresponds to the translation by a 4-torsion
point. Moreover, the translation by the point Pt defines an automorphism of infinite
order on X.

Remark 3.5. If we compute the height of Pt we can show, using Shioda formula,
Shioda (1990) that Pt and Qt generate the Mordell–Weil group.

3.5 A Fibration Invariant by s2

If r D y
z , we see that r is invariant under the action of s2: Substituting rz for y we

obtain the equation of an elliptic curve and the following Weierstrass model

v2 � �
r2 � 1

�
vu D u .u � 2r .r C 1//

�
u � 2r2 .r C 1/

�
:

The point .0; 0/ is a two-torsion point. The point .2r .r C 1/ ; 0/ is of infinite order.
The singular fibers are
2I6 .r D 0; 1/ C I�

0 .r D �1/ C I4 .r D 1/ C 2I1

�
r2 � 14r C 1 D 0

�
.
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Remark 3.6. From Elkies results (Elkies 2010; Schütt 2010) there is a unique K3
surface X=Q with Néron–Severi group of rank 20 and discriminant �12 that consists
entirely of classes of divisors defined over Q. Indeed it is X. Moreover, in Elkies
(2010) a Weierstrass equation for an elliptic fibration on X defined over Q, is given:

y2 D x3 � 75x C .4t � 242 C 4

t
/:

Remark 3.7. The surface X is considered also in a slightly different context in
Garbagnati and Sarti (2009) because of its relation with the study of the moduli
space of K3 surfaces with a symplectic action of a finite abelian group. Indeed,
the aim of the paper (Garbagnati and Sarti 2009) is to study elliptic fibrations
EG W SG ! P1 on K3 surfaces SG such that MW.EG/ D G is a torsion group. Since
the translation by a section is a symplectic automorphism of SG, if MW.EG/ D G,
then G is a group which acts symplectically on SG. In Garbagnati and Sarti (2009)
it is shown how one can describe both a basis for the Néron–Severi group of SG

and the action induced by the symplectic action of G on this basis. In particular,
one can directly compute the lattices NS.SG/G and 
G WD NS.SG/?. The latter
does not depend on SG but only on G and its computation plays a central role
in the description of the moduli space of the K3 surfaces admitting a symplectic
action of G (see Nikulin 1979; Garbagnati and Sarti 2009). In particular, the case
G D Z=6Z�Z=2Z is considered: in this case, the K3 surface SG is X, and the elliptic
fibration EG is (6). Comparing the symplectic action of Z=6Z � Z=2Z on X given
in Garbagnati and Sarti (2009) with the symplectic group action of S4 described
in Section 3.1, we find that the two groups intersect in the subgroup of order 3
generated by the map s3 given by .x; y; z/ 7! .z; y; x/.

4 Main Result

This section is devoted to the proof of our main result:

Theorem 4.2. The classification up to automorphisms of the elliptic fibrations on
X is given in Table 1. Each elliptic fibration is given with the Dynkin diagrams
characterizing its reducible fibers and the rank and torsion of its Mordell–Weil
group. More precisely, we obtained 52 elliptic fibrations on X, including 17
fibrations of rank 2 and one of rank 3.

We denote by r the rank.MW.E//, and we use Bourbaki notations for An; Dn; Ek

as in Bertin and Lecacheux (2013).

Outline of the Proof The proof consists of an application of Nishiyama’s method:
the details of this method will be described in Section 4.1. Its application to
our case is given in Section 4.2. The application of Nishiyama’s method gives
us a J2-classification, which coincides in our cases with a classification up to
automorphisms of the surface by Corollary 2.8.
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Table 1 The elliptic fibrations of X

Lroot No. Nroot r MW.E/tors

E3
8 1 A5 ˚ A1 � E8 A1E8E8 1 .0/

2 A1 � E8 A5 � E8 A1A2E7E8 0 .0/

E8D16 3 A5 ˚ A1 � E8 A1D16 1 Z=2Z

4 A5 ˚ A1 � D16 A1D8E8 1 .0/

5 A5 � E8 A1 � D16 A1A1A2D14 0 Z=2Z

6 A1 � E8 A5 � D16 E7D10 1 .0/

E2
7D10 7 A5 ˚ A1 � E7 E7D10 1 Z=2Z

8 A5 ˚ A1 � D10 A1A1A1E7E7 1 Z=2Z

9 A1 � E7 A5 � E7 D6A1D10 1 Z=2Z

10 A1 � E7 A5 � E7 D6A2D10 0 Z=2Z

11 A5 � E7 A1 � D10 A1A1D8E7 1 Z=2Z

12 A5 � E7 A1 � D10 A1A2D8E7 0 Z=2Z

13 A1 � E7 A5 � D10 E7D6D4 1 Z=2Z

E7A17 14 A5 ˚ A1 � E7 A17 1 Z=3Z

15 A5 ˚ A1 � A17 A9E7 2 .0/

16 A5 � E7 A1 � A17 A1A15 2 .0/

17 A5 � E7 A1 � A17 A2A15 1 .0/

18 A1 � E7 A5 � A17 D6A11 1 .0/

D24 19 A5 ˚ A1 � D24 A1D16 1 .0/

D2
12 20 A5 ˚ A1 � D12 A1D4D12 1 Z=2Z

21 A1 � D12 A5 � D12 A1D10D6 1 Z=2Z

D3
8 22 A5 ˚ A1 � D8 A1D8D8 1 Z=2Z

22.b/ A5 ˚ A1 � D8 A1D8D8 1 Z=2Z

23 A1 � D8 A5 � D8 A3
1D6D8 1 .Z=2Z/2

D9A15 24 A5 ˚ A1 � D9 A1A15 2 Z=2Z

25 A5 ˚ A1 � A15 D9A7 2 .0/

26 A5 � D9 A1 � A15 A3A13 2 .0/

27 A1 � D9 A5 � A15 A1A9D7 1 .0/

E4
6 28 A1 � E6 A5 � E6 A1A5E2

6 0 Z=3Z

A11E6D7 29 A5 ˚ A1 � A11 A3D7E6 2 .0/

30 A5 � E6 A1 � D7 A2
1A11D5 0 Z=4Z

31 A5 � E6 A1 � A11 A1A9D7 1 .0/

32 A1 � E6 A5 � D7 A5A11 2 Z=3Z

33 A5 � D7 A1 � A11 A9E6 3 .0/

34 A1 � D7 A5 � A11 A1A5D5E6 1 .0/

35 A1 � E6 A5 � A11 A2
5D7 1 .0/

D4
6 36 A1 � D6 A5 � D6 A1D4D2

6 1 .Z=2Z/2

(continued)
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Table 1 (continued)

Lroot No. Nroot r MW.E/tors

D6A2
9 37 A5 ˚ A1 � A9 A1A9D6 2 Z=2Z

38 A5 � A9 A1 � A9 A3A7D6 2 .0/

39 A5 � A9 A1 � D6 A1A3A9D4 1 Z=2Z

40 A1 � A9 A5 � D6 A7A9 2 .0/

D2
5A2

7 41 A5 ˚ A1 � A7 A7D2
5 1 Z=4Z

42 A5 � A7 A1 � A7 A1A5D2
5 2 .0/

43 A5 � A7 A1 � D5 A2
1A3A7D5 1 Z=4Z

A3
8 44 A5 ˚ A1 � A8 A2

8 2 Z=3Z

45 A1 � A8 A5 � A8 A2A6A8 2 .0/

A24 46 A5 ˚ A1 � A24 A16 2 .0/

A2
12 47 A5 ˚ A1 � A12 A4A12 2 .0/

48 A5 � A12 A1 � A12 A6A10 2 .0/

D4A4
5 49 A5 D A5 A1 � A5 A3A2

5D4 1 Z=2Z

50 A5 D A5 A1 � D4 A3
1A3

5 0 Z=2Z � Z=6Z

A4
6 51 A5 � A6 A1 � A6 A4A2

6 2 .0/

Remark 4.2. The fibration given in Section 3.3 is # 50 in Table 1, the one given in
Section 3.4 is # 41, the one given in Section 3.5 is # 49, the one given in Remark 3.6
is #1. The fibrations of rank 0 may be found also in Shimada and Zhang (2001).

Remark 4.3. We observe that there exists a primitive embedding of TX ' h6i ˚ h2i
in U.2/ ˚ h2i given by the vectors h.1; 1; 1/; .0; �1; 1/i. Thus, X is a special
member of the one-dimensional family of K3 surfaces whose transcendental lattice
is isometric to U.2/ ˚ h2i. The elliptic fibrations on the generic member Y of this
family have already been classified (cf. Comparin and Garbagnati 2014), and indeed
the elliptic fibrations in Table 1 specialize the ones in Comparin and Garbagnati
(2014, Table 4.5 and Section 8.1 case r D 19), either because the rank of the
Mordell–Weil group increases by 1 or because two singular fibers glue together
producing a different type of reducible fiber.

4.1 Nishiyama’s Method in Detail: An Algorithm

This section is devoted to a precise description of Nishiyama’s method. Since the
method is very well described both in the original paper (Nishiyama 1996) and in
some other papers where it is applied, e.g. Bertin and Lecacheux (2013) and Braun
et al. (2013), we summarize it in an algorithm which allows us to compute all the
results given in Table 1. In the next section we will describe in detail some peculiar
cases, in order to show how this algorithm can be applied.
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Definition 4.4. A Niemeier lattice is an even unimodular negative definite lattice
of rank 24.

There are 24 Niemeier lattices. We will denote by L an arbitrary Niemeier lattice.
Each of them corresponds uniquely to its root lattice Lroot.

In Table 2 we list the Niemeier lattices, giving both the root lattices of each
one and a set of generators for L=Lroot. To do this we recall the following notation,
introduced in Bertin and Lecacheux (2013):

˛n D 1
nC1

Pn
jD1.n � j C 1/aj ıl D 1

2

�Pl�2
iD1 idi C 1

2
.l � 2/dl�1 C 1

2
ldl

�
ıl D Pl�2

iD1 di C 1
2
.dl�1 C dl/ Qıl D 1

2

�Pl�2
iD1 idi C 1

2
ldl�1 C 1

2
.l � 2/dl

�
�6 D � 2e1C3e2C4e3C6e4C5e5C4e6

3
�7 D � .2e1C3e2C4e3C6e4C5e5C4e6C3e7/

2

Now let us consider a K3 surface S such that �.S/ � 12. Let us denote by TS its
transcendental lattice. We describe an algorithm which gives a J2-classification of
the elliptic fibration on S.

(1) The lattice T: We define the lattice T to be a negative definite lattice such that
rank.T/ D rank.TS/ C 4 and the discriminant group and form of T are the same
as the ones of TS. The lattice T is not necessarily unique. If it is not, we choose
one lattice with this property (the results obtained do not depend on this choice).

(2) Assumption: We assume that one can choose T to be a root lattice.
(3) The embeddings �: Given a Niemeier lattice L we choose a set of primitive

embeddings � W T ,! Lroot not isomorphic by an element of the Weyl group.
(4) The lattices N and Nroot: Given a primitive embedding � we compute the

orthogonal complement N of �.T/ in Lroot, i.e. N WD �.T/?Lroot and Nroot its
root lattice.

(5) The lattices W and Wroot: We denote by W the orthogonal complement of �.T/

in L, i.e. W WD �.T/?L and by Wroot its root lattice. We observe that Nroot D
Wroot and N ,! W with finite index.

(6) The elliptic fibration E�: The frame of any elliptic fibration on S is a lattice W
obtained as in step 5. Moreover, the trivial lattice of any elliptic fibration on S is
of the form U ˚ Nroot D U ˚ Wroot where Wroot and Nroot are obtained as above.
Hence, we find a J2-classification of the elliptic fibration on S. In particular
every elliptic fibration on S is uniquely associated with a primitive embedding
� W T ,! L. Let us denote by E� the elliptic fibration associated with �.

(7) The singular fibers: We already observed (cf. Section 2.1) that almost all the
properties of the singular fibers are encoded in the trivial lattice, so it is clear
that every Nroot.WD .�.T/?Lroot /root/ determines almost all the properties of the
reducible fibers of E� .

(8) The rank of the Mordell–Weil group: Let � be a given embedding. Let r WD
rank.MW.E�//. Then r D rank.NS.S// � 2 � rank.Nroot/ D 20 � rank.TS/ �
rank.Nroot/.

(9) The torsion of the Mordell–Weil group: The torsion part of the Mordell–Weil
group is Wroot=Wroot.� W=N) and can be computed in the following way: let
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Table 2 The Niemeier lattices L: Lroot and L=Lroot

Lroot L=Lroot

E3
8 h.0/i

E8D16 Z=2Z D hı16i
E2

7D10 .Z=2Z/2 D h�.1/
7 C ı10; �

.1/
7 C �

.2/
7 C ı10i

E7A17 Z=6Z D h�7 C 3˛17i
D24 Z=2Z D hı24i
D2

12 .Z=2Z/2 D hı.1/
12 C ı

.2/
12 ; ı

.1/
12 C ı

.2/
12 i

D3
8 .Z=2Z/3 D hı.1/

8 C ı
.2/

8 C ı
.3/

8 ; ı
.1/

8 C ı
.2/
8 C ı

.3/

8 ; ı
.1/

8 C ı
.2/

8 C ı
.3/
8 i

D9A15 Z=8Z D hı9 C 2˛15i
E4

6 .Z=3Z/2 D h�.1/
6 C �

.2/
6 C �

.3/
6 ; ��

.1/
6 C �

.3/
6 C �

.4/
6 i

A11E6D7 Z=12Z D h˛11 C �6 C ı7i
D4

6 .Z=2Z/4 D hı.2/
6 C ı

.3/

6 C Qı.4/
6 ; ı

.1/
6 C Qı.2/

6 C ı
.4/
6 ,

ı
.1/
6 C ı

.2/

6 C Qı.4/
6 ; ı

.1/
6 C Qı.3/

6 C ı
.4/

6 i
D6A2

9 Z=2Z � Z=10Z D heı6 C 5˛
.2/
9 ; ı6 C ˛

.1/
9 C 2˛

.2/
9 i

D2
5A2

7 Z=4Z � Z=8Z D hı.1/
5 C ı

.2/
5 C 2˛

.1/
7 ; ı

.1/
5 C 2ı

.2/
5 C ˛

.1/
7 C ˛

.2/
7 i

A3
8 Z=3Z � Z=9Z D h3˛

.1/
8 C 3˛

.2/
8 ; ˛

.1/
8 C 2˛

.2/
8 C 2˛

.3/
8 i

A4
5D4 .Z=6Z/2 � Z=2Z D h5˛

.1/
5 C 2˛

.2/
5 C ˛

.3/
5 C ı4,

5˛
.1/
5 C 3˛

.2/
5 C 2˛

.3/
5 C 4˛

.4/
5 C ı4,

3˛
.1/
5 C 3˛

.4/
5 C Qı4i

A4
6 .Z=7Z/2 D h˛.1/

6 C 2˛
.2/
6 C ˛

.3/
6 C 6˛

.4/
6 ; ˛

.1/
6 C 6˛

.2/
6 C 2˛

.3/
6 C ˛

.4/
6 i

D6
4 .Z=2Z/6 D hı.1/

4 C ı
.i/
4 ; i D 1; : : : ; 5;

P6
iD1

e
ı

.i/
4 i

A24 Z=5Z D h5˛24i
A2

12 Z=13Z D h2˛
.1/
13 C 3˛

.2/
13 i

A6
4 .Z=5Z/3 D h˛.1/

4 C ˛
.2/
4 C ˛

.3/
4 C 4˛

.4/
4 C 4˛

.5/
4 ,

˛
.1/
4 C ˛

.2/
4 C 4˛

.3/
4 C ˛

.5/
4 C 4˛

.6/
4 ,

˛
.1/
4 C 4˛

.3/
4 C ˛

.4/
4 C 4˛

.5/
4 C ˛

.6/
4 i

A8
3 .Z=4Z/4 D h3˛

.1/
3 C P8

iD2 ci˛
.i/
3 such that .c2; : : : ; c8/

is a cyclic permutation of .2001011/i
A12

2 .Z=3Z/6 D h2˛
.1/
2 C P12

iD2 ci˛
.i/
2 such that .c2; : : : ; c12/

is a cyclic permutation of .11211122212/i
A24

1 .Z=2Z/12 D h˛.1/
1 C P24

iD2 ci˛
.i/
2 such that .c2; : : : ; c24/

is a cyclic permutation of .00000101001100110101111/i
� ƒ24 ' L

l C Lroot be a non-trivial element of L=Lroot. If there exist k ¤ 0 and u 2 Lroot

such that k.l C u/ 2 Nroot, then l C u 2 W and the class of l is a torsion element.

Remark 4.5. It is not always true that the lattice T can be chosen to be a root lattice,
and the method can be applied with some modifications without this assumption,
see Braun et al. (2013). Since everything is easier under this assumption and in
our case we can require that T is a root lattice, we described the method with the
assumption (2). In particular, if T is not a root lattice, then one has to consider the
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primitive embeddings of T in L, but one cannot use the results in Nishiyama (1996,
Sections 4 and 5), so the points (3), (4), and (5) are significantly more complicated.

4.2 Explicit Computations

Here we apply the algorithm described in Section 4.1 to the K3 surface X.

4.2.1 Step 1

From Proposition 3.3, we find that the transcendental lattice of X is

TX D
�

6 0

0 2

	
:

According to Nishiyama (1996), Schütt and Shioda (2010) and Bertin and
Lecacheux (2013), TX.�1/ admits a primitive embedding in E8 and we can take T
as its orthogonal complement in E8, that is

T D A5 ˚ A1:

4.2.2 Step 2

We observe that T is a root lattice.

4.2.3 Step 3

We must find all the primitive embeddings � W T ,! Lroot not Weyl isomorphic.
This has been done by Nishiyama (1996) for the primitive embeddings of Ak in Am,
Dn, El and for the primitive embeddings of A5 ˚ A1 into E7 and E8. So we have to
determine the primitive embeddings not isomorphic of A5 ˚ A1 in Am and Dn. This
will be achieved using Corollary 4.7 and Lemma 4.10. First we recall some notions
used in order to prove these results.

Let B be a negative-definite even lattice, let a 2 Broot a root of B. The reflection
Ra is the isometry Ra .x/ D xC.a � x/ a and the Weyl group of B, W .B/, is the group
generated by Ra for a 2 Broot.

Proposition 4.6. Let A be a sublattice of B. Suppose there exists a sequence of roots
x1; x2; : : : ; xn of A?B with xi � xiC1 D "i and "2

i D 1 then the two lattices A ˚ x1 and
A ˚ xn are isometric by an element of the Weyl group of B:

Proof. First we prove the statement for n D 2. Since the two sublattices A ˚ hx1i
and A ˚ h�x1i are isometric by Rx1 we can suppose that x1 � x2 D 1 (i.e. "1 D 1).
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Then x1 C x2 is also a root and is in A?B : So the reflection Rx1Cx2 is equal to Id on
A: Let g WD Rx1 ı Rx1Cx2 then g 2 W.B/ is equal to Id on A: Moreover g .x2/ D
Rx1 .x2 C ..x1 C x2/ � x2/ .x1 C x2// D x1; and so g fits. The case n > 2 follows by
induction. �

Corollary 4.7. Suppose n � 9; p � 6; up to an element of the Weyl group W .Dn/

or W
�
Ap

�
there is a unique primitive embedding of A5 ˚ A1 in Dn or Ap:

Proof. From Nishiyama (1996) up to an element of the Weyl group there exists one
primitive embedding of A5 in Dn or Ap: Fix this embedding. If M is the orthogonal
of this embedding then Mroot is Dn�6 or Ap�6: So for two primitive embeddings of
A1 in Mroot we can apply the previous proposition. �

We study now the primitive embeddings of A5 ˚ A1 in D8 (which are not
considered in the previous corollary, since the orthogonal complement of the unique
primitive embedding of A5 in D8 is h�6i ˚ h�2i2).

We denote by f"i; 1 � i � ng the canonical basis of Rn:

We can identify Dn .�1/ with Dn; the set of vectors of Zn whose coordinates have
an even sum.

First we recall the two following propositions, see, for example, Martinet (2002).

Proposition 4.8. The group Aut.Zn/ is isomorphic to the semi-direct product
f˙1gn Ì Sn, where the group Sn acts on f˙1gn by permuting the n components.

Proposition 4.9. If n ¤ 4, the restriction to Dn of the automorphisms of Zn induces
an isomorphism of Aut .Zn/ onto the group Aut .Dn/. The Weyl group W .Dn/ of
index two in Aut .Dn/ corresponds to those elements which induce an even number
of changes of signs of the "i.

Lemma 4.10. There are two embeddings of A5 ˚ A1 in D8 non-isomorphic up to
W .D8/ :

Proof. Let d8 D "1 C "2 and d8�iC1 D �"i�1 C "i with 2 � i � 8 a basis of D8: We
consider the embedding

A5 ,! hd7; d6; d5; d4;d3i:

By Nishiyama’s results (Nishiyama 1996), this embedding is unique up to an
element of W.D8/ and we have .A5/?D8 D hP6

iD1 "ii˚hx7i˚hd1i with x7 D "7C"8:

We see that ˙x7 and ˙d1 are the only roots of .A5/?D8 .
We consider the two embeddings

A5 ˚ A1 ,! hd7; d6; d5; d4;d3i ˚ hx7i
A5 ˚ A1 ,! hd7; d6; d5; d4;d3i ˚ hd1i:

Suppose there exists an element R0 of W.D8/ such that R0.x7/ D d1 and R0 .A5/ D
A5; we shall show that R0 .d1/ D ˙x7: If z WD R0 .d1/, then as R0 is an isometry
z � d1 D R0.d1/ � R0.x7/ D d1 � x7 D 0: Moreover, z 2 .A5/?D8 and so z D ˙x7:
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Since R0 .A5/ D A5, we see that R0jA5 is an element of O .A5/, the group of
isometries of A5: We know that O .A5/ =W .A5/ 	 Z=2Z; generated by the class of
� W d7 $ d3; d6 $ d4; d5 $ d5:

Thus, we have R0jA5 D � 2 W .A5/ or R0jA5 D �� with � 2 W .A5/ : We can also
consider � as an element of the group generated by reflections Ru of D8 with u 2 A5:

So, for v in .A5/?D8 we have Ru.v/ D v if u 2 A5 and then � .v/ D v:

Let R D ��1R0 then R D R0 on .A5/?D8 : Since R0 .d1/ D ˙x7 and R0 .x7/ D d1

we have R0jh"7;"8i D ."7 ! "8; "8 ! �"7/ or ."7 ! "7; "8 ! �"8/ : Also we have
Rjh"1;"2;:::;"6i D Id or "i $ "7�i:

In the second case R corresponds to a permutation of "i with only one sign minus;
thus, R is not an element of W .D8/ :

4.2.4 Step 4

For each primitive embedding of A5 ˚ A1 in Lroot, the computations of N and Nroot

are obtained in almost all the cases by Nishiyama (1996, Section 5). In the few cases
not considered by Nishiyama, one can make the computation directly. The results
are collected in Table 3, where we use the following notation. The vectors x3; x7; z6

in Dn are defined by

x3 WD dn�3 C 2dn�2 C dn�1 C dn;

x7 WD dn�7 C 2.dn�6 C dn�5 C dn�4 C dn�3 C dn�2/ C dn�1 C dn;

x0
7 WD 2.dn�6 C dn�5 C dn�4 C dn�3 C dn�2/ C dn�1 C dn;

z6 WD dn�5 C 2dn�4 C 3dn�3 C 4dn�2 C 3dn�1 C 2dn;

ez6 WD dn�5 C 2dn�4 C 3dn�3 C 4dn�2 C 2dn�1 C 3dn;

and the vectors x; y in Ep are

x WD e1 C e2 C 2e3 C 2e4 C e5; y WD e1 C 2e2 C 2e3 C 3e4 C 2e5 C e6:

4.2.5 Step 5 (An Example: Fibrations 22 and 22(b))

In order to compute W we recall that W is an overlattice of finite index of N; in fact,
it contains the non-trivial elements of L=Lroot which are orthogonal to �.A5 ˚ A1/.
Moreover, the index of the inclusion N ,! W depends on the discriminant of N.
Indeed jd.W/j D jd.NS.X//j D 12, so the index of the inclusion N ,! W ispjd.N/j=12.

As example we compute here the lattices W for the two different embeddings of
A5 ˚ A1 in D8 (i.e., for the fibrations 22 and 22(b)). Thus, we consider the Niemeier
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Table 3 The orthogonal complement of the primitive embeddings A5 ˚ A1 in Lroot

No. Primitive Embedding Orthogonal Complement

1

D
e.1/

1 ; e.1/
3 ; : : : ; e.1/

6

E
˚

D
e.1/

8

E
*

4e.1/
1 C 6e.1/

2 C 8e.1/
3 C 12e.1/

4 C
10e.1/

5 C 8e.1/
6 C 6e.1/

7 C 3e.1/
8

+
˚

˝
y.1/

˛ ˚
D
e.2/

1 ; : : : ; e.2/
8

E
˚

D
e.3/

1 ; : : : ; e.3/
8

E

2

D
e.1/

1 ; e.1/
3 ; : : : ; e.1/

6

E
˚

D
e.2/

1

E
*

e.1/
8 ;

2e.1/
1 C 3e.1/

2 C 4e.1/
3 C 6e.1/

4 C
5e.1/

5 C 4e.1/
6 C 3e.1/

7 C 2e.1/
8

+
˚

˝
y.1/

˛ ˚
D
x.2/; e.2/

2 ; e.2/
4 ; : : : ; e.2/

8

E
˚D

e.3/
1 ; : : : ; e.3/

8

E

3 he1; e3; : : : ; e6i ˚ he8i hyi ˚
*

4e1 C 6e2 C 8e3 C 12e4C
10e5 C 8e6 C 6e7 C 3e8

+
˚

hd1; : : : ; d16i
4 hd16; d14; : : : ; d11i ˚ hd1i hz6i ˚

*
x7; d9; : : : ; d3;

2d2 C d1

+
˚ he1; : : : ; e8i

5 he1; e3; : : : ; e6i ˚ hd16i hyi ˚
*

e8;
2e1 C 3e2 C 4e3 C 6e4C

5e5 C 4e6 C 3e7 C 2e8

+
˚

hd15i ˚ hx3; d13; : : : ; d1i
6 hd16; d14; : : : ; d11i ˚ he1i hz6i ˚ hx7; d9; : : : ; d1i ˚ hx; e2; e4; : : : ; e8i

7

D
e.1/

2 ; e.1/
4 ; : : : ; e.1/

7

E
˚he.1/

1 i

*
3e.1/

1 C 4e.1/
2 C 6e.1/

3 C
8e.1/

4 C 6e.1/
5 C 4e.1/

6 C 2e.1/
7

+
˚

hd1; : : : ; d10i ˚
D
e.2/

1 ; : : : ; e.2/
7

E
8 hd10; d8; : : : ; d5i ˚ hd1i hz6i ˚ hx7i ˚ hd3i ˚ hd3 C x7 C 2d2 C d1i ˚D

e.1/
1 ; : : : ; e.1/

7

E
˚

D
e.2/

1 ; : : : ; e.2/
7

E

9

D
e.1/

1 ; e.1/
3 ; : : : ; e.1/

6

E
˚

D
e.2/

1

E
*

2e.1/
1 C 3e.1/

2 C 4e.1/
3 C

6e.1/
4 C 5e.1/

5 C 4e.1/
6 C 3e.1/

7

+
˚

˝
y.1/

˛ ˚
D
x.2/; e.2/

2 ; e.2/
4 ; : : : ; e.2/

7

E
˚

hd1; : : : ; d10i

10

D
e.1/

2 ; e.1/
4 ; : : : ; e.1/

7

E
˚

D
e.2/

1

E
*

e.1/
1 ;

2e.1/
1 C 2e.1/

2 C 3e.1/
3 C

4e.1/
4 C 3e.1/

5 C 2e.1/
6 C e.1/

7

+
˚

D
x.2/; e.2/

2 ; e.2/
4 ; : : : ; e.2/

7

E
˚ hd1; : : : ; d10i

11

D
e.1/

1 ; e.1/
3 ; : : : ; e.1/

6

E
˚ hd10i

*
2e.1/

1 C 3e.1/
2 C 4e.1/

3 C
6e.1/

4 C 5e.1/
5 C 4e.1/

6 C 3e.1/
7

+
˚ hd9i ˚

D
e.2/

1 ; : : : ; e.2/
7

E
˚ hx3; d7; : : : ; d1i ˚ ˝

y.1/
˛

12

D
e.1/

2 ; e.1/
4 ; : : : ; e.1/

7

E
˚ hd10i

*
e.1/

1 ;
2e.1/

1 C 2e.1/
2 C 3e.1/

3 C
4e.1/

4 C 3e.1/
5 C 2e.1/

6 C e.1/
7

+
˚

D
e.2/

1 ; : : : ; e.2/
7

E
˚ hd9i ˚ hx3; d7; : : : ; d1i

13 hd10; d8; : : : ; d5i ˚
D
e.1/

1

E
hx7; d3; d2; d1i ˚

*
x.1/; e.1/

2 ;

e.1/
4 ; : : : ; e.1/

7

+
˚

D
e.2/

1 ; : : : ; e.2/
7

E
˚ hz6i

(continued)
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Table 3 (continued)

No. Primitive Embedding Orthogonal Complement

14 he2; e4; : : : ; e6i ˚ he1i
*

2e1 C 3e2 C 4e3C
6e4 C 5e5 C 4e6 C 3e7

+
˚ ha1; : : : ; a17i

15 ha1; : : : ; a5i ˚ ha7i he1; : : : ; e7i ˚
* a9; : : : ; a17;P6

jD1 jaj � 6a8;

a7 C 2a8

+

16 he1; e3; : : : ; e6i ˚ ha1i hyi ˚
*

2e1 C 3e2 C 4e3C
6e4 C 5e5 C 4e6 C 3e7

+
˚

ha1 C 2a2; a3; : : : ; a17i
17 he2; e4; : : : ; e7i ˚ ha1i

*
2e1 C 2e2 C 3e3C
4e4 C 3e5 C 2e6 C e7

; e1

+
˚

ha1 C 2a2; a3; : : : ; a17i
18 ha1; : : : ; a5i ˚ he1i hx; e2; e4; : : : ; e7i ˚

* P6
jD1 jaj;

a7; : : : a17

+

19 hd24; d22; : : : ; d19i ˚ hd1i hz6i ˚ hx7i ˚ hx7 C d1 C 2d2; d3; : : : d17i

20

D
d.1/

12 ; d.1/
10 ; : : : ; d.1/

7

E
˚

D
d.1/

1

E
*

d.1/
1 C 2d.1/

2 C d.1/
3 C x.1/

7 ;

d.1/
3 ; d.1/

4 ; d.1/
5

+
˚

D
d.2/

1 ; : : : ; d.2/
12

E
˚

D
z.1/
6

E
˚

D
x.1/

7

E

21

D
d.1/

12 ; d.1/
10 ; : : : ; d.1/

7

E
˚

D
d.2/

12

E
D
z.1/
6

E
˚

D
x.1/

7 ; d.1/
5 ; : : : ; d.1/

1

E
˚D

d.2/
11

E
˚

D
x.2/

3 ; d.2/
9 ; : : : ; d.2/

1

E

22

D
d.1/

7 ; d.1/
6 ; : : : ; d.1/

3

E
˚

D
d.1/

1

E
˝ez6

.1/
˛ ˚

D
x.1/

7

E
˚D

d.2/
1 ; : : : ; d.2/

8

E
˚

D
d.3/

1 ; : : : ; d.3/
8

E

22

.b/

D
d.1/

7 ; d.1/
6 ; : : : ; d.1/

3

E
˚

D
x.1/

7

E
˝ez6

.1/
˛ ˚

D
d.1/

1

E
˚D

d.2/
1 ; : : : ; d.2/

8

E
˚

D
d.3/

1 ; : : : ; d.3/
8

E

23

D
d.1/

8 ; d.1/
6 ; : : : ; d.1/

3

E
˚

D
d.2/

8

E
D
z.1/
6

E
˚

D
x.1/

7

E
˚

D
d.1/

1

E
˚

D
d.2/

7

E
˚D

x.2/
3 ; d.2/

5 ; : : : ; d.2/
1

E
˚

D
d.3/

1 ; : : : ; d.3/
8

E
24 hd9; d7; : : : ; d4i ˚ hd1i hz6i ˚ hx7; d1 C 2d2i ˚ ha1; : : : ; a15i

25 ha1; : : : ; a5i ˚ ha7i hd1; : : : ; d9i ˚
* P6

jD1 jaj � 6a8;

a7 C 2a8;

a9; : : : ; a15

+

26 hd9; d7; : : : ; d4i ˚ ha1i hz6i ˚ hd1; d2; x7i ˚
*

a1 C 2a2;

a3; : : : ; a15

+

27 ha1; : : : ; a5i ˚ hd9i hd8i ˚ hx3; d6; : : : ; d1i ˚
* P6

jD1 jaj;

a7; : : : ; a15

+

28

D
e.1/

1 ; e.1/
3 ; : : : ; e.1/

6

E
˚

D
e.2/

2

E
*

e.2/
2 C e.2/

3 C 2e.2/
4 C e.2/

5 ;

e.2/
1 ; e.2/

3 ; e.2/
5 ; e.2/

6

+
˚

D
e.3/

1 ; : : : ; e.3/
6

E
˚

D
e.4/

1 ; : : : ; e.4/
6

E
˚ ˝

y.1/
˛

(continued)
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Table 3 (continued)

No. Primitive Embedding Orthogonal Complement

29 ha1; : : : ; a5i ˚ ha7i
* P6

jD1 jaj � 6a8;

a7 C 2a8; a9; a10; a11

+
˚

hd1; : : : ; d7i ˚ he1; : : : ; e6i
30 he1; e3; : : : ; e6i ˚ hd7i hyi ˚ hd6i ˚ hx3; d4; : : : ; d1i ˚ ha1; : : : ; a11i
31 he1; e3 : : : ; e6i ˚ ha1i hyi ˚ hd1; : : : ; d7i ˚ ha1 C 2a2; a3; : : : ; a11i
32 hd7; d5; : : : ; d2i ˚ he1i hz6i ˚ ˝

x07
˛ ˚ hx; e2; e4; e5; e6i

˚ ha1; : : : ; a11i
33 hd7; d5; : : : ; d2i ˚ ha1i hz6i ˚ ˝

x07
˛ ˚ he1; : : : ; e6i ˚*

a1 C 2a2;

a3; : : : ; a11

+

34 ha1; : : : ; a5i ˚ hd7i hd6i ˚ hx3; d4; : : : ; d1i
˚ he1; : : : ; e6i ˚

* P6
jD1 jaj;

a7; : : : ; a11

+

35 ha1; : : : ; a5i ˚ he1i hx; e2; e4; e5; e6i ˚ hd1; : : : ; d7i ˚DP6
jD1 jaj; a7; : : : ; a11

E

36

D
d.1/

6 ; d.1/
4 ; : : : ; d.1/

1

E
˚

D
d.2/

6

E
D
z.1/
6

E
˚

D
d.2/

5

E
˚

D
d.3/

1 ; : : : ; d.3/
6

E
˚D

x.2/
3 ; d.2/

3 ; d.2/
2 ; d.2/

1

E
˚

D
d.4/

1 ; : : : ; d.4/
6

E

37
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.1/

7

E * P6
jD1 ja.1/

j � 6a.1/
8 ;

a.1/
7 C 2a.1/

8 ; a.1/
9

+
˚

D
a.2/

1 ; : : : ; a.2/
9

E
˚ hd1; : : : ; d6i

38
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.2/

1

E
hd1; : : : ; d6i ˚

* P6
jD1 ja.1/

j ;

a.1/
7 ; a.1/

8 ; a.1/
9

+
˚

D
a.2/

1 C 2a.2/
2 ; a.2/

3 ; : : : ; a.2/
9

E
39

D
a.1/

1 ; : : : ; a.1/
5

E
˚ hd6i

DP6
jD1 ja.1/

j ; a.1/
7 ; a.1/

8 ; a.1/
9

E
˚ hd5i

˚ hx3; d3; d2; d1i ˚
D
a.2/

1 ; : : : ; a.2/
9

E

40 hd5; : : : ; d1i ˚
D
a.1/

1

E
hz6i ˚

*
a.1/

1 C 2a.1/
2 ;

a.1/
3 ; : : : ; a.1/

9

+
˚

D
a.2/

1 ; : : : ; a.2/
9

E

41
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.1/

7

E DP6
jD1 ja.1/

j C 3a.1/
7

E
˚

D
a.2/

1 ; : : : ; a.2/
7

E
˚

D
d.1/

1 ; : : : ; d.1/
7

E
˚

D
d.2/

1 ; : : : ; d.2/
7

E

42
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.2/

1

E DP6
jD1 ja.1/

j ; a.1/
7

E
˚

*
a.2/

1 C 2a.2/
2 ;

a.2/
3 ; : : : ; a.2/

7

+

˚
D
d.1/

1 ; : : : ; d.1/
5

E
˚

D
d.2/

1 ; : : : ; d.2/
5

E
43

D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
d.1/

5

E DP6
jD1 ja.1/

j ; a.1/
7

E
˚

D
d.1/

4

E
˚D

x.1/
3 ; d.1/

2 ; d.1/
1

E
˚

D
a.2/

1 ; : : : ; a.2/
7

E
44

D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.1/

7

E DP6
jD1 ja.1/

j ; a.1/
7 C 2a.1/

8

E
˚D

a.2/
1 ; : : : ; a.2/

8

E
˚

D
a.3/

1 ; : : : ; a.3/
8

E
(continued)
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Table 3 (continued)

No. Primitive Embedding Orthogonal Complement

45
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.2/

1

E * P6
jD1 ja.1/

j ;

a.1/
7 ; a.1/

8

+
˚

*
a.2/

1 C 2a.2/
2 ;

a.2/
3 ; : : : ; a.2/

8

+

˚
D
a.3/

1 ; : : : ; a.3/
8

E
46 ha1; : : : ; a5i ˚ ha7i

DP6
jD1 jaj � 6a8; a7 C 2a8; a9; : : : a24

E

47
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.1/

7

E * P6
jD1 ja.1/

j � 6a.1/
8 ;

a.1/
7 C 2a.1/

8 ;

a.1/
9 ; : : : ; a.1/

12

+
˚

D
a.2/

1 ; : : : ; a.2/
12

E

48
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.2/

1

E * P6
jD1 ja.1/

j ;

a.1/
7 ; : : : ; a.1/

12

+
˚

*
a.2/

1 C 2a.2/
2 ;

a.2/
3 ; : : : ; a.2/

12

+

49
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.2/

1

E *
a.2/

1 C 2a.2/
2 ;

a.2/
3 ; a.2/

4 ; a.2/
5

+
˚

D
a.3/

1 ; : : : ; a.3/
5

E

˚
D
a.4/

1 ; : : : ; a.4/
5

E
˚ hd1; : : : ; d4i

50
D
a.1/

1 ; : : : ; a.1/
5

E
˚ hd4i hd3i ˚ hx3i ˚ hd1i ˚

D
a.2/

1 ; : : : ; a.2/
5

E
˚

D
a.3/

1 ; : : : ; a.3/
5

E
˚

D
a.4/

1 ; : : : ; a.4/
5

E

51
D
a.1/

1 ; : : : ; a.1/
5

E
˚

D
a.2/

1

E DP6
jD1 ja.1/

j

E
˚

*
a.2/

1 C 2a.2/
2 ;

a.2/
3 ; : : : ; a.2/

6

+
˚

D
a.3/

1 ; : : : ; a.3/
6

E
˚

D
a.4/

1 ; : : : ; a.4/
6

E

lattice L such that Lroot ' D3
8 and we denote the generators of L=Lroot as follows:

v1 WD ı
.1/
8 C ı8

.2/ C ı8

.3/
, v2 WD ı8

.1/ C ı
.2/
8 C ı8

.3/
, v3 WD ı8

.1/ C ı8

.2/ C ı
.3/
8 :

Fibration #22: We consider the embedding '1 W A5 ˚ A1 ,! L such that
'1.A5 ˚A1/ D hd.1/

7 ; d.1/
6 ; d.1/

5 ; d.1/
4 ; d.1/

3 i˚hd.1/
1 i. The generators of the lattice N are

described in Table 3 and one can directly check that N ' h�6i ˚ A1 ˚ D8 ˚ D8.
So, jd.N/j D 6 � 25 and the index of the inclusion N ,! W is 22 D p

6 � 25=12. This
implies that there is a copy of .Z=2Z/2 � .Z=2Z/3 which is also contained in W
and so in particular is orthogonal to '1.A5 ˚ A1/.

We observe that v1 is orthogonal to the embedded copy of A5 ˚ A1, v2 and v3 are
not. Moreover v2 �v3 is orthogonal to the embedded copy of A5 ˚A1. Hence v1 and
v2 � v3 generates W=N ' .Z=2Z/2. We just observe that v2 � v3 2 W is equivalent

mod Wroot to the vector w2 WD f
ı

.2/
8 C f

ı
.3/
8 2 W, so W=N ' .Z=2Z/2 ' hv1; w2i. We

will reconsider this fibration in Section 4.3 comparing it with the fibration #22b.
Fibration #22.b/: We consider the other embedding of A5 ˚ A1 in Lroot, i.e. '2 W
A5 ˚ A1 ,! L such that '2.A5 ˚ A1/ D hd.1/

7 ; d.1/
6 ; d.1/

5 ; d.1/
4 ; d.1/

3 i ˚ hx.1/
7 i:

The generators of the lattice N is described in Table 3 and one can directly check
that N ' h�6i˚A1˚D8˚D8. As above this implies that W=N ' .Z=2Z/2 which is
generated by elements in L=Lroot which are orthogonal to '2.A5 ˚ A1/. In particular,
v1 � v2 and v2 � v3 are orthogonal to '2.A5 ˚ A1/ so v1 � v2 2 W and v2 � v3 2 W.

Moreover, v2 � v3 D f
ı

.2/
8 C f

ı
.3/
8 mod Wroot. So, denoted by w2 WD f

ı
.2/
8 C f

ı
.3/
8 , we
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have that W=N ' hv1 � v2; w2i. We will reconsider this fibration in Section 4.3
comparing it with the fibration #22.

4.2.6 Step 6

We recalled in Section 2.1 that each elliptic fibration is associated with a certain
decomposition of the Néron–Severi group as a direct sum of U and a lattice,
called W. In step 5 we computed all the admissible lattices W, so we classify
the elliptic fibrations on X. We denote all the elliptic fibrations according to their
associated embeddings; this gives the first five columns of the Table 1.

4.2.7 Step 7

Moreover, again in Section 2.1, we recalled that each reducible fiber of an elliptic
fibration is uniquely associated with a Dynkin diagram and that a Dynkin diagram is
associated with at most two reducible fibers of the fibration. This completes step 7.

4.2.8 Step 8

In order to compute the rank of the Mordell–Weil group it suffices to perform the
suggested computation, so r D 18 � rank.Nroot/. This gives the sixth column of
Table 1.

For example, in cases 22 and 22(b), the lattice Nroot coincides and has rank 17,
thus r D 1 in both the cases.

4.2.9 Step 9

In order to compute the torsion part of the Mordell–Weil group one has to identify
the vectors v 2 W=N such that kv 2 Nroot for a certain nontrivial integer number
k 2 Z; this gives the last column of Table 1. We will demonstrate this procedure
in some examples below (on fibrations #22 and #22.b/), but first we remark that in
several cases it is possible to use an alternative method either in order to completely
determine MW.E/tors or at least to bound it. We already presented the theoretical
aspect of these techniques in Section 2.3.

Probably the easiest case is the one where r D 0. In this case MW.E/ D
MW.E/tors. Since r D 0, this implies that rank.Nroot/ D 18 D rankN, so N D Nroot.
Hence W=N D W=Nroot, thus every element w 2 W=N is such that a multiple
is contained in Nroot, i.e. every element of W=N contributes to the torsion. Thus,
MW.E/ D W=N D W=Nroot. This immediately allows to compute the torsion for
the 7 extremal fibrations #2; 5; 10; 12; 28; 30; 50:
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Fibration #50 Nroot ' A˚3
1 ˚ A˚3

5 (r D 0) The lattice N D Nroot is A˚3
1 ˚ A˚3

5 , then
jd.N/j D 2363 and jW=Nj D 2 � 6. Moreover W=N � L=Lroot ' .Z=6Z/2 �Z=2Z.
This immediately implies that W=N D Z=6Z � Z=2Z.
Fibration #1 Nroot ' A1 ˚ E˚2

8 (fibers of special type, Proposition 2.9) The
presence of the lattice E8 as summand of Nroot implies that the fibration has a fiber
of type II� (two in this specific case). Hence MW.E/tors is trivial.
Fibration #29 Nroot ' A3 ˚ D7 ˚ E6 (fibers of special type, Proposition 2.9) By
Proposition 2.9 if a fibration has a fiber of type IV�, then the Mordell–Weil group is
a subgroup of Z=3Z. On the other hand, a fiber of type D7, i.e., I�

3 can only occur in
fibrations with 4 or 2-torsion or trivial torsion group. Therefore MW.E/tors is trivial.
Fibration #25 Nroot ' A7˚D9 (the height formula, Section 2.3.2) Suppose there is
a non-trivial torsion section P. Then, taking into account the possible contributions
of the reducible fibers to the height pairing, there is 0 � i � 7 such that one of the
following holds:

4 D i.8 � i/

8
C 1 or 4 D i.8 � i/

8
C 1 C 5=4:

After a simple calculation, one sees that neither of the above can happen and
therefore the torsion group MW.E/tors is trivial.
Fibration #22 Nroot ' A1 ˚ D8 ˚ D8 We already computed the generators
of W=N in Section 4.2.5, W=N ' .Z=2Z/2 ' hv1; w2i. A basis of Nroot is
hx.1/

7 i ˚ hd.j/
i iiD1;:::8;jD2;3. So

2v1 D d.1/
1 C 2d.1/

2 C 3d.1/
3 C 4d.1/

4 C 5d.1/
5 C 6d.1/

6 C 2d.1/
7 C 3d.1/

8

C
3X

iD2

0
@d.i/

7 C d.i/
8 C 2

0
@ 7X

jD1

d.i/
j

1
A

1
A

and 2v1 62 Nroot since d.1/
1 C 2d.1/

2 C 3d.1/
3 C 4d.1/

4 C 5d.1/
5 C 6d.1/

6 C 2d.1/
7 C 3d.1/

8 is

not a multiple of x.1/
7 . Vice-versa

2w2 � D.2/
8 ˚ D.3/

8 2 Nroot:

Thus MW.E/ D Z � Z=2Z.
Fibration #22.b/ Nroot ' A1 ˚ D8 ˚ D8 Similarly, we consider the generators of
W=N ' .Z=2Z/2 ' hv1 � v2; w2i computed in Section 4.2.5. A basis of Nroot is
hd.1/

1 i ˚ hd.j/
i iiD1;:::8;jD2;3. So

2w1 62 Nroot and 2w2 2 Nroot:

Thus also in this case MW.E/ D Z � Z=2Z.
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4.3 Again on Fibrations #22 and #22.b/

As we can check in Table 1 and we proved in the previous sections, the fibrations
#22 and #22.b/ are associated with the same lattice N and to the same Mordell–Weil
group. However, we proved in Lemma 4.10 that they are associated to different
(up to Weyl group) embeddings in the Niemeier lattices, so they correspond to
fibrations which are not identified by the J2-fibration and in particular they cannot
have the same frame. The following question is now natural: what is the difference
between these two fibrations? The answer is that the section of infinite order, which
generates the free part of the Mordell–Weil group of these two fibrations, has
different intersection properties, as we show now in two different ways and contexts.
Fibration #22: We use the notation of Section 4.2.5. Moreover we fix the following
notation: ‚1

1 WD x.1/
7 and ‚

.j/
i WD d.j/

i , i D 1; : : : 8, j D 2; 3 are, respectively, the non
trivial components of the fibers of type I2, I�

4 , and I�
4 , respectively.

The class P WD 2F C O � v1 is the class of a section of infinite order of the
fibration, generating the free part of MW.E/ and the class Q WD 2F C O � w2 is the
class of the 2-torsion section of the fibration. The section P meets the components
‚1

1, ‚2
1, ‚3

1 and Q meets the components ‚1
0, ‚2

7, ‚3
7. We observe that h.P/ D 3=2

and h.Q/ D 0 which agree with Schütt and Shioda (2010, Formula 22) and the fact
that Q is a torsion section, respectively. We also give an explicit equation of this
fibration and of its sections, see (10).
Fibration #22.b/: We use the notation of Section 4.2.5. Moreover we fix the
following notation: ‚1

1 WD d.1/
1 and ‚

.j/
i WD d.j/

i , i D 1; : : : 8, j D 2; 3

are respectively the non-trivial components of the fibers of type I2, I�
4 , and I�

4 ,
respectively. The class Q WD 2F C O � w2 is the class of the 2-torsion section
of the fibration. Observe that Q meets the components ‚1

0, ‚2
7, ‚3

7. The class

P D 2F C O C v1 � v2 � ‚2
1 � ‚2

2 � ‚2
3 � ‚2

4 � ‚2
5 � ‚2

6 � ‚2
7

is the class of a section of infinite order, which intersects the following components
of the reducible fibers: ‚1

1, ‚2
7, ‚3

0. This agrees with the height formula. We also
give an explicit equation of this fibration and of its sections, see (11).

Remark 4.11. The generators of the free part of the Mordell–Weil group is clearly
defined up to the sum by a torsion section. The section P˚Q intersects the reducible
fibers in the following components ‚1

1, ‚2
0, ‚3

7 (this follows by the group law on the
fibers of type I2 (or III) and I�

4 ).

Remark 4.12. Comparing the sections of infinite order of the fibration 22 and the
one of the fibration 22(b), one immediately checks that their intersection properties
are not the same, so the frames of the elliptic fibration 22 and of elliptic fibration
22(b) are not the same and hence these two elliptic fibrations are in fact different
under the J2-classification.

We observe that both the fibrations #22 and #22.b/ specialize the same fibration,
which is given in Comparin and Garbagnati (2014, Section 8.1, Table r D 19,
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case 11)). Indeed the torsion part of the Mordell–Weil group, which is already
present in the more general fibrations analyzed in Comparin and Garbagnati (2014),
are the same and the difference between the fibration 22 and the fibration 22(b)
is in the free part of the Mordell Weil group, so the difference between these two
fibrations involves exactly the classes that correspond to our specialization.

Here we also give an equation for each of the two different fibrations #22 and
#22(b). Both these equations are obtained from the equation of the elliptic fibration
#8 (9). So first we deduce an equation for #8: Let c WD v

.w�1/2 . Substituting v by

c .w � 1/2 in (7), we obtain the equation of an elliptic curve depending on c, which
corresponds to the fibration #8 and with the following Weierstrass equation

Ec W ˇ2 D ˛
�
˛2 C 6c2˛ � c3 .c � 4/ .4c � 1/

�
: (9)

Fibration #22 Putting n0 D ˛
c2.4c�1/

; ˇ D yc2.4c�1/

4n03
; c D x

4n03
; in (9) we obtain

En0 W y2 D x
�
x2 � n0 �

n02 � 6n.0/ C 1
�

x C 16n04�
(10)

with singular fibers of type 2I�
4 .n D 0; 1/ C I2 C 2I1: We notice the point P D��

.n0 � 1/2n0; �2n02.n02 � 1/
��

of height 3
2
, therefore P and Q D .0; 0/ generate

the Mordell–Weil group of En0 . To study the singular fiber at n0 D 1 we do the
transformation N0 D 1

n ; y D ˇ1

N06 ; x D ˛1

N04 and P D .˛1; ˇ1/ with ˛1 D .N0 � 1/
2 N0

and ˇ1 D �2N02 �
N02 � 1

�
: We deduce that the section P intersects the component

of singular fibers at 0 and 1 with the same subscript, so this fibration corresponds
to fibration #22.
Fibration #22(b) Putting n D 2˛

c.4c�1/
; ˇ D yc.4c�1/

4n ; c D �x
2n in (9) we obtain

En W y2 D x
�
x2 C 2n

�
n2 C 3n C 4

� C n4
�

(11)

with singular fibers of type 2I�
4 .n D 0; 1/ C I2 C 2I1: We notice the point P D�

4; 2.n C 2/2
�

of height 3
2
, therefore P and Q D .0; 0/ generate the Mordell–Weil

group of En. Since P does not meet the node of the Weierstrass model at n D 0,
the section P intersects the component ‚0 of the singular fiber for n D 0; so this
fibration corresponds to #22(b).

Remark 4.13. Let us denote by E9 and E21 the elliptic fibrations #9 and #21,
respectively. They satisfy Tr.E9/ ' Tr.E21/ and MW.E9/ ' MW.E21/, but E9 is
not J2-equivalent to E21 since, as above, the infinite order sections of these two
fibrations have different intersection properties with the singular fibers. Indeed these
two fibrations correspond to different fibrations (Comparin and Garbagnati 2014,
Case 10a) and case 10b), Section 8.1, Table r D 19) on the more general family of
K3 surfaces considered in Comparin and Garbagnati (2014).

Acknowledgements We thank the organizers and all those who supported our project for their
efficiency, their tenacity and expertise. The authors of the paper have enjoyed the hospitality of
CIRM at Luminy, which helped to initiate a very fruitful collaboration, gathering from all over the



48 M.J. Bertin et al.

world junior and senior women, bringing their skill, experience, and knowledge from geometry and
number theory. Our gratitude goes also to the referee for pertinent remarks and helpful comments.

A.G is supported by FIRB 2012 “Moduli Spaces and Their Applications” and by PRIN 2010–
2011 “Geometria delle varietà algebriche.” C.S is supported by FAPERJ (grant E26/112.422/2012).
U.W. thanks the NSF-AWM Travel Grant Program for supporting her visit to CIRM.

References

Atkin, A.O., Morain, F.: Finding suitable curves for the elliptic curve method of factorization.
Math. Comput. 60, 399–405 (1993)

Beauville, A.: Les familles stables de courbes elliptiques sur P1 admettant quatre fibres singulières.
C. R. Acad. Sci. Paris Sér. I Math. 294, 657–660 (1982)

Bertin, M.J.: Mesure de Mahler et série L d’une surface K3 singulière. Actes de la Conférence:
Fonctions L et Arithmétique. Publ. Math. Besan. Actes de la conférence Algèbre Théorie Nbr.,
Lab. Math. Besançon, pp. 5–28 (2010)

Bertin, M.J., Lecacheux, O.: Elliptic fibrations on the modular surface associated to 	1.8/.
In: Arithmetic and Geometry of K3 Surfaces and Calabi-Yau Threefolds. Fields Institute
Communications, vol. 67, pp. 153–199. Springer, New York (2013)

Braun, A.P., Kimura, Y., Watari, T.: On the classification of elliptic fibrations modulo isomor-
phism on K3 surfaces with large Picard number, Math. AG; High Energy Physics (2013)
[arXiv:1312.4421]

Cassels, J.W.S.: Lectures on Elliptic Curves. London Mathematical Society Student Texts, vol. 24.
Cambridge University Press, Cambridge (1991)

Comparin, P., Garbagnati, A.: Van Geemen-Sarti involutions and elliptic fibrations on K3 surfaces
double cover of P2. J. Math. Soc. Jpn. 66, 479–522 (2014)

Couveignes, J.-M., Edixhoven, S.: Computational Aspects of Modular Forms and Galois Repre-
sentations, Annals of Math Studies 176. Princeton University Press, Princeton

Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry. American Mathematical Society,
Providence (1999)

Elkies, N.D.: http://www.math.harvard.edu/~elkies/K3_20SI.html#-7[1 (2010)
Elkies, N.D.: Three Lectures on Elliptic Surfaces and Curves of High Rank. Lecture notes,

Oberwolfach (2007)
Elkies, N., Schütt, M.: Genus 1 fibrations on the supersingular K3 surface in characteristic 2 with

Artin invariant 1. Asian J. Math. (2014) [arXiv:1207.1239]
Garbagnati, A., Sarti, A.: Elliptic fibrations and symplectic automorphisms on K3 surfaces.

Commun. Algebra 37, 3601–3631 (2009)
Karp, D., Lewis, J., Moore, D., Skjorshammer, D., Whitcher, U.: On a family of K3 surfaces with

S4 symmetry. In: Arithmetic and Geometry of K3 Surfaces and Calabi-Yau Threefolds. Fields
Institute Communications. Springer, New York (2013)

Kloosterman, R.: Classification of all Jacobian elliptic fibrations on certain K3 surfaces. J. Math.
Soc. Jpn. 58, 665–680 (2006)

Kondo, S.: Algebraic K3 surfaces with finite automorphism group. Nagoya Math. J. 116, 1–15
(1989)

Kondo, S.: Automorphisms of algebraic K3 surfaces which act trivially on Picard groups. J. Math.
Soc. Jpn. 44, 75–98 (1992)

Kubert, D.S.: Universal bounds on the torsion of elliptic curves. Proc. Lond. Math. Soc. 33(3),
193–237 (1976)

Kumar, A.: Elliptic fibrations on a generic Jacobian Kummer surface. J. Algebraic Geom.
[arXiv:1105.1715] 23, 599–667 (2014)

Kreuzer, M., Skarke, H.: Classification of reflexive polyhedra in three dimensions. Adv. Theor.
Math. Phys. 2, 853–871 (1998)

http://www.math.harvard.edu/~elkies/K3_20SI.html#-7[1


Classifications of Elliptic Fibrations of a Singular K3 Surface 49

Kreuzer, M., Skarke, H.: Complete classification of reflexive polyhedra in four dimensions. Adv.
Theor. Math. Phys. 4, 1209–1230 (2000)

Martinet, J.: Perfect Lattices in Euclidean Spaces, vol. 327. Springer, Berlin/Heidelberg (2002)
Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Math.

Comput. 48. (1987) 243–264.
Nikulin, V.V.: Finite groups of automorphisms of Kählerian K3 surfaces. (Russian) Trudy Moskov.

Mat. Obshch. 38, 75–137 (1979). English translation: Trans. Moscow Math. Soc. 38, 71–135
(1980)

Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Math. USSR Izv.
14, 103–167 (1980)

Nishiyama, K.: The Jacobian fibrations on some K3 surfaces and their Mordell–Weil groups. Jpn.
J. Math. (N.S.) 22, 293–347 (1996)

Oguiso, K.: On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic
curves. J. Math. Soc. Jpn. 41, 651–680 (1989)

Schütt, M.: K3 surface with Picard rank 20 over Q. Algebra Number Theory 4, 335–356 (2010)
Schütt, M., Shioda, T.: Elliptic surfaces. In: Algebraic Geometry in East Asia–Seoul 2008.

Advanced Studies in Pure Mathematics, vol. 60, pp. 51–160. The Mathematical Society of
Japan, Tokyo (2010)

Shimada, I., Zhang, D.-Q.: Classification of extremal elliptic K3 surfaces and fundamental groups
of open K3 surfaces. Nagoya Math. J. 161, 23–54 (2001)

Shioda, T.: On the Mordell–Weil lattices. Commun. Math. Univ. St. Pauli 39, 211–240 (1990)
Shioda, T.: On elliptic modular surfaces J. Math. Soc. Jpn. 24(1), 20–59 (1972)
Stein, W.A., et al.: Sage Mathematics Software (Version 6.1). The Sage Development Team. http://

www.sagemath.org (2014)
Sterk, H.: Finiteness results for algebraic K3 surfaces. Math. Z. 180, 507–513 (1985)
Verrill, H.: Root lattices and pencils of varieties. J. Math. Kyoto Univ. 36, 423–446 (1996)

http://www.sagemath.org
http://www.sagemath.org

	Classifications of Elliptic Fibrations of a Singular K3 Surface
	1 Introduction
	2 Classification of Elliptic Fibrations on K3 Surfaces
	2.1 Types of Classifications of Elliptic Fibrations on K3 Surfaces
	2.1.1 The Sublattice U and the J0-Classification
	2.1.2 Automorphisms and the J1-Classification
	2.1.3 The Frame Lattice and the J2-Classification
	2.1.4 Results on the Different Classification Types

	2.2 A Classification Method for Elliptic Fibrations on K3 Surfaces
	2.3 Torsion Part of the Mordell–Weil Group of an Elliptic Fibration
	2.3.1 Covers of Universal Modular Elliptic Surfaces
	2.3.2 Height Formula for Elliptic Fibrations


	3 The K3 Surface X
	3.1 A Toric Hypersurface and the Symmetric Group S4
	3.2 The K3 Surface X
	3.3 A Fibration Invariant by s3
	3.4 A Fibration Invariant by s4
	3.5 A Fibration Invariant by s2

	4 Main Result
	4.1 Nishiyama's Method in Detail: An Algorithm
	4.2 Explicit Computations
	4.2.1 Step 1
	4.2.2 Step 2
	4.2.3 Step 3
	4.2.4 Step 4
	4.2.5 Step 5 (An Example: Fibrations 22 and 22(b))
	4.2.6 Step 6
	4.2.7 Step 7
	4.2.8 Step 8
	4.2.9 Step 9

	4.3 Again on Fibrations # 22 and #22(b)

	References


