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Abstract. As the interest in the representation of context dependent
knowledge in the Semantic Web has been recognized, a number of logic
based solutions have been proposed in this regard. In our recent works,
in response to this need, we presented the description logic-based Con-
textualized Knowledge Repository (CKR) framework. CKR is not only
a theoretical framework, but it has been effectively implemented over
state-of-the-art tools for the management of Semantic Web data: infer-
ence inside and across contexts has been realized in the form of forward
SPARQL-based rules over different RDF named graphs. In this paper
we present the first evaluation results for such CKR implementation. In
particular, in our first experiment we study its scalability with respect
to different reasoning regimes. In a second experiment we analyze the
effects of knowledge propagation on the reasoning process. In the last
experiment we study the effects of modularization of global knowledge
with respect to local reasoning.

1 Introduction

Recently, the representation of context dependent knowledge in the Semantic
Web has been recognized as a relevant issue. This lead to the introduction of a
growing number of logic based proposals, e.g. [6,7,10–13]. In this line of research,
in our previous works we introduced the Contextualized Knowledge Reposi-
tory (CKR) framework [1,4,5,10]. CKR is a description logics-based framework
defined as a two-layered structure: intuitively, a lower layer contains a set of con-
textualized knowledge bases, while the upper layer contains context independent
knowledge and meta-data defining the structure of contextual knowledge bases.

The CKR framework has not only been presented as a theoretical framework,
but we also proposed effective implementations based on its definitions [2,5]. In
particular, in [5] we presented an implementation for the CKR framework over
state-of-the-art tools for storage and inference over RDF data. Intuitively, the
CKR architecture can be implemented by representing the global context and
the local object contexts as distinct RDF named graphs. Inference inside (and
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across) named graphs is implemented as SPARQL based forward rules. We use
an extension of the Sesame framework that we developed, called SPRINGLES,
which provides methods to demand an inference materialization over multiple
graphs: rules are encoded as SPARQL queries and it is possible to customize their
evaluation strategy. The rule set encodes the rules of the formal materialization
calculus we proposed for the CKR framework [5] and the evaluation strategy
follows the calculus translation process.

In this paper we present the results of an initial experimental evaluation of
such implementation of CKR framework over RDF. In particular, the experi-
ments we present are aimed at answering three different research questions:

– RQ1 (scalability): what is the effect on the amount of time requested for
inference closure computation with respect to the number and size of contexts
of a CKR?

– RQ2 (propagation): what is the effect on the amount of time requested
for inference closure computation with respect to the number of connections
across contexts? (considering a fixed number of contexts and a fixed amount
of knowledge exchanged).

– RQ3 (modularization): what is the effect on the amount of time requested
for inference closure computation with respect to the distribution of knowledge
across global and local modules?

As we will detail in the following sections, by means of our experiments we
answered the questions with these findings:

– F1 (scalability): reasoning regime at the global and local level strongly
impacts on the scalability of reasoning and its behaviour. Considering only
global level reasoning, results suggest that the management of contexts does
not add overhead to the reasoning in global context; by considering also reason-
ing inside contexts, inference time appears to be influenced by the expressivity
and number of contexts.

– F2 (propagation): knowledge propagation cost linearly depends on the num-
ber of connections. Moreover, the representation of references to local inter-
pretation of symbols using context connections is always more compact w.r.t.
replicating symbols for each local interpretation: the first solution in general
requires more computational time, but outperforms the second solution in case
of a larger number of connections.

– F3 (modularization): the representation of global knowledge as a module
shared by all contexts is always more compact w.r.t. replication of knowledge
for each local interpretation. For an adequate dimension of the module and
number of contexts, reasoning with modularization outperforms the overhead
of context management.

The remainder of the paper is organized as follows: in Section 2 we summarize
the basic formal definitions for CKR and its associated calculus; in Section 3
we summarize how the presented definitions have been implemented over RDF
named graphs; in Section 4 we present the test setup and experimental evalu-
ations; finally, in Section 5 we suggest some possible extensions to the current
evaluation and implementation work.
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2 Contextualized Knowledge Repositories

In the following we provide an informal summary of the definitions for the CKR
framework: for a formal and detailed description and for complete examples, we
refer to [5] where the current formalization for CKR has been first introduced.

Intuitively, a CKR is a two layered structure: the upper layer consists of a
knowledge base G containing (1) meta-knowledge, i.e. the structure and prop-
erties of contexts of the CKR, and (2) global (context-independent) knowledge,
i.e., knowledge that applies to every context; the lower layer consists of a set of
(local) contexts that contain (locally valid) facts and can refer to what holds in
other contexts.
Syntax. In order to separate the elements of the meta-knowledge from the
ones of the object knowledge, we build CKRs over two distinct vocabularies
and languages. The meta-knowledge of a CKR is expressed in a DL language
containing the elements that define the contextual structure. A meta-vocabulary
is a DL vocabulary Γ containing the sets of symbols for context names N; module
names M; context classes C, including the class Ctx; contextual relations R;
contextual attributes A; and for every attribute A ∈ A, a set DA of attribute values
of A. The role mod defined on N×M expresses associations between contexts and
modules. Intuitively, modules represent pieces of knowledge specific to a context
or context class; attributes describe contextual dimensions (e.g. time, location,
topic) identifying a context (class). The meta-language LΓ of a CKR is a DL
language over Γ (where, formally, the range and domain of attributes and mod
are restricted as explained above).

The knowledge in contexts of a CKR is expressed via a DL language LΣ,
called object-language, based on an object-vocabulary Σ. The expressions of the
object language are evaluated locally to each context, i.e., contexts can interpret
each symbol independently. To access the interpretation of expressions inside a
specific context or context class, we extend LΣ to Le

Σ with eval expressions of
the form eval(X,C), where X is a concept or role expression of LΣ and C is a
concept expression of LΓ (with C � Ctx). Intuitively, eval(X,C) can be read as
“the interpretation of X in all the contexts of type C”.

On the base of previous languages, we define a Contextualized Knowledge
Repository (CKR) as a structure K = 〈G, {Km}m∈M〉 where: (i) G is a DL knowl-
edge base over LΓ ∪ LΣ; (ii) every Km is a DL knowledge base over Le

Σ, for each
module name m ∈ M. The knowledge in a CKR can be expressed by means of
any DL language: in this paper, we consider SROIQ-RL (defined in [5]) as lan-
guage of reference. SROIQ-RL is a restriction of SROIQ syntax corresponding
to OWL RL [9]. K is a SROIQ-RL CKR, if G and all Km are knowledge bases
over the extended language of SROIQ-RL where eval-expressions can only occur
in left-concepts and contain left-concepts or roles.
Semantics. The model-based semantics of CKR basically follows the two lay-
ered structure of the framework. A CKR interpretation is a structure I = 〈M, I〉
s.t.: (i) M is a DL interpretation of Γ ∪ Σ (respecting the intuitive interpreta-
tion of Ctx as the class of all contexts); (ii) for every x ∈ CtxM, I(x) is a
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DL interpretation over Σ (with same domain and interpretation of individual
names of M). The interpretation of ordinary DL expressions on M and I(x)
in I = 〈M, I〉 is as usual; eval expressions are interpreted as follows: for every
x ∈ CtxM, eval(X,C)I(x) =

⋃
e∈CM XI(e), i.e. the union of all elements in XI(e)

for all contexts e in CM.
A CKR interpretation I is a CKR model of K iff the following conditions

hold: (i) for α ∈ LΣ ∪ LΓ in G, M |= α; (ii) for 〈x, y〉 ∈ modM with y = mM,
I(x) |= Km; (iii) for α ∈ G ∩ LΣ and x ∈ CtxM, I(x) |= α. Intuitively, while
the first two conditions impose that I verifies the contents of global and local
modules associated to contexts, last condition states that global knowledge has
to be propagated to local contexts.
Materialization calculus. Reasoning inside a CKR has been formalized in
form of a materialization calculus. In particular, the calculus proposed in [5]
is an adaptation of the calculus presented in [8] in order to define a reasoning
procedure for deciding instance checking in the structure of a SROIQ-RL CKR.
As we discuss in following sections, this calculus provides the formalization for
the definition of rules for the implementation of CKR based on RDF named
graphs and forward SPARQL rules.

Intuitively, the calculus is based on a translation to datalog: the axioms of the
input CKR are translated to datalog atoms and datalog rules are added to such
translation to encode the global and local inferences rules; instance checking is
then performed by translating the ABox assertion to be verified as a datalog fact
and verifying whether it is entailed by the CKR program. The calculus, thus, has
three components: (1) the input translations Iglob, Iloc, Irl, where given an axiom
α and c ∈ N, each I(α, c) is a set of datalog facts or rules: intuitively, they encode
as datalog facts the contents of input global and local DL knowledge bases; (2)
the deduction rules Ploc, Prl, which are sets of datalog rules: they represent the
inference rules for the instance-level reasoning over the translated axioms; and
(3) the output translation O, where given an axiom α and c ∈ N, O(α, c) is a
single datalog fact encoding the ABox assertion α that we want to prove to be
entailed by the input CKR (in the context c).

We briefly present here the form of the different sets of translation and deduc-
tion rules: tables with the complete set of rules can be found in [5].
(i) SROIQ-RL translation: Rules in Irl(S, c) translate to datalog facts
SROIQ-RL axioms (in context c). E.g., we translate atomic concept inclusions
with the rule A � B �→ {subClass(A,B, c)}. The rules in Prl are the deduction
rules corresponding to axioms in SROIQ-RL: e.g., for atomic concept inclusions
we have

subClass(y, z, c), inst(x, y, c) → inst(x, z, c)
(ii) Global and local translations: Global input rules of Iglob encode the inter-
pretation of Ctx in the global context. Similarly, local input rules Iloc and local
deduction rules Ploc provide the translation and rules for elements of the local
object language. In particular for eval expressions in concept inclusions, we have
the input rule eval(A,C) � B �→ {subEval(A,C, B, c)} and the corresponding
deduction rule (where g identifies the global context):
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subEval(a, c1, b, c), inst(c′, c1, g), inst(x, a, c′) → inst(x, b, c)
(iii) Output rules: The rules in O(α, c) provide the translation of ABox assertions
that can be verified to hold in context c by applying the rules of the final program.
For example, atomic concept assertions in a context c are translated by A(a) �→
{inst(a,A, c)}.

Given a CKR K = 〈G, {Km}m∈M〉, the translation to its datalog program
PK(K) proceeds in four steps:

1. the global program PG(G) for G is translated by applying input rules Iglob
and Irl to G and adding deduction rules Prl;

2. Let NG = {c ∈ N | PG(G) |= inst(c,Ctx, g)}. For every c ∈ NG, we define
the knowledge base associated to the context as

Kc =
⋃{Km ∈ K | PG(G) |= triple(c,mod,m, g)}

3. We define each local program PC(c) for c ∈ NG by applying input rules Iloc
and Irl to Kc and adding deduction rules Ploc and Prl.

4. The final CKR program PK(K) is then defined as the union of PG(G) with
all local programs PC(c).

We say that K entails an axiom α in a context c ∈ N if the elements of PK(K)
and O(α, c) are defined and PK(K) |= O(α, c). We can show (see [5]) that the
presented rules and translation process provide a sound and complete calculus
for instance checking for SROIQ-RL CKR.

3 CKR Implementation on RDF

We recently presented a prototype [5] implementing the forward reasoning proce-
dure over CKR expressed by the materialization calculus. The prototype accepts
RDF input data expressing OWL-RL axioms and assertions for global and local
knowledge modules: these different pieces of knowledge are represented as dis-
tinct named graphs, while contextual primitives have been encoded in a RDF
vocabulary. The prototype is based on an extension of the Sesame RDF Frame-
work1 and structured in a client-server architecture: the main component, called
CKR core module and residing in the server-side part, exposes the CKR prim-
itives and a SPARQL 1.1 endpoint for query and update operations on the
contextualized knowledge. The module offers the ability to compute and mate-
rialize the inference closure of the input CKR, add and remove knowledge and
execute queries over the complete CKR structure.

The distribution of knowledge in different named graphs asks for a compo-
nent to compute inference over multiple graphs in a RDF store, since inference
mechanisms in current stores usually ignore the graph part. This component has
been realized as a general software layer called SPRINGLES 2. Intuitively, the
layer provides methods to demand a closure materialization on the RDF store

1 http://www.openrdf.org/
2 SParql-based Rule Inference over Named Graphs Layer Extending Sesame.

http://www.openrdf.org/
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data: rules are encoded as named graphs aware SPARQL queries and it is possi-
ble to customize both the input ruleset and the evaluation strategy. The general
form of SPRINGLES rules is the following:

<graph-pattern> is an RDF (named) graph that can contain a set of variables,
which are bounded in the SPARQL query of the body. The body of a rule is a
SPARQL query that is evaluated. The result of the evaluation of the rule body
is a set of bindings for the variables that occurs in the rule head. For every such
a binding the corresponding statement in the head of the rule is added to the
repository.

In our case, the ruleset basically encodes the rules of the presented material-
ization calculus. As an example, we present the rule dealing with atomic concept
inclusions:

where prefix spr: corresponds to symbols in the vocabulary of SPRINGLES
objects and sys: prefixes utility “system” symbols used in the definition of
the rules evaluation plan. Intuitively, when the condition in the body part of
the rule is verified in graphs ?m1 and ?m2, the head part is materialized in the
inference graph ?mx. Note that in the formulation of the rule we work at the
level of knowledge modules (i.e. named graphs). Note that the body of the rules
contains a “filter” condition, which is a SPARQL based method to avoid the
duplication of conclusions: the FILTER condition imposes a rule to be fired only
if its conclusion is not already present in the context.

The rules are evaluated with a strategy that basically follows the same steps
of the translation process defined for the calculus. The plan goes as follows:
(i) we compute the closure on the graph for global context G, by a fixpoint on
rules corresponding to Prl; (ii) we derive associations between contexts and their
modules, by adding dependencies for every assertion of the kind mod(c,m) in
the global closure; (iii) we compute the closure the contexts, by applying rules
encoded from Prl and Ploc and resolving eval expressions by the metaknowledge
information in the global closure.

4 Experimental Evaluation

In this section we illustrate the experiments we performed to assess the per-
formance of the CKR prototype and their results. We begin by presenting the
method we used to create the synthetic test sets that we generated for such
evaluation.
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Table 1. Percentages of generated axioms

TBox axiom %

A � B 50%
A � ¬B 20%

A � ∃R.{a} 10%
A � B � C 5%
∃R.A � B 5%
A � ∀R.B 5%

A ��1R.B 5%

ABox axiom %

A(a) 40%
R(a, b) 40%

¬R(a, b) 10%
a = b 5%
a �= b 5%

RBox axiom %

R � T 50%
Inv(R,S) 25%
R ◦ S � T 10%
Dis(R,S) 10%

Irr(R) 5%

Generation of synthetic test sets. In order to create our test sets, we devel-
oped a simple generator that can output randomly generated CKRs with certain
features. In particular, for each generated CKR, the generator takes in input:
(1) the number n of contexts (i.e. local named graphs) to be generated; (2) the
dimensions of the signature to be declared (number m of base classes, l of prop-
erties and k of individuals); (3) the axiom size for the global and local modules
(number of global TBox, ABox and RBox axioms and number of TBox, ABox
and RBox axioms per context); (4) optionally, the number of additional local
eval axioms and the number of individuals to be propagated across contexts.
Intuitively, the generation of a CKR proceeds as follows:

1. The contexts (named :c0, . . . , :cn) are declared in the global context named
graph and are linked to a different module name (:m0, . . . , :mn), corresponding
to the named graph containing their local knowledge.

2. Base classes (named :A0, . . . , :Am), object properties (:R0, . . . , :Rl) and indi-
viduals (:a0, . . . , :ak) are added to the global graph: these symbols are used
in the generation of global and local axioms.

3. Then generation of global axioms takes place. We chose to generate axioms
as follows, in order to create realistic instances of knowledge bases:
– Classes and properties names are taken from the base signature using ran-

dom selection criteria in the form of (the positive part of) a Gaussian curve
centered in 0: intuitively, classes equal or near to :A0 are more probable in
axioms than :An.

– Individuals are randomly selected using a uniform distribution.
– TBox, ABox and RBox axioms in SROIQ-RL are added in the requested

number to the global context module following the percentages shown
in Table 1 (note that the reported axioms are normal form SROIQ-RL
axioms, as defined in [5]). Such percentages have been manually selected in
order to simulate the common distribution in the use of the SROIQ-RL
constructs in real knowledge bases.

4. The same generation criteria are then applied in the case of local graphs
representing the local knowledge of contexts.

5. If specified, the requested number for eval axioms of the form eval(A,C) � B
and for the set of individuals in the scope of the eval operator (i.e. as local
members of A) are added to local contexts graphs.

Experimental Setup. Evaluation experiments were carried out on a 4 core Dual
Intel Xeon Processor machine with 32Gb 1866MHZ DDR3 RAM, standard S-ATA
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(7.200RPM) HDD, running a Linux RedHat 6.5 distribution. We allocated 6Gb of
memory to the JVM running the SPRINGLES web-app (i.e. the RDF storage and
inference prototype), while 20Gb were allocated to the utility program managing
the upload, profiling and cleaning of the test repositories. In order to abstract from
the possible overhead for the repository setup, the tests have been averaged over
multiple runs of the closure operation for each CKR.

The tests were carried out on different CKR rulesets in order to study their
applicability in practical reasoning. The rulesets are limitations to the full set of
rules and evaluation strategy presented in previous sections, in particular:

– ckr-rdfs-global: inference is only applied to the global context (no local reason-
ing inside local contexts named graphs). Applies only inference rules for RDFS
and for the definition of CKR structure (e.g. association of named graphs for
knowledge modules to contexts).

– ckr-rdfs-local: inference is applied to the graphs both for global and local
contexts. Again, applies only inference rules for RDFS and CKR structure
rules.

– ckr-owl-global: inference is only applied to the global context, considering all
of the inference rules for SROIQ-RL and CKR structure rules.

– ckr-owl-local: full strategy defined by the materialization calculus. Inference
is applied to the global and local parts, using all of the (global and local)
SROIQ-RL and CKR rules.

More in details, application of RDFS rules corresponds to the limitation of OWL
RL closure step only to the inference rules for subsumption on classes and object
properties.
TS1: scalability evaluation. The first experiments we carried out on the CKR
prototype had the task to determine the (average) inference closure time with
respect to the increase in number of contexts and their contents: with refer-
ence to the research questions in the introduction, this first evaluation aimed at
answering question RQ1.

Using the CKR generator tool, we generated the set of test CKRs shown in
Table 2: we call this test set TS1. Intuitively, TS1 contains sets of CKRs with
an increasing number of contexts, in which CKRs have an increasing number of
axioms. We note that no eval axioms were added to TS1 knowledge bases.

We ran the CKR prototype on 3 generations of TS1 also varying the reasoning
regime among the rulesets detailed above: the different generation instances of
TS1 are necessary in order to reduce the impact of special cases in the random
generation. The results of the experiments on TS1 are reported in Table 3. In
the table, for each of the generated CKRs (referred by number of contexts and
number of base classes in the first two columns), we show the number of total
asserted triples in column Triples (averaged on the 3 versions of TS1). The
following columns list the results of the closure for each of the rulesets: for a
ruleset, we list the (average) total number of triples (asserted + inferred), the
inferred triples and the (average) time in milliseconds for the closure operation.
The value timedout in the measures indicates that the closure operation exceeded
30 minutes (1.800.000 ms.).
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Table 2. Test set TS1

Global KB Local KBs
Contexts Classes Roles Indiv. TBox RBox ABox TBox RBox ABox Total axioms

1 10 10 20 10 5 20 10 5 20 70
1 50 50 100 50 25 100 50 25 100 350
1 100 100 200 100 50 200 100 50 200 700
1 500 500 1000 500 250 1000 500 250 1000 3.500
1 1000 1000 2000 1000 500 2000 1000 500 2000 7.000
5 10 10 20 10 5 20 10 5 20 210
5 50 50 100 50 25 100 50 25 100 1.050
5 100 100 200 100 50 200 100 50 200 2.100
5 500 500 1000 500 250 1000 500 250 1000 10.500
5 1000 1000 2000 1000 500 2000 1000 500 2000 21.000

10 10 10 20 10 5 20 10 5 20 385
10 50 50 100 50 25 100 50 25 100 1.925
10 100 100 200 100 50 200 100 50 200 3.850
10 500 500 1000 500 250 1000 500 250 1000 19.250
10 1000 1000 2000 1000 500 2000 1000 500 2000 38.500
50 10 10 20 10 5 20 10 5 20 1.785
50 50 50 100 50 25 100 50 25 100 8.925
50 100 100 200 100 50 200 100 50 200 17.850
50 500 500 1000 500 250 1000 500 250 1000 89.250
50 1000 1000 2000 1000 500 2000 1000 500 2000 178.500

100 10 10 20 10 5 20 10 5 20 3.535
100 50 50 100 50 25 100 50 25 100 17.675
100 100 100 200 100 50 200 100 50 200 35.350
100 500 500 1000 500 250 1000 500 250 1000 176.750
100 1000 1000 2000 1000 500 2000 1000 500 2000 353.500

In order to analyze the results, the behaviour of the prototype for each of
the rulesets has been plotted to graphs, shown in Figure 1. Each of the series
represents a set with a fixed number of contexts (1 to 100) and each point a
CKR. The x axis represents the number of asserted triples, while the y axis
shows the time in milliseconds; the red horizontal line depicts the 30 minutes
limit for timeout. To better visualize the behaviour of the series, we plotted a
trend line for each of the series: the lines represent an approximation of the data
trend calculated by polynomial regression3.

Some conclusions can be derived from these data and graphs: the first most
evident fact is that the reasoning regime strongly impacts the scalability of the
system. Thus, in practical cases the choice of a naive application of the full OWL
RL ruleset might not be viable, in presence of large local datasets: on the other
hand, if expressive reasoning inside contexts is not required, scalability can be
enhanced by relying on the RDFS rulesets (or, in general, by carefully tailoring
the ruleset to the required expressivity).

By analyzing the graphs and the approximations, it is also possible to observe
that the system shows a different behaviour depending on the different reasoning
regimes. In the case of ckr-rdfs-global and ckr-owl-global, the results suggest that
the management of named graphs does not add overhead to the reasoning in the
global context. This can be also seen by checking Table 3: for a similar number
of inferred triples the separation across different graphs does not influence the
reasoning time. For example, this is visible for cases with similar y values of

3 Average R2 value across all approximations is ≥ 0, 993.
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Table 3. Scalability results for test set TS1

ckr-rdfs-global ckr-owl-global ckr-rdfs-local ckr-owl-local

Ctx. Cls. Triples Total Inf. Time Total Inf. Time Total Inf. Time Total Inf. Time

1 10 208 228 20 222 234 26 326 249 41 291 298 90 868
1 50 1079 1165 87 221 1288 209 518 1351 272 323 1918 839 4596
1 100 2165 2398 233 260 2666 501 943 2687 521 346 3803 1638 15916
1 500 10549 11870 1321 846 13293 2743 22930 14833 4284 2461 22828 12278 556272
1 1000 20981 23600 2619 1528 25957 4976 95957 29993 9012 4644 timedout timedout timedout

5 10 644 685 41 176 698 54 226 780 136 193 1470 826 11721
5 50 3124 3259 135 190 3330 205 341 4134 1010 522 9874 6750 328107
5 100 6201 6450 249 254 6675 475 962 8845 2645 1258 31615 25414 913617
5 500 30928 31994 1066 719 33025 2097 23109 44987 14059 7819 timedout timedout timedout
5 1000 61691 64363 2672 1491 66661 4969 106967 95636 33945 16291 timedout timedout timedout

10 10 1149 1216 66 165 1225 76 202 1427 278 541 6141 4992 448249
10 50 5620 5782 163 210 5895 275 460 8008 2388 1392 timedout timedout timedout
10 100 11058 11353 295 281 11865 807 1745 16315 5257 2986 timedout timedout timedout
10 500 56578 57836 1258 910 59052 2474 33643 86821 30243 17375 timedout timedout timedout
10 1000 112824 115273 2449 2030 117666 4842 114443 173938 61113 36647 timedout timedout timedout

50 10 5509 5780 271 208 5785 276 256 7003 1494 2167 timedout timedout timedout
50 50 26327 26676 348 323 26795 467 825 35640 9312 14598 timedout timedout timedout
50 100 52037 52543 506 603 52749 713 2384 78439 26402 21461 timedout timedout timedout
50 500 259810 261355 1546 2025 262722 2913 41973 416088 156278 299504 timedout timedout timedout
50 1000 520276 523082 2807 4350 525702 5426 214434 827451 307176 397110 timedout timedout timedout

100 10 10658 11171 513 242 11181 523 279 12916 2258 1865 timedout timedout timedout
100 50 51709 52347 638 442 52461 752 1241 73639 21930 31003 timedout timedout timedout
100 100 103341 104035 694 531 104259 918 2784 145788 42447 47179 timedout timedout timedout
100 500 514497 516316 1819 3469 517567 3070 87325 844215 329718 774657 timedout timedout timedout
100 1000 1028233 1031367 3135 7835 1033725 5492 394881 1674765 646532 1018616 timedout timedout timedout
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the graph (e.g. the case for 1000 classes in series for 1 and 5 contexts, in both
rulesets). In the case of ckr-rdfs-local, the graphs show that local reasoning clearly
influences the total inference time. In particular, at the growth of number of
contexts, the behaviour tends to be linear in the number of asserted triples.
While the data we have on ckr-owl-local are more limited, this behaviour seems
to be confirmed by the trend lines. On the other hand, OWL local reasoning
seems to influence the reasoning time with respect to the RDFS case: informally,
this can be seen in the graph by the larger time overhead across points with a
similar number of asserted triples (i.e. on the same x values) but a higher number
of contexts.
TS2 and TS3: knowledge propagation evaluation. The second set of exper-
iments we carried out was aimed at answering question RQ2: we wanted to
establish the cost of knowledge propagation among contexts, with respect to an
increasing number of connections (i.e. eval expressions) across contexts. To this
aim, we generated two test sets, called TS2 and TS3 structured as follows:

– TS2 is composed by 100 CKRs, each of them with 100 contexts. Except for the
triples needed for the definition of the contextual structure, both the global
and local knowledge bases contain no randomly generated axioms. The CKRs
inside TS2 are generated with an increasing number of contexts connections
through eval axioms (from no connections to the case of “fully connected”
contexts). In particular, for n = 100 contexts and k connections, in each
context ci we add axioms of the kind:

eval(D0, {ci+1(mod n)}) � D1, . . . , eval(D0, {ci+k(mod n)}) � D1

Moreover, in each context we add a fixed number of instances (10 in the case
of TS2) of the local concept D0, that will be propagated through contexts
and added to local D1 concepts by the inference rules for the above eval
expressions.

– TS3 analogously contains 100 CKRs of 100 contexts and again no randomly
generated global or local axioms. Differently from TS2, TS3 contains no eval
axioms and the connections across contexts are simulated by having multiple
versions of D0 (namely D0-0, . . . , D0-99) to represent the local interpretation of
the concept. Thus, for n = 100 contexts and k connections, in each context ci
we add axioms of the kind D0-j � D1 for j ∈ {i+1(mod n), . . . , i+k(mod n)}.
Also, not only we add to ci the 10 local instances of D0-i, but we also “pre-
propagate” instances of each D0-j by explicitly adding them to the knowledge
of ci.

We remark that the way of expressing “contextualized symbols” used in TS3 has
been discussed and compared to the CKR representation in [1].

We ran the CKR prototype for 5 independent runs on TS2 and TS3, only
considering ckr-owl-local ruleset. An extract of the results of experiments on
the two test sets is reported in Table 4: CKRs in the two sets are ordered with
respect to the number of relations across contexts; for each CKR, the numbers of
asserted, total and inferred triples are shown, followed by the (average) closure
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Table 4. Knowledge propagation results (extract) for test set TS2 and TS3

TS2 TS3
Related Triples Total Inf. Time Triples Total Inf. Time

0 2803 3305 502 276 2803 3305 502 299
4 4703 9205 4502 893 11703 16205 4502 577
9 6703 16205 9502 1564 22703 32205 9502 1017

14 8703 23205 14502 2245 33703 48205 14502 1450
19 10703 30205 19502 2932 44703 64205 19502 1960
24 12703 37205 24502 3467 55703 80205 24502 2580
29 14703 44205 29502 4196 66703 96205 29502 3154
34 16703 51205 34502 4847 77703 112205 34502 4099
39 18703 58205 39502 5987 88703 128205 39502 4645
44 20703 65205 44502 6223 99703 144205 44502 5488
49 22703 72205 49502 6878 110703 160205 49502 6456
54 24703 79205 54502 7689 121703 176205 54502 7545
59 26703 86205 59502 8547 132703 192205 59502 8205
64 28703 93205 64502 9076 143703 208205 64502 9159
69 30703 100205 69502 9640 154703 224205 69502 10335
74 32703 107205 74502 10711 165703 240205 74502 10992
79 34703 114205 79502 11223 176703 256205 79502 11879
84 36703 121205 84502 14611 187703 272205 84502 13088
89 38703 128205 89502 12846 198703 288205 89502 13912
94 40703 135205 94502 14999 209703 304205 94502 15064
99 42703 142205 99502 14107 220703 320205 99502 15799
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Fig. 2. Knowledge propagation graphs for TS2 and TS3

time in milliseconds. To facilitate the analysis of the results, we plotted such data
in histograms in Figure 2. The x axis represents the number of local connections,
while the y axis shows the time in milliseconds. Again, to better visualize the
behaviour of the series, we plotted a trend line for each of the series, calculated
by polynomial regression4.

From the graph of TS2, we can note that knowledge propagation cost depends
linearly on the number of connections: from the data in Table 4 we can calculate
that the average increase in closure time for k local connections (for each context)
w.r.t. the base case of 0 connections amounts to (51,2·k)%. The comparison with
TS3 confirms the compactness of a contextualized representation of symbols (cfr.

4 Average R2 value across the two approximations is ≥ 0, 989.
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findings in [1]): in fact, note that for an equal number of connections, the number
of inferences in both TS2 and TS3 cases is equal, but TS3 always require a larger
number of asserted triples. Also, the graph clearly shows that TS3 grows more
than linearly: for a small number of connections the knowledge propagation
in TS2 requires more inference time (14,9% more, on average), but with the
growth of local connections (at ∼ 68% of number of contexts) the cost of TS3
local reasoning surpasses the propagation overhead.
TS4 and TS5: modularization evaluation. The third set of experiments
we carried out on the prototype aimed at answering question RQ3: we want to
verify the effects of modularizing knowledge across global and local modules. We
generated two test sets, called TS4 and TS5 structured as follows:

– TS4 is composed by sets of RDFS CKRs with an increasing number of con-
texts, in which CKRs have an increasing number of axioms and without eval
axioms (i.e. similar to TS1).
Paired to TS4, we generated the testset TS4-flat that contains a “flat” version
of CKRs in TS4: intuitively, every CKR of TS4-flat has a single context c0

where all the knowledge content of local contexts is represented. In the case
of local axioms, the local meaning of symbols is preserved by duplication of
symbols: for example, if A � B appears in context c1 in TS4, then in the
corresponding CKR of TS4-flat the axiom Ac1 � Bc1 appears in the single
context c0. In the case of global logical axioms, the same principle is used: all
the global axioms have to be duplicated for each of the contexts in order to
preserve the local inferences. Thus, if A � B appears in the global context of
a CKR with n contexts in TS4, then in TS4-flat the axiom is duplicated as
Aci � Bci for i ∈ {0, . . . , n − 1} and added to the global context.

– TS5 and TS5-flat follow the same generation of TS4 and TS4-flat, but no log-
ical axioms (other than the metaknowledge axioms representing the structure
of the CKR) are added to the global context.

In this experiment, to generate the “context based” testsets TS4 and TS5 we fol-
lowed the same generation criteria of the testset for scalability: in practice, TS4
corresponds to the rows for 5, 10, 50 and 100 contexts (for 10, 50, 100 and 500
classes) in Table 2, while TS5 corresponds to the same rows but with zero TBox,
RBox and ABox global axioms. Similarly to TS3, the transformation of contex-
tualized axioms to their “flat” counterpart corresponds to the transformations
discussed in [1].

We ran the CKR prototype on 3 generations of TS4 / TS4-flat and TS5 / TS5-
flat only considering the ckr-rdfs-local ruleset. The results of the experiments are
reported in Table 5. To analyze the results, in Figure 3 we plotted to graphs
a comparison between the contextualized and flat versions of TS4 and TS5. In
the histograms, we compare side to side the time in milliseconds for the closure
computation in the contextualized and flat versions of the CKRs: each graph
represents the set of CKRs for a different number of contexts and each bar
represents a CKR in the testset.

Some conclusions can be derived from these results and graphs. First of all,
the TS4-flat always require a larger number of asserted triples than TS4 (on
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Fig. 3. Comparison graphs for TS4 and TS5
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Table 5. Knowledge modularization results for test set TS4 and TS5

TS4 TS4-flat TS5 TS5-flat
Ctx. Cls. Triples Total Inf. Time Triples Total Inf. Time Triples Total Inf. Time Triples Total Inf. Time

5 10 433 654 221 658 597 940 343 795 394 537 144 507 315 439 124 524
5 50 2111 5534 3423 1642 3053 8012 4958 2180 1919 3700 1782 939 1597 3359 1762 1230
5 100 4206 17000 12794 6392 6125 23556 17430 8540 3814 9870 6056 2644 3193 9229 6036 2840
5 500 20846 281904 261058 257303 30719 360929 330210 313450 19038 112063 93025 72697 15969 108975 93005 73275

10 10 787 1218 431 276 1111 1677 566 269 754 1029 275 237 572 802 230 196
10 50 3817 11423 7605 4526 5648 18985 13337 7322 3646 7078 3432 1340 2878 6265 3387 1183
10 100 7593 31667 24074 12916 11278 45020 33742 18513 7235 16204 8969 4403 5771 14694 8924 3991
10 500 37894 550818 512924 708663 56556 753205 696649 990518 36051 218604 182553 175457 28896 211404 182508 167809
50 10 3662 5766 2104 1725 5132 8224 3092 825 3626 5090 1464 959 2586 3805 1219 378
50 50 17571 52647 35077 23987 26501 78800 52298 26258 17409 36336 18928 18199 13196 31879 18683 8382
50 100 34923 160876 125953 127185 52813 228621 175808 113558 34644 89633 54988 56311 26459 81202 54743 29500
50 500 173983 2803972 2629989 6436152 264315 3611292 3346977 5457590 172343 1112437 940093 1681244 132499 1072347 939848 1025014

100 10 7239 11198 3959 3301 10558 15889 5331 1623 7214 10210 2996 2651 5125 7626 2501 829
100 50 34810 99832 65023 66149 52390 153218 100828 51688 34574 71361 36787 44056 26088 62381 36292 17252
100 100 69112 319866 250754 412487 104152 479977 375825 300257 68867 182419 113552 154258 52326 165384 113057 61077
100 500 344530 5340904 4996374 15066628 523229 7243808 6720579 10749422 342563 2258220 1915657 5579152 261973 2177134 1915162 2306128

average, 47, 2% more). This does not hold for TS5: however, it can be shown
that by leaving out the declaration of signature in each local context in TS5,
then the number of local asserted triples is equal in TS5-flat. On the other
hand, note that, while in TS4 this induces an increase of ∼ 29, 4% in inferred
triples in the flat version, in TS5-flat the number of inferred triples is always
around 5 triples per context less than the TS5 version: it can be shown that by
keeping the same CKR context structure in the flat version (i.e. maintaining the
other “empty” contexts) the numbers of inferred triples in the TS5 and TS5-flat
versions become equal.

By comparing the graphs of TS4 and TS4-flat we find that the advantage of
modularization of the global context is evident with a lower number of contexts,
but it is surpassed by the overhead of context management for a larger number
of contexts: on average, for 5 context CKRs, the reasoning in the flat versions
is 27, 2% slower and 35, 5% for 10 contexts; on the other hand, for 50 contexts
the contextualized version is 32, 2% slower and 52, 2% for 100 contexts. The
fact that the initial advantage in the contextualized version is due to the mod-
ularization of the global context is shown by the graphs for TS5: for 5 context
CKRs the reasoning in flat version is comparable to the contextualized version
(only 10, 6% slower); for 10 contexts the contextualized version is 12, 2% slower,
while 106, 3% for 50 contexts and 167, 4% for 100 contexts. We remark that the
kind of compactness advantage given by the modularization of global context is
similar to the case of associating modules to context classes: in fact, the global
knowledge part can be seen as a module associated to the context class of all
contexts. This suggests that the advantage in modularization shown by TS4 can
be augmented by enlarging the number of modules associated to context classes
and the number of their axioms.

5 Conclusions and Future Works

In this paper we provided a first evaluation for the performance of the RDF based
implementation of the CKR framework. In the first experiment we evaluated
the scalability of the current version of the prototype under different reasoning
regimes. The second experiment was aimed at evaluating the cost of intra-context
knowledge propagation and its relation to its simulation by “reification” of
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contextualized symbols. Finally, in the last experiment we evaluated the effects
of the modularization of global and local knowledge offered by our framework.

Some further experimental evaluations can be interesting to be carried out
over our contextual model. One of these regards the study of the effects of
the modularization for different levels of connection across contexts: intuitively,
we want to verify the hypothesis that distributing knowledge across a larger
number of contexts is convenient when the coupling between contexts is low.
The experimental results should be also compared to a theoretical study on the
complexity of CKR reasoning (possibly by extending our previous work in this
regard [3]).

With respect to the current CKR implementation, the scalability experiments
clearly showed that the current naive strategy (defined by a direct translation
of the formal calculus) might not be suitable for a real application of the full
reasoning to large scale datasets. In this regard, we are going to study different
evaluation strategies and optimizations to the current strategy and evaluate the
results with respect to the naive case. One of such possible optimizations can
regard a “pay-as-you-go” strategy, in which inference rules are activated only for
constructs that are recognized in the local language of a context.
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