
Integrating Unstructured and Structured
Knowledge with the KnowledgeStore

Marco Rospocher(B), Francesco Corcoglioniti, Roldano Cattoni,
Bernardo Magnini, and Luciano Serafini

Fondazione Bruno Kessler—IRST, Via Sommarive 18, Trento I-38123, Italy
{rospocher,corcoglio,cattoni,magnini,serafini}@fbk.eu

Abstract. We showcase the KnowledgeStore, a scalable, fault-tolerant,
and Semantic Web grounded framework for interlinking unstructured
(e.g., textual documents, web pages) and structured (e.g., RDF, LOD)
contents, enabling to jointly store, manage, retrieve, and query, both
typologies of contents.

1 Introduction

Nowadays, a preponderant amount of information on the Web and within orga-
nizations remain available only in unstructured form, despite the increasing
availability of structured data sources and initiatives such as the Linked Open
Data (LOD). Structured and unstructured contents differ in forms but are often
related in content, as they speak about the very same entities of the world (e.g.,
persons, organizations, locations, events), their properties and relations. Despite
the last decades achievements in Natural Language Processing (NLP), now sup-
porting large scale extraction of knowledge from unstructured text, frameworks
enabling the seamless integration and linking of knowledge coming both from
structured and unstructured contents are still lacking.1

In this demo we showcase the KnowledgeStore (KS), a scalable, fault-tolerant,
and Semantic Web grounded storage system to jointly store, manage, retrieve, and
query, both structured and unstructured data. Fig. 1a shows schematically how
the KS manages unstructured and structured contents in its three representation
layers. On the one hand (and similarly to a file system) the resource layer stores
unstructured content in the form of resources (e.g., news articles), each having
a textual representation and some descriptive metadata. On the other hand,
the entity layer is the home of structured content, that, based on Knowledge
Representation and Semantic Web best practices, consists of axioms (a set of
〈subject, predicate, object〉 triples), which describe the entities of the world
(e.g., persons, locations, events), and for which additional metadata are kept
to track their provenance and to denote the formal contexts where they hold
(e.g., point of view, attribution). Between the aforementioned two layers there
is the mention layer, which indexes mentions, i.e., snippets of resources (e.g.,

1 See [1] for an overview of works related to the contribution presented in this demo.

c© Springer International Publishing Switzerland 2015
P. Lambrix et al. (Eds.): EKAW 2014 Satellite Events, LNAI 8982, pp. 177–181, 2015.
DOI: 10.1007/978-3-319-17966-7 26

178 M. Rospocher et al.

Resource Layer

Entity Layer Mention Layer

(a)

(b)

(c)

Fig. 1. (a) The three KS layers; (b) Interactions with external modules; (c) Compo-
nents

some characters in a text document) that denote something of interest, such
as an entity or an axiom of the entity layer. Mentions can be automatically
extracted by NLP tools, that can enrich them with additional attributes about
how they denote their referent (e.g., with which name, qualifiers, “sentiment”).
Far from being simple pointers, mentions present both unstructured and struc-
tured facets (respectively snippet and attributes) not available in the resource
and entity layers alone, and are thus a valuable source of information on their
own.

Thanks to the explicit representation and alignment of information at dif-
ferent levels, from unstructured to structured knowledge, the KS supports a
number of usage scenarios. It enables the development of enhanced applications,
such as effective decision support systems that exploit the possibility to seman-
tically query the content of the KS with requests combining structured and
unstructured content, such as “retrieve all the documents mentioning that per-
son Barack Obama participated to a sport event”. Then, it favours the design
and empirical investigation of information processing tasks otherwise difficult to
experiment with, such as cross-document coreference resolution (i.e., identifying
that two mentions refer to the same entity of the world) exploiting the availabil-
ity of interlinked structured knowledge. Finally, the joint storage of (i) extracted
knowledge, (ii) the resources it derives from, and (iii) extracted metadata pro-
vides an ideal scenario for developing, training, and evaluating ontology popu-
lation techniques.

2 System Overview

In this section we briefly outline the main characteristics of the KS. For a
more exhaustive presentation of the KS design, we point the reader to [1].

Integrating Unstructured and Structured 179

More documentation, as well as binaries and source code,2 are all available on
the KS web site [2].

Data Model. The data model defines what information can be stored in the KS.
It is organized in three layers (resource, mention and entity), with properties that
relate objects across them. To favour the exposure of the KS content according
to LOD principles, the data model is defined as an OWL 2 ontology (available
on [2]). It contains the TBox definitions and restrictions for each model ele-
ment and can be extended on a per-deployment basis, e.g., with domain-specific
resource and linguistic metadata.

API. The KS offers a number of interfaces through which external clients may
access and manipulate stored data. These interfaces are offered through two
HTTP ReST endpoints. The CRUD endpoint provides the basic operations to
access and manipulate (CRUD: create, retrieve, update, and delete) any object
stored in any of the layers of the KS. Operations of the CRUD endpoint are
all defined in terms of sets of objects, in order to enable bulk operations as
well as operations on single objects. The SPARQL endpoint allows to query
axioms in the entity layer using SPARQL. It provides a flexible and Semantic
Web-compliant way to query for entity data, and leverages the grounding of the
KS data model in Knowledge Representation and Semantic Web best practices.
A Java client is also offered to ease the development of (Java) client applications.

Architecture. The KS is a storage server whose services are utilized by external
clients to store and retrieve the contents they process. From a functional point of
view, we identify three main typologies of clients (see Fig. 1b): (i) populators, that
feed the KS with basic contents needed by other applications (e.g., documents,
background knowledge from LOD sources); (ii) linguistic processors, that read
input data from the KS and write back their results; and, (iii) applications, that
mainly read data from the KS (e.g., decision support systems). In particular,
linguistic processors are responsible for the extraction of mentions from textual
resources and their linking to (existing or new) entities, thus effectively realizing
the interlinking of unstructured and structured contents according to the KS
data model; off-the-shelf NLP tools realizing named entity recognition, entity
linking and coreference resolution can be used for this purpose. Internally, the
KS consists of a number of software components (see Fig. 1c) distributed on
a cluster of machines: (i) the Hadoop HDFS filesystem provides a reliable and
scalable storage for the physical files holding the representations of resources
(e.g., texts and linguistic annotations of news articles); (ii) the HBase column-
oriented store builds on Hadoop to provide database services for storing and
retrieving semi-structured information about resources and mentions; (iii) the
Virtuoso triple-store stores axioms and provides services supporting reasoning
and online SPARQL query answering; and, (iv) the Frontend Server has been
2 Released under the terms of the Apache License, Version 2.0.

180 M. Rospocher et al.

Fig. 2. KS UI. Lookup of a mention. Note the three boxes (Mention resource, Mention
Data, Mention Referent) corresponding to the three representation layers of the KS.

specifically developed to implement the operations of the CRUD and SPARQL
endpoints on top of the components listed above, handling global issues such as
access control, data validation and operation transactionality.

User Interface (UI). The KS UI (see Fig. 2) enables human users to access
and inspect the content of the KS via two core operations: (i) the SPARQL
query operation, with which arbitrary SPARQL queries can be run against the
KS SPARQL endpoint, obtaining the results directly in the browser or as a
downloadable file; and, (ii) the lookup operation, which given the URI of an
object (i.e., resource, mention, entity), retrieves all the KS content about that
object. These two operations are seamlessly integrated in the UI to offer a smooth
browsing experience to users, which can navigate from one object to any related
object by following the relations in the data model.

3 System Demonstration and Concluding Remarks

During the Posters and Demos session, we will demonstrate live how to access
the KS content via the UI (similarly to the detailed demo preview available
at [3]), highlighting the possibilities offered by the KS to navigate back and
forth from unstructured to structured content. For instance, we will show how
to run arbitrary SPARQL queries, retrieving the mentions of entities and triples

Integrating Unstructured and Structured 181

in the query result set, and the documents where they occur. Similarly, starting
from a document URI, we will show how to access the mentions identified in the
document, up to the entities and triples they refer to.

In the last months, several running instances of the KS were set-up (on a
cluster of 5 average specs servers) and populated using the NewsReader Process-
ing Pipeline [4] with contents coming from various domains: to name a few, one
on the global automotive industry [5] (64K resources, 9M mentions, 316M entity
triples), and one related to the FIFA World Cup (212K resources, 75M mentions,
240M entity triples), both augmented with entities and RDF background knowl-
edge extracted from DBpedia and used as the target of mention linking. The
FIFA World Cup instance was also exploited in a Hackathon event [6], where
38 developers accessed the KS to build their applications (over 30K SPARQL
queries were submitted – 1 query/s avg. with peaks of 25 queries/s).

Acknowledgments. The research leading to this paper was supported by the Euro-
pean Union’s 7th Framework Programme via the NewsReader Project (ICT-316404).

References

1. Corcoglioniti, F., Rospocher, M., Cattoni, R., Magnini, B., Serafini, L.: Interlinking
unstructured and structured knowledge in an integrated framework. In: 7th IEEE
International Conference on Semantic Computing (ICSC), Irvine, CA, USA (2013)

2. http://knowledgestore.fbk.eu
3. http://youtu.be/if1PRwSll5c
4. https://github.com/newsreader/
5. http://datahub.io/dataset/global-automotive-industry-news
6. http://www.newsreader-project.eu/come-hack-with-newsreader/

http://knowledgestore.fbk.eu
http://youtu.be/if1PRwSll5c
https://github.com/newsreader/
http://datahub.io/dataset/global-automotive-industry-news
http://www.newsreader-project.eu/come-hack-with-newsreader/

	Integrating Unstructured and Structured Knowledge with the KnowledgeStore
	1 Introduction
	2 System Overview
	3 System Demonstration and Concluding Remarks
	References

