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1 Introduction to Craniofacial Analysis

Craniofacial research focuses on the study and treatment of certain congenital
malformations or injuries of the head and face. It has become a multi-disciplinary
area of expertise in which the players consist of not only oral and maxillofacial or
plastic surgeons, but also craniofacial researchers including a large array of pro-
fessionals from various backgrounds: basic scientists, geneticists, epidemiologists,
developmental biologists, and recently computer scientists.

It is important to represent the shape of the human face in a standard way
that facilitates modeling the abnormal and the normal. Morphometrics, the
study of shape, has been a crucial toolbox for craniofacial research. Classical
morphometrics-based craniofacial analyses use anthropometric landmarks and
require taking physical measurements directly on the human face. These
measurements are then used in a numerical analysis that compares the patient’s
measurements with the normal population to detect and quantify the deformation.
Another technique for measuring the severity of shape deformations involves
having clinical experts qualitatively match the shape of the patient’s head to a set
of templates. Template-matching is a common method in clinical practice, but it
heavily depends on human judgment.
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As the field of computer vision has progressed, its techniques have become
increasingly useful for medical applications. Advancements in 3D imaging tech-
nologies led craniofacial researchers to use computational methods for the analysis
of the human head and face. Computational techniques aim to automate and improve
established craniofacial analysis methods that are time consuming and prone to
human error and innovate new approaches using the information that has become
available through digital data.

This paper describes a set of computational techniques for craniofacial anal-
ysis developed by the University of Washington Multimedia Group. Section 2
describes the craniofacial syndromes whose analyses we have performed. Section 3
summarizes our previous work in craniofacial research and describes our image
analysis pipeline, including preprocessing, feature extraction, quantification, and
classification. Section 4 introduces our new work on the comparison of different
features in similarity-based retrieval, and Sect. 5 concludes the paper.

2 Craniofacial Syndromes

We will describe three relevant syndromes: deformational plagiocephaly, 22q11.2
deletion syndrome, and cleft lip and palate.

2.1 Deformational Plagiocephaly

Deformational plagiocephaly can be defined as abnormal head shape (parallelogram
shaped skull, asymmetric flattening, misalignment of the ears) due to external
pressure on the infant’s skull [17]. Figure 1 shows photographs of several infants’
heads from the top view, with and without plagiocephaly. Although considered
a minor cosmetic condition by many clinicians, if left untreated, children with
plagiocephaly may experience a number of medical issues, ranging from social
problems due to abnormal appearance to delayed neurocognitive development.

Fig. 1 Deformational Plagiocephaly—(a,b) Top views of heads of children with deformational
plagiocephaly. (c) Top view of a child’s head without deformational plagiocephaly
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The severity of plagiocephaly ranges from mild flattening to severe asymmetry
along a wide spectrum that is difficult to quantify. Clinical practices to diagnose
and quantify plagiocephaly involve identifying anthropometric landmark points and
taking measurements between the points. In one approach, the clinician determines
the areas with the greatest prominence on the right and left sides of the head and
measures diagonally the distances from these sites to the back of the head. The
smaller length is subtracted from the larger resulting in an asymmetry number called
the transcranial diameter difference [10]. Another technique compares the infant’s
skull shape to four templates: normal skull [score 0], mild shape deformation
[score 1], moderate shape deformation [score 2], and severe shape deformation
[score 3].

As an alternative to taking physical measurements directly on the infant’s head,
a technique called HeadsUp developed by Hutchinson et al. performs automated
analysis of 2D digital photographs of infant heads fitted with an elastic head
circumference band that has adjustable color markers to identify landmarks [13].
Although this semi-automatic approach is less intrusive and faster, it is still
subjective, and the analysis is only 2D. There are some recently proposed techniques
that use 3D surface data: Plank et al. [22] use a laser shape digitizer to obtain the 3D
surface of the head, but still require manual identification of the landmarks. Lanche
et al. [14] use a stereo-camera system to obtain a 3D model of the head and propose
a method to compare the infant’s head to an ideal head template.

2.2 22q11.2 Deletion Syndrome

22q11.2 deletion syndrome (22q11.2DS) is a disorder caused by a 1.5–3 MB
deletion on chromosome 22 and occurs in 1 of every 4,000 individuals [21]. Over
180 phenotypic features are associated with this condition, including well-described
craniofacial features such as asymmetric face shape, hooded eyes, bulbous nasal
tip, tubular appearance to the nose, retrusive chin, prominent nasal root, small
nasal alae, small mouth, open mouth and downturned mouth, among others. Some
manifestations of facial features are very subtle, and even craniofacial experts
find them difficult to identify without measurements and analysis. Figure 2 shows
example manifestations of the syndrome on the face.

Fig. 2 22q11.2DS
craniofacial
features—Example 3D face
mesh data of children with
22q11.2 deletion syndrome
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Early detection of 22q11.2DS is important, because the condition is known to
be associated with cardiac anomalies, mild-to-moderate immune deficiencies and
learning disabilities. Similar to the detection of deformational plagiocephaly, the
assessment of 22q11.2DS has commonly been through physical examination and
craniofacial anthropometric measurements. After identification of the symptoms,
genetic tests can be conducted to confirm and complete the diagnosis.

There has been little effort to automate the diagnosis and analysis of 22q11.2DS.
Boehringer et al. [7] used Gabor wavelets to transform 2D photographs of the
individuals and PCA to classify the dataset. However, the method requires manual
placement of anthropometric landmarks on the face. Hammond et al. [12] proposed
a dense surface model method followed by the application of PCA on 3D surface
mesh data, which also requires manually placed landmarks to align the meshes.

2.3 Cleft Lip and Palate

Cleft lip is a birth defect that occurs in approximately 1 in every 1,000 newborns
and can be associated with cleft palate [2]. The deformity is thought to be a result
of the failure of fusion in utero and may be associated with underdevelopment of
tissues. Cleft lip and palate can range from multiple deep severe clefts in the palate
to a single incomplete or hardly noticeable cleft in the lip. Figure 3 shows examples
of deformations on infants’ faces caused by cleft lip and/or palate. The condition
can be treated with surgery and the treatment can produce a dramatic change in
appearance of the lip depending on the severity of the cleft. Since the potential
results and treatment options depend on the severity of the cleft, it is important to
have an objective assessment of the deformity.

The assessment of cleft deformities relies on a clinical description that can
be subjective and landmark-based measurements that can be time consuming and
difficult to perform on young infants. Additionally, there is no “gold standard” for
evaluation and the correlation between the scores given by different medical experts
can be very low [26].

There has not been much computational work done towards the quantification of
the cleft lip using the face shape. Nonetheless, some work has been done on face
symmetry, which can be used in cleft assessment, in computer vision. Although not

Fig. 3 Cleft lip—Example 3D face mesh data of children with cleft lip. Cleft of the lip can cause
a wide range of deformations from mild to severe
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applied to cleft assessment, Benz et al. introduced a method for 3D facial symmetry
analysis using the iterative closest point algorithm to register the mirrored mesh
to the original [5]. This method is reliable when the data is properly aligned and
heavily depends on the choice of the initial plane about which the data is mirrored.

3 Craniofacial Image Analysis Pipeline

Our pipeline consists of data acquisition and preprocessing, feature extraction,
and high-level operations of quantification, classification and content-based image
retrieval. Figure 4 summarizes the steps of the pipeline and their relationships, as
discussed in this section.

3.1 Data Acquisition and Preprocessing

With the developments in 3D imaging technologies, the use of 3D information
has become widespread in research and applications. Craniofacial research greatly
benefits from these developments due to the lower cost and higher accuracy of new
imaging technologies like laser scanners and stereo-photography, in comparison
to traditional methods such as direct measurements on the patient or 2D image-
based techniques. Stereo imaging systems are popular among medical researchers,
since they make it possible to collect large amounts of data in a non-invasive and
convenient way.

The 3dMD® system is a commercial stereo-photography system commonly used
for medical research. It uses texture information to produce a 3D mesh of the
human face that consists of points and triangles. Figure 5 shows an example 3dMD
setup where multiple pods of cameras are placed around a chair and simultaneously
obtain photographs of the patient from different angles. Since the resulting mesh

Fig. 4 The craniofacial image analysis pipeline overview
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Fig. 5 3D Face Mesh Acquisition—(a) 3dMD® system with multiple cameras, (b) The texture
images from four different cameras on front, back, left and right, (c) The 3D mesh produced with
the stereophotography technique

Fig. 6 Automated mesh cleaning—(a) Original mesh acquired by 3DMD®, (b) Frontal snapshot
of the rotated mesh, (c) Facial landmarks detected by 2D face detection algorithm, (d) Pose
normalized mesh using landmarks and Procrustes superimposition, (e) Extracted face

is not aligned and contains pieces of clothing, it needs to be processed before
further analysis. It is usually an expert who cleans the mesh to obtain the face
and normalizes the pose, so that the head faces directly front. The accuracy and
efficiency of this step is crucial to any analysis conducted on the data.

Wu et al. proposed a method for automated face extraction and pose-
normalization from raw 3D data [25]. The method makes use of established face
detection algorithms for 2D images using multiple photographs produced by the
stereo system. Figure 6 shows the steps of the algorithm starting from original mesh
(a). Using the local curvature around every point on the surface in a supervised
learning algorithm, candidate points are obtained for the inner eye corners and the
nose tip (Sect. 3.2.1 describes the calculation of the curvature values). The true
eye corners and nose tip are selected to construct a triangle within some geometric
limits. Using the eye-nose-eye triangle, the 3D mesh is rotated so that the eye regions
are leveled and symmetric, and the nose appears right under the middle of the two
eyes (Fig. 6b). The face detection algorithm proposed in [29] is used on a snapshot
of the rotated data and a set of facial landmarks are obtained (not to be confused with
anthropological landmarks used by medical experts) Fig. 6c). By projecting these
2D landmarks to the 3D mesh and using the Procrustes superimposition method
[11], the mesh is rotated so that the distance between the landmarks of the head and
the average landmarks of the aligned data is minimal (Fig. 6d). After alignment,
the bounding box for the 3D surface is used to cut the clothing and obtain the
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face region. Additionally, surface normal vectors are used to eliminate neck and
shoulders from images where the bounding box is not small enough to capture only
the face (Fig. 6e). The automation of mesh cleaning and pose normalization is an
important step for processing large amounts of data with computational methods.

3.2 Feature Extraction

We describe both low-level and mid-level features used in craniofacial analysis.

3.2.1 Low-Level Features

A 3D mesh consists of a set of points, identified by their coordinates (x, y, z) in 3D
space, and the connections between them. A cell of a mesh is a polygon defined
by a set of points that form its boundary. The low-level operators capture local
properties of the shape by computing a numeric value for every point or cell on the
mesh surface. Low-level features can be averaged over local patches, aggregated
into histograms as frequency representations and convoluted with a Gaussian filter
to remove noise and smooth the values.

Surface Normal Vectors

Since the human head is roughly a sphere, the normal vectors can be quantified with
a spherical coordinate system. Given the normal vector n.nx; ny; nz/ at a 3D point,
the azimuth angle � is the angle between the positive x axis and the projection n0
of n to the xz plane. The elevation angle � is the angle between the x axis and the
vector n.

� D arctan
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Curvature

There are different measures of curvature of a surface: The mean curvature H at a
point p is the weighted average over the edges between each pair of cells meeting
at p.

H.p/ D 1=jE.p/j
X

e2E.p/

length.e/ � angle.e/ (2)
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Fig. 7 Curvature measures—(a) Mean curvature, (b) Gaussian curvature and (c) Besl–Jain
curvature visualized. Higher values are represented by cool (blue) colors while lower values are
represented by warm (red) colors (Color figure online)

where E.p/ is the set of all the edges meeting at point p, and angle.e/ is the angle
of edge e at point p. The contribution of every edge is weighted by length.e/. The
Gaussian curvature K at point p is the weighted sum of interior angles of the cells
meeting at point p.

K.p/ D 2� �
X

f 2F.p/

area.f /=3 � interiorangle.f / (3)

where F.p/ is the set of all the neighboring cells of point p, and interiorangle.f / is
the angle of cell f at point p. The contribution of every cell is weighted by area.f /=3.

Besl and Jain [6] suggested a surface characterization of a point p using the
sign of the mean curvature H and the Gaussian curvature K at point p. Their
characterization includes eight categories: peak surface, ridge surface, saddle ridge
surface, plane surface, minimal surface, saddle valley, valley surface and cupped
surface. Figure 7 illustrates mean, Gaussian and Besl–Jain curvature on a head mesh.

3.2.2 Mid-Level Features

Mid-level features are built upon low-level features to interpret global or local shape
properties that are difficult to capture with low-level features.

2D Azimuth-Elevation Histograms

Azimuth and elevation angles, together, can define any unit vector in 3D space.
Using a 2D histogram, it is possible to represent the frequency of cells according to
their orientation on the surface. On relatively flat surfaces of the head, all surface
normal vectors point in the same direction. In this case, all vectors fall into the same
bin creating a strong signal in some bins of the 2D histogram. Figure 8 shows the
visualization of an example 8 � 8 histogram.
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Fig. 8 Visualization of an 8 � 8 2D azimuth-elevation histogram. The histogram bins (left) with
high values are shown with warmer colors (red, yellow). The image on right shows the localization
of high-valued bins where the areas corresponding to bins are colored in a similar shade (Color
figure online)

Fig. 9 (a) Symmetry plane,
(b) Front view of grid
showing � and z for indexing
the patches, (c) Top view of
the grid showing the radius r
and angle �

Symmetry Plane and Related Symmetry Scores

Researchers from computer vision and craniofacial study share an interest in the
computation of human face symmetry. Symmetry analyses have been used for
studying facial attractiveness, quantification of degree of asymmetry in individuals
with craniofacial birth defects (before and after corrective surgery), and analysis of
facial expression for human identification.

Wu et al. developed a two-step approach for quantifying the symmetry of the
face [24]. The first step is to detect the plane of symmetry. Wu described several
methods for symmetry plane detection and proposed two methods: learning the
plane by using point-feature-based region detection and calculating the mid-sagittal
plane using automatically-detected landmark points (Sect. 3.2.3). After detecting
the plane, the second step is to calculate the shape difference between two parts of
the face. Wu proposes four features based on a grid laid out on the face (Fig. 9):

1. Radius difference:

RD.�; z/ D jr.�; z/ � r.��; z/j (4)

where r.�; z/ is the average radius value in the grid patch.�; z/, and .��; z/ is the
reflected grid patch of .�; z/ with respect to the symmetry plane.

2. Angle difference:

AD.�; z/ D cos.ˇ.�;z/;.��;z// (5)
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where ˇ.�;z/;.��;z/ is the angle between the average surface normal vectors of each
mesh grid patch .�; z/ and its reflected pair .��; z/.

3. Gaussian curvature difference:

CD.�; z/ D jK.�; z/ � K.��; z/j (6)

where K.�; z/ is the average Gaussian curvature in the grid patch.�; z/, and
.��; z/ is the reflected grid patch of .�; z/ with respect to the symmetry plane.

4. Shape angle difference:

ED.�; z/ D
ˇ̌̌
ˇ#points.�; z/ > Th

#points.�; z/
� #points.��; z/ > Th

#points.��; z/

ˇ̌̌
ˇ (7)

where Th is a threshold angle, and #points.�; z/ is the total number of points with
dihedral angle larger than Th in patch .�; z/.

These symmetry features produce a vector of length M�N where M is the number
of horizontal grid cells and N is the number of vertical grid cells.

3.2.3 Morphometric Features

Most of the work on morphometrics in the craniofacial research community uses
manually-marked landmarks to characterize the data. Usually, the data are aligned
via these landmarks using the well-known Procrustes algorithm and can then
be compared using the related Procrustes distance from the mean or between
individuals [11]. Figure 10a shows a sample set of landmarks. Each landmark is
placed by a medical expert using anatomical cues.

Fig. 10 (a) Twenty four anthropometric landmarks marked by human experts. (b) Sellion and tip
of the chin are detected. (c) Two parallel planes go through chin tip and sellion, six parallel planes
constructed between chin and sellion, and two above sellion. (d) On each plane, nine points are
sampled with equal distances, placing the middle point on the bi-lateral symmetry plane. Ninety
pseudo-landmark points calculated with ten planes and nine points



Craniofacial Image Analysis 19

Auto-Landmarks

Traditional direct anthropometry using calipers is time consuming and invasive;
it requires training of the expert and is prone to human error. The invasiveness
of the method was overcome with the development of cost-effective 3D surface
imaging technologies when experts started using digital human head data to obtain
measurements . However, manual landmarking still presents a bottleneck during the
analysis of large databases.

Liang et al. presented a method to automatically detect landmarks from 3D face
surfaces [15]. The auto-landmarking method starts with computing an initial set of
landmarks on each mesh using only the geometric information. Starting from a pose-
normalized mesh, the geometric method finds 17 landmark points automatically,
including 7 nose points, 4 eye points, 2 mouth points and 4 ear points. The geometric
information used includes the local optima points like the tip of the nose (pronasale)
or the sharp edges like the corners of the eyes. The sharp edges are calculated using
the angle between the two surface normal vectors of two cells sharing an edge. The
geometric method also uses information about the 17 landmarks and the human
face such as the relative position of landmarks with respect to each other and the
anatomical structures on the human face.

The initial landmark set is used for registering a template, which also has initial
landmarks calculated, to each mesh using a deformable registration method [1]. The
17 landmark points (Fig. 11) provide a correspondence for the transformation of
each face. When the template is deformed to the target mesh, the distance between
the mesh and the deformed template is very small and every landmark point on the
template can be transferred to the mesh. The average distance between the initial
points generated by the geometric method and the expert points is 3:12 mm. This
distance is reduced to 2:64 mm after deformable registration making the method
very reliable. The method has no constraint on the number of landmarks that are
marked on the template and transferred to each mesh. This provides a flexible work-
flow for craniofacial experts who want to calculate a specific set of landmarks on
large databases.

Fig. 11 Initial landmarks detected by the geometric method. (a) Nose points. (b) Mouth points.
(c) Ear points. (d) Eye points
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Pseudo-Landmarks

For large databases, hand landmarking is a very tedious and time consuming process
that the auto-landmarking method tries to automate. Moreover, anthropometric
landmarks cover only a small part of the face surface, and soft tissue like cheeks
or forehead do not have landmarks on them. This makes pseudo-landmarks an
attractive alternative. Hammond proposed a dense correspondence approach using
anthropometric landmarks [12]. The dense correspondence is obtained by warping
each surface mesh to average landmarks and finding the corresponding points using
an iterative closest point algorithm. At the end, each mesh has the same number of
points with the same connectivity and all points can be used as pseudo-landmarks.
Claes et al. proposed a method called the anthropometric mask [8], which is a
set of uniformly distributed points calculated on an average face from a healthy
population and deformed to fit onto a 3D face mesh. Both methods required manual
landmarking to initialize the process.

Motivated by the skull analysis work of Ruiz-Correa et al. [23], Lin et al.
[16] and Yang et al. [27], Mercan et al. proposed a very simple, but effective,
method that computes pseudo-landmarks by cutting through each 3D head mesh
with a set of horizontal planes and extracting a set of points from each plane [18].
Correspondences among heads are not required, and the user does no hand marking.
The method starts with 3D head meshes that have been pose-normalized to face
front. It computes two landmark points, the sellion and chin tip, and constructs
horizontal planes through these points. Using these two planes as base planes, it
constructs m parallel planes through the head and from each of them samples a set
of n points, where the parameters n and m are selected by the user. Figure 10 shows
90 pseudo-landmarks calculated with 10 planes and 9 points on a sample 3D mesh.
Mercan et al. show in [18] that pseudo-landmarks work as well as dense surface or
anthropometric mask methods, but they can be calculated without human input and
from any region of the face surface.

3.3 Quantification

Quantification refers to the assignment of a numeric score to the severity of a
disorder. We discuss two quantification experiments.

3.3.1 3D Head Shape Quantification for Deformational Plagiocephaly

Atmosukarto et al. used 2D histograms of azimuth-elevation angles to quantify
the severity of deformational plagiocephaly [4]. On relatively flat surfaces of the
head, normal vectors point in the same direction, and thus have similar azimuth and
elevation angles. By definition, infants with flat surfaces have larger flat areas on
their skulls causing peaks in 2D histograms of azimuth and elevation angles.
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Fig. 12 On a 12 � 12 histogram (a), Left Posterior Flatness Score (red) and Right Posterior
Flatness Scores (blue) are calculated by summing the relevant histogram bins. Selected bins
correspond to points on the skull (b) that are relevant to the plagiocephaly (Color figure online)

Using a histogram with 12 � 12 bins, the method defines the sum of histogram
bins corresponding to the combination of azimuth angles ranging from �90ı
to �30ı and elevation angles ranging from �15ı to 45ı as the Left Posterior
Flatness Score (LPFS). Similarly, the sum of histogram bins corresponding to
the combination of azimuth angles ranging from �150ı to �90ı and elevation
angles ranging from �15ı to 45ı gives the Right Posterior Flatness Score (RPFS).
Figure 12 shows the selected bins and their projections on the back of the infant’s
head. The asymmetry score is defined as the difference between RPFS and LPFS.
The asymmetry score measures the shape difference between two sides of the head,
and the sign of the asymmetry score indicates which side is flatter.

The absolute value of the calculated asymmetry score was found to be correlated
with experts’ severity scores and the score calculated by Hutchinson’s HeadsUp
method [13] that uses anthropometric landmarks. Furthermore, the average flatness
scores for left posterior flattening, right posterior flattening and control groups
shows clear separation, providing a set of thresholds for distinguishing the cases.

3.3.2 Quantifying the Severity of Cleft Lip and Nasal Deformity

Quantifying the severity of a cleft is a hard problem even for medical experts.
Wu et al. proposed a methodology based on symmetry features [26]. The method
suggests that the asymmetry score is correlated with the severity of the cleft. It
compares the scores with the severity of clefts assessed by surgeons before and after
reconstruction surgery. Wu et al. proposed three measures based on asymmetry:

1. The point-based distance score is the average of the distances between points
that are reflected around the symmetry plane:

PDa D 1

n

X
p

distance.ps; q/ (8)

where n is the number of points and q is the reflection of point p.
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2. The grid-based radius distance score is the average of the radius distance (RD)
over the grid cells:

RDa D 1

m � m

X
�;z

RD.�; z/ (9)

where m is the number of cells of a square grid, and RD is defined in (4).
3. The grid-based angle distance score is the average of the angle distance (AD)

over the grid cells:

ADa D 1

m � m

X
�;z

AD.�; z/ (10)

where m is the number of cells of a square grid, and AD is defined in (5).

Three distances are calculated for infants with clefts before and after surgery
and compared with the rankings of the surgeons. The asymmetry scores indicate a
significant improvement after the surgery and a strong correlation with surgeons’
rankings. Figure 13 shows the visualization of RDa scores for clefts with three
different severity classes given by surgeons and the comparison of before and after
surgery scores.

10.0

a b c

d e f

3.33

-3.33

-10.0

10.0

3.33

-3.33

-10.0

10.0

3.33

-3.33

-10.0

10.0

3.33

-3.33

-10.0

10.0

3.33

-3.33

-10.0

10.0

3.33

-3.33

-10.0

Fig. 13 RDa reduction after the surgery for three cases. The red and green colors show the big
difference between the left and right sides. Red means higher and green means lower. Blue means
small difference between the two sides, (a) severe case pre-op RDa D 3:28 mm, (b) moderate case
pre-op RDa D 2:72 mm, (c) mild case pre-op RDa D 1:64 mm, (d) severe case post-op RDa D
1:03 mm, (e) moderate case post-op RDa D 0:95 mm, (f) mild case post-op RDa D 1:22 mm
(Color figure online)
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3.4 Classification

We describe two classification experiments.

3.4.1 Classifying the Dismorphologies Associated with 22q11.2DS

The craniofacial features associated with 22q11.2 deletion syndrome are well-
described and critical for detection in the clinical setting. Atmosukarto et al.
proposed a method based on machine learning to classify and quantify some of these
craniofacial features [3]. The method makes use of 2D histograms of azimuth and
elevation angles of the surface normal vectors calculated from different regions of
the face, but it uses machine learning instead of manually selecting histogram bins.

Using a visualization of the 2D azimuth-elevation angles histogram, Atmo-
sukarto pointed out that certain bins in the histogram correspond to certain regions
on the face, and the values in these bins are indicative of different face shapes. An
example of different midface shapes is given in Fig. 14. Using this insight, a method
based on sophisticated machine learning techniques was developed in order to learn
the bins that are indicators of different craniofacial features.

In order to determine the histogram bins that are most discriminative in classi-
fication of craniofacial features, Adaboost learning was used to select the bins that
give the highest classification performance of a certain craniofacial feature against
others. The Adaboost algorithm is a strong classifier that combines a set of weak
classifiers, in this case, decision stumps [9]. Different bins are selected for different
craniofacial abnormalities. Note that the bins selected for each condition cover areas
where the condition causes shape deformation.

After selecting discriminative histogram bins with Adaboost, a genetic pro-
gramming approach [28] was used to combine the features. Genetic programming
imitates human evolution by changing the mathematical expression over the selected
histogram bins used for quantifying the facial abnormalities. The method aims to
maximize a fitness function, which is selected as the F-measure in this work. The
F-measure is commonly used in information retrieval and is defined as follows:

Fig. 14 Projections of 2D
histograms of azimuth and
elevation angles to the face.
The projection shows
discriminating patterns
between individuals with and
without midface hypoplasia
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F.prec; rec/ D 2 � .prec � rec/

.prec C rec/
(11)

where prec is the precision and rec is the recall metric. The mathematical expression
with the highest F-measure is selected through cross-validation tests.

3.4.2 Sex Classification Using Pseudo-Landmarks

What makes a female face different from a male face has been an interest for
computer vision and craniofacial research communities for quite some time. A great
deal of previous work on sex classification in the computer vision literature uses 2D
color or gray tone photographs rather than 3D meshes.

Mercan et al. used pseudo-landmarks in a classification setting to show their
efficiency and the representation power over anthropometric landmarks [18].
L1-regularized logistic regression was used in a binary classification setting where
the features were simply the x, y and z coordinates of the landmark points. In a
comparative study where several methods from the literature are compared in a sex
classification experiment, it was shown that pseudo-landmarks (95:3 % accuracy)
and dense surface models (95:6 % accuracy) perform better than anthropometric
landmarks (92:5 % accuracy) but pseudo-landmarks are more efficient in calculation
than dense surface models and do not require human input. L1-regularization also
provides feature selection and in the sex classification setting, the pseudo-landmarks
around the eyebrows were selected as the most important features.

4 Content-Based Retrieval for 3D Human Face Meshes

The availability of large amounts of medical data made content based image retrieval
systems useful for managing and accessing medical databases. Such retrieval
systems help a clinician through the decision-making process by providing images
of previous patients with similar conditions. In addition to clinical decision support,
retrieval systems have been developed for teaching and research purposes [20].

Retrieval of 3D objects in a dataset is performed by calculating the distances
between the feature vector of a query object and the feature vectors of all objects
in the dataset. These distances give the dissimilarity between the query and every
object in the dataset; thus, the objects are retrieved in the order of increasing
distance. The retrieval performance depends on the features and the distance
measure selected for the system. In order to evaluate the features introduced in
Sect. 3.2, a synthetic database was created using the dense surface correspondence
method [12]. 3D surface meshes of 907 healthy Caucasian individuals were used to
create a synthetic database. The principle components of the data were calculated
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Fig. 15 Average face (left) and some examples (right) from the synthetic database

Fig. 16 Some queries made on the randomly produced synthetic dataset with the pseudo-landmark
feature calculated from the whole face. The query is an adult female in the first row, an adult male
in the second row, a young female in the third row and a young male in the fourth row

and 100 random synthetic faces were created by combining principle components
with coefficients randomly chosen from a multivariate normal distribution modeling
the population. Figure 15 shows the average face of the population and some
example synthetic faces. Figure 16 shows four example queries made on the random
dataset with adult female, adult male, young female and young male samples as
queries. Although the retrieval results are similar to the query in terms of age and
sex, it is not possible to evaluate the retrieval results quantitatively using randomly
produced faces, since there is no “ground truth” for the similarity.

In a controlled experiment, the performance of the retrieval system can be
measured by using a dataset that contains a subset of similar objects. Then, using
the rank of the similar object in a query, a score based on the average normalized
rank of relevant images [19] is calculated for each query:

score.q/ D 1

N � Nrel
�
 

NrelX
iD1

Ri � Nrel � .Nrel C 1/

2

!
(12)

where N is the number of objects in the database, Nrel is the number of objects
relevant to the query object q, and Ri is the rank assigned to i-th relevant object. The
evaluation scores range from 0 to 1, where 0 is the best and indicates that all relevant
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Fig. 17 A query face (left) and ten similar faces (right) produced by changing the coefficients of
the principle components of the query face

Table 1 Evaluation results for different features and face regions in
retrieval experiments on a synthetic database

Face Nose Mouth Eyes

Azimuth angles 0.077 0.150 0.226 0.168

Elevation angles 0.099 0.159 0.107 0.185

Gaussian curvature 0.223 0.386 0.333 0.385

2D azimuth-elevation histogram 0.046 0.109 0.087 0.142

Landmarks 0.164 NA NA NA

Pseudo-landmarks 0.102 0.028 0.041 0.094

Pseudo-landmarks (sized) 0.054 0.041 0.042 0.118

objects are retrieved before any other objects. To create similar faces in a controlled
fashion, the coefficients of the principle components were selected carefully, and
ten similar faces were produced for each query. For the synthesis of similar faces,
we changed the coefficients of ten randomly chosen principle components of the
base face by adding or subtracting 20 % of the original coefficient. These values
are chosen experimentally by taking the limits of the population coefficients into
consideration. Figure 17 shows a group of similar faces. Adding 10 new face sets
with 1 query and 10 similar faces in each, a new dataset of 210 faces was obtained.
The new larger dataset was used to evaluate the performance of shape features by
running 10 queries for each feature-region pair. The features were calculated in four
regions: the whole face, nose, mouth and eyes. Low-level features azimuth angles,
elevation angles and curvature values were used to create histograms with 50 bins.
2D azimuth-elevation histograms were calculated at 8 � 8 resolution. Landmarks
were calculated with our auto-landmarking technique. Pseudo-landmarks were
calculated with 35 planes and 35 points. Both landmarks and pseudo-landmarks
were aligned with Procrustes superimposition, and pseudo-landmarks were size
normalized to remove the effect of shape size. Table 1 shows the average of the
evaluation scores for each feature-region pair. Figure 18 shows a sample retrieval.
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Fig. 18 Top 30 results of a query with the pseudo-landmark feature calculated from the whole
face. The top left face is the query and the manually produced similar faces are marked with white
rectangles. The faces without white rectangle are random faces in the database that happen to be
similar to the query

The pseudo-landmarks obtained the best (lowest) retrieval scores for the nose,
mouth and eyes, while the 2D azimuth-elevation angle histogram obtained the best
score for the whole face. However, the sized pseudo-landmarks were a close second
for whole faces.

5 Conclusions

This paper presents several techniques that automate the craniofacial image analysis
pipeline and introduces methods to diagnose and quantify several different cranio-
facial syndromes. The pipeline starts with the preprocessing of raw 3D face meshes
obtained by a stereo-photography system. Wu et al. [25] provided an automatic
preprocessing method that normalizes the pose of the 3D mesh and extracts the face.
After preprocessing, features can be calculated from the 3D face meshes, including
azimuth and elevation angles, several curvature measures, symmetry scores [24],
anthropometric landmarks [15] and pseudo-landmarks [18]. The extracted features
have been used in the quantification of craniofacial syndromes and in classification
tasks. Our new work, a content-based retrieval system built on multiple different
features, was introduced, and the retrievals of similar faces from a synthetic database
were evaluated.

Medical imaging has revolutionized medicine by enabling scientists to obtain
lifesaving information about the human body—non-invasively. Digital images
obtained through CT, MR, PET and other modalities have become standards for
diagnosis and surgical planning. Computer vision and image analysis techniques
are being used for enhancing images, detecting anomalies, visualizing data in
different dimensions and guiding medical experts. New computational techniques
for craniofacial analyses provide a fully automatic methodology that is powerful and
efficient. The techniques covered in this paper do not require human supervision,
provide objective and more accurate results, and make batch processing of large
amounts of data possible.
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