
Chapter 5

Equations with One Space Variable
in Polar Coordinates

You’re either part of the solution or
you’re part of the problem.

Eldridge Cleaver

5.1 Domain 0 ≤ r < ∞
5.1.1 Statement of the problem

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Φ(r, t), (5.1)

t = 0 : T = f(r), 0 < α ≤ 2, (5.2)

t = 0 :
∂T

∂t
= F (r), 1 < α ≤ 2, (5.3)

lim
r→∞T (r, t) = 0. (5.4)

The solution:

T (r, t) =

∞∫
0

f(ρ)Gf (r, ρ, t) ρ dρ+

∞∫
0

F (ρ)GF (r, ρ, t) ρ dρ

+

t∫
0

∞∫
0

Φ(ρ, τ)GΦ(r, ρ, t− τ) ρ dρ dτ. (5.5)
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The fundamental solutions to the first Cauchy problem Gf (r, ρ, t), to the sec-
ond Cauchy problem GF (r, ρ, t) and to the source problem GΦ(r, ρ, t) were obtained
in [148].

5.1.2 Fundamental solution to the first Cauchy problem

∂αGf

∂tα
= a

(
∂2Gf

∂r2
+

1

r

∂Gf

∂r

)
, (5.6)

t = 0 : Gf = p0
δ(r − ρ)

r
, 0 < α ≤ 2, (5.7)

t = 0 :
∂Gf

∂t
= 0, 1 < α ≤ 2. (5.8)

It should be noted that the two-dimensional Dirac delta function in Cartesian
coordinates δ(x) δ(y) after passing to polar coordinates takes the form 1

2πr δ(r),
but for the sake of simplicity we have omitted the factor 2π in the solution (5.5)
as well as the factor 1

2π in the delta term in (5.7). The condition at infinity (5.4)
will be implied in all the problems in infinite domains considered in this chapter.

The Laplace transform with respect to time t and the Hankel transform of
order 0 with respect to the radial variable r (2.78) give

Ĝ∗
f = p0J0(ρξ)

sα−1

sα + aξ2
. (5.9)

The inverse integral transforms result in

Gf (r, ρ, t) = p0

∞∫
0

Eα

(
−aξ2tα

)
J0(rξ)J0(ρξ) ξ dξ. (5.10)

It is convenient to introduce the following nondimensional quantities:

r̄ =
r

ρ
, η = ρξ, κ =

√
atα/2

ρ
, Ḡf =

ρ2

p0
Gf . (5.11)

In this case

Ḡf =

∞∫
0

Eα

(
−κ2η2

)
J0(η)J0(r̄η) η dη. (5.12)

Consider several particular cases of the solution (5.12).

Helmholtz equation (α→ 0)

Ḡf =

⎧⎪⎪⎨⎪⎪⎩
1

κ2
I0

( r̄
κ

)
K0

(
1

κ

)
, 0 ≤ r̄ < 1,

1

κ2
I0

(
1

κ

)
K0

( r̄
κ

)
, 1 < r̄ < ∞,

(5.13)

where I0(x) and K0(x) are the modified Bessel functions.
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Subdiffusion with α = 1/2

Ḡf =
1

2
√
πκ2

∞∫
0

exp

(
−u2 − 1 + r̄2

8κ2u

)
I0

( r̄

4κ2u

) 1

u
du. (5.14)

Classical diffusion equation (α = 1)

Ḡf =
1

2κ2
exp

(
−1 + r̄2

4κ2

)
I0

( r̄

2κ2

)
. (5.15)

Wave equation (α = 2)

a) 0 < κ < 1

Ḡf =
1

2
√
1− κ

δ(r̄ − 1 + κ) +
1

2
√
1 + κ

δ(r̄ − 1− κ)

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 0 ≤ r̄ < 1− κ,

κ

4πk2k′2r̄3/2
[
E(k)− k′2K(k)

]
, 1− κ < r̄ < 1 + κ,

0, 1 + κ < r̄ < ∞.

(5.16)

b) κ > 1

Ḡf =
1

2
√
1 + κ

δ(r̄ − 1− κ)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

κ

4πkk′ 2r̄3/2
E

(
1

k

)
, 0 ≤ r̄ < κ− 1,

κ

4πk2k′ 2r̄3/2
[
E(k)− k′ 2K(k)

]
, κ− 1 < r̄ < 1 + κ, (5.17)

0, 1 + κ < r̄ < ∞,

where K(k) and E(k) are the complete elliptic integrals of the first and second
kind, respectively,

k =

√
κ2 − (r̄ − 1)2

2
√
r̄

, k′ =
√
1− k2. (5.18)

Dependence of the fundamental solution Ḡf on nondimensional distance r̄ is
shown in Figs. 5.1 and 5.2 for various values of κ and α. In what follows, three
distinguishing values of the parameter κ are considered: 0 < κ < 1, κ = 1 and
κ > 1. For a wave equation these values correspond to three characteristic events:
the wave front does not yet arrive at the origin, the wave front arrives at the origin,
and the wave front reflects from the origin.
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Figure 5.1: Dependence of the fundamental solution to the first Cauchy problem
in a plane on distance; κ = 0.25 [148]
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Figure 5.2: Dependence of the fundamental solution to the first Cauchy problem
in a plane on distance; κ = 1
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5.1.3 Fundamental solution to the second Cauchy problem

∂αGF

∂tα
= a

(
∂2GF

∂r2
+

1

r

∂GF

∂r

)
, (5.19)

t = 0 : GF = 0, 1 < α ≤ 2, (5.20)

t = 0 :
∂GF

∂t
= w0

δ(r − ρ)

r
, 1 < α ≤ 2. (5.21)

The solution:

GF (r, ρ, t) = w0t

∞∫
0

Eα,2

(
−aξ2tα

)
J0(rξ)J0(ρξ) ξ dξ. (5.22)

Wave equation (α = 2)

a) 0 < κ < 1

ḠF =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, 0 ≤ r̄ < 1− κ,

1

κπ
√
r̄
K(k), 1− κ < r̄ < 1 + κ,

0, 1 + κ < r̄ < ∞.

(5.23)

b) κ = 1

ḠF =

⎧⎪⎨⎪⎩
1

π
√
r̄
K(k), 0 < r̄ < 2,

0, 2 < r̄ < ∞.

(5.24)

c) κ > 1

ḠF =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

κπk
√
r̄
K

(
1

k

)
, 0 ≤ r̄ < κ− 1,

1

κπ
√
r̄
K(k), κ− 1 < r̄ < 1 + κ, (5.25)

0, 1 + κ < r̄ < ∞,

where ḠF = ρ2GF /(w0t), other nondimensional quantities are the same as in (5.11).

Dependence of the fundamental solution to the second Cauchy problem on
distance is shown in Figs. 5.3–5.5.

In the case of the wave equation (α = 2) the fundamental solution has jumps
at r̄ = 1 − κ and at r̄ = 1 + κ for 0 < κ < 1, has a singularity at the origin r̄ = 0
for κ = 1, and has a singularity at r̄ = κ− 1 and a jump at r̄ = κ+ 1 for κ > 1.
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Figure 5.3: Dependence of the fundamental solution to the second Cauchy problem
in a plane on distance; κ = 0.25 [148]
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Figure 5.5: Dependence of the fundamental solution to the second Cauchy problem
in a plane on distance; κ = 1.5 [148]

5.1.4 Fundamental solution to the source problem

The fundamental solution to the source problem is obtained in the similar way
and has the following form:

GΦ(r, ρ, t) = q0t
α−1

∞∫
0

Eα,α

(
−aξ2tα

)
J0(rξ)J0(ρξ) ξ dξ. (5.26)

Dependence of the fundamental solution ḠΦ = ρ2GΦ/(q0t
α−1) on distance is shown

in Figs. 5.6–5.8.

5.1.5 Delta-pulse at the origin

In the case of the first Cauchy problem we have

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
, (5.27)

t = 0 : T = p0
δ(r)

2πr
, 0 < α ≤ 2, (5.28)

t = 0 :
∂T

∂t
= 0, 1 < α ≤ 2 . (5.29)
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Figure 5.6: Dependence of the fundamental solution to the source problem in a
plane on distance; κ = 0.25 [148]
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ḠΦ

0.00

0.25

0.50

0.75

0 0.5 1.0 1.5 2.0 2.5

r̄

α = 2'''(
��

��

α = 1.95'''(

α = 1.75
�
�
�
�
�
��

α = 1.5
�
�
�
�
�
�
���

α = 1.25
�
�
�
�
�
�
���

α = 1
�
�
�
�
�
�
���

α = 0.75
�
�
�
�
�
�
��

α = 0.5
�
�
�
�
�
���

Figure 5.8: Dependence of the fundamental solution to the source problem in a
plane on distance; κ = 1.5 [148]

The solution:

T =
p0
2π

∞∫
0

Eα

(
−aξ2tα

)
J0(rξ) ξ dξ (5.30)

and

T =
1

2π

∞∫
0

Eα

(
−η2
)
J0(r̄η) η dη, (5.31)

where

r̄ =
r√
atα/2

, η =
√
atα/2ξ, T =

atα

p0
T. (5.32)

Helmholtz equation (α→ 0)

T =
1

2π
K0(r̄). (5.33)

Here K0(r) is the modified Bessel function.

Subdiffusion with α = 1/2

T =
1

4π3/2

∞∫
0

1

u
exp

(
−u2 − r̄2

8u

)
du. (5.34)
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Classical diffusion equation (α = 1)

T =
1

4π
exp

(
− r̄2

4

)
. (5.35)

Wave equation (α = 2)

T =
p0

2π
√
a

∂

∂t

H(
√
at− r)√

at2 − r2
, (5.36)

where H(x) is the Heaviside step function (see also [85]).

Now we investigate the behavior of the solution (5.31) at the origin. As for
large values of η we have (see (2.161)):

Eα(−η2) ∼ 1

Γ(1− α) η2
for η → ∞, 0 < α < 2, (5.37)

only the fundamental solution to the classical diffusion equation has no singularity
at the origin. To investigate the type of singularity we rewrite the solution (5.31)
in the following form:

T =
1

2π

∞∫
0

[
Eα(−η2)− 1

Γ(1− α)(1 + η2)

]
J0(r̄η) η dη

+
1

2πΓ(1− α)

∞∫
0

1

1 + η2
J0(r̄η) η dη. (5.38)

The first integral in (5.38) has no singularity at the origin, while the second
one can be calculated analytically (see equation (A.28) from the Appendix) and
yields the logarithmic singularity at the origin

T ∼ 1

2πΓ(1− α)
K0(r̄), 0 < α < 2, (5.39)

or

T ∼ − 1

2πΓ(1− α)
ln r̄, 0 < α < 2. (5.40)

Comparison of (5.40) and (5.33) allows us to substitute the condition 0 < α < 2
by 0 ≤ α < 2. Equation (5.40), rewritten in terms of dimensional solution T ,

T ∼ − p0
2πatαΓ(1− α)

ln r̄, 0 ≤ α < 2, (5.41)

is consistent with the behavior of the solution for small values of r obtained in [208].

Dependence of the nondimensional solution T on the similarity variable r̄ is
shown in Fig. 5.9.
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Figure 5.9: Dependence of the solution on the similarity variable r̄ (the first Cauchy
problem in a plane with the delta-pulse initial condition)

In the case of the second Cauchy problem with the delta-pulse initial condi-
tion the solution is expressed as

T =
w0t

2π

∞∫
0

Eα,2(−aξ2tα)J0(rξ) ξ dξ (5.42)

with T = atα−1T/w0.

The particular case of the solution (5.42) for the wave equation (α = 2) reads

T =

⎧⎨⎩
1

2π
√
1− r̄2

, 0 < r̄ < 1,

0, 1 < r̄ < ∞.

(5.43)

To investigate behavior of the solution (5.42) at the origin we recall that for
large values of η we have (see (2.162)):

Eα,2(−η2) ∼ 1

Γ(2− α) η2
for η → ∞, 1 < α < 2. (5.44)
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Figure 5.10: Dependence of the solution on the similarity variable r̄ (the second
Cauchy problem in a plane with the delta-pulse initial condition)

Computations similar to those carried out above lead to

T ∼ − 1

2πΓ(2− α)
ln r̄, 1 < α < 2. (5.45)

Hence, in the case of the second Cauchy problem with the delta-pulse initial con-
dition the solution also has its logarithmic singularity at the origin.

Dependence of nondimensional solution T on the similarity variable is de-
picted in Fig. 5.10.

The solution to the time-fractional diffusion wave equation with the source

term q0
δ(r)
2πr δ(t) under zero initial conditions is expressed as

T =
q0t

α−1

2π

∞∫
0

Eα,α

(
−aξ2tα

)
J0(rξ) ξ dξ. (5.46)

It should be noted that due to (2.163)

Eα,α(−η2) ∼ − 1

Γ(−α) η4
for η → ∞, 0 < α < 2. (5.47)

Hence, the solution (5.46) has no singularity at the origin for all 0 < α < 2.

Dependence of nondimensional solution T = atT/q0 on the similarity variable
is depicted in Fig. 5.11. It should be emphasized that solution (5.43), the same
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Figure 5.11: Dependence of the solution on the similarity variable r̄ (the delta
pulse source problem in a plane with zero initial conditions)

both for the source problem and the second Cauchy problem, is approximated by
solutions (5.42) and (5.46) with α → 2 in different ways, in particular the solution
(5.42) has the logarithmic singularity at the origin, whereas the solution (5.46)
has no singularity.

5.2 Evolution of the unit-box signal

5.2.1 First Cauchy problem

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
, (5.48)

t = 0 : T =

{
T0, 0 ≤ r < R,

0, R < r < ∞,
0 < α ≤ 2, (5.49)

t = 0 :
∂T

∂t
= 0, 1 < α ≤ 2. (5.50)

The solution [162]:

T = T0R

∞∫
0

Eα

(
−aξ2tα

)
J1(Rξ)J0(rξ) dξ. (5.51)
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It is convenient to introduce the following nondimensional quantities:

r̄ =
r

R
, κ =

√
atα/2

R
, T =

T

T0
. (5.52)

Helmholtz equation (α→ 0)

T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

κ

[
r̄I1

( r̄
κ

)
K0

( r̄
κ

)
+ r̄I0

( r̄
κ

)
K1

( r̄
κ

)
− I0

( r̄
κ

)
K1

(
1

κ

)]
,

0 ≤ r̄ < 1,

1

κ
I1

(
1

κ

)
K0

( r̄
κ

)
, 1 < r̄ < ∞. (5.53)

Subdiffusion with α = 1/2

T =
1

4κ2
√
π

∞∫
0

1

u
e−u2

1∫
0

exp

(
− r̄2 + x

8κ2u

)
I0

(
r̄
√
x

4κ2u

)
dxdu. (5.54)

Classical diffusion equation (α = 1)

T =
1

4κ2

1∫
0

exp

(
− r̄2 + x

4κ2

)
I0

(
r̄
√
x

2κ2

)
dx. (5.55)

Wave equation (α = 2)

a) 0 < κ < 1

T =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, 0 ≤ r̄ < 1− κ,

1− Λ0

(
arcsin

√
2r̄

1 + r̄ + κ
, k

)
+

r̄ − κ

π
√
r̄
K(k), 1− κ < r̄ < 1 + κ,

0, 1 + κ < r̄ < ∞.
(5.56)

b) κ = 1

T =

⎧⎪⎨⎪⎩ 1− Λ0

(
arcsin

√
2r̄

2 + r̄
, k

)
+

r̄ − 1

π
√
r̄
K(k), 0 ≤ r̄ < 2,

0, 2 < r̄ < ∞.

(5.57)
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c) 1 < κ < ∞

T̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− Λ0

(
arcsin

√
κ+ r̄ − 1

κ+ r̄ + 1
,
1

k

)

− 1

πk
√
r̄
K

(
1

k

)
, 0 ≤ r̄ < κ− 1,

1− Λ0

(
arcsin

√
2r̄

κ+ r̄ + 1
, k

)

+
r̄ − κ

π
√
r̄
K(k), κ− 1 < r̄ < 1 + κ,

0, 1 + κ < r̄ < ∞.

(5.58)

where Λ0 (ϕ, k) is the Heuman Lambda function,

Λ0 (ϕ, k) =
2

π
[E(k)F (ϕ, k′) +K(k)E(ϕ, k′)−K(k)F (ϕ, k′)] , (5.59)

F (ϕ, k) and E(ϕ, k) are elliptic integrals of the first and second kind, K(k) and
E(k) are complete elliptic integrals of the first and second kind, respectively, k
and k′ are the same as in (5.18).

The solution (5.51) is shown in Figs. 5.12–5.14.
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Figure 5.12: Evolution of the unit-box signal in a plane (the first Cauchy problem;
κ = 0.5) [162]
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Figure 5.13: Evolution of the unit-box signal in a plane (the first Cauchy problem;
κ = 1) [162]
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Figure 5.14: Evolution of the unit-box signal in a plane (the first Cauchy problem;
κ = 1.5) [162]
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5.2.2 Second Cauchy problem

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
, (5.60)

t = 0 : T = 0, 1 < α ≤ 2, (5.61)

t = 0 :
∂T

∂t
=

{
w0, 0 ≤ r < R,

0, R < r < ∞,
1 < α ≤ 2. (5.62)

The solution [182]:

T = w0Rt

∞∫
0

Eα,2

(
−aξ2tα

)
J1(Rξ)J0(rξ) dξ. (5.63)

Dependence of solution (5.63) on distance is shown in Figs. 5.15–5.17 for
various values of κ and α (T = T/(w0t), r̄ = r/R).
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Figure 5.15: Evolution of the unit-box signal in a plane (the second Cauchy prob-
lem; κ = 0.5) [182]
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Figure 5.16: Evolution of the unit-box signal in a plane (the second Cauchy prob-
lem; κ = 1)
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Figure 5.17: Evolution of the unit-box signal in a plane (the second Cauchy prob-
lem; κ = 1.25) [182]
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5.2.3 Source problem

We consider the diffusion-wave equation

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+ δ(t)

{
q0, 0 ≤ r < R,

0, R < r < ∞,
(5.64)

under zero initial conditions. The solution has the following form [182]:

T = q0Rtα−1

∫ ∞

0

Eα,α(−aξ2tα)J0(rξ)J1(Rξ) dξ. (5.65)

Figures 5.18–5.20 show the solution (5.65) for various values of α and κ (T =
t1−αT/q0).
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Figure 5.18: Evolution of the unit-box signal in a plane (the source problem;
κ = 0.5) [182]
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Figure 5.19: Evolution of the unit-box signal in a plane (the source problem; κ = 1)
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Figure 5.20: Evolution of the unit-box signal in a plane (the source problem;
κ = 1.25) [182]
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5.3 Domain 0 < r < R

5.3.1 Dirichlet boundary condition

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Φ(r, t), (5.66)

t = 0 : T = f(r), 0 < α ≤ 2, (5.67)

t = 0 :
∂T

∂t
= F (r), 1 < α ≤ 2, (5.68)

r = R : T = g(t). (5.69)

The solution:

T (r, t) =

R∫
0

f(ρ)Gf (r, ρ, t) ρ dρ+

R∫
0

F (ρ)GF (r, ρ, t) ρ dρ

+

t∫
0

R∫
0

Φ(ρ, τ)GΦ(r, ρ, t− τ) ρ dρ dτ +

t∫
0

g(τ)Gg(r, t− τ) dτ. (5.70)

The fundamental solutions under zero Dirichlet boundary condition have the
form⎛⎜⎝ Gf (r, ρ, t)

GF (r, ρ, t)

GΦ(r, ρ, t)

⎞⎟⎠ =
2

R2

∞∑
k=1

⎛⎜⎝ p0 Eα(−aξ2kt
α)

w0t Eα,2(−aξ2kt
α)

q0t
α−1 Eα,α(−aξ2kt

α)

⎞⎟⎠J0(rξk)J0(ρξk)

J2
1 (Rξk)

(5.71)

with the sum over all positive roots of the zero-order Bessel function

J0(Rξk) = 0. (5.72)

They are obtained using the Laplace transform with respect to time t and the
finite Hankel transform (2.96) with respect to the radial coordinate r.

The fundamental solution to the Dirichlet problem under zero initial condi-
tion is expressed as

Gg(r, t) = −aRg0
q0

∂GΦ(r, ρ, t)

∂ρ

∣∣∣∣
ρ=R

. (5.73)
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For numerical calculations the following nondimensional quantities are intro-
duced:

r̄ =
r

R
, ρ̄ =

ρ

R
, κ =

√
atα/2

R
, Gf =

R2

p0
Gf ,

GF =
R2

w0t
GF , GΦ =

R2

q0tα−1
GΦ, Gg =

R2

ag0tα−1
Gg. (5.74)

Dependence of the fundamental solution Gf on the nondimensional distance
r is shown in Figs. 5.21–5.22. Dependence of the fundamental solution GF on
distance is presented in Figs. 5.23–5.25. Dependence of the fundamental solution
GΦ on distance is depicted in Figs. 5.26–5.28. The fundamental solution to the
Dirichlet problem Gg is shown in Fig. 5.29.
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Figure 5.21: The fundamental solution to the first Cauchy problem in a cylinder
under zero Dirichlet boundary condition (ρ̄ = 0.5, κ = 0.25)
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Figure 5.22: The fundamental solution to the first Cauchy problem in a cylinder
under zero Dirichlet boundary condition (ρ̄ = 0.5, κ = 0.5)
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Figure 5.23: The fundamental solution to the second Cauchy problem in a cylinder
under zero Dirichlet boundary condition (ρ̄ = 0.5, κ = 0.25)
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ḠF

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0
r̄

Figure 5.24: The fundamental solution to the second Cauchy problem in a cylinder
under zero Dirichlet boundary condition (ρ̄ = 0.5, κ = 0.5)
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Figure 5.25: The fundamental solution to the second Cauchy problem in a cylinder
under zero Dirichlet boundary condition (ρ̄ = 0.5, κ = 0.75)
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Figure 5.26: The fundamental solution to the source problem in a cylinder under
zero Dirichlet boundary condition (ρ̄ = 0.5, κ = 0.25)
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Figure 5.27: The fundamental solution to the source problem in a cylinder under
zero Dirichlet boundary condition (ρ̄ = 0.5, κ = 0.5)
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Figure 5.28: The fundamental solution to the source problem in a cylinder under
zero Dirichlet boundary condition (ρ̄ = 0.5, κ = 0.75)
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Figure 5.29: The fundamental solution to the Dirichlet problem in a cylinder;
κ = 0.25
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Constant source strength. Here we consider the fractional diffusion-wave equa-
tion with constant source term Q0 = const

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Q0 (5.75)

under zero initial conditions

t = 0 : T = 0, 0 < α ≤ 2, (5.76)

t = 0 :
∂T

∂t
= 0, 1 < α ≤ 2, (5.77)

and zero Dirichlet boundary condition

r = R : T = 0, (5.78)

having the solution [149]

T =
Q0

4a

(
R2 − r2

)
− 2Q0

aR

∞∑
k=1

Eα

(
−aξ2kt

α
) J0(rξk)

ξ3k J1(Rξk)
. (5.79)

Helmholtz equation (α→ 0)

T =
Q0

4a

(
R2 − r2

)
− 2Q0

aR

∞∑
k=1

1

1 + aξ2k

J0(rξk)

ξ3k J1(Rξk)
. (5.80)

Classical diffusion equation (α = 1)

T =
Q0

4a

(
R2 − r2

)
− 2Q0

aR

∞∑
k=1

exp
(
−aξ2kt

) J0(rξk)

ξ3k J1(Rξk)
. (5.81)

The solution (5.81) is presented in [26].

Wave equation (α = 2)

T =
Q0

4a

(
R2 − r2

)
− 2Q0

aR

∞∑
k=1

cos
(√

aξkt
) J0(rξk)

ξ3k J1(Rξk)
. (5.82)

The results of numerical calculations are shown in Figs. 5.30 and 5.31 with
T = aT/(Q0R

2).
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Figure 5.30: Dependence of temperature in a cylinder on distance (the constant
source strength; κ = 0.5 [149]

α = 1
�
�
�
��

α = 0.5
�
�
�
���

α = 0
�
�
���

α = 1.5






�

α = 1.75






�

α = 2






�

T̄

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
r̄

Figure 5.31: Dependence of temperature in a cylinder on distance (the constant
source strength; κ = 1 [149]
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Dirichlet problem with constant boundary condition

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
, (5.83)

t = 0 : T = 0, 0 < α ≤ 2, (5.84)

t = 0 :
∂T

∂t
= 0, 1 < α ≤ 2, (5.85)

r = R : T = T0. (5.86)

The solution has the form:

T = T0

[
1− 2

∞∑
k=1

Eα

(
−aξ2kt

α
) J0(rξk)

Rξk J1(Rξk)

]
. (5.87)

The solution (5.87) was obtained by Narahari Achar and Hanneken [126], but
their numerical analysis of this solution and conclusions from such an analysis
need improvement (see [149]). The results of numerical calculations according to
(5.87) are presented in Figs. 5.32–5.34 for typical values of the parameter κ with
(T = T/T0).
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Figure 5.32: Dependence of temperature in a cylinder on distance (the constant
boundary condition; κ = 0.5 [149]
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Figure 5.33: Dependence of temperature in a cylinder on distance (the constant
boundary condition; κ = 1 [149]
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Figure 5.34: Dependence of temperature in a cylinder on distance (the constant
boundary condition; κ = 1.5 [149]
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5.3.2 Neumann boundary condition

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Φ(r, t), (5.88)

t = 0 : T = f(r), 0 < α ≤ 2, (5.89)

t = 0 :
∂T

∂t
= F (r), 1 < α ≤ 2, (5.90)

r = R :
∂T

∂r
= g(t). (5.91)

The solution:

T (r, t) =

R∫
0

f(ρ)Gf (r, ρ, t) ρ dρ+

R∫
0

F (ρ)GF (r, ρ, t) ρ dρ

+

t∫
0

R∫
0

Φ(ρ, τ)GΦ(r, ρ, t− τ) ρ dρ dτ +

t∫
0

g(τ)Gg(r, t− τ) dτ. (5.92)

The fundamental solutions under zero Neumann boundary condition have the form⎛⎜⎝ Gf (r, ρ, t)

GF (r, ρ, t)

GΦ(r, ρ, t)

⎞⎟⎠ =
2

R2

⎛⎜⎝ p0

w0t

q0t
α−1/Γ(α)

⎞⎟⎠

+
2

R2

∞∑
k=1

⎛⎜⎝ p0 Eα(−aξ2kt
α)

w0t Eα,2(−aξ2kt
α)

q0t
α−1 Eα,α(−aξ2kt

α)

⎞⎟⎠J0(rξk)J0(ρξk)

J2
0 (Rξk)

, (5.93)

with sum over all positive roots of the first-order Bessel function

J1(Rξk) = 0. (5.94)

The solutions were obtained using the Laplace transform with respect to time
and the finite Hankel transform (2.100) with respect to the radial coordinate.

Dependence of the fundamental solution Gf on nondimensional distance r is
shown in Figs. 5.35–5.36. Dependence of the fundamental solution GF on distance
is presented in Figs. 5.37–5.39. Dependence of the fundamental solution GΦ on
distance is depicted in Figs. 5.40–5.42. The nondimensional quantities are the
same as in (5.74). For κ = 0.25 the fundamental solutions under zero Dirichlet
and Neumann boundary conditions behave very similarly (the solutions do not
“feel” the boundary condition), but for κ = 0.5 and κ = 0.75 there appears
significant difference.
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Figure 5.35: The fundamental solution to the first Cauchy problem in a cylinder
under zero Neumann boundary condition (ρ̄ = 0.5, κ = 0.25)
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Figure 5.36: The fundamental solution to the first Cauchy problem in a cylinder
under zero Neumann boundary condition (ρ̄ = 0.5, κ = 0.5)
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Figure 5.37: The fundamental solution to the second Cauchy problem in a cylinder
under zero Neumann boundary condition (ρ̄ = 0.5, κ = 0.25)
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Figure 5.38: The fundamental solution to the second Cauchy problem in a cylinder
under zero Neumann boundary condition (ρ̄ = 0.5, κ = 0.5)
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Figure 5.39: The fundamental solution to the second Cauchy problem in a cylinder
under zero Neumann boundary condition (ρ̄ = 0.5, κ = 0.75)
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Figure 5.40: The fundamental solution to the source problem in a cylinder under
zero Neumann boundary condition (ρ̄ = 0.5, κ = 0.25)
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Figure 5.41: The fundamental solution to the source problem in a cylinder under
zero Neumann boundary condition (ρ̄ = 0.5, κ = 0.5)
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Figure 5.42: The fundamental solution to the source problem in a cylinder under
zero Neumann boundary condition (ρ̄ = 0.5, κ = 0.75)



126 Chapter 5. Equations with One Space Variable in Polar Coordinates

Fundamental solution to the mathematical Neumann problem

∂αGm

∂tα
= a

(
∂2Gm

∂r2
+

1

r

∂Gm

∂r

)
, (5.95)

t = 0 : Gm = 0, 0 < α ≤ 2, (5.96)

t = 0 :
∂Gm

∂t
= 0, 1 < α ≤ 2, (5.97)

r = R :
∂Gm

∂r
= g0 δ(t). (5.98)

The solution reads:

Gm(r, t) =
2ag0t

α−1

R

[
1

Γ(α)
+

∞∑
k=1

Eα,α

(
−aξ2kt

α
) J0(rξk)

J0(Rξk)

]
. (5.99)

The solution (5.99) is shown in Figs. 5.43 and 5.44, where Gm = Rt1−αGm/(ag0).
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Figure 5.43: The fundamental solution to the mathematical Neumann problem for
a cylinder; κ = 0.5
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Figure 5.44: The fundamental solution to the mathematical Neumann problem for
a cylinder; κ = 1

Constant boundary value of the normal derivative. In the case when a constant
boundary value of the normal derivative is considered,

r = R :
∂T

∂r
= g0, (5.100)

the solution has the following form [174]:

T =
2ag0t

α

RΓ(1 + α)
+

g0
R

[
r2

2
− R2

4
− 2

∞∑
k=1

Eα

(
−aξ2kt

α
) J0(rξk)

ξ2k J0(Rξk)

]
. (5.101)

The particular case of (5.101) corresponding to the classical diffusion equation
(α = 1) coincides with the corresponding solution presented in [26].

The results of numerical calculations are presented in Fig. 5.45 and Fig. 5.46
with T = T/(g0R).

Fundamental solution to the physical Neumann problem

∂αGp

∂tα
= a

(
∂2Gp

∂r2
+

1

r

∂Gp

∂r

)
, (5.102)

t = 0 : Gp = 0, 0 < α ≤ 2, (5.103)

t = 0 :
∂Gp

∂t
= 0, 1 < α ≤ 2, (5.104)
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Figure 5.45: Dependence of temperature in a cylinder on distance (the constant
normal derivative of temperature at the boundary; κ = 0.5)
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Figure 5.46: Dependence of temperature in a cylinder on distance (the constant
normal derivative of temperature at the boundary; κ = 1)
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Figure 5.47: The fundamental solution to the physical Neumann problem for a
cylinder; κ = 0.5

r = R : D1−α
RL

∂Gp

∂r
= g0 δ(t), 0 < α ≤ 1, (5.105)

r = R : Iα−1 ∂Gp

∂r
= g0 δ(t), 1 < α ≤ 2. (5.106)

The solution

Gp(r, t) =
2ag0
R

[
1 +

∞∑
k=1

Eα

(
−aξ2kt

α
) J0(rξk)

J0(Rξk)

]
(5.107)

is shown in Figs. 5.47 and 5.48 with Gp = RGp/(ag0).

Constant heat flux at the boundary

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
(5.108)

t = 0 : T = 0, 0 < α ≤ 2, (5.109)

t = 0 :
∂T

∂t
= 0, 1 < α ≤ 2, (5.110)

r = R : D1−α
RL

∂T

∂r
= g0, 0 < α ≤ 1, (5.111)

r = R : Iα−1 ∂T

∂r
= g0, 1 < α ≤ 2. (5.112)
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Figure 5.48: The fundamental solution to the physical Neumann problem for a
cylinder; κ = 1

The solution [174]:

T =
2ag0t

R

[
1 +

∞∑
k=1

Eα,2

(
−aξ2kt

α
) J0(rξk)

J0(Rξk)

]
. (5.113)

The results of numerical calculations of the solution (5.113) are presented in
Fig. 5.49 and Fig. 5.50 with T = tα−1T/(g0R).

5.3.3 Robin boundary condition

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Φ(r, t), (5.114)

t = 0 : T = f(r), 0 < α ≤ 2, (5.115)

t = 0 :
∂T

∂t
= F (r), 1 < α ≤ 2, (5.116)

r = R : HT +
∂T

∂t
= g(t). (5.117)
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Figure 5.49: Dependence of temperature in a cylinder on distance (the constant
heat flux at the boundary; κ = 0.5)
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Figure 5.50: Dependence of temperature in a cylinder on distance (the constant
heat flux at the boundary; κ = 1
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The solution:

T (r, t) =

R∫
0

f(ρ)Gf (r, ρ, t) ρ dρ+

R∫
0

F (ρ)GF (r, ρ, t) ρ dρ

+

t∫
0

R∫
0

Φ(ρ, τ)GΦ(r, ρ, t− τ) ρ dρ dτ +

t∫
0

g(τ)Gg(r, t− τ) dτ. (5.118)

The fundamental solutions [186]⎛⎜⎝ Gf (r, ρ, t)

GF (r, ρ, t)

GΦ(r, ρ, t)

⎞⎟⎠ =
2

R2

∞∑
k=1

⎛⎜⎝ p0 Eα(−aξ2kt
α)

w0t Eα,2(−aξ2kt
α)

q0t
α−1 Eα,α(−aξ2kt

α)

⎞⎟⎠
× ξ2k

ξ2k +H2

J0(rξk)J0(ρξk)

J2
0 (Rξk)

(5.119)

with sum over all positive roots of the transcendental equation

ξkJ1(Rξk) = HJ0(Rξk) (5.120)

are obtained using the Laplace transform with respect to time t and the finite
Hankel transform (2.104) with respect to the radial coordinate r.

The fundamental solution to the mathematical Robin problem under zero
initial condition is expressed as

Gg(r, t) =
aRg0
q0

GΦ(r, ρ, t)

∣∣∣∣
ρ=R

. (5.121)

Dependence of the fundamental solution Gf on nondimensional distance r is
shown in Figs. 5.51–5.52 (H = RH , Gf = R2Gf/p0). The fundamental solution GF

is depicted in Figs. 5.53–5.55 with GF = R2GF /(w0t). The fundamental solution
GΦ is presented in Figs. 5.56–5.58 for various values of α, κ and H̄ , where GΦ =
R2t1−αGΦ/q0. The fundamental solution to the mathematical Robin boundary
value problem under zero initial conditions Gg(r, t) is shown in Figs. 5.59 and 5.60
with Gg = RGgT

1−α/(ag0). The fundamental solutions under Robin boundary
conditions for κ = 0.25 do not “feel” the boundary condition, but for κ = 0.5 and
κ = 0.75 there appears significant difference between solutions under Dirichlet,
Neumann and Robin boundary conditions.
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Figure 5.51: The fundamental solution to the first Cauchy problem in a cylinder
under zero Robin boundary condition (ρ̄ = 0.5, κ = 0.25, H̄ = 1) [186]
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Figure 5.52: The fundamental solution to the first Cauchy problem in a cylinder
under zero Robin boundary condition (ρ̄ = 0.5, κ = 0.5, H̄ = 1) [186]
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Figure 5.53: The fundamental solution to the second Cauchy problem in a cylinder
under zero Robin boundary condition (ρ̄ = 0.5, κ = 0.25, H̄ = 1) [186]
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ḠF

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0
r̄

Figure 5.54: The fundamental solution to the second Cauchy problem in a cylinder
under zero Robin boundary condition (ρ̄ = 0.5, κ = 0.5, H̄ = 1) [186]
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�&ḠF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0
r̄

Figure 5.55: The fundamental solution to the second Cauchy problem in a cylinder
under zero Robin boundary condition (ρ̄ = 0.5, κ = 0.75, H̄ = 1) [186]
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Figure 5.56: The fundamental solution to the source problem in a cylinder under
zero Robin boundary condition (ρ̄ = 0.5, κ = 0.25, H̄ = 1) [186]
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Figure 5.57: The fundamental solution to the source problem in a cylinder under
zero Robin boundary condition (ρ̄ = 0.5, κ = 0.5, H̄ = 1) [186]
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Figure 5.58: The fundamental solution to the source problem in a cylinder under
zero Robin boundary condition (ρ̄ = 0.5, κ = 0.75, H̄ = 1) [186]
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Figure 5.59: The fundamental solution to the Robin problem for a cylinder under
zero initial conditions (κ = 0.5, H̄ = 1) [186]
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Figure 5.60: The fundamental solution to the Robin problem for a cylinder under
zero initial conditions (α = 1.75, κ = 1) [186]
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5.4 Domain R < r < ∞
5.4.1 Dirichlet boundary condition

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Φ(r, t), (5.122)

t = 0 : T = f(r), 0 < α ≤ 2, (5.123)

t = 0 :
∂T

∂t
= F (r), 1 < α ≤ 2, (5.124)

r = R : T = g(t). (5.125)

The zero condition at infinity is also assumed:

lim
r→∞T (r, t) = 0. (5.126)

The solution:

T (r, t) =

∞∫
R

f(ρ)Gf (r, ρ, t) ρ dρ+

∞∫
R

F (ρ)GF (r, ρ, t) ρ dρ

+

t∫
0

∞∫
R

Φ(ρ, τ)GΦ(r, ρ, t− τ) ρ dρ dτ +

t∫
0

g(τ)Gg(r, t− τ) dτ. (5.127)

The fundamental solutions under zero Dirichlet boundary condition,⎛⎜⎝ Gf (r, ρ, t)

GF (r, ρ, t)

GΦ(r, ρ, t)

⎞⎟⎠ =

∞∫
0

⎛⎜⎝ p0 Eα(−aξ2tα)

w0t Eα,2(−aξ2tα)

q0t
α−1 Eα,α(−aξ2tα)

⎞⎟⎠ J0(rξ)Y0(Rξ)− Y0(rξ)J0(Rξ)

J2
0 (Rξ) + Y 2

0 (Rξ)

×
[
J0(ρξ)Y0(Rξ)− Y0(ρξ)J0(Rξ)

]
ξ dξ, (5.128)

are obtained using the Laplace transform with respect to time t and the Weber
transform (2.108), (2.117) with respect to the radial coordinate r.

Dependence of the fundamental solution Ḡf = R2Gf/p0 on nondimensional
distance r̄ = r/R with ρ̄ = ρ/R and κ =

√
atα/R is shown in Fig. 5.61. The

fundamental solution ḠF = R2GF /(w0t) is presented in Figs. 5.62 and 5.63. The
fundamental solution to the source problem under zero Dirichlet boundary condi-
tion ḠΦ = R2GΦ/(q0t

α−1) is depicted in Figs. 5.64 and 5.65.



5.4. Domain R < r < ∞ 139

α = 1.5





5

α = 1.75
�
�
��� α = 0

�
�
���

α = 1
�
�
���

α = 0.5
�
�
���Ḡf
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Figure 5.61: The fundamental solution to the first Cauchy problem in a body with
a cylindrical hole under zero Dirichlet boundary condition (ρ̄ = 2, κ = 0.5)
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Figure 5.62: The fundamental solution to the second Cauchy problem in a body
with a cylindrical hole under zero Dirichlet boundary condition (ρ̄ = 2, κ = 0.5)



140 Chapter 5. Equations with One Space Variable in Polar Coordinates

α = 1.95





�

α = 2




�

α = 1.05
�
��<

α = 1.75
�
�
��<

ḠF
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Figure 5.63: The fundamental solution to the second Cauchy problem in a body
with a cylindrical hole under zero Dirichlet boundary condition (ρ̄ = 2, κ = 1)
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Figure 5.64: The fundamental solution to the source problem in a body with a
cylindrical hole under zero Dirichlet boundary condition (ρ̄ = 2, κ = 0.5)
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Figure 5.65: The fundamental solution to the source problem in a body with a
cylindrical hole under zero Dirichlet boundary condition (ρ̄ = 2, κ = 1)

Fundamental solution to the Dirichlet problem

∂αGg

∂tα
= a

(
∂2Gg

∂r2
+

1

r

∂Gg

∂r

)
, (5.129)

t = 0 : Gg = 0, 0 < α ≤ 2, (5.130)

t = 0 :
∂Gg

∂t
= 0, 1 < α ≤ 2, (5.131)

r = R : Gg = g0 δ(t). (5.132)

The solution [157]:

Gg(r, t) = −2ag0t
α−1

π

∞∫
0

Eα,α(−aξ2tα)

× J0(rξ)Y0(Rξ)− Y0(rξ)J0(Rξ)

J2
0 (Rξ) + Y 2

0 (Rξ)
ξ dξ. (5.133)

The fundamental solution Gg = tGg/g0 is shown in Fig. 5.66. The plot of solution
for α = 2 in Fig. 5.66 needs additional discussion. If we consider the axisymmetric
Cauchy problem for the wave equation in a plane with initial value T (r, 0) =
δ(r −R), then the nondimensional solution for 0 < κ < 1 has the form

Gf =
1

2
√
1− κ

δ(r̄ − 1 + κ) +
1

2
√
1 + κ

δ(r̄ − 1− κ) + (a “tail”) (5.134)
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Figure 5.66: The fundamental solution to the Dirichlet problem for a body with a
cylindrical hole (ρ̄ = 2, κ = 1) [157]

(see (5.16)). The first term in Eq. (5.134) presents the delta peak traveling in the
direction of origin, the second term corresponds to the delta peak propagating in
the direction of infinity, and the third term describes a “tail” behind the wave
fronts. In the case of a cylinder with radius R (0 ≤ r ≤ R) the signaling problem
for the wave equation with the Dirac delta boundary condition T (R, t) = δ(t)
in the case 0 < κ < 1 has a solution containing the delta peak traveling in the
direction of origin and a portion of “tail” behind the wave front:

Gg =
1√
1− κ

δ(r̄ − 1 + κ) + (a “tail”). (5.135)

Similarly, in the case of an infinite medium with cylindrical cavity (R ≤ r < ∞) the
corresponding solution to the signaling problem contains the delta peak traveling
in the direction of infinity and also a portion of “tail” behind the wave front:

Gg =
1√
1 + κ

δ(r̄ − 1− κ) + (a “tail”). (5.136)

It should be noted that coefficients of delta functions in (5.135) and (5.136) are
twice as large as those in (5.134) (the initial delta pulse does not split in two
parts). The “tails” in (5.135) and (5.136) cannot be calculated analytically as in
(5.134), but can be estimated numerically.



5.4. Domain R < r < ∞ 143

α = 1




5

α = 0.5




5

α = 0




5

α = 1.95
''''(

α = 1.5
''''(

α = 2
�
�
���

α = 2 �
�
���

T̄

0.00

0.25

0.50

0.75

1.00

1.0 1.5 2.0 2.5 3.0

r̄

Figure 5.67: Dependence of the solution on distance (the Dirichlet problem for an
infinite medium with cylindrical hole with constant boundary condition; κ = 1)
[157]

Constant boundary value of temperature. In this case equations (5.129)–(5.131)
are considered under the boundary condition

r = R : T = T0. (5.137)

The solution has the following form [157]

T = T0 +
2T0

π

∞∫
0

Eα(−aξ2tα)
J0(rξ)Y0(Rξ)− Y0(rξ)J0(Rξ)

J2
0 (Rξ) + Y 2

0 (Rξ)

dξ

ξ
(5.138)

and is displayed in Fig. 5.67 with T = T/T0.

Recall that the solution to the corresponding problem for the classical heat
conduction equation is well known [26, 48]:

T = T0 +
2T0

π

∞∫
0

exp
(
−aξ2t

) J0(rξ)Y0(Rξ)− Y0(rξ)J0(Rξ)

J2
0 (Rξ) + Y 2

0 (Rξ)

dξ

ξ
. (5.139)

5.4.2 Neumann boundary condition

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Φ(r, t), (5.140)
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t = 0 : T = f(r), 0 < α ≤ 2, (5.141)

t = 0 :
∂T

∂t
= F (r), 1 < α ≤ 2, (5.142)

r = R : −∂T

∂r
= g(t), (5.143)

lim
r→∞T (r, t) = 0. (5.144)

The solution:

T (r, t) =

∞∫
R

f(ρ)Gf (r, ρ, t) ρ dρ+

∞∫
R

F (ρ)GF (r, ρ, t) ρ dρ

+

t∫
0

∞∫
R

Φ(ρ, τ)GΦ(r, ρ, t− τ) ρ dρ dτ +

t∫
0

g(τ)Gg(r, t− τ) dτ. (5.145)

The fundamental solutions under zero Neumann boundary condition have the
following form:

⎛⎜⎝ Gf (r, ρ, t)

GF (r, ρ, t)

GΦ(r, ρ, t)

⎞⎟⎠ =

∞∫
0

⎛⎜⎝ p0 Eα(−aξ2tα)

w0t Eα,2(−aξ2tα)

q0t
α−1 Eα,α(−aξ2tα)

⎞⎟⎠J0(rξ)Y1(Rξ)− Y0(rξ)J1(Rξ)

J2
1 (Rξ) + Y 2

1 (Rξ)

×
[
J0(ρξ)Y1(Rξ)− Y0(ρξ)J1(Rξ)

]
ξ dξ (5.146)

and are obtained using the Laplace transform with respect to time t and the Weber
transform (2.108), (2.119) with respect to the radial coordinate r.

Dependence of the fundamental solution Ḡf = R2Gf/p0 on nondimensional
distance r̄ = r/R with ρ̄ = ρ/R and κ =

√
atα/R is shown in Figs. 5.68 and 5.69.

The fundamental solution ḠF = R2GF /(w0t) is presented in Figs. 5.70 and 5.71.
The fundamental solution to the source problem under zero Neumann boundary
condition ḠΦ = R2GΦ/(q0t

α−1) is depicted in Figs. 5.72 and 5.73. For κ = 0.5 the
fundamental solutions under zero Dirichlet and Neumann boundary conditions are
very similar (do not “feel” the boundary condition), but for κ ≥ 1 the solutions
under Dirichlet and Neumann boundary conditions are significantly different.
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Figure 5.68: The fundamental solution to the first Cauchy problem in a body with
a cylindrical hole under zero Neumann boundary condition (ρ̄ = 2, κ = 0.5)
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Figure 5.69: The fundamental solution to the first Cauchy problem in a body with
a cylindrical hole under zero Neumann boundary condition (ρ̄ = 2, κ = 1)
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Figure 5.70: The fundamental solution to the second Cauchy problem in a body
with a cylindrical hole under zero Neumann boundary condition (ρ̄ = 2, κ = 0.5)
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Figure 5.71: The fundamental solution to the second Cauchy problem in a body
with a cylindrical hole under zero Neumann boundary condition (ρ̄ = 2, κ = 1)
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Figure 5.72: The fundamental solution to the source problem in a body with a
cylindrical hole under zero Neumann boundary condition (ρ̄ = 2, κ = 0.5)
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Figure 5.73: The fundamental solution to the source problem in a body with a
cylindrical hole under zero Neumann boundary condition (ρ̄ = 2, κ = 1)
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Fundamental solution to the mathematical Neumann problem

∂αGm

∂tα
= a

(
∂2Gm

∂r2
+

1

r

∂Gm

∂r

)
, (5.147)

t = 0 : Gm = 0, 0 < α ≤ 2, (5.148)

t = 0 :
∂Gm

∂t
= 0, 1 < α ≤ 2, (5.149)

r = R :
∂Gm

∂r
= −g0 δ(t). (5.150)

The solution

Gm(r, t) = −2ag0t
α−1

π

∞∫
0

Eα,α(−aξ2tα)
J0(rξ)Y1(Rξ)− Y0(rξ)J1(Rξ)

J2
1 (Rξ) + Y 2

1 (Rξ)
dξ.

(5.151)
is depicted in Fig. 5.74 with Gm = tGm/(Rg0).
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Figure 5.74: The fundamental solution to the mathematical Neumann problem for
a body with a cylindrical hole (ρ̄ = 2, κ = 1) [157]
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Figure 5.75: Dependence of the solution on distance (an infinite medium with a
cylindrical hole and constant boundary value of normal derivative; κ = 1) [175]

Constant boundary value of normal derivative

r = R :
∂T

∂r
= −g0 = const. (5.152)

The solution [157]

T = −2g0
π

∞∫
0

[
1− Eα(−aξ2tα)

] J0(rξ)Y1(Rξ)− Y0(rξ)J1(Rξ)

J2
1 (Rξ) + Y 2

1 (Rξ)

dξ

ξ2
(5.153)

is shown in Fig. 5.75 (T = T/(Rg0)).

Fundamental solution to the physical Neumann problem

∂αGp

∂tα
= a

(
∂2Gp

∂r2
+

1

r

∂Gp

∂r

)
, (5.154)

t = 0 : Gp = 0, 0 < α ≤ 2, (5.155)

t = 0 :
∂Gp

∂t
= 0, 1 < α ≤ 2, (5.156)

r = R : D1−α
RL

∂Gp

∂r
= −g0 δ(t), 0 < α ≤ 1, (5.157)
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r = R : Iα−1 ∂

∂r
Gp = −g0 δ(t), 1 < α ≤ 2. (5.158)

The solution

Gp(r, t) = −2ag0
π

∞∫
0

Eα(−aξ2tα)
J0(rξ)Y1(Rξ)− Y0(rξ)J1(Rξ)

J2
1 (Rξ) + Y 2

1 (Rξ)
dξ. (5.159)

Constant boundary value of the heat flux

r = R : D1−α
RL

∂T

∂r
= −g0, 0 < α ≤ 1, (5.160)

r = R : Iα−1 ∂T

∂r
= −g0, 1 < α ≤ 2 . (5.161)

The solution

T = −2ag0t

π

∞∫
0

Eα,2(−aξ2tα)
J0(rξ)Y1(Rξ)− Y0(rξ)J1(Rξ)

J2
1 (Rξ) + Y 2

1 (Rξ)
dξ (5.162)

is shown in Fig. 5.76 with T = RT/(ag0t).
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Figure 5.76: Dependence of the temperature on distance (the constant heat flux
at the boundary of a body with a cylindrical hole) [175]
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5.4.3 Robin boundary condition

∂αT

∂tα
= a

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Φ(r, t), (5.163)

t = 0 : T = f(r), 0 < α ≤ 2, (5.164)

t = 0 :
∂T

∂t
= F (r), 1 < α ≤ 2, (5.165)

r = R : −∂T

∂r
+HT = g(t), (5.166)

lim
r→∞T (r, t) = 0. (5.167)

The solution:

T (r, t) =

∞∫
R

f(ρ)Gf (r, ρ, t) ρ dρ+

∞∫
R

F (ρ)GF (r, ρ, t) ρ dρ

+

t∫
0

∞∫
R

Φ(ρ, τ)GΦ(r, ρ, t− τ) ρ dρ dτ +

t∫
0

g(τ)Gg(r, t− τ) dτ. (5.168)

The fundamental solutions under zero Robin boundary condition⎛⎜⎝ Gf (r, ρ, t)

GF (r, ρ, t)

GΦ(r, ρ, t)

⎞⎟⎠ =

∞∫
0

⎛⎜⎝ p0 Eα(−aξ2tα)

w0t Eα,2(−aξ2tα)

q0t
α−1 Eα,α(−aξ2tα)

⎞⎟⎠

×Y0(rξ) [ξJ1(Rξ) +HJ0(Rξ)]− J0(rξ) [ξY1(Rξ) +HY0(Rξ)]

[ξJ1(Rξ) +HJ0(Rξ)]
2
+ [ξY1(Rξ) +HY0(Rξ)]

2

×
{
Y0(ρξ) [ξJ1(Rξ) +HJ0(Rξ)]− J0(ρξ) [ξY1(Rξ) +HY0(Rξ)]

}
ξdξ (5.169)

are obtained using the Laplace transform with respect to time t and the Weber
transform (2.108), (2.121) with respect to the radial coordinate r.

The fundamental solution to the mathematical Robin problem under zero
initial conditions has the following form:

Gg(r, t) =
2ag0t

α−1

π

∞∫
0

Eα,α(−aξ2tα)

×Y0(rξ) [ξJ1(Rξ) +HJ0(Rξ)]− J0(rξ) [ξY1(Rξ) +HY0(Rξ)]

[ξJ1(Rξ) +HJ0(Rξ)]2 + [ξY1(Rξ) +HY0(Rξ)]2
ξdξ. (5.170)
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