Chapter 2

Mathematical Preliminaries
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2.1 Integral transforms

The integral transform technique allows us to remove partial derivatives from the
considered equations and to obtain the algebraic equation in a transform domain.
Here we briefly recall the integral transforms which are used in this book to reduce
the differential operators to an algebraic form. The Laplace transform with respect
to time is marked by an asterisk, the Fourier transforms are denoted by a tilde, the
Hankel transforms are indicated by a hat and the Legendre transform is designated
by a star. Additional information concerning integral transforms can be found in
[34, 37, 48, 140, 212], among others.

2.1.1 Laplace transform

The Laplace transform is defined as
LU= 1) = [ s at (21)
0

where s is the transform variable.
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6 Chapter 2. Mathematical Preliminaries

Figure 2.1: The Bromwich path of integration in the complex s-plane

The inverse Laplace transform is carried out according to the Fourier—Mellin
formula

c+io0o
,c*{f*(s)}:f(t):%lm, / Fo(s)ettds, t>0, (2.2)

where c is a positive fixed number. The transform f*(s) is assumed analytical for
MRes > c, all the singularities of f*(s) must lie to the left of the vertical line known
as the Bromwich path of integration (see Fig. 2.1).

For the primitive of a function f(t)

1£) = [ f(r)ar 2:3)
0

we have .
LU0} = 1), (24)
whereas in the case of the m-fold primitive of a function f(t),

t1

I f(e) = /tdtl /dt2 . t71f(tm)dtm7 (2.5)
0 0

0
the Laplace transform rule reads

LU0 = 56, (26)
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The Laplace transform of the first derivative f’(t) is easily obtained integrat-
ing the appropriate formula by parts which leads to

L{f'()} = sf"(s) = f(0T), (2.7)
and for the mth derivative f("™)(t)

H

m—

L{f(m)(t)} F® (OF)sm—1-k, (2.8)

k=0

The Laplace transform rule for the fractional integral (1.4) is similar to the

rule (2.6):
LA F@) = 7). (29)

The Riemann-Liouville derivative of the fractional order « (1.5) for its
Laplace transform rule requires knowledge of the initial values of the fractional
integral I™~*f(¢) and its derivatives of the order k =1,2,...,m — 1

,_n

LA{DRL (1)} = s f* DI f(0F)sm R,
k=0
m—1<a<m. (2.10)

The Laplace transform rule for the Caputo derivative (1.6) has the following
form

- m—1
E{dd{a(t)} _ FWOHse 1k m—l<a<m.  (211)
k=0

The convolution theorem, often used for inversion of the Laplace transform,
reads as

LT (s

o\“

t

flt=7)g /f g(t —1)dr. (2.12)
0

If the transform f*(s) can be expanded into the absolutely convergent series

Feo=3 3 (2.13)

§Mk
k=0

with arbitrary powers 0 < Ao < A1 < Ay < --- (need not be integers), then the
inverse transform f(t) has the expansion

o0

= F(ka) AL, (2.14)

k=0
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If the transform f*(s) can be expanded into the absolutely convergent series

o0

fr(s) = cps™ (2.15)

k=0

with arbitrary powers 0 < A\g < A1 < A2 < --- (need not be integers), then the
inverse transform f(t) for ¢ — oo has the asymptotic expansion

- Ck —Ap—1
ft) ~ T 2.16
To calculate the inverse Laplace transform the Cauchy residue theorem is of
fundamental importance.

Cauchy residue theorem. If f(z) is analytic within and on a simple, closed contour
¢ except at finitely many points z1, 2o, ..., 2 lying in the interior of €, then

271m' Lf(z) dz = ;Res = f(2), (2.17)

where integration is carried out in the positive direction.

Now choose the integration contour € shown in Fig. 2.2 containing the portion
of the vertical line fRe s = ¢, two parts of the circle of radius R (designating as
€r), and a loop which starts from —oo along the upper side of the negative real
axis, encircles a small circle of the radius ¢ in the negative direction and ends at
—oo along the lower side of the negative real axis.

For a sufficiently “good” function f*(s)

lim / f*(s)estds = 0. (2.18)
Cr

R—o

Hence

f(t) = lim ! f*(s)e’ds + iRessk f*(s)e, (2.19)

€0 273 J g, pt

where the Hankel path of integration Ha, is a loop which starts from —oo along the
lower side of the negative real axis, encircles a small circle in the positive direction
and ends at —oco along the upper side of the negative real axis (see Fig. 2.3). It
should be noted that multiplying f*(s) by e** does not affect the poles of f*(s).
2.1.2 Exponential Fourier transform

The exponential Fourier transform

Py =Fo =, [ s@etar (220)
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\_/

Figure 2.2: The closed path of integration in the complex s-plane

A

Figure 2.3: The Hankel path of integration in the complex s-plane

is used in the domain —oo < & < oo and has the inverse

FUROY= 1w =, [ T (221)
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The Fourier transform of the mth derivative of a function has the form

{0 = ciomie. (222)

in particular, ,
d”f(x) ~
]:{ 12:2 } €2f(§) (2.23)

The convolution theorem for the exponential Fourier transform reads:

o) = / (o w) glow)

_ \/QW /f (@ — u) (2.24)

2.1.3 Sin-Fourier transform

The sin-Fourier transform is defined as

F{f(x f(z)sin(z£) d (2.25)
- e
with the inverse
2 o
FUF©) = 7€) sin(x) d (2.26)
.

The sin-Fourier transform is used in the domain 0 < z < oo for Dirichlet boundary
condition with the prescribed boundary value of a function, since for the second
derivative of a function we get

I - e+ erw (2.27)

x=0
2.1.4 Three-fold Fourier transform in the case
of spherical symmetry

If the considered function f(x,y,z) depends only on the radial coordinate

r= (2 +1y*+ 22)1/2, then the three-fold Fourier transform (2.20) can be simpli-
fied. Introducing the spherical coordinates

x =rsinpcost, y=rsinpsiny, z=rcosy,

& =psingcosl, n=psingsinf, (= pcosq, (2.28)
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we have

f(&n,é): (27T1)3/2 / / /f(:c,y,z)ei(z£+yn+z<)dzdydz

1 o cos o c0s
= om / r2f(r)dr / eireeos oSt gin i
0 0

2m
« /eirg sin ¢ sin ¢ cos(Y¥—0) de. (229)
0

Due to the periodic character of the third integrand

27 27
/eirg sin ¢ sin ¢ cos(9—0) dy = /eirg sin ¢ sin ¢ cos ¥ dv.
0 0

Using the integral representation of the Bessel function of the first kind of the

zeroth order [1]
2

/ e8Py = 21 Jy(2), (2.30)
0
we get
femo =, [rrear
0

K

X /singocos (rocospcos @) Jy (rosinpsin¢) de

0
1

= \/72T /er(r) dr/cos (rovcos @) Jy (rg\/l — 02 sin(b) dv.
0 0
Next, we use the integral [196]
1
/cos (av) Jo (b\/l - v2> dv =

0

1
Ja 4 b sin\/a2+b2,
a

and for the three-fold Fourier transform in the central symmetric case we obtain
the following pair of equations:

ity =FUe) =Fo =2 [rio™ P e
0
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o0

F {0} =10)=? [ef0 ™ ap (252)

0
This result coincides with the particular case of the m-fold Fourier transform in
the central symmetric case obtained by another method in [212]:

04" o) = [ ) Iy o), (2.33)
0
rém—lf(r) :/Qém—l J?<Q) J1m-1(re) odo, (2.34)

0
where J,(r) is the Bessel function.
For m = 3, taking into account that the Bessel function of the order one-half

is represented as [1]
2z sinz
B =2, (2.35)

™ z

from (2.33) and (2.34) we get (2.31) and (2.32).

In this case )
d*f(r) | 2.df(r) 27

F = — . 2.36
[T 20 - 2R (2.36)
The pair of transform equations (2.31) and (2.32) seems like the pair of sin-Fourier
transform equations (2.25) and (2.26) for the function rf(r) (accurate to constant
multipliers), but Eq. (2.31) does not need the value of a function at » = 0 as in
Eq. (2.27). This allows us to consider also functions with singularities at r = 0 on

condition that the integral in (2.31) is convergent.

2.1.5 Cos-Fourier transform

For the cos-Fourier transform we have

F{f(x) /f cos(z&)d (2.37)
0

FURE) = / 7€) cos(ze)d (2.38)

The cos-Fourier transform is used in the domaln 0 < x < oo in the case of Neumann
boundary condition with the prescribed boundary value of the normal derivative
of a function, since for the second derivative of a function it leads to the following

formula: , { 2 f(z)} _ _eFe - df ()

da2 du (2.39)

=0
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2.1.6 Sin-cos-Fourier transform

In the case of the Robin boundary conditions with the prescribed boundary value
of linear combination of a function and its normal derivative, the sin-cos-Fourier
transform is employed:

f{f@ﬂ}:f@):l/Bimé)ﬂmﬁh, (2.40)
0
F{F©} = f@ = 7 [ Ko fie)ag (2.41)
0

with the kernel
~ Ecos(x€) + H sin(xf)

\/52 + H2
In classical heat conduction the quantity H is usually connected with the

heat transfer coefficient, in the case of spherical coordinates the quantity 1/R
often stands in place of H.

K(z,8) (2.42)

Application of sin-cos-Fourier transform to the second derivative of a function
gives

I ——efor LI s (2.43)

dax? V€2 + H? dz

=0

It is obvious that for H — oo the sin-cos-Fourier transform turns into the
standard sin-Fourier transform, while for H — 0 it turns into the standard cos-
Fourier transform.

2.1.7 Finite sin-Fourier transform

The finite sin-Fourier transform is the convenient reformulation of the sin-Fourier
series in the domain 0 <z < L:

L
fﬁun:ﬂ&w:/ﬂmmmamL (2.44)
0
FRE@)) = 1) = © 3 F(6) s, (2.45)
k=1
where
& = b (2.46)

I
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The finite sin-Fourier transform is used in the case of the Dirichlet boundary
condition as for the second derivative of a function we have

2 ~
d { ddj;(f) } = =& (&) + & [£(0) = (=D F(D)]. (2.47)

2.1.8 Finite cos-Fourier transform

The finite cos-Fourier transform is the convenient reformulation of the cos-Fourier
series in the domain 0 < x < L:

L
F{f(z) f(x) cos(xz&k) d (2.48)
@[
FUF@) = f) = L F0) sz 6 cos(a&e)
= Z (&) cos(x&y), (2.49)

k=0

where the prime near the sum denotes that the term corresponding to k = 0 should
be multiplied by 1/2 and as in (2.46)

km

&= ;- (2.50)

The finite cos-Fourier transform is used in the case of Neumann boundary condi-

tion as
d2f ~ df
J { dx(;:)} = =& (&) — 1($)

pdf(z)

+ (=D (2.51)
0

2.1.9 Finite sin-cos-Fourier transform

The finite sin-cos-Fourier transform is used in the case of the Robin boundary
condition:

FLf@)} = F(&) /f §1~c cos(x&) + HSln(ﬂfﬁk) dz, (2.52)
\/52 H2 4 28
F YR (@)Y = -2 Z Tl 5;.3 cos(z&r) + Hsm(mgk)’ (2.53)

\/§2+H2 2
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where & are the positive roots of the transcendental equation

it = 2 -
and
I - g
e ; J o - mre) -
ﬁk f;; 211 ?Z 2 O {dﬁ(xx) +Hf (l’ﬂ @5

We have restricted ourselves to the case of the same H in the Robin boundary
conditions at x = 0 and z = L. The general case of different coefficients H; and
Hj is considered in [48].

2.1.10 Finite sin-Fourier transform for a sphere

This type of finite sin-Fourier transform is convenient for central symmetric prob-
lems for a sphere 0 < r < R. In the case of the Dirichlet boundary condition:

R
B - F(r sin(réy) .
FU0} = (&) = / ) " (2.56)
17 2 & sm T{“k)
F Y&} = f(r) = RZskf : (2.57)
=1
where %
& = g (2.58)
and

U0 2MO g e corm. o)

For the Neumann boundary condition

R .
FUS0)} = Fle) = / i) Smg;fw o (2:60)
0
17 _ _ - sin(réy)
FHIE)=f(r) = Z . (2.61)

R = sm R§ ) T
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where & are the positive roots of the transcendental equation

tan(RE,) = REk (2.62)
and
d’f 2 df ~ Rsin(R&) df
f{ dr(;‘) +, dir)} =& f(&) + SH;(k 2 dY) ) (2.63)
For the Robin boundary condition
R .
L} =Fie) = [ 107 ran (264
] k
1,7 - - g & sin(réy)
FHI&)} = () = 2;%) Ree — sin(Rty) cos(Re) v 0 269
where £ are the positive roots of the transcendental equation
tan(RE) = | fi’gH, (2.66)

and for the Laplace operator in the case of central symmetric problem we obtain

A1)
Rsin(RE) [df (r)

N " (2.67)

= —¢2 fl&r) +

+ Hf(r)}

r=R

2.1.11 Finite Fourier transform for 27r-periodic functions

Consider series development of the 27-periodic function in the interval [0, 27]

fle) = ; ap + Z [@m, cos(me) + by, sin(mep)] (2.68)
m=1
where
o
A, = ! /f(n)cos(mn)dn, m=0,1,2,...
"3
o

bm = ! /f(n) sin(mn)dn, m=1,2... (2.69)

™
0
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Now we insert the coefficients (2.69) into the equality (2.68), thus obtaining

1) = o [ Han+ DS [ g costmte =i (270)
m:lO

Z /f cos[m(p —n)]dn, (2.71)

mOO

where the prime near the sum denotes that the term corresponding to m = 0
should be multiplied by 1/2.
Formula (2.71) can be considered as the integral transform

FUH)} = Fm) = / £(n) cosfm(p — )] dy (2.72)
0
with the inverse
F Fem)} = 9) = | 3" lpm). (273)

This transform is used for solving equations in polar, cylindrical and spherical
coordinates as the following equation is fulfilled:

2 ~
f{dd]:p(;p)} = —m%f(p,m). (2.74)

2.1.12 Legendre transform

The Legendre transform is applied to solve equations in spherical coordinates and
reads:

1
P L ()} = F(n,m) = / £ () P () dp, (2.75)
21

where PJ"(u) is the associated Legendre function of the first kind of degree n and
order m. The inverse Legendre transform has the form

,Pil{f*(na m)} = f(:u’v m)
- Z 2n+1 n+$§ By (w) f(n,m), n = m. (2.76)

The importance of this integral transform results from the following formula:

Y (O M-



18 Chapter 2. Mathematical Preliminaries

2.1.13 Hankel transform

The Hankel transform is used to solve problems in cylindrical coordinates in the

domain 0 < r < oo and is defined as

H{f(r) F(r) J,(ré) rdr,
o= [
1{f Jy(r€) £dg,
o= [0

d*f(r) | 1df(r)
H{ dr? +r dr

-V 10} = -€fe.

where J,(r) is the Bessel function of the order v.

2.1.14 Two-fold Fourier transform in the case of
axial symmetry

If the considered function f(z,y) depends only on the radial coordinate

= (x2 + y2)1/2

)

(2.78)

(2.79)

(2.80)

then the two-fold Fourier transform (2.20) can be simplified. Introducing the polar

coordinates

T =rsinep, Y = TCOoS ¢,
§=posing, 1= gcose,
we have

00 0o 27

(2.81)

1 7 . 1 )
n) = / /f(l’a Y) el(mgﬂn)dxdy = /rf(r)dr/ ewgcos(gpiqﬁ)d@-
2 21

—00 —00 0 0
Due to the periodic character of the second integrand

2m

2m
/eirgcos(gpfc/)) d(P _ /eirgcosgp d(p
0

0
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Using the integral representation of the Bessel function of the first kind of the
zeroth order (2.30) we get

Fif(e)} = Fen) = H{F()} = Flo) = / {0 o(ro)dr,  (2.82)
0

{Fen} =t =1 {F0} = 10) = [ efl@)nrode. @259

Hence, in the case of axial symmetry the two-fold Fourier transform with respect
to the Cartesian coordinates is reduced to the Hankel transform with respect to
the radial coordinate. Formulae (2.82) and (2.83) can also be obtained from the
general formulae (2.33) and (2.34) for m = 2 [212].

2.1.15 Finite Hankel transform

The Fourier—Bessel and Dini series can be interpreted in terms of finite Hankel
transform used in cylindrical coordinates in the domain 0 < r < R. The specific
form of the finite Hankel transform depends on the type of boundary conditions
at » = R. For the Dirichlet boundary condition with the given boundary value of
a function at r = R we have

R
HU() = Flew) = / Jr) (v b, (284)
0
- ré-l/k})
H A F(En)) = Z (&) J’(RSV P (2.85)
where £, are the positive roots of the transcendental equation
Ju(RE) = 0 (2.86)
and
2 2 R
H {d d,;(;«) + :,dﬁ(:) -7 f(r)} = — &uf(Eor) — R&nJ(REk) f(R).  (2.87)

In the case of the Neumann boundary conditions with the given boundary
value of a normal derivative of a function we have

H{f(r)} = F(éur) / f(r) T (réur) rdr, (2.88)
- R J(r&ur)
HH{F (&)} = £( Z (&un) RQEEk—kVQ T RE (2.89)
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where £,; are positive roots of the transcendental equation
Iy (R&uk) = 0. (2.90)

It should be noted that for v = 0 there also appears the zero root £y = 0, which
must be taken into account in (2.89).
The basic equation for this integral transform reads:

H{dzf(r) L s v f(r)} = & f (&) + BRI, (RE) (j{)

dr? r dr r2 - (291)

r=R

For the Robin boundary condition with the given linear combination of values
of function and its normal derivative at the boundary the corresponding finite
Hankel transform has the following form:

R
H{fF(r)} = F(&mn) /f v (1) rdr, (2.92)
0
S R2§3k Ju(réur)
H™ {f(guk)} - g guk R2H? + (R2§3k _ 1/2) [JV(R&/]g)P’ (293)
where £, are positive roots of the transcendental equation
ngJ11/<R£Vk) + HJV(Ré-Vk}) =0 (294)

and

d2f(r 1df(r V2
H{ d]:°(2)+r fdi)_ﬂf(r)}

df(r)

— (e + R e | 4 1170 (2.95)

r=R

Now we consider the particular cases of the finite Hankel transform of the
zeroth order. For the Dirichlet boundary condition we get

R

H{F()} = Flen) = / £(r) To(rei) rdr, (2.96)
0

W) = 100 = g, 30 Fe0 S, (2:97)

with the sum over all positive roots of the zeroth-order Bessel function

Jo(R&k) =0, (2.98)
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and

d*f(r) | 1df(r)
H{ dr? +7’ dr

} = &2 f(€x) + R&J1(RER) F(R). (2.99)

In the case of the Neumann boundary condition

R
(0D} = T = [ 70 hre)an (2100
0
—177F _ _ 2 — 2 Jo(rék)
2 4 2 o= - Jo(réx)
= o [0+ o, ;f(fk) [Jo(zRé‘k)P’ (2.101)
where £ are nonnegative roots of the equation
J1(RE,) = 0. (2.102)

To obtain the correct results it should be emphasized that this equation also has
the root £y = 0. This root should be taken into consideration, and sometimes it is
convenient to treat it separately (see Eq. (2.101)).

The fundamental equation for this transform has the form

2
{0 U — gt + rare () (2:103)
r r dr r)l—n
For the Robin boundary condition we have
R
(0D} = Tl = [ 7o hie) ar (2104
0
with the inverse
173 _ . 2 w— & g}% JQ(T&C)
HHFE@)} = f) = ;; J(&) ot & o(REJ?" (2.105)
where & are the positive roots of the transcendental equation
EeJ1(REL) = HJo(RE). (2.106)
In this instance
2
t{ I PO - g fie) + raren [0+ msn] | aon
r=R
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2.1.16 Weber transform

The Weber integral transform of order v is defined as

W{f(r)} = (&) = / K (r, R.€)f(r) rdr (2.108)
R

having the inverse

~

WHF©)) = f(r) = | Ku(r, R, F(€) € de. (2.109)

The significance of the Weber transform for problems in the domain
R <r < oo is due to the formula

2 2
W{ddigr) n idﬁg) _ :sz“)}
= efio+ riw Y rrmr gD @)
r=R r=R

The specific expression of the kernel K, (r, R,£) depends on the boundary
conditions at r = R.

For the Dirichlet boundary condition the kernel is chosen as

Jy(rg)YV<R£) - Yu(rg)JV(Rg)

(D) _
B =0 e + v (o)

, (2.111)

where J,(r) and Y, (r) are the Bessel functions of the first and second kind, re-
spectively.

Since
KI(/D)(Rﬂ R, 5) =0,
0K (r,R,§) _ J(r§)Yy(RS) — Y (r§) ], (RE) ¢
or VIHRE) + Y2(RE) T
and [1] )
JV(Z)YL:<Z) - YV<Z)JL(Z) = 2
then
d?f(r) 1df(r)_u2 Al e 2 1
w {0 T ) = —efe - L

(2.112)
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Similarly, in the case of the Neumann boundary condition

Ju(ré)Y (RE) = Y, (r€) ), (RE)

™) (e =
R RO = 0 (R + (Y2 (Re)?

, (2.113)

and

W{dzigr) N idﬁg) _ :j f(r)}
s 2 1 {df(r)}

SO re Jrep + vuree | ar @114

r=R
For the Robin boundary condition
KV (r R, €)

_ rOIEY,(R) — HY, (R)] = Y, (rO)[e (RS — HI,(Re)] )0

VIETL(RE) — HI,(RE))? + [€Y;(RE) — HY, (RE)J

and

dr? rodr 2
n 2 1
T /6T, (RE) — HJ,(RE)| + €Y, (RE) — HJ, (RE)]?

2 2 R
w{d f(r)  1dfm) _v f<r>} NG

X {_d{igﬂr) + Hf(r)} (2.116)

r=R

The formulae above simplify considerably in the case v = 0. For the Dirichlet
boundary condition

Jo(r&)Yo(RE) — Yo(r€)Jo(RE)

) (. _ .
Ko '(r, R, ) IR(RE) + Y2 (Re) (2.117)
and
d*f(r) | 1df()) _ o 2 1
W{ P }——E f(g)_ﬁ\/Jg(REHYO?(Rg)f(R)' (2.118)

For the Neumann boundary condition

Jo(r&)Y1(RE) — Yo(r§)J1 (RS)

) = —
Ky (r,R,§) = \/J12(R§)+Y12(Rf)

(2.119)
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and

{1}

2 1 [df(r)}

& /T2 (RE) + Y(RE) (2:120)

=—€2f(6) -

r=R
In the case of the Robin boundary condition
KoV (7, R, €)

_ Yo(r§)[§J1(RE) + HJo(RE)] — Jo(ré) (Y1 (RE) + HYo (RE))]
VIETI(RE) + HIo(RE)]? + [€V1(RE) + HYy(RE)J?

2 ~
w {0 10N e

2 1
T VIET(RE) + HJo(RE)? + [EY1(RE) + HJo(RE))?

[ YO g, )}

(2.121)

and

(2.122)

r=R

2.2 Mittag-Leffler function

The Mittag-Leffler function in one parameter o [119, 120] (see also [43, 56, 59, 77,
143))

o k
Ea(z):;F(aZ+1), a>0, z€C, (2.123)
provides a generalization of the exponential function
z — Zk
e :k:o Tk +1)° z e C. (2.124)

The generalized Mittag-Leffler function in two parameters o and g [43, 56,
59, 71, 72, 77, 143] is described by the series representation

0 0 C. 2.125
kZ:OFak+B a>0,8>0, z€ ( )

Here we recall several particular cases of the Mittag-Leffler functions for
negative real values of argument:

(2.126)



2.2. Mittag-Leffler function 25

Eyjo(—x) = ™ erfe (2), (2.127)
Ey(—z) = e ", (2.128)
E>(—z) = cosy/x, (2.129)

1 2
E1/2)1/2(—l’) = \/7'[' —SL’CI erfc (SL’), (2130)
Foo(-2) = (2.131)
0,2 xr) = 1+.’L’7 .
1 42
Bujappa(—2) = [1 — eerfe (z)} , (2.132)
1 ]2 2
Bisa(-a) = , L/fr + e erfe () — 1} , (2.133)
1—e*
Bia(-2) = =, (2.134)
Baa(—1) = S”\l/\x/x. (2.135)

The Mittag-Leffler functions with the index 1/2 often appear in applications.
It is convenient to obtain the helpful integral representations of these functions.
For example, we have

oo

2
Eyjo(—x) = ™ erfe (x) = e J /e_tht.

Substitution ¢ = u + z leads to

2 o0
Eyja(—x) = \/ﬁ/e‘“Q‘Q""”du. (2.136)
0
Similarly,
2 —u?—2uzx
Eij3,1/2(—) = \/W/e 2uzy du. (2.137)
0

Several functional relations between different Mittag-Leffler functions can be
found in [43]. We present the relations which will be used in the following:

Eqp(z) = F(lﬁ) + 2Eq,048(2), (2.138)
d I:ZB_IEa7/@ (Za)} _ Zﬁ72Eo¢“371 (Za), (2139)

dz
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Figure 2.4: The Mittag-Leffler functions E,(—x) for 0 < a <1
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Figure 2.5: The Mittag-Leffler functions E,(—z) for 1 < o < 2
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d [z'@_lEl)B (2)}
dz

The essential role of the Mittag-LefHler functions in fractional calculus results
from the formula for the inverse Laplace transform [56, 77, 143]:

=2P"2F15.1(2). (2.140)

ap
o { . + b} = t771 Eop(—bt%). (2.141)
S

For three important particular cases § = 1, § = 2 and 8 = «, respectively,
we get

El{ st } = B (—bt"), (2.142)

s“+b
) Sa—2 N
L D t By 2(—0t%), (2.143)
L—l{ aib} = t*"L By o(—bt). (2.144)
S

The series representation of the Mittag-Lefller functions is inconvenient for
numerical calculation. The integral representations of these functions suitable for
such calculation were obtained in [52, 56]. In the subsequent discussion we restrict
ourselves to the case of negative real values of argument. We have

a—1 1 Sa—l
Eo(-bt%) = L7147 = / o d
( ) {sa+b} 2me BTe s¢+b §

_ ! / et so7 ds+ZRes et so7
C2mi Jy, s +Db - ok 5% +b

= fa(b,t) 4+ ga(b,t). (2.145)

On the upper and lower sides of the Hankel path
5 =ret™ £ e, (2.146)
If e — 0, then
dr = —ds, s% = r® [cos(ar) £ isin(ar)]
and
folbit) = 1 jm/ooetr ro‘*l[cos(aﬁ).fisin(om)] .
T rofcos(anm) + isin(ar)] + b
0

sin(a) T —t bro—t

= T dr. 2.147

T /e r2a 4 2rap cos(am) + b2 " ( )
0
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Figure 2.6: The Mittag-Leffler functions E, o(—x) for 0 < a <1
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Figure 2.7: The Mittag-Leffler functions Eq o(—z) for 1 < a <2
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It is worthwhile introducing the substitution r = b%/®u which leads to
£b D) sin(a) /oo e uet 4 (2.148)
a\Y, = u. .
T 0 u?® + 2u® cos(am) + 1

a—1

To investigate the poles of i ) it should be mentioned that
s
2k +1 2k+1
sp = b/e {cos @k+1m g GEF DT (2.149)
@ @

but only the poles situated in the main Riemann sheet are relevant, i.e., those s
for which

2k + 1)m
< <7
@
For 0 < a < 1 there are no such poles and

ga(b7 t) =0. (2150)

For 1 < v < 2 there are two such poles:

v o (7)o (1]

and )
ga(b,t) =~ exp [tbl/“ cos (W)} oS {tbl/“ sin (W)} . (2.151)
a a a
Finally we arrive at the following result [52, 56]:
3 7 a—1
sin(am) /eixl/au u du,
™ u?® + 2u® cos(am) + 1
0
0<a<l;
Ea(—a)={ Snom) /e—w”au ut! du (2.152)
“ ™ u?® 4+ 2u® cos(am) + 1 '
0

2
+  exp [Jcl/a cos (Wﬂ cos {ml/a sin (W)} ,
a a a

l<a<2
Similarly, for 1 < a < 2 we obtain
sin(am) Vi _1/a u®=2
Eyo(—2x)=— v d
2(=2) Tal/e /e w2 + 2u® cos(am) + 1 “

0

2
+ exp [Jcl/a cos (W)} Ccos [Jcl/a sin (ﬂ-) - ﬂ-} (2.153)
arl/a o a

(%
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Figure 2.8: The Mittag-Leffler functions E4 2(—2) for 0 < a <1
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Figure 2.9: The Mittag-Leffler functions E, 2(—x) for 1 < a <2
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and
sin(a) T _/a u®
x u d
rale—1)/a /e w2 + 2u® cos(am) + 1 "
0
0<a<l;
Eaa(-2) =4 *in(em) / ~ d
mxle—1)/a u2“ + 2u® cos(am) + 1 “
0
2 g o ()] e sn(5) 5]
arie—H/e « « «
Il<a<2.

(2.154)
Typical curves for E,(—x) are presented in Figs. 2.4 and 2.5; for Eq o(—2)
are shown in Figs. 2.6 and 2.7; E,2(—x) are depicted in Figs. 2.8 and 2.9 for
various values of «.
In the general case, the integral representation of the generalized Mittag-
Leffler function E, g can be obtained for a > 0, 8 >0, 8 < o+ 1:

o0

1 /eixl/cxuuaiﬁ u®sin(fm) + sin[(8 — a)7) du
(B-1)/a u?® 4 2u® cos(am) + 1

)

0

0<a<l;
Eop(—2) = 1 /e_wl/auua_ﬁ u® sin(fm) + sin[(8 — «)7] du
(B-1)/a u?® 4 2u® cos(am) + 1

0

+ owc(;—l)/a exp [xl/acos (Z)} cos |:1:1/O‘ sin (Z)Jr (1- B)Z}

l<a<2
(2.155)
To investigate convergence of integral containing the Mittag-Leffler function
it may be useful to have their asymptotic representations for large negative values
of argument. Such a representation can be obtained expanding (s®~#)/(s* +b) in
series for small s taking into account that

1 1 P 82a S3a
= 1-— — BRI 2.156
s b b [ b e o T (2.156)

For ¢t — oo (see (2.15) and (2.16)) we have

a—1 1 1
ol ~ - 2.157
{s“ + b} I'(1—a)bte T(1-—2a)b%t2’ ( )
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a—2 1 1
ol ~ - 2.158
{s“ + b} (2 — a)bte=t  T(2 — 2a)b2¢2e—1’ ( )
1 1
-1 ~ — 2.1
£ {s“ + b} I'(—a)b?tatl’ (2.159)

S f s ! - ; (2.160)
s _|_b F(B—Q)bta7ﬁ+1 F(B—2Oé)b2t2a*ﬁ+1' .
Hence, for x — oo the desired results read as follows:

1 1

Eo(—2) ~ - , 2.161
(=2) Nl—a)z T(1-2a)x? ( )
1 1
Epo(—2) ~ - , 2.162
250~ po e T D@ - 20022 (2.162)
1
Epol—2) ~ — 7 2.163
=) ~ =1y (2.163)
Eos(—2) e (2.164)
o rB—a)r T(8-2a)r? '
2.3 Wright function and Mainardi function
The Wright function is defined as [43, 53, 54, 77, 90, 100, 101, 107, 143]
w 12) = -1 C. 2.165
Its integral representation has the following form [100, 143]:
1 —a
Wi(a,8;2) = . / sPesT# " (s, a>-1, zeC, (2.166)
27 Ha

where Ha denotes the Hankel path of integration in the complex s-plane.

The Wright function is a generalization of the exponential function and the
Bessel functions (see [100, 143]):

W(0,1;z) = €%, (2.167)

11 1 22
— s — = — 2.1
W( o ) \/ﬂ_exp< 4)7 (2.168)

W(l,y+1;—z42> = (i)yjy(z), (2.169)
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W(l,y+1;zj> = (i)ul,,(z). (2.170)

Comparison of the definition of the Wright function (2.165) and the series
expansion of the complementary error function [1]

N~ (DR
erfc (z) = kZ:O BT (= 1k +1) (2.171)

allows us to obtain the additional relation

W(—;,l;—z> :erfc<;). (2.172)

The Wright function satisfies the equations
azW(a,a+ B;2) =W(a,—1;2)+ (1 — )W (e, B; 2), (2.173)

W(a, B; 2)
dz

The Mainardi function M («; z) [100, 101, 143] is the particular case of the
Wright function

=W(a,a+ B;2). (2.174)

Mo 2z) = W( 1 (-1t
a;z) = —a,1 —a;—

’ ’ ’ < k! I[—ak+ (1 —a)]’

0<a<l, zeC, (2.175)
and also

1
M(ow;2z)= = W(-a,0;—2), 0<a<l (2.176)

az

For o = 1/q, where ¢ > 2 is a positive integer, the Mainardi function can be
expressed in terms of simpler functions, for example [100, 101]:

(b= Lew(-7), )

1 2/3
M(3;z) = 3940 (7 ) (2.178)

Similarly (see [67]):

Mm(%2) = 22N Tgmvmni (20 ) —svoar (2 2.179
giz)=exp |~ AL oy /3 || (2.179)

where Ai(z) is the Airy function, the prime denotes the derivative.
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The Mainardi and Wright functions appear in the formulae for the inverse
Laplace transform [100, 101]

A
L7 {exp (—\s®)} = :HM (M), 0<a<1, A>0, (2.180)

1
L7 {s* Texp (—As*)} = taM (A7), 0<a<1, A>0, (2.181)
and [214] (see also [47, 100, 101, 117])

“HsPexp (s} =P TW (—a, B - M), O0<a<1l, A>0. (2.182)

The Laplace transform of the Wright function is expressed in terms of the
Mittag-Leffler function [43, 77, 143]

LAW (a, B5t)} = ! Eap (1> : (2.183)
s s
Integration of (2.174) gives

7 W(a, B; —x)d ' (2.184)

a, B —x) dr = 7 :
I'(g—-a)
0
in particular

/M(oz;:c) dz = 1. (2.185)
0

The Mittag-Lefller function and the Mainardi function are related by the
cos-Fourier transform:

/E ) cos(x€) dg, 0<a<2. (2.186)
Similar relations are valid for the following Wright functions:

w (—3,2 - ;; —x) = i/Ea,z(—Sz) cos(z€)d¢, 0<a<?2, (2.187)

2 oo
w (—; ;; —m) = /Ea,a(—§2) cos(z€)d¢, 0<a<2. (2.188)

The relation above are proved in Chapter 4 (see (4.11) and (4.14), (4.27) and
(4.28), (4.34) and (4.35)).
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