
Chapter 9
Switching and switched systems

In this chapter some basic results which concern the problem of switching and
switched systems are reported. We wish to immediately tell the reader that this
chapter has been written in a period of intensive research so that, quite differently
from the previous sections, many other new results are expected.

There are several prestigious publications which provide complete surveys and to
which the reader is referred for a comprehensive treatment of the topic. In particular,
it is mandatory to mention the books [Lib03, Joh03, SG05] and the surveys [LA09,
SWM+07, DBPL00, Col09]. In this chapter, we will briefly introduce the concept
of hybrid systems, which are dynamical systems which include both continuous and
logic variables, and then we will immediately consider the case of systems which
can undergo switching, which are a special subclass of hybrid systems.

The nomenclature proposed in this chapter about switching and switched is
not universal. Still, to keep the exposition simple, we will refer to “switching”
systems when the commutation can be arbitrary and to “switched” systems when
the commutation is controlled. There are, quite obviously, several intermediate
situations. For instance, the case in which switching is state-dependent (as the
bouncing ball), the case in which switching is arbitrary, but subject to dwell time,
and other “mixed cases” in which some logic variables are controlled and some
other are not controlled.

9.1 Hybrid and switching systems

In this section, a field in which set-theoretic considerations have a certain interest
and some related problems are briefly presented. A hybrid system is a dynamic
system which includes both discrete and continuous dynamics. A simple model
(although not the most general one) of a hybrid system is given by
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406 9 Switching and switched systems

ẋ(t) = fx(x(t), u(t),w(t), q(t)) (9.1)

q(t) = fq(x(t), u(t),w(t), q−(t)) (9.2)

where the variables x, u, and w have the usual meaning while q(t) assumes its values
in Q, a discrete and finite set. Without restrictions it is assumed that

Q = {1, 2, . . . , r}

This class of systems is often encountered in many applications. The first equa-
tion (9.1) is a standard differential equation with the new input q, which can assume
discrete values only. It can be interpreted as a set of r differential equations each
associated with a value of q. The second equation (9.2), the novelty in this book,
expresses the commutation law among the discrete values of Q. Any possible
commutation depends on the current continuous-time state, on the control, on the
disturbance and on the last value q−(t) assumed by the discrete variable.

Example 9.1 (Oven in on–off mode). Let Q = {0, 1}, let x̄ be a desired tempera-
ture1 and let x+ = x̄ + ε and x− = x̄ − ε, where ε > 0 is a tolerance. Consider the
system

ẋ(t) = −αx(t) + q(t)u(t) + u0

q(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≥ x+

1 if x ≤ x−

0 if x− < x(t) < x+ and q(t−) = 0

1 if x− < x(t) < x+ and q(t−) = 1

with α > 0, u0 is a constant signal representing the heat introduced by the external
environment, while u(t) is supplied electrically. Assume for brevity that u(t) = ū
is constant, so that the oven works only in on–off mode. This is perhaps one of the
most popular control systems. The oven works properly if the interval characterized
by the extremal steady state temperatures x̄max = (ū + u0)/α and x̄min = u0/α
includes the interval [x−, x+] in its interior

x̄min < x− < x+ < x̄max

We assume that this condition is granted. We do not analyze the system, which
is an elementary exercise and leads to the conclusion that the behavior is that in
Figure 9.1, but we just point out some facts. If we set ε = 0, the temperature reaches
in finite time the desired temperature. However, due to the discontinuity, we have
(in theory) infinite-frequency switching between q = 0 and q = 1. This is not
suitable for the application. First of all infinite frequency is not possible due to the

1Around 180 Celsius degrees for a Plum-Cake.
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Fig. 9.1 The oven switching
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hysteresis of real switches. Second, an hysteresis is typically introduced to avoid
high frequency commutation and this is actually the reason why the region [x−, x+]
is introduced along with a discrete-dynamics for the system.

In the previous example, the logic part has its own dynamics, in the sense that in
the intermediate region [x−, x+] the logic variable q(t) is not uniquely determined,
but depends on its own value q(t−). We let the reader note that dynamic systems
in which some logic variables depend on the state (or on an output) variable
have already been encountered in the present book and are those obtained by
the implementation of the Gutman and Cwikel control (see (4.39) at page 159)
[GC86a, Bla99], which produces a closed-loop system which is piecewise-linear,
hence characterized by a state-dependent switching.

Example 9.2 (Bouncing ball). To provide an example of purely state dependent
switching, a simplified model of the bouncing ball is considered. The vertical motion
of a ball bouncing on a plane has two phases (see Fig. 9.2). The gravitational one G
in which the ball is subject to the gravity force and the elastic one E in which the
ball is in contact with the plane. Denoting by r the radius of the ball, and denoting
by y(t) the level of the barycenter, it is possible to write two distinct equations:

ÿ(t) = −g if y(t) > r Gravitational
ÿ(t) = −g + k(r − y(t)) if y(t) ≤ r Elastic

(9.3)

This is the typical case in which the logic variable G,E is purely dependent on
the output. This system is quite easy to analyze. First note that the system can be
written as

ÿ(t) = −g + k(y)(r − y(t))



408 9 Switching and switched systems

Fig. 9.3 The trajectories in
the state space
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where k(y) = 0 for y > r and k(y) = k for y ≤ r. Indeed, since no dissipative terms
were considered, its mechanical energy is preserved

Ψ(y, ẏ) =
1

2
ẏ2 + yg +

1

2
k(y)(r − y)2

(note that this is a differentiable function since d/dy[k(y)(r − y)2] is continuous).
It is also immediately seen that this is a positive definite function having a unique
minimum in the equilibrium ȳ = r − g/k, ẏ = 0. An example of system trajectory
is reported in Fig. 9.3.

The previous example falls in the category of piecewise affine systems. A piecewise
affine system has the form

ẋ(t) = Aix(t) + bi, for x ∈ Si

where the family of sets Si forms a partition of the state space. An interesting case
is that in which the sets Si are simplices [HvS04, BR06, Bro10]. Simplices have the
nice property of being quite flexible to reasonably cover non-trivial regions in the
state space. Moreover, a piecewise linear function defined on a simplex is uniquely
identified by the values at the vertices. So, if a region is covered by simplices having
pairwise n vertices in common, it is possible to define a continuous function by
choosing the value at the vertices. We will use this property later, applied to the
relatively optimal control technique.

The next scholastic example aims at illustrating that even the analysis of simple
hybrid systems is a tackling problem.

Example 9.3. Consider the discrete-time hybrid system

x(t + 1) = Aqx(t)

with q ∈ Q = {1, 2} and

A1 =

[
0.8 0.9

0 0.9

]

A2 =

[
0.8 0

1 0.9

]

whose generating matrices are both Schur stable, having both eigenvalues inside the
unit disc.
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Fig. 9.4 Initial condition set for the Example 9.3

If the equation for the discrete variable q is

q(t) =

{
1, if

[
1 −1

]
x > 1

2, if
[
1 −1

]
x ≤ 1

the set of initial conditions ‖x0‖1 ≤ 1 starting from which the evolution is driven
to zero is the dark area depicted in Figure 9.4, whereas if the discrete variable
mapping is

q(t) =

{
1, if

[
1 −0.2

]
x > 1

2, if
[
1 −0.2

]
x ≤ 1

the evolution starting from every initial condition ‖x(0)‖1 < 1 converges to the
origin, as one can check by running the code

for i=1:1000
if [1 -1]*x0>1 ([1 -.2]*x0>1 in the second case)

x0=A1*x0
else

x0=A2*x0;
end

end

for different values of x(0) and evaluating the final value.

Another example of linear switching systems can be found in the framework of
networked control systems
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Fig. 9.5 Delay system

Example 9.4 (Networked control system). Consider the problem of controlling a
strictly proper n-dimensional discrete-time linear time invariant (LTI) plant with
P = {A,B,C}:

{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t − q(t))
(9.4)

where x(t) ∈ IRn, u(t) ∈ IRm, and y(t) ∈ IRp and no delays or dropouts in
the actuator channel, as depicted in Figure 9.5, are present. The system matrices
can be thought of as obtained from a continuous-time plant controlled at a given
sampling rate Tc. The controller clock is synchronized with that of the sensor
and the transmitted data are time stamped, so that the sensor-to-controller delay
q(t) ∈ {0, 1, . . . ,Nmax} is known. To recast such a system in a switching framework,
first the system state is augmented so as to include delayed copies of the output,
yi(t) = Cx(t − i), as

xe(t) =

⎡

⎢
⎢
⎢
⎣

x(t)
y1(t)

...
yNmax(t)

⎤

⎥
⎥
⎥
⎦

and a time-varying output matrix is introduced to get the dynamic system

xe(t + 1) = Ãxe(t) + B̃u(t)
ỹ(t) = C̃q(t)xe(t)

(9.5)

where

Ã =

⎡

⎣
A 0n×(Nmax−1)p 0n×p

C 0p×(Nmax−1)p 0p×p

0(Nmax−1)p×n I(Nmax−1)p 0(Nmax−1)×p

⎤

⎦

B̃ =

⎡

⎣
B

0p×m

0(Nmax−1)p×m

⎤

⎦

C̃0 =
[

C 0p×(Nmax−1)p 0p×p
]

(9.6)
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and, for 1 ≤ i ≤ N̄

C̃i =
[
0p×(n+(i−1)p) Ip 0p×(Nmax−i)p

]
. (9.7)

Note that when q(t) = 0 the augmented system output is nothing but the actual plant
output, say ỹ(t) = y(t), whereas for q(t) ≥ 1 the augmented system output is the
q(t) step delayed version of the plant output, say ỹ(t) = y(t − q(t)).

In view of the above embedding, the problem of controlling the system in the
presence of known delays in the sensing channel is recast into the problem of
stabilizing the augmented switching system. This embedding is not new in this area
and it has been widely used in conjunction with the theory of jump linear systems
(see [ZSCH05, XHH00]).

We will come back to this problem later, in Section 9.6, when the stabilization
problem of such a class of systems will be analyzed.

In the sequel, we do not consider hybrid systems in their most general form,
but we rather consider special cases of systems that can switch (with controlled or
uncontrolled switch) and the case in which the switching is state dependent, but the
switching law is imposed by a feedback control. For a more general view, the reader
is referred to specialized literature [Lib03, Joh03, SG05].

9.2 Switching and switched systems

Consider an autonomous system of the form

ẋ(t) = f (x(t), q(t)) (9.8)

where q(t) ∈ Q and Q is a finite set. We consider two slightly (but substantially)
different definitions.

Definition 9.5 (Switching system). The system is said to be switching if the signal
q(t) is not controlled but exogenously determined. This corresponds to the choice
q(t) = fq(w(t)) ∈ Q in (9.2).

Definition 9.6 (Switched system). The system is said to be switched if the signal
q(t) is controlled. This corresponds to the choice q(t) = fq(u(t)) ∈ Q in (9.2).

9.3 Switching Systems

The analysis of a switching system is basically a robustness analysis problem
already considered in the previous sections. In particular, a switching system is
stable if and only if it admits a smooth Lyapunov function according to known
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converse results [Meı79, LSW96]. The special case of switching linear systems is
included in the results in Subsection 7.3.2 (see Proposition 7.39), here reported in
the switching framework for clarity of presentation.

Proposition 9.7. The linear switching system

ẋ(t) = Aq(t)x(t) (9.9)

(or its discrete-time counterpart x(t + 1) = Aq(t)x(t)) is asymptotically stable
(equivalently exponentially stable) if and only if it admits a polyhedral norm as
Lyapunov function.

The property holds also for norms of the type ‖Fx‖2p [MP86a, MP86b, MP86c].
Note in particular that the stability of the switching system is equivalent to the
stability of the corresponding polytopic system.

Theorem 9.8 ([MP86a, MP86b, MP86c]). The stability of (9.9) under arbitrary
switching is equivalent to the robust stability of the associated polytopic system

ẋ(t) =

[
r∑

q=1

αq(t)Aq(t)

]

x(t),
r∑

q=1

αq(t) = 1, αq(t) ≥ 0 (9.10)

As a consequence, the stability of each of the single systems x(t + 1) = Aqx(t),
which is necessary for the stability of switching systems, is not sufficient [Lib03].
In view of the theorem, not even the Hurwitz stability of all the matrices (assumed
constant) in the convex hull is sufficient for switching stability.

There exists a simple case in which the frozen-time Hurwitz stability assures
switching, hence robust, stability.

Proposition 9.9. Assume that all the matrices Aq are symmetric. Then the following
conditions are equivalent.

• System (9.9) is stable under arbitrary switching.
• System (9.9) is robustly stable.
• All the matrices in conv{Aq, q = 1, . . . , r} are Hurwitz.
• All the matrices Aq, q = 1, . . . , r, are Hurwitz.
• The systems is quadratically stable, i.e. Aq share a common quadratic Lyapunov

function.

Proof. See Exercise 4.

Example 9.10. Consider the two-tank system presented in Subsection 8.3.1, with
state matrix

A(ξ, η) =

[−ξ ξ

ξ −(ξ + η)

]
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Assume that the parameters can change in an on–off mode ξ ∈ {ξ−, ξ+} and η ∈
{η−, η+} with all values strictly positive. It is immediate that for fixed values the
system is asymptotically stable.

One might be interested in understanding whether this system can be destabilized
by switching, say whether an inexpert2 operator could destabilize the system by
improperly changing the positions of the two valves which are on the duct between
the two tanks and the duct after the second one (see Fig. 8.10).

The reply is obviously no, because the matrix is symmetric for any value of
the parameters ξ and η and all the matrices are Hurwitz since the characteristic
polynomial is p(s) = s2 + (2ξ + η)s + ξη.

There are quite a few cases of switching systems for which Hurwitz stability of
the vertices implies the stability of all the matrices of the convex hull. One of such
classes, specifically that formed by planar positive systems, will be discussed later.

9.3.1 Switching systems: switching sequences and dwell time

The concept of dwell-time, say the time interval during which no transitions
of a switching system can occur (say the minimum amount of time the system
“rests” in a given configuration), originates from the simple idea that a switching
system composed by asymptotically stable systems exhibits an asymptotically stable
behavior if the time interval between two switchings is sufficiently large. Quite
clearly, the main focus of the research is directed towards the determination of the
minimum dwell time. The interested reader is referred to [GC06, Col09] and the
excellent survey [SWM+07].

Definition 9.11 (Dwell time). The value τ > 0 is said to be the dwell time if the
time instants tk and tk+1 in which two consecutive switchings occur, must be such
that

tk+1 − tk ≥ τ

It is clear that, if all the systems are stable, τ has a stabilizing role. It is also
straightforward to see that, if the system is stable with dwell time τ1 then it is stable
for any dwell time τ2 > τ1. The following proposition holds.

Proposition 9.12. For any switching linear system with generating asymptotically
stable matrices A1, A2, . . . Ar there exists a value τ̄ such that for any τ ≥ τ̄ assumed
as dwell time, the switching system is stable.

Proof. We provide a very conservative value of τ but in a constructive way
(an alternative determination of the minimum dwell time by means of quadratic

2Evil/idiot.
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functions can be found in [GC05, GCB08]). Take a 0-symmetric polytope V̄ [X]
which is a C-set and for each stable system compute an invariant ellipsoid Ek ⊂
λV̄[X], 0 ≤ λ < 1. For each vertex xi compute the minimum time necessary for the
k-th system to reach Ek

Tik = min{t ≥ 0 : eAktxi ∈ Ek}

Such an operation can be easily done by iterating on t > 0 by bisection and by
applying an LP test for any trial. Then it is immediate to see that a possible value
for τ̄ is

τ̄ = max
i,k

Tik

This can be seen by considering the following discrete-time system

x(tk+1) = eAq(tk+1−tk)x(tk)

defined on the switching time sequence tk. This is a linear LPV system. It is
immediate that the set V̄ [X] is λ-contractive and thus the Minkowski function
associated with V̄[X] is a Lyapunov function for this system, so that ‖x(tk)‖ → 0 as
k → ∞ and the system is globally stable.

9.4 Switched systems

The situation is completely different in the case of switched systems. The stabiliza-
tion problem is that of choosing a feedback law

q(t) = Φ(x(t), q(t−))

such that the resulting system is stabilized. In general, determining the control law
Φ(x(t), q(t−)) is hard even for linear switched system. There is a sufficient condition
which provides a helpful tool. The basic assumption is that there exists a Lyapunov
stable system in the convex hull of the points f (x, q).

Theorem 9.13. Assume there exists a (sufficiently regular) function f̄ (x) such that

f̄ (x) ∈ conv{f (x, q), q ∈ Q},

where Q = {1, 2, . . . , r}, for which the system ẋ = f̄ (x) admits a smooth Lyapunov
function such that

∇Ψ(x)f̄ (x) ≤ −φ(‖x‖)
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where φ(‖x‖) is a κ-function. Then there exists a stabilizing strategy which has the
form

q = Φ(x) = argmin
q∈Q

∇Ψ(x)f (x, q)

Proof. The proof of the theorem is very easy, since it is immediately seen that

min
p

∇Ψ(x)f (x, p) ≤ ∇Ψ(x)f̄ (x) ≤ −φ(‖x‖)

Note that the condition on the average system implies that the “bar” system has
an equilibrium point in x = 0. This is not necessarily true for the individual systems.
Moreover, this procedure is not just useful for stabilizing the systems, but it is quite
efficient to speed up the convergence rate. Some results on the equilibria of switched
systems and their stability are found in [BS04].

Corollary 9.14. Assume there exists a (sufficiently regular) function f̄ (x) such that

f̄ (x) ∈ conv{f (x, q), q ∈ Q}

where Q = {1, 2, . . . , r} and f̄ (0) = 0 (with f (0, q) arbitrary such that f̄ (0) ∈
conv{f (0, q)}) and there exists a smooth Lyapunov function Ψ(x) such that

∇Ψ(x)f̄ (x) ≤ −βΨ(x)

Then the strategy

q = Φ(x) = argmin
q∈Q

∇Ψ(x)f (x, q)

assures

Ψ(x(t)) ≤ Ψ(x(0))e−βt

A typical example of application of this strategy is a system with quantized
control, as shown in the next example. Here the main issue is not the system
stabilization (the system is already stable), but that of speeding up the convergence.

Example 9.15. Consider the two-tank hydraulic system already considered in
Subsection 8.3.1 and represented in Figures 8.9 and 8.10, whose equations are3

ḣ1(t) = −α
√

h1(t)− h2(t) + q(t)

ḣ2(t) = α
√

h1(t)− h2(t)− β
√

h2(t)

3In Section 8.3.1, the linearized version was considered.
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where α and β are positive parameters, h1(t) and h2(t) are water levels, and q(t) is
the incoming flow. The device works with a couple of identical on–off valves, so the
possible values of the flow are

q(t) ∈ {0; q̄; 2q̄}
Let us consider the steady state associated with a single open valve. Then, by
defining the variables x1(t) = h1(t)− h̄1, x2(t) = h2(t)− h̄2, u(t) = q(t)− q̄, where
h̄1, h̄2, and q̄ are the steady-state water levels and the incoming flow satisfying the
conditions

h̄1 =
( q̄
α

)2

+

(
q̄
β

)2

, h̄2 =

(
q̄
β

)2

,

the following equations

ẋ1(t) = −α
√

x1(t) + h̄1 − x2(t)− h̄2 + q̄ + u(t)

ẋ2(t) = α
√

x1(t) + h̄1 − x2(t)− h̄2 − β
√

x2(t) + h̄2

are derived.
Let us now consider the candidate control Lyapunov function (computed via

linearization)

Ψ(x) =
1

2

(
x21 + x22

)

The corresponding Lyapunov derivative for x ∈ N [Ψ, h̄22/2] (this value is chosen in
such a way that the ball is included in the positive region for the true levels h̄i+xi) is

Ψ̇(x, u) =

= −(x1 − x2)

(

α
√

x1(t) + h̄1 − x2(t)− h̄2 − q̄

)

− x2

(

β
√

x2(t) + h̄2 − q̄

)

︸ ︷︷ ︸
.
=Ψ̇N(x1,x2)

+ x1u ≤ Ψ̇N(x1, x2) + x1u

Note that Ψ̇N(x1, x2), the natural derivative achieved for u = 0, is negative definite.
Indeed the term in the left brackets has the same sign of x1 − x2 and the term in the
right brackets has the same sign of x2, thus Ψ̇N(x1, x2) is zero only for x1 − x2 =
0 and x2 = 0 and negative elsewhere. This nonlinear system is hence naturally
asymptotically stable. The control input admits three admissible values

u(t) ∈ {−q̄; 0; q̄}
which correspond to the three cases in which none, just one or both the switching
valves are open.
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Let us now pretend to be able to implement a continuous controller

u = −κx1(t),

a controller which clearly cannot be implemented because the device has no
continuous flow regulation. Still, in terms of convergence, it is possible to do as
good as this fictitious control, since the continuous control assures a decreasing rate

Ψ̇(x, u) ≤ Ψ̇N(x1, x2)− κx21

and the discontinuous control

u = −q̄ sgn(x1)

provides a better decreasing rate when |κx1| < q̄. Indeed, the fictitious system with
the continuous control is included in the extremal systems achieved, respectively,
with u = −q̄ and u = +q̄, at least in the set

|κx1| ≤ q̄

where the closed-loop with this bang–bang control achieves better performances in
terms of convergence than the continuous closed-loop plant.

From a practical point of view, the discontinuous controller has to be imple-
mented with a threshold. We actually consider the function

u =

⎧
⎨

⎩

q̄ if x1 < −ε

0 if − ε ≤ x1 ≤ ε

−q̄ if x1 ≥ ε

In Figures 9.6 and 9.7 the experimental behavior is shown with ε = 0.01 and
ε = 0.03, being the latter less subject to ripples as expected. Ripples are due to
the real implementation and they cannot be reproduced via simulation. As a final
comment, we point out that in the real system α and β may vary (depending on
the pipe conditions), thus producing an offset. However, the considered control
basically eliminates the offset on x2, since h̄2 can be fixed. Conversely, under
parameter variations, an offset on the first variable x1 
= 0 is possible.

9.4.1 Switched linear systems

The problem of stabilization of switched systems is hard even in the linear case.
This is apparent from the current literature which clearly shows that even in special
cases, such as the case of positive switched linear systems, there are no general
results which allow for algorithms of a reasonable complexity.
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Fig. 9.6 The experimental behavior of the two-tank system with ε = 0.01
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Fig. 9.7 The experimental behavior of the two-tank system with ε = 0.03

There are anyway important sufficient conditions which provide efficient but
conservative solutions. For instance, in the case of a linear plant
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ẋ(t) = Aq(t)x(t), q ∈ Q (9.11)

Q = {1, 2, . . . , r}, the problem is easily solved if there exists

Ã ∈ conv{Ai, i = 1, 2, . . . , r}
which is asymptotically stable. Indeed, it is possible to consider any Lyapunov
function for the system ẋ = Ãx, e.g. Ψ(x) = xTPx, where P is a symmetric positive
definite matrix such that

ÃTP + PÃ � −Q, Q � 0

and choose as switched law

Φ(x) = argmin
i

Ψ̇(x) = argmin
i

xTPAix

which insures the condition

Ψ̇(x) ≤ −xTQx

Unfortunately, the existence of such a stable element in the convex hull, besides
being hard to check, is not necessary. For instance, the system given by the pair of
matrices

A(w) =

[
0 1

− 1 + w − a

]

where w = ±w̄ is a switched parameter and a < 0, is not stable for any value
of a. However, if a is small enough, then there exists a suitable stabilizing strategy
[Lib03]. Another example will be discussed later on, in the context of positive
switched systems.

As far as the stabilizability of switched systems is concerned, given the designer
choice of the switching rule and/or control law, three possible definitions can be
considered.

Definition 9.16. System (9.11) is

• consistently stabilizable if there exists a sequence q(t) such that the correspond-
ing linear time-varying system ẋ(t) = Aq(t)x(t) is asymptotically stable4;

• open-loop stabilizable if, for any μ > ε > 0, there exists T > 0 such that,
for all initial states ‖x(0)‖ ≤ μ, there exists a specific switching sequence q(t)
(depending on x(0)) assuring: ‖x(t)‖ ≤ ε, for t ≥ T;

• feedback stabilizable if there exists a closed-loop strategy

q(t) = Φ(x(t), t, q(t−))

such that the corresponding (nonlinear discontinuous) system is globally
uniformly asymptotically stable.

4The same q(t) insures that x(t) converges to 0 for all x(0).
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It is not difficult to see that open-loop and feedback stabilizability are equivalent.
Clearly, if a system is consistently stabilizable, then it is open-loop and feedback
stabilizable. The opposite is not true in general [SG11]. An example will be given
in Section 9.7.2.

The difficulties in dealing with the stabilization problem for switched systems
can be explained, in a Lyapunov framework, by the absence of convex and
even smooth Control Lyapunov functions. Indeed, in general, the best “regularity
property” which one can ask to a control Lyapunov function for a stabilizable linear
system is homogeneity. The interest in such a property derives from the following
fundamental result, whose proof can be found in the recent book [SG11].

Theorem 9.17. Assume that the system ẋ(t) = Aqx(t) (or x(t + 1) = Aqx(t)) is
closed-loop stabilizable. Then it necessarily admits a Lyapunov function which is
positively homogeneous of order 1.

To give an idea of how this function can be defined, consider the following set-
theoretic considerations. First we need the following technical proposition.

Proposition 9.18. If (9.11) is feedback (or open-loop) stabilizable, then also the
following perturbed version

ẋ(t) = [βI + Aq(t)]x(t), q = 1, 2, . . . , r (9.12)

q ∈ Q, is stabilizable for β > 0 small enough.

Proof. We have to notice that for the same initial condition x(0) and the same q,
the solution x(t) of the unperturbed system and the solution xβ(t) of the perturbed
one (9.12) are related as

xβ(t) = eβtx(t)

Indeed, for a given q(t), (9.12) is just a linear time-varying system.
Assume that there exists a feedback stabilizing strategy q. Then for all μ > 0

there exists T > 0 such that ‖x(T)‖ ≤ μ/4, for all ‖x(0)‖ ≤ μ. For β > 0 small,
we also have ‖xβ(T)‖ = ‖eβTx(T)‖ ≤ μ/2.

If we can drive all ‖x(0)‖ ≤ μ in the ball ‖xβ(T)‖ ≤ μ/2, by linearity we have
with similar arguments ‖xβ(2T)‖ ≤ μ/4, ‖xβ(3T)‖ ≤ μ/8, ‖xβ(kT)‖ ≤ μ/(2k).

This also means, in passing, that if the system can be stabilized, then it can be
exponentially stabilized. If the system is uniformly stabilizable, then we can find a
control Lyapunov function of the form

Ψ(x0) = inf
q(·)

∫ ∞

0

‖xβ(q(t), x0)‖ dt < ∞

where we denoted by xβ(q(·), x0) the solution of (9.12) corresponding to the
initial condition x0 and sequence q(·). Function Ψ is well defined if the system is
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stabilizable. It is clearly positive definite. By linearity it is immediate that Ψ(x0)
is positively homogeneous of order one, continuous and 0 symmetric. Such a
function is non-increasing for (9.12) and therefore strictly decreasing for the original
system (9.11) if a proper feedback switching law is applied. Note that Ψ(x0) is
defined by taking the infimum over open-loop sequences, which proves that open-
loop stabilizability implies feedback global stabilizability (the opposite is obviously
true).

Unfortunately, we cannot go much further beyond homogeneity. The next
negative result [BS08], which is in contrast with Proposition 9.7, shows a first
headache in the stabilization of switched systems: convexity is not assured.

Proposition 9.19. There are linear switched systems ẋ(t) = Aq(t)x(t) (or x(t+1) =
Aq(t)x(t)) which are stabilizable by means of a switching feedback control law but
do not admit convex control Lyapunov functions.

Example 9.20. Consider the system

ẋ(t) = Ai(x(t))x(t) i ∈ I = {1, 2}

where A1 and A2 are unstable matrices given by

A1 =

[
1 0

0 −1

]

A2 =

[
γ −1

1 γ

]

with γ > 1. Given the initial condition x(0), the system trajectory is x(t) = eAitx(0),
i = i(x) (see Fig. 9.8), where

eA1t =

[
et 0

0 e−t

]

and eA2t = eγt

[
cos(t) − sin(t)
sin(t) cos(t)

]

Fig. 9.8 Possible trajectories
for dynamics i = 1 (dashed)
and dynamics i = 2 (plain).

x2

x1
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Fig. 9.9 Trajectory of the
stabilized continuous-time
system starting from the
initial state x̃.
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It is rather intuitive that this system is stabilizable. Indeed, when the state is of the
form (0, x2) and the dynamics i = 1 is active, the state converges to 0. On the other
hand, the state can be always driven to the x2-axis, from every initial condition by
activating the dynamics i = 2. Using this idea without any modification leads to the
construction of a switching law which activates the dynamics i = 1 in a conic sector
with empty interior. Such a strategy is not robust with respect to switching delays.
This is not a problem, because we can take a line (line c in Fig. 9.9) originating at
zero and sufficiently close to the x2 axis. We also take a line g (see again Fig. 9.9) in
which the derivatives of the two motions A1xg and A2xg are aligned.

Then a suitable strategy is i = 1 in sector s–0–g and i = 2 in sector g–0–c.
Consider the point x̃ in sector s–0–g where i = 1. We let the trajectory reach line g
in xg to commute to i = 2, rotate counterclockwise (vector xb) and reach line c. The
we commute again to i = 1. Then again we reach line g, to commute to i = 2, we
reach line s again and again we commute to i = 1. Then we will reach the same line
aligned with the initial state x̃ (line b4). It is rather intuitive that, if s is close enough
to the x2 axis, the motion with i = 1 reduces the norm of the state, so the state
returns on line b4 with a reduced norm. Then the system repeats the same trajectory,
eventually converging to 0.

On the other hand, the following happens. Given a convex compact set X0

including 0, assume that a stabilizing control strategy q(x(t)) is given (as the one
proposed before). Define as R(T) the set of all states x(t) which are reached from
X0 in time 0 < t ≤ T . The following result, which can be found in [BS08], holds.
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Fig. 9.10 The set R(T)
includes X0.
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Proposition 9.21. If there exists a convex Lyapunov function, then the following
condition is false for T > 0:

X0 ⊂ conv{R(T)}
where conv{R(T)} is the convex hull.

The non-existence of a convex Lyapunov function can be understood by reconsider-
ing Example 9.20 and looking at Figure 9.10. It can indeed be seen that necessarily,
if one takes as X0 the segment −x̃–x̃ the condition X0 ⊂ conv{R(T)} is satisfied
for γ large for some T , no matter how the stabilizing strategy is chosen. The reader
is referred to [BS08] for further details and for a discrete-time counterexample.

Absence of convexity can be a problem and5 we have to announce another
negative result (see [BCV12] and [BCV13] for details).

Proposition 9.22. There are linear switched systems ẋ(t) = Aq(t)x(t) (or x(t+1) =
Aq(t)x(t)) which are stabilizable under a switching control law but do not admit
smooth (away from 0) positively homogeneous control Lyapunov functions.

We will sketch a proof of the result in Subsection 9.5.3 about positive switched
systems.

So essentially the previous negative results justify the use of non-convex non-
smooth functions. In particular the class of minimum-type functions such as those
considered in [HL08] in the quadratic case and defined as

Ψ(x) = min
i

xTPix

where Pi are positive definite or positive semi-definite matrices, have been proved
to be especially useful.

5Since troubles quite often come with friends.
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As a final point, it is worth recalling that in the discrete-time case the existence
of a Schur convex combination is not sufficient for stabilizability (see Exercise 6).

There are several attempts in the literature to deal with the stabilization problem
of switched systems. Successful techniques have been proposed for planar systems
[BC06, XA00]. More general methods have been proposed based on (non-convex)
piecewise linear functions [Yfo10] and on (non-convex) piecewise quadratic Lya-
punov functions [HL08, GCB08, DGD11]. Necessary and sufficient conditions
based on non-convex piecewise linear Lyapunov functions for the stabilizability of
discrete-time switched systems have been recently successfully proposed in [FJ14],
where a numerical procedure is presented along with its computational issues.
Explanations of the difficulties in terms of computational complexity can be found
also in [VJ14] and the references therein. Again, the reader is referred to more
specialized literature [LA09, SG11].

9.5 Switching and switched positive linear systems

This section focuses on positive switching and switched linear systems, represented
by the equation

ẋ(t) = Aq(t)x(t), (respectively x(k + 1) = Aq(t)x(k)) (9.13)

where q(t) ∈ {1, 2, . . . , r} and Aq, q = 1, 2, . . . , r are Metzler matrices in
continuous-time and non-negative matrices in discrete-time.

Clearly, these systems are a special case of linear switching/switched systems,
and therefore have all the properties presented in the previous sections. Given the
extra properties enjoyed by the class of LTI positive systems (for instance, the
existence of the Perron–Frobenius eigenvalue), it is legitimate to ask whether these
extra properties can be somehow helpful when dealing with switching/switched
positive systems.

Some examples of positive switching/switched systems are now presented. To
keep things slightly more general, in the following also positive linear systems
equipped with a non-negative input as follows:

ẋ(t) = Aq(t)x(t) + Bq(t)u(t) (9.14)

where Bq are non-negative matrices and u(t) is a non-negative input, will be
considered.
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9.5.1 The fluid network model revisited

Consider the fluid network already considered in Section 4.5.7, Example 4.62,
whose equations have the form (9.14), with state and input matrices (reported here
for convenience)

A =

⎡

⎢
⎢
⎣

−(α12 + β31) α12 0 0

α21 −(α21 + α23 + β42) α23 0

β31 α32 −(α32 + α34 + β03) α34

0 β42 α43 −(α43 + β40)

⎤

⎥
⎥
⎦

B =

⎡

⎢
⎢
⎣

β10

0

0

0

⎤

⎥
⎥
⎦

We remind the reader that αij = αji. The network is depicted in Fig. 9.11 which
shows that the fluid can flow in on–off mode. This means that all the coefficients αij

and βij can instantaneously change values as

αij ∈ {α−
ij , α

+
ij }

and

βij ∈ {β−
ij , β

+
ij }

with α+
ij > α−

ij > 0 and β+
ij > β−

ij > 0. According to our distinction, if
the system is “switching,” we have to consider the problem of assuring stability
under arbitrary switching. Conversely, if the system is “switched,” then we typically
wish to guarantee closed-loop stability with a prescribed convergence rate β

h1 h2

h4

h3

Fig. 9.11 The switched fluid network.
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(or β-contractiveness). A final interesting question, at least from a practical point
of view, concerns the possibility of confining the ultimate system evolution in a
neighborhood of a desired equilibrium, given a certain input u.

To answer the above questions, the notion of co-positive Lyapunov functions is
introduced next. The basic idea is that to solve these problems for positive systems
it is possible to restrict our attention to the positive orthant only.

Definition 9.23. A function Ψ(x), x ∈ IRn, is co-positive if Ψ(0) = 0 and Ψ(x) > 0
for x ≥ 0 and x 
= 0.

For instance, in IR2, the function Ψ(x1, x2) = x1 + x22 is co-positive.
A co-positive function Ψ(x) is a co-positive Lyapunov function for a positive

systems if it is decreasing along the system trajectories. It is a weak co-positive
Lyapunov function if it is non-increasing along the system trajectories. As expected,
this condition is assured if the Lyapunov derivative is negative6 in the positive
orthant with the exception of 0. In the weak case, we just require the derivative
to never be positive.

If we consider the fluid network example just reported, it can be immediately
seen that the first problem has an immediate solution. Indeed it is apparent that the
system matrix, in view of the symmetry assumption αij = αji, is weakly column
diagonally dominant. Since it is irreducible (see Definition 4.59), we can render it
diagonally dominant by using a diagonal state-transformation

D = diag{λ, λ, 1, 1}

with

α+
23

α+
23 + β−

03

< λ < 1

(it will be shown soon that the lower bound is chosen in such a way to assure
dominance) to get Â = D−1AD and B̂ = D−1B as follows:

Â =

⎡

⎢
⎢
⎣

−(α12 + β31) α12 0 0

α21 −(α21 + α23 + β42) α23/λ 0

λβ31 λα32 −(α32 + α34 + β03) α34

0 λβ42 α43 −(α43 + β04)

⎤

⎥
⎥
⎦

and B̂ = [ β10 0 0 0 ]
T .

Set z = D−1x and consider the co-positive function

Ψ(z) = 1̄Tz.

6We spare the reader the term “co-negative.”
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Its Lyapunov derivative is

Ψ̇(z) = 1̄T(Âz + B̂u) =

−
[
(1− λ)β31z1 + (1− λ)(β42 + α32)z2 + (β03 + α32(1− 1

λ
))z3 + β40z4

]
+

uβ10

λ
≤

−
[
(1− λ)β−

31z1 + (1− λ)(β−
42 + α−

32)z2 + (β−
03 + α+

32(1− 1

λ
))z3 + β−

40z4

]
+

uβ10

λ
=

= −vT z +
uβ10

λ

with obvious meaning of the vector v. Let β10 = 0. Since λ is close enough to 1 and
such that the critical term β−

03 + α+
32(1 − 1

λ ) > 0, then v > 0 and therefore Ψ̇ < 0
for z > 0. This means that the system is asymptotically stable because:

Ψ̇(z) ≤ −min{vj}
∑

zj = −min{vj}Ψ(z)

For β10 > 0 and u bounded, the system solution is bounded. Indeed, if we take the
plane

Ψ(z) = 1̄Tz = μ

the derivative becomes negative for μ > 0 large. Note that the Lyapunov function
1̄Tz for the modified system corresponds to the Lyapunov function 1̄TD−1x for the
original one.

Let us consider the switched stabilization problem, which is quite interesting in
this case. We could use the same Lyapunov function previously derived, but we
propose a different idea. We wish to find a switching strategy to control the system
in the sense that we wish to try to force the system, by switching, to stay at its lowest
level, given a constant incoming flow u = const ≥ 0, or to approach 0 as quickly as
possible if the external input is u = 0.

In this case there is a simple solution which is shown next. Indeed the “average
system” is weakly diagonally dominant and irreducible, hence asymptotically
stable. Then we can find a linear co-positive Lyapunov function which can be used
as a control Lyapunov function for the switched systems.

Denote by Ā the system corresponding to the average values

αij =
α−

ij + α+
ij

2

and

βij =
β−

ij + β+
ij

2
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Let zT be the eigenvector associated with the Frobenius eigenvalue:

zTĀ = λFzT

with λF < 0. As the Frobenius eigenvalue is negative, all the others have negative
real parts. Again, the average system is fictitious and “cannot be realized.” However,
since it would render the derivative negative when u = 0 and it is in the convex hull
of all the matrices, then at each x there exists one of such matrices (a vertex) which
assures a smaller derivative.

Denoting by Ai any of the matrices achieved by taking αij and βij in all possible
ways we have, in the case of a constant input ū > 0,

min
i

zTAix + zTBū ≤ zTĀx + zTBū = λFzTx + zTBū

Hence, considering the strategy

q(x) = argmin
i

zTAix

the Lyapunov derivative of the co-positive Lyapunov function Ψ(x) = zTx for the
system ẋ = Aq(x)x + Bū would be

D+Ψ(x) ≤ λFzTx + zTBū = λFΨ(x) + zTBū

hence implying ultimate boundedness of the system, since λF < 0. Therefore
D+Ψ(x) < 0 for every x such that

Ψ(x) < − zTB
λF

ū

Remark 9.24. The “arg-min” strategy (obviously) leads to a system of differential
equations with discontinuous right-hand side. This typically introduces chattering
and sliding modes in the system. As we will see later, introducing chattering is not
necessarily the most convenient strategy.

9.5.2 Switching positive linear systems

In the case of switching systems, namely when the sequence is arbitrary, it is
a legitimate question to ask whether positivity brings something good to the
analysis of switching systems, in particular whether there is any advantage from
the assumption that all the matrices are Metzler.
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For instance, it has been shown that (Th. 9.8) switching robust stability is
equivalent to the stability of the convex differential inclusion, which is in turn
equivalent to the existence of a convex (in particular polyhedral) common Lyapunov
function. Therefore it is necessary that all the elements in the convex hull are
Hurwitz matrices. The condition is by no means sufficient, for switching linear
systems, and an example will be provided later (Example 9.50).

On the other hand, positive systems have a “dominant” eigenvalue, the Frobenius
one, which rules all the others. So a stronger results might be true.

Conjecture 9.25. For positive switching systems, the Hurwitz stability of all the
matrices in the convex hull is necessary and sufficient for switching stability.

The conjecture is true for second order systems only [GSM07, FMC09].

Proposition 9.26. For second order continuous-time switching systems, the Hur-
witz stability of all the matrices in the convex hull is necessary and sufficient for
asymptotic stability under arbitrary switching.

Unfortunately, we cannot go much further. Indeed, in [FMC09], a third order
counterexample is provided in which it is shown that the condition is not sufficient.

What about discrete-time? Even worse. Take x(k + 1) = Aix(k), i = 1, 2, with

A1 =

[
0 0

(2− ε) 0

]

A2 =

[
0 (2− ε)

0 0

]

and ε > 0 small enough. The characteristic polynomial of the matrices in the convex
hull is

p(z) = z2 − α(1− α)(2− ε)2

For 0 ≤ α ≤ 1, α(1−α)(2−ε)2 < (2−ε)2/4 < 1. Then all the matrices are Schur.
It is an exercise to see that the product (A1A2)

k goes to infinity, thus the system is
not stable under arbitrary switching.

From the computational side, one can have some advantages in the construction
of polyhedral functions, introduced in Chapters 5 and 6, since the plane generating
procedure would work with positive constraints only.

Let us consider the discrete-time case. We present a procedure similar to
the polyhedral Lyapunov function generation algorithm described in Sections 5.4
and 6.3.3, for the computation of the joint spectral radius. Let us introduce a
definition.

Definition 9.27. We call a P-set a set S ⊂ IRn
+ which

• is closed, bounded and includes the origin;
• is star-shaped in the positive orthant: any ray originating at zero and contained in

the positive orthant encounters the boundary of S in a single non-zero point. In
other words, for any (non-negative) vector v ≥ 0, the intersection of the positive
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Fig. 9.12 Example of a
P-set, and the corresponding
“Minkowski-like” function x2

x1

s

ray

ray with direction v with S is a segment with one extremum in x = 0 and the
other extremum on the boundary of S:

{λ : λv ∈ S} = [0, λmax(v)]

for some λmax(v) > 0 (see Fig. 9.12).

Given any co-positive and positively homogeneous function its sub-level sets
N [Ψ, κ] are P-sets. Conversely, given a P-set, we can define a co-positive function
which is positively homogeneous, extending the concept of Minkowski functional

Ψ(x) = inf {λ > 0 : x ∈ λS}

which is a co-positive function of order 1. Clearly we can generate co-positive
homogeneous functions of any order by considering Ψ(x)p.

Obviously a P-set can be convex. In this case the Minkowski-like functional
would also be convex.

As a special case, we can consider polyhedral P-sets, which can be represented as

S = {x ≥ 0 : Fx ≤ 1̄} = P(F)

where F ≥ 0 is a full column rank non-negative matrix.
First we remind that, to assure a certain speed of convergence λ, we have just to

consider the modified system

x(t + 1) =
Aq(t)

λ
x(t), q ∈ {1, 2, . . . r}.

With the above in mind, it is possible to compute the largest invariant set starting
from any arbitrary P-set by means of the procedure presented next.
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Procedure: Computation of a co-positive Lyapunov function given a contraction
factor λ > 0.

1. Take any arbitrary polyhedral P-set S , associated with a non-negative full column
rank matrix F0. Set P0 := P(F0)

⋂
IRn

+. Fix a tolerance ε > 0, k = 1 and a
maximum number of steps kmax.

2. Recursively compute Pk = P(Fk)
⋂

IRn
+ as

Pk = {x : Fk−1
Ai

λ
x ≤ 1̄, i = 1, 2, . . . r}

3. Remove all the redundant rows in matrix Fk to get Pk = P(Fk)
⋂

IRn
+.

4. If Pk = Pk−1 STOP: the procedure is successful.
5. If k = kmax or if ε1̄ 
∈ Pk STOP: the procedure is unsuccessful for the given λ.
6. Set k = k + 1 and GO TO step 2.

If the procedure stops successfully, then the final set is the largest invariant set
included in the initial one for the modified system (and the largest λ-contractive
set for the original system).

Again, the previous considerations about the tolerance and maximum number of
steps can be made. Note that, in the event that the sequence collapses, the failure
can be just detected by the exclusion ε1̄ 
∈ Sk.

As a starting set, we can take a simple set, for instance S = {x ≥ 0 : Fx ≤ 0}
for some row vector F > 0.

This method for finding polyhedral co-positive functions can be applied (needless
to say) to continuous-time problems by means of the Euler Auxiliary System as
described in Chapter 5. Note that, given a positive continuous-time system ẋ = Ax
with A Metzler, then [I + τA] is a positive matrix provided that τ > 0 is small
enough. Similar techniques have been applied to prove structural boundedness of a
class of biochemical networks [BG14].

Example 9.28 (Worst-case emptying speed). Assume that waste material is accu-
mulated in two stock houses and it has to be eliminated. Assume that the system has
two possible configurations, as in Fig. 9.13. In configuration A the waste material

Fig. 9.13 The
two-configuration emptying
problem. A

B

1 2

1 2
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in node 1 is transferred to node 2 and then eliminated. Configuration B is the
symmetric one. We assume a discrete-time model of the form

AA =

[
β 0

1− β α

]

, AB =

[
α 1− β

0 β

]

with 0 < α, β < 1. In any fixed configuration, the system would converge with a
speed depending on the maximum eigenvalue max{α, β}. A legitimate question is
whether switching between the two configurations can worsen the situation and how
much.

If, for instance, we assume α = β = 0.8, then the maximum eigenvalue is λ =
0.8, for both matrices and so, under arbitrary switching, the speed of convergence
in the worst case cannot be smaller than λ = 0.8. Iterating over λ it is possible
to compute numerically that the best contractivity factor, which is assured under
arbitrary switching is around λ∗ ≈ 0.92. The reader can enjoy in Fig. 9.14 the
maximal set computed for λ = 0.94 included in the region

S = {x1, x2 ≥ 0 : x1 + x2 ≤ 1}

9.5.3 Switched positive linear systems

Perhaps the problem of switched positive systems is of more interest, because there
are many situations in which this problem is encountered and positivity turns out to
be an assumption under which some general interesting properties can be proved.

Consider the system

ẋ(t) = Aq(t)x(t) (9.15)

Fig. 9.14 The maximal
invariant set for the modified
system with λ = 0.94

(lower-left portion of the
square)
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where

q(t) ∈ Q = {1, 2, . . . , r}
and the matrices Aq are all Metzler.

The basic question we consider is the existence of a feedback function

q(t) = Φ(x, t)

ensuring that the state x(t) converges to zero for any initial condition x(0) ≥ 0.
Strange as it may seem, in choosing q(t), the knowledge of x(t) does not matter

(see [FV12, BCV12] for details).

Theorem 9.29. For a system of the form (9.15) with Aq Metzler the following
conditions are equivalent.

i) There exists x0 > 0 and q(t) ∈ Q (an open-loop control depending on x0) such
that the trajectory starting from x(0) = x0 converges to zero.

ii) There exists a feedback law q(t) = Φ(x(t), t) such that the trajectory starting
from any x(0) ≥ 0 converges to zero.

iii) The switched system is consistently stabilizable (i.e., there exists a single q(t) ∈
Q which drives x(t) to zero from any initial condition, not necessarily positive).

Proof. ii) ⇒ i): Clearly, if there exists a stabilizing closed-loop q(t) = Φ(t, x), given
x0 > 0 there exists an open-loop sequence which drives the state to 0 starting from
x(0) = x0.

i) ⇒ iii): (this result is in [FV12]). Assume that, given x̄0 > 0, there exists
a switching function q(t) such that for x̄(0) = x̄0, the solution x̄(t) converges to
zero. Let x(0) be any initial condition such that x(0) ≤ x̄0 and let x(t) be the
corresponding solution. Since q(t) is fixed, both x(t) and x̄(t) are solutions and their
difference x̄(t)− x(t)

.
= z(t) satisfies

ż(t) = Aq(t)z(t)

where Aq(t) is Metzler, so the system is positive. Since by construction z(0) = x̄(0)−
x(0) ≥ 0, the condition z(t) ≥ 0 is preserved. Hence x(t) ≤ x̄(t) for all t > 0.
Now take the symmetric initial state −x̄0. For the given q(t) the solution is −x̄(t)
which goes to zero. Exactly in the same way, one can show that if x(0) ≥ −x̄0 then
x(t) ≥ −x̄(t). Then, for −x̄0 ≤ x(0) ≤ x̄0, we have (see Fig. 9.15)

−x̄(t) ≤ x(t) ≤ x̄(t)

Therefore all the initial states in the box P̄[I, x̄0] are driven to zero. Since the box
includes zero in its interior, and the system is linear, any initial state can be included
in the box λP̄[I, x̄0], for λ > 0 large enough, so q(t) drives all states to zero. This
proves iii).

iii) ⇒ ii): obvious.

The previous theorem admits a corollary (see [SG05] for further details).
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Fig. 9.15 The idea of the
proof: all solutions are
bounded below and above
from those originating
between −x̄0 and x̄0

−x0

x0

Corollary 9.30. If any of the equivalent conditions of Theorem 9.29 holds, then
there exists a periodic sequence qp(t), with period T large enough, such that any
initial state is driven to 0.

Proof. Consider a function q(t) driving the state trajectory x̄(t) from x̄0 to zero.
Take a positive λ < 1 and T > 0 such that the solution x̄(t) is in the box λP̄[I, x̄0] at
time t = T , namely x̄(T) ∈ P̄[I, λx̄0]. So for any initial state in P̄[I, x̄0] (x(0) ≤ x̄0)
we have

x(T) ∈ λP̄[I, x̄0]

Truncate function q and extend it periodically with period T . The next period we
will have x(2T) ∈ λ2P̄[I, x̄0] and in general

x(kT) ∈ λkP̄[I, x̄0]

Since λ < 1, this means that x(t) → 0.

The previous results hold, without changes, in discrete-time.
For clear reasons, it is important to find a feedback solution to the problem

anyway. We have seen that in general, for switched linear systems, convex control
Lyapunov function may not exist, even if the system is stabilizable. A natural
question is whether there exists a class of Lyapunov functions which are universal
for the problem. The following theorem provides an answer [HVCMB11] and tells
us that, surprisingly, for positive linear systems, as long as we stay in the positive
orthant, we can always find concave control Lyapunov functions.

Theorem 9.31. Assume that a positive switched linear system is stabilizable.
Then there exists a concave co-positive control Lyapunov function, positively
homogeneous of order one.
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Proof. Consider the perturbed system

ẋ(t) = [βI + Aq]x(t) = Aβ,qx(t)

for β > 0 small enough. We remind that, for the same initial condition and the same
q the solutions of the unperturbed system x(t) and of the perturbed one xβ(t) are
related as (see Proposition 9.18) xβ(t) = eβtx(t) and that for β small enough the
system remains stabilizable if the original system is such.

Denote by xβ,q(t, x0) the solution with initial condition x0, corresponding to a
switching function q(·).

Consider for the modified system the following function:

Ψβ(x0) = inf
q

∫ ∞

0

1̄Txβ,q(t, x0)dt

which is well defined since we assumed stabilizability.
To prove concavity, consider x0 = α1x1 + α2x2, α1 + α2 = 1, α1, α2 ≥ 0. For

any q we have

∫ ∞

0

1̄Txβ,q(t, x0) = α1

∫ ∞

0

1̄Txβ,q(t, x1)dt + α2

∫ ∞

0

1̄Txβ,q(t, x2)dt

hence

Ψβ(x0) = inf
q

∫ ∞

0

1̄Txβ,q(t, x0) =

= inf
q

[

α1

∫ ∞

0

1̄Txβ,q(t, x1)dt + α2

∫ ∞

0

1̄Txβ,q(t, x2)dt

]

≥ α1

[

inf
q1

∫ ∞

0

1̄Txβ,q1(t, x1)dt

]

+ α2

[

inf
q2

∫ ∞

0

1̄Txβ,q2(t, x2)dt

]

= α1Ψβ(x1) + α2Ψβ(x2)

and therefore we have that Ψβ(x0) is concave. It is obviously positively homoge-
neous of order one.

Consider the directional derivative

D+Ψ(x, [βI + A]x) = lim
h→0+

Ψ(x + h[βI + A]x)− Ψ(x)
h

and any interval [0, τ ]. By applying dynamic programming considerations, we have

Ψβ(x0) = inf
q

∫ τ

0

1̄Txβ,q(t, x0)dt + Ψβ(xβ(τ))
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Then, for all τ > 0,

Ψβ(x0) > Ψβ(xβ(τ))

As a consequence we have

D+Ψ(x, [βI + A]x) ≤ 0

Let us denote by η = h/(1 − βh) (then h → 0 implies η → 0) and let us bear in
mind that Ψ(λx) = λΨ(x). Now consider for the nominal system

D+Ψ(x) = lim
h→0+

Ψ(x + hAx)− Ψ(x)
h

= lim
h→0+

Ψ(x − hβx)− Ψ(x)
h

+ lim
h→0+

Ψ(x + hAx + hβx − hβx)− Ψ(x − hβx)
h/(1− βh)

1

(1− βh)

= −βΨ(x) + lim
η→0+

Ψ(x + η[βI + A]x)− Ψ(x)
η

︸ ︷︷ ︸
≤0

≤ −βΨ(x)

and the proof is completed.

One could at this point try a conjecture. We have seen that, in the switching system
case, a convex Lyapunov function can be smoothed. Then

Conjecture: for a positive switched linear system, stabilizability implies the
existence of a smooth concave positively homogeneous Lyapunov function.

The conjecture is false, unless we take n = 2. Precisely, we can claim the
following.

Theorem 9.32. Assume that the matrices Ai i = 1, 2, . . . , r are irreducible. Then
the following statements are equivalent.

i) The system is stabilizable and admits a co-positive and positively homogeneous
smooth control Lyapunov function.

ii) There exists a matrix Ā in the convex hull of the Ai, Ā ∈ conv{Aq, q = 1, . . . , r},
which is Hurwitz.

iii) The system admits a linear co-positive control Lyapunov function Ψ(x) = zTx,
with z > 0.

Proof. ii) ⇒ iii) If there exists an Hurwitz matrix in the convex hull, then we can
take its Frobenius left eigenvector z and λzT = zĀ, with λ < 0 and z > 0. Note that
Ā is irreducible, if the Ai are such. Then, for all x ≥ 0

min
i

zTAix ≤ λzTĀx = λzTx < 0
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Then Ψ(x)
.
= zTx is a co-positive control Lyapunov function.

iii) ⇒ i) Obviously, since a co-positive linear function is smooth and positively
homogeneous.

i) ⇒ ii) See [BCV12].

Proposition 9.33. There exist Metzler matrices A1, A2, . . . Ar for which the corre-
sponding switched system is stabilizable but there are no positively homogeneous
co-positive Lyapunov functions which are continuously differentiable.

Proof. In view of implication i) ⇒ ii) in Theorem 9.32 it is sufficient to show that
there exist stabilizable positive switched systems which do not include Hurwitz
matrices in the convex hull. This will be shown in Example 9.34.

This is not good news as previously announced. Since positive linear systems are
a special case of linear systems, the existence of a positively homogeneous smooth
Lyapunov function would imply the existence of a co-positive Lyapunov function
if we restrict our attention to the positive orthant. Then Proposition 9.33 implies
Proposition 9.22. The proof of the result is in [BCV12] and a different and more
“detailed” one is in [BCV13].

The following example motivates the analysis and proves Proposition 9.33.

Example 9.34. Consider a traffic control problem in a junction. Assume that there
are three main roads (A,B, and C) converging into a “triangular connection”
governed by traffic lights. Three buffer variables, x1, x2, and x3, represent the
number of vehicles waiting at the three traffic lights inside the triangular loop. We
assume that there are three symmetric configurations as far as the states of the 6
traffic lights are concerned. In the first configuration, described in Fig. 9.16, we
assume that traffic lights corresponding to x1, x2, B and C are green, while the ones
corresponding to x3 and A are red. Accordingly,

• x3 increases proportionally (β > 0) to x2;
• x2 remains approximately constant, receiving inflow from B and buffer x1, while

giving outflow to A and to buffer x3;
• x1 decays exponentially (−γ < 0), since the inflow from C goes all to x2 and B.

Fig. 9.16 The traffic control
problem.
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The exponential decay takes “approximately” into account the initial transient due
to the traffic light switching. The other two configurations are obtained by a circular
rotation of x1, x2, and x3 (as well as of A,B, and C).

We model this problem by considering the following switched system, in which
the control must select one of the three sub-systems characterized by the matrices

A1 =

⎡

⎣
−γ 0 0

0 0 0

0 β 0

⎤

⎦ A2 =

⎡

⎣
0 0 β

0 −γ 0

0 0 0

⎤

⎦ A3 =

⎡

⎣
0 0 0

β 0 0

0 0 −γ

⎤

⎦ , (9.16)

with γ = 1 and β = 1.
First of all notice that no convex Hurwitz combination of the three matrices can be
found. Indeed the characteristic polynomial of matrix α1Â1 + α2Â2 + α3Â3 is

p(s, α) = s3 + (α1 + α2 + α3)s
2 + (α1α2 + α2α3 + α3α1)s.

So p(s, α) is not a Hurwitz polynomial for any choice of αi ≥ 0, i = 1, 2, 3, with
α1 + α2 + α3 = 1, and therefore there are no Hurwitz convex combinations in the
convex hull.
However, the matrix product eA1eA2eA3 is Schur (the dominant eigenvalue is ≈
0.69). So, the periodic switching law

q(t) =

⎧
⎨

⎩

3, t ∈ [3k, 3k + 1);

2, t ∈ [3k + 1, 3k + 2);

1, t ∈ [3k + 2, 3k + 3);

k ≥ 0,

makes the resulting system consistently (actually exponentially) stable, and hence
exponentially stabilizable.

It is also worth pointing out an interesting fact. In general, the existence of
a smooth control Lyapunov function would lead to the “arg-min” strategy which
introduces chattering and sliding modes, as pointed out in Remark 9.24. For this
problem chattering would be catastrophic, while it is obvious that to deal with this
problem we must “dwell” on each configuration for a sufficiently long time. In the
case of a periodic strategy with dwell time T in each mode, the product of the three
exponentials eA1TeA2TeA3T has to be stable. We have seen that this is the case for
T = 1.

Note that this commutation implies that the “red” is imposed according to the
circular order 3, 2, 1, 3, 2, 1 . . . . It is surprising to notice that, if the order is
changed, not only the system performance can get worse, but the system may even
become unstable. Indeed, eA3eA2eA1 is unstable with spectral radius ≈ 1.90, which
means that the commutation order is fundamental and the order 1, 2, 3, 1, 2, 3 . . . is
unsuitable. A simple explanation is that switching the red light from 3 to 2 allows
for a “fast recovery” from the congestion on x3 (due to the exponential decay), while
switching the red from 3 to 1 would leave such a congestion unchanged.
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Fig. 9.17 State trajectory corresponding to T = 2.1 and x(0) = [10 10 10]′.

We complete the example by considering the effect of a constant input (the
incoming traffic) and hence by introducing the system

ẋ = Aqx + b

with b = 1̄, γ = 1 and β = 1. It turns out that, with these values, F := eA1TeA2TeA3T

is Schur for T > 0.19. This means that, under a periodic strategy with T > 0.19,
the system converges to a periodic trajectory x̃(t), as shown in Figure 9.17.

Note that it is possible to optimize T in order to achieve a strategy which reduces
as much as possible the buffer levels of the periodic trajectory (see [BCV12] for
details).

Remark 9.35. Note that, in principle, the matrices provided in the example do not
satisfy the assumption of Theorem 9.32, because they are reducible. This is not
an issue, because we can modify the system by perturbing all the coefficients with
positive small numbers

Ai + εO

where O is the 1-matrix Oij = 1, for all i, j, and ε > 0 small. The periodic strategy
would be stabilizing for ε small. However, no Hurwitz convex combination would
exist anyway (see Exercise 5).

In the simple case of second order systems, the following result holds [BCV12].

Proposition 9.36. A continuous-time second order positive switched system is
stabilizable if and only if there exists an Hurwitz convex combination.

The proof can be found in [BCV12]. We stress that sufficiency holds for
positive switched systems of any order, since it holds for linear switched systems
in continuous-time, as we have seen at the beginning of Section 9.4. Still we
give a proof of the sufficiency to show that we can derive a linear co-positive
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control Lyapunov function using the left Frobenius eigenvector of a Hurwitz
convex combination. A similar proof works also for discrete-time switched systems.
Assume that there exists

Ā =

r∑

i=1

Aiαi, αi ≥ 0,

r∑

i=1

αi = 1

which is a Hurwitz matrix and assume, for brevity, that it is irreducible. Take the
positive eigenvector zT > 0 of Ā associated with the Frobenius eigenvalue λF < 0.
Consider the co-positive function Ψ(x) = zTx. Then, by linearity, for all x ≥ 0

min
i

zTAix ≤ zTĀx = λFzTx = λFΨ(x)

Therefore, the strategy q = argmini zTAix is stabilizing.
We know that, in general, the existence of a Schur-stable convex combination is

neither necessary nor sufficient (see Exercises 6 and 7) for stabilizability of linear
switched discrete-time systems. For positive discrete-time switched systems, the
condition is sufficient, but not necessary (see Exercise 7) even for second order
systems. The sufficiency proof can be derived exactly (mutatis mutandis) by means
of the previous considerations (see Exercise 8).

We can now establish a procedure for discrete-time switched systems which leads
to the generation of a polyhedral concave co-positive control Lyapunov function.

We use again some dynamic programming arguments used in Chapters 5 and 6
(see [HVCMB11]). Consider the set

X0 = {x : 1̄Tx ≥ 1}

and notice that it is impossible to stabilize the system if and only if, starting from
some initial value inside X0, the state x(t) remains in this set for all possible
switching sequences q(t) or, equivalently, if there exists a robustly positive invariant
set included in X0. This is also equivalent to saying that we have stabilizability if
and only if there is no robustly positively invariant set included in X0. Since X0 is
convex, one might try to compute the largest (convex) invariant set in X0 and check
whether such a set is empty.

Consider the set of all vectors x in X0 which are driven inside X0 by all
matrices Ai

X1 = {x ≥ 0 : 1̄Tx ≥ 1, 1̄TAix ≥ 1, i = 1, . . . r}

This set can be represented as

F(1)x ≥ 1̄
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with

F(1) =

⎡

⎢
⎢
⎣

1̄T

1̄TA1

:

1̄TAr

⎤

⎥
⎥
⎦

For k = 1, 2, 3, . . . , recursively compute the set

Xk+1 = {x ≥ 0 : F(k)x ≥ 1, F(k)Aix ≥ 1, i = 1, . . . r}

compactly represented as Xk+1 = {x ≥ 0 : F(k+1)x ≥ 1}, and proceed in a
“dynamic programming” style by generating the sets Xk.

The set Xk is the set of all the states x0 which remain in the set X0 (1̄Tx(t) ≥ 1)
in k steps for all possible sequences Aq(t) ∈ {A1,A2, . . . ,Ar}. On the contrary, if
x0 
∈ Xk there exists a sequence that brings x(t) outside X0 hence (1̄Tx(t) < 1).

Therefore, if for some k > 0 Xk is strictly included in X0 (see Fig. 9.18), then
all the states x(0) on its positive boundary can be driven in k steps to x(k) ∈ ∂X0,
the boundary of X0. By construction, any point x0 on the positive boundary of Xk

satisfies the equality

1̄TAik−1
Aik−2

. . .Ai0x(0) = 1

for a proper choice of the indices ih, say 1̄Tx(k) = 1.
Now, if Xk does not intersect 1̄Tx = 1, then we can take a positive λ < 1, close

enough to 1, such that the following inclusion is preserved (see Fig. 9.18)

λXk ⊂ X0

Fig. 9.18 The initial set X0

(complement of the dark
region), the final set Xh (to
the right of the thick curve),
and the contracted version
λXh (to the right of the
dashed curve)

x h

x 0

x(0)
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Let X̃k be the closure of the complement of Xk and consider the function Ψ(x) =

minF(k)
i x. Note that X̃k = N [Ψ(x), 1] = {x : Ψ(x) ≤ 1}. Given any x(0) ∈ ∂X̃k, it

can be brought in k steps to ∂X̃0, hence to λX̃k. Hence we have that

Ψ(x(k)) ≤ λΨ(x(0))

for a proper sequence. Thus, by repeating this sequence periodically, we can assure
Ψ(x(ik)) ≤ λiΨ(x(0)), i = 1, 2, . . . , and drive the state to 0.

A possible different stopping condition for the set sequence is

λXk ⊂ Xk−1

for some contraction factor λ > 0. Denoting by F the matrix describing the final
set Xk = {x ≥ 0 : Fx ≥ 1}, we have that the concave co-positive piecewise-linear
Lyapunov function

Ψ(x) = minFx (9.17)

is a control Lyapunov function since

min
i

Ψ(Aix) ≤ Ψ(x)

According to the considerations in Chapters 5 and 6, we can consider the modified
system

x(t + 1) =

(
Ai

λ

)

x(t)

with an assigned contractivity factor λ > 0.

Procedure

1. Let F(0) = 1̄T . Fix a maximum number of steps kmax, a contractivity factor λ > 0
and a tolerance ε > 0 such that λ+ ε < 1.

2. For k = 1, 2, . . . , compute the set

Xk = {x ≥ 0 : F(k−1)x ≥ 1̄, F(k−1)(Ai/λ)x ≥ 0, i = 1, 2, . . . , r}

This set is of the form Xk = {x ≥ 0 : F(k)x ≥ 1̄}.
3. Eliminate all the redundant inequalities, to achieve a minimal F(k) representing

Xk = {x ≥ 0 : F(k)x ≥ 1̄}.
4. If Xk ⊂ (1 + ε)Xk−1 stop (successfully): the closure of the complement of Xk in

the positive orthant is a λ+ ε contractive set.
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Fig. 9.19 The
two-configuration emptying
problem in the controlled case
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5. If Xk = Xk−1 and the boundary of the original set 1̄Tx is an active constraint
stop (unsuccessfully): the set Xk is robustly invariant for the modified system.
Hence, no matter which sequence Aq(k) is chosen, for x0 in this set we will have
1̄Tx(k) ≥ 1.

6. Let k := k + 1. If k ≥ kmax, STOP.

Example 9.37. Consider again the system of Example 9.28, but assume now that
we can choose at each time the matrix (A1 or A2). Under arbitrary switching the
system has a contractivity factor of about 0.92. If we apply the above, we see that
for the controlled system the contractivity factor (obviously) reduces to 0.89. The
sequence of regions is depicted in Fig 9.19. The final control Lyapunov function is

Ψ(x) = min{1.2710x1 + 0.7263x2, 0.7263x1 + 1.2710x2}

9.6 Switching compensator design

The trade-off among different, often conflicting, design goals is a well-known
problem in control design [LM99]. Even in simple cases, such as the servo design,
it is not possible to achieve a certain performance without compromising another.
For instance, a fast signal tracking in a controlled loop requires a large bandwidth
which has the side-effect of rendering the system more sensible to disturbances. This
problem is often thought of as an unsolvable one: trade-off is generically considered
an unavoidable issue.

In this section we wish to partially contradict this sentence by presenting, in
a constructing way, techniques for switching among controllers each designed for
a specific goal as an efficient approach to reduce the limitations due to adopting a
single controller.
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9.6.1 Switching among controllers: some applications

We start with a very simple example which basically shows which are the benefits
we can achieve by switching.

Example 9.38. Switching strategies can be successfully applied to the problem of
semi-active damping of elastic structures. This is a problem investigated since 30
years ago [HBR83] and it is still quite popular. Here we just propose a simple
example to provide an idea of what can be done by means of Lyapunov-based
techniques. Consider the very simple problem of damping via feedback a single
degree of freedom oscillator whose model is

[
ẋ1(t)
ẋ2(t)

]

=

[
0 1

−1 −μ

]

︸ ︷︷ ︸
A(μ)

[
x1(t)
x2(t)

]

where μ is a damping coefficient μ ≥ β > 0. The lower bound β > 0 represents the
natural damping (i.e., that achieved with no control) and in the example is assumed
that β = 0.1.

Consider the problem of determining the appropriate value of μ to achieve “good
convergence” from the initial state x = −[x0 0]T . This is an elementary problem
often presented in basic control courses. The trade-off in this case is the following:

• small values of μ produce an undamped dynamics with undesirable oscillations;
• large values of μ produce an over-damped dynamics with slow convergence.

Elementary root locus considerations lead to the conclusion that the “best” coeffi-
cient to achieve the fastest transient is the critical damping, i.e. the value μcr = 2
(associated with a pair of coincident eigenvalues). The situation is represented in
Fig. 9.20, where we considered the initial condition x(0) = [−2 0]T . The choice
μ = β, which produces a fast reaction of the system, results anyway in a poorly
damped transient which is represented by the dotted oscillating solution. If we
consider a high gain, for instance such that μ = 10, then we have the opposite
problem: there are no oscillations, but a slow exponential transient (represented
by the exponentially decaying dotted curve in Fig. 9.20). The critical oscillation,
obtained when μcr = 2, is the best trade-off and is represented by the lower dashed
line in Fig. 9.20.

Can we do better? We can provide a positive answer if we do no limit ourselves to
considering a single value of μ. The idea is that, by switching among different values
of μ we have more degrees of freedom. Note that this is equivalent to switching
between derivative controllers with different gain.

We consider the case in which we can switch between two gains μ = β and
μ̄ = 10. The problem is clearly how to switch between the two. The first idea one
might have in mind is heuristically motivated. We allow the system to go without
artificial damping μ = β until a certain strip |x1| ≤ ρ is reached, where ρ is an
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Fig. 9.20 The different solutions

assigned value, and we brake by switching to μ̄. We chose ρ = 0.05. Unfortunately,
this heuristic solution is not very satisfactory and is represented by the dashed curve
marked as heuristic in Fig. 9.20. As expected, it is identical to the undamped solution
in the first part, and then there is a braking stage. It is however apparent that braking
is not sufficient and the system has an overshoot since the state leaves the braking
region in the overshoot stage and jumps out of the braking zone.

Let us consider a better solution for this problem. We activate the braking value
μ̄ only when a proper positively invariant strip for the damped system is reached.
For μ = 10, which is quite larger than the critical value, the system has two real
eigenvalues λF < λS < 0, where λS � 0 and λF << λS are the slow and the
fast eigenvalue, respectively. The eigenvector associated with the fast eigenvalue is
vF = [1 λF]

T . Along the subspace corresponding the “fast” eigenvector the transient
is fast. Let us consider the orthogonal unit vector

f T =
[−λF 1]

‖[−λF 1]‖

and a thin strip of the form

S(ξ) = {x : |f Tx| ≤ ξ}

This strip is positively invariant for the system with high damping. Indeed the vector
f T is a left eigenvector associated with λF and thus

f TA(μ̄) = λFf T
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Fig. 9.21 The solution with
the good (plain) and the
heuristic (dashed) switching
law
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so that the positive invariance conditions of Corollary 4.42 are satisfied. Note also
that the strip includes the subspace associated with vF. Theoretically, the idea is to
switch on the subspace associated with vF to exploit the fast transient. However,
“being on a subspace” is not practically meaningful, so we replace the above with
the condition x ∈ S(ξ), which can be interpreted as “being on the subspace up to a
tolerance ξ”. We chose ξ = ρ = 0.05 for a fair comparison. It is apparent that the
results are much better. The transient, the plain line in Fig. 9.20, is initially the fast
undamped one and then it is close to the “fast eigenvector” motion. The situation
can be visualized in the phase plane in Fig. 9.21. The heuristic solution switches, as
required, in the strip |x1| ≤ ρ, but cannot remain inside this strip (the vertical one),
since it is not invariant, and then it undergoes a further switching and the damping
is improperly set to the natural β again to eventually reach the braking region. An
application of the proposed technique to more general vibrating structures has been
proposed in [BCGM12, BCC+14].

The idea of switching between controllers by exploiting the properties of
invariant sets is not new. It was presented in [GT91, WB94, KG97, BB99]. The role
played by invariant sets has been evidenced in the previous example. If switching
to a new controller is subject to reaching a proper invariant set for the closed-
loop system with such a controller, then we automatically assure that the new set
will never be left anymore. A possible application is the transient improvement via
switching. Suppose that we are given a linear system and a family of controllers
with “increasing gain”

u = Kix, i = 1, 2, . . . , r

associated with a nested family of invariant C-sets for the systems ẋ = (A + BKi)x:

S1 ⊆ S2 ⊆ · · · ⊆ Sr
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Fig. 9.22 The logic-based switching system

Choosing a nested family is always possible since any invariant set remains such
if it is properly scaled. Then switching among controllers avoids control saturation
when the state is far from the target and exploits the strong action of the larger gains
in proximity of the origin. The idea can be extended to the case of output feedback
if we introduce an observer-based supervisor [DSDB09]. Assume for brevity that
a family of static output feedback gains is given. Then a possible scheme is that
in Fig. 9.22. After an initial transient, in which no switching should be allowed,
the estimate state is accurate (here we assume accurate modeling and negligible
disturbances), say x̂(t) � x(t). The inclusion of the estimated state x̂(t) ∈ Si in the
appropriate region allows the switching to the i-th gain.

Clearly the method requires either state feedback or accurate state estimation,
which is not always possible. Finally we notice that we can design compensators of
different order and dynamic. In this case we have an extra degree of freedom, given
by the possible initialization of the compensator state at the switching time.

A fundamental result concerning switching among controllers is the following
[HM02], here reported.

Theorem 9.39. Consider a linear plant P and a set of r linear stabilizing com-
pensators. Then, for each compensator there exists a realization (not necessarily
minimal) such that, no matter how the switching among these compensators is
performed, the overall closed-loop plant is asymptotically stable.

It is important to notice that the previous result does not imply that the property is
true for any family of compensators with given realizations. In other words, it is
easy to find families of compensator (even static gains) for which an unfavorable
switching law can lead to instability. A simple case is given by the system

A =

[
0 1

−1 −β

]

B =

[
0

1

]

C =
[
1 0

]

If we take u = −(1 + η)y and u = −(1 − η)y, with β small enough and 0 <
η < 1 sufficiently close to 1, there exists a destabilizing switching law [Lib03].
However, there exist equivalent non-minimal realizations of the constant gains for
which stability is assured under switching.
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The result [HM02], which is of fundamental importance, does not consider
performances. It is apparent from Example 9.38, the friction system, that, if one
wishes to assure a performance to the system, then some “logic constraints” to the
switching rule have to be applied.

Further techniques of “switching among controllers” have been proposed in the
literature, although of different nature. It is worth mentioning a special technique
which consists in partitioning the state space in connected subsets in each of which a
“local controller” is active. This idea has been pursued in [MADF00] in a context of
gain-scheduling control and in [BRK99, BPV04] in a context of robot manipulator
control in the presence of obstacles.

9.6.2 Parametrization of all stabilizing controllers for LTI
systems and its application to compensator switching

One possibility to avoid the limitation of a single controller is to use more than one
controller. For instance, if the system changes its working point or its configuration,
one may decide to change the compensator accordingly.

In this subsection we briefly describe the essential of the idea of the mentioned
Theorem 9.39 due to [HM02] and then we apply it to the case in which a switching
compensator is applied to a fixed plant.

The first fundamental step towards the solution of the parametrization of a family
of switching compensators is the standard Youla–Kucera parametrization of all
stabilizing controllers for linear systems. Consider a stabilizable LTI system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

and assume a stabilizing compensator is given with transfer function W(s).
Then W(s) can be realized as follows:

ẋo(t) = (A − LC)xo(t) + Bu(t) + Ly (9.18)

u(t) = −Jxo(t) + v(t) (9.19)

o(t) = Cxo(t)− y(t) (9.20)

ż = FTz(t) + GTo(t) (9.21)

v(t) = HTz(t) + KTo(t) (9.22)

where J and L are matrices such that (A − LC) and (A − BJ) are Hurwitz,
(FT ,GT ,HT ,KT) are suitable matrices (which depend on the plant matrices
(A,B,C), as well as on W(s)), with FT Hurwitz. We let the reader note that xo(t) is
the state estimate.
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Conversely, given L and J such that (A − LC) and (A − BJ) are Hurwitz,
for any choice of (FT ,GT ,HT ,KT) of suitable dimensions, with FT Hurwitz, the
corresponding compensator is stabilizing.

This double implication is equivalent to saying that (9.18)–(9.22) parametrize all
the stabilizing compensators for an LTI plant.

Proposition 9.40 ([ZDG96, SPS98]). The transfer matrix W(s) is a stabilizing
compensator for (A,B,C) if and only if it can be realized as in (9.18)–(9.22), with
some choice of the Youla–Kucera parameter (FT ,GT ,HT ,KT).

Note that the realization of W(s) in (9.18)–(9.22) is non-minimal in general.
The sub-system (9.21)–(9.22) represents the Youla–Kucera (YK) parameter. The

fundamental point is that the input of this system is o(t) = Cxo(t)−y(t) = C(xo(t)−
x(t)), which asymptotically converges to 0 since

d
dt
(xo(t)− x(t)) = (A − LC)(xo(t)− x(t))

is an unreachable variable. This in turn means that the output v(t) of the Youla–
Kucera parameter is not fed back by the plant and therefore any stable choice of
the YK parameter cannot destabilize the closed-loop. Note however that any output
y of the plant is fed back by the compensator and the feedback depends on the YK
parameter.

Going back to the general case, assume now that a family W1(s), W2(s),
. . . ,Wr(s), of stabilizing compensators is given: is it possible to switch among them
arbitrarily while preserving closed-loop stability?

In this case Theorem 9.39 comes into play providing a positive answer: yes,
stability can be preserved if the realization of each of the stabilizing compensator is
done in the right way. How does such a realization look like?

The solution of this problem is quite intuitive and boils down to the
YK parametrization. Since any Wi(s) corresponds to some YK parameter
(F(i)

T ,G(i)
T ,H(i)

T ,K(i)
T ), we can switch between compensators by fixing matrices

L and J and by switching just among the YK parameters. However, the fact that F(i)
T

is Hurwitz does not assure that switching between the YK parameters results in a
stable behavior. Moreover, the F(i)

T may be of different dimension.
The problem of dimension is immediately solved by merging some YK parame-

ters in fictitiously augmented dynamics, in order to make them all of the same size.
For stability under switching, we need the following.

Lemma 9.41. Given a stable square matrix F, there exists an invertible T such that
F̂ = T−1FT has P = I as a Lyapunov matrix.

Proof. Assume that F is stable and solves

FTP + PF = −I
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with P � 0. Let T = P−1/2. Then, bearing in mind that TTPT = I,

F̂T + F̂ = TTFTT−TTTPT + TTPTT−1FT = TT(FTP + PF)T = −TTT < 0

With the above in mind, the idea is then that we may change the realization to all the
YK parameters in such a way they share I as a Lyapunov matrix. This will in turn

• not change the compensator transfer functions;
• assure that the YK parameter is stable under arbitrary switching.

9.6.3 Switching compensators for switching plants

In this subsection, the case in which the compensator switching is subsequent to a
plant switching is considered. More precisely, the problem is cast in the following
setting: assume that the plant formed by the family of stabilizable LTI systems

ẋ(t) = Aix(t) + Biu(t)
y(t) = Cix(t)

is subject to an arbitrary switching rule

i = i(t) ∈ I = {1, 2, . . . , r}

and that the switching plant has to be controlled by means of a family of r stabilizing
controllers, each (clearly) stabilizing the corresponding plant (see Fig. 9.23)

ż(t) = Fiz(t) + Giy(t)
u(t) = Hiz(t) + Kiy(t)

To check whether such a family of controllers exists, a couple of assumptions are
needed.

Assumption (Non-Zenoness). The number of switching instants is finite on every
finite interval.

Fig. 9.23 The switching
control

KiGiFi Hi

Ai Bi Ci

u yi
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Assumption (No delay). There is no delay in the communication between the
plant and the controller, which knows exactly the current output y(t) and config-
uration i(t).

With the above in mind, the two essential problems considered next are the
following.

Problem 1. Does there exist a family of matrices (Fi,Gi,Hi,Ki), i ∈ I, such that
the closed-loop system is switching stable?

Problem 2. Given a set of compensators Wi(s), each assuring Hurwitz stability for
fixed i, does there exist a realization (Fi,Gi,Hi,Ki) such that:

1. Wi(s) = Hi(sI − Fi)
−1Gi + Ki;

2. the closed-loop system is switching stable?

Clearly Problem 1 is preliminary to Problem 2. A weaker, but computationally
tractable, version is that in which, rather than requiring stability, quadratic stability
of the switching closed-loop system only is requested. It will be soon shown that
the solution to Problem 1 amounts to checking a set of necessary and sufficient
conditions, whereas for Problem 2, assuming Problem 1 has a solution, the answer
is always affirmative [BMM09].

As a first preliminary fact it must be pointed out that, when dealing with the
stability of switching systems, we need to talk about their realization and not about
their transfer functions. In fact, while for LTI systems the same transfer function can
be realized in infinite (equivalent) ways, this is not the case for switching systems.

Example 9.42. Consider the plant

P(s) =
1

s + α

with α > 0 and let the compensator be of the form

Wi(s) =
ki

s + β
, i = 1, 2

with β > 0. Using standard realization techniques, the two following closed-loop
matrices

A1 =

[−α ki

−1 −β

]

or A2 =

[ −α
√

ki

−√
ki −β

]

can be obtained7. It can be seen that the first is unstable under arbitrary switching
(see Section 9.7.2), whereas the second is stable under arbitrary switching.

7Using either ż = −βz + kiy, u = −z or ż = −βz +
√

kiy, u = −√
kiz as a realization.
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The following theorem provides a solution to Problem 1.

Theorem 9.43. The following two statements are equivalent.

i) There exists a linear switching-stabilizing compensator
ii) The two equations

AiX + BiUi = XPi (9.23)

RAi + LiCi = QiR (9.24)

have a solution (Pi,Qi,Ui,Li,X,R), with

Pi ∈ H1 and Qi ∈ H∞

(resp. ‖Pi‖1 < 1 and ‖Qi‖∞ < 1 in the discrete-time case), and a full row-rank
matrix X ∈ IRn×μ and a full column-rank matrix R ∈ IRν×n.

If the conditions of the theorem hold, then the problem can be solved as follows.
Take M: MR = I, Vi = ZPi, where Z is any complement of X and

[
Ki Hi

Gi Fi

]

=

[
Ui

Vi

] [
X
Z

]−1

A possible compensator is the following:

Estimated state feedback :

⎧
⎨

⎩

ż(t) = Fiz(t) + Gix̂(t)
u(t) = Hiz(t) + Kix̂(t) + v(t)
v(t) ≡ 0

Generalized state observer :

{
ẇ(t) = Qiw(t)− Liy(t) + RBiu(t)
x̂(t) = Mw(t)

The previous compensator has a separation structure and it can be shown that
x̂(t) − x(t) → 0 and that the first part is a dynamic state-feedback compensator.
The auxiliary signal v(t) = 0 is a dummy signal which will be used later.

We do not report a proof here (the interested reader is referred to [BMM09]),
but we just point out that in the necessity part of the theorem we generalize the
results in Subsection 4.5.6. More precisely, the equations are an extension of (4.40)
and (4.53). Note that the construction is identical to that proposed in Section 7.4.
This is absolutely expected, since we know that an LPV system whose matrices are
inside a polytope is stable if and only if its corresponding switching system is stable.

If the less stringent requirement of quadratic stability only is imposed, then the
following (tractable) result holds:
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Theorem 9.44. The following two statements are equivalent.

i) There exists a family of linear quadratically stabilizing switching compensators.
ii)

PAT
i + AiP + BiUi + UT

i BT
i < 0

AT
i Q + QAi + YiCi + CT

i YT
i < 0

for some positive definite symmetric n × n matrices P and Q, and matrices Ui ∈
IRm×n, Yi ∈ IRn×p.

A possible compensator is

d
dt x̂(t) = (Ai + LiCi + BiJi)x̂(t)− Liy(t) + Biv(t)

u(t) = Jix̂(t) + v(t)
v(t) = 0

where

Ji = UiP
−1, Li = Q−1Yi

In discrete-time the inequalities are

[
P (AiP + BiUi)

T

AiP + BiUi P

]

> 0

[
Q (QAi + YiCi)

T

QAi + YiCi Q

]

> 0

The previous ones are standard quadratic stabilizability conditions which involve
LMIs [BP94, AG95, BEGFB04].

To provide an answer to Problem 2, the signal v(t) comes into play. The first point
is the following. Assume that in the previous machinery the signal v(t) is generated
as the output of the following system:

v(t) = T(C(x̂ − x))

where T(·) is a “stable operator.” This in turn will change the compensator, but it
will not destabilize the plant. Although in general any input–output stable operator
would fit, we limit ourselves to linear finite-dimensional systems.

From Proposition 9.40 it is known that for any fixed mode there exists a Youla–
Kucera parameter Ti such that the resulting compensator has transfer function Wi.
The issue is only to realize the Youla–Kucera parameters in such a way that they are
stable under switching as in Fig. 9.24. Note that the figure includes, as a particular
case, the case of a quadratic stabilizable plant for which R = I, Q = A+LC, M = I,
and the state feedback is static: u = Jx + v.
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Fig. 9.24 The observer-based compensator structure

Theorem 9.45. If the (quadratic) stabilizability conditions in Theorem 9.43 (9.44)
are satisfied, then, given any arbitrary family of transfer functions Wi(s),
i = 1, . . . , r each stabilizing the i-th plant, there exists a switching compensator

δz(t) = Fiz(t) + Giy(t)
u(t) = Hiz(t) + Kiy(t)

(δz is either ż or z(t + 1)) such that

1. Hi(sI − Fi)
−1Gi + Ki = Wi(s)

2. the closed-loop system is switching stable.

We also point out the following aspect. Assume that there are a disturbance input
ω(t) and a performance output ξ

δx(t) = Aix(t) +Biu(t) +Bω
i ω(t)

y(t) = Cix(t) +Dy,ω
i ω(t)

ξ(t) = Eix(t) +Dξ,u
i u(t) +Dξ,ω

i ω(t)
(9.25)

Then the i-th input–output map is of the form

ξ(s) = [Mξ,ω
i (s) + Mξ,v

i (s)Ti(s)M
o,ω
i (s)]ω(s)

which is amenable for optimization.
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Example 9.46 (Networked control system (continued from Example 9.4)). The
system matrices of the extended switching system (9.5) for the unstable dynamic
system P(s) = s+1

s2−10s , with sampling time Tc = 0.05s and Nmax = 5 are:

A =

[
1.649 0

0.065 1

]

, B =

[
0.130

0.003

]

, C =
[
0.5 0.5

]

A family of quadratically stabilizing compensators is obtained by solving the
conditions in Theorem 9.44, which provide the following feedback and observer
gains (mind that the first set of LMIs is indeed a single inequality in view of the fact
that the system update and input matrices do not switch)

J =
[−12.859 −6.015 −.035 −.022 −.010 −.005 −.002

]

and L = [L0 . . . LNmax ],

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3.04 −5.02 −8.25 −13.82 −22.79 −27.55

−0.28 −0.46 −0.76 −1.29 −2.13 −2.60

−1.00 −1.66 −2.72 −4.56 −7.53 −9.11

−0.60 −1.00 −1.64 −2.76 −4.55 −5.51

−0.36 −0.60 −0.99 −1.65 −2.73 −3.31

−0.21 −0.36 −0.59 −1.01 −1.63 −1.98

−0.13 −0.21 −0.35 −0.58 −1.07 −1.19

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The closed-loop step responses yt and ŷt for two specific delay realizations are
depicted in Fig. 9.25.
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Fig. 9.25 Closed-loop step response for Example 9.46: yt solid, ŷt dashed
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9.7 Special cases and examples

9.7.1 Relay systems

We now consider relay systems, which are nothing but a very special case of
switching systems that can be tackled via a set-theoretic approach. Consider the
scheme depicted in Figure 9.26 and representing a system with a relay feedback.
We assume that the control law is

u = −sgn(y),

thus normalizing the input amplitude to 1. It is well known that feedback systems
of this type have several problems, for instance that of being potential generators of
limit cycles. There is a case in which one can guarantee asymptotic stability and this
is the case we are going to investigate next. The following proposition holds.

Proposition 9.47. Assume that the n-th order SISO transfer function P(s) has n−1
zeros zi with strictly negative real part (say it is minimum-phase with relative degree
one) and that

lim
s→∞ sP(s) > 0

Then the relay loop of Figure 9.26 is locally stable.

Proof. Since we are interested in local stability, it is assumed that r = 0. Let −β <
0 be greater than the largest real part of the transmission zeros. For any realization
(A,B,C, 0) of P(s) it is possible to define the transformation matrix

T =

[(
null{BT})T

C
CB

]−1

(null(M) denotes a basis matrix for the kernel of M) so that

T−1B =

⎡

⎢
⎣

0
...
1

⎤

⎥
⎦ , CT =

[
0 · · · CB

]

r y
P(s)

Fig. 9.26 The relay feedback loop
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with CB > 0 in view of the condition on the limit and T−1AT can be partitioned as

T−1AT =

[
F G
H J

]

where the eigenvalues of F (see Exercise 10 in Chapter 8) are the transmission zeros,
thus have negative real part smaller than −β. Assume for brevity CB = 1. The state
representation of P(s) can then be written as

[
ż(t)
ẏ(t)

]

=

[
F G
H J

] [
z(t)
y(t)

]

+

[
0

1

]

u(t) (9.26)

y(t) =
[
0 CB

]
[

z(t)
y(t)

]

(9.27)

where y is the output and the input is u = −sgn(y).
Since matrix F is asymptotically stable, if y(t) is bounded, so is z(t). Consider

now a β-contractive C-set for the z-sub-system ż = Fz + Gỹ, where ỹ is subject to
|ỹ(t)| ≤ 1 and is seen as a disturbance.

Let such a set be S and let Ψz(z) be its Minkowski functional. Assume S is 0-
symmetrical, so that Ψz(z) is a norm (for instance, a quadratic norm Ψz(z) =

√
zTQz

with Q � 0, associated with a contractive ellipsoid according to inequality (4.23)).
For brevity assume (although this is not necessary) that Ψz(z) is smooth for z 
= 0.

Since S is contractive (see Definition 4.15 with u = 0), for z on the boundary
(Ψz(z) = 1) one has that

D+Ψz(z) = ∇Ψz(z)(Fz + Gỹ) ≤ −β, (9.28)

for all |ỹ| ≤ 1. Since ∇Ψz(z) = ∇Ψz(ξz) for any scaling factor ξ (see Exercise 14 in
Chapter 4) and since any ẑ in IRn−1 can be written as ẑ = Ψz(ẑ)z for some z ∈ ∂S ,
then by scaling (9.28) one gets

D+Ψz(ẑ) = ∇Ψz(z)(FΨz(ẑ)z + Gy) ≤ −βΨz(ẑ), for |y| ≤ Ψz(ẑ) (9.29)

say the scaled set ξS is β contractive if |y| ≤ ξ (see Exercise 15 in Chapter 4). Now,
consider the second equation and define, as a first step, the quantity

μ = max
z∈S

|Hz|,

which is a bound for the influence of z on y since

|Hz| ≤ μΨz(z)
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Fig. 9.27 The set P

z2
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y

Then, consider the candidate Lyapunov function (referred to the y-system)

Ψy(y) = |y|,

which is the Minkowski function of the interval I1 = [−1, 1] and whose gradient
is ∇Ψy(y) = sgn[y]. In the (z, y) space consider the C-set which is the Cartesian
product of I1 and S , P = {(z, y) : z ∈ S, y ∈ I1} (see Fig. 9.27). The Minkowski
functional of P is

Ψ(z, y) = max{Ψz(z), Ψy(y)}

Now assume (z, y) ∈ εP (namely Ψ(z, y) ≤ ε), where ε is chosen as

ε ≤ CB
μ+ |J|+ β

so that

(μ+ |J|) ε ≤ CB − βε

For any (z, y) ∈ εP , by considering the y derivative, one gets

D+Ψy(y) = D+|y| = sgn(y)[Hz + Jy + CBu]

≤ μΨz(z) + |J|Ψy(y)− CB ≤ με+ |J|ε− CB ≤ −βε,

so that, for Ψy(y) ≤ ε,

D+Ψy(y) ≤ −βΨy(y) (9.30)

Therefore, for Ψ(z, y) ≤ ε both (9.29) and (9.30) hold, which in turn implies that
Ψ(z(t), y(t)) cannot increase if Ψ(z(t), y(t)) ≤ ε or, in other words, εP is positively
invariant. Since these inequalities hold inside εP , y(t) and z(t) both converge to 0
with speed of convergence β.
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It can be shown, by means of arguments similar to those used for the relay system,
that also almost relay systems, precisely those formed by a loop with control

u = −sat[−1,1](ky)

are locally stable for k large enough.

Example 9.48. Consider the unstable system

P(s) =
s + 1

s2 − s − 1

represented by the equations

ż(t) = −z(t)− y(t),

ẏ(t) = z(t) + 2y(t) + u(t)

Consider the first sub-system ż = −z− ỹ, |ỹ| ≤ 1 and β = 0.5, which is compatible
with the fact that the zero is in −1. Consider the interval [−ζ, ζ] as candidate
contractive set whose Minkowski functional is |z|/ζ. The condition is that for z = ζ

1

ζ
(−z − ỹ) ≤ −β

for all |ỹ| ≤ 1, which is satisfied for ζ ≥ 1/(1 − β) = 2. The opposite condition
leads to the same conclusion, so we take ζ = 2. We now compute

μ = max
|z|≤ζ

|Hz| = 2

(H = 1) and we can finally evaluate

ε =
1

μ+ |J|+ β
=

2

9

(J = 2). The derived domain of attraction is the rectangle

{

(z, y) :
|z|
ζ

≤ ε, |y| ≤ ε

}

=

{

(z, y) : |z| ≤ 4

9
, |y| ≤ 2

9

}

The computed domain of attraction, the trajectories originating from the vertices
and some of the system trajectories originating outside are depicted in Fig 9.28. It
is apparent (and expected) that the actual domain of attraction is quite greater than
the computed one.

The previously presented results can be happily (and easily) extended to the
case of actuators with bounded rate. Let us now reconsider the rate-bounding
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Fig. 9.28 The evaluated domain of attraction with some internal trajectories (plain lines) and some
of the system trajectories originating outside (dotted curves)
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Fig. 9.29 The loop with a rate-bounding operator

operator considered in Subsection 8.4.1. In particular consider a feedback loop
which includes the rate bounding operator in Figure 8.16. Here we consider the
extreme case in which the loop includes the following operator

u̇(t) = v̄ sgn[ω − u]

as in Fig. 9.29. Note that this block allows a maximum increasing rate of v̄. It
is known that rate-bounds can destroy global stability of a system. However, by
means of the previous results it is possible to show that a stable loop preserves local
stability, achieved by a nominal control, in the presence of rate bounds, as shown in
the following proposition.

Proposition 9.49. Given the n dimensional SISO transfer function F(s), if

G(s) =
F(s)

1 + F(s)

is asymptotically stable, then the loop represented in Fig. 9.29 is locally stable.
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Fig. 9.30 Equivalent loop
with rate-bounding operator

yω
F(s)

u

v
v r

s
1

Proof. By “pulling out the deltas” (see [ZDG96]), say by rearranging the transfer
function so as to write the linear relation between the input and the output of the
nonlinear block (which in this case, plays the role of delta) it can be seen that the
loop in Fig. 9.29 is equivalent to the one in Fig. 9.30 which is in turn equivalent to
that achieved by feeding back the (v-to-z) transfer function

P(s) =
1 + F(s)

s

with the sgn block. It is apparent that the zeros of P(s) are the poles of G(s) (say
the poles of the closed-loop system without saturation), which are asymptotically
stable by hypothesis, and that the relative degree of P(s) is exactly one, since there
are n zeros (the poles of G(s)) and n + 1 poles (the poles of F(s) plus the one in the
origin). Thus, by Proposition 9.47, the system is locally stable.

It is worth stressing that the shown strict equivalence between the rate-bounding
and the simply saturated problem allows to apply the construction of Proposi-
tion 9.47 to find a proper domain of attraction.

9.7.2 Planar systems

Planar systems, namely systems whose state space is two-dimensional, have several
nice properties which are worth a brief presentation. The first obvious fact is
that, if we limit our attention to second order systems, the major issue of the
computational complexity of the considered methods almost disappears. On the
other hand, limiting the investigation to this category is clearly a restriction. Still
we can claim that many real-word problems are naturally represented by second
order systems. Furthermore, there are many system of higher order which can be
successfully approximated by second order systems. This is, for example, the case
of the magnetic levitator in Fig. 2.1, which would be naturally represented by a third
order system since there is an extra equation due to the current dynamics

Li̇(t) = −Ri(t) + V(t)
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where V is the voltage. However, since the ratio R/L is normally quite big, this
equation can be replaced by the static equation Ri(t) = V(t) without compromising
the model (we are basically neglecting the fast dynamics).

Let us point out the main properties of second order systems. Consider the second
order system ẋ(t) = f (x(t)), assume f Lipschitz, so that the problem is well-posed,
and let x̄(t) be any trajectory corresponding to a solution of the system. Since two
trajectories cannot intersect x̄(t) forms a barrier to any other system trajectory. This
can be simply seen as follows. Consider any closed ball B and assume that x̄(t)
crosses B side-by-side in such a way that x̄(t1) ∈ ∂B, x̄(t2) ∈ ∂B and x̄(t) ∈
int{B} for t1 < t < t2. The interior of the ball is divided in three subsets B1, B2

and x̄(t)
⋂

int{B}. Then no trajectory of the system originating in B1 can reach B2

without leaving B.
Planar systems have several important properties and indeed many of the books

dealing with nonlinear differential equations often have a section devoted to them.
Here we propose some case studies (basically exercises) which we think are
meaningful.

Example 9.50 (Stability of switching and switched systems). Consider the system
ẋ = A(p)x, where

A =

[
α 1

−p(t)2 α

]

, p ∈ {p−, p+}

and let us consider the problems of determining:

• the supremum value of α (necessarily negative) for which the switching (p uncon-
trolled) system is stable;

• the supremum value of α (possibly positive) for which the switched (p controlled)
system is stabilizable.

Problems of this kind can be solved by generating some extremal trajectories in
view of their planar nature (see [Bos02]) and are often reported in the literature as
simple examples of the following facts:

• Hurwitz stability of all elements in the convex hull of a family of matrices does
not imply switching stability;

• in some particular cases it is possible to stabilize a switched system (i.e., by
choosing the switching rule) whose generating matrices are all unstable and do
not admit a stable convex combination;

• a linear switched system which is stabilizable via feedback is not necessarily
consistently stabilizable.

As a first step we notice that, for fixed p, the solution has the following form

[
x1(t)
x2(t)

]

= eα(t−t0)

[
cos(p(t − t0)) 1

p sin(p(t − t0))

−p sin(p(t − t0)) cos(p(t − t0))

] [
x1(t0)
x2(t0)

]
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x1 x1

x2 x2

Fig. 9.31 The worst-case and the best case strategy for α = 0

To analyze the stability of the switched system, let us start from the point x(0) =
[1 0]T and let us assume α = 0. It is apparent that with both values p− and p+,
the corresponding trajectories reach the x2 negative axis in time π/(2 p), but if
we choose the upper value p+ the trajectory is below (and then external to) that
corresponding to the lower value. When the x2 negative axis is reached, the situation
is exactly the opposite. Then, by taking the worst case trajectory, generated by
means of the following strategy

p =

{
p+ if x1x2 < 0

p− if x1x2 > 0

we achieve a trajectory which is the most external (see Fig. 9.31 left).
If we consider the time instants in which the axes are crossed, since we keep p

constant inside any sector, we get the following discrete relation

[
x1(tk)
x2(tk)

]

=

[
0 1

p

−p 0

] [
x1(tk−1)

x2(tk−1)

]

with p ∈ {p−, p+}.
Take the initial vector [ 1 0 ]T . If we consider the worst-case trajectory, we

encircle the origin and we reach the positive x1 axis again, at time t = 2π/p, in a
point [ξ 0]T where

ξ =
(p+)2

(p−)2
≥ 1

(the equality holds only if p− = p+).
By taking into account α again, we can find the largest value of α < 0 which

assures stability. This limit value is such that

eα2π/pξ = 1
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namely

α = − p
2π

log(ξ)

which is negative. To prove this, one has to take into account the fact that the solution
with a generic value α is xα(t) = eαtx0(t), where x0(t) is that achieved with α = 0.

To solve the “switched” problem we have just to proceed in the same way and
consider the “best trajectory,” which is clearly given by (see Fig. 9.31 right)

p =

{
p+ if x1x2 > 0,

p− if x1x2 < 0

The expression is identical, with the difference that α turns out to be the opposite.
This system with α > 0 is an example of a system which can be stabilized via

state feedback, but which is not consistently stabilizable. Indeed one can show that,
no matter how a fixed function p(t) is taken with p− ≤ p(t) ≤ p+,8 the system
trajectory will diverge for some initial conditions.

To this aim, let us consider the case of a linear time-varying system

ẋ(t) = A(t)x(t)

and denote by Φ(t, t0) the state transition matrix for A(t):

d
dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I.

Then, by the Jacobi-Liouville formula,

det(Φ(t, t0)) = exp

(∫ t

t0

trace(A(τ))dτ

)

.

Indeed

d
dt
(log det(Φ(t, t0))) = trace(Φ(t, t0)

−1A(t)Φ(t, t0)) = trace(A(t)).

If we look back at the example we have that trace(A(p)) = 2α, hence

det(Φ(t, t0)) = exp

(∫ t

t0

trace(A(τ))dτ

)

= e2α(t−t0)

and thus det(Φ(t, t0)) grows arbitrarily large. Therefore some elements of Φ(t, t0)
grow arbitrarily large as t → +∞.

8Including the switching case in which p(t) ∈ {p−, p+}.
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9.8 Exercises

1. Find the analytic expression of the function in Figure 9.1.
2. Prove the stability of the system proposed in Example 7.16 for |δ| ≤ ρ < 1, by

using the technique of extremal trajectories adopted in Example 9.50. Hint: the
extremal trajectories are as in Fig. 9.32

3. Prove that the P set P(F)
⋂

IR+, F ≥ 0, is bounded if and only if for any j there
exists k such that Fkj > 0.

4. Prove Proposition 9.9. Hint: Consider P = I as a Lyapunov matrix. Then,
if all the Aq are symmetric, the Lyapunov inequality which assures quadratic
stability is

AT
q + Aq = 2Aq < 0, for all q,

which is assured if the Aq are Hurwitz . . . .
5. Let A be Metzler and not Hurwitz. Then A + εO (Oij = 1) is non-Hurwitz as

well for ε > 0. Provide a proof.
6. For discrete-time switched systems, show that the existence of a stable matrix in

the convex hull is not sufficient for stabilizability. (Hint: try in dimension one).
7. For discrete-time switched systems, show that the existence of a stable matrix

in the convex hull is not necessary for stabilizability. Find two non-negative
matrices of order 2, A1 and A2, such that no Schur convex combination exists,
but the corresponding switched system is stabilizable. (Hint: try two diagonal
matrices).

8. Show that, for discrete-time positive switched systems, the existence of a Schur
matrix in the convex hull is sufficient for stabilizability. (Hint. Assume that
the Schur matrix in the convex hull is irreducible and take the left Frobenius
eigenvector zT > 0 and the copositive function zTx . . . ).

Fig. 9.32 Extremal
trajectories
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9. Paradox of the 0 transfer functions. Let Ai,B,C be a family of systems which are
Hurwitz for fixed i, but not switching stable. Assume that each of the systems
is stabilizable, for instance quadratically. By Theorem 9.45, we would have
that we can choose compensator transfer functions Wi(s) ≡ 0, which can be
implemented so that stability is assured under switching. Is this impossible, or
not? (see [BMM09]).

10. Show that any minimum-phase system of relative degree 1 with transfer function
P(s) can be written in the form (9.26)–(9.27), where the eigenvalues of F are
coincident with the zeros of P(s).
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