
Chapter 6
Set-theoretic analysis of dynamic systems

In this section, several applications of set-theoretic methods to the performance
analysis of dynamic systems will be presented. Although, in principle, the proposed
techniques are valid for general systems, their application is computationally viable
in the case of (uncertain) linear systems and thus we restrict the attention to this
case.

6.1 Set propagation

6.1.1 Reachable and controllable sets

Consider a dynamic system of the form

ẋ(t) = f (x(t), u(t))

or of the form

x(t + 1) = f (x(t), u(t))

where u(t) ∈ U . The following classical definitions of reachability and controllabil-
ity sets are reported.

Definition 6.1 (Reachability set). Given the set P , the reachability set RT(P)
from P in time T < +∞ is the set of all vectors x for which there exists x(0) ∈ P
and u(·) ∈ U such that x(T) = x.

Definition 6.2 (Controllability set). Given the set S, the controllability set CT(S)
to S in time T < +∞ is the set of all vectors x for which there exists u(·) ∈ U such
that if x(0) = x then x(T) ∈ S.
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236 6 Set-theoretic analysis of dynamic systems

More in general, S is said to be reachable from P in time T if for all x ∈ S there
exists x(0) ∈ P and u(·) such that x(T) = x. Similarly, P is said to be controllable
to S in time T if, for all x(0) ∈ P , there exists u(·) such that x(T) ∈ S. Unless
for very specific cases, the fact that P is reachable from S does not imply that S is
controllable to P and vice versa.

However, if backward systems are considered, namely systems that evolve
backward in time of the form

ẋ(t) = −f (x(t), u(t))

or of the form

x(t + 1) = f−1(x(t), u(t))

where f−1 is the inverse of f with respect to x (if it exists at all), precisely the map
such that f−1(f (x, u), u) = x for all x and u ∈ U , then the set P is reachable from
(controllable to) S if and only if S is controllable to (reachable from) P for the
backward system.

Controllable sets have the following composition property1. If S0 is controllable
in time T1 to S1 and S1 is controllable in time T2 to S2, then S0 is controllable in
time T1 + T2 to S2. The analogous composition property holds for reachability.

Reachable sets are useful to describe the effects of a bounded disturbance on a
dynamical system or to describe the range of effectiveness of a bounded control.
Unfortunately, the computation of reachable sets is, in general, very hard even in
the discrete-time case, although effort is currently put in this direction [RKML06].
For simple systems, typically planar ones, they can be computed (approximately) by
simulation and the approximated reachable and controllable sets can be visualized
by appealing computer graphics. Unfortunately, as the dimension grows, our mind
gets somehow lost, besides the inherent intractability of reachable set computation.

From the theoretical point of view, some results that characterize the closedness
or compactness of controllability/reachability sets which are available in the mathe-
matical literature. For instance, in the discrete-time case, if the map f is assumed to
be continuous and U compact, then the expression of the one-step reachability set
of a compact set P , precisely

f (P ,U)

is compact. Therefore the reachable set in k steps, that can be recursively computed
by setting R0 := P and

Rk+1 = f (Rk,U)

1A semi-group property.
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is compact. Some compactness results for the controllability sets can be easily
inferred under some assumptions, such as the system reversibility (i.e., that f−1(x, u)
is defined for all u and continuous). This kind of closedness–compactness results are
valid also for continuous-time systems under suitable regularity assumptions.

The next theorem shows that, at least for the case of linear systems (which are
those we will be mostly interested in), some reasonable procedures can be devised.

Theorem 6.3. Consider the system

ẋ(t) = Ax(t) + Bu(t) (or x(t + 1) = Ax(t) + Bu(t))

where u ∈ U , with U a convex and compact set and, in the discrete-time case,
A is assumed to be invertible. Let P be a convex and compact set. Then, for all
T < +∞,

• the controllability set in time T to P is convex and compact.
• the reachability set in time T from P is convex and compact.

In the discrete-time case, if matrix A is singular, the reachability set is still convex
and compact whereas the controllability set is convex, closed but not necessarily
bounded.

Proof. The proof of compactness will be reported in the continuous-time case only,
whereas the proof of convexity and the discrete-time case are left as an exercise.

The reachability set is given by the set of all vectors

x = eATx̄ +
∫ T

0

eA(T−σ)Bu(σ)dσ, (6.1)

(with u(·) a measurable function) namely the sum of the image of P with respect to
eAT (which is compact) and the set of all vectors reachable from 0 in time T:

RT (P) = eATP +RT({0})

The set of states reachable from 0 in a finite time is compact as shown in [PN71],
and, since the sum of two compact sets is compact, RT (P) is compact. The
analogous proof for controllable sets is derived by noticing that the controllable
set is the set of all x̄ for which (6.1) holds with x in P . By multiplying both sizes by
e−AT one immediately derives

CT(P) = e−ATP +R−
T ({0})

where we denoted by R−
T ({0}) the set of 0-reachable states of the time-reversed

sub-system (−A,−B), hence the claim.

Convexity of reachability and controllability sets in the case of linear systems is
a strong property which allows to obtain practical results, as it will be seen later.



238 6 Set-theoretic analysis of dynamic systems

An important problem that can be solved, in principle, in a set-theoretic framework
is the analysis of uncertainty effects via set propagation. The literature on this kind
of investigation is spread in different areas. A classical approach to the problem
is that based on the concept of differential inclusion. As we have seen, a system
of the form ẋ(t) = f (x(t),w(t)), w(t) ∈ W , is a special case of differential
inclusion. Given an initial condition x(0), if one is able to determine the reachable
set Rt({x(0)}), then one can actually have an idea of the uncertainty effect. The
literature presents some effort in this sense, however, most of the work is effective
only for special classes of systems, typically of low dimensions. A survey of
numerical methods for differential inclusions can be found in [DL92].

6.1.2 Computation of set propagation under polytopic
uncertainty

Let us now consider the discrete-time system

x(t + 1) = A(w(t))x(t) + E(w(t))d(t) (6.2)

with

A(w) =
s∑

i=1

Aiwi(t), E(w) =
s∑

i=1

Eiwi(t)

w ∈ W = {w : wi ≥ 0,
s∑

i=1

wi = 1}

and d ∈ D, also a polytope. Here, no control action is considered and w and d are
both external uncontrollable signals.

Consider the problem of computing the propagation of the uncertainty for this
system, starting from a set X0 of initial conditions which is a polytope. This set can
be propagated forward in time, keeping into account the effect of the uncertainty
and disturbance, by considering the set:

X1 = R1(X0) = {A(w)x + E(w)d : w ∈ W , d ∈ D} (6.3)

Even from the first step it is not difficult to see that the one step reachable set X1

is not convex (then it cannot be a polytope). The lack of convexity is shown in the
next example.
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Fig. 6.1 Butterfly shaped
non-convex one step
reachable set for example 6.4
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Example 6.4. Consider the autonomous system whose matrices are

A =

[
1 w
0 1

]
, E = 0,

and |w| ≤ 1. Let X0 = {(x1, x2) : x1 = 0, x2 ∈ [−1, 1]}. The reachable set is
the set of all the possible images of the considered segment with respect to matrix
A(w), which turns out to be the union of two triangles with center in the origin (the
one having vertices [0 0]T , [1 1]T [1 − 1]T and its opposite), depicted in Figure 6.1
and clearly non-convex.

Though the reachable set is non-convex, Barmish and Sankaran [BS79] showed
that the convex hull of the reachable sets can be propagated recursively, as per the
next result.

Proposition 6.5. Let X0 be a polytope and let Xk be the k-step reachability set
of (6.2) from X0. Let X̂k = conv{Xk} be its convex hull. Then the sequence of
convex hulls can be generated recursively as

X̂k+1 = conv
{
R1

(
X̂k

)}
,

roughly, as the convex hulls of image sets of convex hulls.

The remarkable property evidenced by the previous theorem is that one can compute
the convex hulls of the reachability sets by just propagating the vertices. Precisely,
assume a vertex representation of the polytope X̂ = V(x1, x2, . . . , xs) is known. Let
Ai and Ei, i = 1, 2, . . . , r, be the matrices generating A(w) and E(w) and let D =
V(D), where D = [d1, d2, . . . , dh]. Then the convex hull of the one-step reachability
set (which might be non-convex) is given by the convex hull of all the points of the
form Aixk + Eidj, say its expression is
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conv
{
R1

(
X̂
)}

=

= conv {Aixk + Eidj, i = 1, 2, . . . , r, k = 1, 2, . . . , s, j = 1, 2, . . . , h} (6.4)

Therefore, a routine which propagates the vertices of the sets X̂k can be easily
constructed. Its application is a different story. Indeed, the complexity of the
problem is enormous, since the number of candidate vertices grows exponentially.
One can apply the mentioned methods to remove internal points, but still the number
of true vertices might explode in few steps even for small dimensional problems.
The reader is referred to [RKKM05b, RKK+05] for more recent results on this
construction.

Example 6.6. As previously mentioned, the one-step forward reachability set of
a convex set is in general non-convex [BS79]. Here, by means of a simple two-
dimensional system, another graphical representation of such lack of convexity is
reported. Consider the two-dimensional autonomous uncertain system

x(k + 1) = A(w(k))x(k)

with |w(k)| ≤ 1 and

A(w) =

[
1/3 −2/3 w

−2/3 + 2/3 w 1/2

]

and the set

X = {x : ‖x‖∞ ≤ 1}

The one step forward reachability set (computed on a grid of points) is depicted in
figure 6.2

Fig. 6.2 Image (computed
on a grid) of the one step
reachable set for example 6.6
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It is immediately seen that this set is non-convex (to double check such sentence
one can try to determine whether there exist x ∈ X and a value −1 ≤ w ≤ 1 such
that A(w)x = [1/2, 0]T).

Conversely the preimage set is convex and precisely

S = {x : ‖A(1)x‖∞ ≤ 1, ‖A(−1)x‖∞ ≤ 1}

If A and E are certain matrices (i.e., the family of matrices are singletons), then the
following result, reported without proof, holds:

Proposition 6.7. Let X0 and D be polytopes. Consider the system

x(t + 1) = Ax(t) + Ed(t), with d ∈ D

Then Xk, the k-step reachability set from X0, is a polytope.

Again, if X and D are known, then (6.4), as a special case, provides the expres-
sion of the one-step reachability set. It is worth mentioning that the propagation
of the uncertainty effect cannot be achieved by considering ellipsoidal sets. Indeed,
even in the case in which no parametric uncertainty is present, the one step reachable
set from an ellipsoid is convex, but it is not an ellipsoid.

We have seen that the attempt of propagating the disturbance effect forward in
time can be frustrating even in the case of linear systems, if parameter uncertainties
are to be considered. Thus, working with reachable sets forward in time, unless
for the special case of linear systems with no parameter uncertainties, is very hard.
The reader is referred to [RKKM05a, RK07, LO05] for recent results on the topic.
Luckily enough, there is another bullet to shoot, the controllability one. It will soon
be shown that, by working backward in time, it is possible to keep convexity, a
property which allows to derive efficient numerical algorithms. We will consider
this aspect later when the concept of worst case-controllability will be considered.

6.1.3 Propagation of uncertainties via ellipsoids

A known method to investigate the effect of uncertainty is the adoption of ellipsoids.
However, as already mentioned, the methods based on ellipsoids are conservative,
since they are usually unfit to describe the true reachability set. However, they
typically require less computational effort. We remind the an ellipsoid with center
c, radius 1 and characterizing matrix G−1 � 0 is denoted by

E(c,G−1, 1) = {x : (x − c)T G−1(x − c) ≤ 1}
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Let us consider the case of the following linear system

ẋ(t) = Ax(t) + Bu(t) + Ed(t)

where u(t) is a known input and d(t) is an uncertain input, bounded as

d ∈ E(0,G−1, 1)

(i.e., dTG−1d ≤ 1). Let us assume that the state is initially confined in the following
ellipsoid with center c0

x(0) ∈ E(c0,Q−1, 1)

Then the state of the system is confined at each time in the ellipsoid2 (see [Sch73],
section 4.3.3)

x(t) ∈ E(c(t),Q−1(t), 1) (6.5)

where the center c(t) and the matrix Q−1(t) describing the ellipsoid satisfy the
following equations

ċ(t) = Ac(t) + Bu(t) (6.6)

Q̇(t) = AQ(t) + Q(t)AT + β(t)Q(t) + β(t)−1EGET (6.7)

where β(t) is an arbitrary positive function. A discussion on how to choose the free
function β to achieve some optimality conditions for the ellipsoid E(c(t),Q−1(t), 1)
is proposed in [Che81, CO04, Sch73]. The reader is referred to the recent survey
books [Che94, KV97] for a more complete overview. It is worth noticing that, in the
case of a stable A, assuming u = 0 and a constant function β, the asymptotic value of
Q is achieved by setting Q̇ = 0, thus achieving, as a particular case, equation (4.23).
Note also that, by setting Q(0) = 0 (in this case the expression E(0,Q−1(t), 1) has
no significance for t = 0), the initial state is set to 0. Then the corresponding set
E(0,Q−1(t), 1) (defined for t > 0) includes the set of states reachable in time t from
the origin. It will be seen how to compute, at least approximately, the reachability
set from 0.

There is a corresponding equation for discrete-time ellipsoidal confinement. The
reader is referred to specialized literature (see, for instance, [Sch73], Section 4.3.2)

2In general the inclusion is quite conservative.



6.2 0-Reachable sets with bounded inputs 243

6.2 0-Reachable sets with bounded inputs

In this section, a specific problem, and precisely that of estimating the 0-reachable
set of a linear time invariant system, will be considered. We consider the reachable
sets with pointwise bounded inputs for both discrete and continuous-time systems.
We will consider also the problem of determining reachable sets with energy-
bounded inputs (a problem elegantly solvable via ellipsoidal sets) although such
a class of signals have not been considered in this book so far.

6.2.1 Reachable sets with pointwise-bounded noise

Consider initially the discrete-time system

x(t + 1) = Ax(t) + Ed(t).

Assume that d ∈ D is a convex and closed set including the origin. Denote by RT

the set of all reachable states in T steps. It is not difficult to see that, since 0 ∈ D,

RT ⊆ RT+1

namely the sets RT are nested. The T step reachability set is given by

RT =
T−1∑
k=0

AkED.

and it can be recursively computed as follows:

RT+1 = ART + ED

This involves known operations amongst sets, such as computing the sum and
the image of a set (see Section 3.1.1, page 96). These operations can be done, in
principle, in the environment of convex sets. However, for computational purposes,
sticking to polyhedral sets is of great help. Let us assume that D is a polytope. Then,
assuming the following vertex representation,

RT = V [x(T)
1 , x(T)

2 , . . . , x(T)
rT

], D = V [d1, d2, . . . , ds]

the set RT+1 has the points Ax(T)
j + Edk as candidate vertices, precisely

RT = conv
{

Ax(T)
j + Edk, j = 1, . . . , rT , k = 1, . . . , s

}
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Again the number of candidate vertices grows exponentially. Therefore the algo-
rithm may result difficult to apply to systems of high dimension. It is worth
noticing that the generation of 0-reachability sets for polytopic systems x(t + 1) =
A(w(t))x(t) + E(w(t))d(t), in view of the previous consideration, leads to sets that
are non-convex. However, if one is satisfied with the convex hulls conv{RT}, these
computations can be done in an exact way according to Proposition 6.5 and the
operations in (6.4).

A different approach that may be used for evaluating reachable sets is based on
the hyperplane representation of the set. Since RT is convex and, in general, closed,
it can be described by its support functional as

RT = {x : zT x ≤ φT (z), ∀z}

The support functional φT(z) can be computed as follows. Denote by DT = D ×
D× · · · ×D, (T times), the convex and compact set of finite sequences of T vectors
in D. The T-step reachability set is given by

RT =
{

x = [ E AE A2E . . . AT−1E ]dT , dT ∈ DT
}
.

Therefore

φT(z) = sup
dT∈DT

{
zT [ E AE A2E . . . AT−1E ]dT

}
=

=

T−1∑
i=0

sup
d∈D

zTAiEd

=

T−1∑
i=0

φD(zTAiE),

where φD(·) is the support functional of D. Therefore the evaluation of φT (z) at a
point z requires the solution of the programming problem supd∈D zTAiEd. If D is
a C-set, then “sup” is actually a “max.” Remarkable cases are those in which D is
the unit box of the p norm, with 1 ≤ p ≤ ∞

D = {d : ‖d‖p ≤ 1}

For the above,

max
d∈D

zT AiEd = ‖zTAiE‖q,

where q is such that 1/p+1/q = 1. In particular, if D is assumed to be a hyperbox,
the components of d are all bounded as |di| ≤ d̄i. Without restrictions, we can
assume |di| ≤ 1 a condition always achievable by scaling the columns of matrix E.
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Then

φT (z) =
T−1∑
i=0

‖zTAiE‖1

Example 6.8. Let us consider a very simple example in which the computation can
be carried out by hand (perhaps an isolated case in this book). Consider the matrices

A =
1

2

[
1 1

−1 1

]
, E =

[
1

0

]

and let the disturbance set be D = [−1, 1]. The reachable sets for the first three
steps, also depicted in Fig. 6.3, are

R1 = V̄
([

1

0

])
,

R2 = V̄
([

3/2 −1/2

−1/2 −1/2

])
,

R3 = V̄
([

3/2 −1/2 −3/2

−1 −1 0

])
.

For the above system, consider the problem of determining the largest absolute
value of the output y(t) = x2(t). This problem may be recast as follows: consider

constraints of the form zTx ≤ μ and −zTx ≤ μ, where z =
[
0 1

]T
and determine

the smallest value of μ such that the reachable set is inside a proper μ-thick strip
(see Fig. 6.3).

P̄ [z, μ] =
{

x : |zTx| ≤ μ
}

It is immediately seen that such a value is the support functional of Rt computed in z.
In this example the smallest value in three steps is μmin = 1.

This value can be computed by considering the expression

μmin = φ3(z) = ‖zTE‖1 + ‖zTAE‖1 + ‖zTA2E‖1 = 0 +
1

2
+

1

2

It is clear that, in principle, one could compute in an approximate way the infinite-
time reachability set

R∞ =

∞⋃
k=0

Rk
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Fig. 6.3 The reachability
sets for example 6.8
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by computing Rk with k large. Clearly, this set would be an internal approximation.
The following convergence property holds.

Proposition 6.9. Assume that D is a C-set, that (A,E) is a reachable pair and that
A is asymptotically stable. Then the set R∞ is bounded and convex and its support
functional is given by

φ∞(z) =
∞∑

i=0

φD(zT Ai)

Furthermore, Rk → R∞ in the sense that for all ε > 0 there exists k̄ such that for
k ≥ k̄

Rk ⊆ R∞ ⊆ (1 + ε)Rk

Proof. There are several proofs of the previous result in the literature, for instance
[GC86b]. We just sketch the proof. The support functional is

φ∞(z) = sup
d(·)∈D

zT
∞∑

h=0

AhEd(h) =

=

∞∑
h=0

sup
d(·)∈D

zT AhEd(h) =
∞∑

h=0

φD(zTAhE)

This value is finite because ‖zTAiE‖ ≤ ‖zT‖‖A‖i‖E‖ converges to 0 exponentially,
and then R∞ is bounded. As far as the inclusions are concerned, the first one is
obvious. The second can be proved as follows. Fix k̄ > 0. Any reachable state in
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k ≥ k̄ steps can be written as

x =

k̄−1∑
h=0

AhEd(h) + Ak̄
k−k̄∑
h=0

AhEd(h + k̄) =

=

k̄−1∑
h=0

AhEd(h) + Ak̄sk ∈ Rk̄ + Ak̄Rk−k̄

where sk ∈ Rk−k̄ (it is understood that if k ≤ k̄ then sk = 0), so ‖sk‖ ≤ μ for some
positive μ. Then

νk̄
.
= ‖Ak̄‖μ → 0 as k̄ → ∞

and, denoting by B = N [‖·‖, 1] the unit ball of ‖·‖ we have that the k-step reachable
state is

Rk ⊆ Rk̄ + νk̄B ⊆ (1 + ε)Rk̄

This, in turn, implies that any reachable state is in (1 + ε)Rk̄.

By means of the just reported property one can compute an internal approxima-
tion of the set R∞ by computing Rk. By the way, it turns out that each of the sets
Rk, under the assumption of the theorem, is a C-set as long as D is a C-set. The same
property does not hold for the set R∞, which is convex and bounded, but in general
is not closed. This assertion is easily proved by the next scalar counterexample.

Example 6.10. The infinite time reachability set for the system

x(t + 1) =
1

2
x(t) + d(t), |d(t)| ≤ 1

is clearly the open intervalR∞ = (−2, 2). We stress that we defined the reachability
set as the set of all states that can be reached in finite time 0 < T < ∞, although for
T arbitrary. This is why the extrema are not included.

The situation is different if one considers the set R̄∞ =
∑∞

k=0 AkED which is
closed, indeed the closure of R∞ [RK07].

To achieve an external approximation one can use several tricks. The first one
is that of “enlarging” D. Indeed, if the reachability set Rε

t with disturbances d ∈
(1 + ε)D is considered, by linearity the condition

Rε
t = (1 + ε)Rt

is obtained, thus achieving an external approximation. A different trick is that of
computing the reachable set for the modified system
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x(t + 1) =
A
λ

x(t) +
E
λ

d(t) (6.8)

Denoting by λ̄max = max{|λi|, λi ∈ eig(A)}, for λ̄max < λ ≤ 1, the system
remains stable, so that the reachability sets of the modified system Rλ

k are bounded.
For any 0 < λ < 1, AkED ⊂ (A/λ)k(E/λ)D, and then

RT ⊂ Rλ
T =

T−1∑
k=0

(
A
λ

)k E
λ
D

For λ approaching 1, Rλ
k approaches Rk from outside. An interesting property is

the following.

Proposition 6.11. Assume that D is a C-set, that (A,E) is a reachable pair and that
A is asymptotically stable. Let λ < 1 be such that A/λ is stable. Then there exists k̄
such that, for k ≥ k̄, the set Rλ

k , computed for the modified system (6.8), is robustly
positively invariant for the original system and

R∞ ⊂ Rλ
k

The proof of the above proposition can be deduced by the fact that:

• Rλ
∞ is positively invariant for the modified system (this fact will be reconsidered

later) and then, in view of Lemma 4.31, it is contractive for the original system;
• Rλ

k → Rλ
∞, which has been shown in Proposition 6.9.

We refer the reader to [RKKM05a, RKK+05] for further details on this kind of
approximations.

Let us now consider the problem of evaluating the reachability set for continuous-
time system

ẋ(t) = Ax(t) + Ed(t).

It is at this point rather clear that the problem cannot be solved by considering a
sequence Rt, because such a set is not polyhedral even if D is such. Therefore the
hyperplane method, previously considered for discrete-time systems and based on
the support functional, seems the most appropriate. Let Rt be the set of all the states
reachable in time t from the origin, with D a C-set. Let us consider the support
functional φt(z) of Rt. Then, in view of the following chain of equalities

φt(z) = sup
d∈D

zT
∫ t

0

eAσEd(σ)dσ =

∫ t

0

sup
d(σ)∈D

zT eAσEd(σ)dσ =

∫ t

0

φD(zTeAσE)dσ
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the reachability set in time t turns out to be the convex set characterized in terms of
support functional as

Rt =
{

x : zTx ≤ φt(z), ∀z
}

The reader can enjoy her/himself in investigating special cases of D given by her/his
preferred norms. Let us consider the single input case and the set D = [−1, 1]. In
this case the support functional of D is φD(δ) = |δ| and then

φt(z) =
∫ t

0

|zTeAσE| dσ (6.9)

By (possibly numerical) integration, as done and reported graphically in the next
example, it is possible to determine φt(z) and φ∞(z), the support functional of R∞,
at least approximately.

Example 6.12. By using Eq. (6.9), the reachable sets Rt for the continuous-time
dynamic system

ẋ(t) =

[−0.3 1

−1 −0.3

]
x(t) +

[
1

−1

]
d(t)

when the disturbance is bounded as |d(t)| ≤ 1, were computed for t = 1, 2, 4, 100.
Such sets are depicted in Figure 6.4.

Fig. 6.4 Reachable sets with
pointwise-bounded noise for
Example 6.12, computed for
different values of t
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Henceforth we establish some properties that concern the reachability sets in both
continuous and discrete-time case. We start with the following basic fact.

Proposition 6.13. Assume that D is a C-set, (A,E) is a reachable pair and that A
is asymptotically stable. Then R∞ is the smallest robustly-positively-invariant set
for the system, precisely any robustly-positively-invariant set includes R∞.

Proof. The discrete-time case only is considered (the continuous-time case proof is
in practice the same). The fact that R∞ is robustly-positively-invariant is obvious.

Proving minimality is equivalent to showing that any invariant set P contains
R∞, say x ∈ R∞ implies x ∈ P . Assume then that P is invariant, let k be arbitrary
and let x̄ ∈ Rk be an arbitrary vector. Let B be any neighborhood of the origin such
that any state of B can be driven to 0 in finite time with a signal d(t) ∈ D. Consider
any x(0) ∈ P and let d(t) = 0 until the state x(t1) ∈ B. For t ≥ t1 take the sequence
d(t) ∈ D which drives the state to zero at t2, x(t2) = 0. Then consider the sequence
of further k inputs d(t) ∈ D which drive the state x(t3) = x̄. Since P is robustly
invariant, x̄ ∈ P . Since x̄ is arbitrary, P contains any point of Rk and since k is also
arbitrary, P contains any point of R∞.

The set R∞ is the limit set of the stable system (A,E). In other words, for any
x(0), x(t) → R∞3. This fact is important because it allows to characterize the
asymptotic behavior of a system. As an example of application, let us consider the
problem of characterizing the worst case state estimation error.

Example 6.14 (Observer asymptotic error). Let us consider an observer-based
control for the system

(x(t + 1)) ẋ(t) = Ax(t) + Bu(t) + Ed(t)

y(t) = Cx(t) + v(t)

in which d and v are external inputs subject to d(t) ∈ D and v ∈ V . In most cases
these inputs represent noise and cannot be measured. If a standard linear observer is
designed,

(z(t + 1)) ż(t) = (A + LC)z(t) + Bu(t)− Ly(t)

e(t) = z(t) − x(t)

where e(t) is the error, the error equation results in

(e(t + 1)) ė(t) = (A + LC)e(t) − Lv(t) − Ed(t) (6.10)

It is apparent that, under persistent noises d and v, the observer error does not
vanish asymptotically. The asymptotic effect of the noise can be clearly evidenced

3In the sense that δ(x(t),R∞), the distance from x(t) to R∞ converges to 0.
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by computing the reachability set of the error system (6.10). If an invariant set E for
this system is computed, then it is possible to assure that, whenever e(0) ∈ E ,

x(t) ∈ z(t) − E

t > 0. We will come back on this problem in Chapter 11.

So far the problem of determining the reachability set has been considered under
the following assumptions: reachability of (A,E), asymptotic stability of A, and D
a C-set. The assumption that D is a C-set is reasonable. If D has an empty interior,
but 0 is inside the relative interior4 then it is possible to reconsider the problem by
redefining E. to this subspace, namely by involving a new matrix ED, where D is
any basis of such a subspace.

Conversely there are cases in which the constraint set does not include 0 as an
interior point. In this case the problem has to be managed in a different way. For
instance, one can decompose d ∈ D by choosing a constant d0 ∈ intD. Then
d = d0 + d1, where d1 ∈ D1 = D − d0. Now, the translated disturbance d1 is
in a C-set D1. The effect of d0 and d1 can be investigated separately. An interesting
case is that of systems with positive controls. We do not analyze this case but we
refer the reader to specialized literature, such as [FB97].

Then let us still assume that D is a C-set, but let us remove the stability or the
reachability assumption.

Proposition 6.15. For the 0-reachability sets Rk the following properties hold:

• Rk ⊆ reach(A,E), the reachable space of (A,E).
• R∞ is bounded if and only if the reachable sub-system of (A,E) is asymptotically

stable.
• Assume that (A,E) is reachable, and denote by Xsta and Xuns the eigen-spaces of

A associated with the stable and the unstable modes. Then the reachable set is
given by

R∞ = Rsta
∞ + Xuns

where Rsta∞ denotes the set of reachable states in the subspace Xsta.

Proof. The first statement is obvious. The second statement is obvious in its
sufficient part because, by the previous statement we can consider the reachable
sub-system and conclude that the reachability set is bounded. As far as necessity is
concerned, assume that the reachable sub-system is unstable. Then, by means of a
bounded input, it is possible to reach from x(0) = 0 an eigenvector v̄ associated
with an unstable eigenvalue λ (in general an unstable subspace) in time [0, t̄] and,
assuming d(t) = 0 for t > t̄ so that x(t) = eλ(t−̄t)v̄, it is immediate to see that

40 is in the interior relatively to the smallest subspace including D.



252 6 Set-theoretic analysis of dynamic systems

x(t) cannot be bounded. The third statement requires more work and its proof is
postponed to the problem of controllability of systems with bounded-control.

6.2.2 Infinite-time reachability and l1-norm

We now investigate an important connection between the infinite-time reachability
set R∞ and the l1-norm, often referred to as ∞ to ∞ induced norm or peak-to-peak
norm of a system. Consider the SISO stable system (A,E,H)

x(t + 1) = Ax(t) + Ed(t)

y(t) = Hx(t)

The ∞ to ∞ induced norm is defined as

‖H(zI − A)−1E‖∞,∞
.
= sup

t≥0,x(0)=0,|d(t)|≤1

|y(t)|

The reason why this norm is referred to as l1-norm is that it turns out to be the
l1-norm [DP87] of the sequence of Markov parameters

‖H(zI − A)−1E‖∞,∞ = ‖H(zI − A)−1E‖l1
.
=

∞∑
k=0

|HAkE|

In the general case of a MIMO (possibly not strictly proper) system the l1-norm can
be defined by replacing | · | by ‖ · ‖, precisely

‖H(zI − A)−1E + D‖∞,∞
.
= sup

t≥0,x(0)=0,‖d(t)‖≤1

‖y(t)‖

Such a norm can be evaluated as the sum of a series [DP87]

‖H(zI − A)−1E + D‖∞,∞ =

‖H(zI − A)−1E + D‖l1
.
= maxi{‖Di‖1 +

∑∞
k=0 ‖[HAkE]i‖1} (6.11)

where Di and [HAkE]i denote the ith row of the matrices D and HAkE, respectively.
A set-theoretic equivalent condition is given in the next proposition.

Proposition 6.16. Consider the asymptotically stable system (A,E,H) (i.e.,
assume D = 0). Then the smallest value μinf of μ such that R∞ is included in
the strip

P̄[H, μ1̄] = {x : ‖Hx‖ ≤ μ}
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is equal to the l1-norm of the system:

μinf = inf{μ : R∞ ⊂ P̄[H, μ1̄]} = ‖H(zI − A)−1E‖∞,∞ = ‖H(zI − A)−1E‖l1

In the single output case this is the support functional of R∞ evaluated in H, i.e.
φ∞(H) = φ∞(−H) (by symmetry).

When D is non-zero, the following holds:

Proposition 6.17. Consider the asymptotically stable system (A,E,H,D), with p
outputs. Then the l1-norm of ‖(A,E,H,D)‖l1 is the smallest value of μ for which
the 0-reachability set R∞ is included in the set

P̄ [H, μ̃1̄] {x : ‖Hix‖ ≤ μ− ‖D‖1, i = 1, 2, . . . , p}

where μ̃ = μ− ‖D‖1
Proof. It is known [DP87] hat the l1-norm condition ‖H(zI − A)−1E + D‖l1 = μ
is equivalent to the fact that for x(0) = 0, the condition ‖y(t)‖∞ ≤ μ holds for all
‖d(t)‖∞ ≤ 1, namely,

−μ ≤ yi(t) ≤ μ,

which is, in turn, equivalent to

−μ ≤ Hix(t) + Did(t) ≤ μ

for all ‖d(t)‖∞ ≤ 1. Since the current value of d(t) does not depend on x(t) and can
be any arbitrary vector with ∞-norm not greater than 1, it is possible to write

− min
‖d‖∞≤1

Did − μ ≤ Hix(t) ≤ μ− max
‖d‖∞≤1

Did

Then the proof is completed since

− min
‖d‖∞≤1

Did = max
‖d‖∞≤1

Did = ‖Di‖1

The previous proposition represents an interesting interpretation of the ‖·‖l1 norm of
a system in terms of reachability. In practice, the ‖·‖l1 norm less than μ is equivalent
to the inclusion of R in P̄[H, μ1̄]. It will be soon shown that this interpretation is
very useful to compute the peak-to-peak induced norm in those cases (i.e., polytopic
systems) in which the computation via Markov parameters is not possible.
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6.2.3 Reachable sets with energy-bounded noise

In this section, a characterization of the disturbances which is unusual in the book
is analyzed. Precisely, the focus of the present section are linear dynamic systems
of the form

ẋ(t) = Ax(t) + Ed(t).

with disturbances bounded as follows:
∫ ∞

0

dT(t)Rd(t) dt ≤ 1, with R � 0

To avoid unnecessary complications, it is assumed, without lack of generality, that
R = I, since if this is not the case one can replace the matrix E by ER−1/2 and
consider the input d̂ = R1/2d. Let us then assume

∫ ∞

0

dT(t)d(t) dt ≤ 1. (6.12)

Denote by B(t) the set of all the functions having energy bounded by 1 on the
interval [0, t], precisely such that

B(t) =
{

d(t) :
∫ t

0

dT(t)d(t) dt ≤ 1

}

Note that the set of reachable states with inputs d ∈ B(t) is non-decreasing with t,
precisely, B(t′) includes B(t) for t′ > t. Let us consider the set of all 0-reachable
states with inputs bounded as above. It turns out that this set is an ellipsoid according
to the following theorem. We remind that an ellipsoid D(Q) = D(Q, 1) can be
described as in (3.14)

D(Q) =
{

x : zTx ≤
√

zTQz, for all z
}

where
√

zT Qz is its support functional 5

Theorem 6.18. Let A be a stable matrix and let (A,E) be a reachable pair. The
closure of the set of all the states reachable from x(0) = 0 with inputs bounded as
in (6.12) is given by the ellipsoid D(Q), where Q is the reachability Gramian, i.e.
the unique solution of

QAT + AQ = −EET

5Note that D has not the same meaning of the previous subsection, but represents now the ellipsoid.
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Proof. Consider any state x(t) reachable at time t with energy bounded as

∫ t

0

dT(σ)d(σ) dσ ≤ 1.

Take any vector z and consider the following optimization problem

μt = sup
d∈B(t)

zTx(t) = sup
d∈B(t)

∫ t

0

zTeAσEd(t − σ) dσ = sup
d∈B(t)

(
zTeA(·)E, d(·)

)

where (·, ·) is a scalar product in the Hilbert space of the square measurable
functions defined on the time interval [0, t] with values in IRp [Lue69]. Such an
optimization problem has solution

μt = ‖zTeA(·)E‖2 =
√∫ t

0

zTeAσEETeATσzdσ =
√

zTQ(t)z

where

Q(t)
.
=

∫ t

0

eAσEETeATσdσ

Therefore the set of all reachable states in time t is the ellipsoid D(Q(t)). By obvious
mathematical speculations, such an ellipsoid is non-decreasing with t, precisely,
zTQ(t)z ≤ zTQ(t′)z for t ≤ t′. Now consider the identity

∫ t

0

d
dσ

[
eAσEETeATσ

]
dσ =

∫ t

0

[
AeAσEETeATσ + eAσEETeATσAT

]
dσ

= A

[∫ t

0

eAσEETeATσdσ

]
+

[∫ t

0

eAσEETeATσdσ

]
AT = AQ(t) + Q(t)AT

On the other hand, we can write the same quantity as

∫ t

0

d
dσ

[
eAσEETeATσ

]
dσ = eAtEETeAT t − EET =

=
d
dt

∫ t

0

eAσEETeATσ dσ − EET = Q̇(t)− EET

and notice that Q(t) is solution of the following equation

Q̇(t) = AQ(t) + Q(t)AT + EET (6.13)
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Now, since A is stable, a finite limit value Q = limt→∞ Q(t) exists and is achievable
by setting Q̇ = 0. Then the theorem is proved, if we remind that D(Q(t)) is non-
decreasing and then included in the limit value D(Q). Moreover, for any x̄ in the
boundary of D(Q), we can find points in D(Q(t)) arbitrarily close to x̄, so D(Q) is
the closure of all D(Q(t)).

The discrete-time version of the theorem is the following:

Theorem 6.19. Consider the system

x(t + 1) = Ax(t) + Ed(t)

with A stable and (A,E) reachable. The closure of the set of all the states reachable
from x(0) = 0 with inputs bounded as

∞∑
t=0

d(t)T d(t) ≤ 1

is given by the ellipsoid D(Q), where Q is the discrete-time reachability Gramian
which is the unique solution of

AQAT − Q = −EET

Proof. (Sketch). The proof of the theorem is basically the same as the previous one.
Let

Q(t) =
t−1∑
k=0

AkEET(AT)k

so that

zT [Ed(t − 1) AEd(t − 2) A2Ed(t − 3) . . .At−1Ed(0)] =
√

zTQ(t)z,

say the ellipsoid D(Q(t)) is the t-step reachability set with bounded energy. The
matrix Q(t) clearly satisfies the equation

Q(t + 1) = AQ(t)AT + EET .

and its limit value is the solution of the Lyapunov equation in the theorem statement.

Remark 6.20. The same results might have been obtained, both in the discrete
and the continuous-time case, by resorting to the adjoint operator theory. We have
skipped that powerful and elegant approach, since the main focus here has been put
on set-theoretic aspects.
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6.2.4 Historical notes and comments

The history of set-propagation is wide, especially as far as the computation of
reachable sets is concerned. The first contribution are due to the seminal works
of Bertesekas and Rhodes [BR71a] and Glower and Schweppe [GS71, Sch73],
followed by several further contributions of which only a portion is mentioned in this
book. We have mentioned the work by Chernousko and Kurzhanski[Che81, KV97,
Che94], which provided techniques for ellipsoidal approximation. Considering the
problem of the computation of the reachability sets, the available literature is enor-
mous and providing a survey is a major challenge. Among the first contributions,
it has to be mentioned [PN71], where several types of input bounds have been
considered and [HR71], where a numerical algorithm for the determination of
reachable sets via amplitude bounded inputs is provided. In [GC86b] and [GC87]
it has been exploited the fact that the 0-reachable sets are the 0-controllable
set for the inverse system and an algorithm based on polyhedral sets has been
proposed. The hyperplane method idea is due to [SS90b] and [GK91b]. See also
[Gay86, Las87, SS90a, Las93] for further results on the topic.

For further references, we refer to the survey [Gay91] or to [RKKM05a] for
some more recent contributions concerning the computation and approximation of
the minimal invariant set [RKKM05a].

6.3 Stability and convergence analysis of polytopic systems

Stability analysis is a fundamental problem in system theory. For linear systems this
trivial task requires the computation of the eigenvalues of a matrix. This method
cannot be applied when dealing with an uncertain system. Let us consider again a
system of the form

x(t + 1) = A(w(t))x(t), (respectively, ẋ(t) = A(w(t))x(t))
A(w) =

∑s
i=1 Aiwi,

∑s
i=1 wi = 1, wi ≥ 0

(6.14)

with the basic questions:

• is the system stable?
• assumed that it is, how fast does it converge?

These questions will be faced next by means of quadratic and non-quadratic
Lyapunov functions.
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6.3.1 Quadratic stability

One approach to the problem is inspired by the well-known fact that any stable
linear time-invariant system admits a quadratic Lyapunov function, leading to the
following criterion.

Theorem 6.21. The discrete-time (resp. continuous-time) system (6.14) is stable if
all the systems share a common quadratic Lyapunov function, equivalently, if there
exists a positive definite matrix P such that

AT
i PAi − P ≺ 0, (respectively AT

i P + PAi ≺ 0)

for i = 1, 2, . . . , s.

Corollary 6.22. The condition of the theorem is equivalent to the existence of ε >
0, β > 0 or 0 ≤ λ < 1 such that, for all i

AT
i PAi − λ2P  0, (respectively AT

i P + PAi + 2βP  0), P � εI

The easy proof of this theorem (the corollary follows obviously) is not reported
here. We will come back on it later, when we will show that the provided condition
is sufficient, but not necessary at all. To provide necessary and sufficient conditions
one might think about resorting to another family of Lyapunov functions. The class
of polyhedral Lyapunov functions is an appropriate one as we will show soon.

6.3.2 Joint spectral radius

To provide non-conservative and constructive solutions to the stability analysis
of a Linear Parameter-Varying (LPV) system one can consider the procedure
for the construction of the largest invariant and the basic finite determination of
Theorem 5.17. To investigate on this matter, a connection with the joint spectral
radius is established.

Given a square matrix A its spectral radius is defined as the largest modulus of its
eigenvalues Σ(A) = max{|λ| : λ ∈ eig(A)}. For a set of matrices the joint spectral
radius of the set is defined as the supremum of the spectral radius of all possible
products of generating matrices.

Definition 6.23 (Joint spectral radius). Given a finite set of square matrices
[A1,A2, . . . ,As], the quantity

Σ(A1,A2, . . . ,As)
.
= lim sup

k≥0
max
Ck∈Ik

Σ(ΠCk)
1
k (6.15)

is said the joint spectral radius of the family [RS60].
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We remind that Ck is a string of k elements of {1, 2, . . . , s} and ΠCk is the product
of the matrices Ai indexed by the corresponding elements. The above quantity can
be equivalently defined as

Σ(A1,A2, . . . ,As) = lim sup
k→∞

max
Ck∈Ik

‖ΠCk‖1/k.

(the quantity does not depend on the adopted norm) and it is related to the notion
of Lyapunov exponent [Bar88a, Bar88b, Bar88c]. The following property is well
known:

Proposition 6.24. The robust exponential stability of the discrete-time system
x(t + 1) = A(w(t))x(t) as in (6.14) is equivalent to Σ(A1,A2, . . . ,As) < 1.

Proof. It is obvious that x(t + 1) = A(w(t))x(t) stable implies that the switching

x(t + 1) = A(k)x(t), A(k) ∈ A = {A1,A2, . . . ,As}

is stable hence Σ(A1,A2, . . . ,As) < 1. The converse statement can be proved by
using Proposition 6.5. Consider any initial polytopic set X0. The T-steps reachable
set of the discrete inclusion is included in the convex hull of the points

AiT−1AiT−2 . . .Ai0vj, Ait ∈ A, vj ∈ vert{X0}

Thus, if Σ(A1,A2, . . . ,As) < 1, these points converge to 0 as T → ∞.

The following theorem holds.

Theorem 6.25. Assume that the matrices in the set have no common proper non-
trivial invariant subspaces6. Then the following implications hold.

i) If the spectral radius Σ(A1,A2, . . . ,As) < 1, then for any initial polyhedral
C-set X , the largest invariant set S included in X is represented by a finite
number of inequalities.

ii) Conversely, if Σ(A1,A2, . . . ,As) > 1, then there exists k̄ such that

S(k̄) ⊂ int{X}

Proof. See [BM96b].

It has to be stressed that claim i) of the theorem holds even in the case in which
the Ai share a common invariant subspace, which is the case of a single matrix A
[GT91]. Statement ii) requires the assumption (see Exercise 11).

As previously mentioned, this implies that the procedure for computing S can be
used to check the stability of a system. The following theorem formalizes this fact.

6Say there is no proper subspace G, {0} �= G ⊂ IRn such that AiG ⊂ G, for all i.
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Let us consider the sequence (5.25) of sets S(k) computed for the modified system

z(t + 1) =
A(w(t))

λ
z(t) (6.16)

(note that x(t) = z(t)λt if x(0) = z(0)), which turns out to be

S(k)
λ = {x : F

ΠCh

λh
x ≤ 1, Ch ∈ Ih h = 0, 1, 2, . . . , k}

The next theorem formalizes some of the properties concerning the spectral radius.

Theorem 6.26. Define the following numbers:

λ1 = inf{λ > 0 : the modified system (6.16) is stable}
λ2 = inf{λ > 0 : ‖x(t)‖ ≤ C‖x(0)‖λt, for some C > 0}
λ3 = inf{λ > 0 : S∞

λ is a C-set}
λ4 = inf{λ > 0 : S∞

λ = S(k)
λ for a finite k}

Then

λ1 = λ2 = λ3 = λ4 = Σ(A1,A2, . . . ,As)

Proof. The fact that λ1 = λ2 = Σ(A1,A2, . . . ,Ak) is a well-known result, see,
for instance, [Bar88a, Bar88b, Bar88c]. The remaining equalities are immediate
consequence of the previous theorem.

It follows immediately from Theorems 6.25 and 6.26 that, in the case of a single
linear time-invariant system x(t) = Ax(t), the procedure stops in a finite number of
steps if Σ(A) < λ for any C-set X or determines a set S(k) which is in the interior
of X if Σ(A) > λ (this is in perfect agreement with the earlier result in [GT91]).

A remarkable consequence which can be drawn from Theorem 6.26 is that, in
principle, the joint spectral radius can be approximately computed by bisection, by
increasing (resp. decreasing) λ if the numeric procedures, applied to the modified
system, stops unsuccessfully (resp. successfully). As previously pointed out, the
procedure produces a number of constraints which increases enormously when
λ � Σ. This is in agreement with the work presented in [TB97, BT00] which
analyzes the complexity of computing or approximating, the joint spectral radius
of matrices and which can provide an explanation of this phenomenon (although
there are particular interesting cases in which the complexity can be reduced, see
[BNT05]) The reader is referred to [BN05] for more details and references on
this topic. We will show later also that the considered type of procedures can be
used to compute, beside the spectral radius, other performance indices for uncertain
systems.
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6.3.3 Polyhedral stability

To face the problem of robust stability analysis we can exploit the fact that
polyhedral stability is equivalent to stability for an LPV system, as stated next.

Theorem 6.27. The following statements are equivalent.

1. The discrete-time (continuous-time) system (6.14) is asymptotically stable.
2. The discrete-time (continuous-time) system (6.14) is exponentially stable, namely

there exists (C, λ), 0 ≤ λ < 1 (resp. (C, β), β > 0) such that

‖x(t)‖ ≤ C‖x(0)‖ λt (6.17)

(respectively

‖x(t)‖ ≤ C‖x(0)‖ e−βt) (6.18)

3. The system admits a polyhedral norm ‖Fx‖∞ as a Lyapunov function. Precisely,
there exists 0 ≤ λ < 1 (resp. β > 0) such that

‖FA(w)x‖∞ ≤ λ‖Fx‖∞, (resp. D+‖FA(w)x‖∞ ≤ −β‖Fx‖∞, ) ∀w

4. All the vertex systems x(t + 1) = Aix(t) share a common polyhedral Lyapunov
function ‖Fx‖∞.

5. For any signal v(t), with ‖v(t)‖ ≤ ν, there exist β, C1 and C2 such that the
solution of the system x(t + 1) = A(w(t))x(t) + v(t) (resp. ẋ(t) = A(w(t))x(t) +
v(t)) is bounded as

‖x(t)‖∗ ≤ C1‖x(0)‖ λt + C2, (resp. ‖x(t)‖∗ ≤ C1‖x(0)‖ e−βt + C2)

Proof. The proof of the equivalence of the first three statements is reported in
[MP86a, MP86b, MP86c] and [Bar88a, Bar88b, Bar88c]. See also the work in
[BT80]. The equivalence 3–4 is easy, while the equivalence of statement 5 to the
other ones is a tedious exercise (suggested but not required to the reader).

The theorem, as stated, is non-constructive. To check stability of an assigned
discrete-time polytopic system (along with the determination of a proper poly-
hedral Lyapunov function, whenever stable) it is possible to proceed iteratively
as previously mentioned. Indeed it is possible to use the procedure described in
Section 5.4, starting from an arbitrary polyhedral set X (0). Precisely, given the
initial set X (0) = {x : ‖F(0)x‖∞ ≤ 1} it is possible to recursively compute the sets

X (k+1) = {x :∈ X (k) : Ai x ∈ X (k), i = 1, 2, . . . , s}
= {x : ‖F(k)x‖∞ ≤ 1, ‖F(k)Ai x‖∞ ≤ 1, i = 1, 2, . . . , s}
.
= {x : ‖F(k+1)x‖∞ ≤ 1}
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Theorem 6.25 assures that if the system is stable then no matter how the polyhedral
C-set X is chosen the largest invariant set included in it is also a polyhedral C-set
and can be determined by a recursive procedure in a finite number of steps.

This theorem can be used “the other way around.” Precisely, one can try to
compute Σ(A1,A2, . . . ,As) by computing the largest invariant set for the system

x(t + 1) =
A(w(t))

λ
x(t)

and to reduce/increase λ if the procedure stops successfully/unsuccessfully. In
detail, given a tentative λ one runs the procedure and

• decreases λ if for some k̄

S(k̄) = intS(k̄−1)(= S)
• increases λ if for some k̄

S(k̄) ⊂ int{X (0)}

According to Theorem 6.25, under the assumption that the matrices do not admit
a common proper invariant subspace (unless for the critical value λ = Σ), both
conditions are detected in a finite number of steps. We will come back on this later,
when we will deal with the more general problem of computing the best transient
estimate.

For the continuous-time case one can, once again, resort to the EAS

x(t + 1) = [I + τA(w)]x(t)

supported by the next proposition.

Proposition 6.28. The following two statements are equivalent.

• The continuous-time system is stable and admits the Lyapunov function ‖Fx‖∞.
• There exists τ > 0 such that the EAS is stable and admits the Lyapunov function

‖Fx‖∞.

Proof. See [BM96a].

Therefore, the stability of a continuous-time polytopic system can be established by
applying the previously described bisection algorithm to the EAS. In this case, there
are two parameters on which it is necessary to iterate: λ and τ . One possibility to
avoid this double iteration is that of iterating over the parameter τ only by assuming
λ(τ) = 1− ρτ2, as already mentioned in Section 5.2.

A possibility of reducing the complexity of the computation of the Lyapunov
function is based on the following Proposition, which basically states that the
stability of a differential inclusion is unchanged if we multiply it by a positive
function.
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Proposition 6.29. Consider the differential inclusion

ẋ(t) = ρ(t)A(w(t))x(t), 0 < ρ− ≤ ρ(t) ≤ ρ+ (6.19)

Then its stability does not depend on the bounds 0 < ρ− ≤ ρ+. In particular it is
stable iff ẋ(t) = A(w(t))x(t) is stable.

Proof. We prove sufficiency, since necessity is obvious. If ẋ(t) = A(w(t))x(t) is sta-
ble, then it admits a polyhedral Lyapunov functionΨ(x) such that D+Ψ(x,A(w)x) ≤
−βΨ(x). If we consider this function for (6.19) we get, denoting by h′ = hρ,

D+Ψ(x, ρA(w)x) = lim sup
h→0+

Ψ(x + hρA(w)x)− Ψ(x)
h

= lim sup
h′→0+

Ψ(x + h′A(w)x) − Ψ(x)
h′ ρ = ρD+Ψ(x,A(w)x) ≤ −βρΨ(x)

Note that multiplication by ρ > 0 is equivalent to a time scaling: it changes the
speed of convergence, but cannot compromise stability.

As a simple corollary, in the case of polytopic systems we can replace the
generating matrices by scaled matrices

A(w) =
s∑

i=1

ρiAi wi

with positive scalars ρi > 0 without affecting the stability/instability properties.
As an immediate consequence, when we consider the EAS for the computation of
a polyhedral function, we can adopt different τi for different matrices. Precisely
stability of the continuous-time system can be proven by computing a polyhedral
function for the “EAS”.

x(t + 1) = [I +
s∑

i=1

τiAiwi]x(t)

This property can be applied as follows. Given a single stable A, the eigenvalues
of the EAS are 1 + τλi, where λi are the eigenvalues of A. If τ is small enough,
then I + τA is stable, but if τ is too small, then the discrete-time eigenvalues are
squeezed to 1, so that the discrete-time contractivity is very low. In general, different
matrices A might suggest different values of τ . We can take advantage of this fact
in computing a Lyapunov function, reducing both the computation time and the
function complexity.

Example 6.30. Consider the polytopic system generated by the two matrices

A1 =

[
0 1

− 1
4 −1

]
A2 =

[
0 1

− 7
4 −1

]
.
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Fig. 6.5 The computed
regions with a single τ = 0.2
(external) and with two
different values τ1 = 0.5 and
τ2 = 0.2 (internal)
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The polyhedral Lyapunov function computed with τ = 0.2 considering the unit
square (unit ball of ‖ · ‖∞) as initial set, produced a unit ball with 28 delimiting
planes. The eigenvalues of A1 are −0.5,−0.5 while those of A2 are −0.5± 1.225j.
Those of the EAS are 0.9, 0.9, and 0.9± 0.24495j. If we notice that it is reasonable
to take a smaller τ for A1 than for A2, then we can take τ1 = 0.5, So the EAS
has eigenvalue 0.75, 0.75, and τ2 = 0.2. The resulting function is represented by a
unit ball of 14 delimiting planes (Fig. 6.5). Clearly by no means the stability of the
two discrete-time matrices assures convergence and continuous-time stability. In
general, we will have to reduce all the τi when the procedure stops unsuccessfully.

6.3.4 The robust stability radius

Let us now consider the problem of computing the “robustness measure.” Consider
the system ẋ(t) = A(w(t))x(t) (or x(t + 1) = A(w(t))x(t)), with

A(w) = [A0 +Δ(w(t))], Δ(w) ∈ ρW

where W is compact and Δ(w) is continuous. The robustness measure we are
thinking about is reported in the next definition.

Definition 6.31. Assuming A0 a stable matrix

ρST = sup{ρ : the system is robustly stable}

In the discrete-time case it is possible to apply the bisection procedure, precisely
by starting with a tentative ρ, and to increase/reduce it if the computed set
includes/does-not-include the origin in its interior. Thus, by applying the proposed
procedure and by iterating by bisection on ρ, it is possible to derive an upper and
lower bound on ρST .
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This algorithm may be directly applied to polytopic discrete-time systems in
which

A(w) = A0 + ρ[

s∑
i=1

Δiwi],

s∑
i=1

wi = 1, wi ≥ 0

with Δi assigned. As mentioned above, to consider continuous-time systems, one
can use the EAS and iterate over τ .

6.3.5 Best transient estimate

Detecting stability only can be a non-sufficient task. One could be interested in
evaluating the transient quality. To this aim, one can evaluate the evolution with
respect to a given norm ‖ · ‖∗ by computing a transient estimate.

Definition 6.32. A transient estimate is a pair (C, λ) (respectively (C, β)) for
which (6.17) (respectively (6.18)) holds for the solution.

Note that, in principle, λ may be any non-negative number and β any number.
In other words, it is possible to estimate the transient of an unstable system (thus
determining the “speed of divergence”).

Let us consider the problem of computing a transient estimate with respect to the
∞-norm ‖x‖∞ (the procedure immediately generalizes to any polyhedral norm of
the form ‖Fx‖∞). This can be done, in the discrete-time case, by performing the
following steps.

Procedure. Computation of a transient estimate, given a contraction factor λ.

1. Fix a positive λ < 1.
2. Compute the largest invariant set Pλ inside the unit ball of the ∞-norm X =

N [‖ · ‖∞, 1], for the modified system x(t + 1) = (A(w)/λ)x(t). Note that Pλ is
the largest λ-contractive set for the considered system.

3. If Pλ has empty interior, then the transient estimate does not exist for the given
λ (then one can increase λ and go back to Step 2).

4. Determine Cλ > 0 as the inverse of the largest factor μ such that μX is included
inside Pλ

C−1
λ = max

μ>0
s.t. μX ⊆ Pλ

It can be shown that Cλ is the smallest constant such that (Cλ, λ) is a transient
estimate. It is then clear that, by iterating over λ, it is possible to determine the
“best transient estimate” (see [BM96a] for details). It turns out that if the system
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converges (or diverges) with speed λ0 < λ, then the set Pλ is a polyhedral set
and, as we have already seen, the procedure for its generation converges in a finite
number of steps.

The same procedure can be used for continuous-time systems as follows. We can
fix β > 0 and consider a small τ such that λ(τ) = 1 − τβ < 1. Then apply the
procedure with such a λ to the EAS. It turns out that if the system converges with
speed of convergenceλ0 > β then, for sufficiently small τ , it is possible to compute
a λ-contractive polyhedral set for the EAS and then a β-contractive polyhedral set
with β = (1− λ)/τ .

Note that in principle, the transient estimate could be computed by means of any
Lyapunov function, possibly quadratic, as shown later on. However the results are
conservative.

Example 6.33. We report as an example the continuous-time system considered in
[Zel94], with m = 2

A1 =

[
0 1

−2 − 1

]
A2 =

[
0 1

−2−Δ − 1

]
.

Δ = Δ(t) ≥ 0. Quadratic stability is assured for this system if and only if
0 ≤ Δ < ΔQ ≈ 3.82 [Zel94] (this bound can be also obtained via standard
continuous-time H∞ analysis, as it will shown later). Zelentsowsky [Zel94] found
the stability limit ΔZ = 5.73, say a 50% improvement. By using homogeneous
polynomial Lyapunov functions and LMI techniques, in [CGTV03] it was shown
that stability is assured for ΔS = 6.7962. Though not explicitly dealing with
transient estimates, it is worth recalling that those techniques can be applied to
the problem as well. Using the (EAS) with τ = 2.5 × 10−4, λ = 1 − 1 × 10−9

and the polyhedral Lyapunov function construction, we were able to determine a
polyhedral function for ΔP = 6.97. The computed transient estimate corresponding
to ΔQ, ΔZ , and ΔP are (CQ, βQ) = (2.5439, 0.14), (CZ , βZ) = (2.7068, 0.02)
(CP, βP) = (2.7805, 4.0× 10−6). The unit ball {x : ‖Fx‖∞ ≤ 1} of the Lyapunov
function corresponding to ΔP is reported in Fig. 6.6.

As it has been underlined several times, polyhedral Lyapunov functions are non-
conservative. However, they generally require algorithms for the generation of their
unit ball that are extremely heavy from the computational standpoint. The number
of planes necessary for the description of such sets can drive out-of-range the most
powerful machines, even for trivial instances. Clearly a transient estimate can be
computed by means of quadratic function. If a positive definite matrix P such that

AT
i P + PAi + 2βI ≺ 0

is found, then the corresponding family of ellipsoids E(P, ν) is β-contractive. This
in turn implies that one can take a β-contractive ellipsoid E(P, ν) included in the
box X and including μX for a proper μ ≤ 1. Then (C, β) with C = 1/μ is
a transient estimate. Clearly such a transient estimate is, in general, conservative,
not only because β is smaller, but also because C is quite greater than the best
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Fig. 6.6 The computed
region for β = 4.0× 10−6

and the inscribed region
1/CPX
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transient estimate (see Exercise 12). On the other hand, the computation is much
easier. Indeed in the inclusion and containment constraints

μX ⊂ E(P, ν) ⊂ X (6.20)

only the variables μ, ν, and P come into play. Besides, there are several problems,
such as finding the smallest invariant set including a polytope or the largest invariant
set in a polytope (in the sense of volume), that have the further important property of
being convex in their variable and therefore very efficient algorithms are available.
The reader is referred to [BEGFB04] for further details. As a final remark, it should
be mentioned that the proposed analysis does not take into account variation of
speed limits in the parameter. Taking into account these limits makes the problem
harder (see, for instance, [Ran95, ACMS97]).

6.3.6 Comments about complexity and conservativity

Polyhedral functions are non-conservative, but computationally demanding7. Thus
considering polyhedral functions instead of quadratic ones can be dramatic since
the former might be extremely complex. A legitimate question is whether this is
always the case. We show by means of a simple example that there are systems
which are not quadratically stabilizable, but they admit a polyhedral function whose
representation is not more complex than the representation of a quadratic function.

7Perhaps the reader will find this a tedious repetition in the book, still this conservativeness issue
was not well known in the control literature for a long period [Ola92, Bla95].
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Example 6.34 (A low complexity polyhedral function). Consider the four matrices

A1 =

[−1 0

1 0

]
, A2 =

[ −1 0

−1 0

]
, A3 =

[
0 1

0 −1

]
, A4 =

[
0 −1

0 −1

]
,

and the system

ẋ(t) =
4∑

i=1

wi[−εI + Ai]x(t),
4∑

i=1

wi = 1, wi ≥ 0 (6.21)

with ε > 0 sufficiently small. The system admits V(x) = ‖x‖1 as a common
Lyapunov function. Indeed any of the generating matrices −εI + Ai has ‖ · ‖1 as
an LF because it is strictly diagonally dominant, with negative diagonal entries.

We show that there are no common quadratic positive definite Lyapunov
functions. To prove this, we first note that the set of matrices {Ak, k = 1, 2, 3, 4} is
invariant with respect to the following transformations

T1 =

[
1 0

0 −1

]
, T2 =

[−1 0

0 1

]
, T3 =

[
0 1

1 0

]
,

namely changes of signs or reflections along the bisectors, since, for every choice
of Ti, i = 1, 2, 3, we have {T−1

i AkTi, k = 1, 2, 3, 4} = {Ak, k = 1, 2, 3, 4}. This
amounts to saying that for every i = 1, 2, 3 and every k = 1, 2, 3, 4 there exists
j = 1, 2, 3, 4 such that T−1

i AkTi = Aj. This same property applies to the matrices
Ak − εI, k = 1, 2, 3, 4. Consequently, if the positive definite matrix

P1 =

[
a b
b c

]

defines a common quadratic Lyapunov function for the matrices Ak − εI, k =
1, 2, 3, 4, so does

P2 =

[
a −b

−b c

]
= T−1

1 P1T1.

Since the set of common Lyapunov matrices for {Ak−εI, k = 1, 2, 3, 4} is a convex
cone, then

P3 =
P1 + P2

2
=

[
a 0

0 c

]

defines a common quadratic Lyapunov function for the matrices Ak − εI, k =
1, 2, 3, 4. But since the set {Ak, k = 1, 2, 3, 4} is also invariant over bisector
reflections, the positive definite matrix



6.3 Stability and convergence analysis of polytopic systems 269

P4 = T−1
3 P3T3 =

[
c 0

0 a

]

and hence the scalar matrix

P4 + P3

2
=

[
a + c 0

0 c + a

]
1

2

obtained as the average of P3 and P4, both define common quadratic Lyapunov
functions. This implies that P = I2 defines a common Lyapunov matrix, in other
words that ÂT

k + Âk < 0 for every k = 1, 2, 3, 4. To verify that such condition is not
true it is sufficient to compute

det
(
−ÂT

1 − Â1

)
= det

([
2 (1 + ε) − 1

− 1 2ε

])
= 4ε2 + 4ε− 1

which is clearly negative for 0 < ε < −1+
√
2

2 .

6.3.7 Robust stability/contractivity analysis via system
augmentation

A possibility to investigate stability contractivity in a less conservative way than
using quadratic Lyapunov functions is based on system augmentation. Let us
consider the discrete-time first. Assume we wish to establish the stability of the
system

x(t + 1) = [
s∑
i

Ai=1wi(t)]x(t),
∑
i=1

wi = 1, wi ≥ 0

or equivalently, we wish to check if Σ(A1,A2, . . . ,As) < 1.
We can consider the T step system defined as follows:

x(k + T) = [AiT−1AiT−2 . . .Ai0 ]x(t) = Φtx(t) (6.22)

where

Φt ∈ ĀT
.
= [AiT−1AiT−2 . . .Ai0 ]

are the matrices formed by all possible T-products of the given Ai. The following
proposition holds.
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Proposition 6.35. The difference inclusion is stable (or Σ(A1,A2, . . . ,Ak) < 1) if
and only if for T large enough (6.22) is quadratically stable. Moreover, for T large
enough, any quadratic positive definite function xTPx, P � 0 is a suitable quadratic
Lyapunov function for system (6.22).

Proof. The proof is similar to that of Proposition 6.24 and left to the reader as an
exercise.

It should be noticed that the previous proposition is essentially a re-statement of old
theory, for instance [GY93].

To apply the criterion we have two possibilities. One possibility is to fix an
horizon T and check if all the matrices Φ ∈ ĀT share a common Lyapunov function.
The second one is to fix an horizon (usually much larger) to check if Φ ∈ ĀT have
all norms ‖Φ‖ < 1. The shortcoming of the approach is that the number of matrices
Φ ∈ ĀT grows exponentially.

In the continuous-time case we can use a different system augmentation. This
technique was used for the first time in [Zel94] and deeply investigated later
[CGTV03, Che10, CGTV09, CCG+12]. The idea, explained in brief, sounds as
follows. Instead of x(t) we introduce the variable x(m)(t) formed by all the
monomials of order m. For instance, for x(t) ∈ IR2

x(3)(t) = [x31(t), x21(t)x2(t), x1(t)x
2
2(t), x32(t)]

T

Consider the linear system

ẋ(t) = Ax(t)

Then the system in the new variable x(m) is described by the following “expanded”
dynamic system

ẋ(m)(t) = A(m)x(m)(t)

where the matrices A(m) can be computed as shown in [CGTV09]. Now it is obvious
that the stability of the original system and of the expanded one are equivalent.

If we consider a quadratic candidate Lyapunov function for the new system

Ψ(x(m)) = (x(m))TPx(m)

this function turns out to be a polynomial Lyapunov function for the original system
[CGTV09]. We know that the class of positive polynomials are universal, hence non-
conservative for the robust stability problem [MP86a, MP86b, MP86a, BM99c]. It
has recently been proved that the stability of the original system is equivalent to the
quadratic stability of the extended system for m large enough [Che11b, CCG+12,
Che13].
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6.4 Performance analysis of dynamical systems

In this section, it is shown how several problems related to the performance analysis
of dynamic systems may be solved via a set-theoretic approach. We start by
considering the fact that, as we have seen, for Linear Time-Invariant (LTI) systems,
basic properties such as the effect of bounded inputs on the system can be in practice
solved without set-computing. For instance, the evaluation of the l1 norm of a system
(i.e., the worst-case output peak for all possible peak-bounded inputs) requires the
computation of the sum of a series. We have given a set-theoretic interpretation
which has its own interest but it does not provide practical or theoretical advantages.
Here it is shown how the set-theoretic formulation can be used to solve some
analysis problems for uncertain systems for which the formulas known for LTI
systems are no longer useful.

6.4.1 Peak-to-peak norm evaluation

Let us consider the problem of evaluating the largest output value achievable by the
constrained inputs with 0 initial conditions for the discrete-time polytopic system

x(t + 1) = A(w(t))x(t) + Ed(t)
y(t) = Hx(t)

where, again, A(w) =
∑s

i=1 Aiwi, with w ∈ W , namely,
∑s

i=1 wi = 1, wi ≥ 0 and
d belongs to the compact set D.

The paradigm consists in the following question: assume x(0) = 0 and let
d(t) ∈ D. Is the constraint

‖y(t)‖∗ ≤ μ,

(with ‖ · ‖∗ a given norm) satisfied for all t ≥ 0?
In the case in which also D is the unit ball of the same norm ‖ · ‖∗, we are

evaluating the system induced norm. Formally the question is

• Q0:

‖(A(w),E,H)‖∗,∗ = sup

w(t) ∈ W
x(0) = 0

‖d(t)‖∗ ≤ 1, t ≥ 0

sup
t>0

‖y(t)‖∗ ≤ μ ?

The actual system norm can be estimated by iterating over μ. One way to proceed
is that of computing the convex hulls of the 0-reachable sets. From the results
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previously presented it is indeed apparent that, denoting by Rt the 0 reachable set
in t steps, the sequence of the convex hulls conv{Rt} can be computed as shown in
Proposition 6.5. In view of the above consideration, an “yes” answer is equivalent
to checking that

conv{Rt} ∈ Y(μ) .
= N [‖Hx‖∗, μ],

(roughly the set of all x such that ‖Hx‖∗ ≤ μ), for all t. This way of proceeding
has the drawback that if the previous condition is satisfied till a certain t̄, there is no
guarantee that the same condition will be satisfied in the future. As it often happens,
inverting the reasoning can be helpful. This is equivalent to reverting time, in this
case. The problem can be solved in two steps as follows.

• Compute the largest robustly invariant set Pμ for system x(t+1) = A(w(t))x(t)+
Ed(t) inside Y(μ).

• If 0 ∈ Y(μ) then the answer to Q0 is “yes”, otherwise it is “no”.

In principle we should assume that the system has passed the stability test. Under
some assumptions, such as the existence of an observable pair(A(w),H) the stability
test is actually included in the procedure according to following theorem.

Theorem 6.36. Assume that there exists w′ ∈ W such that (A(w′),H) is an
observable pair and that there exists w′′ ∈ W such that (A(w′′),E) is reachable.
The following statements are equivalent.

• All the reachable sets (equivalently, their convex hulls) are inside Y(μ), say Rt ⊂
Y(μ), for all t > 0.

• The largest robustly invariant set Pμ included in Y(μ) is a C-set.
• The system is stable and question Q0 has answer “yes” (in the case of the

induced norm ‖(A(w),E,H)‖∗,∗ ≤ μ).

Proof. The set Pμ is the region of initial states starting from which the condition
x(t) ∈ Y(μ) is guaranteed for all t ≥ 0. Therefore, the first two statements are
obviously equivalent to the third statement, with the exception of the “stability
claim.” To include stability, we need to consider the observability and reachability
assumption. Indeed, if we assume that (A(w′),H) is observable, then the closed
and convex set Pμ is necessarily bounded [GT91]. Furthermore, if (A(w),E) is
reachable, then the reachable set RT includes the origin as an interior point for
all T > 0 (for T large enough in the discrete-time case) and then Pμ is a C − set.
Then we are in the position of proving stability.

Take any initial condition x0 on the boundary of the C-set Pμ. The corresponding
solution is given by x(t) = xf (t) + xd(t) where xf (t) is the free response (i.e., such
that xf (t + 1) = A(w(t))xf (t) and xf (0) = x0) and xd(t) is the response driven by d
(precisely xd(0) = 0 and xd(t+1) = A(w(t))xd(t)+Ed(t). Since xd(T) ∈ RT , then

x(T) ∈ {xf (T)} +RT ⊆ Pμ
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Denote by ST = conv{RT} the convex hull of RT . Being Pμ convex the last
inclusion can be replaced by

x(T) ∈ {xf (T)} + ST ⊆ Pμ

therefore {xf (t)} is in the erosion, [P̃μ]ST , of (see Definition 3.8) Pμ with respect
to ST

xf (T) ∈ [Pμ]ST

Since ST is a C-set there exists λ < 1 such that xf (T) ∈ λPμ.
We have proved that, for all x0 ∈ ∂Pμ, we have that in T steps xf (T) ∈ λPμ.

Consider the T-step forward system

xf (t + T) = [A(w(t + T − 1))A(w(t + T − 2)) . . .A(w(t))] xf (t)

which is linear, hence homogeneous. By applying Theorem 4.18 and Lemma 4.31
we can see Pμ (which is invariant for xf (t + 1) = A(w(t))xf (t)) is λ-contractive for
such a system which implies stability.

We sketch now the algorithm proposed in [FG95] and [BMS97] that can be used
for the ‖ · ‖∞ norm. Precisely we assume that ‖d(t)‖∞ ≤ 1 and we seek for the
largest possible ‖y(t)‖∞.

1. Fix an initial guess μ > 0 and a tolerance ε > 0.
2. Set F(0) = H, g(0) = μ1̄, k = 0, μ+ = +∞ and μ− = 0.
3. If μ+ − μ− ≤ ε STOP. Else
4. Given the set Sk = {x : |F(k)

i x| ≤ g(k)
i , i = 1, 2, . . . , r(k)}, where F(k)

i is the

ith row of matrix F(k) and g(k)
i is the ith component of vector g(k), compute the

pre-image set Pk+1 as

Pk+1 = {x : |F(k)
i Ajx| ≤ μ(k) − ‖F(k)

i E‖1, j = 1, 2, . . . , s, i = 1, 2, . . . , r(k)}

5. Compute the intersection

Sk+1
.
= Pk+1

⋂
Sk

to form the matrix F(k+1)
i and the vector g(k+1).

6. If 0 �∈ Sk+1, then set μ− = μ, increase μ and GOTO step 3.
7. If Sk = Sk+1, then set μ+ = μ, reduce μ and GOTO step 3,

The previous results can be applied to continuous-time systems by means of the
EAS. It can be shown that the ∞-to-∞ induced norm of the EAS system is always
an upper bound for the corresponding induced norm of the continuous-time system

‖(A,E,H)‖∞,∞ ≤ ‖((I + τA), τE,H)‖∞,∞
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This fact can be inferred from the property that ‖((I + τA), τE,H)‖∞,∞ ≤ μ
implies the existence of an invariant set for the EAS included in Y(μ). In view
of Lemma 4.26 and Proposition 5.10, such an invariant set is positively invariant for
the continuous-time system.

The computation of the norm of system

(A(wA),E(wE),H(wH)) =
(∑

AiwA,i,
∑

EiwE,i,
∑

HiwH,i

)

with polytopic structure can be handled as follows. The input E(wE)d is replaced
by v ∈ V the convex hull of all possible points of the form Ekdh, with Ek and dh on
their vertices. It is quite easy to see that the convex hulls of the reachability sets of
x(t + 1) = A(wA)x(t) + v(t) are the same as those of the original system. As far as
the output uncertainty is concerned, the condition to be faced is

‖y‖∞ = ‖H(wH)x‖∞ ≤ μ ⇔ ‖y(k)‖∞ = ‖Hjx‖∞ ≤ μ, ∀j

Therefore the problem requires repeating the iteration for all matrices Hj and
retaining the minimum value. Note that, in this extension, it has been assumed that
the uncertainties affecting (A(wA),E(wE),H(wH)) are independent.

We remind the reader that the induced norm for the time-varying uncertain
system we are considering here, say ‖(A(w),E,H)‖∞,∞, is quite different from
the time-invariant norm, namely ‖(A(w̄),E,H)‖∞,∞, the norm computed for the
time-invariant system achieved by fixing w = w̄. Clearly the time-invariant norm is
not greater than the time-varying worst case norm:

‖(A(w̄),E,H)‖∞,∞ ≤ ‖(A(w),E,H)‖∞,∞

Example 6.37. Let us consider the following system

A(w) =

⎡
⎣ 0 1 0

0 0 1

−(3 + w) −2 −3

⎤
⎦ , E =

⎡
⎣0

0

1

⎤
⎦ , H =

[
1 0 0

]
,

w ∈ [0, 1], and let us consider the corresponding EAS (I+τA, τE,H). The algorithm
provided the following limits for the norm

13.5 = μ− ≤ ‖((I + τA(w)), τE,H)‖∞,∞ ≤ μ+ = 13.6

Note that the upper bound is actually an upper bound for the continuous-time
system, while the lower bound is not. The algorithm required 3638 iterations to
detect that the origin was not included in the largest invariant set for μ = μ− = 13.5
and required 144 iterations to find an invariant set μ = μ+ = 13.6. Such an
invariant set is generated by 1292 constraints (by symmetry these correspond to
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646 rows for the describing matrix F, not reported for paper-saving reasons).
In the next table we report the number of iterations to detect the “yes/no” answer
and the number of residual constraints (the actual constraints forming Pμ in the
“YES” answer case) as a function of the “guess” μ. We point out that the norms

μ 8 10 12 13.5 13.6 14 16 18

‖ ‖ ≤ μ? NO NO NO NO YES YES YES YES

iterations 646 969 1554 3638 144 53 44 43

constraints 226 276 270 288 1292 586 530 524

of the extreme systems are quite smaller, ‖((I + τ(A(0)), τE,H)‖∞,∞ ≈ 1.98
‖((I + τ(A(1)), τE,H)‖∞,∞ ≈ 5.95, and this means that high values of the norm
are not due to a special “critical” value of w, but mainly to its variation inside W .

Clearly the performance of the system might be estimated via ellipsoids. Let us
consider the following problem. Consider the system

ẋ(t) = A(w)x(t) + Ed(t), y(t) = Hx(t)

with

‖d(t)‖ ≤ 1

μ
.

Now we assume that the norm is the Euclidean one (in the single input case it does
not matter). Then we can consider the condition (4.23) (see [Sch73, USGW82]) to
state that the ellipsoid E(P, 1) is positively invariant if, denoting by Q = P−1, we
have, for all i:

QAT
i + AiQ + αQ +

1

α
EET 1

μ2
 0, for some α > 0 (6.23)

The condition (4.23) has been stated for a single system ẋ = Ax + Ed, but the
generalization above is obvious. The problem is that of including the ellipsoid
E(Q−1, 1) inside the strip Y(1). Note that for convenience we are iterating over
μ by scaling the control disturbance rather than changing the size of Y which is
obviously equivalent.

The condition E(Q−1, 1) ⊂ Y(1) can be easily expressed. Let us consider the
single-input case for brevity. Then Y(1) = {x : |Hx| ≤ 1}, so that E(Q−1, 1) ⊂
Y(1) iff

HQHT ≤ 1. (6.24)
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Then, if we find a matrix Q � 0 such that conditions (6.23) and (6.24) are satisfied,
then we are sure that the induced norm of the system is less than μ. If such an
ellipsoid does not exist, however, we cannot conclude that the induced norm of the
system is greater than μ.

Example 6.38. To show that the previous condition can be conservative, consider
the example in [USGW82], namely the system ẋ(t) = Ax(t) + Bu(t) + Ed(t) with
matrices

A =

⎡
⎣−0.0075 −0.0075 0

0.1086 −0.149 0

0 0.1415 −0.1887

⎤
⎦ , E =

⎡
⎣ 0

−0.0538

0.1187

⎤
⎦ , B =

⎡
⎣ 0.0037

0

0

⎤
⎦

to which the linear feedback control

u = Kx = −37.85x1 − 4.639x2 + 0.475x3

is applied. Four outputs were considered: the state components and the control input.
On all these variables, constraints are imposed as follows:

|x1| ≤ 0.1, |x2| ≤ 0.01, |x3| ≤ 0.1, |u| ≤ 0.25

which can be written as ‖Hx‖∞ ≤ 1, where

H =

⎡
⎢⎢⎣

10 0 0

0 100 0

0 0 10

−151.40 −18.55 1.90

⎤
⎥⎥⎦ .

The disturbance input is bounded as |d| ≤ α. The ellipsoidal method provides the
bound

αell = 1.27

which implies the bound for the induced norm equal to ‖(A,E,H)‖∞,∞ ≤
(1.27)−1 = 0.787 By considering the EAS with τ = 1, we achieved the bound

αEAS = 1.45

which implies ‖(A,E,H)‖∞,∞ ≤ (1.45)−1 = 0.685. Clearly, by reducing τ ,
tighter bounds can be achieved. We will reconsider this example later as a synthesis
benchmark. We remind that the condition is also necessary [BC98] for positive
invariance (if there exists a reachable pair (A(w),E)), therefore conservativeness
is not due to condition (6.23), but to the adoption of ellipsoids.
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6.4.2 Step response evaluation

We consider now the problem of computing the peak of the step response of the
system

x(t + 1) = A(w(t))x(t) + Ed(t), y(t) = Hx(t) + Gd(t)

where it is assumed that d(t) ≡ 1 and x(0) = 0. Basically the values one would
like to evaluate for this system are the worst case peak and the asymptotic error and
precisely, for given positive μ and ν, the questions now are:

Q1 : is the largest peak bound less than μ, supt≥0 ‖y(t)‖ ≤ μ?
Q2 is the largest asymptotic value less than ν, lim supt→∞ y(t) ≤ ν?

We can answer this questions as follows. We assume that A(w) is stable. Let us
consider the following sets

Y(ξ) = {x : ‖Hx + G‖ ≤ ξ}

(remind that d ≡ 1). Then we can claim the following.

Proposition 6.39.

• The answer to question Q1 is yes if and only if the largest invariant set included
in Y(μ) includes the origin.

• The answer to question Q2 is yes if and only if the largest invariant set included
in Y(ν) is non-empty.

The proof of this proposition can be found in [BMS97] where a more general case
with both disturbances and constant inputs is considered.

Again, in terms of ellipsoids, a bound can be given as suggested in [BEGFB04]
(see notes and references of Chapter 6). Indeed, the unit step is a particular case
of norm-bounded input. However, as pointed out in [BEGFB04], the method is
conservative (see Exercise 8).

Example 6.40. Consider the system

ẏ(t) = −[1 + w(t)/2]y(t) + u(t)

with the integral control

u̇(t) = −κ(y(t)− r(t)).

Assume r(t) ≡ r̄ = 1, κ = 5 and u(0) = y(0) = 0. We use the EAS with τ = 0.1,
so achieving the system
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Fig. 6.7 The maximal
invariant set (external) and
the limit set (internal)
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We first compute the output peak with respect to output y, asking
Q1: is condition supt≥0 |y(t)| ≤ μ true for all w(t)?
It turns out that μ+ = 1.75, μ− = 1.74 are the upper and lower limits for

the “yes” answer. In Figure 6.7 the largest invariant set included in Ymax(1.75) is
depicted. Its margin is the rightmost vertical line, which includes the origin and
certifies that μ+ = 1.75 is actually an upper limit. Then we compute the asymptotic
behavior of the error y − r, the question now is

Q2: is the condition lim supt→∞ |y(t) − r̄| ≤ ν, true for all w(t)?
It turns out that the limit for the “yes” answer is between ν+ = 0.430 and

ν− = 0.429. The smaller set in Fig. 6.7 is the largest invariant set included in the
set Ylim(0.430), the strip included between the two leftmost lines which certifies
that the asymptotic behavior of y is between r̄ + ν+ = 1.430 and r̄ − ν+ = 0.570
(we remind that r̄ = 1)

The conclusions that can be drawn are the following. The step response of the
system with the considered control does not exceed 1.75 as a peak, no matter how
0 ≤ w(t) ≤ 1 changes. The asymptotic error is clearly not constant unless w has a
limit value 0 ≤ w̄ ≤ 1 (in which case the integrator assures e(t) → 0). For persistent
fluctuating values of w, in agreement with the considerations in Subsection 2.1.3.
the error fluctuates and the worst case (for the EAS) is 0.430, which assures that the
worst case for the continuous-time system does not exceed 0.430. It is intuitively
clear that by taking τ smaller and smaller one converges to the actual value for the
continuous-time system. Such intuition is supported by the results in [BS94], where
such an assertion is proved. In Figure 6.8 a simulated step response is proposed.
The value of w(t) is alternatively taken equal to 0 and 1 starting with w(0) = 0 and
by switching at t = 3, 13, 15, 17, 19, 21. It appears that the estimated values are
sensibly larger than the actual ones. These are essentially due to two reasons. First,
the realization of w(t) considered in the simulation is not necessarily the “worst
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Fig. 6.8 The proposed
simulation
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case.” Second, the provided bounds are non-conservative as τ → 0. Thus, we could
reduce the value of τ (the considered one is 0.1), at the price of a noticeable increase
in the number of planes delimiting the set.

6.4.3 Impulse and frequency response evaluation

It is possible to analyze impulse responses in the set-theoretic framework. Consider
the SISO system

x(t + 1) = A(w(t))x(t) + Ed(t), y(t) = Hx(t)

with w(t) ∈ W , x(0) = 0, d(t) = δ0(t) = {1, 0, 0, . . .}, and assume that (A(w̃),H)
is observable for some w̃ ∈ W . The question is to find

sup
t≥0

|y(t)|∞

The problem can be reformulated as by fixing a μ > 0 and checking if
supt≥0 |y(t)|∞ ≤ μ. By iterating over μ we can solve the problem up to a numerical
approximation. We have the following.

Proposition 6.41. Assume that the system is asymptotically stable. Then the
impulse response y is such that supt≥0 |y(t)|∞ ≤ μ if and only if the (finitely
determined) largest invariant set in the strip {x : |Hx| ≤ μ} for the system includes
the vector E.

Note that, in principle the step response analysis proposed in the previous subsection
could be carried out by augmenting the (stable) system

x(t + 1) = A(w(t))x(t) + Ed(t), (6.25)
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by adding a fictitious equation

d(t + 1) = d(t), d(0) = 1

and testing the impulse response for the resulting system with output y(t) = Hx(t)+
0d(t). The only problem is that, in this way the augmented system is not stable
anymore and then there is no way to assure that the algorithm which computes the
largest invariant set converges in finite time. To fix the problem, we can decide to
accept the approximation achieved by replacing the equation d(t + 1) = d(t) by a
slow decay

d(t + 1) = λd(t)

with 0 < λ < 1 and λ ≈ 1. With this kind of tricks we can manage other kind of
problems. For instance, we can augment system (6.25) by adding the second order
system

z(t + 1) = R(θ)z(t) + Pr(t), d(t) = z1(t)

where R(θ) is the θ-rotation matrix

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]

and P = [ 1 0 ]T . By means of the impulse response of this plant we can test
the frequency response amplitude of the original plant (at frequency θ). Again the
convergence of the algorithm is an open issue, since the augmented system is not
asymptotically stable.

6.4.4 Norm evaluation via LMIs

We briefly now discuss some problems that can be solved by means of methods
which are in some sense related to the set-theoretic approach we are dealing with.
An important performance index for a system is the so-called L2-to-L2 induced gain
which can be defined as follows:

‖(A,E,H,G)‖2,2 = sup
w �=0

‖y‖2
‖d‖2

where the L2 norm is defined as

‖u‖2 =
√∫ ∞

0

u(σ)Tu(σ) dσ
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It is well known that, if A is stable, such a norm has the fundamental frequency
response characterization

‖(A,E,H,G)‖2,2 = sup
ω≥0

√
max eig [W(jω)T W(−jω)]

where W(s) = H(SI − A)−1E + G is the transfer function matrix and eig(WTW) is
the set of the eigenvalues of WT W (which are real non-negative) This norm is also
referred to as H∞-norm. It is known that the property ‖(A,E,H,G)‖2,2 < 1 has an
LMI characterization [SPS98]. Let us assume now that (A,E,H,G) has a polytopic
structure

[A,E,H,G] =
s∑

i=1

wi [Ai,Ei,Hi,Gi]

∑s
i=1 wi = 1, wi ≥ 0, Then the induced norm condition ‖(A,E,H,G)‖2,2 < 1 is

assured if there exists a positive definite P such that

⎡
⎣AT

i P + PAi PEi HT
i

ET
i P −I GT

i

Hi Gi −I

⎤
⎦ ≺ 0

Again this condition is a complete characterization (i.e., it provides a necessary and
sufficient condition) for a single system (A,E,H,G), but for polytopic systems it is
only sufficient when the condition is far to be necessary. Indeed as it will be seen
later, there exist stable systems, therefore with finite induced gains, which are not
quadratically stable (a condition which is implied by the previous LMI condition).
Clearly, the discrete-time version of the problem has also an LMI characterization
and the reader is referred to specialized literature.

Similar considerations can be done for the computation of the impulse response
energy. Precisely, one might be interested in the evaluation of ‖(A,E,H)‖2, the L2

system norm, defined as the L2 norm of the system impulse response (for simplicity,
the SISO case only is considered). Such norm is then equal to

‖(A,E,H)‖2 = ‖yimp‖2 =
√∫ ∞

0

(HeAtE)THeAtE dt =
√

ETPE

where P � 0 is the unique (assuming (A,H) observable) solution to the equation

ATP + PA + HTH = 0

Let us consider a polytopic system. Assume that there exists P � 0 such that

AT
i P + PAi + HTH ≺ 0
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and define the function Ψ(x) = xTPx. Then, for any initial condition x(0), the free
response is such that

Ψ̇(x) = xT [A(w)T P + PA(w)]x ≤ −xTHTHx = −yTy

say yTy ≤ −Ψ̇(x). By integrating we have

∫ t

0

y(t)T y(t) dt ≤ Ψ(x(0)) − Ψ(x(t))

Consider the system impulse response y, namely the free evolution with initial
condition x(0) = E. Then, in view of the assumed asymptotic stability, Ψ(x(t)) → 0
as t → ∞, then

‖yimp‖22 ≤ ETPE

Again this is not a tight bound since the condition implies quadratic stability, which
is stronger than stability.

6.4.5 Norm evaluation via non-quadratic functions

It is clear that if we consider bounds based on quadratic functions, then the system
has to be quadratically stable. So the criterion is conservative for polytopic systems.

In general, given a stable system of the form

ẋ(t) = A(w(t))x(t) + Ed(t), (6.26)

y(t) = Hx(t) (6.27)

and a positive definite positively homogeneous function of the second order Ψ(x),
from a condition of the form

D+Ψ(x) ≤ −y2(t) + γd2(t)

by integration we get, assuming d(t) → 0 and x(t) → 0

∫ ∞

0

y2(t)dt ≤ γ

∫ ∞

0

d2(t)dt + Ψ(x0)

where x0 is the initial state. The function Ψ(x) is not necessarily quadratic and
we can derive a polytopic bound on the output energy of the impulse response as
follows. For brevity we consider the SISO case and d ≡ 0.
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Consider the set

Y = {x : |Hx| ≤ 1}

and compute a β-contractive (possibly the largest) set S inside Y . Consider the
corresponding Minkowski functional Ψ(x), for which, if d = 0, we get D+Ψ(x) ≤
−βΨ(x). Let ψ(x) = Ψ2(x). We get

D+ψ(x) ≤ − 1

μ
ψ(x)

where μ
.
= (2β)−1. On the other hand, by construction, S ⊂ Y , so ψ(x) ≥ y2

(because the 1-level surface of ψ, S = N [ψ, 1] is included in the 1-level surface of
y2, namely Y . Hence

D+ψ(x) ≤ −ψ(x)/μ ≤ −y2/μ

By integrating we get for d = 0

∫ ∞

0

y2(t)dt ≤ μΨ(x0)

which provides a bound for the output energy with initial condition x0, so Ψ(E) is a
bound for the energy of the impulse response (say, when d(t) = δ(t)).

The computation of the set S can be performed as previously described.

6.5 Periodic system analysis

We briefly consider the analysis problem of periodic systems. It is a known problem
in the mathematical literature and we sketch some basic results. Consider the system

ẋ(t) = f (x(t),w(t))

and assume that f is Lipschitz and that w(t) is a periodic signal of period T.
A basic question considered in the literature is the existence of periodic trajectories.
Clearly, the periodicity of w(t) does not imply the existence of a periodic trajectory.
However, there are some sufficient condition. Assume that there exist a C-set X , t0
and a period T > 0 such that, for all x(t0) ∈ X , x(t0 + T) ∈ X . Then, there exists a
periodic trajectory. This fact can be shown by considering the Brouwer fixed-point
theorem. Consider the map F : X → X which associates to x ∈ X the solution of
the equation with initial condition x(t0) at time t0+T x(t0+T) = F(x(t0)). The map
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F is continuous in view of the continuous dependence on the initial condition.
Therefore there exists x̄ ∈ X such that F(x̄) = x̄, which implies that the solutions
which starts from x̄ at t0 is T-periodic.

However, this basic result does not characterize the behavior of the periodic
solution, for instance as far as its stability is concerned. Here we propose some
results for systems of the form

ẋ(t) = A(t,w(t))x(t), or, as usual x(t + 1) = A(t,w(t))x(t) (6.28)

with A(t,w) periodic in t. For this class of systems, stability implies exponential
stability, as proved below.

Theorem 6.42. Assume that in Eq. (6.28) A(t,w) is continuous and periodic of
period T, for any fixed w ∈ W , with W compact. Assume that (6.28) is globally
uniformly asymptotically stable (GUAS), according to Definition 2.16. Then it is
exponentially stable.

Proof. If the system is GUAS, for all μ > 0 and ε > 0, there exists an integer
κ = κ(μ, ε) > 0 such that if ‖x(0)‖ ≤ μ then ‖x(t)‖ ≤ ε, for all t ≥ κT and
it is bounded as ‖x(t)‖ ≤ ν 0 ≤ t ≤ κT, for some ν > 0. Take μ = 1 and
ε = μ/2 = 1/2. Then ‖x(κT)‖ ≤ 1/2. Consider the modified system

ż(t) = [βI + A(t,w(t))]z(t),

and recall that if x(0) = z(0) then, z(t) = eβtx(t) is the solution of the modified
system, since

d
dt
(xeβt) = βeβtx + eβtẋ = [βI + A(t,w)](xeβt).

Take β > 0 small enough to assure that ‖z(κT)‖ ≤ 1. Then, since ‖z(0)‖ ≤ 1
implies ‖z(κT)‖ ≤ 1 and since z(t) is bounded for 0 ≤ t ≤ κT, by the assumed
periodicity we have that ‖z(rκT)‖ ≤ 1 for all integer r and that z is bounded, say
‖z(t)‖ ≤ ρ for some ρ > 0. Therefore

‖x(t)‖ = ‖e−βtz(t)‖ = e−βt‖z(t)‖ ≤ e−βtρ

for all ‖x(0)‖ ≤ 1, and thus also for ‖x(0)‖ = 1. In view of the linearity, in general
we have

‖x(t)‖ ≤ e−βtρ‖x(0)‖

thus exponential stability.
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The previous result, as a particular case, proves that an LPV system is stable if
and only if it is exponentially stable, precisely the equivalence of the first two items
of Theorem 6.27.

In the case of discrete-time periodic systems, stability can be checked by
algorithms, which are based on the approach previously described. Indeed, one can
start the backward construction (see Section 5.1.2) of the sets

X−k−1 =

{
x :

A(t,w)
λ

x ∈ X−k

}⋂
X0

starting from any arbitrary C-set X0. It can be shown that the sequence of sets, which
is nested in T steps

X−k−T ⊆ X−k

either collapses to the origin or converges to a periodic sequence. The occurrence of
the latter proves stability of the system under consideration. Precisely, assume that

X−k−T = X−k

(a condition which is typically met within a certain tolerance). The above states the
fact that x(t) ∈ X−k implies x(t + T) ∈ λTX−k, where λ is the contractivity factor.

The provided set-theoretic approach to performance evaluation can be easily
extended to non-autonomous periodic systems. Consider, for instance, the system

x(t + 1) = A(t,w(t))x(t) + Ed(t), y(t) = Hx(t)

with A(t,w) periodic in t with period T and d belonging to the C-set D. Assume that
one wishes to check if the worst case magnitude is ‖y(t)‖∞ ≤ μ. Then, setting X0 =
Y(μ) = {x : ‖Hx‖ ≤ μ}, it is possible to start a similar backward construction:

X−k−1 = {x : A(t,w)x + Ed ∈ X−k}
⋂

X0.

Again the sequence of sets is nested in T steps, say X−k−T ⊆ X−k. The sequence
either stops due to an empty element, X−k = ∅, or converges to a periodic sequence
[BU93].
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6.6 Exercises

1. Show an example of a set S controllable to P such that P is not reachable form
S and vice versa.

2. Show that if f is continuous, and if P and U are compact, then

f (P ,U)

is compact (too easy?).
3. Assume that P is controlled-invariant. Show that, for T1 ≤ T2, CT1(P) ⊆

CT2(P) where CT(P) is the controllability set in time T. Show that the
implication RT1(P) ⊆ RT2(P) is not true in general.

4. Explain why CT(P) is not compact, even for a compactP , in the case of discrete-
time linear systems (Hint: take A singular . . . ).

5. Prove Proposition 6.7.
6. Show, by means of an example, that the one step reachable set from an ellipsoid

E for the system x(t + 1) = Ax(t) + Ed(t), d ∈ D is convex, but in general it is
not an ellipsoid, no matter if D is an ellipsoid or a polytope.

7. The set R∞ with bounded input d ∈ D is robustly positively invariant. Is the set
R∞(x̄) of all states reachable from x̄ �= 0, for some arbitrary T > 0, positively
invariant? Is the setC∞(x̄) of all states controllable to x̄ �= 0 for arbitrary T > 0,
positively invariant?

8. Given a stable system, the ratio between a) the maximum (worst case) output
peak persistent disturbance inputs |d(t)| ≤ 1, and b) unit step output, may be
arbitrarily large. Can you show a sequence of LTI systems for which this ratio
grows to infinity?

9. The l1-norm of a MIMO system (A,E,H) is defined as follows. Denote by
Q(1),Q(2), . . . ,Q(k), . . . the sequence of Markov parameters (p × m matrices).
Then the l1 norm is defined as

‖H(zI − A)−1E‖l1 = sup
i

∞∑
k=1

m∑
j=1

|Q(k)
ij |

This norm is known to be equal to

‖H(zI − A)−1E‖∞,∞
.
= sup

t≥0,x(0)=0,‖d(k)‖∞≤1

‖y(t)‖∞

Provide the “reachability set” characterization of this norm which is the MIMO
version of Proposition 6.16.

10. Formulate a “convex” optimization problem to find P, μ, and ν which
satisfy (6.20).
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11. The statement ii) of Theorem 6.25 does not hold, in general, if the matrices
share a proper invariant subspace. Show this by considering the single matrix
A = diag{2, 1/2} and X the unit square.

12. Consider the system x(t + 1) = Ax(t) with

A =
1

2

[
1 −1

1 1

]

and the norm ‖ · ‖∞ and 1/
√
2 ≤ λ < 1. Find the best transient estimate

(the largest λ-contractive set is delimited by 8 planes). What about the transient
estimate evaluated with the Lyapunov norm ‖ · ‖2?
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