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Introduction

There is an increasing interest in the production of chemicals and fuels from

renewable resources due to the continuing price increase of fossil resources, the

insecurity of the availability of fossil resources in the future, and additionally

environmental concerns and legislations (Garcı́a et al. 2011; Baskar et al. 2012). In

recent years, growing attention has been devoted to the conversion of biomass into

biofuel such as ethanol, butanol, biodiesel etc. considered the cleanest liquid fuel

alternative to fossil fuels (Lin and Tanaka 2006). Moreover, biomass energy can play

an important role in reducing greenhouse gas emissions; since CO2 that arises from

biomass wastes would originally have been absorbed from the air, the use of biomass

for energy offsets fossil fuel greenhouse gas emissions (Lynd 1996). Currently

ethanol is the main bio-fuel used in the world and its use is increasingly widespread,

the worldwide prospects are the expansion of the production and consumption of

ethanol (Bastos 2007). Fermentation-derived butanol is a possible alternative to

ethanol as a fungible biomass-based liquid transportation fuel (Pfromm et al. 2010).

The transesterification of vegetable oils (VOs) with short-chain alcohols is used to

produce biodiesel or by the esterification of fatty acids. During the past few years
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biodiesel has attracted attention as an environmentally friendly and renewable fuel

because of uncertainties concerning petroleum availability and recent increases in

petroleum prices (Berchmans and Hirata 2008). Similarly Hydrogen production from

biomass conversion plays a very important role in the development of hydrogen

economy (Ni et al. 2006). The quality of energy crops, used for biogas production,

is determined on the field. Methane production from organic substrates mainly

depends on their content of substances that can be degraded to CH4 and CO2

(Amon et al. 2007). About 95 % of ethanol produced in the world is from agricultural

products (Walter et al. 2008). Ethanol production from sugar crops such as sugarcane

and sugar beet account for about 40 % of the total bioethanol produced and nearly

60 % corresponding to starch crops (Biofuels Platform, 2010a, b). Biobutanol is on

the agenda of several companies and may be used in the near future as a supplement

for gasoline, diesel and kerosene (Antoni et al. 2007). Assuming an oil price of US$60

per barrel, both biodiesel and bioethanol produced from wheat are not profitable in

Europe. At the assumed oil price, only bioethanol and biobutanol produced on a large

scale from lignocellulose-containing raw materials have the potential to be produced

competitively (Festel 2008; Kumar et al. 2012). The U.S. has become the dominant

ethanol producer (corn-based), although Brazil has started an ambitious program to

increase production by 50 % by 2009 (sugar-based). Biodiesel production has

increased at 20–100 % annual rates in recent years, particularly in Germany, France,

Italy, Poland, and the United States (Renewables 2005). About half of all the

hydrogen as currently produced is obtained from thermo catalytic and gasification

processes using natural gas as a starting material, heavy oils and naphtha make up the

next largest source, followed by coal. Currently, much research has been focused on

sustainable and environmental friendly energy from biomass to replace conventional

fossil fuels (Balat and Kırtay 2010). Current total annual worldwide hydrogen

consumption is in the range of 400–500 billion Nm3 (Demirbas 2009a, b). Present

utilization of hydrogen is equivalent to 3 % of the energy consumption and with a

growth rate estimated at 5–10 % per year (Mohan et al. 2013). Only a fraction of this

hydrogen is currently used for energy purposes; the bulk serves as a chemical

feedstock for petrochemical, food, electronics and metallurgical processing indus-

tries. The global market for hydrogen is already greater than US$40 billion per year

(Kraus 2007); including hydrogen used in ammonia production (49 %), petroleum

refining (37 %), methanol production (8 %), and miscellaneous smaller-volume uses

(6 %) (Konieczny et al. 2008).

Biofuel Feedstocks

Fermentation substrate is an important factor influencing the cost of ethanol,

butanol, hydrogen gas etc. production (Qureshi and Blaschek 2000). Lignocellulose

is the most abundant renewable resource on the planet, and has great potential as a

substrate for fermentation. Hemicelluloses are the second most abundant poly-

saccharides in nature, and represent about 20 to 35 % of lignocellulosic biomass
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(Koukiekolo et al. 2005). Xylan or hemicellulose may contain arabinan, galactan,

glucuronic, acetic, ferulic, and rcoumaric acids as well as xylose. The occurrence

and quantity of these compounds depend on the sources of xylan (Olsson and Hahn-

Hägerdahl 1996; Koukiekolo et al. 2005). The ethanol yield and productivity

obtained during fermentation of lignocellulosic hydrolysates is decreased due to

the presence of inhibiting compounds, such as weak acids, furans and phenolic

compounds produced during hydrolysis (Palmqvist and Hahn-Hägerdal 2000).

Lignocellulosic Feedstocks

Lignocellulosic biomass is generally composed of hemicellulose (25–35 %), cel-

lulose (4–50 %), and lignin (15–20 %), and these structures are illustrated in

Fig. 10.1. Cellulose hydrolysis can also be achieved under harsher conditions

using solutions of mineral acids (H2SO4) at elevated temperatures; however, the

harsh conditions required for non-enzymatic deconstruction of cellulose favor the

formation of degradation products such as hydroxymethylfurfural (HMF), levulinic

acid, and insoluble humins (Alonso et al. 2010; Rinaldi and Schüth 2009).

Fig. 10.1 Lignocellulose composition: cellulose, hemicellulose and lignin (Alonso et al. 2010)
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Pretreatment is necessary to make cellulose more prominent to be attacked by

the enzymes which ultimately convert it into fermentable sugars (Fig. 10.2).

Lignocellulosic biomass normally comprises cellulose, hemicellulose and lignin

i.e. near about 55–75 % carbohydrates on dry weight basis. Percent dry weight

compositions of different lignocellulosic feedstocks were determined by Mosier

et al. (2005) as shown in Table 10.1.

Unfortunately, neither commercial ethanol-producing cultures, nor butanol-

producing cultures can hydrolyze these substrates. Hence, they need to be hydro-

lyzed prior to fermentation using a combination of pretreatment (acid, alkali,

organosolvent, supercritical extraction or ammonia explosion) and hydrolysis

(enzymes: cellulase, β-glucosidase, and xylanase) techniques (Galbe and Zacchi

2002). It should be noted that in contrast to ethanol production by yeasts, hexose

and pentose sugars obtained as a result of pretreatment and hydrolysis of these

residues can be used by butanol-producing cultures (Qureshi et al. 2008a, b, c).

Fig. 10.2 Schematic of goals of pretreatment on lignocellulosic material (Mosier et al. 2005)

Table 10.1 Percent dry weight composition of lignocellulosic feedstock’s (Mosier et al. 2005)

Feedstock Glucan (cellulose) Xylan (hemicellulose) Lignin

Corn stover 37.5 22.4 17.6

Corn fiber 14.28 16.8 8.4

Pine wood 46.4 8.8 29.4

Poplar 49.9 17.4 18.1

Wheat straw 38.2 21.2 23.4

Switch grass 31.0 20.4 17.6

Office paper 68.6 12.4 11.3

Note: Because minor components are not listed, these numbers do not sum to 100 %
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Algal Biomass Feedstocks

Algae capable of accumulating high starch/cellulose can serve as an excellent

alternative to food crops for bioethanol production, a green fuel for sustainable

future. Certain species of algae can produce ethanol during dark-anaerobic fermen-

tation and thus serve as a direct source for ethanol production. Of late, oleaginous

microalgae generate high starch/cellulose biomass waste after oil extraction, which

can be hydrolyzed to generate sugary syrup to be used as substrate for ethanol

production. Macroalgae are also harnessed as renewable source of biomass

intended for ethanol production (John et al. 2011; Nguyen et al. 2009). The use

of marine algal biomass with high carbohydrate contents of Ulva lactuca and other

macroalgae like Saccharina spp. Laminaria, Durvillaea, Ecklonia and Homosira
(brown algae) (Figueira et al. 2000) indicates that a more cost effective strategy

might be to ferment the carbohydrates like glucose, mannitol and laminarin from

these algal species to either ethanol or butane (Potts et al. 2012; Huesemann

et al. 2012).

Fate of different feedstocks for ethanol and biobutanol production are shown in

Fig. 10.3.

Microbial Modeling of Biofuel Production

A wide variety of biofuels can be produced through the bioconversion of substrates

contained in agricultural crops and residues (Fischer et al. 2008). Bioconversion of

the sugars, starches, and other organic substrates contained in agricultural residues

can be converted to ethanol by a variety of yeasts, to hydrogen by a variety of

fermentative bacteria and archae, to methane by a consortium of bacteria and

Fig. 10.3 Different feedstocks generally used for ethanol and biobutanol production
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archae, and to oils for biodiesel production by fungi and algae (Drapcho

et al. 2008). All of these microbial processes can be described mathematically to

simulate the bioprocess (Kumar and Murthy 2013). First generation biofuels, such

as ethanol and biodiesel are already widely used, but they were selected mainly for

convenience rather than their properties as fuels. In a microbial biofuel production

process, bioengineered microbes are grown inside a reactor in a solution that is rich

in cellulose-derived sugar (glucose and pentose) (Turner 2014).

Bioreactor modeling and design based on microbial growth and product forma-

tion kinetics may be used to optimize production of high-value biofuels or maxi-

mize utilization of feedstock nutrients. Kinetic models are normally divided into

two classes: structured and unstructured one. Structured models take metabolic

pathways into consideration and are generally complicated. A structured model for

acetone–butanol fermentations was established by Votruba et al. (1985).

The Monod model is a widely applied model used to describe microbial growth.

Suitable microbial hosts for biofuel production must tolerate process stresses such

as end-product toxicity and tolerance to fermentation inhibitors in order to achieve

high yields and titers (Fischer et al. 2008)

μ ¼ μmax S

Ks þ S
ð10:1Þ

where μ¼ Specific growth rate co-efficient h�1

μmax¼Maximum Specific growth rate co-efficient h�1

S¼ Substrate concentration mg/L

Ks¼ half-saturation constant, mg/L

Kinetic expressions for product formation must account for growth associated

and maintenance-associated production, as in the following equation:

rp ¼ YPXrx þ mpX: ð10:2Þ

Where rx is the volumetric rate of biomass formation, YPX is the theoretical or the

true yield of product from biomass, mp is the specific rate of product formation due

to maintenance, and X is biomass concentration (g/L), rp is the volumetric rate of

product formation (Doran 1995).

It is also possible that two or more substrates may simultaneously be growth-

limiting, thus, a model that can describe such a system is given by:

μ ¼ μmax S1
K1 þ S1

S2
K2 þ S2

� �
ð10:3Þ

Where, μ is the specific growth rate (1/h), μm is the maximum specific growth rate

(1/h). The specific growth rate could be inhibited by medium constituents such as

substrate or product. In a case of substrate inhibition, the term is given by:
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μ ¼ μmax S

Ksþ Sþ S2

KI

� � ð10:4Þ

For a case that exhibits, product inhibition such as ethanol fermentation and ABE

fermentation, the specific growth rate is written as:

μ ¼ μmax S

Ksþ S

K p

K pþ P

� �
ð10:5Þ

Where Kp is product inhibition constant and P is the concentration of the product

Bioreactor for Biofuel Production

Basic bioreactor designs for suspended growth cultures are batch, continuous (flow)

stirred tank reactor (CSTR), and CSTR with external or internal biomass recycle

(Fig. 10.4). If the means of cell separation (filtration, centrifugation, settling)

removes the compound with the biomass, then the product is considered particulate.

Hydrogen and ethanol are examples of soluble, extracellular products, while oils

produced by filamentous fungi Pythium are intracellular products (Drapcho

et al. 2008).

Batch Bioreactor

When plotted on arithmetic paper, batch growth cure assumes a sigmoidal shape,

this can be predicted by combing the Monod equation with growth equation (Shuler

and Kargi 2002).

dX

dt
¼ μm S

Ks þ S
X ð10:6Þ

The relationship between microbial growth yield and substrate is

X � X0 ¼ YX=S S0 � Sð Þ ð10:7Þ

Where X0 and S0 are initial values and Yx/s is the cell mass yield based on limiting

nutrient.

dX

dt
¼ μm YX=SS0 þ X0 � X

� �
KsYX=S þ YX=SS0

X ð10:8Þ
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Biomass harvest (wastage) flow

Biomass harvest (wastage) flow
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Biomass
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Effluent
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c

d

b

Fig. 10.4 Basic bioreactor types. (a) Batch. (b) Simple CSTR. (c) CSTR with external biomass

recycle. (d ) CSTR with internal biomass recycle. Dashed lines indicate system boundary used for

developing mass balance equations
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Continuous Stirred Tank Reactors

Theoretically, a continuous process can be described with the following equations:

dX

dt
¼ μ� Dð ÞX ð10:9Þ

D ¼ F

V
,

1

h

� �
ð10:10Þ

TR ¼ V

F
, hð Þ ð10:11Þ

MS ¼ RS � μ

YSX
ð10:12Þ

where

μ is the specific growth rate (1/h); D is dilution rate (1/h); X is biomass concentra-

tion (g/L); F is the feed flow rate (L/h); V is the volume of the bioreactor (L); TR is

the residence time (h); Ms is the maintenance value (C-mol/C-mol/h); Rs is the rate

of substrate consumption (C-mol/C-mol/h); Ysx is the yield of biomass per unit

mass of the substrate.

Ethanol Production

Bio-ethanol is ethyl alcohol, grain alcohol, or chemically C2H5OH or EtOH.

Bio-ethanol and bio-ethanol/gasoline blends have a long history as alternative

transportation fuels. Bio-ethanol has a higher octane number (108), broader flam-

mability limits, higher flame speeds and higher heats of vaporization. Disadvan-

tages of bio-ethanol include its lower energy density than gasoline (bio-ethanol has

66 % of the energy that gasoline has), its corrosiveness, low flame luminosity, lower

vapor pressure (making cold starts difficult), miscibility with water, toxicity to

ecosystems (Spatari et al. 2005) increase in exhaust emissions of acetaldehyde, and

increase in vapor pressure (and evaporative emissions) when blending with gaso-

line. Some properties of alcohol fuels are shown in Table 10.2.

Table 10.2 Some properties

of ethanol (alcohol fuel)
S. no. Fuel property Ethanol

1 Octane number 108

2 Auto ignition temperature (K) 606

3 Latent heat of vaporization (MJ/Kg) 0.91

4 Lower heating value (MJ/Kg) 26.7

Source: Balat and Balat 2009
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Ethanol Production from Sugar, Starch
and Lignocellulosic Feedstocks

Bio-ethanol is a fuel derived from biomass sources of feedstock; typically plants

such as wheat, sugar beet, corn, straw, and wood. The conversion of lignocellulosic

biomass to ethanol is a three step process that involves pretreatment followed by

polysaccharide hydrolysis to simple sugars followed by sugar fermentation to

ethanol (Mielenz 2001). The presence of lignin in cell walls negatively impacts

these conversion steps (Keating et al. 2006; Li et al. 2008).

The effect of pretreatment of lignocellulosic materials has been recognized for a

long time (McMillan 1994). Pretreatments for lignocellulosic materials include

mechanical comminution, alkali swelling, acid hydrolysis, steam and other fiber

explosion techniques, and exposure to supercritical fluids. Mechanical comminu-

tion. Waste materials can be comminuted by a combination of chipping, grinding

and milling to reduce cellulose crystallinity. Pyrolysis has also been used for

pretreatment of lignocellulosic materials. When the materials are treated at tem-

peratures greater than 300 �C, cellulose rapidly decomposes to produce gaseous

products and residual char (Sun and Cheng 2002). Mild acid hydrolysis (1 N

H2SO4, 97
�C, 2.5 h) of the residues from pyrolysis pretreatment has resulted in

80– 85 % conversion of cellulose to reducing sugars with more than 50 % glucose

(Sun and Cheng 2002a, b). Steam explosion is the most commonly used method for

pretreatment of lignocellulosic materials (McMillan 1994). In this method, chipped

biomass is treated with high-pressure saturated steam and then the pressure is

swiftly reduced, which makes the materials undergo an explosive decompression.

Steam explosion is typically initiated at a temperature of 160–260 �C
(corresponding pressure 0.69–4.83 MPa) for several seconds to a few minutes

before the material is exposed to atmospheric pressure. The process causes hemi-

cellulose degradation and lignin transformation due to high temperature, thus

increasing the potential of cellulose hydrolysis. Ammonia fiber explosion (AFEX)

is another type of physico-chemical pretreatment in which lignocellulosic materials

are exposed to liquid ammonia at high temperature and pressure for a period of

time, and then the pressure is swiftly reduced. Dilute acid hydrolysis such as H2SO4

and HCl has been successfully developed for pretreatment of lignocellulosic mate-

rials. The dilute sulfuric acid pretreatment can achieve high reaction rates and

significantly improve cellulose hydrolysis (Esteghlalian et al. 1997). The mecha-

nism of alkaline hydrolysis is believed to be saponification of intermolecular ester

bonds crosslinking xylan hemicelluloses and other components, for example, lignin

and other hemicellulose. The porosity of the lignocellulosic materials increases

with the removal of the crosslinks (Tarkow and Feist 1969). Dilute NaOH treatment

of lignocellulosic materials caused swelling, leading to an increase in internal

surface area, a decrease in the degree of polymerization, a decrease in crystallinity,

separation of structural linkages between lignin and carbohydrates, and disruption

of the lignin structure (Fan et al. 1987).
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Enzymatic hydrolysis of cellulose is carried out by cellulase enzymes which are

highly specific (Beguin and Aubert 1994). The products of the hydrolysis are

usually reducing sugars including glucose. Utility cost of enzymatic hydrolysis is

low compared to acid or alkaline hydrolysis because enzyme hydrolysis is usually

conducted at mild conditions (pH 4.8 and temperature 45–50 �C) and does not have
a corrosion problem (Duff and Murray 1996).

Fermentation

Ethanol can be produced from lignocellulosic materials in various ways. The main

features of the different ethanol processes are outlined in Fig. 10.5. All processes

comprise the same main components: hydrolysis of the hemicellulose and the

cellulose to monomer sugars, fermentation and product recovery and concentration

by distillation (Galbe and Zacchi 2002).

The most frequently used microorganism for fermenting ethanol in industrial

processes is S. cerevisiae, Zymomonas mobilis can ferment glucose to ethanol with

higher yields. Since lignocellulosic hydrolysates contain pentoses, which are not

readily fermented by these microorganisms, several attempts to genetically engi-

neer S. cerevisiae (Walfridsson et al. 1996; Hahn-Hägerdal et al. 2007), Z. mobilis
(Panesar et al. 2006) and the bacteria Escherichia coli (Decker et al. 2007) have
been performed (Fig. 10.6).

Fig. 10.5 Current process to produce biofuel from lignocellulose
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Yeast convert hexose to ethanol and carbon dioxide by glycolysis as shown by

the following reaction:

C6H12O6 ! 2CH3CH2OHþ 2CO2

Theoretically, 1 kg of glucose will produce 0.51 kg of bio-ethanol and 0.49 kg of

carbon dioxide. However, in practice, the microorganisms use some of the glucose

for growth and the actual yield is less than 100 % (Demirbas 2009a, b).

Usually by products such as glycerol, succinic acid and acetic acids are pro-

duced. Optimum temperature and pH values for yeast are 30–35 �C and 4–5

respectively (Shuler and Kargi 2002). Most notably, C. thermohydrosulfuricum
strain 39E has the highest reported ethanol yield (1.9 mol of ethanol produced per

mol of glucose fermented) of any taxonomically described thermophilic anaerobe

(Ng et al. 1981). For thermophilic organisms optimum temperature may range from

50 and 60 �C. Ethanol production is triggered by anaerobic conditions. Glucose

concentrations above 100 g/l are inhibitory for yeast. Ethanol and some of the other

by-products are inhibitory to yeast above concentration of 5 % (v/v). Ethanol

tolerance yeast strains are being developed to avoid ethanol inhibition (Balat and

Fig. 10.6 Redox balance in biosynthetic routes to glycerol and ethanol in S. cerevisiae (Baskar

et al. 2012a, b)
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Balat 2009). Simultaneous removal of ethanol from fermentation broth is another

alternative for ethanol inhibitions.

Downstream Processing

Ethanol can be separated from the culture vessels during fermentation using low

temperature vacuum distillation, adsorption, or membrane separation.

Butanol Production

Butanol (butyl alcohol and 1-butanol) is a four carbon primary alcohol having the

molecular formula of C4H9OH (MW 74.12). Butanol is a colorless liquid with a

distinct odor. Butanol is completely miscible with organic solvents and partly

miscible with water (Lee et al. 2008a, b). Butanol represents a biofuel extender or

replacement with properties clearly superior to ethanol (higher mileage, not hygro-

scopic, usable without engine modifications, not corrosive). In addition, it is a

valuable feedstock for the chemical industry (Dürre 2011).

A sustainable bacterial fermentation route to produce biobutanol is poised for

re-commercialization. Biobutanol may be produced by the acetone–butanol–etha-

nol (ABE) fermentation (Kumar and Gayen 2011). Today, biobutanol can compete

with synthetic butanol in the chemical market (Green 2011).

Several countries have initiated new alternatives for biobutanol production from

renewable feedstocks like sweet sorghum bagasse, rice bran (RB), de-oiled rice

bran (DRB), corn stover, and wheat straw (Swana et al. 2011; Al-Shorgani

et al. 2012; Zhang et al. 2011). By sustainable harvest based on current yields,

these materials can be converted to 8.27 billion gallons of biobutanol replacing 7.55

billion gallons of gasoline annually (Swana et al. 2011). Common feedstocks used

for biobutanol fermentation process are mentioned in Table 10.3.

Researchers have been re-directing their interests in biomass based fuels, which

currently seem to be the only logical alternative for sustainable development in the

context of economic and environmental considerations. Renewable bioresources

are available globally in the form of residual agricultural biomass and wastes,

which can be transformed into liquid biofuels (Nigam and Singh 2011).

Although research on genetics, fermentation, upstream processing, and down-

stream processing has progressed significantly, the Clostridia are not able to

efficiently hydrolyze fiber-rich agricultural residues. For this reason, agricultural

biomass must be hydrolyzed to simple sugars using economically developed

methods. Dilute sulfuric acid pretreatment can be applied to agricultural residues

to bring about hydrolysis. Unfortunately, during acid hydrolysis, a complex mixture

of microbial inhibitors is generated. Examples of the inhibitory compounds include
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Table 10.3 Feedstocks used for biobutanol fermentation process (Niemisto et al. 2013)

Feedstock

source Examples Advantages Disadvantages Reference

Agricultural

residues or

byproducts

Bagasse, corn

stover/fiber/cobs,

straws (e.g. from

barley, rice or

wheat)

Easier upstream

processing to fer-

mentable sugars

Seasonal avail-

ability, variations

in cultivation

yield and quality,

land-use change,

transport costs

(low density)

Soni et al. 1982;

Qureshi

et al. 2006,

2008a, b, c,

2010a, b;

Marchal

et al. 1984

Crop biomass Cassava, corn Easier upstream

processing to fer-

mentable sugars

Edible, seasonal

availability, vari-

ations in yield

and quality, land-

use change, water

need for

irrigation

Thang

et al. 2010;

Campos

et al. 2002; Ezeji

et al. 2007a, b, c

Non-food crop

biomass

Switchgrass,

Jerusalem

artichoke

Does not com-

pete with food

use

Land-use change

possible if fertile

land is used,

potential water

need

Qureshi

et al. 2010a, b;

Marchal

et al. 1985

Wood-based

biomass

Wood hydroly-

sates (e.g. from

aspen, pine,

beech or

hemlock)

Non-food bio-

mass, good avail-

ability, lower

transport costs

More difficult

upstream

processing, indi-

rect land-use

change possible

Saddler

et al. 1983; Yu

et al. 1984;

Sjolander

et al. 1938;

Maddox and

Murray 1983

Industrial

by-products

Apple pomace,

cheese whey,

distillers dry

grain solids

(DDGS), potato

waste, brans

(e.g. from rice or

wheat), soy

molasses, waste

sulfite liquor

Better social

acceptance by

means of

resource use effi-

ciency and waste

minimization, no

land-use change

Availability and

quality of the raw

material may

vary, additional

processing may

be needed to sep-

arate the feed-

stock from the

main product

Qureshi

et al. 2001; Lee

et al. 2009;

Nimcevic

et al. 1998;

Gutierrez

et al. 1998;

Grobben

et al. 1993

Biodegradable

municipal

waste

Food and garden

waste, starch-

based packing

peanuts, sludge

from wastewater

treatment

Better social

acceptance con-

tributes to

resource effi-

ciency and waste

minimization, no

land-use change

(Seasonal) and

qualitative

variation

Murty and

Chandra 1997;

Claassen

et al. 2000; Jesse

et al. 2002;

L�opez-Contreras
et al. 2000;

Kobayashi

et al. 2005
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furfural, hydroxymethyl furfural (HMF), and acetic, ferulic, glucuronic,

rho-coumaric acids, etc. (Varga et al. 2004).

Formerly, ABE fermentation was operated as a batch process followed by

distillation to recover the products. Sugars (molasses) or starch (corn, wheat, and

potatoes) was used as substrates. In this process the price of the substrate accounts

for up to 60 % of the cost, dramatically affecting the economic viability of ABE

fermentation (Claassen et al. 1999).

The use of marine algal biomass with high carbohydrate contents of Ulva
lactuca and other macroalgae like Saccharina spp. Laminaria, Durvillaea,
Ecklonia and Homosira (brown algae) (Figueira et al. 2000) indicates that a more

cost effective strategy might be to ferment the carbohydrates like glucose, mannitol

and laminarin from these algal species to either ethanol or butane (Potts et al. 2012;

Huesemann et al. 2012).

Important characteristics of butanol are summarized in Table 10.4. The market

for biobutanol is currently worth US$5 billion and is estimated to rise to $247

billion by 2020 (Kretzers 2012).

Unfortunately, neither commercial ethanol-producing cultures, nor butanol-

producing cultures can hydrolyze these substrates. Hence, they need to be hydro-

lyzed prior to fermentation using a combination of pretreatment (acid, alkali,

organosolvent, supercritical extraction or ammonia explosion) and hydrolysis

(enzymes: cellulase, β-glucosidase, and xylanase) techniques (Galbe and Zacchi

2002). It should be noted that in contrast to ethanol production by yeasts, hexose

and pentose sugars obtained as a result of pretreatment and hydrolysis of these

residues can be used by butanol-producing cultures (Qureshi et al. 2008a, b, c).

Feedstock’s biomass pretreatment can be achieved by air dry the biomass, dry,

grind, and then hydrolyze with dilute acid such as sulfuric acid with different

concentrations (at 0.5, 1.0, 2.0, and 5.0 % by weight) (Potts et al. 2012). After

hydrolysis the pH was adjusted to a value deemed suitable for fermentation

(approximately 4.5–5). Various lignocellulosic feedstocks have been claimed for

maximum solvent production by Clostridium (Table 10.5).

Table 10.4 Characteristic properties of butanol

Characteristic Butanol

Formula CH3(CH2)3OH

Butanol structure

OH

Boiling point (�C) 118

Melting point (�C) �89.3

Ignition temperature (�C) 35

Flash point (�C) 365

Density at 20 �C (g/mL) 0.8098

Critical pressure (hPa) 48.4

Critical temperature (�C) 287

Heat of vaporization (MJ/kg) 0.43

Energy density (MJ/L) 29.2

Motor octane number 78
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In addition, during the last years the use of ionic liquids (ILs) such as [BMIM]Cl,

[BMIM][PF6], [BMIM][TFSI], etc. for dissolving lignocellulosics has been exam-

ined intensively (Garcı́a et al. 2011; Holm et al. 2012).

Pretreatment of lignocellulosic biomass in a microwave oven is also a feasible

methodwhich uses the higher heating efficiency of amicrowaveoven and it is also easy

to operate (Bjerre et al. 1996). Microwave treatment utilizes thermal and non-thermal

effects generated by microwaves in aqueous environments (Sun and Cheng 2002).

ABE (Acetone, Butanol and Ethanol) Fermentation

ABE hetero-fermentation produces acetate, butyrate, ethanol, and acetone, as well

as butanol. The metabolism of ABE producing clostridia can be divided into the

following two distinct phases: acidogenesis (acid-production) and solventogenesis

(solvent-production) during the exponential and stationary phases of growth (Jones

and Woods 1986).

Biobutanol is a biofuel that can be produced from renewable resources using

special strains of bacteria such as Clostridium acetobutylicum or Clostridium
beijerinckii (Qureshi et al. 2007).

Table 10.5 Different feedstocks and strains used along with maximum solvents and productiv-

ities achieved (Jurgens et al. 2012)

Substrate

Hydrolysis

method Strain used

Yield (g/g)/

productivity

(g/l h)

Total

ABE

(g/l) References

Wheat

straw

H2SO4 + enzyme C. beijerinckii
P260

0.60/0.42 25 Qureshi

et al. (2007)

Wheat

straw

H2SO4 + enzyme C. beijerinckii
P260

0.41/0.31 21.42 Qureshi

et al. (2008a)

Corn fiber H2SO4 C. beijerinckii
BA101

0.39/0.10 9.3 Qureshi

et al. (2008c)

Rice bran

and

defatted

rice bran

HCl + enzyme C. beijerinckii
NCIMB 8052

0.31/0.26 16.42 Lee

et al. (2009)

Barley

straw

H2SO4 + enzyme C. beijerinckii
P260

0.43/0.39 26.64 Qureshi

et al. (2010a)

Corn

stover

H2SO4 + enzyme C. beijerinckii
P260

0.44/0.31 26.27 Qureshi

et al. (2010b)

Wheat

bran

H2SO4 C. beijerinckii
ATCC 55025

0.32/0.16 11.8 Liu

et al. (2010)

Rice

straw

H2SO4 + enzyme C. acetobutylicum
MTCC 481

1.04a/0.017

(Only butanol

yield and

productivity)

3.0 Ranjan and

Moholkar

(2011)
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In a normal batch culture, solvent-producing Clostridium species produce hydro-

gen, carbon dioxide, acetate, and butyrate during the initial growth phase

(acidogenic phase), which results in a decrease in the pH of the culture medium.

As the culture enters the stationary growth phase, the metabolism of the cells

undergoes a shift to solvent production (solventogenic phase). During the second

phase of the fermentation the reassimilation of acids, this occurs concomitantly

with the continued consumption of carbohydrate, normally results in an increase in

the pH of the culture medium. The relationship between the breakpoint in the pH of

the fermentation and the onset of solvent production, which occurs at the beginning

of the second phase of the fermentation, was identified early on in the development

of the industrial fermentation process (Jones and Woods 1986). Major redox

reactions in acetone–butanol–ethanol fermentation by the bacterium Clostridium
is shown in Fig. 10.7.

Fig. 10.7 Major redox reactions in acetone–butanol–ethanol fermentation by the bacterium

Clostridium (Liu et al. 2013)
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12C6H12O6 ! 6CH3CH2CH2CH2OHþ 4CH3COCH3 þ 2CH3CH2OHþ 18H2 þ 28CO2 þ 2H2O

Glucose n� Butanol Acetone Ethanol

Acidogenesis

Bacteria grows exponentially in the first phase of fermentation (acidogenesis phase)

along the formation of acids (mostly acetate and butyrate), leading to decrease of

pH to 4.5 (Gheshlaghi et al. 2009). Two moles each of pyruvate, ATP and NADH

are produced from one mole glucose consumed through the glycolytic pathway in

the acidogenic phase. In this phase, glycolysis pathway is active to produce

pyruvate consuming glucose, which is converted to Acetyl-CoA. Acetyl-CoA is

the prime precursor for synthesis of acetate, butyrate, ethanol, butanol and acetone

anaerobically. Acetate and butyrate are produced in acid producing phase through

two analogous steps from acetyl-CoA and butyryl-CoA respectively (Kumar and

Gayen 2011). An update review on key enzymes for butanol production is available

(Gheshlaghi et al. 2009). When acids accumulate to sufficiently high levels, cells

cannot maintain the pH gradient across membranes, and a dramatic decrease in

growth occurs (Huang et al. 2010). Therefore, the shift to solvent production in

Clostridia is an adaptive response to toxic effect of acidic metabolites through their

re-assimilation and induced expression of genes for the stress response (Grimmler

et al. 2011; Grupe and Gottschalk 1992).

Solventogenesis

As intracellular ATP is consumed by biosynthesis, solventogenesis is initiated to

consume NAD(P)H accumulated during the acidogenesis (Grupe and Gottschalk

1992). The acetyl-CoA and butyryl-CoA are the key intermediates in synthesizing

ethanol and butanol (Sillers et al. 2008). The reduction of acetyl-CoA and butyryl-CoA

to acetylaldehyde and butyraldehyde is catalyzed by acetaldehyde dehydrogenase and

butyraldehyde dehydrogenase, respectively, followed by the further reduction of

acetylaldehyde and butyraldehyde to ethanol and butanol by ethanol dehydrogenase

and butanol dehydrogenase (Gheshlaghi et al. 2009; Jones and Woods 1986). In both

C. acetobutylicum and C. beijerinckii, the activity of butanol dehydrogenase was

NADPH dependent rather than NADH dependent (Dürre 2008).

The use of excess carbon under nitrogen limitation is required to achieve high

levels of solvent production (Madihah et al. 2001). Iron is one of the essential

factors for the production of solvent (Kim et al. 1984). When Clostridium
acetobutylicum was grown in batch culture under iron limitation (0.2 mg l�1) at a

pH of 4.8, glucose was fermented, to butanol as the major fermentation end product,

and small quantities of acetic acid were produced. The final conversion yield of

glucose into butanol could be increased from 20 to 30 % by iron limitation (Junelles

et al. 1988). However, if the pH decreases below 4.5 before enough acids are

formed, solventogenesis will be brief and unproductive. Increasing the buffering
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capacity of the medium is a simple way to increase growth and carbohydrate

utilization as well as butanol production (Bryant and Blaschek 1988).

The fermenter is inoculated with a 5 % inoculum from a 24 h culture. The batch

fermentation period is usually 2–2.5 days. First rapid growth and production of

acetic/butyric acids and carbon dioxide and hydrogen occur. The initial pH of the

medium drops from 6.5 to nearly 4.5 during this phase. In a second phase, growth

ceases and the organisms convert acetic and butyric acids to neutral acetone and

butanol. The acidity of the medium decreases and gas production increases. At the

end of the fermentation the pH is approximately 5 (Shuler and Kargi 2002). The

final total concentration of solvents produced ranges from 12 to 20 g/L in batch

fermentation, which can be separated from the fermentation broth by distillation.

Classical fed-batch and continuous cultivation do not seem to be economically

feasible, because of solvent toxicity and the biphasic nature of acetone–butanol

fermentation, respectively. To overcome this problem, fed-batch culture has been

coupled with an in situ recovery process (Ezeji et al. 2004a, b), and multistage

continuous fermentation has been conducted (Godin and Engasser 1990). Pilot

plant for biobutanol production has been shown in the Fig. 10.8.

Solvent Toxicity is one of the most critical problems in ABE fermentation,

which ceases Clostridial cellular metabolism in the presence of 20 g/L or more

solvents (Woods 1995). Moreira et al. (1981) and Jones et al. (1982) had attempted

to elucidate the mechanism of butanol toxicity in C. acetobutylicum.

Downstream Processing

During the past two decades a significant amount of research has been performed on

the use of alternative fermentation and product recovery techniques (e.g. adsorption,

Gases

Sterile
Media

Metering
Valve

Metering
Valve

Metering
Valve

Gases

Gases

Water

Decantor

Recovery

Metering
Valve
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C. aceto.
Butanol
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inoculum
C. aceto.

40 Liter
C. thyro.
Butyric
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C. thyro.

Recycle
Distillation

Butanol
Receive

Condensor

Adsorption
&

Desorption

Fig. 10.8 Pilot plant for biobutanol production (Source: Butyl fuels, 2010 Korean Institute of

Science and Technology)
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gas stripping, ionic liquids, liquid–liquid extraction, pervaporation, aqueous

two-phase separation, supercritical extraction, and perstraction, etc.) for biobutanol

production (Ezeji et al. 2007a, b, c). The various bioprocess stages and unit opera-

tions along with pretreatment are shown in the Fig. 10.9.

The application of some of these techniques to the ABE fermentation process is

described below.

1. Distillation: The cost of recovering butanol by distillation is high because its

concentration in the fermentation broth is low due to product inhibition. In

addition to the low product concentration, the boiling point of butanol is higher

than that of water (118 �C). The usual concentration of total solvents in the

fermentation broth is 18–33 g/L (using starch or glucose) of which butanol is

only about 13–18 g/L. This makes butanol recovery by distillation energy

intensive (Ezeji et al. 2004a, b).

2. Liquid–liquid extraction is another efficient technique to remove solvents from

the fermentation broth. This approach takes advantage of the differences in the

partition coefficient of the solvents. As butanol is more soluble in the extractant

(organic phase) than in the fermentation broth (aqueous phase), it is selectively

concentrated in the extractant. Common extractants employed include decanol

and oleyl alcohol (Lee et al. 2008a, b).

3. Pervaporation is a membrane-based process that is used to remove solvents from

the fermentation broth by using a selective membrane. The liquids or solvents

diffuse through a solid membrane, leaving behind nutrients, sugar, and microbial

Pretreatment

Fermentation

Downstream processing

Biofuel

Filtration
Centrifugation

Distillation
Liquid-liquid extraction

Pervaporation
Gas -stripping

Sorting
Sieving

Size reduction
Hydrolysis (enzymatic)
Acid / Base treatment

Ionic liquids treatment
Microwave pretreatment

Media formulation
Sterilization

Feedstocks 
Biomass

Acetone –Butanol –Ethanol production

Fig. 10.9 Bioprocess stages and unit operations (Moo-Young and Chisti 1994)
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cells. The application of pervaporation to batch butanol fermentation has been

described by several investigators (Ezeji et al. 2004a, b).

4. Gas stripping is a simple but efficient way to recover butanol from the fermen-

tation broth. The fermentation gas is bubbled through the fermentation broth,

and then passed through a condenser for solvent recovery. The stripped gas is

then recycled back to the fermentor and the process continues until all the sugar

in the fermentor is utilized (Lee et al. 2008a, b; Ezeji et al. 2003). Butanol

recovery is based on the principle along with their advantage and disadvantage is

shown in Table 10.6 and integrated systems for fermentation and in situ solvent

recovery are shown in Fig. 10.10.

Biodiesel

The transesterification of vegetable oils (VOs) with short-chain alcohols is used to

produce biodiesel or by the esterification of fatty acids. During the past few years

biodiesel has attracted attention as an environmentally friendly and renewable fuel

because of uncertainties concerning petroleum availability and recent increases in

petroleum prices. Its chemical structure is that of fatty acid alkyl esters. The

production of biodiesel by transesterification employing acid (H2SO4, HCl, etc.)

or base catalyst (NaOH, KOH, NaOCH3, etc.) has been industrially accepted for its

Table 10.6 Biobutanol recovery (Kumar and Gayen 2011; Heitmann et al. 2012)

Methods Principle Advantage Disadvantage

Distillation Boiling occurs when the

vapor pressure of a liquid

exceeds the ambient

pressure

Traditional method Expensive to perform

Gas stripping Heating of effluent, purg-

ing with gas, condensation

of solvent/water vapours

Simple to perform,

low chance of clog-

ging or fouling

Low selectivity, no com-

plete removal of solvents,

more energy required

compared to membrane

based processes

Liquid-liquid

extraction

Contact of water—immis-

cible solvent with fermen-

tation broth, recovery of

acetone/butanol /

isopropanol by distillation

High capacity, high

selectivity, low

chance of clogging

or fouling

Expensive to perform,

possible formation of

emulsions

Pervaporation Selective diffusion of sol-

vents across a non-porous

membrane, recovery of

evaporated vapours by

applying vacuum or sweep

gas

High selectivity

compared to mem-

brane evaporation,

simple to perform

Lower membrane flux

compared to membrane

evaporation, possible

clogging and fouling
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high reaction and conversion rates. Biological catalyst (lipase) is also sufficient to

carry out the reaction at lowest amount, since it is faster.

Biodiesel is defined as fatty acid methyl or ethyl esters (FAME) from

vegetable oils or animal fats when they are used as fuel in diesel engines and

heating systems (Marchetti and Errazu 2008). Nowadays, it is used as an

alternative fuel due to depleting petroleum reserves (Sujan et al. 2009). Fatty

acid methyl esters are products of the transesterification (also called

methanolysis) of vegetable oils and fats with methanol in the presence of a

suitable catalyst to form alkyl esters (biodiesel) and glycerin. The main chem-

ical process to produce biodiesel is the alkaline transesterification with methanol

and KOH, where the alcohol reacts in the presence of the catalyst to form alkyl

esters (biodiesel) and glycerin (Neha et al. 2013). Beside these products, traces

of unreacted glycerides (mono-, di- and tri-acylglycerides) can also be found. If

methanol is used in this process it is called methanolysis. Methanolysis of

triglyceride is represented in Fig. 10.11.

Fig. 10.10 Integrated systems for fermentation and in situ solvent recovery: fermentation coupled

with (a) gas stripping; (b) liquid–liquid extraction (perstraction); (c) pervaporation (Lee

et al. 2008a, b)

Fig. 10.11 General scheme for transesterification of triglycerides
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However; biodiesel has a higher cetane number, no aromatics, and contains

10 %–11 % oxygen by weight. These properties of biodiesel reduce the emissions

of carbon monoxide (CO), hydrocarbons (HC), and particulate matter (PM) in the

exhaust gas (Math et al. 2010). Preferred methods of production of biodiesel

typically consist of reaction of oil sources with alcohols with aid of either acid

or base.

Oil Sources and Methods of Biodiesel Production

Biodiesel is usually produced from food-grade vegetable oils using transesterication

process. Therefore, it is said that the main obstacle for commercialization of

biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and

animal fats are potential feedstocks for biodiesel production to lower the cost of

biodiesel (Canakci and Sanli 2008). The feed stock for biodiesel production is

mainly soybean oil, sunflower oil, jatropha oil, canola oil, rapeseed oil, rubber

seed oil and micro-algae etc. (Demirbas 2005). The cost of biodiesel is slightly

higher than the petroleum based diesel mainly due to cost of edible oils which makes

it more costly than the diesel fuel (Aworanti et al. 2013). Biodiesel obtained from

vegetable oils has been considered a promising option but its higher viscosity is

major problem which can reduce the fuel atomization (Pratas et al. 2011a, b). The

petroleum based diesel fuel emits more carbon dioxide, greenhouse gases and

hydrocarbon particulate matter, these are humiliation of the entire environment,

regarding environmental concern, biodiesel has received more attention worldwide

due to its properties such as clean, biodegradable, safe and eco-friendly (Atadashi

et al. 2011). Presently many countries such as Germany, Australia and United State

are already using biodiesel in replacement of traditional petroleum based diesel. In

the United States, soybean oil is the most common biodiesel feedstock whereas

rapeseed and palm oil are the most commonly used in Europe (Singh and Singh

2010). One of the most important disadvantages of using biodiesel is their cost.

Biodiesel purification is carried out at the end of the reaction; the glycerin formed is

separated from the methyl esters in a decantation funnel. The purification of methyl

ester is done by washing with preheated distilled water (at 55 ˚C for 1 h). The pH of

biodiesel should be approximately neutral (Hossain et al. 2010). The less dense

phase, composed by esters, are removed and stored for further analysis and purifi-

cation. The process flow diagram for biodiesel production is given in Figs. 10.12 and

10.13 represents enzymatic production process of biodiesel with immobilized

lipase.

ASTM International, recognized from 2001 as the American Society for Testing

and Materials, is worldwide standards organization that holds properties values of

biodiesel (Table 10.7).

The combined vegetable oil and animal fat production in the United States totals

about 35.3 billion pounds per year (Perlack et al. 2005). This production could
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Fig. 10.12 Process flow schematic for biodiesel production

Fig. 10.13 Enzymatic production process of biodiesel with immobilized lipase (Source: Zhang
et al. 2012)
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provide 4.6 billion gallons of biodiesel. Methyl ester is analysed by gas

chromatography.

Production of Hydrogen

Hydrogen production plays a very important role in the development of hydrogen

economy. Biomass and water can be used as renewable resources for hydrogen gas

production. Biological production of hydrogen gas has significant advantages over

chemical methods (Ni et al. 2006). The major biological processes utilized for

hydrogen gas production are bio-photolysis of water by algae, dark and photo-

fermentation of organic materials, usually carbohydrates by bacteria (Kapdan and

Kargi 2006). Carbohydrate rich, nitrogen deficient solid wastes such as cellulose and

starch containing agricultural and food industry wastes and some food industry

wastewaters such as cheese whey, olive mill and bakers yeast industry wastewaters

can be used for hydrogen production by using suitable bio-process technologies

(Ghirardi et al. 2010). Conventional hydrogen gas production methods are steam

reforming of methane (SRM), and other hydrocarbons (SRH), non-catalytic partial

oxidation of fossil fuels (POX) and autothermal reforming which combines SRM and

POX (Kapdan andKargi 2006). Integrated biohydrogen system is shown in Fig. 10.14.

Hydrogen Production by Fermentation

Biological hydrogen production can be classified into five different groups:

(1) direct biophotolysis, (2) indirect biophotolysis, (3) biological water–gas shift

reaction, (4) photofermentation and (5) dark fermentation (Levin et al. 2004).

Comparative biological hydrogen production process is given in Table 10.8.

Bio-hydrogen production from cellulose/starch containing agricultural wastes

and food industry wastewaters is represented in Fig. 10.15.

All processes are controlled by the hydrogen-producing enzymes, such as

hydrogenase and nitrogenase. The major components of nitrogenase are MoFe

protein and Fe protein. Nitrogenase has the ability to use magnesium adenosine

Table 10.7 Fuel properties of biodiesel from soybean oil

S. no. Property of biodiesel ASTM D6751-06 standard Soybean biodiesel

1 Density 860–890 (kg/m3) 880 (kg/m3)

2 Viscosity – 90 (Redwood second)

3 Flash point >130 (�C) 162 �C
4 Acid value 0.8 max (mg KOH/g) 0.20 (mg KOH/g)

5 Saponification value 169–280 (mg KOH/g) 137 (mg KOH/g)

6 Cloud point �3 to 12 (�C) 10 �C
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triphosphate (MgATP) and electrons to reduce a variety of substrates (including

protons) (Fig. 10.16). This chemical reaction yields hydrogen production by a

nitrogenase-based system (Hallenbeck and Benemann 2002):

2e� þ 2Hþ þ 4ATP ! H2 þ 4ADP þ 4Pi

where ADP and Pi refer to adenosine diphosphate and inorganic phosphate,

respectively.

Table 10.8 Major advantages and disadvantages of biological hydrogen production process

Process Types of microorganism Advantages Drawback

Biophotolysis of water Green algae or

Cyanobacteria

Product: H2 +O2

Substate: H2O

+CO2

Low H2 pro-

duction rate

O2 inhibition

Water-gas shift reaction Photosynthesis or fer-

mentative bacteria

Treatment of CO

waste gas

Mass transfer

limitation

CO substrate

limitation

Photodecomposition of

organic compounds

Photosynthetic bacteria High H2 yield Light require-

ment

Low H2 pro-

duction rate

Fermentation of sugars

(dark fermentation)

Fermentative bacteria Fast rate

Treatment of

organic wastewater

Low H2 yield

By-product

formation

Fig. 10.14 Schematic representation of integrated biohydrogen system
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Hydrogen Detection and Quantification

The H2 concentration in the gas phase is commonly measured with gas chroma-

tography (GC) with thermal conductivity detector (TCD), using argon or nitrogen

as the carrier gas. Typical GC operating conditions include temperature of 100 �C
for the TCD and pressure of 151 kPa (22 psi) for the carrier gas. Silica columns

(at 25 �C) or microcapillary columns may be used for separation (Drapcho

et al. 2008). Fermentative hydrogen yield by different organisms is reported in

Table 10.9.

Fig. 10.15 A schematic diagram for bio-hydrogen production from cellulose/starch containing

agricultural wastes and food industry wastewaters (Source: Kapdan dan Kargi 2006)
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Table 10.9 Reported fermentative hydrogen yield by different organisms

Microorganisms

Culture

condition

Carbon

source (g/L)

H2 yield

(mol/mol

glucose) Reference

E. coli Batch Glucose 0.75 Gottschalk (1986)

E. coli SR15 Batch Glucose (10) 1.8 Yoshida et al. (2006)

Cl. butyricum strain

SC-E1

Continuous Glucose (10) 1.4 Kataoka et al. (1997)

Clostridium
beijerinckii AM21B

Batch Glucose (10) 1.3–2.0 Taguchi et al. (1992)

C. freundii Batch Glucose (7.7) 1.29 Kumar and

Vatsala (1989)

Citrobacter
intermedim

Continuous Glucose (7.7) 0.27–1.14 Brosseau and

Zajic (1982)

Citrobacter sp Y19 Batch Glucose (5) 1.4 Oh et al. (2004)

Enterobacter cloacae
IIT BT 08

Continuous Glucose (5) 2.3 Nath and Das (2004)

Enterobacter
aerogenes strain
E.82005

Batch Molasses

(17 mM)

0.52–1.58 Tanisho et al. (1998)
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Fig. 10.16 Z scheme of photosynthetic electron flow in green plants and algae showing links to

carbon metabolism and hydrogen production: Q, A, primary electron acceptors in Photosystems II

and I, respectively; dotted arrow signifies cyclic electron flow (Melis and Happe 2001a, b)

192 A. Kumar et al.



Microbial Fuel Cells

One of the most exciting technologies for biological production of energy is the

microbial fuel cell (MFC). A microbial fuel cell is a mimic of a biological system in

which bacteria do not directly transfer their produced electrons to their character-

istic electron acceptor. Instead, the transport process is subsequently conducted

over an anode, a resistance or power user, and a cathode. Thus way, bacterial energy

is directly converted to electrical energy.

Fuel Cell Design and Fabrication

Bacterial reactions can be carried out over several different temperature ranges

depending on the tolerance of the bacteria, ranging from moderate or room-level

temperatures (15–35 �C) to both high temperatures (50–60 �C) tolerated by ther-

mophiles and low temperatures (<15 �C) where psychrophiles can grow. Virtually

any biodegradable organic matter can be used in an MFC, including volatile acids,

carbohydrates, proteins, alcohols, and even relatively recalcitrant materials like

cellulose (Fig. 10.17) (Logan et al. 2006).

Hydrogen ions (protons, H+) can accept reducing equivalents (conventionally

represented as electrons, e�) generated either photosynthetically or by the oxidation
of organic and inorganic substrates inside microbial cells:

2e� þ 2Hþ ! H2

The terminal electron donor (e.g., reduced ferredoxin) could donate electrons to the

anode of a battery. Protons could then, in the presence of O2, complete the electric

circuit at the cathode by the reaction:

O2 þ 4e� þ 2Hþ ! 2H2O

Thus, forming a highly environmentally friendly source of electric power

(a battery), fueled by microbial metabolic activity (Logan and Regan 2006). That,

in essence, is the definition of a microbial fuel cell (MFC).

The voltage across the external resistor or load in an MFC can be measured using

a multimeter. Voltage measurements are converted to current values using Ohm’s

law:

V ¼ IR where V ¼ Voltage Vð Þ, I ¼ Current Að Þ, R ¼ Resistance;

The power output from an MFC is calculated as
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Proton exchange
membrane

Anode chamber (anaerobic) Cathode chamber (aerobic)
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b

Fig. 10.17 (a) Diagram of two-chamber microbial fuel cell with aqueous cathode and anode

chambers with solid graphite electrodes. (b) Diagram of single-chamber microbial fuel cell with

aqueous anode chamber and air cathode chamber. The anode and cathode chambers are separated

by a membrane. The bacteria grow on the anode, oxidizing organic matter and releasing electrons

to the anode and protons to the solution. The cathode is sparged with air to provide dissolved

oxygen for the reactions of electrons, protons and oxygen at the cathode, with a wire (and load)

completing the circuit and producing power. The system is shown with a resistor used as the load

for the power being generated, with the current determined based on measuring the voltage drop

across the resistor using a multimeter hooked up to a data acquisition system (Drapcho et al. 2008)
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P ¼ IV where P ¼ Power Wð Þ

Power density is used to relate power output to the anode surface area or anode

chamber volume. Power density is calculated based on anode surface area as

follows:

PDA ¼ IV

AA

where PDA¼ power density on area basis, W/m2; and AA¼ anode surface area, m2.

Methane Production

During anaerobic digestion, organic matter is converted to methane and carbon

dioxide by way of a series of interrelated microbial metabolisms, including hydro-

lysis, acetogenesis, and methanogenesis. The value and stability of the pH in an

anaerobic reactor are extremely important because methanogenesis proceeds only

at a high rate when the pH is maintained in the neutral range (van Haandel and

Lettinga 1994; Zinder 1994). Biogas production from maize along the production

process are shown in Fig. 10.18.

phase I phase II phase III phase IV

biomass
production

plant biomass for
digestion

biogas

digestate

fermentation
substrate

harvest, conservation,
supply

fermentation end products

time of
harvesting

plant
management

chopping additives substrate composition

fermentation
technology

environmental
conditions

harvesting
technology

conservationclimate
varietylocation

Fig. 10.18 Influences on biogas production from maize along the production process (Source:
Amon et al. 2007)
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Hydrolysis

Many of the potential biomass sources for methane production are high molecular

weight, insoluble polymers such as polysaccharides, proteins, and fats that are too

large to be transported across bacterial cell membranes. Polysaccharides such as

cellulose and hemicellulose are hydrolyzed to glucose and xylose by cellulase and

hemicellulase enzymes. Proteins and lipids are hydrolyzed to their constituent

amino acids and long-chain fatty acids by proteases and lipases, respectively. The

rate of hydrolysis is a function of several factors, such as pH, substrate composition,

and particle size.

Fermentation (Acidogenesis)

The second phase of the overall process is fermentation that begins with the

conversion of the sugar monomers to pyruvate (C3H4O3), ATP, and the electron

carrier molecule NADH by central metabolic pathways. The central metabolic

pathways found within most bacteria are the Embden-Meyerhof pathway (glycol-

ysis) and the pentose phosphate pathway. Next, these fermentative bacteria convert

pyruvate and amino acids to a variety of short-chain organic acids—primarily

acetate, propionate, butyrate, and succinate—and alcohols, CO2, and H2 through

various fermentation pathways. Acid producing organisms are a mixture of facul-

tative anaerobes, such as enteric bacteria and clostridial species which are called

acid formers. The optimum temperature and pH values for this step are T¼ 35 �C
and pH¼ 4–6 (Shuler and Kargi 2002).

Acetogenesis

The short-chain organic acids produced by fermentation and the fatty acids pro-

duced from the hydrolysis of lipids are fermented to acetic acid, H2, and CO2 by

acetogenic bacteria. Syntrophic bacteria that oxidize organic acids to acetate, H2,

and CO2 are reliant on the subsequent oxidation of H2 by the next group, the

methanogens, to lower the H2 concentration and prevent end-product inhibition.

Methanogenesis

In the final phase, methane is produced through two distinct routes by two different

microbial groups. Among methanogenic bacteria used for this purpose are
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Methanobacterium (nonspore-forming rods), Methanobacillus (spore forming

rods), and Methanococcus and Methanosarcina.
The optimum temperature and pH range for methanogenic bacteria are T¼ 35–

40 �C and pH¼ 7–7.8 (Shuler and Kargi 2002). The relationships of the three

general metabolic groups of bacteria or stages of fermentation involved in methane

production are shown in Fig. 10.19. One route is by the action of the lithotrophic

H2-oxidizing methanogens that use H2 as electron donor and reduce CO2 to produce

methane. In the second route, the organotrophic acetoclastic methanogens ferment

acetic acid to methane and carbon dioxide.

4H2 þ CO2 ! CH4 þ 2H2O

CH3COOH ! CH4 þ CO2

Conclusions and Future Prospects

Bio-fuels are being promoted in the transportation sector. More recently, ethanol

produced from sugar and starch-based feedstocks has become another important

biofuel. Other biofuels such as lignocellulosic ethanol, biodiesel, biohydrogen, and

bioelectricity have been the focus of vigorous research, and the technologies for

their production are being developed, although most of these are not quite ready for

commercialization. Currently, a large amount of studies regarding the utilization of

lignocellulosic biomass as a feedstock for producing fuel ethanol is being carried

out worldwide (Balat and Balat 2009). Bioconversion of lignocellulosic biomass to

ethanol is significantly hindered by the structural and chemical complexity of

biomass, which makes these materials a challenge to be used as feedstocks for

cellulosic ethanol production (Zheng et al. 2009). But in addition to that, the

Fig. 10.19 A scheme

showing the relationships

of the three general

metabolic groups of

bacteria or stages of

fermentation involved

in methane production

(Source: Bryant 1979)
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technology of recombinant DNA will provide important advances for the develop-

ment of fuel ethanol industry. The development of genetically modified microor-

ganisms capable of converting starch or biomass directly into ethanol and with a

proven stability under industrial conditions will allow the implementation of the

consolidated bioprocessing of the feedstocks (Cardona and Sánchez 2007). The

willingness of mankind to pay high prices for energy in the future is a great

uncertainty. Hence, the biobutanol production can aid in extending the life of

petroleum oil reserves and diminish environmental concerns (Kumar and Gayen

2011). The acetone-butanol fermentation was the first large-scale fermentation

process developed which is sensitive to contamination. Therefore this fermentation

contributed much to the knowledge of how to run sterile processes on an industrial

scale. As an alternative plan, many research projects have been initiated for the

efficient use of lignocellulosic biomass, algal biomass, etc. which should be accom-

plished in the future (Mosier et al. 2005; Kumar et al. 2009). Sucrose from sugar

cane is also an excellent substrate in certain regions of the world. An optimal

Bioprocess for butanol production can be developed by integrating the fermentation

and downstream processes with strain development (Lee et al. 2008a, b).

Researchers are also attempting an aerobic production of biobutanol using genet-

ically engineered organisms like E. coli, S. cerevisiae etc. (Atsumi and Liao 2008;

Steen et al. 2008). It will be the milestone to attract the attention of government,

commercial, and research organizations for further support in implementing the

innovative fermentation and extraction technology. The study on biodiesel synthe-

sis showed that the quantity of catalyst, the temperature and reaction time are the

main factors affecting the production of methyl esters both for short chain methyl

esters and long chain methyl esters (Riadi et al. 2014). Biological methods offer

distinct advantages for hydrogen production such as operation under mild condi-

tions and specific conversions. However, raw material cost is one of the major

limitations for bio-hydrogen production. Utilization of some carbohydrate rich,

starch or cellulose containing solid wastes and/or some food industry wastewaters

is an attractive approach for bio-hydrogen production (Kapdan and Kargi 2006).

Microbial production of electricity may become an important form of bioenergy in

future because MFCs offer the possibility of extracting electric current from a wide

range of soluble or dissolved complex organic wastes and renewable biomass. A

large number of substrates have been explored as feed. The major substrates that

have been tried include various kinds of artificial and real wastewaters and ligno-

cellulosic biomass (Pant et al. 2010). Currently, biogas production from energy

crops is mainly based on the anaerobic digestion of maize. Among them, methane

produced by anaerobic digestion has been used by the human race for hundreds, if

not thousands, of years. In the near future, biogas production from energy crops will

increase and it has to be considered that energy crops are grown in versatile,

sustainable crop rotations (Strauß et al. 2012).
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