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 Key Points 

•     von Hippel-Lindau (VHL) gene muta-
tion is the hallmark of clear cell renal 
cell carcinoma (ccRCC).  

•   Disruption of VHL results in upregula-
tion of a number of hypoxia-inducible 
factor (HIF)-regulated genes involved in 
angiogenesis; these gene products are 
responsible for the vascular nature of 
VHL-related lesions.  

•   VHL has a number of non-HIF-related 
functions whose loss likely contributes to 
the development of the cancer phenotype.  

•   Therapies targeting the vascular endo-
thelial growth factor (VEGF) axis have 
arisen directly from our understanding 
of the molecular biology of VHL.  

•   A number of other potential VHL- and 
HIF-related targets are being investi-
gated, including cell-matrix-interacting 
proteins, other growth factors, and 
canonical signaling pathways.  

•   The recent discovery of additional muta-
tions in RCC affecting histone function, 
including BAP1, PBRM1, and SETD2, 
provides new research avenues for ther-
apy development.  

•   A better understanding of the molecular 
biology of immune cell response has also 
provided exciting new agents, including 
anti-CTLA-4 and anti-PD1 antibodies.    
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3.1             Introduction 

 Kidney cancer is one of the ten most common can-
cers in the United States. Approximately 75 % of 
kidney cancers are clear cell renal carcinomas, and 
most clear cell renal carcinomas are linked to inac-
tivation of the von Hippel-Lindau tumor suppres-
sor gene ( VHL ). Studies of the  VHL  gene product, 
pVHL, revealed that it participates in the oxygen-
dependent degradation of the HIF (hypoxia-induc-
ible factor) transcription factor. HIF is a master 
regulator of genes, such as vascular endothelial 
growth factor (VEGF), that participate in adap-
tation to hypoxia. The mTOR kinase also affects 
HIF protein and may also participate in signaling 
downstream of VEGF. Collectively these discov-
eries provided a conceptual framework for the 
testing, and eventual approval, of VEGF inhibitors 
and mTOR inhibitors for the treatment of kidney 
cancer. This chapter will review the molecular 
biology of kidney cancer, focusing on the role of 
pVHL in clear cell renal carcinoma.  

3.2     The von Hippel-Lindau 
Tumor Suppressor Gene 

 von Hippel-Lindau disease is characterized by an 
increased risk of clear cell renal carcinoma; heman-
gioblastomas of the retina, spinal cord, and cere-
bellum; and pheochromocytoma [ 1 ]. Pioneering 
studies by Bert Zbar, Marston Linehan, and Eamon 
Maher led to the identifi cation of the gene that, 
when mutated in the germline, causes this disease 
( VHL ) [ 2 ]. The human  VHL  gene is located on 
3p25 and contains three exons. VHL orthologs 
have now been identifi ed in a wide variety of meta-
zoan species. Individuals with VHL disease have 
inherited a defective  VHL  allele from one of their 
parents or, less commonly, have a de novo  VHL  
mutation. The development of tumors in VHL dis-
ease is linked to inactivation of the remaining wild-
type  VHL  allele in a susceptible cell. As such, VHL 
conforms to the Knudson 2-hit model. In keeping 
with the increased risk of clear cell renal carci-
noma in VHL patients, biallelic  VHL  inactivation, 
due to somatic  VHL  mutations or  VHL  hypermeth-
ylation, is also very common in sporadic (nonhe-
reditary) clear cell renal carcinomas [ 3 ]. In many 

early studies,  VHL  mutations were documented in 
about 50 % of sporadic clear cell renal carcinomas, 
with another 5–20 % of tumors exhibiting  VHL  
hypermethylation, which inhibits transcription of 
the  VHL  gene. More recent studies, using newer 
sequencing methods, suggest that the frequency of 
 VHL  mutations in clear cell renal carcinoma is 
actually much higher [ 4 ,  5 ]. This would explain 
why the vast majority of clear cell renal carcino-
mas have molecular signatures suggestive of  VHL  
inactivation (see also below) [ 6 ]. 

 One can infer the evolutionary history of a given 
tumor by determining the frequency of specifi c 
mutant alleles (and hence subclones) within that 
tumor by next-generation sequencing. Such studies 
confi rm that biallelic  VHL  inactivation is an early 
“truncal” event in clear cell renal carcinoma but is 
not suffi cient to cause this disease [ 7 – 10 ].  

3.3     The VHL Tumor Suppressor 
Protein 

 The  VHL  mRNA is actually translated into two dif-
ferent proteins by virtue of alternative, in- frame, 
translation initiation codons [ 11 – 13 ]. The long form 
contains 213 amino acids. The short form is missing 
the fi rst 53 amino acid residues. In most, but not all, 
biological assays, the short form and long form 
behave similarly. Moreover, virtually all of the  VHL  
mutations identifi ed to date affect both the long and 
the short forms of the protein. Therefore, “pVHL” 
will be used throughout this chapter when referring 
to the two protein isoforms generically. pVHL 
resides primarily in the cytoplasm [ 14 ,  15 ] but shut-
tles dynamically to and from the nucleus [ 16 ,  17 ]. 
Some pVHL can also be detected in mitochondria 
[ 18 ] and in association with the endoplasmic reticu-
lum [ 19 ]. Restoration of pVHL function in  VHL −/− 
clear cell renal carcinomas suppresses their ability 
to form tumors in vivo but not their ability to prolif-
erate on plastic dishes under standard cell culture 
conditions [ 15 ,  20 ]. pVHL does, however, inhibit 
proliferation when cells are grown on specifi c extra-
cellular matrices, at high confl uence, or as three-
dimensional spheroids [ 21 – 25 ]. 

 VHL-associated neoplasms, including clear 
cell renal carcinomas, are often highly angiogenic 
and occasionally cause the excessive production 
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of red blood cells (polycythemia). The former is 
linked, at least partly, to overproduction of VEGF 
and the latter to secretion of erythropoietin. These 
clinical features provided important clues with 
respect to the biochemical functions of pVHL. In 
particular, pVHL suppresses the production of 
hypoxia-inducible mRNAs, including the mRNAs 
for VEGF and erythropoietin, under normal oxy-
gen conditions [ 20 ,  26 – 29 ]. Consequently, over-
production of such mRNAs, and the proteins they 
encode, is a hallmark of pVHL-defective tumors. 

 Mechanistically, pVHL is part of a multiprotein 
complex that also contains elongin B, elongin C, 
Cul2, and Rbx1 [ 30 – 35 ]. This complex  possesses 

ubiquitin ligase activity [ 36 – 41 ] and can polyu-
biquitylate specifi c substrates, which are then ear-
marked for destruction by the proteasome. pVHL 
serves as the substrate recognition component 
of this ubiquitin ligase complex. The best-docu-
mented target of the pVHL ubiquitin ligase is the 
HIF (hypoxia-inducible factor) transcription fac-
tor, which is a heterodimer consisting of an unsta-
ble alpha subunit and a stable beta subunit. In the 
presence of oxygen pVHL binds directly to the HIF 
alpha subunit and targets it for polyubiquitylation 
and subsequent proteasomal degradation [ 28 ,  38 –
 42 ] (Fig.  3.1 ). Under low-oxygen conditions, or in 
cells lacking functional pVHL, HIFα accumulates 
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  Fig. 3.1    Control of HIF activity. Steady-state levels of 
HIFα are controlled by its rate of synthesis and degradation. 
The former is regulated by the TORC1 complex, which con-
tains the mTOR kinase. This is especially true for HIF1α. 
The rate of degradation is under the control of pVHL. When 

oxygen is present, HIFα becomes prolyl hydroxylated, 
which marks it for polyubiquitylation by pVHL and subse-
quent proteasomal degradation. HIFα can dimerize with its 
partner protein, HIFβ (also called ARNT), and transcrip-
tionally activate genes such as  VEGF  and  EPO        
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and binds to HIFβ. The HIF heterodimer binds to 
specifi c DNA sequences called hypoxia response 
elements (HREs) in  hypoxia-responsive genes 
such as VEGF and EPO and increases their rate of 
transcription (Fig.  3.1 ).  

 The interaction between pVHL and HIFα 
requires oxygen because HIFα must be hydroxyl-
ated on one (or both) of two conserved prolyl resi-
dues in order to be recognized by pVHL [ 43 – 47 ]. 
Prolyl hydroxylation of HIFα is catalyzed by mem-
bers of the EglN family [ 48 – 50 ], which are oxygen-
dependent enzymes that serve as cellular oxygen 
sensors [ 51 ]. pVHL contains mutational hotspots 
called the alpha domain and the beta domain. The 
alpha domain binds directly to elongin C [ 30 ,  52 ], 
which recruits the remaining members of the ubi-
tquitin ligase complex, and the beta domain binds 
directly to hydroxylated HIFα [ 38 ,  53 ,  54 ]. 

3.3.1     Role of HIF in Clear Cell Renal 
Carcinoma 

 There are three HIFα family members called 
HIF1α, HIF2α, and HIF3α. Deregulation of HIFα, 
in particular HIF2α, appears to be a driving force 
in pVHL-defective kidney cancer. For example, 
the risk of renal carcinoma linked to different  VHL  
mutations correlates with the degree to which 
those mutations deregulate HIF [ 55 – 57 ].  VHL −/− 
renal carcinoma cells frequently silence the 
expression of FBP1, which is an other endogenous 
inhibitor of HIF activity [ 58 ]. 

 pVHL-defective clear cell renal carcinomas 
overproduce HIF2α but, in some cases, fail to pro-
duce HIF1α [ 28 ,  42 ,  59 ,  60 ]. Production of a non-
hydroxylatable version of HIF2α, but not HIF1α, 
can override the tumor suppressor activity of pVHL 
in preclinical models [ 61 ,  62 ]. Similarly, exogenous 
overexpression of HIF2α, but not HIF1α, promotes 
tumor formation by  VHL −/− renal cancer cells [ 63 , 
 64 ]. Moreover, downregulation of HIF2α, but not 
HIF1α, is suffi cient to suppress tumor formation 
by pVHL- defective clear cell renal carcinomas [ 65 , 
 66 ]. The appearance of HIF2α in premalignant renal 
lesions in patients with VHL disease heralds malig-
nant transformation [ 67 ,  68 ], and a human single 
nucleotide polymorphism (SNP) linked to HIF2α 

on chromosome 2p21 has been associated with the 
risk of developing clear cell renal carcinomas [ 69 ]. 
Finally, much of the pathology observed after  VHL  
inactivation in genetically engineered mouse mod-
els can be linked to the inappropriate accumulation 
of HIF2α [ 68 ,  70 – 75 ]. It should be noted that  VHL  
inactivation, but not bona fi de hypoxia, is suffi cient 
to induce HIF2α in mouse renal tubular epithelial 
cells and cause renal cyst formation [ 68 ,  72 ,  76 ]. 
Neither  VHL  inactivation nor increased HIF2α 
activity, however, is suffi cient to cause clear cell 
renal carcinoma in genetically engineered mouse 
models [ 68 ,  72 ,  76 ,  77 ]. This presumably refl ects 
the need for cooperating genetic events (see below) 
and perhaps species differences. 

 As noted above, some clear cell renal carcinoma 
cell lines and tumors produce low, or undetectable, 
amounts of HIF1α. Indeed, some  VHL −/− clear 
cell renal carcinoma lines harbor homozygous 
mutations of the  HIF1α  locus [ 60 ]. Reintroduction 
of wild-type HIF1α into such lines suppresses their 
proliferation in cell culture and in nude mice xeno-
graft studies [ 60 ,  63 ,  64 ]. Conversely, downregula-
tion of HIF1α in HIF1α- profi cient  VHL −/− clear 
cell renal carcinoma lines enhances their prolif-
eration in cell culture and in xenograft assays [ 59 , 
 60 ]. Interestingly,  HIF1α  resides on chromosome 
14q, which is frequently deleted in clear cell renal 
carcinomas (together with chromosome 3p loss 
and chromosome 5q amplifi cation) [ 60 ]. Clear 
cell renal carcinomas with chromosome 14q dele-
tions have gene expression signatures consistent 
with decreased HIF1α activity [ 60 ,  78 ]. In some 
 VHL −/− clear cell carcinomas that express both 
HIF1α and HIF2α, the ratio of HIF2α to HIF1α 
is enhanced by loss of specifi c microRNAs miR-
30c- 2-3p and miR-30A-3p that normally serve to 
repress HIF2α [ 79 ]. Finally, loss-of-function intra-
genic  HIF1α  mutations have occasionally been 
identifi ed in  VHL −/− clear cell renal carcinomas 
[ 60 ,  80 – 82 ]. Collectively, these fi ndings suggest 
that HIF1α, in contrast to HIF2α, acts as a tumor 
suppressor in  VHL −/− clear cell renal carcinoma. 

 In apparent disagreement with this contention, 
expression of a stabilized version of HIF1α, but 
not a stabilized version of HIF2α, in the proximal 
renal tubular epithelial cells of mice caused renal 
cell dysplasia, including evidence of increased 
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proliferation, increased DNA damage, and clear 
cell histological changes [ 83 ,  84 ]. Similarly, 
ablation of  VHL  in primarily mouse collecting 
ducts caused hyperplastic changes that could be 
reversed by simultaneous inactivation of HIF1α 
[ 85 ]. Finally, it has also been shown that silenc-
ing HIF1α inhibits, rather than augments, tumor 
growth by human  VHL +/+ renal carcinoma 
growth [ 86 ]. 

 There are a number of caveats to these studies, 
however. For example, the cell of origin for 
 VHL −/− clear cell renal carcinoma is still debated 
but likely involves a distal tubular epithelial cell 
that is permissive for HIF2α accumulation and 
the expression of specifi c HIF2α target genes 
(e.g. cyclin D1) following pVHL loss [ 67 ,  68 ,  87 ]. 
In this regard, forced expression of a stabilized 
version of HIF2α in the murine proximal renal 
tubule did not recapitulate the induction of HIF 
targets seen in  VHL −/− clear cell renal carcinoma 
[ 83 ], perhaps because the wrong cell type was 
targeted. The genetically engineered mouse stud-
ies might also be confounded by biological dif-
ferences between mice and men, as has been 
observed with many other cancer genes. Finally, 
the apparent dependence of human  VHL +/+ renal 
carcinomas on HIF1α for tumor growth does not 
preclude a tumor suppressor role for HIF1α in 
 VHL −/− renal carcinomas, especially bearing in 
mind potential differences in cell of origin and 
cooperating genetic events. 

 There are a number of quantitative and quali-
tative differences between HIF1α and HIF2α that 
could account for their seemingly antagonistic 
effects in  VHL −/− clear cell renal carcinoma. 
These differences likely refl ect the fact that some 
HIF target genes are preferentially activated by 
specifi c HIFα family members as well as by the 
existence of non-canonical HIF functions that are 
unique to specifi c HIFα proteins. HIF2α cooper-
ates with c-Myc to promote the proliferation of 
 VHL −/− clear cell renal carcinoma cells, while 
HIF1α is capable of inhibiting c-Myc [ 88 – 91 ]. 
Both HIF1α and HIF2α can induce REDD1 and 
thereby suppress the activity of the TORC1 com-
plex, which contains mTOR, and Cap-dependent 
translation [ 92 – 95 ]. HIF2α, however, and not 
HIF1α, can also stimulate translation. HIF2α 

transcriptionally induces the amino acid trans-
porter  SLC7A5  and thereby increases intracellu-
lar amino acid availability, which activates 
TORC1 [ 96 ]. In addition, HIF2α forms a com-
plex with RBM4 and eIF4E that promotes Cap- 
dependent translation in cells with depressed 
TORC1 activity [ 97 ]. HIF1α and HIF2α also 
appear to differentially regulate p53 and the DNA 
damage response [ 59 ,  63 ,  98 ,  99 ]. 

 pVHL has a number of other functions that, 
although incompletely understood biochemi-
cally, appear to be a least partly HIF-independent. 
These include a role in the maintenance of a spe-
cialized structure called the primary cilium on 
the cell surface that serves as a mechanosensor 
[ 76 ,  100 – 103 ], possibly by virtue of pVHL’s role 
in stabilization of microtubules [ 104 – 106 ]. 
Interestingly, a number of diseases characterized 
by visceral cyst formation, including VHL dis-
ease, are caused by mutations that disrupt the pri-
mary cilium [ 107 ,  108 ]. pVHL also suppresses 
autophagy via both HIF-independent and HIF- 
dependent pathways, perhaps contributing to the 
increased autophagy seen in clear cell renal 
 carcinomas [ 109 ,  110 ]. In addition, pVHL plays 
roles in extracellular matrix formation by fi bro-
nectin [ 111 – 114 ], epithelial-epithelial contacts 
[ 115 ,  116 ], NFκB signaling [ 117 – 120 ], control 
of atypical PKC activity [ 121 – 125 ], Rpb1 expres-
sion and activity [ 126 – 128 ], receptor internaliza-
tion [ 129 – 131 ], and mRNA turnover [ 20 ,  26 , 
 132 – 135 ]. It is possible that these other functions 
also contribute to tumor suppression by pVHL.  

3.3.2     Cooperating Events 

 It is clear that pVHL loss is an important, but not 
suffi cient, step in renal carcinogenesis. This is 
most clearly demonstrated by studies of the natu-
ral history of von Hippel-Lindau disease. Patients 
with von Hippel-Lindau disease can develop 
hundreds of premalignant renal cysts, very few of 
which will go on to become clear cell renal carci-
nomas [ 67 ,  136 ] (Fig.  3.2 ). This bottleneck pre-
sumably refl ects the requirement for additional 
genetic events, occurring stochastically, to fully 
transform renal epithelial cells. Indeed, a number 
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of nonrandom genomic abnormalities have been 
described in clear cell renal carcinoma including, 
most notably, 5q amplifi cation and 14q loss [ 6 , 
 137 – 143 ] (Fig.  3.2 ). The triad of 3p loss, 14q 
loss, and 5q gain is a signature of clear cell renal 
carcinoma, and some clear cell renal carcinomas 
have unbalanced translocations involving 3p and 
5q that result in loss of 3p and gain of 5q 
sequences [ 60 ,  144 – 150 ].  

 Loss of chromosome 3p, which harbors the  VHL  
tumor suppressor gene, is the most common genetic 
event in kidney cancer. Chromosome 3p has been 
suspected for many years, however, to contain at 
least one additional kidney cancer suppressor gene. 
Indeed, it is now clear that 3p harbors several renal 
cancer suppressor genes other than  VHL  including 
 PBRM1 , which encodes the BAF180 chromatin-
associated protein;  SETD2 , which encodes a his-
tone H3 lysine 36 methyltransferase; and  BAP1 , 
which encodes a ubiquitin hydrolase [ 82 ,  151 – 156 ] 
(Fig.  3.3 ).  PBRM1  is, after  VHL , the most fre-
quently mutated gene in clear cell renal carcinoma. 
 PBRM1  and  BAP1  mutations are largely mutually 
exclusive and appear to defi ne clinically distinct 
subgroups of renal cancers [ 152 ,  157 ,  158 ].  

 As described above,  HIF1α  is a likely target of 
the 14q deletions in  VHL −/− clear cell renal 

 carcinomas. These deletions are very large, how-
ever, suggesting there are additional renal cancer 
suppressor genes located at 14q. It should also be 
noted that most 14q deleted  VHL −/− clear cell 
renal tumors (in contrast to cell lines) appear to 
retain a wild-type  HIF1α  allele [ 60 ]. This sug-
gests that  HIF1α  is a haploinsuffi cient clear cell 
renal carcinoma suppressor and that loss of the 
remaining allele is associated with tumor progres-
sion in vivo or establishment of cell lines ex vivo. 

  SQSTM1 , encoding p62, appears to be one 
of the renal carcinoma 5q oncogenes [ 159 ]. 
Increased expression of p62 promotes the growth 
of  VHL −/− renal carcinoma cells in cell culture 
and tumor xenograft assays and increases their 
resistance to redox stress [ 159 ]. p62 plays impor-
tant roles in autophagy and also signals to renal 
carcinoma relevant proteins including NRF2, 
NFκB, and mTOR [ 160 – 162 ]. 

 Sequencing of kidney cancer genomes has 
identifi ed additional genes that, when mutated, 
contribute to renal carcinogenesis including 
several more genes linked to chromatin regula-
tion such as  JARID1C  (also known as  KDM5C ), 
which encodes a histone H3 lysine 4 demeth-
ylase;  UTX  (KMD6A), which encodes a his-
tone H3 lysine 27 demethylase; and  ARID1A , 

VHL +/– Kidney

Stochastic 3p LOSS

VHL–/–Cyst 

Other changes
(e.g. 5q GAIN, 14q

LOSS, PBRM1 mutation
or BAP1 mutation) 

VHL–/–Cancer 

  Fig 3.2    Development of renal cell carcinoma in VHL 
patients. VHL patients are  VHL  heterozygotes, having one 
normal  VHL  allele and one defective allele. Loss of the 
remaining normal allele in kidney cells, occurring sto-
chastically, leads to the development of preneoplastic 

renal cysts. A minority of such cysts will ultimately accu-
mulate additional genetic changes and become clear cell 
renal carcinomas. Such genetic changes include gain of 
5q, loss of 14q, as well as intragenic mutations of specifi c 
genes such as  PBRM1  or  BAP1        
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a  component of a chromatin remodeling com-
plex [ 82 ,  151 – 156 ,  163 ]. Notably, many histone 
demethylase genes are themselves transcription-
ally induced by HIF [ 164 – 169 ]. It is possible 
that their inappropriate expression pursuant to 
 VHL  loss alters chromatin structure and creates 
the selection pressure to mutate specifi c chroma-
tin regulators. 

 Genes linked to the mTOR pathway including 
 PIK3CA ,  PTEN ,  TSC1 ,  TSC2 , and  MTOR  itself 
are occasionally mutated in clear cell renal carci-
nomas [ 7 ,  82 ,  152 ,  155 ,  156 ]. Preliminary data 
suggest that such mutations identify a subset of 
renal cell carcinoma patients more likely to 
derive signifi cant benefi t from TORC1  inhibitors 
[ 170 ]. 

 The  NFE2L  gene, encoding NRF2, and the 
NRF2-negative regulator  KEAP1  are occasion-
ally mutated in clear cell renal carcinoma [ 82 , 
 159 ]. Such mutations appear to be mutually 
exclusive with higher level  SQSTM1  amplifi ca-
tion [ 159 ]. Genes involved in the response to 
DNA damage, including  p53 ,  MDM4 , and  ATM , 
are also occasionally mutated in clear cell renal 

carcinoma [ 7 ,  82 ,  155 ,  156 ].  p53  loss cooperates 
with  Vhl  loss in mouse models to promote renal 
carcinogenesis [ 171 ].  

3.3.3     Treatment of Renal Cell 
Carcinoma: HIF Antagonists 

 The preclinical data outlined above suggest 
that drugs that inhibit HIF, and particularly 
HIF2α, would have antitumor activity in  
kidney cancer. Unfortunately, DNA-binding 
 transcription factors, with the exception of 
the steroid hormone receptors, have histori-
cally been diffi cult to target with drug-like 
small molecules. Nonetheless, a number of 
approaches to targeting HIF are being explored 
in the laboratory, including the use of 
 DNA-binding polyamides [ 172 – 174 ] and short 
interfering RNAs [ 175 ]. Moreover, HIF2α, but 
not HIF1α, has a potentially druggable pocket, 
and lead compounds have been identifi ed that 
can inhibit HIF2α in biochemical, cell-based, 
and animal models [ 176 – 178 ].  
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  Fig 3.3    Chromosome 3p harbors multiple renal cancer 
suppressors. Biallelic inactivation of the  VHL  tumor sup-
pressor gene on chromosome 3p, usually as the result of 
intragenic mutation (indicated by the  asterisk ) followed by 
loss of the remaining wild-type allele because of a gross 3p 
deletion, is a critical early event in most clear cell renal 

 carcinomas. The 3p deletions in clear cell renal carcinoma 
typically span  VHL , on 3p25, as well as the additional renal 
cancer suppressors  SETD2 ,  BAP1 , and  PBRM1  on 3p21. 
As a result, subsequent intragenic mutations of these genes 
deprive renal cells of their wild-type protein products (for 
illustrative purposes  PBRM1  is shown to be mutated)       
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3.3.4     Treatment of Renal Cell 
Carcinoma: mTOR Inhibitors 

 mTOR participates in two complexes, called 
TORC1 and TORC2 [ 179 ]. The former can be 
inhibited with rapamycin-like drugs. Two such 
drugs, temsirolimus and everolimus, have been 
FDA approved for the treatment of renal cell 
carcinoma based on positive randomized clini-
cal trial data [ 180 ,  181 ]. In theory the activity 
of these agents refl ects direct effects on tumor 
cells, including modulation of HIF [ 182 ], and 
effects downstream of VEGF signaling in endo-
thelial cells (see below). In preclinical models, 
 VHL −/− renal carcinoma lines are more sensi-
tive to rapamycin than are their pVHL-profi -
cient counterparts [ 183 ]. As noted above, 
preliminary data suggest that concurrent muta-
tions of the PI3K- MTOR pathway are enriched 
among renal carcinoma patients who exhibit 
the greatest clinical benefi t from rapamycin-
like drugs [ 170 ]. 

 Two factors might, however, limit the effec-
tiveness of rapamycin-like drugs in the treat-
ment of renal cell carcinoma. First, the TORC1 
complex feedback inhibits signaling by certain 
receptor tyrosine kinases [ 184 ,  185 ,  185a , 
 186 – 188 ]. As a result, treatment of tumor cells 
with rapamycin-like drugs can cause a para-
doxical increase in receptor kinase activity 
leading to activation of TORC2, which is rela-
tively rapamycin resistant, PI3K, and AKT, all 
of which might promote tumor growth [ 184 , 
 185 ,  185a ,  186 – 188 ]. Second, inhibition of 
TORC1 appears to preferentially inhibit 
HIF1α, which as argued above appears to act a 
renal cell carcinoma suppressor, rather than 
HIF2α [ 189 ]. In contrast, inhibition of TORC2 
preferentially affects HIF2α [ 189 ]. Second-
generation, ATP- like, mTOR inhibitors can 
inhibit both TORC1 and TORC2 and hence 
might be more active than rapamycin-like 
drugs in the treatment of clear cell renal carci-
noma [ 190 ,  191 ]. Emerging preclinical data 
support such a view [ 192 ].  

3.3.5     Treatment of Renal Cell 
Carcinoma: Angiogenesis 
Inhibitors 

3.3.5.1     VEGF 
 Renal cell carcinoma is one of the most angio-
genic solid tumors. Indeed, renal angiography 
was once an important tool to diagnose this neo-
plasm. Renal cell carcinoma hypervascularity 
refl ects the overproduction of HIF-dependent 
angiogenic factors such as VEGF. Notably, the 
remarkable upregulation of VEGF observed upon 
pVHL loss, and consequent increase in new 
blood vessel production, probably diminishes the 
selection pressure to upregulate additional angio-
genic factors in this setting. In contrast, a host of 
angiogenic factors in addition to, or instead of, 
VEGF likely contributes to neoangiogenesis 
associated with other solid tumor types. 

 In keeping with this view, a variety of drugs 
that inhibit VEGF, such as bevacizumab, or its 
receptor KDR, such as sorafenib, sunitinib, 
axitinib, and pazopanib, have now demonstrated 
signifi cant activity in the treatment of renal cell 
carcinoma and were approved by the FDA [ 193 –
 197 ]. These agents induce signifi cant disease sta-
bilization and, in some cases, frank regressions. 
Newer VEGF inhibitors that are more potent, 
more specifi c, or both are in various stages of 
development. It is anticipated that greater potency 
will translate into greater clinical effi cacy 
although there might be limits regarding the 
degree to which VEGF signaling can be safely 
interrupted in man. Microangiopathic hemolytic 
anemia was observed in patients in which two 
VEGF inhibitors were combined [ 198 ,  199 ], and 
both preclinical and clinical data suggest that 
chronic VEGF inhibition could lead to cardio-
myopathic changes [ 200 ,  201 ]. Developing 
VEGF inhibitors that exhibit greater specifi city is 
important because some of the existing agents are 
diffi cult to combine with other agents, presum-
ably because of their off-target effects. The his-
tory of curative cancer therapy suggests that the 
eventual cure of renal cell carcinoma will require 
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a combination of agents that have novel mecha-
nisms of action and that are non-cross resistant. 
A VEGF inhibitor will probably be cornerstone 
of such a combination. 

 In the simplest view, pVHL status would serve 
as a predictive biomarker, with VEGF inhibitors 
being more active in pVHL-defective renal cell 
carcinomas than in pVHL-profi cient tumors. 
Although some studies support this contention, 
others do not [ 202 – 205 ]. This lack of consistency 
might be due, at least partly, to technical differ-
ences related to how pVHL status was determined 
and how therapeutic response was measured. It 
appears that the vast majority of clear cell renal 
carcinomas (especially those that do not exhibit 
mixed histological patterns with areas of non-clear 
cell features) have transcriptional signatures indic-
ative of pVHL inactivation and HIF activation, 
including some without demonstrable  VHL  muta-
tions or hypermethylation [ 6 ]. Studies with newer 
sequencing platforms suggest that some of these 
tumors do, indeed, have  VHL  mutations that would 
be missed using conventional DNA sequencing 
approaches [ 4 ,  7 ]. Suffi ce it to say that  VHL  status 
is not currently a suffi cient robust predictive bio-
marker to be used in clinical decision-making.  

3.3.5.2     PDGF 
 Platelet-derived growth factor B (hereafter called 
PDGF) is another well-studied HIF target [ 206 , 
 207 ]. PDGF supports the expansion of pericytes 
that surround new blood vessels and provide sur-
vival signals to the associated endothelial cells. 
In preclinical models, newly sprouting blood ves-
sels that lack pericyte coverage are more sensi-
tive to VEGF blockade than are more mature 
vessels that are associated with pericytes [ 208 –
 210 ]. This might explain why the objective tumor 
response (regression) rate in renal cell carcinoma 
is higher with small-molecule KDR inhibitors, 
many of which inhibit PDGFR, than with bevaci-
zumab, which solely inhibits VEGF. On the other 
hand, it should be borne in mind that PDGFR 
inhibitors such as imatinib mesylate have not yet 
demonstrated utility as single agents in renal cell 

carcinoma and have not been shown to enhance 
the activity of bevacizumab [ 211 – 213 ]. Moreover, 
many of the existing KDR inhibitors might have 
off-target effects other than PDGFR inhibition 
that fortuitously contribute to their antitumor 
activity.  

3.3.5.3     IL-8 
 VEGF inhibitors, although highly active in renal 
cell carcinoma, are not curative as single agents, 
and renal cell carcinoma patients treated with 
these agents will eventually experience disease 
progression. The mechanisms underlying de novo 
or acquired resistance to VEGF inhibitors are 
poorly understood at the molecular level. One 
study suggested that upregulation of the angio-
genic cytokine IL-8, which cooperates with VEGF 
in some settings [ 214 ], contributes to resistance to 
VEGF inhibitors [ 215 ] and IL-8 polymorphisms 
and circulating IL-8 levels have been linked to 
clinical outcomes in patients treated with VEGF 
inhibitors [ 216 ,  217 ]. Interestingly, IL-8 is regu-
lated by HIF and NFκB, both of which are con-
trolled by pVHL [ 214 ,  218 – 222 ] (Fig.  3.3 ). These 
considerations warrant exploration of inhibitors 
of IL-8, or its  receptors CXCR1 and CXCR2, in 
renal cell carcinoma.  

3.3.5.4     TIE2 
 The receptor tyrosine kinase TIE2 plays an 
important role in angiogenesis [ 223 ]. Activation 
of TIE2 by ligands such as angiopoietin 1 stabi-
lizes blood vessels, while antagonists such as 
angiopoietin 2 destabilize blood vessels, render-
ing them permissive for sprouting and new blood 
vessel formation but also hyperdependent on 
VEGF as a survival factor. Although there have 
been confl icting reports on the regulation of 
angiopoietins by pVHL [ 224 ,  225 ], knowledge of 
TIE2 biology suggests that dual inhibition of 
VEGF and TIE2 might block angiogenesis more 
effectively than would VEGF blockade alone. 
Circulating levels of a soluble form of TIE2 have 
also been touted as a means of monitoring antian-
giogenic therapy in this patient population [ 226 ]. 
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Unfortunately, the TIE2 antagonist AMG386 in 
combination with the VEGFR inhibitor sorafenib 
was not more active than sorafenib alone [ 227 ].  

3.3.5.5     CXCR4 and SDF 
 Both CXCR4 and its ligand, CXCL12/SDF, are 
HIF targets and upregulated in pVHL-defective 
tumors [ 228 ,  229 ]. In some mouse models, block-
ing CXCR4 inhibits the recruitment of circulat-
ing bone marrow-derived cells that can contribute 
to new blood vessel formation and can enhance 
the antiangiogenic activity of VEGF inhibitors 
[ 230 ]. CXCR4 might also play cell autonomous 
roles in renal cell carcinoma invasion and metas-
tasis. In this regard, neutralizing antibodies to 
CXCL12 were shown to decrease metastasis, 
without affecting angiogenesis, in an orthotopic 
renal tumor model in mice [ 231 ]. Conversely, 
upregulation of CXCR4 on an epigenetic basis 
was associated with increased renal cell carci-
noma metastasis [ 232 ].   

3.3.6     Treatment of Renal Cell 
Carcinoma: Tumor Cell 
Receptor Tyrosine Kinases 

3.3.6.1     EGFR 
 Renal cell carcinomas frequently overexpress 
EGFR and its ligand TGFα [ 233 – 236 ]. TGFα is a 
transcriptional HIF target, while HIF has been 
reported to increase the rate of EGFR translation 
[ 97 ,  237 ,  238 ]. In addition, pVHL loss might 
decrease the rate of EGFR internalization and 
recycling [ 129 ]. In preclinical models, inhibiting 
EGFR decreases tumor growth in vivo [ 239 ,  240 ]. 

 Despite these observations, EGFR inhibitors 
have been very disappointing in the treatment of 
renal cell carcinoma, both alone and in combina-
tion with VEGF inhibitors [ 241 ,  242 ]. Why have 
EGFR inhibitors failed thus far in the clinic? One 
possibility, in addition to a possible failure to 
achieve adequate EGFR inhibition in vivo, stems 
from recent work showing that c-MET, which is 
frequently active in renal cell carcinoma (see 
below), can confer resistance to EGFR blockade 
[ 243 – 245 ]. Preclinical xenograft studies per-
formed in mice frequently underestimate the 

importance of c-MET because mouse HGF, the 
ligand for c-MET, does not activate human c-MET 
(present on implanted human tumor cells) [ 246 , 
 247 ].  

3.3.6.2     c-MET 
 pVHL-defective tumor cells exhibit increased 
c-MET activity and are hypersensitive to HGF 
[ 248 – 250 ]. Precisely how pVHL regulates c-MET 
is somewhat controversial, with some report sug-
gesting c-MET is a HIF target [ 250 – 252 ] and oth-
ers focusing on the effects of pVHL on signaling 
downstream of c-MET [ 248 ,  249 ]. Interestingly, 
activating germline  MET  mutations are linked to 
the development of papillary renal cell carcinoma 
[ 253 ]. HGF and c-MET play an important role 
in both tumorigenesis and angiogenesis. pVHL-
defective tumor cells are hypersensitive to c-MET 
loss [ 254 ], and inhibition of c-MET might, for the 
reasons outlined above, augment the activity of 
EGFR inhibitors. Cabozantinib (XL184), which 
inhibits both VEGFR and c-MET, demonstrated 
clinical activity in heavily pretreated renal cell 
carcinoma patients who had failed prior VEGF 
inhibitor therapy in a phase 1 study [ 255 ]. To 
what extent these responses were due specifi cally 
to c-Met inhibition remains to be determined.  

3.3.6.3     IGFR 
 HIF upregulates IGF-1 and IGF-2 as well as 
IGFB-2 and IGFB-3 [ 256 ,  257 ]. pVHL, in a HIF- 
independent manner, downregulates IGFR levels 
by inhibiting SP1 and the RNA-binding protein 
HuR [ 134 ] and IGFR-dependent signaling 
through PKCδ [ 123 ,  124 ]. Inhibition of IGFR 
sensitizes renal cell carcinoma cells to cytotoxic 
drugs as well as to rapamycin-like drugs [ 258 ]. 
This latter observation might relate to the role of 
rapamycin in feedback inhibition of receptor 
tyrosine kinase signaling, as described above. In 
addition, downregulation of IGFR-1 with shRNA 
technology decreases VHL−/− renal carcinoma 
growth in nude mouse xenograft assays [ 259 ].  

3.3.6.4     ROR2 
 ROR2 (RTK-like orphan receptor 2) was identi-
fi ed in an unbiased screen for receptor tyrosine 
kinases that are upregulated and activated by 
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pVHL loss in renal carcinoma cells [ 260 ,  261 ]. 
The biological functions of ROR2 are incom-
pletely understood although it has been linked to 
tumor cell invasiveness through the upregulation 
of matrix metalloproteinases and may act as a 
receptor for Wnt ligands. Inhibition of ROR2 in 
renal carcinoma cells with short hairpin RNAs 
suppresses tumor growth in orthotopic tumor 
models [ 261 ].   

3.3.7     Other Targets 

3.3.7.1    Cdk4/6 
 Deregulation of HIF2α in renal cell carcinoma 
cells drives the overproduction of the cyclin D1 
oncoprotein that, together with the cdk4 or cdk6 
kinase, promotes cell-cycle progression [ 64 ,  87 , 
 262 ,  263 ]. In contrast, hypoxia and HIF activation 
lowers cyclin D1 levels in most other cell types 
[ 87 ]. Some renal cell carcinomas have also sus-
tained deletions of the INK4A tumor suppressor 
protein [ 6 ,  138 ,  140 ], which acts as an inhibitor of 
cdk4 and cdk6, and pVHL-defective tumor cells 
appear to be hypersensitive to loss of cdk6 in vitro 
[ 254 ]. Moreover, cdk6 is located on a large region 
of chromosome 7 that is amplifi ed in a subset of 
renal cell carcinomas [ 6 ]. Downregulation of cyclin 
D1 with shRNA technology is suffi cient to inhibit 
tumor formation by  VHL −/− renal carcinoma cells 
in mouse models [ 259 ]. Although a relatively pro-
miscuous cdk inhibitor was relatively ineffective in 
the treatment of kidney cancer at maximally toler-
ated doses, newer, more selective cdk inhibitors 
targeted against cdk4 and cdk6 might now be 
explored for this indication [ 264 ,  265 ].  

3.3.7.2    NFκB 
 pVHL suppresses NFκB via HIF-dependent and 
HIF-independent pathways [ 117 – 120 ,  266 ]. With 
respect to the latter, pVHL, bound to casein kinase 
2, promotes the inhibitory phosphorylation of the 
NFκB agonist Card9 [ 120 ]. NFκB activity is 
increased in human renal cell carcinoma and might 
contribute to both tumor development and thera-
peutic resistance [ 267 ,  268 ]. HIF and NFκB coreg-
ulate targets such as cyclin D1 and VEGF, and 
preclinical studies suggest that inhibiting NFκB 

activity, such as might be achieved with inhibitors 
of IKK, would have salutary effects in the treat-
ment of kidney cancer [ 269 ].  

3.3.7.3    IL6 
 Renal cell carcinomas frequently overexpress 
interleukin 6, which is suspected of acting as an 
autocrine growth factor in this disease [ 270 – 272 ]. 
Binding of IL-6 to its receptor activates the JAK- 
STAT pathway that, in turn, can stimulate renal car-
cinoma cell proliferation [ 273 ]. IL-6 was shown to 
be pVHL responsive in one study [ 262 ] and has 
been implicated as both a prognostic biomarker in 
clear cell renal carcinoma and as a predictive bio-
marker for clear cell renal carcinoma patients being 
treated with the VEGFR inhibitor pazopanib [ 217 ]. 
A neutralizing antibody against IL-6 stabilized dis-
ease in approximately 50 % of patients with meta-
static renal cancer in a phase 2 study [ 274 ].   

3.3.8     Carbonic Anhydrase 
and Lactate Dehydrogenase 

 HIF1α upregulates a number of genes that pro-
mote glycolysis and lactate acid production. This 
potentially places a burden on pVHL-defec-
tive tumor cells to maintain pH homeostasis. 
Preclinical studies suggest that inhibition of lac-
tate dehydrogenase A or carbonic anhydrase IX, 
both of which are HIF targets, would be a viable 
therapeutic strategy for treating pVHL-defective 
renal cell carcinomas [ 275 – 278 ].  

3.3.9     Histone Methylases 
and Demethylases 

 Resequencing of renal cell carcinoma genomes 
has identifi ed mutations affecting enzymes that 
regulate histone methylation, as described above. 
In addition, HIF transcriptionally activates a 
number of histone demethylases including 
JMJD1A, JMJD2B, and JARID1B [ 164 – 169 ]. In 
one study, inhibition of JMJD1A with a short 
hairpin RNA inhibited renal carcinoma growth 
[ 168 ]. Histone methylases and demethylases can, 
in principle, be inhibited with drug-like small 

3 Molecular Biology of Kidney Cancer



42

molecules, and the identifi cation of these 
enzymes as mutational targets in renal cell carci-
noma and other neoplasms is motivating a deeper 
understanding of their biological functions as 
well as nascent drug discovery efforts. 

3.3.9.1    CTLA4 and PD1 
 It has been appreciated for decades that renal cell 
carcinoma has a highly variable natural history 
and that some patients can experience spontane-
ous regressions. Although the mechanisms 
underlying such spontaneous regressions are 
unknown, a role for the immune system has been 
suspected. Moreover, immune modulators have 
been used in the treatment of this disease for 
many years, including high-dose interleukin 2 
[ 279 ]. High-dose interleukin 2 can induce dura-
ble remissions in patients with metastatic kidney 
cancer. Unfortunately, this therapy is suffi ciently 
toxic that it should only be given at specialized 
care centers, and it is impossible to predict the 
small subset of patients who will achieve such 
lasting remissions. 

 A growing appreciation of the signals that are 
used by tumor cells to evade immune recognition 
has led to new cancer immunotherapeutic agents, 
including antibodies directed against CTLA4 and 
PD1, which are proteins that serve to dampen the 
immune response. Interestingly, a particular 
CTLA4 polymorphism was found in one study to 
be associated with the risk of developing renal 
cell carcinoma [ 280 ]. 

 Anti-CTLA4 has demonstrated activity in the 
treatment of renal cell carcinoma and is now 
being explored in combinations [ 281 ,  282 ]. A 
cautionary note is that acute renal failure was 
observed when anti-CTLA4 was combined with 
sunitinib [ 282 ]. Early data with anti-PD1 anti-
bodies for the treatment of renal cell carcinoma 
also appear promising [ 283 – 285 ]. 

 It is not yet known whether pVHL loss infl u-
ences the recognition of tumor cells by the 
immune system although VEGF has, itself, been 
implicated as an immune suppressant [ 286 – 288 ]. 
Moreover, HIF stimulates the production of ade-
nosine, which can suppress the immune response 
via the A2A adenosine receptor [ 289 ,  290 ]. 
Future therapies against renal cell carcinoma will 

likely involve combinations of agents that directly 
kill tumor cells with agents that enhance the host 
immune response.    

    Conclusions 

 Renal cell carcinoma is a common cancer that, 
historically, has been refractory to therapy 
with standard chemotherapeutic agents and 
radiation. High-dose interleukin-2 can induce 
durable remissions in a small subset of 
patients, but it is impossible to predict which 
patients will benefi t from this toxic and expen-
sive form of therapy. The von Hippel-Lindau 
tumor suppressor protein, pVHL, is frequently 
inactivated in clear cell renal carcinoma, 
which is the most common form of kidney 
cancer. The knowledge that pVHL inhibits the 
HIF transcription factor provided a conceptual 
framework for drugs that inhibit the HIF-
responsive gene product VEGF. The clinical 
activity of mTOR inhibitors might also relate 
to HIF biology because mTOR regulates HIF 
synthesis and might also act downstream of 
VEGF. A number of other HIF-responsive 
gene products are also known or suspected of 
playing roles in tumorigenesis and are worthy 
of exploration as kidney cancer drug targets. 
Elucidation of the genetic events that cooper-
ate with pVHL loss in clear cell carcinoma 
will hopefully yield additional targets. In this 
regard, it is anticipated that the frequent occur-
rence of mutations affecting chromatin regula-
tory proteins in clear cell renal carcinoma will 
create exploitable therapeutic vulnerabilities. 
Finally, there is a growing appreciation of 
how, mechanistically, clear cell renal carci-
noma subverts immune recognition. The stud-
ies, in total, should provide a platform for the 
design and testing of effective therapeutic 
combinations for this disease.     
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