
Chapter 14
Vibrational Motions of the Ions
and Thermal Effects
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14.1 Motions of the Ions in the Harmonic Approximation

Hereafter we shall afford the problem of the motions of the ions around their equilib-
rium positions in an ideal (disorder- and defect-free) crystal. The motions are called
lattice vibrations. The Born-Oppenheimer separation and the adiabatic approxima-
tion (Sect. 7.1) will be implicit and the concepts involved in the description of the
normal modes (Sect. 10.6) in the harmonic approximation will be used. In fact, the
crystal cell will be considered as a molecular unit: its normal modes propagate along
the crystal with a phase factor, in view of the spatial periodicity.
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According to the definitions sketched below,
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within the harmonic approximation the potential energy will be written

V2 = 1
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∂α(l, s)∂β(l′, s ′)
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≡
∑

l,s,α

∑

l′,s ′,β

Φ
(α,β)

l,s,l′,s ′uα(l, s)uβ(l′, s ′), (14.1)

where Φ
(x,y)

l,s,l′,s ′ involves the force along the x direction on the ion at site s of the lth
cell when the ion at site s ′ in the l ′ cell is displaced by the unit length along the y
direction. From Eq. (14.1) the equations of motion turn out

ms
d2ul,s

dt2
= − ∂V2

∂ul,s
= −

∑

l′, s ′
Φl,s,l′,s ′ul ′,s ′ , (14.2)

namely 3SN coupled equations (S number of atoms in each cell).
Recalling the normal modes in the molecules (Sect. 10.6) it is conceivable that due

to the translational invariance, the motion of the atom at site s in a given cell differs
only by a phase factor with respect to the one in another cell (this is the analogous
of the Bloch orbital condition for the electron states). Therefore the displacement of
the (l, s) atom along a given direction is written in terms of plane waves propagating
the normal coordinates within a cell:

u(q)
α (l, s) = Uα(s, q)eiq · R(l,s)e−iωqt , (14.3)

where q are the wavevectors defined by the boundary conditions (the analogous of
the electron wavevector k, Sect. 12.4).

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_12


14.1 Motions of the Ions in the Harmonic Approximation 419

From Eqs. (14.2) and (14.3) for each q, by taking h = ls − l′s ′ , one has

msω
2
qUα(s, q) =

∑

β,s ′
Uβ(s ′, q)Mα,β(s, s ′, q), (14.4)

where

Mα,β(s, s ′, q) ≡
∑

h

Φ
(α,β)

l,s,l′,s ′eiq·h (14.5)

is the dynamical matrix, namely the Fourier transform of the elastic constants.

14.2 Branches and Dispersion Relations

For a given wave-vector Eq. (14.4) can be rewritten in the compact form

ω2mU = MU (14.6)

where M is a square matrix of 3S degree, m is a diagonal matrix and U is a column
vector. As for the normal modes in molecules (see Eq. (10.53)) the condition for the
existence of the normal coordinates is

|M − ω2m| = 0. (14.7)

For each wavevector q Eq. (14.7) yields 3S angular frequencies ω2
q, j . Here j is a

branch index. 3S−3 branches are called optical since, as it will appear at Sect. 14.3.2,
they can be active in infrared spectroscopy, while 3 branches are called acoustic,
since in the limit q → 0 the crystal must behave like an elastic continuum, where
ωq = vsoundq. At variance, for the optical branches (see Sect. 14.3.2) for q = 0 one
has ωq, j �= 0.

The q-dependence of ωq, j is called dispersion relation. In analogy to the density
of k-states for the electrons (Sect. 12.5), one can define a density of q values in
the reciprocal space: D(q) = Nvc/8π3. One also defines the vibrational spectrum
D j (ω) for each branch, with the sum rule

∑3S
j=1

∫
D j (ω)dω = 3N S.

In the next section illustrative examples of vibrational spectra will be given.

14.3 Models of Lattice Vibrations

In this section the classical vibrational motions of the ions within the harmonic
approximation will be addressed for some model systems.
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14.3.1 Monoatomic One-Dimensional Crystal

Let us refer to a linear chain of identical atoms, for simplicity by considering only
the longitudinal motions along the chain direction:

N  “cells” 

u
1D

cell l 

l 

site s

s

≡ 1

a
,

The equations of motions are of the form Eq. (14.2), the index s being redundant.
One first selects in the reciprocal space a wavevector q = n12π/Na, with −N/2 ≤
n1 ≤ N/2. Then one writes the ul,s displacement as due to the superposition of the
ones caused by the waves propagating along the chain, for each q (correspondent to
Eq. (14.3)). From Eqs. (14.2) and (14.4) one writes

msω
2
qU (s, q) =

∑

s ′
U (s ′, q)M(s, s ′, q), (14.8)

where

M(s, s ′, q) ≡
∑

h

Φl,s,l′,s ′eiq · h (14.9)

is the collective force constant, representing the Fourier transform of the elastic
constants. Equations (14.8) and (14.9) describe the propagation of the normal modes
of the “cell” along the chain.

By limiting the interaction to the nearest neighbors,

+2 

spring constant 

+1 0 -1 -2 

“cell” 0, single site, index 0 

index 

the equation of motion for the atom in the cell at the origin (l = 0) turns out

m
d2u0

dt2
= −2ku0 + ku1 + ku−1 (14.10)

implying Φ(0, 0) = 2k and Φ(±1, 0) = −k.
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The dynamical matrix (Eq. (14.5)) is reduced to

M = Φ(0, 0) +
∑

n=±1

Φ(n, 0)eiqna

and Eq. (14.8) takes the form

mω2
qUq = (2k − 2kcos(qa))Uq , (14.11)

namely the one for a single normal oscillator, with an effective elastic constant taking
into account the coupling to the nearest neighbors.

The solubility condition (Eq. (14.7)) corresponds to

ω2
q = 2k

m
(1 − cos(qa)), (14.12)

yielding the dispersion relation

ωq = 2

√
k

m
sin(qa/2) (14.13)

sketched below:

ω =vq

-π/a π/a0 q

ω q

ωm=2(k/m)1/2

The vibrational spectrum, or density of states D(ω) = D(q)dq/dω, with D(q) =
Na/2π, turns out

D(ω) =
(

2N/π
√

ω2
m − ω2

)
, (14.14)
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reported below

only q > 0 are considered here 

ω ≡ 2 (k/m)

2N /πω

D(ω )

ω

D(ω) = (Na/2π) • 2  2  2 • (2 / a) • 1/(ω  - ω )

m

m

m
0.5

1/2

The situation arising at the zone boundary, where ωq=π/a ≡ ωm, is equivalent to
the one encountered at the critical points of the electronic states (see Sect. 12.5).

14.3.2 Diatomic One-Dimensional Crystal

For a chain with two atoms per unit cell, with mass m1 and m2 (m1 > m2), again
considering the longitudinal modes and assuming a single elastic constant and nearest
neighbour interactions,

m

cell -1

single elastic 
constant 

m a a

cell 

l 2

2l

cell +1

u u

ll l

the equations of motions for the atoms at sites s = 1 and s = 2, within the lth cell,
are

m1
d2ul,1

dt2
= −2kul,1 + kul,2 + kul−1,2

m2
d2ul,2

dt2
= −2kul,2 + kul,1 + kul+1,1 (14.15)

Again resorting to solutions of the form

u(l, 1) = U1eiq2lae−iωq t

and
u(l, 2) = U2eiq(a+2la)e−iωq t

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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(the index q in U1,2 is dropped here), one has

(
2k

m1
− ω2

)
U1 − k

m1
(eiqa + e−iqa)U2 = 0

− k

m2
(eiqa + e−iqa)U1 +

(
2k

m2
− ω2

)
U2 = 0. (14.16)

The dynamical matrix is

M =
(

2k −k(eiqa + e−iqa)

−k(e−iqa + eiqa) 2k

)

and the solubility condition

(
2k − m1ω

2 −2kcos(qa)

−2kcos(qa) 2k − m2ω
2

)
= 0

leads to

ω2
q = k

(
1

m2
+ 1

m1

)
± k

[(
1

m2
+ 1

m1

)2

− 4

m1m2
sin2(qa)

] 1
2

. (14.17)

The dispersion relations are shown in Fig. 14.1, with μ reduced mass.
At the boundaries of the Brillouin zone (q = ±π/2a) the frequencies of the

acoustic and optical modes are ωA = √
2k/m1 and ωO = √

2k/m2, respectively.
It is noted that when m1 = m2 the two frequencies coincide, the gap at the zone

boundary vanishes: the situation of the monoatomic chain is restored, once that the
length of the lattice cell becomes a instead of 2a.

For a given wavevector one can obtain the atomic displacements induced by each
normal mode. For instance, by choosing q = 0 for the acoustic branch one derives
UA(0, 1) = UA(0, 2), the same displacement for the two atoms, corresponding to

Fig. 14.1 Frequencies of the
acoustic (A) and optical (O)
longitudinal modes in
one-dimensional diatomic
crystal, according to
Eq. (14.17)

-π/2a π/2a

ω
(2k/µ)

0
q

(2k/m )

(2k/m )
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O

1/2

1/2

1/2

q
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the translation of all the crystal. For the optical mode, again for q = 0 one has
m1UO(0, 1) = −m2UO(0, 2), keeping fixed the center of mass. As for the diatomic
molecule (see Sect. 10.6) the difference of the two displacements corresponds to the
normal coordinate.

In a similar way one can derive the displacements associated with the zone bound-
ary wavevectors (Fig. 14.2, where also the transverse modes are schematized).

From the dispersion relations (Eq. (14.17)) the vibrational spectra reported in
Fig. 14.3 are derived.

Up to now only longitudinal modes have been considered. To describe the trans-
verse vibrations the elastic constants for the displacements perpendicular to the chain
should be considered. In this way, for a given wave-vector, 3 vibrational branches
would be obtained for the monoatomic chain and 6 branches for the diatomic one, at
longitudinal (L) and transverse (T) optical and acoustic characters (see Fig. 14.2).

Finally one should observe that the interaction with electromagnetic waves
requires the presence of oscillating electric dipole within the cell. To grant energy
and momentum conservation, the absorption process should occur in correspondence
to the photon momentum q = �ω/c, which for typical values of the frequencies

Acoustic mode 

Acoustic mode 

q = π/2a

Longitudinal modes 
q = 0 m m

Transverse modes 

q = 0 

q = π/2a

Optical mode

Optical mode

Optical mode 

 Optical mode

 Acoustic 
mode

Acoustic mode 

1 2

Fig. 14.2 Atomic displacements associated with the q = 0 and the q = π/2a acoustic (A) and
optical (O) modes, for one-dimensional diatomic crystal

http://dx.doi.org/10.1007/978-3-319-17897-4_10
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Fig. 14.3 Vibrational
spectra for the longitudinal
acoustic (A) and optical (O)
branches in one-dimensional
diatomic crystal
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(2k/m )(2k/m )
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1/2 1/2

1/2

1 2

(ω ∼ 1013 − 1014 rad s−1) is much smaller than h/2a. For q → 0, at the center of
the Brillouin zone, the acoustic modes do not yield any dipole moment. Therefore
only the optical branches, implying in general oscillating dipoles (as schematized in
Fig. 14.2), can be active for the absorption of the electromagnetic radiation, similarly
to the case described for the molecules.

14.3.3 Einstein and Debye Crystals

The phenomenological models due to Einstein and to Debye are rather well suited
for the approximate description of specific properties related to the lattice vibrations
in real crystals.

The Einstein crystal is assumed as an ensemble of independent atoms elastically
connected to equilibrium positions. The interactions are somewhat reflected in a
vibrational constant common to each oscillator, yielding a characteristic frequency
ωE . As regards the dispersion curves, one can think that for each q there is a threefold
degenerate mode at frequency ωE . Thus, the vibrational spectrum could be schema-
tized as below:

D(ω)  3N

ω

δ (ω - ω ) 

ωE

E
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Although introduced to justify the low-temperature behavior of the specific heat
(see Sect. 14.5), the Einstein model is often applied in order to describe the properties
of the optical modes in real crystals, at least at qualitative level. In fact, the optical
modes are often characterized by weakly q-dependent dispersion curves with a nar-
row D(ω), not too different from the delta-like vibrational spectrum of the Einstein
model heuristically broadened, as sketched below:

zone boundary 

D(ω)  

Γ

ω ωq 

ω
∼ω

schematic 
dispersion curve 

~ΓE

E

In the Debye model it is assumed that the vibrational properties are basically the
ones of the elastic (and sometimes isotropic) continuum, with ad hoc conditions in
order to take into account the discrete nature of any real crystal. In particular:

(i) the Debye model describes rather well the acoustic modes of any crystal, since
for q → 0 the dispersion curves of the acoustic branches practically coincide
with the ones of the continuum solid, the wavelength of the vibration being
much larger than the lattice step.

(ii) the model cannot describe the vibrational contribution from optical modes.
(iii) one has to introduce a cutoff frequency ωD in the spectrum in order to keep the

number of modes limited to 3N (for N atoms).
(iv) only 3 branches have to be expected, with dispersion relations of the form

ω
j
q = v j

soundq, where the sound velocity can refer to transverse or to longitudinal
modes.

For a given branch, in the assumption of isotropy, the vibrational spectrum turns
out

D j (ω) = Nvc

8π3
dq = Nvc

8π3
4πq2dq = Nvc

8π3

4πω2

v3
j

. (14.18)

One can introduce an average velocity v and again in the isotropic case, 3/v3 =
2/v3

T + 1/v3
L . Therefore

D(ω) = Nvc

8π3

12πω2

v3
= Nvc

v3

3

2π2
ω2, (14.19)

the typical vibrational spectrum characteristic of the continuum.
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Now a cutoff frequency ωD (known as Debye frequency) has to be introduced.
The role of ωD in the dispersion relation and in the vibrational spectrum D(ω) is
illustrated below:

D(ω )

ω ω

∝ ω

q 

ω

ω

dispersion 
relation 

qD

D

D

2

ωD can be derived from the condition
∫

D(ω)dω = 3N or, equivalently, by
evaluating the Debye radius qD of the sphere in the reciprocal space which includes
the N allowed wavevectors.

Thus (Nvc/8π3)(4πq3
D/3) = N and then

qD =
(

6π2

vc

) 1
3

(14.20)

and

ωD = vqD = v

(
6π2

vc

) 1
3

. (14.21)

In real crystals detailed descriptions of the vibrational modes are often difficult.
One can recall the following. In the q → 0 limit one can refer to the conditions of
the continuum and the acoustic branches along certain symmetry directions can be
discussed in terms of effective elastic constants. These constants are usually derived
from ultrasound propagation measurements.

The frequencies of the various branches can become equal in correspondence
to certain wavevectors, implying degeneracy. Although the optical branches have
non-zero frequency even for q = 0 they are not always optically active, since do
not always imply oscillating electric dipoles. For instance, in diamond, although the
optical modes cause the vibration of the two sublattices (see Sect. 11.3) against each
other, no electric dipole is induced and no interaction with the electromagnetic waves
can occur.

The dispersion curves are usually obtained by inelastic neutron spectroscopy. The
schematic structure of a triple axes neutron spectrometer is reported below:

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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A suited description of the lattice vibrations, with theory and basic aspects of
neutron spectroscopy, can be found in the report by Cochran.

14.4 Phonons

While discussing the normal modes in molecules (Sect. 10.6) it was shown how a
non-normal Hamiltonian (in terms of local coordinates) could be transformed into a
normal one by writing the local displacements as a superposition of excitations, each
one associated to a normal oscillator. The collective normal coordinate was shown
to be a linear combination of the local ones. The treatment given at Sect. 10.6 can be
extended to the displacements of the atoms around their equilibrium positions in a
crystal. Thus, returning to Eq. (14.3), for each branch ( j) we write the displacement
in the form

u =
∑

q

Uqeiq · Re−iωqt (14.22)

Therefore the problem is reduced to the evaluation of the normal coordinates Q( j)
q of

the crystal cell, that one can build up from the amplitudes Uq by including the masses
and the normalization factors. The translational invariance of the crystal implies the
propagation of the normal excitations of the cell with phase factor eiq·R.

Hence, one can start from Hamiltonians of the form H = ∑
j H j [Q j (q)], for

each wavevector q of a given branch j . By indicating with Q the group of the normal
coordinates and with φ(Q) the related wavefunction, one expects

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_10
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φ(Q) =
∏

q, j

φ( j)
q (Q j (q)). (14.23)

In the harmonic approximation φ
( j)
q is the eigenfunction of single normal oscillator,

characterized by quantum number n j (q) and eigenvalues

E ( j)
q = �ω( j)

q

[
1/2 + n j (q)

]
.

The total energy is

ET =
∑

j

∑

q

(
n j (q) + 1

2

)
�ω( j)

q . (14.24)

Therefore the vibrational state of the crystal is defined by the set of 3SN numbers
| . . . , . . . , n j (q), . . . > that classify the eigenfunctions of the normal oscillators. At
T = 0, the ground-state is labelled |0, 0, 0 . . . > and the wavefunction is the product
of Gaussian functions (see Sect. 10.3.1).

At finite temperature one has to take into account the thermal excitations to excited
states, for each normal oscillator. Two different approaches can be followed:

(A)—the normal oscillators are distinguishable and the numbers n j (q) select the
stationary states for each of them. Then the Boltzmann statistics holds and for a given
oscillator with characteristic frequency ν the average energy is

E =
∑

v

pv Ev, (14.25)

with

pv = e−Ev/kB T

∑
v e−Ev/kB T

and

Ev = (v + 1/2)hν v = 0, 1, 2, . . .

For each normal mode the average energy E is found as shown at Problem 1.25 for
photons (Planck derivation), here having to include the zero-point energy:

E = hν

(
1

2
+ 1

ehν/kB T − 1

)
(14.26)

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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The energy turns out the one for the quantum oscillator, provided that an average
excitation number

< v >= 1

e
hν

kB T − 1
(14.27)

is introduced.
The total thermal energy of the crystal is obtained by summing Eq. (14.26) over

the various modes, for each branch.
(B)—the crystal is considered as an assembly of indistinguishable pseudo-

particles, each of energy �ωq, j and momentum �q = (�ωq, j/v j,q)q̂ . These quasi-
particles are the quanta of the elastic field and are called phonons in analogy with
the photons for the electromagnetic field.

Then the total energy has to be written

< E >=
∑

q, j

(
nq, j + 1

2

)
�ωq, j , (14.28)

where the average number of pseudo-particles is given by the Bose-Einstein statistics,
i.e.

nq, j = 1

e
�ωq, j
kB T − 1

, (14.29)

for a given branch j .
The two ways A and B to conceive the aspects of the lattice vibrations give

equivalent final results, as it can be seen by comparing Eq. (14.26) (summed up to
all the single oscillators) and Eq. (14.28). The derivation of some thermal properties
(Sect. 14.5) will emphasize the equivalence of the two ways to describe the quantum
aspects of the vibrational motions of the ions.

14.5 Thermal Properties Related to Lattice Vibrations

All the thermodynamical properties related to the vibrational motions can be derived
from the total partition function ZTOT = ∏

q, j Zq, j , with

Zq, j =
∑

e
−E(q, j)

kB T (14.30)

where the sum is over all the energy levels, for each q-dependent oscillator of each
branch.
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The thermal energy can be directly evaluated by resorting to the vibrational spectra
D(ω), in the light of Eqs. (14.28) and (14.29), by writing

U =
∫

�ω

(
1

2
+ 1

e
�ω

kB T − 1

)
D(ω)dω. (14.31)

For instance, for Einstein crystals where D(ω) = 3Nδ(ω − ωE ) one derives

U = 3N�ωE

[
1/2 + 1/

(
e

�ωE
kB T − 1

)]
.

The molar (N = NA) specific heat for T 	 ΘE ≡ �ωE/kB (ΘE often defined
Einstein temperature) turns out CV 
 3R. At variance with the classical results, for
T � ΘE one has

CV 
 3R

(
ΘE

T

)2

e
−ΘE

T (14.32)

For Debye crystals, from Eq. (14.31) by resorting to Eq. (14.19), one writes

CV = ∂

∂T

{∫ ωD

0
D(ω)�ω

1

e
�ω

kB T − 1
dω

}

and then, for N = NA

CV = 9R

(
T

ΘD

)3 ∫ ΘD/T

0

z4ez

(ez − 1)2
dz, (14.33)

with z = �ω/kB T .
For T 	 ΘD , with ΘD ≡ �ωD/kB (known as Debye temperature), one again

finds the classical result CV → 3R.
In the low temperature range (ΘD/T → ∞) Eq. (14.33) yields CV 
 (12π4/5)

R(T/ΘD)3. Equation (14.33) points out that the vibrational specific heat of Debye
crystals is a universal function of the variable T/ΘD . From Eq. (14.21) ΘD can be
written ΘD = (�v/kB)(6π2/vc)

1/3.
The temperature dependences of the molar specific heat in the framework of

Einstein and Debye models are sketched below:

D

ln T

C

E

3R
v

D,E
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For T → 0 the Debye specific heat C D
V vanishes less rapidly than the Einstein C E

V .
The different behavior of C D

V for T → 0 originates from the fact that the vibrational
spectrum in the Debye model includes oscillatory modes with energy separation of
the order of kB T , even at low temperature. On the contrary in the Einstein crystal in
the low-temperature range one has �ωE 	 kB T .

In the Table below the Debye temperatures of some elements are reported.

θ
θ

By resorting to the expression for the thermal energy in terms of the vibrational
spectra, the mean square displacement of a given ion as a function of temperature
can be directly derived. According to the extension of Eq. (14.3) to include all the
normal excitations, the mean square vibrational amplitude of each atom around its
equilibrium position is written

< |u|2 >=
∑

q, j

|Uq, j |2. (14.34)

By recalling that for each oscillator the mean square displacement can be related to
the average energy, < u2 >=< E > /(mω2), then for a given branch j one can
write |Uq|2 =< Eq > /Nmω2

q. Hence,

< u2 >= 1

m N

∑

q, j

< Eq, j >

ω2
q, j

= �

m N

∫ [
1

2
+ 1

e
�ω

kB T − 1

]
D(ω)

ω
dω. (14.35)

For Debye crystals, at temperatures T 	 ΘD , from Eq. (14.19) one obtains

< u2 >
 9kB T

mω2
D

(14.36)

and at low temperature < u2 >
 9�/4mωD .
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It should be remarked that < u2 > controls the temperature dependence of the
strength of the elastic component in scattering processes, through the Debye-Waller
factor e−4π<u2>/λ2

, with λ wavelength of the radiation (see Sect. 14.6 for the deriva-
tion of this result).

According to the Lindemann criterium the crystal melts when the mean square
displacement < u2 > reaches a certain fraction ξ of the square of the nearest neighbor
distance R, < u2 >= ξR2.

Empirically it can be devised that ξ is around 1.5 × 10−2 (
√

< u2 > 
 0.12R).
This criterium allows one to relate the melting temperature Tm to the Debye temper-
ature. From Eq. (14.36)

Tm = ξΘ2
D

mkB R2

�2
. (14.37)

Problems

Problem 14.1 Derive the vibrational entropy of a crystal in the low temperature
range (T � ΘD).

Solution: From C D
V (Eq. (14.33)) in the low temperature limit, by recalling that

S =
∫ T

0

C D
V

T
dT

the molar entropy is S(T ) = [12Rπ4/(15Θ3
D)]T 3. This result justifies the assumption

for the lattice entropy used at Sect. 6.4. The contribution from optical modes can often
be neglected.

Problem 14.2 Derive the vibrational contribution to the Helmoltz free energy and
to the entropy in Einstein crystals.

Solution: For N oscillators the total partition function is ZT = Z N , with

Z = e−�ωE /2kB T
∑

v

e−�ωE v/kB T = e−�ωE /2kB T

1 − e−�ωE /kB T

(remind that
∑

xn = 1/(1 − x), for x < 1).
Then the total free energy turns out

F = −NkB T lnZ = N

{
�ωE

2
+ kB T ln

(
1 − e−�ωE /kB T

)}

and the entropy is

S = −
(

∂F

∂T

)

V

= −NkB

{
ln

(
1 − e−�ωE /kB T

) − �ωE

kB T

1

e�ωE /kB T − 1

}
.

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Problem 14.3 Evaluate the specific heat per unit volume for Ag crystal (fcc cell,
lattice step a = 4.07 Å) at T = 10 K, within the Einstein model (the elastic constant
can be taken k = 105 dyne/cm) and within the Debye model, assuming for the sound
velocity v 
 2 × 105 cm/s.

Solution: The Einstein frequency ωE 
 √
k/MAg, corresponds to the temperature

ΘE 
 170 K. In the unit volume there are n = 1/(NAvc) moles, with vc = a3/4 the
volume of the primitive cell. Then, since T = 10 K � ΘE , from Eq. (14.32) one
derives C E

V 
 280 erg/K cm3.
The Debye frequency can be estimated from Eq. (14.21) and the corresponding

Debye temperature turns out ΘD 
 220 K 	 10 K. Then

C D
V 
 12π4kB

5vc

(
T

ΘD

)3


 1.72 × 105 erg/Kcm3.

Problem 14.4 Specific heat measurements in copper (fcc cell, lattice step a = 3.6 Å,
sound velocity v = 2.6 × 105 cm/s) show that CV /T (in 10−4 Joule/mole K2) is
linear when reported as a function of T 2, with extrapolated value (CV /T ) for T → 0
given by about 7 and slope about 0.6. Estimate the Fermi temperature and the Debye
temperature and the temperature at which the electronic and vibrational contributions
to the specific heat are about the same (from the equations at Sects. 12.7.1 and 14.5)
and compare the estimates with the experimental findings.

Solution: From the specific mass ρ = 9.018 g/cm3 the number of electrons per cm3

is found n = 8.54 · 1022 cm−3. From Eq. (12.28) TF = 7.8 · 104 K.

The Debye temperature, for the primitive cell of volume vc = a3/4, is
θD = (�v/kB)

(
6π2/vc

)1/3 = 323 K.
From

π2

2
nkB

T ∗

TF
= 1

vc
kB

12π4

5

(
T ∗

θD

)3

,

(per unit volume) the temperature T ∗ at which the electronic and vibrational contri-
butions are the same is obtained:

T ∗ = √
5vcn(ΘD)3/2/

(
π
√

24TF

)

 3 K.

From the experimental data according to Eq. (12.31) for N Z = NA

γ = π2 R/(2TF ) = 7 × 103 erg/ mole K2, one finds TF 
 5.8 · 104 K and from

C D
V 
 12π4 R

5

(
T

ΘD

)3

,

one derives θD 
 343 K.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Problem 14.5 Write the zero-point vibrational energy of a crystal in the Debye
model and derive the bulk modulus for T → 0.

Solution: The zero-point energy is E0 = 1
2

∫ ωD

0 �ωD(ω)dω (Eq. (14.31)). From
Eq. (14.19) one derives E0 = 9N�ωD/8.

At low temperature the bulk modulus is (B 
 V ∂2 E0/∂V 2). Then, by writing
ωD in terms of the volume V = Nvc one finds

B = 1

2

N

V
�ωD ≡ 1

2

1

vc
kBΘD.

14.6 The Mössbauer Effect

The recoil-free emission or absorption of γ-ray (for the first time experimentally
noticed by Mössbauer in 1958) is strictly related to the vibrational properties of the
crystals. Meantime it allows one to recall some aspects involving the interaction of
radiation with matter.

Let us consider an atom, or a nucleus, ideally at rest, emitting a photon due to
the transition between two electronic or nucleonic levels. At the photon energy hν is
associated the momentum (hν/c). Then in order to grant the momentum conservation
the atom has to recoil during the emission with kinetic energy ER = (hν/c)2/2M ,
with M the atomic mass. Because of the energy conservation the emission spectrum
(from an assembly of many atoms) displays a Lorentzian shape,

E

E - E

I (E)  
E

ΔE
E

E

photon 

emis

B

B

A

A

R

at least with the line broadening ΔE related to the life-time of the level (the inverse of
the spontaneous emission probability, see Problem 1.24). Another source of broaden-
ing arises from the thermal motions of the atoms and the emission line usually takes
a Gaussian shape, with width related to the distribution of the Doppler modulation
in the emitted radiation (see Problem 1.30).

Let us suppose to try the resonance absorption of the same emitted photon
from an equivalent atom (or nucleus). Again, by taking into account the energy and
momentum conservation in the absorption process, the related spectrum must have
an energy distribution of Gaussian shape, centered at E = (EB − EA) + ER:

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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E

E - E

I (E)  
E

B A

R
abs

From the comparison of the emission and absorption spectra one realizes that the
fraction of events that grant the resonance absorption is only the one corresponding
to the energy range underlying the emission and absorption lines.

In atomic spectroscopy, where energy separations of the order of the eV are
involved, the condition of resonant absorption is well verified. In fact, the recoil
energy is ER ∼ 10−8 eV, below the broadening ΔE ∼ 10−7 eV typically associated
with the life time of the excited state. At variance, when the emission and the absorp-
tion processes involve the γ-rays region, with energies around 100 keV, the recoil
energy increase by a factor of the order of 1010. Since the lifetime of the excited
nuclear levels is of the same order of the one for electronic levels, only a limited
number of resonance absorption processes can take place, for free nuclei.

In crystals, in principle, one could expect a decrease in the fraction of resonantly
absorbed γ-rays upon cooling the source (or the absorber), due to the decrease of the
broadening induced by thermal motions. Instead, an increase of such a fraction was
actually detected by Mössbauer at low temperature. This phenomenon is due to the
fact that in solids a certain fraction f of emission and absorption processes occurs
without recoil. Thus the spectrum schematically reported below

ER ER

EB-EA E

emission absorption

can be conceived, with a sizeable superposition of events around the energy difference
(EB − E A).

The momentum conservation is anyway granted, since the recoil energy goes to
the whole crystal, with negligible subtraction of energy to the emitted or absorbed
photons. The reason for the recoilless processes can be grasped by referring to the
Einstein crystal, with energy �ωE larger than ER . It is conceivable that when the
quantum of elastic energy cannot be generated, then the crystal behaves as rigid.
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Another interpretation (not involving the quantum character of the vibrational
motions) is based on the classical consideration of the spectrum emitted by a source
in motion. For a sinusoidal motion with frequency ωS , the emitted spectrum has
Fourier components at ωi ,ωi ±ωS, . . . , so that a component at the intrinsic frequency
ωi should remain.

The fraction f of recoilless processes can be evaluated by considering, in the
framework of the time dependent perturbation theory used in Appendix 1.3, the
emitting system as one nucleus imbedded in the crystal, looking for the transition
probability between states having the same vibrational quantum numbers, while
the nuclear state is changed. Since the long wave-length approximation cannot be
retained, the perturbation operator reads

∑
i Ai · ∇i (the sum is over all nucleons)

(see Eq. (A.1.3.3)).
Let us refer to an initial state corresponding to the vibrational ground-state

|0, 0, 0, . . . >, by writing the amplitude of the time-dependent perturbative Hamil-
tonian

∑
i eik · Ri . Expressing Ri in terms of the nucleon coordinates with respect to

the center of mass, the effective perturbation term entering the probability ampli-
tude f 1/2 is of the form eik · u, with u the displacement of the atom from its lattice
equilibrium position: f 1/2 ∝< 0, 0, 0 . . . |eik · u|0, 0, 0 . . . >.

The proportionality factor includes the matrix element of the variables and spins
of the nucleons as well as the mechanism of the transition.

The vibrational ground-state (see Eq. (14.23)) for a given branch is ||0, 0, 0 . . . >

= ∏
q e−Q2

q/4Δ2
q . The displacement u can be written as a superposition of the nor-

mal modes coordinates: u = ∑
q αqQq (αq normalizing factors which include the

masses). Then, by referring to the component along the direction of the γ-rays, one
writes

f 1/2 ∝
∫ +∞

−∞

∏

q

e
−Q2

q
2Δ2

q eikαq Qq d Qq ∝
∏

q

e
−α2

qΔ2
qk2

2 = e− 1
2

∑
q α2

qΔ2
qk2

The mean square displacement turns out

< 0, 0 . . . |u2
x |0, 0 . . . >≡< 0, 0 . . . |

∑

q,q′
αq Qqαq′ Qq′ |0, 0 . . . >=

=
∑

q

α2
q < 0, 0 . . . |Q2

q|0, 0 . . . >=
∑

q

α2
qΔ

2
q

and then

f ∝ e−k2<u2
x > = e−k2<u2>/3.

Since for k = 0 one can set f = 1, one has

f = e−k2<u2>/3. (14.38)

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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For T → 0 f depends from the particular transition involved in the emission
process (through k2) and from the spectrum of the crystal through the zero-point
vibrational amplitude < u2(T = 0) >.

The temperature dependence of f originates from the one for < u2 >. f is
also known as the Debye-Waller factor, since it controls the intensity of X-ray and
neutron diffraction peaks. The Bragg reflections, in fact, do require elastic scattering
and therefore recoilless absorption and re-emission.

By evaluating < |u|2 > for the Debye crystal, for instance, (see Eq. (14.36)) for
T � ΘD one has

f = e−(3ER/2kBΘD). (14.39)

The typical experimental setup for Mössbauer absorption spectroscopy is sketched
below

Source 

γ-emission

Absorber 
Detector  counters 

motion 

isomer shift

Counter 

v = 0  v (mm/sec) 

Area 

The source (or the absorber) is moved at the velocity v in order to sweep through
the resonance condition. As a function of the velocity, one observes the Mössbauer
absorption line, the area being proportional to the recoilless fraction f .

The shift with respect to the zero-velocity condition, isomer shift, is related to
the finite volume of the emitting and absorbing nuclei (try to understand the shift by
returning to Problems 1.6 and 5.23).

Since the motions do not affect the linewidth, the resolution of the Mössbauer
line in principle depends only on the intrinsic lifetime of the level. Typically,
for ∼100 keV γ-rays, a resolution around 10−14 can be achieved. Therefore, the
Mössbauer spectroscopy can be used in solid state physics to investigate the mag-
netic and electric hyperfine splitting of the nuclear levels. It has been used also in
order to detect subtle relativistic effects (see Problem 14.13).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_5
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Problems

Problem 14.6 Show that an approximate estimate of the Debye temperature in a
monoatomic crystal can be obtained from the specific heat, by looking at the tem-
perature at which CV 
 23 · 107 erg/mole K.

Solution: From Eqs. (14.19) and (14.31)

U =
∫ ωD

0

�ω

e
�ω

kB T − 1
D(ω)dω = 3

2π2

Nvc

v3

∫ ωD

0

�ω3

e
�ω

kB T − 1
dω,

(having neglecting the zero-point energy which does not contribute to the thermal
derivatives). v is the sound velocity (an average of the ones for longitudinal and
transverse branches). From Eq. (14.33) the specific heat can be written

CV = 9R

[
4

(
T

θD

)3 ∫ θD
T

0

z3

ez − 1
dz − θD

T

1

e
θD
T − 1

]
.

For T = θD

CV (T = θD) 
 36R

[∫ 1

0

z3

ez − 1
dz − 1

1.72

]

and then CV (T = θD) 
 2.856R 
 23.74 · 107 erg/mole K.

Problem 14.7 In a 1D linear diatomic crystal of alternating Br− and Li+ ions and
lattice step a = 2 Å, the sound velocity is v = 2.7 · 105 cm/s. Derive the effective
elastic constant for the sound propagation under the assumption used at Sect. 14.3.2.
Estimate the gap between the acoustic and optical branches.

Solution: From Eq. (14.17), in the q → 0 limit, the sound velocity turns out

v =
√

2k

m1 + m2
a.

Then the elastic constant is

k = 1

2
(m1 + m2)

(v

a

)2 
 1.32 × 104 dyne/cm.

The gap covers the frequency range from ωmin = (2k/m1)
1/2 to ωmax = (2k/m2)

1/2,
with

ωmin = 0.14 · 1014rad s−1 and ωmax = 0.47 · 1014rad s−1.
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Problem 14.8 For a cubic crystal, with lattice step a, show that within the Debye
model and for T � ΘD , the most probable phonon energy is �ωp 
 1.6kB T and
that the wavelength of the corresponding excitation is λp 
 aΘD/T .

Solution: In view of the analogy with photons (see Problem 1.25) the number of
phonons with energy �ω is given by

n(ω) = D(ω)/(e�ω/kB T − 1).

From Eq. (14.19) and from dn(ω)/dω = 0, one finds

�ωp

kB T
e�ω/kB T = 2(e�ω/kB T − 1)

and then �ωp/kB T 
 1.6.
Since λp(ωp/2π) = v, the average sound velocity, one has λp 
 2πv�/1.6kB T .

For cubic crystal ΘD = (v�/kBa)(6π2)1/3, and then λp 
 aΘD/T .

Problem 14.9 Show that in a Debye crystal at high temperature the thermal energy
is larger than the classical one by a factor going as 1/T 2.

Solution: From Eqs. (14.19), (14.21) and (14.31) the thermal energy is

U = 9NkB T

(
T

ΘD

)3 ∫ xD

0

(
x3

ex − 1
+ x3

2

)
dx

with xD = ΘD/T and x = �ω/kB T . For x → 0, after series expansion of the
integrand

∫ xD

0

(
x3

ex − 1
+ x3

2

)
dx 


∫ xD

0

(
x3

x + x2

2 + x3

6 + · · · + x3

2

)
dx 




∫ xD

0

[
x2

(
1 − x

2
+ x2

12
− · · ·

)
+ x3

2

]
dx 


∫ xD

0
x2

(
1 + x2

12
− · · ·

)
dx.

Note that the second term of the expansion cancels out the zero-point energy. Then
one can write

U = 9NkB T

(
T

ΘD

)3
(

1

3

(
ΘD

T

)3

+ 1

60

(
ΘD

T

)5

+ · · ·
)

.

The molar specific heat turns out

CV 
 3R

(
1 − 1

20

(
ΘD

T

)2

− · · ·
)

.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Problem 14.10 In the figures below
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the low temperature specific heats of two crystals are reported. Are they metals or
insulators? Estimate the Debye temperatures and the Fermi energy.

Solution: From CV /T = A + BT 2, A = R(π2/3)D(EF )kB is the term associated
with the free-electron contribution (see Problem 12.14 for NA electrons), while B =
(12π4/5)(R/Θ3

D) originates from the phonon contribution. Hence the figure on the
left refers to a metal while the one on the right to an insulator (A = 0).

From the data on the left A 
 2.1 × 104 erg/K2mole one finds EF 
 1.7 eV.
From B 
 2.6 × 104 erg/K4mole, then ΘD 
 90 K. From the data on the right
B 
 590 erg/K4mole, yielding ΘD 
 320 K.

Problem 14.11 Derive the vibrational contribution to the specific heat for a
monoatomic 1D crystal, at high and low temperatures, within the Debye and the
Einstein approximations. Compare the results with the exact estimates obtained in
the harmonic approximation and nearest-neighbor interactions (Sect. 14.3.1).

Solution: Within the Debye model the vibrational spectrum is D(ω) = Na/(πv)

and then according to Eq. (14.31)

UD = N

2
�ωD + N

ωD

∫ ωD

0

�ω

eβ�ω − 1
dω.

The molar specific heat turns out CV 
 R for T 	 ΘD = �ωD/kB and CV 

2I R(T/ΘD) for T � ΘD , with I = ∫ ∞

0 x/(ex − 1)dx.
Within the Einstein model D(ω) = Nδ(ω − ωE ) and results independent from

the dimensionality are obtained (see Eq. (14.32)). One has CV 
 R(ΘE/T )2

exp(−ΘE/T ) for T � ΘE and CV 
 R for T 	 ΘE .

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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In the harmonic approximation with nearest neighbors interactions the density of
vibrational states is D(ω) = (2N/π)(1/

√
ω2

m − ω2) for ω ≤ ωm , while it is zero for
ω > ωm (see Eq. (14.14)). Then

U = N

2
�ω + 2NkB T

π

∫ xm

0

1√
x2

m − x2

x

ex − 1
dx

with x = β�ω and xm = β�ωm . For T 	 Θm = �ωm/kB one has

U 
 N

2
�ω + 2NkB T

π

(π

2
− xm

2
+ · · ·

)

and the molar specific heat is CV 
 R. For T � �ωm/kB ≡ Θm

U 
 N

2
�ω + 2N (kB T )2

π�ωm
I

so that

CV 
 4I

π
R

T

Θm

showing that the Debye approximation yields the same low temperature behavior.

Problem 14.12 A diatomic crystal has two types of ions, one at spin S = 1/2 and
g = 2 and one at S = 0. The Debye temperature is ΘD = 200 K . Evaluate the
entropy (per ion) at T = 20 K in zero external magnetic field and for magnetic field
H = 1 kGauss, for no interaction among the magnetic moments.

Solution: The vibrational entropy is

Svib =
∫ T

0

CV (T ′)
T ′ dT ′

where for T � ΘD , neglecting the optical modes (see Problem 14.1)

CV (T ′) = 12π4

5
kB

(
T ′

θD

)3

.

Then at T ′ = 20 K

Svib = kB
12π4

15

(
T ′

θD

)3

= 0.078 kB .
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The magnetic partition function is

Zmag = exp

(
−1

2
y

)
+ exp

(
1

2
y

)

 2 + y2

4

with

y = μBgH

kB T

 0.9 · 10−20

1.38 · 10−16
g

H

T
= 6.72 · g

H

T
· 10−5 � 1.

From

F = −kB T ln Z and S = −∂F

∂T

with

Smag(T
′) 
 kB

[
ln 2 − y2

4

]

 kBln2

one has

S = Svib + 1

2
Smag = kB[0.078 + 0.34] = 0.42kB/ion.

Problem 14.13 The life time of the 57Fe excited state decaying through γ emission
at 14.4 keV is τ 
 1.4 × 10−7 s (see Problems 1.24, 1.30 and 3.13). Estimate the
height at which the γ-source should be placed with respect to an absorber at the
ground level, in order to evidence the gravitational shift expected on the basis of
Einstein theory.

Assume that a shift of 5 % of the natural linewidth of Mössbauer resonant absorp-
tion can be detected [in the real experiment by Pound and Rebka (Phys. Rev. Lett.
4, 337 (1960)) by using a particular experimental setup resolution of the order of
10−14 −10−15 could be achieved, with a fractional full-width at half-height of the
resonant Lorentzian absorption line of 1.13 × 10−12]. Try to figure out why the
source-absorber system has to be placed in a liquid He bath.

Solution: On falling from the height L the energy of the γ photon becomes

hν(0) = hν(L)

[
1 + gL

c2

]

where mgL/mc2 can be read as the ratio of a gravitational potential energy mgL
to the intrinsic energy mc2 (mass independent and therefore valid also for photons).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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The natural linewidth of the Mössbauer line is 2�/τ . Therefore, to observe a 5 %
variation

2�

20τ
= hν(L)

gL

c2

and then

L = �c2

10 gτ14.4 keV
= 284 m

(in the real experiment the height of the tower was about 10 times smaller!). Note
that the natural linewidth, when sweeping with velocity v the absorber (or the source)
corresponds to a velocity width

Δv = 2�c

hντ

 0.2 mm/s

(the actual full-width at half height in the experiment by Pound and Rebka was
0.43 mm/s).

A difference in the temperatures of the source and the absorber of 1 K could prevent
the observation of the gravitational shift because of the temperature-dependent
second-order Doppler shift resulting from lattice vibrations, since< v2 >∼ kB T/M .
Low temperature increases the γ-recoilless fraction f .
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