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In this chapter and in the following three chapters we shall be concerned with the
general aspects of the solid state of the matter, namely the atomic arrangements where
the interatomic interactions are strong enough to keep the atoms bound at well defined
positions. We will address the bonding mechanisms leading to the formation of the
crystals, the electronic structure and the vibrational dynamics of the atoms. The liquid
and solid states are similar in many respects, for instance in regards of the density,
short range structure and interactions. The difference between these two states of
the matter relies on the fact that in the former the thermal energy is larger than the
cohesive energy and the atoms cannot keep definite equilibrium positions.

Before the advent of quantum mechanics the solid-state physics was practically
limited to phenomenological descriptions of macroscopic character, thus involving
quantities like the compressibility, electrical resistivity or other mechanical, dielec-
tric, magnetic and thermal constants. After the application of quantum mechanics to
a model system of spatially ordered ions (the crystal lattice, indicated by Laue X-ray
diffraction experiments) quantitative studies of the microscopic properties of solids
began.
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338 11 Crystal Structures

During the last forty years the study of the condensed matter has allowed one to
develop the transistors, the solid state lasers, novel devices for opto-electronics, the
SQUID, superconducting magnets based on new materials, etc. As regards the devel-
opment of the theory, solid state physics has triggered monumental achievements for
many-body systems, such as the theories for superconductivity or of quantum mag-
netism for strongly correlated electrons, as well as the explanation of the fractional
quantum Hall effect.

Besides the spatially ordered crystalline structures there are other types of solids,
as polymers, amorphous and glassy materials, Fibonacci-type quasi-crystals, which
are not characterized by regular arrangement of the atoms. Our attention shall be
devoted to the simplest model, the ideally perfect crystal, with no defects and/or
surfaces, where the atoms occupy spatially regular positions granting translational
invariance. In the Chap. 1 we shall present some aspects of elementary crystallo-
graphic character in order to describe the crystal structures and to provide the sup-
port for the quantum description of the fundamental properties. Many solid-state
physics books (and in particular the texts by Burns, by Kittel, by Aschcroft and Mer-
min and by Ziman) report in the introductory chapters more complete treatments of
crystallography, the “geometrical” science of crystals.

11.1 Translational Invariance, Bravais Lattices
and Wigner-Seitz Cell

In an ideal crystal the physical properties found at the position r

l

r’

r

are also found at the position r′ = r + l, where

l ≡ ma + nb + pc (11.1)

with m, n, p integers and a, b, c fundamental translational vectors which charac-
terize the crystal structure.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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This property is called translational symmetry or translational invariance. As
we shall see in Chap. 12, it is a symmetry property analogous to the ones utilized for
the electronic states in atoms and molecules.

The extremes of the vectors l, when the numbersm, n, p in Eq. (11.1) are running,
identify the points of a geometrical network in the space, called lattice. By placing
at each lattice point an atom or an identical group of atoms, called the basis, the real
crystal is obtained. Thus one can ideally write crystal = lattice + basis.

The lattice and the fundamental translational vectors a, b, c are called primitive
when Eq. (11.1) holds for any arbitrary pair of lattice points. Accordingly, in this case
one has the maximum density of lattice points and the basis contains the minimum
number of atoms, as it can be realized from the sketchy example reported below for
a two-dimensional lattice:

Primitive (one lattice point in the cell) 

non-primitive (three lattice points in the unitary cell)

The geometrical figure resulting from vectors a, b, c is called the crystalline cell.
The lattice originates from the repetition in space of this fundamental unitary cell
when the numbers m, n and p run. The unitary cell is called primitive when it is
generated by the primitive translational vectors. The primitive cell has the small-
est volume among all possible unitary cells and it contains just one lattice point.
Therefore it can host one basis only.

Instead of referring to the cell resulting from the vectors a, b, c one can equiva-
lently describe the structural properties of the crystal by referring to the Wigner-Seitz
(WS) cell. The WS cell is given by the region included within the planes bisecting
the vectors connecting a lattice point to its neighbors, as in the example sketched
below.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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The lattice points are then at the center of the WS cells.
The translation of the WS cell by all the vectors l belonging to the group T of the

translational operations (see Eq. (11.1)) generates the whole lattice.
A few statements of geometrical character are the following:

1. The orientation of a plane of lattice points is defined by the Miller indexes (hkl),
namely by the set of integers without common factors, inversely proportional to
the intercepts of the plane with the crystal axes. The reason of such a definition will
be clear after the discussion of the properties of the reciprocal lattice (Sect. 11.2).

2. A direction in the crystal is defined by the smallest integers [hkl] having the same
ratio of its components along the crystal axes. For example, in a crystal with a
cubic unitary cell the diagonal is identified by [111]. One should observe that the
direction [hkl] is perpendicular to the plane having Miller indexes (hkl) (see
Problem 11.1).

3. The position of a lattice point, or of an atom, within the cell is usually expressed
in terms of fractions of the axial lengths a, b and c.

The symmetry operations are the ones which bring the lattice into itself, while leaving
a particular lattice point fixed. The collection of the symmetry operations is called
point group (of the lattice or of the crystal). When also the translational operations
through the lattice vectors are taken into account, one speaks of space group. For
non-monoatomic basis the spatial group also involves the symmetry properties of the
basis itself. The point groups are groups in the mathematical sense and are at the basis
of an elegant theory (the group theory) which can predict most symmetry-related
properties of crystal just from the geometrical arrangement of the atoms.



11.1 Translational Invariance, Bravais Lattices and Wigner-Seitz Cell 341

≠ ≠
α ≠ β ≠ γ ≠ 90

≠ ≠
α γ ° ≠ β 

≠ ≠
α β γ °

≠
α β γ ≠ ° °

≠
α β ° γ °

≠
α β γ °

α β γ °

The crucial point is that the requirement of translational invariance limits the
number of symmetry operations that can be envisaged to define the crystal structures.
To illustrate this restriction it is customary to recall that in a plane the unitary cell
cannot be a pentagon (which is characterized by a rotational invariance after a rotation
by an angle 2π/5) since in that case one cannot achieve translational invariance.

In three dimensions (3D) there are 32 point groups and 230 space groups collect-
ing all the symmetry operations compatible with translational invariance and with
the symmetry of the basis. These groups define 14 fundamental lattices, called the
Bravais lattices. These lattices are shown in Fig. 11.1, where the unitary conventional
cell generally used is indicated. It is noted that some cells might appear non-primitive,
since there is more than one lattice point within them (see for instance the bcc lat-
tice). However, one can easily identify the fundamental lattice vectors defining the
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Fig. 11.1 Bravais crystal lattices with the conventional unitary cells, with the relations among the
lattice lengths and among the characteristic angles (see table in the previous page)

primitive cell of the body-centered-cubic (bcc) Bravais lattice, in terms of the more
frequently used non-primitive cubic lattice vectors a, b, c shown in the figure. For
the analogous case of the fcc (face-centered cubic) lattice, see Fig. 11.4 and Prob-
lem 11.4.
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11.2 Reciprocal Lattice and Brillouin Cell

As a consequence of the translational invariance in the ideal crystal, any local function
f (r) of physical interest (for instance, the energy or the probability of presence of
electrons) must be spatially periodic, in other words invariant under the translation
Tl by a vector belonging to the translational group:

Tl f (r) = f (r + l) = 1 · f (r). (11.2)

Then one can abide by the Fourier expansion of f (r) and by referring for simplicity
to a crystal with orthogonal axes a, b and c and choosing x, y and z along these axes,
one writes

f (r) =
+∞∑

−∞ nx

Anx (y, z)e
[inx x(2π/a)] =

+∞∑

−∞ nx

Agx e
[igx x],

where nx is an integer and gx = nx (2π/a) are reciprocal lattice lengths. The coef-
ficients Anx can be Fourier-expanded along y and z and so one can put the function
f (r) in the form

f (r) =
∑

g

Age
ig·r (11.3)

where

Ag = 1

vc

∫ +∞

−∞
f (r)e−ig · rdr, (11.4)

vc being the volume of the unitary cell. g is a reciprocal lattice vector built up
by linear combination, with integer numbers nx,y,z , of the fundamental reciprocal
vectors, i.e.

g = nx (2π/a)x̂ + ny(2π/b)ŷ + nz(2π/c)ẑ. (11.5)

It follows that for any reciprocal lattice vector g and for any translational vector
l, given by Eq. (11.1), one has

eig · l = 1, (11.6)

corresponding to the necessary and sufficient condition to allow the Fourier expansion
of local functions.

The above arguments can be generalized for non-orthogonal crystal axes by defin-
ing the fundamental reciprocal vectors a∗, b∗ and c∗ in the form

a∗ = 2π

(a × b · c)
(b × c) = 2π

vc
(b × c),

b∗ = 2π

vc
(c × a),

c∗ = 2π

vc
(a × b). (11.7)
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The set of points, in the reciprocal space, reached by the vectors

g = ha∗ + kb∗ + lc∗ (11.8)

with h, k and l integers, defines the reciprocal lattice:

ba

c

g

∗

∗
∗

Instead of referring to the reciprocal lattice cell defined by a∗, b∗ and c∗, it is often
convenient to use its Wigner-Seitz equivalent, having a reciprocal lattice point at the
center. This cell is called the Brillouin cell and it is shown schematically below for
orthogonal axes:

b /2 -b /2 

-a /2 

a /2 

c /2 

-c /2 

a / 2 = π / a 

b / 2 = π / b 

c / 2 = π / c 

∗

∗

∗ ∗

∗

∗

∗

∗

∗

For instance, the Brillouin cell for the fcc lattice is obtained by taking eight recip-
rocal lattice vectors (bcc lattice, see Problem 11.4) bisected by planes perpendicular
to such vectors and when the six next-shortest reciprocal lattice vectors are also
bisected. This Brillouin cell is depicted in Fig. 11.2.

Fig. 11.2 Brillouin cell for
fcc lattice
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From the definitions of reciprocal lattice and of fundamental reciprocal vectors,
one can derive the following properties (see Problem 11.1):

(i) g(h, k, l) is perpendicular to the planes with Miller indexes (hkl);
(ii) |g| is inversely proportional to the distance among the lattice planes (hkl).

The reciprocal lattice plays a relevant role in solid state physics. Its importance
was first evidenced in diffraction experiments when it was noticed that each point of
the reciprocal lattice corresponds to a diffraction spot. When the momentum of the
electromagnetic wave (or of the De Broglie neutron wave) as a consequence of the
scattering process changes by any reciprocal lattice vector, then the wave does not
propagate through the crystal but undergoes Bragg reflection, as sketched below:

Δk= (kscatt - kinc)= g

kinc

kscatt

g

θ
(hkl) plane

This condition corresponds to the Bragg law in the form

nλ = 2dsinθ (11.9)

for the constructive interference of the radiation diffused by adjacent planes (d sep-
aration between the planes, n = 1, 2, 3 . . . , X-ray beam incident at the angle θ the
planes). In fact Δk = g is equivalent to 2π/|Δk| = d(hkl), while |kinc| = |kscatt | =
2π/λ (for elastic scattering) and Δk = (4π/λ)sinθ.

Furthermore, as we shall see at Chap. 12, the generators of the Brillouin cell, cut in
a way related to the number of the cells in a reference volume, define the generators
of a three-dimensional network in the reciprocal space. These vectors correspond to
the wave-vectors of the excitations that can propagate through the crystal. Meantime
they set the quantum numbers of the electron states.

11.3 Typical Crystal Structures

CsCl is the prototype of a family of cubic primitive (P) crystals with the basis formed
by two atoms, one at position (0,0,0) and the other at (1/2,1/2,1/2). As sketched below
the coordination number, i.e. the number of nearest neighbors around the Cs (or Cl)
atoms is 8.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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←

Other diatomic crystals with the same structure are TlBr, TlI, AgMg, AlNi and
BeCu. Elements having the simple cubic (the basis being formed by one atom)
Bravais lattice are P and Mn.

A group of interesting crystals having a P cubic lattice with a more complex basis
are the perovskite-type titanates and niobates, such as BaTiO3, NaNbO3, KNbO3. At
high temperature (T ≥ 120 C for BaTiO3) the atomic arrangement is the one reported
in Fig. 11.3. The oxygen octahedra having the Ti (or Nb) atom at the center result
from the d2sp3 hybrid orbitals (see Fig. 9.3). These octahedra are directly involved in
the structural transitions driven by the softening of the q = 0 or of the zone-boundary
vibrational modes (see Sect. 10.6 for a comment, Chaps. 14 and 16). The distortion
of the cubic cell is the microscopic source of the ferroelectric transition and of the
electro-optical properties which characterize that crystal family. For all the crystal
lattices described above the reciprocal lattice is cubic and the Brillouin cell is also
cubic.

NaCl crystal is a typical example of face-centered cubic (fcc) lattice. The non-
primitive, conventional, unitary cell and the primitive cell are shown in Fig. 11.4. The
basis is formed by two atoms at the positions (0,0,0) and (1/2,0,0). The coordination
number is 6. The fcc lattice characterizes also the structure of KBr, AgBr and LiH
and of several metal elements such as Al, Ca, Cu, Au, Pb, Ni, Ag and Sr.

Ba Ba

BaBa

Ba

Ti

Basis

Crystal

O

O

O

Fig. 11.3 Sketch of the crystal cell in BaTiO3 (in the cubic phase). At Tc � 120 C a displacive
phase transition occurs, to a structure of tetragonal symmetry. The arrows indicate the directions
of the displacements of the ions, having taken the oxygen ions at c/2 fixed (also a slight shrinkage
in the ab plane occurs). The displacement of the positive and negative ions in opposite directions
are responsible for the spontaneous polarization arising as a consequence of the transition from the
cubic to the tetragonal phase (ferroelectric state see Chap. 16)

http://dx.doi.org/10.1007/978-3-319-17897-4_9
http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_16
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Fig. 11.4 Conventional and primitive cells for NaCl. The basis is formed by a Na atom and by a
Cl atom

The fcc lattice also characterizes the diamond (C) and the semiconductors Si, Ge,
GaAs and InSb. In these cases the basis is given by two atoms (both C for diamond,
Si and Ge) at the positions (0,0,0) and (1/4,1/4,1/4). Each atom has a tetrahedral
coordination that may be thought to result from the formation of sp3 hybrid atomic
orbitals (Sect. 9.2), as sketched below:

Carbon is known to crystallize also in the form of graphite, where the sp2

hybridization of the C atomic orbitals yields a planar (2D) atomic arrangement.
The 2D lattice is formed by two interpenetrating triangular lattices (see Fig. 11.5).

It should be mentioned that carbon can also crystallize in other forms, as for
example in the fcc fullerene, where at each fcc lattice site there is a C60 molecule,
with the shape of truncated icosahedron (a cage of hexagons and pentagons).

Another relevant crystalline form is the one having the hexagonal close-packed
lattice, with the densest packing of hard spheres placed at the lattice points. The
arrangement is obtained by placing the atoms at the vertexes of planar hexagons and
then creating a second layer with “spheres” superimposed in contact with the three
spheres of the underlying layer. The crystal lattice is the P hexagonal and the basis
is given by two atoms placed at (0,0,0) and at (2/3,1/3,1/2).

In the hard sphere model 74 % of the volume is occupied and the ratio c/a is
1.633. In real crystals with this structure one has values of c/a slightly different, as
1.85 for Zn and 1.62 for Mg.

http://dx.doi.org/10.1007/978-3-319-17897-4_9
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Fig. 11.5 In-plane atomic
arrangement of C atoms in
graphite, corresponding to
graphene

Problems

Problem 11.1 From geometrical considerations derive the relationships between
the reciprocal lattice vector g(hkl) and the lattice planes with Miller indexes (hkl).

Solution: For
g = ha∗ + kb∗ + lc∗.

let us take a plane perpendicular, containing the lattice points ma, nb and pc. Then,
since ma − nb, ma − pc and nb − pc lie in this plane, one has

g · (ma − nb) = g · (ma − pc) = g · (nb − pc) = 0.

Then hm − kn = 0, mh = pl and nk = pl, yielding m = 1/h, n = 1/k and
p = 1/ l.

From the definition of the Miller indexes one finds that the plane perpendicular
to g, passing through the lattice points ma, nb and pc is the one characterized by
(hkl).

Now it is proved that the distance d(hkl) between adjacent (hkl) planes is
2π/|g(hkl)|. Let us consider a generic vector r connecting the lattice points of
two adjacent (hkl) planes. Since g(hkl) is perpendicular to these planes one has
r · ĝ(hkl) = d(hkl). One can arbitrarily choose r = a/h. Then a · g(hkl) = 2πh
and since ĝ = g/|g| one has r · ĝ = 2π/|g|. Therefore

d(hkl) = 2π

|g(hkl)|
Problem 11.2 Derive the density of the following compounds from their crystal
structure and lattice constants:

Iron (bcc, a = 2.86 Å), Lithium (bcc, a = 3.50 Å), Palladium (fcc, a = 3.88 Å),
Copper (fcc, a = 3.61 Å), Tungsten (bcc, a = 3.16 Å).
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Solution:

Fe : ρ = atomic mass · 2

vc
= 7.93 g cm−3.

Li : ρ = 2 · 1.660 · 10−24 · 6.939

(3.5 · 10−8)3
= 0.537 g cm−3.

Pd : ρ = 12.095 g cm−3.

Cu : ρ = 8.968 g cm−3.

W : ρ = 19.344 g cm−3.

Problem 11.3 Estimate the order of magnitude of the kinetic energy of the neutrons
used in diffraction experiments to obtain the crystal structures. By assuming that the
neutron beam arises from a gas, estimate the order of magnitude of the temperature
required to have diffraction.

Solution: The neutron wavelength has to be of the order of the lattice spacing, i.e.
of the order of 1 Å. Then Ekin = h2/2Mnλ

2 � 80 meV. The corresponding velocity
is around 4 × 105 cm/s. Since Ekin = 3kBT/2, one has T � 630 K.

Problem 11.4 Show that the reciprocal lattice for the fcc lattice is a bcc lattice and
vice-versa.

Solution: In terms of the side a of the conventional cubic cell the primitive lattice
vectors of the fcc structure are (Fig. 11.4):

a1 = a

2
(i + j)

a2 = a

2
(i + k)

a3 = a

2
(j + k)

(i, j, k orthogonal unit vectors parallel to the cube edges). Note that |ai | = a/
√

2
and therefore the volume of the primitive cell is (a1 × a2) · a3 = a3/4. Then the
primitive vectors of the reciprocal lattice are

a∗
1 = 2πa2 × a3

a3/4

and similar expressions for a∗
2 and a∗

3 (Eq. (11.7)) (in the unit cube of volume a3

there are four lattice points). Thus
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a∗
1 = 2π

a
(−i − j + k)

a∗
2 = 2π

a
(−i + j − k)

a∗
3 = 2π

a
(i − j − k)

The shortest (non-zero) reciprocal lattice vectors are given by the eight vectors
(2π/a)(±i ± j ± k) which generate the bcc (reciprocal) lattice.

A similar procedure applied to the primitive translational vectors of the bcc lattice

a1 = a

2
(i + j + k)

a2 = a

2
(−i + j + k)

a3 = a

2
(−i − j + k)

(yielding for the volume of the primitive cell (a1 × a2) · a3 = a3/2) implies

a∗
1 = 2π

a
(i + k)

a∗
2 = 2π

a
(−i + j)

a∗
3 = 2π

a
(−j + k)

as primitive vectors of fcc lattice.
The Brillouin cell of the bcc lattice is shown below (compared to the one in

Fig. 11.2).
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