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Die Wahrheit ist das Kind der Zeit, nicht der
Autoritaet. Unsere Unwissenheit ist unendlich,
tragen wir einen Kubikmillimeter ab!

—from B. Brecht, in Leben des Galilei

There is no end to this wonderful world of
experimental discovery and mental
constructions of reality as new facts become
known. That is why physicists have more fun
than most people.

—Miklos Gyulassy



To Luca and Margherita Strozzi Rigamonti,
with hope

—Attilio Rigamonti

To Gegia, Enri, Cate and Dario

—Pietro Carretta



Preface

Intended Audience, Approach and Presentation

This text is intended for a course of about six months for undergraduate students. It
arises from the adaptation and the amendments to a text for a full-year course in
Structure of Matter, written by one of the authors (A.R.) more than 30 years ago. At
that time only a few (if any) textbooks having the suited form for introduction to the
basic quantum properties of atoms, molecules, and crystals in a comprehensive and
interrelated way, were available. Along the past 20 years many excellent books
pursuing the aforementioned aim have been published (some of them are listed at
the end of this preface). Still there are reasons, in our opinion, to attempt a further
text devoted to the quantum roots of condensed matter properties. A practical aspect
in this regard involves the organization of studies in Physics, after the huge sci-
entific outburst of the various topics of fundamental and technological character in
recent decades. In most universities there is now a first period of three or four years,
common to all students and devoted to elementary aspects, followed by an
advanced program in more specialized fields of Physics. The difficult task is to
provide a common and formative introduction in the first period suitable as a basis
for building up more advanced courses and to bridge the area between elementary
physics and topics pertaining to research activities. The present attempt toward a
readable book, hopefully presenting those desired characteristics, essentially is
based on a mixture of simplified institutional theory with solved problems. The
hope, in this way, is to provide physical insights, basic culture, and motivation,
without deteriorating the possibility of advanced subsequent learning.

Organization

Structure ofMatter is such a wide field involving somany subjects that a first task is to
find a way to confine an introductory text. The present status of that discipline
represents a key construction of the scientific knowledge, possibly equated only by
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the unitary description of the electromagnetic phenomena. Even by limiting attention
to conventional topics of condensed matter only, namely atoms, molecules, and
crystals, we are still left with an ample field. For instance, semiconductors or
superconductors, the electric and magnetic properties of matter and its interaction
with electromagnetic radiation, the microscopic mechanisms underlying solid-state
devices as well as masers and lasers, are to be considered as belonging to the field of
structure of matter (without mentioning the “artificial”matter involving systems such
as nanostructures, photonic crystals, or special materials obtained by subtle manip-
ulations of atoms by means of special techniques). In this text the choice has been to
limit the attention to key concepts and to the typical aspects of atoms (Chaps. 1–5),
molecules (Chaps. 7–10) and of crystalline solids (Chaps. 11–14), looking at the
basic “structural” subjects without dealing with the properties that originate from
them. This choice is exemplified by referring to crystals: electronic states and
quantummotions of ions have been described without going into the details regarding
the numerous properties related to these aspects. Only in a few illustrative cases
favoring better understanding or comprehensive view, derivation of some related
properties has been given (examples are some thermodynamical properties due to
nuclear motions in molecules and crystals or some of the electric or magnetic
properties). Chapter 6 has the particular aim to lead the reader to an illustrative
overview of the quantum behaviors of angular momenta andmagnetic moments, with
an introduction to spin statistics, magnetic resonance, and spin motions and amention
of spin thermodynamics, through the description of adiabatic demagnetization. The
four new Chaps. (15–18) introduced in the 3rd Edition deal with relevant phases of
solid matter (magnetic, electric, and superconductive) and to the related phase
transitions.

All along the text emphasis is given to the role of spectroscopic experiments
giving access to the quantum properties by means of electromagnetic radiation. In
the spirit to limit the attention to key subjects, frequent referring is given to the
electric dipole moment and to selection rules, rather than to other aspects of the
many experiments of spectroscopic character used to explore the matter at micro-
scopic level. Other unifying concepts present along the text are the ones embedded
in statistical physics and thermal excitations, as it is necessary in view of the many-
body character of condensed matter in equilibrium with a thermal reservoir.

Prerequisite, Appendices, and Problems

Along the text the use of quantum mechanics, although continuous, only involves
the basic background that the reader should have achieved in undergraduate
courses. Knowledge of statistical physics is required based on Boltzmann, Fermi–
Dirac and Bose–Einstein statistical distributions, with the relationships of thermo-
dynamical quantities to the partition function (some of the problems work as proper
recall, particularly for the physics of paramagnets or for black-body radiation).
Finally the reader is assumed to have knowledge of classical electromagnetism and
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Hamiltonian mechanics. Appendices are intended to provide ad hoc recalls, in some
cases applied to appropriate systems or to phenomena useful for illustration. The
Gaussian CGS units are used.

The problems should be considered entangled to the formal presentation of the
subjects, being designed as an intrinsic part of the pathway the student should move
by in order to grasp the key concepts. One of the reasons to entangle problems and
institutional theory can be found in what Feynman wrote in the preface to his
Lectures: “I think one way we could help the students more would be by putting more
hard work into developing a set of problems which would elucidate some of the ideas
in the lectures.” Some of the problems are simple applications of the equations and in
these cases the solutions are only sketched. Other problems are basic building blocks
and possibly expansions of the formal description. Then the main steps of the solution
are presented in some detail. The aim of the mélange intuition-theory-exercises
pursued in the text is to favor the acquisition of the basic knowledge in the wide and
wonderful field of condensed matter, emphasizing how phenomenological properties
originate from the microscopic, quantum features of nature.

It should be obvious that a book of this size can present only a fraction of the
present knowledge in the field. If the reader could achieve even an elementary
understanding of the atoms, molecules, and crystals, how they react to electric and
magnetic fields, how they interact with electromagnetic radiation, and respond to
thermal excitation, the book will have fulfilled its purpose.

The fundamental blocks of the physical world are thought to be the subnuclear
elementary particles. However, the beauty of the natural world rather originates
from the architectural construction of the blocks occurring in the matter. Ortega Y
Gasset wrote “If you wish to admire the beauty of a cathedral you have to respect
for distance. If you go too close, you just see a brick.” Furthermore, one could claim
that the world of condensed matter more easily allows one to achieve a private
discovery of phenomena. In this respect let us report what Edward Purcell wrote in
his Nobel lecture: “To see the world for a moment as something rich and strange is
the private reward of many a discovery.”
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Chapter 1
Atoms: General Aspects

Topics

Central Field Approximation
Effective Potential and One-Electron Eigenfunctions
Special Atoms (Hydrogenic, Muonic, Rydberg)
Magnetic Moments and Spin-Orbit Interaction
Electromagnetic Radiation, Matter and Transitions
Two-Level Systems and Related Aspects

The aim of this and of the following three chapters is the derivation of the main
properties of the atoms and the description of their behavior in magnetic and electric
fields. We shall begin with the assumption of point-charge nucleus with mass much
larger than the electron mass and by taking into account only the Coulomb energy.
Other interaction terms, of magnetic origin as well as the relativistic effects, will be
initially disregarded.

In the light of the central field approximation it is appropriate to recall the results
pertaining to one-electron atoms, namely the hydrogenic atoms (Sect. 1.4). When
dealing with the properties of typical multi-electron atoms, such as alkali atoms or
helium atom (Chap. 2) one shall realize that relevant modifications to that simplified
framework are actually required. These are, for instance, the inclusion of the spin-
orbit interaction (recalled at Sect. 1.6) and the effects due to the exchange degeneracy
(Sect. 1.3, discussed in detail at Sect. 2.2).

The properties of a useful referencemodel, the two-level system, and some aspects
of the electromagnetic radiation in interaction with matter are recalled in Appendices
and/or in ad-hoc problems.
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2 1 Atoms: General Aspects

1.1 Central Field Approximation

The wave functionψ(r1, r2, ..., rN ) describing the stationary state of the N electrons
in the atom follows from the Schrödinger equation

[−�
2

2m

∑
i

∇2
i −

∑
i

Ze2

ri
+

′∑
i �= j

e2

ri j

]
ψ(r1, r2, ..., rN ) = Eψ(r1, r2, ..., rN )

[
Te + Vne + Vee

]
ψ(r1, r2, ..., rN ) = Eψ(r1, r2, ..., rN ) (1.1)

where in the Hamiltonian one has the kinetic energy Te, the potential energy Vne

describing the Coulomb interaction of the electrons with the nucleus of charge Ze
and the electron-electron repulsive interaction Vee (Fig. 1.1).

If the inter-electron interaction Vee could be neglected, the total Hamiltonian
would be H = ∑

i Hi , withHi the one-electron Hamiltonian. Then ψ(r1, r2, ...) =∏
i φ(ri ), with φ(ri ) one-electron eigenfunctions. Vee does not allow one to separate

the variables ri , in correspondence to the fact that the motion of a given electron
does depend from the ones of the others. Furthermore Vee is too large to be treated as
a perturbation of [Te + Vne]. As we shall see (Sect. 2.2), even in the case of Helium
atom, with only one pair of interacting electrons, the ground-state energy correction
related to Vee is about 30% of the energy of the unperturbed state correspondent to
Vee = 0.

The search for an approximate solution of Eq. (1.1) can initiate by considering
the form of the potential energy V (ri ), for a given electron, in the limiting cases of
distances ri from the nucleusmuch larger andmuch smaller than the average distance
d of the other (N − 1) electrons:

Fig. 1.1 Schematic view of multi-electron atom. The nucleus is assumed as a point charge Ze,
with mass M much larger than the mass m of the electron, of charge −e

http://dx.doi.org/10.1007/978-3-319-17897-4_2


1.1 Central Field Approximation 3

ri

-e
outer electron

screening cloud due to the inner
electrons, (Z-1) for Z=N

r
V(r)

effective potential

-Ze2/r

-e2/r

Fig. 1.2 Sketchy view of the electronic cloud screening the nuclear charge for an outer electron
and correspondent forms of the potential energy in the limiting cases of large and small distances
and of the effective central field potential energy (solid line). Details on the role of the screening
cloud shall be given in describing the alkali atoms (Sect. 2.1)

ri � d V (ri ) � −e2

ri

ri � d V (ri ) � −Ze2

ri
+ const. (1.2)

having taken into account that for neutral atoms (N = Z ) when ri � d the electrons
screen (Z −1) protons, while for ri � d (N −1) electrons yield a constant effective
potential, as expected for an average spherical charge distribution (Fig. 1.2).We shall
discuss in detail the role of the screening cloud due to the inner electronswhen dealing
with alkali atoms (Sect. 2.1).

In the light of the form of the potential energy suggested by Eq. (1.2) and neglect-
ing correlation effects in the electronic positions, one deals with the central field
approximation, first considered by Hartree and Slater. In this context any electron
is moving in an effective average field, due to the nucleus and to the other electrons,

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2


4 1 Atoms: General Aspects

which depends only from the distance r ≡ |r|, with limiting expressions given by
Eq. (1.2).

Within this approximation Eq. (1.1) is rewritten

∑
i

[−�
2

2m
∇2
i + V (ri )

]
ψ(r1, r2, ..., rN ) = Eψ(r1, r2, ..., rN ) (1.3)

implying
ψ(r1, r2, ..., rN ) = φa(r1)φb(r2)...φc(ri )...φz(rN ), (1.4)

where the one-electron eigenfunctions are solutions of the equation

{−�
2

2m
∇2
i + V (ri )

}
φa(ri ) = Ea

i φa(ri ) (1.5)

in correspondence to a set of quantum numbers a, b..., and to one-electron eigenval-
ues Ea

1 , E
b
2 .... Moreover

E =
∑
i

Ea...
i . (1.6)

From the central character of V (ri ), implying the commutation ofHi with the angular
momentum operators, one deduces

φa(ri ) = Rn(i)l(i)(ri )Yl(i)m(i)(θi ,ϕi ) (1.7)

where Yl(i)m(i)(θi ,ϕi ) are the spherical harmonics and then the set of quantum num-
bers is a ≡ ni , li ,mi .

Thus the one-electron states are labeled by the numbers (n1, l1), (n2, l2) etc. or
by the equivalent symbols (1s), (2s), (2p)etc.

The spherical symmetry associated with
∑

i V (ri ) also implies that for the total
angular momentum L = ∑

i li , |L| and Lz are constants of motion. Then one can
label the atomic states with quantum numbers L = 0, 1, 2... L(L+1)�2 is the square
of the angular momentum of the whole atom, while the number M (the equivalent
for the atom of the one-electron number m) characterizes the component M� of L
along a given direction (usually indicated by z). It is noted that at this point we have
no indication on how L and M result from the correspondent numbers li andmi . The
composition of the angular momenta will be discussed at Chap. 3. Anyway, since
now we realize that the atomic states can be classified in the form S, P, D, F etc. in
correspondence to the values L = 0, 1, 2, 3 etc.

http://dx.doi.org/10.1007/978-3-319-17897-4_3


1.2 Self-Consistent Construction of the Effective Potential 5

1.2 Self-Consistent Construction of the Effective Potential

In the assumption that the one-electron wavefunctions φa(ri ) have been found one
can achieve a self-consistent construction of the effective potential energy V (ri ).
As it is known −e|φa(r)|2dτ can be thought as the fraction of electronic charge in
the volume element dτ . Owing to the classical analogy, one can write the potential
energy for a given j th electron as1 (see Fig. 1.1)

V (r j ) = − Ze2

r j
+

∑
i �= j

∫
e2|φa(ri )|2

ri j
dτi (1.8)

This relationship betweenV (r) andφa suggests that once a givenV (r) is assumed,
Eq. (1.5) can be solved (by means of numerical methods) to obtain φ(ri ) in the form
(1.7). Then one can build up a new expression for V (ri ) and iterate the procedure
till the radial parts of the wavefunctions at the nth step differ from the ones at the
(n − 1)th step in a negligible way. This is the physical content of the self-consistent
method devised by Hartree to obtain the radial part of the one-electron eigenfunc-
tions or, equivalently, the best approximate expression for V (ri ). Here we only men-
tion that a more appropriate procedure has to be carried out using eigenfunctions
which include the spin variables and the dynamical equivalence (Sect. 1.3), with the
antisymmetry requirement. Such a generalization of the Hartree method has been
introduced by Fock and Slater and it is known as Hartree-Fock method. The appro-
priate many-electrons eigenfunctions have the determinantal form (see Sect. 2.3).
A detailed derivation of the effective potential energy for the simplest case of two
electrons on the basis of Eq. (1.8) is given in Problem 2.7.

The potential energy V (ri ) can be conveniently described through an effective
nuclear charge Zef f (r) by means of the relation

V (r) = −e2

r
Zef f (r) (1.9)

(now the index i is dropped). The sketchy behavior of the effective nuclear charge is
shown in Fig. 1.3. The dependence on r at intermediate distance has to be derived,
for instance, by means of the self-consistent method or by other numerical methods.

1Equation (1.8) can also be derived by applying the variational principle to the energy function
constructed on the basis of the φa’s with the complete Hamiltonian, for a variation δφa leaving the
one-electron eigenfunction normalized.

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2


6 1 Atoms: General Aspects

0

r

1

Z

Z
eff

Fig. 1.3 Sketchy behavior of the effective nuclear charge acting on a given electron at the distance
r from the nucleus of charge Ze, arising from the screening due to other electrons. The charge
(Z − N − 1) (1 for neutral atom with Z = N ) is often called residual charge (for a quantitative
estimate of Zef f (r) for the ground state of Helium see Problem2.7)

1.3 Degeneracy from Dynamical Equivalence

From Eqs. (1.3), (1.5) and (1.7) the N -electron wavefunction implies the assignment
of a set of quantum numbers ai to each i th electron. This assignment cannot be
done in a unique way, since the electrons are indistinguishable, the Hamiltonian
H = ∑

i Hi being invariant upon exchange of the indexes (exchange symmetry).
Therefore, for a state of the atom correspondent to a given eigenvalue, one has to
write an eigenfunction combining with equal weights all the possible configurations,
with the quantum numbers ai variously assigned to different electrons. Therefore

ψ(r1, r2, ..., rN ) =
∑
P

P

[
φa1(r1)φa2(r2)...φaN (rN )

]
(1.10)

where P is an operator permuting electrons and quantum numbers.
It should be stressed that this remark on the role of the dynamical equivalence

is incomplete and somewhat misleading. In fact we shall reformulate it after the
introduction of a further quantum number, the spin number. Moreover, we will have
to take into account the Pauli principle, that limits the acceptable wavefunctions
obtained upon permutation to the ones changing sign (antisymmetric). This topic
will be discussed after the analysis of Helium atom, with two electrons (Sect. 2.2).
The eigenfunction in form of the Slater determinant (Sect. 2.3) does take into account
the exchange degeneracy and the antisymmetry requirement.

We conclude these preliminary aspects observing that a proper quantum treatment,
within a perturbative approach, at least should take into account the modifications to

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2


1.3 Degeneracy from Dynamical Equivalence 7

the central field approximation due to the Hamiltonian

HP = −
∑
i

Ze2

ri
+

′∑
i �= j

e2

ri j
−

∑
i

V (ri ), (1.11)

resulting from the difference between the Hamiltonian in (1.1) and the one in (1.3).
This is the starting point of the Slater theory for multiplets.

1.4 Hydrogenic Atoms: Illustration of Basic Properties

The central field approximation allows one to reduce the Schrödinger equation to the
form given by Eqs. (1.3) and (1.5). This latter suggests the opportunity to recall the
basic properties for one-electron atoms, with Z protons at the nuclear site (Hydro-
genic atoms). The Schrödinger equation is rewritten

[−�
2

2m
∇2
r,θ,ϕ − Ze2

r

]
φn,l,m(r, θ,ϕ) = Enφn,l,m(r, θ,ϕ) (1.12)

with φn,l,m of the form in Eq. (1.7). To abide by the description for the Hydrogen
atom, one can substitute everywhere the proton charge (+e) by Ze in the eigenvalues
and in the wavefunctions. Then

En = −m(Ze)2e2

2�2

1

n2
= −Z2RHhc

1

n2
(1.13)

(with RH Rydberg constant, given by 109,678cm−1, correspondent to 13.598eV).
The spherical harmonics entering the wavefunction φn,l,m (see Eq. (1.7)) are reported
in Tables1.1 and 1.2, up to l = 3.

The radial functions Rnl(r) in Eq. (1.7) result from the solution of

d2R

dr2
+ 2

r

dR

dr
+

[
2m

�2
(E + Ze2

r
) − l(l + 1)

r2

]
R = 0 (1.14)

or −�
2

2mr2
d

dr
r2

dR

dr
+

[
l(l + 1)�2

2mr2
− Ze2

r

]
R = ER, (1.15)

namely a one-dimensional (1D) equation with an effective potential energy Vef f

which includes the centrifugal term related to the non-inertial frame of reference of
the radial axis. The shape of Vef f is shown in Fig. 1.4. In comparison to the Hydrogen
atom, Eq. (1.12) shows that in Hydrogenic atoms one has to rescale the distances by
the factor Z . Instead of a0 = �

2/me2 = 0.529Å (radius of the first orbit in the Bohr
atom, corresponding to an energy −RHhc = −e2/2a0), the characteristic length
thus becomes (a0/Z).
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Table 1.1 Normalized spherical harmonics, up to l = 3

s(l = 0) Y00 = 1√
4π

p(l = 1) Y1−1 =
√

3
8π

x−iy
r =

√
3
8π sinθe−iφ

Y10 =
√

3
4π

z
r =

√
3
4π cosθ

Y11 = −
√

3
8π

x+iy
r = −

√
3
8π sinθeiφ

d(l = 2) Y2−2 =
√

15
32π

(x−iy)2

r2
=

√
15
32π sin

2θe−2iφ

Y2−1 =
√

15
8π

z(x−iy)

r2
=

√
15
8π sinθcosθe−iφ

Y20 =
√

5
16π

3z2−r2

r2
=

√
5

16π (3cos2θ − 1)

Y21 = −
√

15
8π

z(x+iy)

r2
= −

√
15
8π sinθcosθeiφ

Y22 =
√

15
32π

(x+iy)2

r2
=

√
15
32π sin

2θe2iφ

f (l = 3) Y3−3 =
√

35
64π

(x−iy)3

r3
=

√
35
64π sin

3θe−3iφ

Y3−2 =
√

105
32π

z(x−iy)2

r3
=

√
105
32π sin

2θcosθe−2iφ

Y3−1 =
√

21
64π

(5z2−r2)(x−iy)

r3
=

√
21
64π (5cos2θ − 1)sinθe−iφ

Y30 =
√

7
16π

(5z2−3r2)z
r3

=
√

7
16π (5cos2θ − 3)cosθ

Y31 = −
√

21
64π

(5z2−r2)(x+iy)

r3
= −

√
21
64π (5cos2θ − 1)sinθeiφ

Y32 =
√

105
32π

z(x+iy)2

r3
=

√
105
32π sin

2θcosθe2iφ

Y33 = −
√

35
64π

(x+iy)3

r3
= −

√
35
64π sin

3θe3iφ

Since |φ(r, θ,φ)|2dτ corresponds to the probability to find the electron inside
the volume element dτ = r2sinθdrdθdφ, from the form of the eigenfunctions the
physical meaning of the spherical harmonics is grasped: Y ∗Ysinθdθdφ yields the
probability that the vector r, ideally following the electron in its motion, falls within
the elemental solid angle dΩ around the direction defined by the polar angles θ and
φ, as shown in below.

θ
dΩ

φ

In the states labeled by the quantum numbers (n, l,m) the eigenvalue equations
for the modulus square and for the z-component of the angular momentum are
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Table 1.2 Normalized spherical harmonics in the real form (see text)

s(l = 0) Y00 = 1√
4π

p(l = 1) Yx =
√

3
4π

x
r =

√
3
4π sinθcosφ

Yy =
√

3
4π

y
r =

√
3
4π sinθsinφ

Yz =
√

3
4π

z
r =

√
3
4π cosθ

d(l = 2) Yz2 =
√

5
16π

3z2−r2

r2
=

√
5

16π (3cos2θ − 1)

Yzx =
√

15
4π

zx
r2

=
√

15
4π sinθcosθcosφ

Yzy =
√

15
4π

zy
r2

=
√

15
4π sinθcosθsinφ

Yx2−y2 =
√

15
16π

x2−y2

r2
=

√
15
16π sin

2θcos2φ

Yxy =
√

15
4π

xy
r2

=
√

15
16π sin

2θsin2φ

f (l = 3) Yz3 =
√

7
16π

(5z2−3r2)z
r3

=
√

7
16π (5cos2θ − 3)cosθ

Yz2x =
√

21
32π

(5z2−r2)x
r3

=
√

21
32π (5cos2θ − 1)sinθcosφ

Yz2y =
√

21
32π

(5z2−r2)y
r3

=
√

21
32π (5cos2θ − 1)sinθsinφ

Yz(x2−y2) =
√

105
16π

z(x2−y2)
r3

=
√

105
16π sin

2θcosθcos2φ

Yzxy =
√

105
4π

zxy
r3

=
√

105
16π sin

2θcosθsin2φ

Yx2y =
√

35
32π

(3x2y−y3)
r3

=
√

35
32π sin

3θcos3φ

Yy2x =
√

35
32π

(x3−3y2x)

r3
=

√
35
32π sin

3θsin3φ

l̂2φnlm = Rnl(r)l̂
2Ylm(θ,ϕ) = Rnl(r)l(l + 1)�2Ylm(θ,ϕ);

l̂zφnlm = Rnl(r)l̂zYlm(θ,ϕ) = Rnl(r)l̂zΘlm(θ)eimϕ =
= Rnl(r)Θlm(θ)l̂ze

imϕ = Rnl(r)Ylm(θ,ϕ)m� (1.16)

Finally, from Eq. (1.13) it is noted that a given state of the Hydrogenic atom is Z2

times more bound than the correspondent state in the Hydrogen atom. This happens
because on the average, the electron is Z -times closer to a nuclear charge increased
by a factor Z .

The normalized wave functions for Hydrogenic atoms are reported in Table1.3.
It is remarked that for r � a0/Z one has

(φnlm)r→0 ∝ Rnl ∝ rl (1.17)

while for large distance

(φnlm)r→∞ ∝ Rnl ∝ e− r
a0

Z
n (1.18)
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Fig. 1.4 Effective potential
energy in the 1D
Schrödinger equation for
R(r) (Eq. (1.15)), for the
low-energy states.
Horizontal lines indicate the
eigenvalues for n = 1, 2 and
3, given by −Z2RHhc/n2

(a0 = �
2/me2)

0 2 4 6 8 10

-0.50

-0.25

0.00

0.25

0.50 V
eff

 (r)={l(l+1)a
0
e2/2r2} - Ze2/r

scales with Z

r = l(l+1)a /Z

l=2

l=1

l=0

V
ef

f /(
Z

2 e2 /a
0)

r/(a
0
/Z)

m 0

2

From thewavefunctions relevant properties of the states, such as the radial probability
density

Pnl(r) =
∫

dϕ

∫
dθsinθr2|φnl |2, (1.19)

or the expectation values of any positional function f (r)

< f >nl =
∫

|φnl |2 f (r)dτ (1.20)

can be derived. The radial probability densities for the 1s, 2s and 2p states are
depicted in Fig. 1.5.

For spherical symmetry Pnl(r) can be written as 4πr2|φnl |2. It should be remarked
that for Z = 1 the maximum in P1s occurs at r = a0, corresponding to the radius
of the first orbit in the Bohr model (see Problem1.4). For the states at n = 2 the
correspondence of the maximum in Pnl(r) with the radius of the Bohr orbit pertains
to the 2p states.

The first excited state (n = 2), corresponding to E2 = −(Z2e2/2a0)(1/4), is
the superposition of four degenerate states: 2s, 2p1, 2p0 and 2p−1. To describe the
2p states, instead of the functions φ2p,m=±1,0 (see Table1.3) one may use the linear
combinations (see Table1.2).
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Table 1.3 Normalized eigenfunctions for Hydrogenic atoms, for n = 1, 2 and 3

n l m Eigenfunctions

1 0 0 φ100 = 1√
π
( Z
a0

)3/2e−Zr/a0

2 0 0 φ200 = 1
4
√
2π

( Z
a0

)3/2(2 − Zr
a0

)e−Zr/2a0

2 1 0 φ210 = 1
4
√
2π

( Z
a0

)3/2 Zr
a0
e−Zr/2a0cosθ

2 1 ±1 φ21±1 = ∓ 1
8
√

π
( Z
a0

)3/2 Zr
a0
e−Zr/2a0 sinθe±iϕ

3 0 0 φ300 = 1
81

√
3π

( Z
a0

)3/2(27 − 18 Zr
a0

+ 2 Z2r2

a20
)e−Zr/3a0

3 1 0 φ310 =
√
2

81
√

π
( Z
a0

)3/2(6 − Zr
a0

) Zr
a0
e−Zr/3a0cosθ

3 1 ±1 φ31±1 = ∓ 1
81

√
π
( Z
a0

)3/2(6 − Zr
a0

) Zr
a0
e−Zr/3a0 sinθe±iϕ

3 2 0 φ320 = 1
81

√
6π

( Z
a0

)3/2( Z2r2

a20
)e−Zr/3a0 (3cos2θ − 1)

3 2 ±1 φ32±1 = ∓ 1
81

√
π
( Z
a0

)3/2( Z2r2

a20
)e−Zr/3a0 sinθcosθe±iϕ

3 2 ±2 φ32±2 = 1
162

√
π
( Z
a0

)3/2( Z2r2

a20
)e−Zr/3a0 sin2θe±2iϕ

φ2px = 1√
2
[φ2p,1 + φ2p,−1] ∝ sinθcosϕ ∝ x

φ2py = i√
2
[φ2p,1 − φ2p,−1] ∝ sinθsinϕ ∝ y

φ2pz = φ2p,0 ∝ cosθ ∝ z (1.21)

From these expressions, also in the light of the P2p(r) depicted in Fig. 1.5 and
in view of the equivalence between the x, y and z directions, one can represent the
atomic orbitals (the quantum equivalent of the classical orbits) in the form reported
in Fig. 1.6.

The degeneracy in x, y, z is necessary, in view of the spherical symmetry of the
potential. On the contrary the degeneracy in l, namely same energy for s, p, d...

states for a given n, is accidental, being the consequence of the Coulombic form of
the potential. We shall see that when the potential takes a different radial dependence
because of Zef f (r), then the degeneracy in l is removed (Sect. 2.1).

It is reminded that the difference between the 2p1,0,−1 and the 2px,y,z represen-
tation involves the eigenvalue for l̂z . The former are eigenfunctions of l̂z while the
latter are not, as shown for instance for φ2px:

l̂zφ2px = −i�
∂

∂ϕ
φ2px = −i�

∂

∂ϕ
f (r)sinθcosϕ = +i�φ2py (1.22)

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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P
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Fig. 1.5 Radial probability densities for 1s, 2s and 2p states in Hydrogenic atoms

p-orbitals

x

z

y

- +

2py 2pz 2px

+

+

-

-

Fig. 1.6 Illustrative plots, for the 2p states of Hydrogenic atoms, of the atomic orbitals, defined
as the shape of the surfaces where |φnl |2 = constant, meantime with probability of presence of the
electron in the internal volume given by 0.9. It should be remarked that the sign + or − , related
to the sign of Y2p , can actually be interchanged. However the relationship of the sign along the
different directions is relevant, since it fixes the parity of the state under the operation of reversing
the direction of the axes or, equivalently, of bringing r in −r

Obviously the difference is only in the description and no real modification occurs
in regard of the measurements. This is inferred, for example, from the definition of
φ2px in terms of the basis of the eigenfunctions for l̂z (see Eq. (1.21)).
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3cos2θ–1 sinθcosθ
sinϕ

sinθcosθ
cosϕ

sin2θ sin2ϕsin2θ cos2ϕ

d-orbitals

eg
t2g

dx2−y2 dz2
dyz dxz dxy

Yαβ ∝
αβ=x,y,z

(a)

(b)
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0.0

0.1

P
[r

/(
a

 /Z
)]

r/(a /Z)

 n=3, l=0
 n=3, l=1
 n=3, l=2

0

0

Fig. 1.7 Radial probability densities (a) for the n = 3 states of Hydrogenic atoms. In part (b) of the
Figure the angular distribution of the 3d atomic orbitals is reported. The dz2 and dx2−y2 , grouped
together are commonly called eg levels, while the dxy , dxz and dyz are called t2g levels (we shall
return to these aspects at Sect. 13.3)

Finally in Fig. 1.7a the radial probability densities for the n = 3 states are plotted.
The linear combinations of 3d states with differentm’s, leading to the most common
representation, with the correspondent atomic orbitals are shown in Fig. 1.7b.

Some expectation values of current use are reported in Table1.4.

Table 1.4 Expectation values of some quantities in Hydrogenic atoms

< r >nlm≡ ∫
φ∗
nlm(r)rφnlm(r)dτ ≡ ∫ ∞

0 |Rnl |2r3dr =
= n2 a0

Z [1 + 1
2 (1 − l(l+1)

n2
)] = a0

2Z [3n2 − l(l + 1)]
< r2 >nlm= n2

2 ( a0Z )2[5n2 + 1 − 3l(l + 1)]
< r−1 >nlm= [n2 a0

Z ]−1

< r−2 >nlm= Z2

a20
[n3(l + 1

2 )]−1

< V >nlm= − Z2e2

a0n2

< T >nlm= Z2e2

2a0n2

< r−3 >nlm= Z3

a30n
3[l(l+1)(l+ 1

2 )] (l �= 0)

For l = 0 one has the divergence in the lower limit of the integral,
since in < r−3 >nlm= ∫

φ∗
nl

1
r3

φnlr2sinθdrdθdϕ

φnl ∝ rl for r → 0 (see Eq. (1.17)).

http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Problems

Problem 1.1 For two independent electrons prove Eqs. (1.4) and (1.6).

Solution: From H1φ1 = E1φ1 and H2φ2 = E2φ2, by multiplying the first equa-
tion for φ2 and the second for φ1, one writes H1φ1φ2 = E1φ1φ2 and H2φ1φ2 =
E2φ1φ2. Then

Hφ = (H1 + H2)φ1φ2 = (E1 + E2)φ1φ2 = Eφ.

Problem 1.2 One electron is in a state for which the eigenvalue of the z-component
of the angular momentum l̂z is 3�, while the square of the angular momentum is
12�

2. Evaluate the expectation value of l̂2x.

Solution: In �
2 units, from < l̂2x > + < l̂2y >= l̂2− < l̂2z >. By taking into account

that x and y directions are equivalent and that the square of the angular momentum
has to be 12, one deduces < l̂2x >= (12 − 9)/2 = 1.5.

Problem 1.3 Prove that the angular momentum operators l̂z and l̂2 commute with
the central field Hamiltonian and that a common set of eigenfunctions exists (see
Eq. (1.16)).

Solution: In Cartesian coordinates, omitting i�

l̂xl̂y − l̂y l̂x =
=

(
−y

∂

∂z
+ z

∂

∂y

)(
−z

∂

∂x
+ x

∂

∂z

)
−

(
−z

∂

∂x
+ x

∂

∂z

) (
−y

∂

∂z
+ z

∂

∂y

)
=

= y
∂

∂x
+ yz

∂2

∂z∂x
− xy

∂2

∂z2
− z2

∂2

∂y∂x
+ xz

∂2

∂y∂z
−

−
[
zy

∂2

∂z∂x
− z2

∂2

∂x∂y
− xy

∂2

∂z2
+ x

∂

∂y
+ xz

∂2

∂z∂y

]
=

=
(

y
∂

∂x
− x

∂

∂y

)
= l̂z

In analogous way the commutation rules for the components are found:

[l̂x, l̂y] = i�l̂z, [l̂z, l̂x] = i�l̂y, [l̂y, l̂z] = i�l̂x.

In spherical polar coordinates, from

l̂2 = −�
2

[
1

sinθ

∂(sinθ ∂
∂θ

)

∂θ
+ 1

sin2θ

∂2

∂ϕ2

]

while l̂z = −i�∂/∂ϕ, one finds [l̂2, l̂z] = 0.
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For the central fieldHamiltonian (omitting irrelevant constants)H = −∇2+V (r)
in Cartesian coordinates for the kinetic energy

T lz = y∇2 ∂

∂x
− x∇2 ∂

∂y
= (y

∂

∂x
− x

∂

∂y
)∇2 = lzT,

for the ϕ-independent V (r) the commutation with l̂z directly follows.
Now we prove that when an operator M commutes with the Hamiltonian a set

of common eigenstates can be found, so that the two operators describe observables
with well defined values (the statement holds for any pair of commuting operators).

From MH−HM = 0 any matrix element involving the Hamiltonian eigenfunc-
tions reads

< i |MH − HM | j >=< i |MH| j > − < i |HM | j >= 0.

From the multiplication rule

∑
l

< i |M |l >< l|H| j > −
∑
k

< i |H|k >< k|M | j >= 0.

H being diagonal one writes

< i |M | j >< j |H| j > − < i |H|i >< i |M | j >= 0,

namely < i |M | j > (Ei − E j ) = 0, that for i �= j proves the statement, when E j �=
Ei (for degenerate states the proof requires taking into account linear combinations
of the eigenfunctions).

Problem 1.4 In the Bohr model for the Hydrogen atom the electron moves along
circular orbits (stationary states) with no emission of electromagnetic radiation. The
Bohr-Sommerfeld condition reads

∮
pθdθ = lh l = 1, 2, ...

pθ being the moment conjugate to the polar angle θ in the plane of motion. Show that
this quantum condition implies that the angular momentum is an integer multiple of
� and derive the radius of the orbits and the correspondent energies of the atom.

Plot the energy levels in a scale of increasing energy and indicate the transitions
allowed by the selection rule Δl = ±1, estimating the wavelengths of the first lines
in the Balmer spectroscopic series (transitions n′′ → n′, with n′ = 2).

Compare the energy levels for H with the ones for He+ and for Li2+.
Finally consider the motion of the electron in three-dimensions and by applying

the quantum condition to the polar angles, by means of vectorial arguments obtain
the quantization l̂z = m� for the z-component of the angular momentum.
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Solution: From the LagrangianL = I (∂θ/∂t)2/2+e2/r one has pθ = I∂θ/∂t , with
I moment of inertia and ∂θ/∂t = ω = constant. The quantum condition becomes

I
∂θ

∂t

∮
dθ = lh

so that mr2ω2π = lh and mvr = l�. From the latter equation and the equilibrium
condition for the orbits, where mv2/r = e2/r2, the radii turn out

rn = m2v2r2

me2
= n2�2

me2
= n2a0

with a0 = �
2/me2 = 0.529Å. The energy is

E = T + V = 1

2
mv2 − e2

r
= − e2

2r

(in agreement with the virial theorem, < T >=< V > n/2, with n exponent in
V ∝ rn) and thus

En = − e2

2rn
= −e4m

2�2

1

n2

as from Eq. (1.13), for Z = 1. A pictorial view of the orbits is the following (not in
scale):

n=1

n=2
n=3

n=4

n=5

4341 Å

6563 Å

4861 Å

Balmer series
(visible)

Paschen series
(infrared)

Lyman series
(ultraviolet)
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Below the energy levels are depicted:
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In three-dimensions
 z

ϕ

α
 pθ

θ θ ’ is in the plane
of the motion,

T = 1

2
[pr ṙ + pθθ̇ + pϕϕ̇]

and pθ′dθ′ = pθdθ + pϕdϕ (since the energy is the same in the frame of reference
(r, θ′) and (r, θ,ϕ)). Thus

∮
pϕdϕ = mh

with m quantum number and pϕ constant, so that pϕ = m� and pθ′ = k�, while
cosα = m/k, with k = 1, 2, 3... and m varies from −k to +k.

A pictorial view of the quantization in terms of precession of the angular momen-
tum for l = 2 (the “length” being

√
l(l + 1)�) is

z

x

y

m=2

m=1

m=0

m=-1

m=-2

Problem 1.5 In the first atomic model, due to Thomson, the atom was idealized as
a uniform positive electric charge in a sphere, with point-charge electrons embedded
in it. By referring to Hydrogen atom, derive the motion of the electron and in the
assumption that the radius of the sphere is R = 1Å estimate the frequency of the
radiation expected in the classical description.
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Solution: The force at the distance r from the center of the sphere is

f (r) = −er3

R3

e

r2

and the electron motion is harmonic, with angular frequency ω = √
e2/mR3. For

m = 9.09 × 10−28 g, e = 4.8 × 10−10 u.e.s. and R = 1Å the frequency turns out
ν = 2.53 × 1015 s−1. In the classical picture the emission is at the same frequency
(and at multiples) of the acceleration.

Problem 1.6 In the assumption that the proton can be thought as a sphere with
homogeneous charge distribution and radius R = 10−13 cm, evaluate the shift in the
ground state energy of the Hydrogen atom due to the finite size of the nucleus in
the perturbative approach (Note that R � a0). Repeat the calculation for uniform
distribution onto the surface of the sphere.

Solution: At the distance r < R from the origin the potential energy is

V (r) = −e2r3

R3r
−

∫ R

r

e24πr ′2

r ′4π R3

3

dr ′ = −3

2
e2

[
1

R
− r2

3R3

]

The difference with respect to the energy for point charge nucleus implies an energy
shift given by

< 1s|Vdi f f |1s > = 1

πa30

∫ R

0
e− 2r

a0

[
e2

r
+ e2r2

2R3
− 3e2

2R

]
4πr2dr

and for r < R � a0

< 1s|Vdi f f |1s > = −2e2

a30

[
R2 − R2

5
− R2

]
= 4

5

e2R2

2a30

corresponding to about 3.9 × 10−9 eV.
For a uniform distribution onto the surface the perturbation Hamiltonian isHP =

+e2/r − e2/R, for 0 ≤ r ≤ R. The first-order energy correction is

< 1s|HP |1s >= e2

πa30

∫ R

0
e− 2r

a0 [1
r

− 1

R
]4πr2dr =

= 4e2

a30

∫ R

0
[r − r2

R
]dr = 2e2R2

a30

1

3
� 6.5 × 10−9 eV

Problem 1.7 For a Hydrogenic atom in the ground state evaluate the radius R of
the sphere inside which the probability to find the electron is 0.9.
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Solution: From

∫ R

0
4πr2|φ1s |2dr = 0.9

with φ1s = √
1/π(Z/a0)3/2exp(−Zr/a0), since

∫ R

0
r2e−2Zr/a0dr = −e−2Z R/a0

[
R2a0
2Z

+ Ra20
2Z2

+ a30
4Z3

]
+ a30

4Z3

a trial and error numerical estimate yields R � 2.66a0/Z .

Problem 1.8 In the assumption that the ground state of Hydrogenic atoms is
described by an eigenfunction of the form exp(−ar2/2), derive the best approx-
imate eigenvalue by means of variational procedure.

Solution: The energy function is E(a) =< φ|H|φ > / < φ|φ >, with

H = −(�2/2m)[(d2/dr2) + (2/r)d/dr ] − (Ze2/r)

(see Eqs. (1.14) and (1.15)).
One has < φ|φ >= 4π(1/4a)

√
π/a, while

< φ|H|φ >= 4π[(3�2/16m)
√

π/a − (Ze2/2a)].

Then

E(a) = 3�2

4m
a − 2Ze2

√
a

π

From dE/da = 0 one obtains a1/2min = 4mZe2/3�2√π and Emin = −4e4Z2m/3π�
2

� 0.849EH
1s (for Z = 1).

Problem 1.9 Prove that on the average the electronic charge distribution associated
with n = 2 states in Hydrogenic atoms is spherically symmetric. Observe how this
statement holds for multi-electron atoms in the central field approximation.

Solution: The charge distribution is controlled by

1

4
|φ2,0,0|2 + 1

4
[|φ2,1,−1|2 + |φ2,1,0|2 + |φ2,1,1|2]

where the latter term (see Table1.1) is proportional to [(1/2)sin2θ + cos2θ +
(1/2)sin2θ] = 1.

In the central field approximation the statement holds, the wavefunctions being
described in their angular dependence by spherical harmonics (This is a particular
case of the Unsold theorem

∑m=+l
m=−l Y

∗
l,mYl,m = (2l + 1)/4π).
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Problem 1.10 On the basis of a perturbative approach evaluate the correction to the
ground state energy of Hydrogenic atoms when the nuclear charge is increased from
Z to (Z + 1) (

∫ ∞
0 xnexp(−ax)dx = n!/an+1).

Solution: The exact result is EZ+1 = −(e2/2a0)(Z + 1)2.
The perturbative correction reads

E (1)
per = −

∫
(φ1s

Z )∗
e2

r
(φ1s

Z )dτ = −4πe2Z3

πa30

∫
e− 2Zr

a0 rdr = −e2Z

a0

In (−e2/2a0) units the energy difference EZ+1 − EZ = 2Z + 1 and for large Z this
would practically coincide with 2Z . It is noted that the fractional correction goes as
1/Z , since E0 ∝ Z2.

1.5 Finite Nuclear Mass. Positron, Muonic
and Rydberg Atoms

To take into account the finite nuclearmassM inHydrogenic atoms one can substitute
the electron mass m with the reduced mass μ = Mm/(M + m). In fact this results
from the very beginning, namely from the classical two-bodyHamiltonian, the kinetic
energy being

T = 1

2
ω2(Ma2 + mb2) = 1

2

Mm

(M + m)
ω2r2 = 1

2
μω2r2,

namely the one for a single mass μ rotating with angular velocity ω at the distance r :

M

b 
-e

a 

m

Center of mass  

The potential energy does not change even though the nucleus ismoving and there-
fore in order to account for the effects of finite nuclear mass, one simply substitutes
m for μ in the eigenvalues and in the eigenfunctions. Then

En = −Z2 μe4

2�2

1

n2
= − e2

2a∗
0

Z2

n2
(1.23)

with a∗
0 = �

2/μe2. In particular, the wavenumbers of the spectral lines (see Prob-
lem1.4) are corrected according to
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Fig. 1.8 Sketch of |φ1s |2
for a muon in Pb (Z = 82) in
the 1s state in the assumption
of point charge nucleus
(solid line), in comparison
with the charge distribution
of the nucleus itself, of
radius around 6 Fermi
(dashed area)
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ν = Z2RH
1(

1 + m
M

)
(

1

n2f
− 1

n2i

)
(1.24)

where RH is the Rydberg constant for the Hydrogen in the assumption of infinite
nuclear mass (see Eq. (1.13)).

The Deuterium has been discovered (1932) from slightly shifted weak spectro-
scopic lines (isotopic shift), related to the correction to the eigenvalues in Eq. (1.23),
due to the different nuclear masses for H and D.

A two particle systemwhere the correction due to finite “nuclear” mass is strongly
marked is obviously the positronium i.e. the Hydrogen-like “atom” where the proton
is substituted by the positron. The reduced mass in this case is μ = m/2, implying
strong corrections to the eigenvalues and to the correspondent spectral lines (and to
other effects that we shall discuss in subsequent chapters).

In Hydrogenic atoms it is possible to substitute the electron with a negative muon.
From high energy collisions of protons on a target, two neutrons and a negative pion
are produced. The pion decays into an antineutrino and a negativemuon, of charge−e
and mass about 206.8 times the electron mass. The muon decays into an electron and
two neutrinos, with life-time τ � 2.2µs. Before the muon decays it can be trapped
by atoms in “electron-like orbits”, thus generating the so called muonic atoms.

Most of the results derived for Hydrogenic atoms can be transferred to muonic
atoms by the substitution of the electron mass with the muon mass mμ = 206.8m.
Thus the distances have to be rescaled by the same amount and the muonic atoms
are very “small”, the dimension being of the order or less than the nuclear size (see
Fig. 1.8). It is obvious that in this condition the approximation of nuclear point charge
and Coulomb potential must be abandoned.
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However, qualitatively, in muonic atoms the eigenvalues can still be obtained
from the ones in Eq. (1.13) by multiplying for 206.8. Under this approximation the
wavenumbers of the correspondent spectral lines become νμ = 206.8 νH and the
emission falls in the X-ray spectral range. The ionization potential is increased up to
several MeV.2

Somewhat opposite to the muonic atoms are the “gigantic” Rydberg atoms, in
which the electron, usually the one outside the inner shells (see the alkali atoms at
Sect. 2.1) on the average is at very large distance from the nucleus. These atoms are
found in interstellar spaces or can be produced in laboratory by irradiating atomic
beams with lasers. The Rydberg atoms are therefore similar to Hydrogen atoms
in excited states, the effective charge Zef f (Fig. 1.3) being close to unit. Typically
the quantum number n can reach several tens, hundreds in cosmic space. Since the
expectation value of the distance (Table1.4) increases with n2, the “dimension” of
the Rydberg atoms can reach 103−104 Å. In these states the life time is very long (we
shall see in Appendix 1.3 how the life time is related to the spontaneous emission of
radiation) of the order of one second instead of the typical 10−8 s for inner levels in
the Hydrogenic atoms. The eigenvalues scale with n2 (Eq. (1.13)) and become of the
order of 10−2 eV. Thus the Rydberg atoms are easily ionized and highly polarizable,
the electric polarizability increasing approximately with the seventh power of the
quantum number n (see Sect. 4.2 and Problem4.21).

Problems

Problem 1.11 In the Hydrogen atom the Hα line (see Problem1.4) has a wavelength
6562.80Å. In Deuterium the Hα line shifts to 6561.01Å. Estimate the ratio of the
proton to deuteron mass.

Solution: From Eq. (1.24), λD/λH = (1 + m/MD)/(1 + m/MH ) and then

Δλ

λH
= m(MH − MD)

MHMD(1 + m
MH

)
� m(MH − MD)

MHMD
= −1.79

6562.8
�

MH
MD

− 1

1836
,

yielding MH/MD � 0.4992, i.e. MD = 2.0032MH .

Problem 1.12 Show that in Rydberg atoms the frequency of the photon emitted
from the transition between adjacent states at large quantum numbers n is close
to the rotational frequency of the electron in the circular orbit of the Bohr atom
(particular case of the correspondence principle).

Solution From Eq. (1.24), by neglecting the reduced mass correction, the transition
frequency turns out

2It should be remarked that dramatic effects in muonic atoms involve also other quantities or
interactions, for instance the spin-orbit interaction and the hyperfine field (see Sect. 5.1).

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_5
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ν = RHc
(ni − n f )(ni + n f )

n2i n
2
f

which for ni , n f � 1 and ni − n f = 1 becomes ν � 2RHc/n3.
The Bohr rotational frequency, (see Problem1.4) by taking into account the equi-

librium condition mv2/r = e2/r2, results

νrot = mvr

2πmr2
= n�m2e4

2πmn4�4
= 2RHc

n3
.

Problem 1.13 By using scaling arguments estimate the order of magnitude of the
correction to the wavefunctions and eigenvalues in Hydrogen when the electron is
replaced by a negative muon.

Solution: Since μ−1 = (m−1
P +m−1

μ ), a0 in the wavefunction is corrected by a factor
�186. The eigenvalue depends linearly on the mass, then the energy is increased
by a factor �186. These estimates neglect any modification in the potential energy.
This is somewhat possible since Z = 1, while for heavy atoms (see Fig. 1.8) one
should take into account the modification in the potential energy (see Problem1.6).
Similar considerations hold for Protonium (i.e. the “atom” with one positive and
one negative proton), where only the states at small n are sizeably affected by the
modified nuclear potential.

Problem 1.14 By scaling arguments evaluate how the ground state energy, thewave-
length of (2p → 1s) transition and the life time of the 2p state are modified from
Hydrogen atom to Positronium (for the life time see Appendix 1.3 and neglect the
annihilation process related to the overlap of the wavefunctions in the 1s state).

Solution: The reduced mass is about half of the one in Hydrogen. Therefore the
eigenvalue for the ground state is 6.8 eV. The transition frequency is at wavelength
2430Å. For the life-time, from Appendix 1.3 one notices that the decay rate is
proportional to the third power of the energy separation and to the second power of
the dipole matrix element. The energy separation is one half while the length scale
is twice, the decay rate is 1/2. Then the life time is increased by a factor 2, namely
from 1.6 to 3.2ns. One could remark that nuclear-size effects, relevant in Hydrogen
high-resolution spectroscopy (Appendix 5.1), are absent for positronium.

Problem 1.15 In experiments with radiation in cavity interacting with atoms, colli-
mated beams of 85Rb atoms in the 63p state are driven to the 61d state. On the basis
of the classical analogy (see Problem1.12) estimate the frequency required for the
transition, the “radius” of the atom (for n = 63) and the order of magnitude of the
electric dipole matrix element.

Solution: ν � 2RHcΔn/n3 = 55.2GHz; < r >� n2a0 = 2100.4Å; dipole matrix
element (see Appendix 1.3) δ � e < r >= 1.009 × 10−14 u.e.s. cm.
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Problem 1.16 In a Rydberg atom the outer electron is in the n = 50 state. Evaluate
the electric field E required to ionize the atom (Hint: assume a potential energy of the
form V (r) = −e2/r −erEcosθ and disregard the possibility of quantum tunneling).

Solution: From dV/dr = 0 the maximum in the potential energy is found at rm =√
e/E , where V (rm) = −2e3/2

√E .
The energy of the Rydberg atom is approximately En � (−e2/2a0)(1/n2) and

equating it to V (rm) one obtains (e2/2a0)(1/n2) = 2e3/2
√E , i.e.

E = e/16a20n
4, corresponding to

E � 51 V/cm

1.6 Orbital and Spin Magnetic Moments and Spin-Orbit
Interaction

Aswe shall see in detail in Chap. 2, the spectral lines observed inmoderate resolution
(e.g. the yellow doublet resulting from the 3p ↔ 3s transition in the Na atom)
indicate that also interactions of magnetic character have to be taken into account in
dealing with the electronic structure of the atoms.

The magnetic moment associated with the orbital motion, somewhat correspond-
ing to a current, can be derived from the Hamiltonian for an electron in a static
magnetic field H along the z direction, with vector potential

A = 1

2
H × r (1.25)

and scalar potential φ = 0.
The one-electron Hamiltonian3 is

H = 1

2m
(p + e

c
A)2 + V − eφ (1.26)

yielding, to the first order in A, the operator

H = H0 − i
e�

mc
A · ∇ (1.27)

whereH0 is the Hamiltonian in the absence of magnetic or electric fields andwhere it
has been taken into account that A and ∇ are commuting operators (Lorentz gauge).
Therefore, in the light of Eq. (1.25) the Hamiltonian describing the effect of the
magnetic field is

3This form of classical Hamiltonian associated with the force F = −eE − e(v/c) × H is required
in order to have the kinetic energy expressed in terms of the generalized moment p = mv − eA/c
(see the text by Goldstein) so that, in the quantum mechanical description, p = −i�∇.

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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Hmag = −i
e�

2mc
H × r · ∇ = e

2mc
l · H. (1.28)

Compared to the classical Hamiltonian −µ · H for a magnetic moment in a field,
Hmag allows one to assign to the angular momentum l a magnetic moment operator
given by

µl = − e

2mc
�l = −μB l (1.29)

where μB = e�/2mc is called Bohr magneton, numerically 0.927 × 10−20 erg/G.
Equation1.29 can be obtained even classically in the framework of the Bohr model
for the Hydrogen atom (See Problem1.18).

Experimental evidences, such as spectral lines from atoms in magnetic field (see
Chap.4) as well the quantum electrodynamics developed by Dirac, indicate that an
intrinsic angular momentum, the spin s, has to be assigned to the electron.

By extending the eigenvalue equations for the orbital angular momentum to spin,
one writes

s2|α >= s(s + 1)�2|α >, sz|α >= �

2
|α >

s2|β >= s(s + 1)�2|β >, sz|β >= −�

2
|β > (1.30)

|α > and |β > being the spin eigenfunctions corresponding to quantum spin numbers
ms = 1/2 and ms = −1/2, respectively, while s = 1/2.

As a first consequence of the spin, in the one-electron eigenfunction (spin-orbital)
one has to include the spin variable, labeling the value of sz . When the coupling
between orbital and spin variables (the spin-orbit interaction that we shall estimate
in the following) is weak, one can factorize the function in the form

ψ(r, θ,ϕ, s) = φ(r, θ,ϕ)χspin (1.31)

where χspin is |α > or |β > depending on the value of the quantum number ms .
To express the magnetic moment associated with s without resorting to quantum

electrodynamics, one has to make an ansatz based on the experimental evidence. In
partial analogy to Eq. (1.29) we write

µs = −2μBs. (1.32)

Due to the existence of elementarymagnetic moments, an external magnetic field can
be expected to remove the degeneracy in the z-component of the angular momenta.
For instance for sz , two sublevels are generated by the magnetic field, with energy
separation ΔE = (e�/mc)H , a phenomenon that can be called magnetic splitting
(Problem 1.17).

Nowwe are going to derive theHamiltonian describing the interaction between the
orbital and the spin magnetic moments. This will be done in the semiclassical model

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Fig. 1.9 Definition of the
magnetic field H acting on
the electron due to the
relative motion of the
nucleus of charge Ze
creating an electric field at
the position r, in view of the
relativistic transformation

v 

ε

H

-e

+Ze

r nucleus 

spin 

H = (εεε x v)/c

first used by Thomas and Frenkel, assuming classical expressions for the electric and
magnetic fields acting on the electron. By referring to Fig. 1.9, the electric field at
the electron is E = (1/er)(dV/dr)r (where V is the central field energy). From
the relativistic transformation and by adding a factor 1/2 introduced by Thomas to
account for the non-inertial motion, one has

H = 1

2cer

dV

dr
r × v. (1.33)

Thus the magnetic Hamiltonian becomes

Hspin-orbit = −µs · H = 1

2m2c2r

dV

dr
(l · s) ≡ ξ(r)l · s (1.34)

which can be viewed as an effective r -dependent magnetic field along l direction,
acting on the spin magnetic moment when the electron is at the position r. It is noted
that the function ξ(r), of central character, is essentially positive and includes �

2

from l and s.
An immediate physical interpretation of the Hamiltonian in Eq. (1.34) can be

achieved by referring to Hydrogenic atoms, where

ξ(r) = Ze2�2

2m2c2r3
(1.35)

Then the energy associated with Hspin-orbit is of the order of

ESO � (Ze2/2m2c2) < r−3 > n�.(1/2)�

and from Table1.4, where < r−3 >� Z3/a30n
3l3, one has

ESO � e2�2Z4

4m2c2a30n
5

(1.36)
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displaying a strong dependence on the atomic number Z . For small Z the spin-orbit
interaction turns out of the order of the correction related to the velocity dependence
of the mass or to other relativistic terms, that have been neglected (see Problem1.38).
Typical case is the Hydrogen atom, where the relativistic corrections of Dirac and
Lamb are required in order to account for the detailed fine structure (see Appen-
dix 5.1).

From Eq. (1.36) one realizes that the effects of the spin-orbit interaction are
strongly reduced for large quantum number n, as it is conceivable in view of the
physical mechanism generating the effective magnetic field on the electron.

The energy corrections can easily be derivedwithin the assumption thatHspin-orbit

is sizeably weaker thanH0, in Eq. (1.27). Then the perturbation theory can be applied
to spin-orbital eigenfunctions, ψ(r, θ,ϕ, s) = φ(r, θ,ϕ)χspin ≡ φn,l,m,ms , the oper-
ators l̂2, ŝ2, lz, sz being diagonal for the unperturbed system. Since the energy terms
are often small in comparison to the energy separation between unperturbed states
at different quantum numbers n and l, one can evaluate the energy corrections due
toHspin-orbit within the (nl) representation:

ΔESO =
∫

R∗
nl(r)ξ(r)Rnl(r)r

2dr
∑
spin

∫
χ∗
m ′

s
Y ∗
lm ′(l · s)χmsYlmsinθdθdϕ (1.37)

that can be written in the form4

(ΔESO)m ′,m ′
s ,m,ms = ξnl < m ′m ′

s |l · s|mms >. (1.38)

The spin orbit constant

ξnl =
∫

R∗
nl(r)ξ(r)Rnl(r)r

2dr (1.39)

can be thought as a measure of the “average” magnetic field on the electron in the nl
state. This average field is again along the direction of l and acting on µs implies an
interaction of the form Hspin-orbit ∝ −he f f · µs .

To evaluate the energy corrections due to the Hamiltonian ξnl l · s instead of the
formal diagonalization one can proceed with a first step of a more general approach
(the so-called vectorial model) that we will describe in detail at Chap. 3. Let us define

j = l + s (1.40)

4It could be remarked that the φn,l,m,ms are not the proper eigenfunctions since (l · s) does not
commute with lz and sz . However, when (l · s) is replaced by the linear combination of ĵ2, l̂2 and
ŝ2 (see Eq. (1.41)) and the eigenvalues are derived on the basis of the eigenfunctions of ĵ2 and jz ,
the appropriate ΔESO are obtained.

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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as the total, single-electron, angularmomentum.For analogywith l and s, j is specified
by a quantumnumber j (integer or half-integer) and by themagnetic quantumnumber
m j taking the (2 j + 1) values from − j to + j , with the usual meaning in terms of
quantization of the modulus and of the z-component of j, respectively.

The operators l and s commute since they act on different variables, so that l · s
can be substituted by

l · s = 1

2
( ĵ2 − l̂2 − ŝ2) (1.41)

involving only the modula, with eigenvalues j ( j + 1), l(l + 1) and s(s + 1) 4.
Therefore, for l �= 0 one has the two cases, j = l + 1/2 and j = l − 1/2, that in

a vectorial picture correspond to spin parallel and antiparallel to l.
Then the energy corrections due toHspin-orbit are

ΔESO = ξnl�
2l/2,

for j = l + 1/2, and
ΔESO = −ξnl�

2(l + 1)/2

for j = (l − 1/2). Being ξnl positive the doublet sketched below is generated.

 j=(l +1/2)

 j=(l -1/2) 
degenerate in m  in the 

absence of H

l 

l s 

s 

ξ l/2

ξ (l+1)/2

h

h

spin-orbit

s

nl

nl
2

2

For s state only a shift, of relativistic origin, has to be associated with Hspin-orbit

(see Problems1.19 and 1.38).

Problems

Problem 1.17 Show that because of the spin magnetic moment, a magnetic field
removes the degeneracy in ms and two sublevels with energy separation (e�/mc)H
are induced (magnetic splitting).

Solution: From the Hamiltonian

Hmag = −µs · H = −(−2μBsz)H = e�

mc
Hsz



30 1 Atoms: General Aspects

and the sz eigenvalues ±1/2, one has

ΔE = E1/2 − E−1/2 = e�

mc
H ≡ 2μBH

with the splitting sketched below

+1/2

-1/2 

magnetic moment  µ 
parallel to H

H = 0  

H ≠ 0  

s

Numerically, for H = 1T, ΔE � 1.16 × 10−4 eV � kBT for T � 1.34 K.

Problem 1.18 For the electron in the circular orbit of the Bohr model, derive the
relationship between angular momentum and magnetic moment. By assigning to the
electron the spin magnetic moment derive the correction to the energy levels due to
spin-orbit interaction, comparing the results for n = 2 and n = 3 to the estimates in
the Thomas-Frenkel approach (Sect. 1.6).

Solution: The magnetic moment is µ = (i A/c)n̂ with current i = −eνrot (see
Problem 1.12). A is the area of the orbit of radius r and n̂ the normal. Thus µ =
−(evπr2/2πrc)n̂ ≡ −μB l.

The magnetic field turns out

H = −µ

r3
= e

2cr3
v × (−r)

Therefore the spin-orbit Hamiltonian isHspin-orbit = −µs ·H = (e2�2/2m2c2r3)l ·s.
For rn = n2a0 and Eq. (1.41) the energy correction is

ESO = e2�2

2m2c2n6a30

1

2
[ j ( j + 1) − l(l + 1) − s(s + 1)]

By using for r−3
n the expectation value

< r−3 >= 1

a30n
3l(l + 1)(l + 1

2 )

and indicating e2�2/4m2c2a30 = 3.62 × 10−4 eV with E0, one writes

ESO = E0
1

n3l(l + 1)(l + 1
2 )

[ j ( j + 1) − l(l + 1) − s(s + 1)]
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and
n = 2, l = 1, j = 1/2 ESO = −E0/12
n = 2, l = 1, j = 3/2 ESO = E0/24
n = 3, l = 1, j = 1/2 ESO = −2E0/81
n = 3, l = 1, j = 3/2 ESO = E0/81

Problem 1.19 By referring to one-electron s states try to derive the correction to
the unperturbed energy value due to Hspin-orbit , making a remark on what has to be
expected.

Solution: Hspin-orbit = ξnl(l · s) with ξnl ∝ ∫
R∗
nl(r)ξ(r)Rnl(r)r2dr .

Since Rnl(r) ∝ rl , for l = 0, ξnl diverges for r → 0, while l · s = 0.
The final result is an energy shift that cannot be derived along the procedure

neglecting relativistic effects (see Problem 1.38). A discussion of the fine and hyper-
fine structure in the Hydrogen atom, including the relativistic effects, is given in
Appendix 5.1.

Problem 1.20 Evaluate the effective magnetic field that can be associated with the
orbital motion of the optical electron in the Na atom, knowing that the transition
3p → 3s yields a doublet with two lines at wavelenghts 5889.95 and 5895.92Å.

Solution: From the difference in the wavelengths the energy separation of the 3p
levels turns out

|ΔE | = hc|Δλ|
λ2

= 2.13 × 10−3eV

ΔE can be thought to result froman effective field H = ΔE/2μB (see Problem1.17).
Thus, H = 2.13 × 10−3/2 × 5.79 × 10−5 T = 18.4T.

Problem 1.21 The ratio (magnetic moment µ/angular momentum L), often
expressed as (µ/μB)/(L/�), is called gyromagnetic ratio. Assuming that the electron
is a sphere of mass m and charge −e homogeneously distributed onto the surface,
rotating at constant angular velocity, show that the gyromagnetic ratio turns out
γ = µ/L = −5e/6mc.

Solution: m = (4π/3)ρR3 while the angular momentum is
L = ∫ 2π

0

∫ π

0

∫ R
0 ρωr4sin3θdθdϕdr = (2/5)mR2ω, ρ being the specific mass.

L

Rθ
r

m
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The surface charge density is σ = −e/4πR2 and from
μ = Ai/c = (πR4σω/c)

∫
sin3θdθ = −5eL/6mc one has γ = −5e/6mc.

Problem 1.22 Express numerically the spin-orbit constant ξnl for the 3p, 3d and
4 f states of the Hydrogen atom.

Solution: From Eq. (1.35) and the expectation values of < r−3 > (Table1.4)

ξ3p = 1.29 × 1037 erg−1s−2
�
2 = 8.94 × 10−6 eV,

ξ3d = 2.58 × 1036 erg−1s−2
�
2 = 1.79 × 10−6 eV,

ξ4 f = 3.88 × 1035 erg−1s−2
�
2 = 0.27 × 10−6 eV.

Problem 1.23 Show that when the spin-orbit interaction is taken into account the
effective magnetic moment of an electron can be written µ± = (−e/2mc)g±(l + s)

with g± = 1 ± [1/(2l + 1)].
Solution: Here g is a particular case of theLande’ g factor, to be discussed at Sect. 3.2.
± means spin parallel or antiparallel to l.

For s ‖ l

g+ = 1 + (2l + 1)(2l + 3) + 3 − 2l(2l + 2)

2(2l + 1)(2l + 3)
= 1 + 1

(2l + 1)

while for g−, s antiparallel to l

g− = 1 + (2l − 1)(2l + 1) + 3 − 2l(2l + 2)

2(2l + 1)(2l − 1)
= 1 − 1

(2l + 1)
.

1.7 Spectroscopic Notation for Multiplet States

In the light of spin-orbit interaction the one-electron states have to be labeled by
quantum numbers n, l, j and m j , with s = 1/2. Accordingly, a fine structure of the
levels is induced, in form of doublets.

As we shall see in detail in Chaps. 2 and 3, in the atom other couplings between
li and si occur. At the moment we only state that the whole electronic structure of
the atom can be described by the following quantum numbers:

L , taking possible values 0, 1, 2, 3...
S, taking possible values 0, 1/2, 1, 3/2, 2...
J , taking possible values 0, 1/2, 1, 3/2 , 2...

to be associated with
L = ∑

i li , the total angular momentum of orbital character,
S = ∑

i si , the total angular momentum of intrinsic character
and with the total (orbital and spin) angular momentum J = L + S, or to J = ∑

i ji .

http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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It is customary to use the following notation for the multiplet state of the atom
2S+1LetterJ

where Lettermeans S, P, D, F, etc. for L = 0, 1, 2, 3 etc., (2S+1) is the total number
of the fine structure levels when S < L ((2L + 1) the analogous when L < S).

The electronic configurations and the spectroscopic notations for the ground-state
of the atoms are reported in the following.
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Appendix 1.1 Electromagnetic Spectral Ranges
and Fundamental Constants

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 1x10 1x10 10 10 10 10 10 10 10 10 10 10 10

Radiowaves

Microwaves

Infrared Ultraviolet

V
isible

Hard X-rays or Gamma rays

Soft X-rays

Fundamental constants (for magnetic quantities see Appendix 4.1)
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Appendix 1.2 Perturbation Effects in Two-Level Systems

We shall refer to a model system with two eigenstates, labelled |1 > and |2 >, and
correspondent eigenfunctions φ0

1 and φ0
2 forming a complete orthonormal basis. The

model Hamiltonian is H0 and H0φ
0
m = Emφ0

m,with m = 1, 2. In real systems the
Hamiltonian H can differ from H0 owing to a small perturbation HP . Following a
rapid transient (after turning on the perturbation) the stationary states are described
by eigenfunctions that differ from the ones of the model system by a small amount,
that can be written in terms of the unperturbed basis. This is equivalent to state that
the eigenfunctions of the equation

Hφ = Eφ (A.1.2.1)

are
φ = c1φ

0
1 + c2φ

0
2 (A.1.2.2)

with c1 and c2 constants. By inserting φ in A.1.2.1 and multiplying by < φ0
1| and by

< φ0
2| in turn, in the light of the orthonormality of the states, one derives for c1,2

c1(H11 − E) + c2H12 = 0

c1H21 + c2(H22 − E) = 0

withHmn =< m|H|n >. Non-trivial solutions imply

det

(H11 − E H12

H21 H22 − E

)
= 0

and the eigenvalues turn out

E∓ = 1

2
(H11 + H22) ± 1

2

√
(H11 − H22)2 + 4H12H21 (A.1.2.3)

When the diagonal elements of HP are zero, A.1.2.3 reduces to

E∓ = 1

2
(E1 + E2) ± 1

2

√
(E1 − E2)2 + 4ε2 (A.1.2.4)

where ε2 = | < 2|HP |1 > |2,HP being Hermitian.
The perturbation effects strongly depend on the energy separationΔE = E2−E1.

For degenerate energy levels (ΔE = 0) the largest energy correction occurs, the
separation being given by 2ε. For perturbation much weaker than ΔE , Eq. (A.1.2.4)
can be expanded, to yield the second-order corrections

E∓ = E2,1 ± ε2

ΔE
(A.1.2.5)
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The corrections to the unperturbed eigenvalues as a function ofΔE are illustrated
below

ε

E

E

ε

ΔE=E -E

E

E

Energy

≈-ε /ΔE 

≈ε /ΔE

The eigenfunctions in the presence of HP can be obtained by deriving the coef-
ficients c1,2 in A.1.2.2 in correspondence to E = E+ and E = E−. For widely
separated unperturbed states one obtains

φ+ � φ0
1 − H12

ΔE
φ0
2, φ− � φ0

2 + H12

ΔE
φ0
1

while for degenerate eigenstates

φ+ = 1√
2

(
φ0
1 + H12

|H12|φ
0
2

)
, φ− = 1√

2

(
φ0
1 − H12

|H12|φ
0
2

)
(A.1.2.6)

Now we turn to the time evolution of the system, by considering two cases. The
first is the evolution of the system after a static, time-independent perturbation has
been turned on, the second (to be discussed as Appendix 1.3) when a periodic time-
dependent perturbation is applied.

To deal with the time dependence one has to refer to the complete unperturbed
eigenfunctions and to the time-dependent Schrodinger equation:

[H0 + HP(t)]ψ = i�
∂ψ

∂t
(A.1.2.7)

The eigenfunction A.1.2.2 is now written with time dependent coefficients

ψ = c1(t)ψ
0
1 + c2(t)ψ

0
2 (A.1.2.8)

with |c1|2 + |c2|2 = 1. Let us assume the initial condition c1(t = 0) = 1 and
c2(t = 0) = 0. The probability that at the time t after turning on the perturbation the
system is found in the state |2 > is given by
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P2(t) = |c2(t)|2 (A.1.2.9)

The equation for c2(t) is obtained by inserting A.1.2.8 into A.1.2.7. Recalling
that

H0ψ
0
1,2 = i�

∂ψ0
1,2

∂t

one has

HP(c1ψ
0
1 + c2ψ

0
2) = i�

(
ψ0
1
dc1
dt

+ ψ0
2
dc2
dt

)
(A.1.2.10)

By multiplying this equation by (ψ0
1)

∗, integrating over the spatial coordinates and
by taking into account that ψ0

1,2(t) = φ0
1,2exp(−i Eo

1,2t/�) one finds

c1 < 1|HP |1 > +c2 < 1|HP |2 > e−iω21t = i�
dc1
dt

(A.1.2.11)

where ω21 = (E0
2 − E0

1)/�; < 1|HP |1 >= H11 ≡ ∫
(φ0

1)
∗HPφ0

1dτ and
< 1|HP |2 >= H12 ≡ ∫

(φ0
1)

∗HPφ0
2dτ are thematrix elements of the perturbation

between the stationary states of the unperturbed system.5

In analogous way, from A.1.2.10, multiplying by (ψ0
2)

∗ one derives

c1H21e
+iω21t + c2H22 = i�

dc2
dt

(A.1.2.12)

In order to illustrate these equations for c1,2, let us refer to a perturbation which
is constant in time, with no diagonal elements. Then (HP)11 = (HP)22 = 0 and
(HP)12 = �Γ, (HP)21 = �Γ ∗. Equations (A.1.2.11) and (A.1.2.12) become

dc1
dt

= −iΓ e−iω21t c2
dc2
dt

= −iΓ ∗e+iω21t c1

By taking the derivative of the second and by using the first one, one has

d2c2
dt2

= iω21
dc2
dt

− c2Γ
2

of general solution

c2(t) = (AeiΩt + Be−iΩt )e
iω21 t
2

5In the Feynman formulation the coefficients ci =< i |ψ(t) > are the amplitudes that the system is
in state |i > at the time t and one has i�(dci/dt) = ∑

j Hi j (t)c j (t),Hi j being the elements of the
matrix Hamiltonian.
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with Ω = (1/2)
√

ω2
21 + 4Γ 2. The constants A and B are obtained from the initial

conditions already considered, yielding

c2(t) = − iΓ

Ω
sinΩte

iω21 t
2

and therefore

P2(t) = |c2(t)|2 = 4Γ 2

ω2
21 + 4Γ 2

sin2
(

√
ω2
21 + 4Γ 2)t

2
, (A.1.2.13)

known as Rabi equation. P1(t) = 1 − P2(t).
It is worthy to illustrate the Rabi equation in the case of equivalent states, so that

E0
1 = E0

2 . We shall refer to such a situation in discussing the molecular Hydrogen
ion H+

2 where an electron is shared between two protons (Sect. 8.1). Then ω21 = 0
and Eq. (A.1.2.13) becomes

P2(t) = sin2Γ t (A.1.2.14)

namely the system oscillates between the two states. After the time t = π/2Γ the
system is found in state |2 >, even though the perturbation is weak. For H+

2 one can
say that the electron is being exchanged between the two protons.

For widely separated states so that ω2
21 � 4Γ 2 Eq. (A.1.2.13) yields

P2(t) =
(
2Γ

ω21

)2

sin2
ω21t

2
(A.1.2.15)

predicting fast oscillations but very small probability to find the system in state |2 >.
Pulse resonance techniques (see Chap.6) can be thought as an application of the

Rabi formula once that the two spin states (spin up and spin down in amagnetic field)
are “forced to become degenerate” by the on-resonance irradiation at the separation
frequency (E0

2 − E0
1)/h.

In the presence of a relaxation mechanism driving the system to the low-energy
state, a term −i�γ (with γ the relaxation rate) should be included in the matrix
element H22. In this case, from the solution of the equations for the coefficients
c1,2(t) the probability P2(t) corrects Eq. (A.1.2.14) for the Rabi oscillations with a
damping effect. For strong damping the oscillator crosses to the overdamped regime:
after an initial raise P2(t) decays to zero without any oscillation (see the book by
Budker, Kimball and De Mille). Some more detail on the relaxation mechanism for
spins in a magnetic field will be given at Chap. 6.

http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_6
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Appendix 1.3 Transition Probabilities and Selection Rules

The phenomenological transition probabilities induced by electromagnetic radiation
are defined inProblem1.24,where theEinstein relations are also derived. To illustrate
themechanism underlying the effect of the radiation one has to express the absorption
probability W12 between two levels |1 > and |2 > in terms of the Hamiltonian
describing the interaction of the radiation with the system. Here this description is
carried out by resorting to the time-dependent perturbation theory.

The perturbation Hamiltonian HP(t), introduced in Appendix 1.2, is then speci-
fied in the form

HP(t) = H1e
iωt . (A.1.3.1)

In fact, from the one-electron Hamiltonian in e.m. field (see Eq. (1.26))

H = (p + eA/c)2

2m
− eϕ (A.1.3.2)

(A and ϕ vector and scalar potentials), recalling that [p · A] = −i�(∇ · A) ∝
div A = 0 in the Lorentz gauge and that A(r, t) = A0 exp[i(k · r − ωt)], the first
order perturbation Hamiltonian is

Hrad = − i�e

mc
A · ∇ (A.1.3.3)

By expanding A(r, t)

A(r, t) = A0e
−iωt [1 + i(k · r) + · · · ] (A.1.3.4)

and limiting the attention to the site-independent term (electric dipole approximation
or long-wave length approximation) one can show that6

Hrad ∝ A0 · ∇ ∝ A0 · r ∝ E0 · r
c

ω21

Therefore H1 in A.1.3.1 takes the form H1 = −er.E0, with E0 amplitude of the e.m.
field (electric dipole mechanism of transition).

Nowwe use the results obtained in Appendix 1.2, again considering that (Hrad)11
= (Hrad)22 = 0 and (Hrad)12 = (Hrad)

∗
21. The equations for the coefficients c1,2

become

6It is recalled thatE = −(1/c)∂A/∂t and that thematrix element of the∇ operator can be expressed
in terms of the one for r:

< 2|∇|1 > = −mω21 < 2|r|1 > /�.
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i�
dc1
dt

= c2e
−iω21t cosωt < 1|x|2 > eE0

i�
dc2
dt

= c1e
+iω21t cosωt < 2|x|1 > eE0 (A.1.3.5)

for a given x-component of the operator r. For Eq. (A.1.3.5) only approximate solu-
tions are possible, essentially based on the perturbation condition

HP � H0 (while they are solved exactly for ω = 0, as seen in Appendix 1.2).
For ω around ω21 one finds

|c2(t)|2 = t2

�2

sin2
(

(ω−ω21)t
2

)

(ω − ω21)2t2
| < 2|H1|1 > |2. (A.1.3.6)

|c2(t)|2 has the time dependence depicted below, with a maximum at ω = ω21

proportional to t2.

0-4π/t -2π/t 4π/t2π/t

ω-ω
21

|c
2
(t)|2

On increasing t the zeroes of the function tend to the origin while the maximum
increases with t2. Thus for t → ∞ one has |c2(t)|2 ∝ δ(ω − ω21), δ being the Dirac
delta function. By taking into account the spread of the excited state due to the finite
width (see Problem 1.24) or by resorting to the non-monocromatic character of the
radiation, one writes

|c2(t)|2 ∝ t2

�2

∫
ρ(ω)

sin2 (ω−ω21)t
2

(ω − ω21)2
t2
4

dω (A.1.3.7)

where the frequency distribution ρ(ω) of the radiation is a slowly varying function
around ω21. Then one can set ρ(ω) � ρ(ω21). The integration over ω yields 2π/t ,
and thus the transition probability per unit time becomes
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W12 = |c2(t)|2/t = 2π

�2
| < 2|H1|1 > |2δ(ω − ω21).

For linear polarization of the radiation along ε̂ this equation reads

W12 = 2π

�2
| < 2| − er · ε̂|1 > |2E2

0δ(ω − ω21) (A.1.3.8)

For random orientation of r with respect to the e.m. wave one has to average cos2θ
over θ, to obtain 1/3. By introducing the energy density ρ(ω21) or ρ(ν21) (ρ =<

E2 > /4π) one finally has

W12 = 2π

3�2
ρ(ν21)|R21|2 (A.1.3.9)

where |R21|2 = | < 2| − ex|1 > |2 + | < 2| − ey|1 > |2 + | < 2| − ez|1 > |2.
R21 represents an effectivequantumelectric dipole associatedwith a pair of states.

It can be defined R21 =< 2| − er|1 > exp(−iω21t) and thus it can be thought a
kind of electric dipole oscillating at the frequency of the transition. Since the power
irradiated by a classical dipole is
P = 2 < μ̈2 > /3c3 ∝ ω4 < μ2 >, if one writes for the spontaneous emission (see
Problem 1.24) P = A21hν21 ∝ ν3

21hν21 < |R21|2 >∝ ω4 < |R21|2 >, that heuristic
definition of R21 is justified.

The selection rules arise from the condition

R21 ≡< 2| − er|1 > �= 0.

In the central field approximation the selection rules are7

(i) each electron makes a transition independently from the others;
(ii) neglecting the spin, the electric dipole transitions are possible when Δl = ±1

andΔm = 0,±1 (according to parity arguments involving the spherical harmonics).
When the spin-orbit interaction is taken into account the selection rules are
Δ j = 0,±1 and j = 0 ↔ j = 0 transition not allowed;
Δm = 0,±1 and no transition from m = 0 ↔ m = 0, when Δ j = 0.
The magnetic dipole transitions (mechanism associated with the term (ik · r) in

A.1.3.4) are controlled by the selection rules
Δl = 0 and Δm = 0,±1

while for the transition driven by the electric quadrupole mechanism
Δl = 0,±2 and Δm = 0,±1,±2 (l = 0 ↔ l ′ = 0 forbidden)
The transition probabilities associatedwith themagnetic dipole orwith the electric

quadrupole mechanisms in the visible spectral range are smaller thanW12 in A.1.3.9
by a factor of the order of the square of the fine structure constant α = e2/�c �
1/137. Further details on the selection rules will be given at Sect. 3.5.

7To derive the selection rules remind that < Yl2,m2 |x|Yl1,m1 > = δl2,l1±1δm2,m1±1 (and similar
for y) while < Yl2,m2 |z|Yl1,m1 > = δl2,l1±1δm2,m1 .

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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Problems

Problem 1.24 Refer to an ensemble of non-interacting atoms, each with two levels
of energy E1 (ground state) and E2 (excited state). By applying the conditions of
statistical equilibrium in a black-body radiation bath, derive the relationships among
the probabilities of spontaneous emission A21, of stimulated emission W21 and of
absorption W12 (Einstein relations). Then assume that at t = 0 all the atoms are
in the ground state and derive the evolution of the statistical populations N1(t) and
N2(t) as a function of the time t at which electromagnetic radiation at the transition
frequency is turned on (non-degenerate ground and excited states).

Discuss some aspects of the Einstein relations in regards of the possiblemaser and
laser actions and about the finite width of the spectral line (natural broadening), by
comparing the result based on theHeisenberg principlewith the classical description
of emission from harmonic oscillator (Lorentz model).

Solution: From the definition of transition probabilities,

W W A

N

N

 ρB  ρB21

21 2112

12

2

1

the time dependence of the statistical populations are written

dN1

dt
= −N1W12 + N2W21 + N2A21

dN2

dt
= +N1W12 − N2W21 − N2A21

In terms of the e.m. energy density at the transition frequency one has W12 =
B12ρ(ν12), W21 = B21ρ(ν12), B12 and B21 being the absorption and emission coeffi-
cients, respectively.

One can assume that the system attains the equilibrium at a given temperature
T inside a cavity where the black-body radiation implies the energy density (see
Problem 1.25)

ρ(ν12) = 8πhν3
12

c3
1

e
hν12
kB T − 1

. a)

At equilibrium (dN1/dt) = (dN2/dt) = 0. Then

N1

N2
= W21 + A21

W12
= ρB21 + A21

ρB12
and ρ = A21/B21

(N1/N2)(B21/B12) − 1
. b)

On the other hand, in accordance to Boltzmann statistics
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N1

N2
= e

hν12
kB T c)

The three equations a,b and c are satisfied for

B21 = B12 and A21 = 8πhν3
12

c3
B21

These Einstein relations, derived in equilibrium condition are assumed to hold also
out of equilibrium.

For levels 1 and 2 with statistical weights g1 and g2 respectively, N1/N2 = g1
g2
e

hν12
kB T

and from the equilibrium condition

A21 = 8πhν3
12

c3
g1

g2
B12 and A21 = 8πhν3

12

c3
B21

so that g1B12 = g2B21.
Now the system in the presence of radiation at the transition frequency (with

initial condition N1(t = 0) = N and N2(t = 0) = 0) is considered. Since

dN1

dt
= −N1W12 + N2W21 + N2A21 ≡ −N1W + N2(W + A) =

= −N1(2W + A) + N (W + A)

one derives

N1(t) = N

2W + A
(A + W + We−(2W+A)t )

plotted below:

N(t=0) ≡ N

N (t) 

t 

N(W+A)/(2W+A) 

for t → ∞ N / N  = (W+A)/W

1

1 2

For A � W ≡ W12 = W21 the saturation condition N1 = N2 = N/2 is
achieved. It is noted that for A � W , by means of selective irradiation at the transi-
tion frequency the equilibrium condition implies a statistical temperature (describing
N1/N2) different from the one of the thermostat. For N1 < N2 the statistical temper-
ature would be negative (further discussion of these concepts is given at Chap. 6).

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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The condition of negative temperature (or population inversion) is a pre-condition
for having radiation amplification in masers or in lasers. In the latter the spontaneous
emission (i.e. A) acts as a disturbance, the correspondent “signal” being unrelated
to an input.

Since A21 ∝ ν3
12 the spontaneous emission can be negligible with respect to the

stimulated emission B12ρ(ν12) in the Microwave (MW) or in the Radiofrequency
(RF) ranges, while it is usually rather strong in the visible range.

For the finite linewidth of a transition line the following is remarked. According to
the uncertainty principle, because of the finite life-time τ of the excited state, of the
order of A−1, the uncertainty in the energy E2 is ΔE � A� and then the linewidth
is at least Δν12 � τ−1. In the classical Lorentz description, the electromagnetic
emission is related to a charge (the electron) in harmonic oscillation, with damping
(radiation damping). The one-dimensional equation of motion of the charge can be
written

m
d2x

dt2
+ 2Γm

dx

dt
+ mω2

0x = 0

with solution x(t) = x0 exp(−Γ t)exp(−iω0t) (for Γ � ω0). The Fourier trans-
form is FT [x(t)] = 2x0/[Γ − i(ω − ω0)] implying an intensity of the emitted
radiation proportional to

I (ω, Γ ) ∝ |FT [x(t)]|2 ∝ Γ

Γ 2 + (ω − ω0)2

namely a Lorenztian curve centered at ω0 and of width Γ .
One can identify Γ with τ−1 ∼ A and a certain equivalence of the classical

description with the semi-classical theory of radiation is thus established.

Problem 1.25 (The black-body radiation).
Black-body radiation is the one present in a cavity of a body (e.g. a hot metal)

brought to a given temperature T . It is related to the emission of e.m. energy over a
wide frequency range.

The energy density u(ν, T ) per unit frequency range around ν can be measured
from the radiation ρS(ν, T ) coming out from a small hole of area S (the black-body),
per unit time and unit area. Prove that ρS(ν, T ) = u(ν, T )c/4.

The electromagnetic field inside the cavity can be considered as a set of harmonic
oscillators (the modes of the radiation). From the Planck’s estimate of the thermal
statistical energy, prove that the average number < n > describing the degree of
excitation of one oscillator is

< n > = 1/[exp(hν/kBT ) − 1].

Then derive the number of modes D(ω)dω in the frequency range dω around ω.
(Note that D(ω) does not depend on the shape of the cavity).
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By considering the photons as bosonic particles derive the Planck distribution
function, the Wien law, the total energy in the cavity and the number of photons per
unit volume.

Then consider the radiation as a thermodynamical system, imagine an expansion at
constant energy and derive the exponent γ in the adiabatic transformation T V γ−1 =
const . Evaluate how the entropy changes during the expansion.

Finally consider the e.m. radiation in the universe. During the expansion of the
universe by a factor f each frequency is reduced by the factor f 1/3. Show that
the Planck distribution function is retained along the expansion and derive the
f -dependence of the temperature.

Solution:

C

A

B

c

Cavity

θ

d’Ω dS

V=ABC

ϕ

The energy emitted in dΩ from the element dS is

ρSdSdν = u(ν, T )c cosθdν
dΩ

4π
dS

Then

ρS(ν, T ) = u(ν, T )c

4π

∫ 2π

0
dϕ

∫ π/2

0
cosθsinθdθ = u(ν, T )c

4π

2π

2
= u(ν, T )c

4

In the Planck estimate the average energy per oscillator instead of being < ε >

= kBT (as from the equipartition principle in the Maxwell-Boltzmann statistics) is
evaluated according to

< ε >=
∑∞

n=0 nε0e
− nε0

kB T

∑∞
n=0 e

− nε0
kB T

where ε0 = hν is the quantum grain of energy for the oscillator at frequency ν. By
defining x = exp(−ε0/kBT ) one writes
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< ε >= ε0

∑∞
n=0 nxn∑∞
n=0 xn

and since
∑∞

n=0 xn = 1/(1 − x) for x < 1, while
∑∞

n=0 nxn = xd(
∑∞

n=0 xn)/dx,
one obtains

< ε >= hν < n >, with < n >= 1

e
hν
kB T − 1

It is noted that for kBT � hν, < n >→ kBT/hν and < ε >→ kBT , the
classical result for the average statistical energy of one-dimensional oscillator, i.e.
for one of the modes of the e.m. field.

The number of modes having angular frequency between ω and ω + dω is con-
veniently evaluated by referring to the wavevector space and considering kx =
(π/A)nx, ky = (π/B)ny and kz = (π/C)nz (see the sketch of the cavity). Since
the e.m. waves must be zero at the boundaries, one must have an integer number of
half-waves along A, B andC , i.e. nx,y,z = 1, 2, 3...By considering n as a continuous
variable one has dnx = (A/π)dkx and analogous expressions for the y and z direc-
tions. The number of k modes verifying the boundary conditions per unit volume of
the reciprocal space, turns out

dnxdnydnz

dkxdkydkz
≡ D(k) = ABC

8π3
= V

8π3
.

D(k) is the density of k-modes or density of k-states.8

For photons the dispersion relation is ω = ck and the number of modes D(ω) in
dω can be estimated from the volume dk in the reciprocal space in between the two
surfaces at constant frequency ω and ω + dω:

k

k

k

k

k+dk

x

y

z

8This conceptwill be used for the electronic states and for the vibrational states in crystals, Chaps. 12
and 14. It is noted that the factor 8 is due to the fact that in this method of counting only positive
components of thewave vectors have to be considered. For runningwaves, in theBorn-VonKarmann
periodical conditions (Sect. 12.4), the same number of excitations in the reciprocal space is obtained.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Then

D(ω)dω = 2D(k)dk = 2
V

8π3
4πk2dk = V

π2c3
ω2dω

and

D(ω) = V

π2c3
ω2 or D(ν) = 8πV

c3
ν2,

the factor 2 being introduced to take into account the polarization states.
Photons are bosonic particles and therefore, by referring to the Bose-Einstein

statistical distribution function

fBE = 1/[exp(hν/kBT ) − 1]

one derives the Planck distribution function ρ(ν) (energy per unit volume in the unit
frequency range) as follows. The energy related to the number of photons dnν within
dν around the frequency ν is

dE(ν) = hνdnν and dnν = fBE D(ν)dν = 8πV ν2

c3
dν

e
hν
kB T − 1

By definition ρ(ν)dν = dE(ν)/V and then

ρ(ν) = 8πhν3

c3
1

e
hν
kB T − 1

The Wien law can be obtained by looking for the maximum in ρ(ν): dρ/dν = 0
for hνmax/kBT � 2.8214, corresponding to νmax � T × 5.88 × 1010 Hz (for T in
Kelvin). It can be remarked that λmax = hc/5kBT = (0.2898/T )cm is different
from c/νmax.

The total energy per unit volume U (T ) is obtained by integrating over the fre-
quency and taking into account the number of modes in dν and the average energy
per mode hν < n >:

U (T ) = 1

V

∫
dν

D(ν)hν

e
hν
kB T − 1

= 3!ζ(4)
k4BT

4

π2c3�3

where ζ is the Riemann zeta function, yielding U (T ) = σT 4, with
σ = 7.566 × 10−15 erg · cm−3 K−4, corresponding to the total emittance (Stefan-
Boltzmann law) with the constant 5.6 × 10−12W/cm2 K4.

The density of photons is obtaineijd by omitting inU (T ) the one-photon energy:
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ntot (T ) = 1

V

∫
dν

D(ν)

e
hν
kB T − 1

= 2ζ(3)
k3BT

3

π2c3�3
= 20.29 × T 3 cm−3

To derive the coefficient γ for expansionwithout exchange of energy, the radiation
in the cavity is considered as a thermodynamical system of volume V = ABC and
temperature T (the temperature entering the energy distribution function). From
VU (T ) = σT 4V = const , one has 4VdT = −TdV , i.e. T V 1/4 = const and
therefore γ = 5/4.

During the expansion, since N = ntot V ∝ T 3V , while T V 1/4 = const , if the
volume is increased by a factor f one has

T f inal = Tinitial

(
Vinitial

Vinitial f

) 1
4

= Tinitial f
− 1

4

and the number of photons becomes

N f inal = Ninitial f

(
T f inal

Tinitial

)3

= Ninitial f
1
4

To evaluate the entropy the equation of state is required. The pressure of the
radiation is obtained by considering the transfer of moment of the photons when
they hit the surface and the well-known result P = U/3 is derived. For the entropy

dS = 1

T
d(UV ) + PdV

T
= V

T

dU

dT
dT + 4U

3T
dV

and since it has to be an exact differential dU/dT = 4U/T . Thus PV = Utot/3,
where Utot = UV and then

dS = 4U

3T
dV + V

T
4σT 3dT

From the condition of exact differential S = 4Utot/3T . The decrease of T yields an
increase of the entropy because the number of photons increases. It is noted that for
T → 0, S, P and U tend to zero.

For transformation at constant entropy, assumed reversible, one would have dS =
0 and then

4σT 3

3
dV + 4σVT 2dT = 0,

so that T V 1/3 = const.

In the expansion of the universe by a factor f the cosmological principle (each
galaxy is moving with respect to any other by a velocity proportional to the distance)
implies that each frequency νi is shifted to ν f = νi/ f 1/3. As a consequence of the
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expansion the energy density du(νi , Ti ) in a given frequency range dνi is decreased
by a factor f because of the increase in the volume and by a factor f 1/3 because of
the energy shift for each photon. Then

du f = dui

f f
1
3

= 8πhν3
i

c3
dνi

e
hνi
kB T − 1

1

f
4
3

which can be rewritten in terms of the new frequency ν f = νi/ f 1/3

du f = 8πhν3
f

c3
dν f

e
hν f f 1/3

kB T − 1
,

namely the sameexistingbefore the expansion,with the temperature scaled toT/ f 1/3.
Since Utot = UV ∝ T 4V the entropy of the universe is constant during the expan-
sion, while the energy decreases by a factor f 1/3. The number of photons is constant.

In thefigure thePlanck distribution function (solid line) for the cosmic background
radiation, resulting from a series of experimental detections, is evidenced.

Problem 1.26 Derive the life-time of the Hydrogen atom in the 2p state and the
natural broadening of the line resulting from the transition to the ground state.
By neglecting relativistic effects (see Problem 1.38 and Appendix 5.1) evaluate the
energy split due to the spin-orbit interaction (Sect. 1.6) and the effective field of
orbital origin acting on the electron in the 2p state.

Solution: The life time (Problem1.24) is τ = 1/A2p→1s , with A2p→1s the sponta-
neous emission transition probability. Then

A2p→1s = 32π3ν3

3c3�

1

3

∑
α

| < φ2pα| − er|φ1s > |2 (α ≡ 0,±1)
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From the evaluations of the matrix elements of the electric dipole components
(See Table1.3) one obtains

A2p→1s =
(
2

3

)8 e8

c3a0�4
= 6.27 × 108 s−1,

or τ = 1.6 × 10−9 s.
Then the natural line-width can be written Δν = (2.54 × 10−7/2π)ν2p→1s .
The energy split due to the spin-orbit interaction is ΔE = (3/2)ξ2p, with

ξ2p = e2�2/(2m2c2a30 × 24), so that ΔE = 4.53 × 10−5 eV and therefore
H = (ΔE/2μB) � 4k Gauss (see also Problems 2.2 and 1.20).

Problem 1.27 Show that the stimulated emission probability W21 due to thermal
radiation is equivalent to the spontaneous emission probability A21 times the average
number of photons (Problem1.24).

Solution: From < n >= 1/[exp(hν/kBT ) − 1], while

ρ(ν) = (8πhν3/c3)/[exp(hν/kBT ) − 1]

(Problem 1.25), and from the Einstein relation B21ρ(ν) = A21 < n >.

Problem 1.28 By considering the sun as a source of black-body radiation at the
temperature T � 6000 K, evaluate the total power emitted in a bandwidth of 1MHz
around the wavelength 3cm (the diameter of the sun crown can be taken 2R =
106 km).

Solution: For λ = 3 cm the condition hν � kBT is verified. To each e.m. mode one
can attribute an average energy < ε >= kBT . The density of modes is (8π/c3)ν2

and thus the energy in the bandwidth Δν is Δu = (8π/c3)ν2ΔνkBT . The power
emitted per unit surface is ρS = uc/4 (see Problem1.25) and therefore

ΔP = 8π

c3
ν2ΔνkBT

c

4
4πR2 � 1.8 × 109 W.

Problem 1.29 The energy flow from the sun arriving perpendicularly to the earth
surface (neglecting atmospheric absorption) is Φ = 0.14W/cm2. The distance from
the earth to the sun is about 480 second-light. In the assumption that the sun can be
considered as a black-body emitter, derive the temperature of the external crown.

Solution: The flow scales with the square of the distances. Thus the power emitted
per unit surface from the sun can be written Φtot = (d/R)2Φ (d average distance,
R radius of the sun). Then Φtot = 8 × 103W/cm2 and since (Problem 1.25) Φ =
σcT 4/4 = (5.67 × 10−12 × T 4)W/cm2, one obtains TSun � 6129K.

Problem 1.30 Because of the thermal motions of the atoms the emission line from
a lamp usually has a Gaussian shape. By referring to the yellow line at about 5800Å

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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by Sodium atom, neglecting the life-time broadening and assuming the Maxwellian
distribution of the velocities, prove that statement. Estimate the order of magnitude
of the broadening, for a temperature of the lamp of 500K.

Show that the shift due to the recoil of the atom upon photon emission is negligible
in comparison to the motional broadening. Comment on the possibility of resonance
absorption by atoms in the ground state. At which wavelength one could expect that
the resonance absorption would hardly be achieved?

Solution: Along the direction x of the motion the Doppler shift is

λ = λ0

(
1 ± vx

c

)

The number of atoms dn(vx) moving with velocity between vx and vx + dvx is

dn(vx) = N

√
M

2πkBT
e− Mv2x

2kB T dvx,

N the number of atoms, with mass M (see Problem1.34). The atoms emitting in the
range dλ around λ then are

dn(λ) = N

√
Mc2

2πλ2
0kBT

e
− Mc2(λ−λ0)2

2kB Tλ20 dλ

The intensity I (λ) in the emission spectrum is proportional to dn(λ)

I (λ) ∝
√

1

πδ2
e− (λ−λ0)2

δ2

with δ = √
2kBT/M(λ0/c).

Numerically, for the Na yellow line one has a broadening of about 1000MHz, in
wave-numbers, 1/δ � 0.034 cm−1.

The photon momentum being hν/c, the recoil energy is ER = (hν/c)2/2M �
9 × 10−11 eV and the resonance absorption is not prevented. For wavelength in the
range of the γ-rays the recoil energy would be larger than the Doppler broadening
and without the Mossbauer effect (see Sect. 14.6) the resonance absorption would
hardly be possible.

Problem 1.31 X-ray emission can be obtained by removing an electron from inner
states of atoms, with the subsequent transition of another electron from higher energy
states to fill the vacancy. The X-Ray frequencies vary smoothly from element to
element, increasing with the atomic number Z (see plot in Fig. 1.10). Qualitatively
justify the Moseley law λ−1 ∝ (Z − σ)2 (σ screening constant):

http://dx.doi.org/10.1007/978-3-319-17897-4_14
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Fig. 1.10 Wavelength of the
Kα line as a function of the
atomic number

α

λ

Solution: From the one-electron eigenvalues in central field with effective nuclear
charge (Z − σ) (σ reflecting the screening from other electrons, see Sects. 2.1 and
2.2), transitions between ni and n f imply the emission of a photon at energy

hνi→ f = RHhc(Z − σ)2

(
1

n2f
− 1

n2i

)

The K -lines are attributed to the transitions to the final state n f = 1. The Kα line
corresponds to the longest wavelength (ni = 2).

Problem 1.32 Estimate the order of magnitude of the voltage in an X-ray genera-
tor with Fe anode yielding the emission of the Kα line and the wavelength of the
correspondent photon.

Solution: The energy of the K term is EK � 13.6(Z − σK )2(3/4)eV. For σK � 2
one would obtain for the voltage V � 5800Volts. The wavelength of the Kα line
turns out around 1.8Å.

Problem 1.33 An electron is inside a sphere of radius Rs = 1Å, with zero angular
momentum. From the Schrödinger equation for the radial part of the wavefunction
derive the lowest eigenvalue En=1 and the quantum pressure P = −dEn=1/dV .

Solution: The equation for r R(r) reads

− �
2

2m

d2

dr2
(r R) = E(r R)

(see Eq. (1.14)). From the boundary condition R(Rs) = 0 one has R ∝ [sin(kr)]/kr ,
with kn Rs = nπ for n = 1, 2, 3.... Then

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2
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En=1 = �
2k2n=1

2m
= π2

�
2

2mR2
s

and

P = π�
2

4mR5
s

For R = 1Å one has P = 9.6× 1012 dyne/cm2. Compare this value with the one of
the Fermi gas in a metal (Sect. 12.7).

Problem 1.34 From the Boltzmann distribution of the molecular velocities in ideal
gas, show that the number of molecules nc that hit the unit surface of the container
per second is given by n < v > /4 (n number of molecules per cm3) with < v > the
average velocity. Then numerically estimate nc for molecular Hydrogen at ambient
temperature and pressure (see Problem 1.30).

Solution: From the statistical distribution of the velocities the number of molecules
moving along a given direction x with velocity between vx and vx + dvx is

dn(vx) = n

(
M

2πkBT

)1/2

e−Mv2x/2kBT dvx

The molecules colliding against the unit surface in a second are

nc =
∫ ∞

0
vxdn(vx) = n

(
M

2πkBT

)1/2(
−kBT

M

) [
e−Mv2x/2kBT

]∞

0

= n

(
kBT

2πM

)1/2

The average velocity is

< v > = 1

n

∫ ∞

0
vdn(v) = 1

n

∫ ∞

0
v

[
4πn

(
M

2πkBT

)3/2

v2e−Mv2/2kBT

]
dv =

=
(
8kBT

πM

)1/2

= 4nc
n

Numerically, for molecular Hydrogen H2, nc � 1.22 × 1024 molecules/(s · cm2).

Problem 1.35 Hydrogen atoms in the ground-state are irradiated at the resonance
frequency (En=2 − En=1)/h, with e.m. radiation having the following polarization:
(a) linear; (b) circular; (c) unpolarized.

By considering only electric dipole transitions, discuss the polarization of the
fluorescent radiation emitted when the atoms return to the ground-state.

Solution: (a) The only possible transition is to the 2pz state, with z the polarization
axis (Δm = 0). No radiation is re-emitted along z while it is emitted in the xy plane,
with polarization of the electric field along z.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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(b) Only transitions to 2p±1 state are possible (Δm = ±1). The fluorescent
radiation when observed along the z direction is circularly polarized. By turning
the observation axis from the z axis to the xy plane, the fluorescent radiation will
progressively turn to the elliptical polarization, then to linearly polarized when the
observation axis is in the xy plane.

(c) Any transition 1s → 2p±1,0 is possible, with uniform distribution over all the
solid angle. The atom will be brought in the superposition state and the fluorescent
radiation will have randomwave-vector orientation and no defined polarization state.

Problem 1.36 An electron is moving along the x-axis under a potential energy
V (x) = (1/2)kx2, with k = 5 × 104 dyne/cm. From the Sommerfield quantization
(see Problem1.4) obtain the amplitudes A of themotion in the lowest quantum states.

Solution: From x(t) = A sin[(√k/m)t + ϕ] the quantum condition in terms of the
period T = 2π

√
m/k reads

∮
mẋdx =

∫ T

0
mẋẋdt = A2k

∫ T

0
cos2

(√
k

m
t − ϕ

)
dt = A2k

T

2
= nh

Thus A0 = 0 (the zero-point energy is not considered here),
A1 = 1.47 × 10−8 cm, A2 = 2.07 × 10−8 cm.

Problem 1.37 The emission of radiation from intergalactic Hydrogen occurs at a
wavelength λ′ = 21cm (see Sect. 5.2). The galaxy, that can be idealized as a rigid
disc with homogeneous distribution of Hydrogen, is rotating. Estimate the Doppler
broadening Δνrot of the radiation, assuming a period of rotation of 108 years and
radius of the galaxy R = 10 kps � 3 × 1018 cm. Prove that Δνrot is much larger
than the broadening ΔνT due to the thermal motion of the Hydrogen gas (assumed
at a temperature T = 100K) and larger than the shift due to the drift motion of the
galaxy itself (at a speed of approximately vd = 107 cm/s).

Solution: The Doppler shift at large distance along the y direction is

ν(r, θ) � ν0

(
1 + ν

c
cosθ

)

with νo = λ′/c. The mean-square average frequency is

http://dx.doi.org/10.1007/978-3-319-17897-4_5
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ν̄2 = 1

πR2

∫ R

0
rdr

∫ 2π

0
ν2(r, θ)dθ = ν2

0 + ω2ν2
0

cπR2

∫ R

0
r3dr

∫ 2π

0
cos2θdθ

= ν2
0

(
1 + ω2R2

4c2

)

Therefore

Δνrot = ν0
ωR

2c
= ν0

πR

cT
� ν0 · 10−3

From Problem1.30 one deduces the order of magnitude of the thermal broadening:

ΔνT = ν0

λ′ Δλ = ν0

λ′

√
2kBT

mH

λ′

c
= ν0

c

√
2kBT

mH
� ν0(4 × 10−6)

For the drift associated with the linear motion of the galaxy one can approximately
estimate the frequency shift of the order of Δνd = (νd/c)ν0 � 3.3 × 10−4ν0.

Problem 1.38 In a description of the relativistic effects more detailed than the
Thomas-Frenkel model (Sect. 1.6) to derive the one-electron spin-orbit Hamiltonian,
the Darwin term

HD = π�
2

2m2c2
Ze2δ(r) ≡ πα2 Ze

2

2a0
a30δ(r)

(with α = e2/�c = 1/137.036 the fine structure constant) is found to be present.
Discuss the effects of HD in Hydrogenic atoms, numerically comparing the cor-

rections to the eigenvalues with the ones due to the spin-orbit Hamiltonian ξnl l · s.

Solution: From

< φnl |HD|φnl >≡ D
∫

φ∗
nl(r)δ(r)φnl(r)dr = D|φnl(0)|2,

with D = πα2Ze2a20/2, one sees that no effects due to HD are present for non-s
states (within the approximation of nuclear point-charge).

The shift for s states can be written (see Table1.3)

ΔED = Z2α2

n

(
e2Z2

2a0n2

)
≡ − Z2α2

n
E0
n

with E0
n = −Z2e2/2a0n2 the unperturbed eigenvalues.

From
ξnl = (Ze2/2m2c2) < r−3 >nlm

and < r−3 >nlm = Z3/[a30n3l(l + 1/2)(l + 1)] (see Table1.4), (l �= 0)
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ΔESO = Z2α2(−E0
n)

2nl(l + 1
2 )(l + 1)

[ j ( j + 1) − l(l + 1) − 3/4].

The relativistic kinetic energy is c(p2+m2c2)1/2−mc2 = (p2/2m)−(p4/8m3c2)
+ ... Then the energy correction reads

ΔEkin = < nl j | − p4/8m3c2|nl j > = − 1

2mc2
< nl j |( p2

2m
)2|nl j >=

= − 1

2mc2
< nl j |(H0 + e2/r)2|nl j >

and from the expectation value of < r−2 > (see Table1.4) one obtains

ΔEkin = −E0
n

Z2α2

n2

[
3

4
− n

l + 1
2

]
.

From ΔED + ΔESO + ΔEkin the eigenvalues of the Dirac theory,

E f s
n, j = −E0

n

Z2α2

n2

[
3

4
− n

j + 1
2

]

are obtained (see Appendix 5.1).
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Chapter 2
Typical Atoms

Topics

Effects on the Outer Electron from the Inner Core
Helium Atom and the Electron-Electron Interaction
Exchange Interaction
Pauli Principle and Antisymmetry
Slater Determinantal Eigenfunctions

2.1 Alkali Atoms

Li, Na, K, Rb, Cs and Fr are a particular group of atoms characterized by one electron
(often called optical being the one involved in optical spectra) with expectation
value of the distance from the nucleus < r > considerably larger than the one of
the remaining (N − 1) electrons, forming the internal “core”. The alkali atoms are
suited for analyzing the role of the core charge in modifying the Coulomb potential
(−Ze2/r) pertaining to Hydrogenic atoms (Sect. 1.4), as well as to illustrate the
effect of the spin-orbit interaction (Sect. 1.6).

From spectroscopy one deduces the diagram of the energy levels for Li atom
reported in Fig. 2.1, in comparison to the one for Hydrogen.

In Fig. 2.2 the analogous level scheme for Na atom is shown, with the main
electric-dipole transitions yielding the emission spectrum.

The quantum numbers for the energy levels in Fig. 2.1 are the ones pertaining to
the outer electron. At first we shall neglect the fine structure related to the spin-orbit
interaction, which causes the splitting in doublets of the states at l �= 0, as indicated
for Na in Fig. 2.2.

A summarizing collection of the energy levels for alkali atoms is reported in
Fig. 2.3. It should be remarked that because of the different extent of penetration in

© Springer International Publishing Switzerland 2015
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Fig. 2.1 Energy level diagram (Grotrian diagram) of Li atom, in term of the quantum numbers nl of
the optical electron and comparison with the correspondent levels (n > 1) for H atom. The quantum
defect δ (or Rydberg defect) indicated for 2s and 3s states, is a measure of the additional (negative)
energy of the state in comparison to the correspondent state in Hydrogen. The wavelengths (in Å)
for some transitions are reported

the core (as explained in the following) an inversion of the order of the energy levels
in terms of the quantum number n (namely |En| > |En−1|) can occur.

From the Grotrian diagrams one deduces the following:

(i) the sequence of the energy levels is similar to the one for H, with more bound
and no more l-degenerate states;

(ii) the quantum defect δ for a given n-state (see Fig. 2.1) increases on decreasing
the quantum number l;

(iii) the ground state for Li is 2s (3s for Na, etc.), with L = l (and not the 1s state);
(iv) the transitions yielding the spectral lines obey the selection rule Δl = ±1.

These remarkable differences with respect to Hydrogen are related to an effective
charge Zef f (r) for the optical electron (see Sect. 1.2) different from unit over a
sizeable range of distance r from the nucleus.

In order to give a simple description of these effects we shall assume an ad hoc
effective charge, of the form Zef f = (1+b/r), depicted in Fig. 2.4. The characteristic
length b depends from the particular atom, it can be assumed constant over a large
range of distance while for r → 0 it must be such that Zef f (r) → Z .

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Fig. 2.2 Energy levels for Na atom with the electric dipole transitions (Δl = ±1) generating some
spectral lines and correspondent wavelengths (in Å). The doublets related to spin-orbit interaction
and resulting in states at different j ≡ J , are indicated (not in scale). The yellow emission line
(a doublet) is due to the transition from the 2P3/2 and 2P1/2 states to the ground state 2S1/2 with
the optical electron in the 3s state

As a consequence of that choice for Zef f (r) the radial part of the Schrodinger
equation for the optical electron takes a form strictly similar to the one in Hydrogen
(see Sect. 1.4):

−�
2

2mr2

d

dr
r2 dR

dr
+

[
l(l + 1)�2 − 2me2b

2mr2
− e2

r

]
R = ER. (2.1)

It is remarked that for b = 0 the eigenvalues associated with Eq. (2.1) are En =
−RHhc/n2 (Eq. (1.13), for Z = 1).

If an effective quantum number l∗ such that

l∗(l∗ + 1) = l(l + 1) − 2me2b

�2
≡ l(l + 1) − 2b

a0

is introduced, then in the light of the formal treatment for Hydrogen, from Eq. (2.1)
one derives the eigenvalues

En = − RHhc

(n∗)2
, (2.2)

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Fig. 2.3 Energy levels (neglecting the fine structure) for some alkali atoms, again compared with
the states for Hydrogen at n > 1. The 4s state is more bound than the 3d state (see arrows), typical
inversion of the order of the energies due to the extent of penetration of the s-electrons in the core,
where the screening is not fully effective (see text and Fig. 2.6)
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Fig. 2.4 Sketchy behavior of a plausible effective charge for the optical electron in Li atom. The
dashed part of the Figure (not in scale) corresponds to the region of r not taken into account in
the derivation of the energy levels. For Na, K, etc. atoms Zef f (r → 0) → Z . A similar form of
effective charge experimented by one electron because of the partial screening of the nuclear charge
by the second electron is derived in Problem 2.7 for He atom

with n∗ not integer. To evidence in these energy levels the numbers n and l pertaining
to Hydrogen atom, we write n∗ = n − δl, with δl = l − l∗, thus obtaining

En,l = − RHhc

(n − δl)2
.
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Fig. 2.5 Radial probability of presence for 2s and 2p electrons in Hydrogen and sketchy behavior
of the effective charge for Li (see Fig. 2.4)

By neglecting the term in δl2

En,l = − RHhc

(n − 2b/[a0(2l + 1)])2
≡ − RHhc

(n − δn,l)2
. (2.3)

The eigenvalues are l-dependent, through a term that is atom-dependent (via b)
and that decreases on increasing l, in agreement with the phenomenological findings.

The physical interpretation of the result described by Eq. (2.3) involves the amount
of penetration of the optical electron within the core. In Fig. 2.5 it is shown that for
r ≤ a0 the electron described by the 2s orbital has a radial probability of presence
sizeably larger than the one for the 2p electron. This implies a reduced screening of
the nuclear charge and then more bound state.

As a general rule one can state that the penetration within the core increases on
decreasing l. In Fig. 2.6 it is shown how it is possible to have a more penetrating
state for n = 4 rather than for n = 3, in spite of the fact that on the average the 3d
electron is closer to the nucleus than the 4s electron. This effect is responsible of the
inversion of the energy levels, with |E4s | > |E3d |, as already mentioned.

At the sake of illustration we give some quantum defects δn,l to be included in
Eq. (2.3), for Na atom:

δ3s = 1.373 δ3p = 0.883 δ3d = 0.01
δ4s = 1.357 δ4p = 0.867 δ4d = 0.011
. . . . . . δ4 f � 0
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These values for the quantum defects can be evaluated from the energy levels
reported in Fig. 2.2 (see also Problem 2.1).

Finally a comment on the selection rule Δl = ±1 is in order. This rule is consistent
with the statement that each electron makes the transition independently from the
others, with the one-electron selection rule given in Appendix 1.3. In fact, the total
wavefunction for the alkali atom, within the central field approximation, can be
written

φ(r1, r2, ..., rN ) = φcoreφoptical .

The electric dipole matrix element associated to a given 1 ↔ 2 transition becomes

R1↔2 = −e
∫

(φ(2)
core)

∗(r1, r2, ...)(φ
(2)(rn))∗[r1 + r2 + · · · rn + · · · + rN ]

×φ(1)
core(r1, r2, ...)φ

(1)(rn)dτ1dτ2...dτN

Because of the orthogonality conditions the above integral is different from zero
in correspondence to a given term involving rn only when φ(2)

core = φ(1)
core, while

∫
(φ(2)(rn))∗[rn]φ(1)(rn)dτn

yields the selection rule (Δl)n = ±1 and (Δm)n = 0,±1.

Fig. 2.6 Radial probability
of presence for 3d and 4s
electrons in Hydrogen. From
the dashed area it is noted
how the bumps in P(r) for
r ≤ 2a0 grant the presence of
the 4s electron in the vicinity
of the nucleus larger than the
one pertaining to the 3d state
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Now we take into account the doublet structure of each of the states at l �= 0 (see
the illustrative diagram in Fig. 2.2). The doublets result from spin-orbit interaction,
as discussed at Sect. 1.6. The splitting of the np states of the optical electron turns out

Li Na K Rb Cs
2p 3p 4p 5p 6p
0.337 17.2 57.7 238 554 cm−1

0.042 2.1 7.2 29.5 68.7 meV

supporting the energy corrections derived in terms of the spin-orbit constant ξnl
(see for instance Problem 2.2). It can be observed that because of the selection rule
Δ j = 0,±1 (0 ↔ 0 forbidden) (see Appendix 1.3) the spectral lines involving
transitions between two non-S states in alkali atoms can display a fine structure in
the form of three components (compound doublets).

Problems

Problem 2.1 The empirical values of the quantum defects δn,l (see Eq. (2.3)) for the
optical electron in the Na atom are

Term n = 3 n = 4 n = 5 n = 6
l = 0 s 1.373 1.357 1.352 1.349
l = 1 p 0.883 0.867 0.862 0.859
l = 2 d 0.010 0.011 0.013 0.011
l = 3 f – 0.000 −0.001 −0.008

By neglecting the spin-orbit fine structure, write the wavenumbers of the main
spectral series (see Fig. 2.2).

Solution: The spectral series are
principal (transitions from p to s terms), at wave numbers

ν̄p = RH

[
1

[n0 − δ(n0, 0)]2
− 1

[n − δ(n, 1)]2

]
, n ≥ n0, n0 = 3;

sharp (transitions from s to p electron terms)

ν̄s = RH

[
1

[n0 − δ(n0, 1)]2
− 1

[n − δ(n, 0)]2

]
, n ≥ n0 + 1;

diffuse ( transitions from d to p electron terms)

ν̄d = RH

[
1

[n0 − δ(n0, 1)]2
− 1

[n − δ(n, 2)]2

]
, n ≥ n0;

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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fundamental (transitions from f to d terms):

ν̄ f = RH

[
1

[n0 − δ(n0, 2)]2
− 1

[n − δ(n, 3)]2

]
, n ≥ n0 + 1.

Problem 2.2 The spin-orbit splitting of the 62P1/2 and 62P3/2 states in Cesium atom
causes a separation of the correspondent spectral line (transition to the 2S1/2 ground-

state) of 422
◦
A, at wavelength around 8520

◦
A. Evaluate the spin-orbit constant ξ6p

and the effective magnetic field acting on the electron in the 6p state.

Solution: From λ′′ − λ′ = Δλ = 422
◦
A and νdλ = −λdν one writes

ΔE = hΔν � h · c

λ′2 · Δλ � 0.07 eV.

From

ΔESO = ξ6p

2
{ j ( j + 1) − l(l + 1) − s(s + 1)}

one has

ΔE = ξ6p

2

[
15

4
− 3

4

]
= 3

2
ξ6p

and then

ξ6p = 2

3
ΔE = 0.045 eV.

The field (operator, Eq. (1.33)) is

H = �

2emc

1

r

dV

dr
l

with the spin-orbit Hamiltonian

Hspin−orbit = −µs · Hnl = ξ6pl · s .

Thus

|H6p| = 0.045 eV |l|
2μB

� 5.6 · 106 Oe = 560 Tesla

Problem 2.3 In a maser 85Rb atoms in the 63 2P3/2 state are driven to the transition
at the 61 2D5/2 state. The quantum defects δn,l for the states are 2.64 and 1.34
respectively. Evaluate the transition frequency and compare it to the one deduced
from the classical analogy for Rydberg atoms (Sect. 1.5). Estimate the isotopic shift
for 87Rb.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Solution:

From

Enl = −R∗hc
1

n∗2

where R∗ is the Rydberg constant and n∗ = n − δn,l , the transition frequency turns
out

ν = −R∗c
[

1

[ni − δ(ni , li )]2
− 1

[n f − δ(n f , l f )]2

]
� 21.3 GHz

The classical analogy (see Problem 1.12) yields

ν ≈ −R∗c
2Δn∗

(n̄∗)3
= 27.6 GHz.

The wavelengths are inversely proportional to the Rydberg constant:

λ87

λ85
= R∗

85

R∗
87

≈ 1 − 1.47 · 10−7.

Therefore the isotopic shift is Δν ≈ 3.16 kHz or Δλ ≈ −20.6 Å.

Problem 2.4 By considering Li as a Hydrogenic atom estimate the ionization
energy. Discuss the result in the light of the real value (5.39 eV) in terms of per-
cent of penetration of the optical electron in the (1s)2 core.

Solution: By neglecting the core charge one would have E2s = −13.56 Z2/n2 =
−30.6 eV, while for total screening (i.e. zero penetration and Z = 1) E2s =
−13.56 eV/4 = −3.4 eV.

Then the effective charge experimented by the 2s electron can be considered
Zef f ∼ 1.27, corresponding to about 15 % of penetration.

2.2 Helium Atom

2.2.1 Generalities and Ground State

The Helium atom represents a fruitful prototype to enlighten the effects due to the
inter-electron interaction and then the arise of the central field potential V (r), (see
Sect. 1.1), the effects related to the exchange symmetry for indistinguishable electrons
and to discuss the role of the spins and the antisymmetry of the total wavefunction.

First we shall start with the phenomenological examination of the energy levels
diagram vis-a-vis to the one pertaining to Hydrogen atom (Fig. 2.7). A variety of
comments is in order. It is noted that in He the state corresponding to the electronic

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Fig. 2.7 Diagram of some energy levels for Helium atom and comparison with the correspondent
levels for Hydrogen. The electron configuration of the states is (1s)(nl). E = 0 corresponds to
the first ionization threshold. The double-excited states (at weak transition probabilities and called
autoionizing states) are unstable with respect to self-ionization (Auger effect) being at E > 0,
within the continuum (Problem 2.14). In the inset the fine structure of the 2 3P state is reported, to
be compared with the separation, about 9000 cm−1, between the 2 3S and the 2 3P states. Note that
this fine structure does not follow the multiplet rules described at Sect. 3.2

configuration (1s)(nl) when compared to the n state in Hydrogen shows the removal
of the accidental degeneracy in l. This could be expected, being the analogous of
the effect for the optical electron in alkali atoms (Sect. 2.1). A somewhat unexpected
result is the occurrence of a double series of levels, in correspondence to the same
electronic configuration (1s)(nl). The first series includes the ground state, with first
ionization energy 24.58 eV. It is labelled as the group of parahelium states and all the
levels are singlets (classification 1S,1P , etc., see Sect. 1.7). The second series has the
lowest energy state at 19.82 eV above the ground-state and identifies the orthohelium
states. These states are all triplets, namely characterized by a fine structure (detailed
in the inset of the Figure for the 2 3P state). Each level has to be thought as the
superposition of almost degenerate levels, the degeneracy being removed by the
spin-orbit interaction (Sect. 1.6). The orthohelium states are classified 3S, 3P , etc..
Among the levels of a given series the transition yielding the spectral lines correspond
to the rule ΔL = ±1, with an almost complete inhibition of the transitions from
parahelium to orthohelium (i.e. almost no singlets↔ triplets transitions). Finally it
can be remarked that while (1s)2, at S = 0, is the ground state, the corresponding
(1s)2 triplet state is absent (as well as other states to be mentioned in the following).

http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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In the assumption of infinite nuclear mass and by taking into account the Coulomb
interactions only, the Schrodinger equation is

[
− �

2

2m
(∇2

1 + ∇2
2 ) − Ze2

r1
− Ze2

r2
+ e2

r12

]
φ(r1, r2) = Eφ(r1, r2) (2.4)

and it can be the starting point to explain the energy diagram. In Eq. (2.4) Z = 2 for
the neutral atom.

Let us first assume that the inter-electron term e2/r12 can be consider a perturba-
tion of the hydrogenic-like Hamiltonian for two independent electrons (independent
electron approximation). Then the unperturbed eigenfunction is

φn′l ′,n′′l ′′(r1, r2) = φn′l ′(r1)φn′′l ′′(r2) (2.5)

and
(E0)n′l ′,n′′l ′′ = Z2EH

n′l ′ + Z2EH
n′′l ′′ (2.6)

EH
nl being the eigenvalues for Hydrogen (degenerate in l).
For the ground state (1s)2 one has

φ1s,1s(r1, r2) = Z3

πa3
0

e− Z(r1+r2)

a0 (2.7)

and

E0
1s,1s = 2Z2EH

1s = −8
e2

2a0
� −108.80 eV (2.8)

In this oversimplified picture the first ionization energy would be 54.4 eV, evidently
far from the experimental datum (see Fig. 2.7). This discrepancy had to be expected
since the effect of the electron-electron repulsion had not yet been evaluated.

At the first order in the perturbative approach the repulsion reads

E (1)
1s,1s =

∫ ∫
φ∗

1s,1s(r1, r2)
e2

r12
φ1s,1s(r1, r2)dτ1dτ2 ≡

≡< 1s, 1s| e
2

r12
|1s, 1s >≡ I1s,1s (2.9)

I1s,1s is called Coulomb integral in view of its classical counterpart, depicted in
Fig. 2.8.

The estimate of the Coulomb integral can be carried out by expanding r−1
12 in term

of the associated Legendre polynomials (see Problem 2.5). For the particular case of
1s electrons, the Coulomb integral I1s,1s can be worked out in a straightforward way
on the basis of the classical analogy for the electrostatic repulsion. The result is
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Fig. 2.8 Illustrative plot
sketching the classical
analogy of the first order
perturbation term
< e2/r12 > for the
ground-state, in terms of
electrostatic repulsion of two
electronic clouds

r2r1

e2/r12

“charge” e|φ1s(r2)|2dτ2

“charge” e|φ1s(r1)|2dτ1

Zenucleus

I1s,1s = 5

4
Z(−EH

1s ) = 5

8

e2

a0
Z (2.10)

The ground state energy corrected to the first order turns out

E1s,1s = E (0)
1s,1s + I1s,1s =

(
2Z2 − 5

4
Z

)
EH

1s � −74.8 eV (2.11)

to be compared with the experimental value −78.62 eV.
The energy required to remove one electron is

[(
2Z2 − 5

4
Z

)
− Z2

]
13.6eV � 20.4 eV

This estimate is not far from the value indicated in Fig. 2.7, in spite of the crudeness
of the assumption for the unperturbed one-electron wavefunctions. An immediate
refinement could be achieved by adjusting the hydrogen-like wave functions: in this
way a good agreement with the experimental ionization energy would be obtained.

Another way to improve the description is to derive variationally an effective
nuclear charge Z∗, which in indirect way takes into account the mutual screening of
one electron by the other and the related correction in the wavefunctions. As shown
in Problem 2.6, this procedure yields Z∗ = Z − (5/16), implying for the ground
state

E1s,1s = 2

(
Z − 5

16

)2 (−e2

2a0

)
= −77.5 eV

One can remark how the perturbative approach, without modification of the eigen-
functions, is rather satisfactory, in spite of the relatively large value of the first order
energy correction.

The ground state energy for He turns out about 94.6 % of the “exact” one
(numerically obtained via elaborate trial functions, see Sect. 3.4) with the first-order

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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perturbative correction and 98 % with the variationally-derived effective charge. The
agreement is even better for atoms with Z ≥ 3, as Li+ or Be2+. At variance the
analogous procedure fails for H− (see Problem 2.8).

2.2.2 Excited States and the Exchange Interaction

The perturbative approach used for the ground state could be naively attempted for
the excited states with an electron on a given nl state. For a trial wavefunction of the
form

φ(r1, r2) = φ1s(r1)φnl(r2) (2.12)

the energy

E1s,nl = E0
1s,nl+ < 1s, nl| e

2

r12
|1s, nl >

would not account for the experimental data, numerically falling approximately in
the middle of the singlet and triplet (1s, nl) energy levels. The striking discrepancy is
evidently the impossibility to infer two energy levels in correspondence to the same
electronic configuration from the wavefunction in Eq. (2.12). The obvious inadequacy
of the tentative wavefunction is that it disregards the exchange symmetry (discussed
at Sect. 1.3). At variance with Eq. (2.12) one has to write the functions

φ
sym
1s,nl(r1, r2) = 1√

2

[
φ1s(r1)φnl(r2) + φnl(r1)φ1s(r2)

]
(2.13)

φant
1s,nl(r1, r2) = 1√

2

[
φ1s(r1)φnl(r2) − φnl(r1)φ1s(r2)

]
(2.14)

granting indistinguishable electrons, the same weights being attributed to the con-
figurations 1s(1)nl(2) and 1s(2)nl(1). The labels sym and ant correspond to the
symmetrical and antisymmetrical character of the wavefunctions upon exchange of
the electrons.

On the basis of the functions (2.13) and (2.14), along the same perturbative pro-
cedure used for the ground state, instead of Eq. (2.11) one obtains

Esym
+ = Z2EH

1s + Z2EH
nl + I1s,nl + K1s,nl (2.15)

and
Eant

− = Z2EH
1s + Z2EH

nl + I1s,nl − K1s,nl (2.16)

where

K1s,nl =
∫ ∫

φ∗
1s(r1)φ

∗
nl(r2)

e2

r12
φ1s(r2)φnl(r1)dτ1dτ2 (2.17)

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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is the exchange integral, essentially positive and without any classical interpretation,
at variance with the Coulomb integral I1s,nl . Thus double series of levels is justified
by the quantum effect of exchange symmetry.1

The wavefunctions (2.13) and (2.14) are not complete, spin variables having not
yet been considered. In view of the weakness of the spin-orbit interaction, as already
stated (Sect. 1.6), one can factorize the spatial and spin parts. Then, again by taking
into account indistinguishable electrons, the spin functions are

α(1)α(2), β(1)β(2),
1√
2
[α(1)β(2) + α(2)β(1)] for S = 1

1√
2
[α(1)β(2) − α(2)β(1)] for S = 0 (2.18)

The first group can be labelled χ
sym
S=1 and it includes the three eigenfunctions

corresponding to S = 1. The fourth eigenfunction is the one pertaining to S = 0.
χant
S=0 is antisymmetrical upon the exchange of the electrons, while χ

sym
S=1 are

symmetrical.
Therefore the complete eigenfunctions describing the excited states of the Helium

atom are of the form φtot = φ1s,nl χS and in principle in this way one would obtain
8 spin-orbitals. However, from the comparison with the experimental findings (such
as the spectral lines from which the diagram in Fig. 2.7 is derived) one is lead to
conclude that only four states are actually found in reality. These states are the ones
for which the total (spatial and spin) wavefunctions are antisymmetrical upon the
exchange of the two electrons.

This requirement of antisymmetry is also known as Pauli principle and we shall
see that it corresponds to require that the electrons differ at least in one of the
four quantum numbers n, l,m and ms . For instance, the lack of the triplet (1s)2

is evidently related to the fact that in this hypothetical state the two electrons would
have the same quantum numbers, meantime having a wavefunction of symmetric
character φtot = φ1sφ1sχ

sym
S=1. Thus φsymχant

S=0 describes the singlet states, while
φantχ

sym
S=1 describes the triplet states. Accordingly, one can give the following pictorial

description

When S χ φ(r) φtot Energy
↑↓ 0 ant sym ant E+
↑↑ 1 sym ant ant E−

In other words, because of the exchange symmetry a kind of relationship,
arising from electron-electron repulsion, between the mutual “direction” of the
spin momenta and the energy correction does occur. For “parallel spins” one has
E− < E+, the repulsion is decreased as the electron should move, on the average,
more apart.

1Order of magnitude estimates yield I1s,2s � 9 eV, I1s,2p � 10 eV,
K1s,2s � 0.4 eV and K1s,2p � 0.1 eV (see Problem 2.9).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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The dependence of the energy from the spin orientation can be related to an
exchange pseudo-spin interaction, in other words to an Hamiltonian operator of the
form2

H = −2K s1 · s2 (2.19)

In fact if we extend the vectorial picture to spin operators (in a way analogous to the
definition of the j angular momentum for the electron (see Sect. 1.6)) and write

S = s1 + s2, (2.20)

by “squaring” this sum one deduces s1 · s2 = (1/2)[S2 − s1
2 − s2

2]. Thus, from the
Heisenberg Hamiltonian (2.19) the two energy values

E ′ = −2K (1/2)[S(S + 1) − 2(1/2)(1 + 1/2)] = −K/2

for S = 1 and
E ′′ = 3K/2

for S = 0 are obtained. In other words, from the Hamiltonian (2.19), for a given 1snl
configuration, the singlet and the triplet states with energy separation and classifica-
tion consistent with Eqs. (2.15) and (2.16), are deduced.

Now it is possible to justify the weak singlet↔triplet transition probability indi-
cated by the optical spectra. The electric dipole transition element connecting para-
helium to orthohelium states can be written

RS=0↔S=1 ∝< χant |χsym >

∫ ∫
φ∗
sym[r1 + r2]φantdτ1dτ2. (2.21)

This matrix element is zero, both for the orthogonality of the spin states and because
the function in the integral changes sign upon exchange of the indexes 1 and 2, then
requiring zero as physically acceptable result. Thus one understands why orthohe-
lium cannot be converted to parahelium and vice-versa. This selection rule would
seem to prevent any transitions (including the ones related to magnetic dipole or
electric quadrupole mechanisms) and then do not admit any violation. The weak
singlet-triplet transitions actually observed in the spectrum are related to the non-
total validity of the factorization in the form φtot = φ(r1, r2)χspin . The spin-orbit
interaction, by coupling spin and positional variables, partially invalidates that form
of the wavefunctions. This consideration is supported by looking at the transitions
in an atom similar to Helium, with two electrons outside the core. Calcium has the
ground state electronic configuration (1s)2...(4s)2 and the diagram of the energy lev-
els is strictly similar to the one in Fig. 2.7. At variance with Helium, because of the

2This Hamiltonian, known as Heisenberg Hamiltonian, is often assumed as starting point for quan-
tum magnetism in bulk matter. Below a given temperature, in a three-dimensional array of atoms,
this Hamiltonian implies a spontaneous ordered state, with magnetic moments cooperatively aligned
along a common direction (see Sect. 4.4 for comments and Chap. 17).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_17
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increased strength of the spin-orbit interaction,the lines related to S = 0 ↔ S = 1
transitions are rather strong. Analogous case is Hg atom (see Fig. 3.9).

Problems

Problem 2.5 Evaluate the Coulomb integral for the ground state of the Helium atom.

Solution:

φ2

θ1

θ
+Ze

φ1

θ2

r12

r2

r1

In the expectation value (for e = a0 = 1)

<
1

r12
>= Z6

π2

∫
e−2Z(r1+r2)

1

r12
dr1dr2.

1/r12 is expanded in Legendre polynomials

1

r12
= 1

r1

∞∑
l=0

(
r2

r1

)l

Pl(cos θ), r1 > r2

= 1

r2

∞∑
l=0

(
r1

r2

)l

Pl(cos θ), r1 < r2

where θ is the angle between the vectors r1 and r2 and

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)

In compact form
1

r12
=

∞∑
l=0

(r<)l

(r>)l+1
Pl(cos θ)

where r< is the smallest and r> the largest between r1 and r2. From the addition
theorem one writes

1

r12
=

∞∑
l=0

+l∑
m=−l

4π

(2l + 1)

(r<)l

(r>)l+1
Y ∗
lm(θ1,φ1)Ylm(θ2,φ2).

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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The function exp[−2Z(r1 + r2)] is spherically symmetric and Y00 = (4π)− 1
2 . By

integrating over the polar angles one has

I ′
1s,1s = Z6

π2

∞∑
l=0

+l∑
m=−l

(4π)2

(2l + 1)

∫ ∞

0
dr1r

2
1

∫ ∞

0
dr2r

2
2 e

−2Z(r1+r2)
(r<)l

(r>)l+1

·δl,0δm,0.

All terms in the sum vanish, except the one for l = m = 0. Then

I ′
1s,1s = 16Z6

∫ ∞

0
dr1r

2
1

∫ ∞

0
dr2r

2
2e

−2Z(r1+r2)
1

r>

= 16Z6
∫ ∞

0
dr1r

2
1 e

−2Zr1

[
1

r1

∫ r1

0
dr2r

2
2e

−2Zr2 +
∫ ∞

r1

dr2r2e
−2Zr2

]
= 5

8
Z

and properly including a0 and e, I1s,1s = 5
4 Ze

2/2a0.
For spherically symmetric wavefunctions one can evaluate the Coulomb integral

from the classical electrostatic energy:

I1s,1s = Ze2

32π2a0

∫
e−ρ1e−ρ2

ρ12
dτ1dτ2

where

ρ1,2 = 2Zr1,2

a0
, ρ12 = 2Zr12

a0

and
dτ1,2 = ρ2

1,2 sin θ1,2 dρ1,2 dθ1,2 dφ1,2.

The electric potential from the shell dρ1 at ρ1 is

dΦ(r) = 4πρ2
1e

−ρ1dρ1
1

ρ1
for r < ρ1,

4πρ2
1e

−ρ1dρ1
1

r
for r > ρ1.

Then the total potential turns out

Φ(r) = 4π

r

∫ r

0
e−ρ1ρ2

1dρ1 + 4π

∫ ∞

r
e−ρ1ρ1dρ1 = 4π

r
{2 − e−r (r + 2)}

and therefore

I1s,1s = Ze2

32π2a0

∫
Φ(ρ2)e−ρ2dτ2 = Ze2

2a0

∫ ∞
0

[2 − e−ρ2 (ρ2 + 2)]e−ρ2ρ2
2dρ2 = Ze2

2a0

5

4
.
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Problem 2.6 By resorting to the variational principle, evaluate the effective nuclear
charge Z∗ for the ground state of the Helium atom.

Solution: The energy functional is

E[φ] = < φ|H |φ >

< φ|φ >

where

φ(r1, r2) = Z∗3

π
e−Z∗(r1+r2)

with Z∗ variational parameter (e = a0 = 1).

Then
E[φ] =

〈
φ

∣∣∣∣T1 + T2 − Z

r1
− Z

r2
+ 1

r12

∣∣∣∣φ
〉

and

〈φ|T1|φ〉 ≡ 〈ψZ∗
1s |T1|ψZ∗

1s 〉 = 1

2
Z∗2

, 〈φ|T2|φ〉 = 〈φ|T1|φ〉,

while 〈
φ

∣∣∣∣ 1

r1

∣∣∣∣φ
〉

=
〈
ψZ∗

1s

∣∣∣∣ 1

r1

∣∣∣∣ψZ∗
1s

〉
= Z∗ =

〈
φ

∣∣∣∣ 1

r2

∣∣∣∣ φ
〉

Since 〈
φ

∣∣∣∣ 1

r12

∣∣∣∣ φ
〉

= 5

8
Z∗ (see Eq. (2.10))

one has

E[φ] ≡ E(Z∗) = Z∗2 − 2Z Z∗ + 5

8
Z∗.

From
∂E(Z∗)

∂Z∗ = 0, Z∗ = Z − 5/16.

Problem 2.7 In the light of the interpretation of the Coulomb integral in terms
of repulsion between two spherically symmetric charge distributions, evaluate the
effective potential energy for a given electron in the ground state of He atom and the
effective charge Zef f (r).

Solution: The electric potential due to a spherical shell of radius R (thickness dR
and density −eρ(R)) at distance r from the center of the sphere is

− 1

4πe
dφ(r) = R2ρ(R)

dR

R
for r ≤ R,

R2ρ(R)
dR

r
for r ≥ R.
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By integrating over R and taking into account that

�(r) ≡ |ψ1s(r)|2 =
(
Z

a0

)3 e− 2Zr
a0

π
,

one has

−φ(r)

4πe
= 1

π

(
Z

a0

)3 [
1

r

∫ r

0
dRR2e− 2Z R

a0 +
∫ ∞

r
d RRe− 2Z R

a0

]

= 1

4π

(
Z

a0

) [
1

u

∫ u

0
dxx2e−x +

∫ ∞

u
dxxe−x

]

= 1

4π

(
Z

a0

)
1

u
[2 − e−u(u + 2)],

where u = 2Zr
a0

. Therefore

φ(r) = −e

r

[
1 − e− 2Zr

a0

(
Zr

a0
+ 1

)]

and from

− Zef f (r)e2

r
= − Ze2

r
− eφ(r)

for Z = 2 one finds

Zef f (r) = 1 + e− 4r
a0

(
1 + 2r

a0

)

plotted below.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

Z e
ff
(r
)

r/a
0



80 2 Typical Atoms

Problem 2.8 The electron affinity (energy gain when an electron is acquired) for
Hydrogen atom is 0.76 eV. Try to derive this result in the framework of a perturbative
approach for the ground state of H−, as well as by considering a reduced nuclear
charge.

Comment the results in the light of the almost-exact value which, at variance, is
obtained only by means of a variational procedure with elaborate trial wavefunctions.

Solution: For H−, by resorting to the results for He and setting Z = 1, in the
perturbative approach one would obtain

E
′
H− = −2Z2RHhc + 5

4
Z RHhc = −3

4
RHhc

to be compared with −RHhc for H. With the variational effective charge
Zef f = (1 − 5

16 )

E
′′
H− = −2Z2

e f f RHhc = −0.945RHhc

again less bound than the ground-state for neutral Hydrogen.
Only more elaborate calculations yield the correct value, the reason being that

for small Z the perturbation is too large with respect to the unperturbed energy. By
repeating the estimate for Z = 3 (Li+), for Z = 4 (Be2+) and for Z = 5 (B3+) a
convergence is noted towards the “exact” values of the ground state energy (namely
198.1, 371.7 and 606.8 eV, respectively) obtained from the variational procedure with
elaborate trial functions. It should be remarked that the real experimental eigenvalues
cannot be derived simply on the basis of the Hamiltonian in Eq. (2.4) which does not
include the finite nuclear mass, the relativistic and the radiative terms (see for the
Hydrogen atom the recall in Appendix 5.1).

2.3 Pauli Principle, Determinantal Eigenfunctions
and Superselection Rule

In the light of the analysis of the properties of the electronic states in Helium
atom, one can state the Pauli principle: the total wavefunction (spatial and spin)
of electrons, particles at half integer spin, must be antisymmetrical upon exchange
of two particles. This statement is equivalent to the one inhibiting a given set of the
four quantum numbers (nlmms) to more than one electron. For instance, this could
be realized by considering an hypothetical triplet ground state (1s)2 for orthohe-
lium, for which the wavefunction would be φ1s(r1)φ1s(r2)α(1)α(2) (or β(1)β(2)

or (1/
√

2)[α(1)β(2) + α(2)β(1)]), and the quantum numbers n, l,m,ms would be
the same for both electrons. At variance, one only finds the singlet ground state, for
which ms = ±1/2.
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From the specific case of Helium now we go back to the general properties of
multi-electron atoms (see Sects. 1.1 and 1.3). Because of the exchange degeneracy
and of the requirement of antisymmetrical wavefunction the total eigenfunction,
instead of Eq. (1.10), must be written

ϕtot = 1√
N !

∑
P

P(−1)Pϕα(1)ϕβ(2)...ϕν(N ) (2.22)

where α,β, ... here indicate the group of quantum numbers (nlmms) and the numbers
1, 2, 3, . . . , N include spatial and spin variables. P is an operator exchanging the
electron i with the electron j and the wavefunction changes (does not change) sign
according to an odd (even) number of permutations. The sum includes all possible
permutations.

A total eigenfunction complying with exchange degeneracy and antisymmetry is
the determinantal wavefunction devised by Slater 3

ϕtot = 1√
N !

⎛
⎜⎜⎝

ϕα(1) ϕα(2) . . . ϕα(N )

ϕβ(1) ϕβ(2) . . . ϕβ(N )

. . . . . . . . . . . .

ϕν(1) ϕν(2) . . . ϕν(N )

⎞
⎟⎟⎠

accounting for all the possible index permutations with change of sign when two
columns are exchanged. On the other hand the determinant goes to zero when two
groups of quantum numbers (and then two rows) are the same.

Now it can be proved that no transition, by any mechanism, is possible between
globally antisymmetric and symmetric states (in the assumption that they exist),
sometimes known as superselection rule. In fact such a transition would be controlled
by matrix elements of the form

RANT↔SY M ∝
∫

φ∗
SY M [O1 + O2 + ...]φANT dτgen (2.23)

that must be zero in order to avoid the unacceptable result of having a change of sign
upon exchange of indexes, since the integrand is globally antisymmetric.

In the light of what has been learned from the analysis of alkali atoms and of
Helium atom, now we can move to a useful description of multi-electrons atoms
which allows us to derive the structure of the eigenvalues and their classification
in terms of proper quantum numbers (The vectorial model, Chap. 3). Other typical
atoms, such as N, C and transition metals (Fe, Co, etc...) shall be discussed in that
framework.

3This form is the basis for the multiplet theory in the perturbation approach dealing with operators
r−1
i and r−1

i j (see Sect. 3.4).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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Problems

Problem 2.9 By means of the perturbation approach for independent electrons
derive the energy levels for the first excited states of Helium atom, in terms of
Coulomb and exchange integrals, writing the eigenfunctions and plotting the energy
diagram.

Solution: The first excited 1s2l states are

u1 = 1s(1)2s(2) u5 = 1s(1)2py(2)

u2 = 1s(2)2s(1) u6 = 1s(2)2py(1)

u3 = 1s(1)2px (2) u7 = 1s(1)2pz(2)

u4 = 1s(2)2px (1) u8 = 1s(2)2pz(1)

From the unperturbed Hamiltonian without the electron-electron interaction, by
setting � = 2m = e = 1, one finds

H◦ui (1, 2) = −4

(
1 + 1

4

)
ui (1, 2) = −5ui (1, 2)

The secular equation involves the integrals

Is =
〈
1s(1)2s(2)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(1)2s(2)

〉

Ip =
〈
1s(1)2p(2)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(1)2p(2)

〉

Ks =
〈
1s(1)2s(2)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(2)2s(1)

〉

Kp =
〈
1s(1)2p(2)

∣∣∣∣ 1

r12

∣∣∣∣ 1s(2)2p(1)

〉

(p here represents px , py or pz) and it reads

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Is − E
′

Ks

Ks Is − E
′ 0 0 0

0
Ip − E

′
Kp

Kp Ip − E
′ 0 0

0 0
Ip − E

′
Kp

Kp Ip − E
′ 0

0 0 0
Ip − E

′
Kp

Kp Ip − E
′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0
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From the first block E
′ = Is ± Ks , with the associated eigenfunctions

φ1,2 = 1√
2
[1s(1)2s(2) ± 1s(2)2s(1)].

From the second block E
′′ = Ip ± Kp, with eigenfunctions

φ3,4 = 1√
2
[1s(1)2px (2) ± 1s(2)2px (1)]

and the analogous for y and z. Thus the following diagram (not in scale, see
Sect. 2.2.2) is derived (I and K > 0 and Ip > Is).

Problem 2.10 For the optical electron in Li atom consider the hybrid orbital

Φ = (1 + λ2)−
1
2 [φ2s + λφ2pz ]

φ2s and φ2pz being normalized hydrogen-like wavefunctions, with effective nuclear
charge Z . Find the pseudo-dipole moment μ = e〈z〉 and the value of λ yielding the
maximum of μ (relevant connections for situations where hybrid orbitals are actually
induced are to be found at Sects. 4.2 and 9.2).

Solution: The pseudo-dipole moment turns out

μ = e
∫

Φ∗zΦdτ =

= e

(1 + λ2)

[∫
φ2

2s(r)zdτ + λ2
∫

φ2
2pz (r)zdτ + 2λ

∫
φ2s(r)φ2pz (r)zdτ

]
,

where the first two integrals are 0. From Table 1.3 (with e = a0 = 1)

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_9
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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μ = 2λ

1 + λ2

(
Z

2

)3 1

4π

∫ 2π

0
dφ

∫ π

0
cos2 θ sin θdθ

∫ ∞

0
Zr4(Zr − 2)e−Zrdr =

= λ

1 + λ2

Z3

12

[
Z25!
Z6

− 2Z4!
Z5

]
= λ

1 + λ2

6

Z
,

i.e. μ = (6ea0/Z)λ/(1 + λ2) in complete form.
From

dμ

dλ
= 6

Z

(1 + λ2 − 2λ2)

(1 + λ2)2
= 6

Z

(1 − λ2)

(1 + λ2)2
= 0

the maximum is found for λ = 1, as it could be expected.

Problem 2.11 Prove that the two-particles spin-orbital

ψANT = 1√
2
{α(1)β(2)[φa(1)φb(2)] − α(2)β(1)[φa(2)φb(1)]}.

represents an eigenstate for the z-component of the total spin at zero eigenvalue.
Then evaluate the expectation value of S2.

Solution: From

Sz1ψANT = 1

2

1√
2
{α(1)β(2)[φa(1)φb(2)] + α(2)β(1)[φa(2)φb(1)]} = 1

2
ψSY M .

and

Sz2ψANT = −1

2
ψSY M

Thus
SzψANT = (Sz1 + Sz2)ψANT = 0

Since

Sz1S
z
2ψANT = −1

4
ψANT

while

Sx
1 S

x
2 ψANT = 1

4

1√
2
{β(1)α(2)[φa(1)φb(2)] − α(1)β(2)[φa(1)φb(2)]} ≡ 1

4
ψ′

ANT

and

< ψANT |ψ′
ANT >≡ −|

∫
φ∗
a(r)φb(r)dτ |2 ≡ −A
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(with the same result for the y component). By taking into account that (S)2 =
(S1)

2 + (S2)
2 + 2S1 · S2, then

< ψANT |(Sx,y
1 + Sx,y

2 )2|ψANT >= 1

2
{1 − A}

and
< ψANT |(S)2|ψANT >= 1 − A.

Problem 2.12 At Chap. 5 it will be shown that between one electron and one proton
an hyperfine interaction of the form AI · Sδ(r) occurs, where I is the nuclear spin
(Fermi contact interaction). An analogous term, i.e. Hp = As1 · s2δ(r12) (with
r12 ≡ r1 − r2) describes a relativistic interaction between the two electrons in the
Helium atom. In this case A turns out A = −(8π/3)(e�/mc)2. Discuss the first-order
perturbation effect of Hp on the lowest energy states of orthohelium and parahelium,
showing that only a small shift of the ground-state level of the latter occurs (return
to Problem 1.38 for similarities).

Solution: For orthohelium the lowest energy states is described by the spin-orbital

φtot (1, 2) = χS=1
sym

[
φ1s(r1)φ2s(r2) − φ2s(r1)φ1s(r2)

]
.

The expectation value of Hp yields zero since two electrons at parallel spin cannot
have the same spatial coordinates. For the ground state of parahelium since s1 · s2 =
−3/4 (see Eq. (2.20)), by using hydrogenic wave functions φ1s(r1) and φ1s(r2) one
estimates

< 1s, 1s|Hp|1s, 1s >= −3A

4

Z6

π2a6
0

∫ ∫
e−2 Z(r1+r2)

a0 δ(r12)dτ1dτ2 =

= −3A

4

Z6

π2a6
0

4π

∫ ∞

0
e−4Z r

a0 r2dr = 3

32

(
e�

mc

)2 Z3

a3
0

� 10−3eV,

a small shift compared to −78.62 eV.

Problem 2.13 The spin-orbit constant ξ2p for the 2p electron in Lithium turns out
ξ2p = 0.34 cm−1. Evaluate the magnetic field causing the first crossing between
P3/2 and P1/2 levels, in the assumption that the field does not affect the structure of
the doublet (return to Problems 1.23 and 1.17).

Solution: In the assumption that the field linearly affects the two levels, i.e.

http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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j=3/2

j=1/2

ΔE

(1/2)g’μBH

(3/2)g”μBH

the first crossing takes place when

(
3

2
g′′ + 1

2
g′

)
μBH = ΔE

Since g′ = 2/3 and g′′ = 4/3 the crossing occurs for H = ΔE/(7μB/3).
The correction associated with the spin-orbit interaction is

ξ2p

2
[ j ( j + 1) − l(l + 1) − s(s + 1)]

Then ΔE = (3/2)ξ2p and H � 4370 Oe.
When the weak field condition (corresponding to μBH � ξ2p) is released and

the full Hamiltonian ξnl l · s + μBH · (l + 2s) is diagonalized (as it would be more
appropriate), the crossing is found at a slightly different field.

Try to estimate it after having read Chap. 4 (or see Problem 1.1.20,in the book by
Balzarotti, Cini and Fanfoni or Problem 7.24 in the book by Johnson and Pedersen).
A somewhat similar situation is the one discussed at Problem 5.13 with l substituted
by the nuclear momentum I.

Problem 2.14 Refer to the double-excited electron state 2s4p of the Helium atom.
In the assumption that the 2s electron in practice is not screened by the 4p electron,
which in turn feels just the residual charge Z(r) � 1 (see Sect. 2.1), evaluate the
wavelength of the radiation required to promote the transition from the ground state
to that double-excited state. After the autoionization of the atom, and decay to the
ground-state of He+, one electron is ejected. Estimate the velocity of this electron.

Solution:
E(2s, 4p) = −14.5 eV, then λ = c/ν = 192 Å and v = 3.75 × 108 cm/s.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_5
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Chapter 3
The Shell Vectorial Model

Topics

Electronic Structure: “aufbau” and Closed Shells
Coupling of Angular Momenta (LS and jj Schemes)
Rules for the Ground State
Low Energy States of C and N Atoms
Effective Magnetic Moments and Gyromagnetic Ratio
Approximate Form of the Radial Wavefunctions
Hartree-Fock-Slater Theory for Multiplets
Selection Rules

3.1 Introductory Aspects

By resorting to the principles of quantum mechanics and after having dealt with
specific atoms, one can now proceed to the description of the electronic structure
in generic multi-electron atoms. We shall see that the sequence of electron states
accounts for the microscopic origin of the periodic Table of the elements.

First the one-electron states, described by orbitals of the form φnlm = RnlYlm , have
to be placed in the proper energy scale (diagram). Then the atom can be thought to
result from the progressive accommodation of the electrons on the various levels, with
the related eigenfunctions. This build-up principle (called aufbau from the German)
has to be carried out by taking into account thePauli principle (Sect. 2.3). Therefore a
limited number of electrons can be accommodated on a given level and each electron
has associated one (and only one) spin-orbital eigenfunction, differing in one or more
of the quantum numbers n, l,m,ms from the others.

The maximum number of electrons characterized by a given value of n is

n−1∑
l=0

2(2l + 1) = 2n + 4
n−1∑
l=0

l = 2n + 4
n(n − 1)

2
(3.1)
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When this maximum number is attained one has a closed shell. A closed sub-shell,
often called nl shell, occurs when a given nl state (which defines the energy in the
absence of spin-orbit and exchange interactions) accommodates 2(2l + 1) electrons,
in correspondence to the degeneracy in the z-component of the orbital momentum
and of the spin degeneracy.

A complete sub-shell (or shell) implies electron charge distribution at spherical
symmetry1 and the quantum numbers L (for the total orbital momentum) and S (total
spin) are zero, obviously implying J = 0 and spectral notation (see Sect. 1.7) 1S0.

For the electrons outside the closed nl shells one has to take into account the spin-
orbit interaction yielding j = (l + s) and the electron-electron interaction leading
to the Coulomb and exchange integrals, as it has been discussed for alkali atoms
(Sect. 2.1) and for Helium atom (Sect. 2.2). As a consequence, a variety of “cou-
plings” is possible and a complex distribution of the energy levels occurs, the de-
tailed structure depending on the relative strengths of the couplings. For instance, the
sequence of levels seen for Helium (Sect. 2.2), with spin-orbit terms much weaker
than the Coulomb and exchange integrals, can be considerably modified on increasing
the atomic number, when the spin-orbit interaction is stronger than the inter-electron
effects.

In order to take into account the various couplings and to derive the qualitative
sequence of the eigenvalues (with the proper classification in terms of good quantum
numbers corresponding to constants of motion) one can abide by the so-called vecto-
rial model. Initiated by Heisenberg and by Dirac, this model leads to the structure of
the energy levels and to their classification in agreement with more elaborate theories
for the multiplets, although it does not provide the quantitative estimate of the energy
separation of the levels.

In the vectorial model the angular momenta and the associated magnetic moments
are thought as classical vectors, as seen in the ad hoc definition of J and of L and S
at Sects. 1.6, 1.7 and 2.2.2. Furthermore, somewhat classical equations of motion are
used (for instance the precessional motion is often recalled). Moreover constraints
are taken into account in the couplings, so that the final results do have characteristics
in agreement with the quantum conditions. For example, the angular momenta of two
p electrons are coupled and pictorially sketched as shown in Fig. 3.1.

The interactions are written in the form

a) aik li · sk b) bik li · lk c) ciksi · sk (3.2)

where a) can be considered a generalization of the spin-orbit interaction (aii > 0,
as proved at Sect. 1.6); b) is the analogous for the orbital couplings, while c) is the
extension of the exchange interaction discussed in Helium (c jk = −2K < 0). In
these coupling forms the constants a, b and c have usually the dimensions of energy,
the angular momenta thus being in � units.

1The rule
∑+l

m=−l Y
∗
l,m(θ,ϕ)Yl,m(θ,ϕ) = (2l+1)/4π is known asUnsold theorem (See Problem 1.9

for a particular case).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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l =1 l =1 L=2

L=0

L=1

Fig. 3.1 Illustrative coupling of the angular momenta for two p electrons to yield the L = 0, L = 1
and L = 2 states. It is noted that the effective “lengths” of the “vectors” must be considered

√
l(l + 1)

and
√
L(L + 1)

On the basis of Eq. (3.2) the energy levels are derived by coupling the electrons
outside the closed shells and the states are classified in terms of good quantum num-
bers. The values of a, b and c are left to be estimated on the basis of the experimental
findings, for instance from the levels resulting from optical spectra.

In spite of these simplifying assumptions the many-body character of the problem
prevents suitable solutions when a, b and c are of the same order of magnitude. Two
limiting cases have to be considered:

(i) “small” atoms (nuclear charge Z not too large) so that the spin-orbit interaction
is smaller than other coupling terms and the condition a � c can be assumed. This
assumption leads to the so-called LS scheme;

(ii) “heavy” atoms at large Z , where the strong spin-orbit interaction implies
a � c (jj scheme).

3.2 Coupling of Angular Momenta

3.2.1 LS Coupling Model

Within this scheme one couples si to obtain S and li for L (in a way to account for
the quantum prescriptions). For

S =
∑
i

si and L =
∑
i

li (3.3)

the total spin number S = 0, 1/2, 1, 3/2, . . . and the total orbital momentum number
L = 0, 1, 2, . . . are defined. Then the spin orbit interaction is taken into account with
an Hamiltonian of the form

HSO = ξLS L · S, (3.4)

an extension of the Hamiltonian derived at Sect. 1.6 (see Sect. 3.2.2 in order to
understand that the precessions of li yield an average orbital momentum along L,
while the average spin momentum is along S: then Eq. (3.4) follows).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Table 3.1 Derivation of the electronic states compatible with the Pauli principle for two equivalent
p electrons

m\mS
1, 1/2 1,-1/2 0,1/2 0,-1/2 -1,1/2 -1,-1/2 

1,1/2 NO      

1,-1/2 2  0 NO     

0, 1/2 1 1 1 0 NO    

0, -1/2 1 0 1 -1 0 0 NO   

-1, 1/2 0 1 0 0 -1 1 -1 0 NO  

-1, -1/2 0 0 0 -1 -1 0 -1 -1 -2 0 NO 

1S0
3P2,1,0

1D2

M,Ms

1

2

It is noted that the group 3D cannot exists since states with M = 2 and Ms = 1 are not found. The
values Ms = 0 and with M running from −2 to +2 are present and they correspond to 1D states
at S = 0, implying J = 2. The states at M = 1 and Ms = 1 are all found and then the multiplet
S = 1 and L = 1 does exist, implying the values J = 2, 1, 0. Finally the last case corresponds to
the singlet state at S = 0 and L = 0. The total number of original states is 36 (corresponding to
2 × 2 × (2l1 + 1) × (2l2 + 1)) and only 15 of them are allowed. Six states are eliminated because
they violate Pauli principle. Of the remaining 30 states, only half are distinguishable

When the electrons to be coupled are equivalent, namely with the same quantum
numbers n and l, one has to reject the coupling configurations that would invalidate
the Pauli principle. In other words, one has to take into account the antisymmetry
requirement for the total wavefunction and this corresponds to the problem of the
Clebsch-Gordan coefficients. A simple method to rule out unacceptable states is
shown in Table 3.1 for two np electrons. All the possible values for m and ms are
summed up to give M and Ms . Then the states along the diagonal are disregarded,
since they correspond to four equal quantum numbers. The states above the diagonal
are also to be left out, since they correspond to the exchange of equivalent electrons,
the exchange degeneracy being taken into account by the spin-spin interaction. Fi-
nally the electronic states compatible with the values of M and Ms are found by
inspection. This method corresponds to a brute-force counting of the states, as it
is shown in the Problems for the low-energy electronic states in C and in N atoms
(Problems 3.1 and 3.2).

When the electrons are inequivalent (differing in n or in l) no restrictions to the
possible sums has to be considered (see Problem 3.3).

Once that L and S are found and the structure of the levels expected from the
couplings 3.2 (b and c) is derived, then in the LS scheme one defines

J = L + S, (3.5)
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characterized by the quantum number J . The spin-orbit interaction is taken into
account according to Eq. (3.4) in order to derive the multiplets. Pictorially

with coupling energy ESO = ξLS|L|.|S|cosθ (θ angle between L and S).
It is reminded that according to the classical equation of motion, a magnetic

moment µL ∝ −L in magnetic field precesses with angular frequency ωL = γH ,
with γ the gyromagnetic ratio given by γ = µL/L (Problem 3.4). In terms of L and
S and of the related torque of modulus −∂ESO/∂θ, a precession of each of them
around the direction of J has to be expected. To show this one writes

dL
dt

= ξLSS × L (3.6)

dS
dt

= ξLSL × S. (3.7)

and since S × S = L × L = 0

dL
dt

= ξLSJ × L

dS
dt

= ξLSJ × S,

implying the precessional motions of L and S around an effective magnetic field along
the direction of J, the angular frequency being proportional to ξLS (see Problem 3.4).

Therefore J and MJ are good quantum numbers while Lz and Sz are no longer
constant of motion (z is here an arbitrary direction). Then the energies of the multiplet
are derived by adding the corrections due to the spin-orbit Hamiltonian (in the form
3.4) to the energy E0(L , S) resulting from the couplings between si and between li
(see examples in subsequent figures). From the definition of J (Eq. 3.5), again by the
usual “squaring rule”, one obtains

E(L , S, J ) = E0(L , S) + 1

2
ξLS

[
J (J + 1) − L(L + 1) − S(S + 1)

]
(3.8)
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Fig. 3.2 Illustration of the interval rule for the multiplet arising from the L = 2 and S = 1 state

An empirical rule for ξLS is ξLS � ±ξnl/2S, with the sign + when the number
of the electrons in the sub-shell in less then half of the maximum number that can
be accommodated and − in the opposite case (according to Sect. 1.6 ξnl = a11 in
Eq. (3.1)). For sign + the multiplet is called regular, namely the state at lowest energy
is the one corresponding to Jminimum (pictorially with L and S antiparallel). For sign
− the multiplet is inverted, the state at lowest energy being the one with maximum
value for J (i.e. L and S parallel).

For regular multiplets one immediately derives the interval rule, giving the energy
separation between the states at J and (J + 1). From Eq. (3.8)

ΔJ,J+1 = (J + 1)ξLS (3.9)

implying, for example for L = 2 and S = 1, the structure of the levels shown in
Fig. 3.2. This rule can be used as a test to check the validity of the LS coupling scheme.
It is noted that the “center of gravity” of the levels, namely the mean perturbation of
all the states of a given term, is not affected by the spin-orbit interaction. In fact

< Δ(E − E0) >=
L+S∑

J=|L−S|

ξLS

2
(2J + 1)

[
J (J + 1) − L(L + 1) − S(S + 1)

]
= 0

(3.10)

(see Figs. 3.2, 3.4 and Problem 3.12).2

When more than two electrons are involved in the coupling, the procedure outlined
above has to be applied by combining the third electron with the results of coupling
the first two and so on. Examples (Problem 3.2) will clarify how to deal with more
than two electrons.

2In fact
∑N

J=0 J = N (N+1)/2,
∑N

J=0 J 2 = N (N+1)(2N+1)/6 and
∑N

J=0 J 3 = N 2(N+1)2/4.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Fig. 3.3 Vectorial
description of angular and
magnetic moments in
magnetic field, within the LS
model. The interaction with
the field is weak in
comparison to the spin-orbit
interaction and fast
precessions of L and S
around J occur, controlled by
ξLS . Only the “result” of the
precessional motion can
effectively interact with the
field: the precession of J at
the Larmor frequency
ωL = γH is induced. ωL is
much smaller than the
precessional frequency of L
and S around J (see
Problem 3.4)

H

S

J

L

µJ

µ’= µL+ µS

µS= -2µBS
µL= -µBL

Transverse components
average out

3.2.2 The Effective Magnetic Moment

At Sect. 1.6 the effect of an external magnetic field on one single electron has been
considered. The quantum description for multi-electrons atom shall be given at
Chap. 4. Here we derive the atomic magnetic moment that effectively interacts with
the external field in the framework of the vectorial model and of the LS scheme.

The magnetic field, acting on µL and µS , induces torques on L and on S while
they are coupled by the spin-orbit interaction. A general solution for the motions of
the momenta and for the energy corrections in the presence of the field can hardly
be obtained. Rigorous results are derived in the limiting cases of strong and of weak
magnetic field, namely for situations such that µL ,S.H � ξLS and µL ,S.H � ξLS ,
respectively. Let us first discuss the case of weak magnetic field (Fig. 3.3).

In view of the meaning of L · J and of S · J, the angles between L and J and S
and J can be written

cos L̂ J = L(L + 1) + J (J + 1) − S(S + 1)

2
√
L(L + 1)

√
J (J + 1)

(3.11)

cos Ŝ J = S(S + 1) + J (J + 1) − L(L + 1)

2
√
S(S + 1)

√
J (J + 1)

(3.12)

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Fig. 3.4 Diagram of the energy levels and labeling of the electronic states within the LS scheme
for: a one s and one p electron; b one p and one d electron (outside closed shells). For case a it is
shown how a magnetic field removes all the degeneracies, while in case b the number of degenerate
states are indicated on the right (ξ′′

LS is negative)



3.2 Coupling of Angular Momenta 97

Then the magnetic moment along the J direction, after averaging out the transverse
components of L and S (due to fast precession induced by spin orbit interaction) is3

µJ = −2μBScos Ŝ J − μBLcos L̂ J .

Therefore the effective magnetic moment turns out

µJ = −μBgJ (3.13)

where g, called the Landé factor, is

g = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
. (3.14)

Hence the energy corrections associated with the magnetic Hamiltonian are ΔE =
−µJ · H = −μz

J H = gμBHMJ . Thus the magnetic field removes the degeneracy
in MJ and the energy levels, in weak magnetic field, turn out

E(L , S, J, MJ ) = E0(L , S, J ) + μBgHMJ . (3.15)

In the opposite limit when the magnetic field is strong enough that the Hamiltoni-
ans µL · H and µS · H prevail over the spin-orbit interaction, one can first disregard
this latter and the energy levels are derived in terms of the quantum magnetic num-
bers M and MS . Vectorially this corresponds to the decoupling of the orbital and spin
momenta and to their independent quantization along the axis of the magnetic field,
around which they precess at high angular frequency. The magnetic moment is the
sum of the independent components and therefore the energy correction is written

ΔE = −[μz
L H + μz

S H ] = μBMH + 2μBMsH. (3.16)

The spin-orbit interaction can be taken into account subsequently, as perturbation
of the states labelled by the quantum magnetic numbers M and MS . This will be
described at Chap. 4 as the so-called Paschen-Back regime.

3.2.3 Illustrative Examples and the Hund Rules
for the Ground State

In the framework of the LS scheme, by taking into account the signs of the coupling
constants for the spin-orbit interaction (Sect. 1.6) and for the spin-spin interaction
(Sect. 2.2.2), one can figure out simple rules to predict the configuration pertaining

3The formal proof is based on the Wigner-Eckart theorem (see Sect. 4.3).

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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to the ground state of the atom. This is an important step for the description of the
magnetic properties of matter. The rules, first empirically devised by Hund, are the
following:

(i) maximize the quantum number S. The reason for this is related to the sign of
the exchange integral, since in the spin-spin coupling c12 plays the role of −2K , as
already observed;

(ii) maximize L, in a way compatible with Pauli principle;
(iii) minimize J for regular multiplets while maximize it for inverted multiplets.

This rule follows from the sign of ξnl and then of ξLS (see Eq. (3.8)).
As illustrative examples let us consider one atom of the transition elements, with

incomplete 3d shell (Fe) and one of the rare earth group, with incomplete 4 f shell
(Sm). The electronic configuration of iron is (1s)2(2s)2(2p)6(3s)2(3p)6 (3d)6(4s)2.
Maximization of S implies the spin vectorial coupling in the form ↑↑↑↑↑↓ yielding
S = 2. The coupling of five of the six orbital momenta must be zero, since the m
numbers must be all different (from −2 to +2) in order to preserve Pauli principle.
Then for the sixth electron we take the maximum, namely L = 2. The multiplet
is inverted, because the maximum number of electrons that can be accommodated
in the 3d sub-shell is 10. Then J = 4. Thus the ground state for iron is 5D4.
According to Eqs. (3.13) and (3.14) the magnetic moment would be |µJ | = 4.9μB

while experimentally it turns out |µJ | = 5.4μB (for this discrepancy see Caption to
Table 3.2).

Samarium has the electronic configuration ending with (4 f )6(6s)2. Maximizing
S yields S = 3. To complete half of the shell (that would give L = 0) one electron is

Table 3.2 Ground state of some magnetic ions of the 4 f sub-shell, according to Hund’s rules, and
correspondent values of the effective magnetic moments

Ion Shell S L J Atomic 
Configuration

|µ| 

Ce 4f 1/2 3 5/2 F 2.54 
Pr 4f 1 5 4 H 3.58 
Nd 4f 3/2 6 9/2 I 3.62 
Pm 4f 2 6 4 I 2.68 
Sm 4f 5/2 5 5/2 H 0.85 
Eu 4f 3 3 0 F 0 
Gd 4f 7/2 0 7/2 S 7.94 
Tb 4f 3 3 6 F 9.72 
Dy 4f 5/2 5 15/2 H 10.65 
Ho 4f 2 6 8 I 10.61 
Er 4f 3/2 6 15/2 I 9.58 
Tm 4f 1 5 6 H 7.56 
Yb 4f 1/2 3 7/2 F 4.54 
Lu 4f 0 0 0 S 0 

(in Bohr magneton)

It should be remarked that these data refer to free ions, while the magnetic properties can change
when the crystalline electric field is acting (see Problems 4.11, 4.12 and 13.5)

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Fig. 3.5 Multiplet structure in the LS scheme for the nsnp and the np2 configurations and transitions
allowed by the electric dipole mechanism (see Sect. 3.5)

missing. Then by taking the maximum possible value one has L = 3. The multiplet
is regular and therefore the ground state is the one with J = 0, namely 7F0. Other
ground states are derived in Problem 3.5.

In Table 3.2 the ground state of some 4 f magnetic ions often involved in para-
magnetic crystals, with their effective magnetic moment |µ| = g

√
J (J + 1) are

reported.4

As illustrative examples of the structure and classification of the energy levels in
the LS scheme according to the prescriptions described above, in Fig. 3.4 the cases
of atoms with one s and one p electron and with one p and one d electron outside
the closed shells are shown.

In Fig. 3.5 the energy levels of the p2 configuration are reported and the transitions
to the sp configuration (see Fig. 3.4a), driven by electric dipole mechanism, are
indicated.

Problems

Problem 3.1 Derive and label the low-energy states of the carbon atom (ground
state configuration (1s)2 (2s)2 (2p)2) by taking into account the inter-electronic in-
teractions, first disregarding the spin-orbit coupling.

4For Sm3+ and Eu3+ the agreement with the experimental estimates (1.5 μB and 3.4μB , respec-
tively) is poor. If one takes into account higher order energy levels good agreement is found (see
Eq. (4.38)).

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Solution: The method to rule out unacceptable states for equivalent 2p electrons
is shown in Table 3.1. Equivalently, by indicating |m = 1,ms = 1

2 >≡ a,

|0,− 1
2 >≡ d, |1,− 1

2 >≡ b, | − 1, 1
2 >≡ e, |0, 1

2 >≡ c, | − 1,− 1
2 >≡ f one has

the possibilities listed below:

ML MS ML MS
ab 2 0 � bf 0 −1 •
ac 1 1 • cd 0 0 �

ad 1 0 � ce −1 1 •
ae 0 1 • cf −1 0 �

af 0 0 ♦ de −1 0 •
bc 1 0 • df −1 −1 •
bd 1 −1 • ef −2 0 �

be 0 0 • –

� terms correspond to L = 2 and S = 0, • to L = 1 and S = 1, while ♦ to L = 0
and S = 0 (see Table 3.1).

The first low-energy states are 1S0, 1D2 and 3P0,1,2, according to the vectorial
picture and to the Hund rules:

↑ ↓ ↑ ↓ 1S0 L = 0 S = 0

↑ ↑ ↑ ↓ 1D2 L = 2 S = 0

↖ ↗ ↑ ↑ 3P0,1,2 L = 1 S = 1

The correspondent energy diagram, including the experimentally detected split-
ting of the lowest energy 3P state due to spin-orbit interaction, is

1s22s22p2

L=1, S=1, 3P

3P0

3P1

1S0

J=1

J=0

20649 cm

3P2 J=2

L=0, S=0, 1S

L=2, S=0, 1D

J=0

J=2
1D2

16 cm

43 cm

10195 cm

0       ground state

-1

-1

-1

-1
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An extended energy diagram of the atom (with spin-orbit splitting not detailed) is
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Problem 3.2 Derive and label the low-energy states for the N atom (electronic con-
figuration (1s)2 (2s)2 (2p)3) by taking into account the inter-electron couplings. By
assuming a spin-spin interaction of the form

∑′
i, j Asi · s j evaluate the shift of the

ground state.

Solution: According to the notation used in Problem 3.1, the possible one-electron
states are a b c d e f .

The complete states, in agreement with the Pauli principle, are

ML MS ML MS
� abc 2 1/2 bcd 1 −1/2
� abd 2 −1/2 bce 0 1/2
� abe 1 1/2 bcf 0 −1/2
� abf 1 −1/2 bde 0 −1/2

acd 1 1/2 � cde −1 1/2
ace 0 3/2 � cdf −1 −1/2
acf 0 1/2 � def −2 −1/2

� ade 0 1/2 bef −1 −1/2
� adf 0 −1/2 � cef −2 1/2

aef −1 1/2 bdf 0 −3/2

(� terms corresponding to L = 2, S = 1/2, i.e. 2D5/2,3/2, etc.).
Thus the three low-energy states are

2P3
2 , 1

2

2D 5
2 , 3

2

4S 3
2

correspondent to the vectorial picture
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↖ ↗ → ↑ ↓ ↑ 2P3
2 , 1

2
L = 1 S = 1

2

↑ ↑ → ↑ ↓ ↑ 2D 5
2 , 3

2
L = 2 S = 1

2

↑ ↓ ← ↑ ↑ ↑ 4S 3
2

L = 0 S = 3
2

The energy diagram is

-15

-14

-13
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-9
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-7
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-5

-4

-3

-2

-1

0

-14.53 eV

22P
1/2

22D
3/2

24S
3/2

4F2F

Quartet (S=3/2)Doublet (S=1/2)
4D4P4S2D2P2S

E
 (

eV
)

The shift of the ground state due to the spin-spin interaction is 3A/4. In fact

S2 = s2
1 + s2

2 + s2
3 + 2[s1 · s2 + s2 · s3 + s1 · s3]

and then

[s1 · s2 + s2 · s3 + s1 · s3] = S2 − s2
1 − s2

2 − s2
3

2
= 3

4

The same structure and classification of the electronic states hold for phosphorous
atom, in view of the same configuration s2 p3 outside the closed shells. On increasing
the atomic number along the V group of the periodic Table, the increase in the spin-
orbit interaction can be expected to invalidate the LS scheme (see Sect. 3.3). However,
for three electrons in the p sub-shell, since ξLS is almost zero (see Eq. (3.8)), the
2P1/2 and 2P3/2 states, for instance, have approximately the same energy (ΔESO �
3.1 meV).

Problem 3.3 Reformulate the vectorial coupling for two inequivalent p electrons
in the LS scheme, indicating the states that would not occur for equivalent electrons.
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Solution:

L

2

1

0

states

S

P

D

S

1

0

multiplets

3

1

∑ i li

∑ i si

J = L + S D J = 3, 2, 1 for S = 1

J = 2 for S = 0

P J = 2, 1, 0 for S = 1

J = 1 for S = 0

S J ≡ S = 1, 0.

For equivalent electrons only 3P2,1,0, 1D2 and 1S0 are present (see Table 3.1).

Problem 3.4 By referring to a magnetic moment µL in magnetic field H, derive
the precessional motion of L with the Larmor frequency ωL = γ H, where γ is the
gyromagnetic ratio (see Problem 1.21).

Solution: The equation of motion is

dL
dt

= µL × H = −γL × H

i.e.
dLz

dt
= 0 ⇒ Lz ≡ L cos θ = const

·
Lx= −γLyH

·
Ly= γLx H

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Then
d2Lx

dt2
= −γ2H 2Lx

(and analogous for Ly), implying coherent rotation of the components in the (xy)
plane with ωL = eH/2mc.

The frequency of the precessional motion can be obtained by writing (see Figure)

|ΔL| = L sin θ ωL Δt

so that

ωL = |ΔL|
Δt

1

L sin θ
= μL H sin θ

L sin θ
= γH

Problem 3.5 Derive the ground states for Fe++, V+++, Co, As, La, Yb+++ and
Eu++, in the framework of the LS coupling scheme (a similar Problem is 3.10).

Solution: The ion Fe++ has six 3d electrons. According to the Pauli principle and
the Hund rules
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m spin

2 ↑ ↓
1 ↑
0 ↑ Then S = 2, L = 2, J = L + S = 4 =⇒ state 5D4;
-
-
1 ↑

 2 ↑

V+++ has incomplete 3d shell (2 electrons):

m spin
2 ↑
1 ↑
0

−1
−2

Then S = 1 L = 3 J = L − S = 2 =⇒ state 3F2.
Similarly
Co (3d)7 (4s)2 S = 3

2 L = 3 J = 9
2 =⇒ state 4F9

2
;

As (3d)10 (4s)2 (4p)3 S = 3
2 L = 0 J = 3

2 =⇒ state 4S 3
2
;

La (5d)1 (6s)2 S = 1
2 L = 2 J = 3

2 =⇒ state 2D 3
2
;

Yb+++ (4 f )13 S = 1
2 L = 3 J = L + S = 7

2 =⇒ state 2F7
2
;

Eu++ (4 f )7 S = 7
2 L = 0 J = S = 7

2 =⇒ state 8S 7
2
.

(see Table 3.2).

3.3 jj Coupling Scheme

The experimental findings indicate that the interval rule (Eq. 3.9), characteristic of
the LS scheme, no longer holds for heavy atoms. This can be expected in view of
the increase of the spin-orbit interaction upon increasing Z , thus invalidating the
condition a � c at the basis of the LS coupling. In the opposite limit of a � c one
first has to couple the single-electron orbital and spin momenta to define j and then
construct the total momentum J:

ji = li + si with good quantum numbers ji and (m j )i (3.17)

and
J =

∑
i

ji with good quantum numbers J and MJ (3.18)
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Fig. 3.6 Vectorial sketch of
the jj coupling and of the
precessional motions for two
electrons, leading to the total
J and µJ precessing around
the external magnetic field

H

J

µJ

s2

s1

l1

j1

l2

j2

The final state is characterized by l, s, j of each electron and by J and MJ of the
whole atom. The vectorial picture is shown in Fig. 3.6. j1 and j2 are half integer
while J is always integer. To label the states, the individual ji ’s are usually written
between parentheses while J is written as subscript.

In a way analogous to the couplings in Eqs. (3.3) and (3.5), by the “squaring rule”
j1 · j2 leads to

j1 · j2 = J (J + 1) − j1( j1 + 1) − j2( j2 + 1)

2
(3.19)

The structure of the levels and their labelling is evidently different from the one
derived within the LS scheme, as it appears from the example for one s and one p
electron in Fig. 3.7 (to be compared with Fig. 3.4a). In Fig. 3.8 the comparison of the
LS and jj schemes for two equivalent p electrons is shown.

The jj coupling for two inequivalent p electrons is indicated below

j1 j2 J Notation Degeneracy
3/2 3/2 3,2,1,0 (3/2,3/2)3,2,1,0 16
3/2 1/2 2,1 (3/2,1/2)2,1 8
1/2 1/2 1,0 (1/2,1/2)1,0 4
1/2 3/2 2,1 (1/2,3/2)2,1 8

Total number of states 36

For equivalent p electrons the following cases are excluded

j1 j2 J
3/2 3/2 3
3/2 3/2 1
1/2 1/2 1

number of states excluded 13

The first case implies parallel orbital momenta as well as parallel spins. The third
case corresponds to l1 = l2 = 0 and parallel spins. The middle term is not pictorially
evident (it is the analogous of the 1P states at Table 3.1) and corresponds to a level
for which no additional distinguishable states are available.
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sp

j =1/2, j =3/2

j =1/2, j =1/2 3B/4

B/4

3B’/4

5B’/4

a22/2

-a22

with
a22l2

. s2

with
Bj1 . j2

J=1

J=1

J=2

J=0

In the presence of 
the magnetic field 

(3/2, 1/2)1

(3/2, 1/2)2

(1/2, 1/2)1

(1/2, 1/2)0

without 
interactions

21

21

Fig. 3.7 jj coupling for s and p electrons. It is noted that for the state j1 = 1/2 and j2 = 3/2
the energy constant B ′ describing the coupling is equal and of opposite sign of the one (B) for the
j1 = 1/2 and j2 = 1/2 state (this is proved in Problem 3.6)

J=0

J=2

J=0

J=2

J=2

J=1

J=0

J=2

J=1
J=0

np2 np2

1S

3P

1D

(j1, j2)

(3/2,3/2)

(3/2,1/2)

(1/2,1/2)
LS

2 LS

Fig. 3.8 Comparison of the structure and classification of the levels for two equivalent p-electrons
in the LS (left) and jj (right) coupling schemes
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Fig. 3.9 Diagram with the lowest energy levels for Hg, emphasizing the strength of the inter-
combination lines between singlets and triplet states (at variance with Fig. 2.7). In the triplet
63D3 − 63D2 − 63D1 the experimental measure of the separation 63D3 − 63D2 is 35 cm−1,
while the separation for 63D2 - 63D1 is 60 cm−1. The ratio of the intervals turns out 0.58, whereas
in the LS scheme one would have 1.5 (Eq. 3.9)

The states allowed for equivalent p electrons are listed below, where the MJ

degeneracy can be removed by a magnetic field:

j1 j2 J Spectroscopic notation Degeneracy

3/2 3/2 2,0 ( 3
2 ,

3
2 )2,0 6

3/2 1/2 2,1 ( 3
2 ,

1
2 )2,1 8

1/2 1/2 0 ( 1
2 ,

1
2 )0 1

- - - - Total 15

see Fig. 3.8

It is noted that the state ( 3
2 , 1

2 )2,1 is indistinguishable from the ( 1
2 , 3

2 )2,1 and this
accounts for the other 8 states missing with respect to the original 36 states.

An example of heavy atom where a coupling intermediate between the LS and
the jj schemes is Mercury. The energy diagram (simplified) is shown in Fig. 3.9.

Besides the violation of the interval rule one should remark that the strongest
lines in the spectral emission of a mercury lamp originate from the intercombination
of the 1S0 and 3P1 states. At the sake of illustration, since the line at 2537 Å would
be forbidden in the LS scheme (because of the orthogonality of singlet and triplet
states), one realizes the breakdown of LS coupling.

In very heavy atoms pure jj coupling does occur. The tendency from LS to jj
coupling scheme is shown schematically in Fig. 3.10 for the sequence C, Si, Ge, Sn,
Pb, in terms of the (sp) outer electrons configuration.

Problems

Problem 3.6 Prove that for the jj coupling of one s and one p electrons in the state
at j1 = 1/2 and j2 = 3/2 the fine structure constant B ′ is equal to −B (see Fig. 3.7).

Solution: The couplings are

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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Fig. 3.10 Schematic view of the progressive changeover from LS scheme towards jj scheme on
increasing the atomic number for the two electrons energy levels. It should be remarked that the
LS scheme is often used to label the states eventhough their structure is rather close to the one
pertaining to the jj coupling scheme

a11l1 · s1 + a22l2 · s2 + B( j1, j2)j1 · j2 with a11 and a22 > 0.

For s electron l1 = 0 s1 = 1
2 j1 = 1

2

For p electron l2 = 1 s2 = 1
2 j2 = 3

2
1
2

corresponding to the configuration

j1 j2 J
1
2

3
2 2, 1

1
2

1
2 1, 0

with B
(

1
2 , 3

2

) ≡ B ′ (a) and B
(

1
2 , 1

2

) ≡ B (b).
For case (a)

Bj1 · j2 = B ′s1 · (l2 + s2) = B ′l2 · s1︸ ︷︷ ︸
negligible

+B ′s1 · s2

while for case (b)

Bj1 · j2 = Bs1 · (l2 − s2) = Bl2 · s1︸ ︷︷ ︸
negligible

−Bs1 · s2

Thus B ≡ −c12 > 0 and B ′ = −B.

Problem 3.7 For an electron in the ls jm j state, express the expectation values of
sz , lz , l2

z and l2
x (z is an arbitrary direction and x is perpendicular to z).

Solution: By using arguments strictly similar to the ones at Sect. 2.2.2 (see Eq. (3.12))
and taking into account that because of the spin-orbit precession s must be projected
along j:

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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s j = |s|cos(ŝj) with

cos(ŝj) =
[
s(s + 1) + j ( j + 1) − l(l + 1)

]
/2

√
s(s + 1)

√
j ( j + 1).

Then < sz >= s j m j/| j | = m j A,

with A = [s(s + 1) + j ( j + 1) − l(l + 1)]/2 j ( j + 1)

< lz >=< jz > − < sz >= m j (1 − A)

< l2
z >=< ( jz − sz)

2 >=< j2
z > + < s2

z > −2 < jzsz >=

= m2
j + 1

4
− 2m j < sz >= m2

j + 1

4
− 2m2

j A

Since < l2 >=< l2
z > + 2 < l2

x > (< l2
x >=< l2

y >) then

< l2
x >= 1

2

[
l(l + 1) − 1

4
− m2

j (1 − 2A)

]

The same result for< sz > is obtained from the Wigner-Eckart theorem (Eq. 4.25):
< l, s, j,m j |sz|l, s, j,m j >=< |(s · j) jz| > /j ( j + 1) =
= m j < |s · j| > /j ( j + 1) = m j < |j2 − l2 + s2| > /2 j ( j + 1).

3.4 Quantum Theory for Multiplets. Slater Radial
Wavefunctions

From the perturbative Hamiltonian reported in Eq. (1.11) and on the basis of the
Slater determinantal eigenfunctions D(1, 2, 3, . . .) described at Sect. 2.3, one can
develop a quantum treatment at the aim of deriving the multiplet structure discussed
in the framework of the vectorial model. The perturbation theory for degenerate states
has to be used. A particular form of this approach is described in Problem 2.9 for
the 1s2l states of Helium. At Sect. 2.2.2 a similar treatment was practically given,
without involving a priori the degenerate eigenfunctions corresponding to a specific
electronic configuration.

In general the direct solution of the secular equation is complicated and the matrix
elements include operators of the form r−1

i and r−1
i j and the spin-orbit term. Again

two limiting cases of predominance of the spin-spin or of the spin-orbit interac-
tion have to be used in order to fix the quantum numbers labelling the unperturbed
states associated with the zero-order degenerate eigenfunctions. The eigenvalues are
obtained in terms of generalized Coulomb and exchange integrals. First we shall
limit ourselves to a schematic illustration of the results of the Slater theory for the

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2
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electronic configuration (np)2, to be compared with the results obtained at Sect. 3.2.3
in the framework of the vectorial model.

For two non-equivalent p electrons (say 2p and 3p) the Slater multiplet theory
yields the following eigenvalues in the LS scheme, I0,2 and K0,2 being Coulomb and
exchange integrals for different one-electron states:

(a) E(3D) = E0 + I0 + I2
25 − K0 − K2

25

(b) E(3P) = E0 + I0 − 5I2
25 + K0 − 5K2

25

(c) E(3S) = E0 + I0 + 10I2
25 − K0 − 10K2

25

(d) E(1D) = E0 + I0 + I2
25 + K0 + K2

25

(e) E(1P) = E0 + I0 − 5I2
25 − K0 + 5K2

25

(f) E(1S) = E0 + I0 + 10I2
25 + K0 + 10K2

25

(the indexes 0 and 2 result from the expansion of 1/r12 in terms of Legendre polyno-
mials). For equivalent 2p electrons only states (b), (d) and (f) occur, with energies
(Fig. 3.11).

E(3P) = E0 + I0 − 5I2
25

E(1D) = E0 + I0 + I2
25

E(1S) = E0 + I0 + 10I2
25

(the exchange integral formally coincides with the Coulomb integral here).
The quantitative estimate of the energy levels cannot be given unless numerical

computation of I and K in terms of one-electron eigenfunctions is carried out.
Approximate analytical expressions for the radial parts of the one-electron eigen-

function can be obtained as follows.
An effective potential energy of the form

V (r) = −(Z − σ)e2

r
+ n∗(n∗ − 1)�2

2mr2
(3.20)

Fig. 3.11 Schematic diagram for equivalent p2 electron configuration as derived in the Slater
theory, in terms of Coulomb and exchange generalized integrals. The comparison with the results
of the vectorial model (see Problem 3.1) clarifies that the same structure and classification of the
levels is obtained. Quantitative estimates require the knowledge of the radial parts of the one-electron
eigenfunctions
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Table 3.3 The Clementi-Raimondi values for Z − σ (ground states)

 H       He 
1s 1       1.6875 

Li Be B C N O F Ne 
1s 2.6906 3.6848 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421 
2s 1.2762 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584 
2p   2.4214 3.1358 3.8340 4.4532 5.1000 5.7584 

Na Mg Al Si P S Cl Ar 
1s 10.6259 11.6089 12.5910 13.5754 14.5578 15.5409 16.5239 17.5075 
2s 6.5714 7.3920 8.2136 9.0200 9.8250 10.6288 11.4304 12.2304 
2p 6.8018 7.8258 8.9634 9.9450 10.9612 11.9770 12.9932 14.0082 
3s 2.5074 3.3075 4.1172 4.9032 5.6418 6.3669 7.0683 7.7568 
3p   4.0656 4.2852 4.8864 5.4819 6.1161 6.7641 

It can be noted that for He atom, since n∗ = n = 1 the value of Z − σ must coincide with Z∗
variationally derived at Problem 2.6

is assumed, with σ and n∗ parameters to be determined. This form is strictly similar
to the one for Hydrogenic atoms, with a screened Coulomb term and a centrifugal
term (see Sect. 1.4). Thus the associated eigenfunctions are

φnlm(r, θ,ϕ) = NYl,m(θ,ϕ)rn
∗−1e− (Z−σ)r

n∗a0 (3.21)

with N normalization factor.
The eigenvalues are similar to the ones at Sect. 1.4 and depend on σ and n∗. Then

E(σ, n∗) is minimized to find the best approximate values for σ and n∗ and the radial
part of the eigenfunctions is derived.

Empirical rules to assign the proper values to σ and n∗ are the following. For
quantum number n one has the correspondence

n = 1, 2, 3, 4, 5, and 6
n∗ = 1, 2, 3, 3.7, 4, and 4.2

while Table 3.3 gives the rules to derive (Z − σ).
The best atomic orbitals are actually obtained by the numerical solutions along

the lines devised by Hartree with the improvement by Fock and Slater to include
the electron exchange interaction. The so-called Hartree-Fock equations for the one-
electron eigenfunctions can be derived, by means of a rather lengthy procedure,5

applying the variational principle to the energy function, for a variation that leaves
the determinantal Slater eigenfunctions normalized. The Hartree-Fock equation for
the orbital φα(ri ) of the i th electron can be written in the form

⎧⎨
⎩Hi +

∑
β

[2Iβ − Kβ]
⎫⎬
⎭φα(ri ) = Ei

αφα(ri ) (3.22)

5See, for instance Sect. 16.3 in the book by Slater or Chap. 9 in the book by Atkins and Friedman.

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_9
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Hi is the one-electron core Hamiltonian (Ti − Z∗e2/ri , with Z∗ ≡ Z if no screening
effects are considered), while Iβ and Kβ are the Coulomb and exchange operators
that generalize the correspondent terms derived at Sect. 2.3 for He:

Iβφα(ri ) =
[∫

φ∗
β(r j )

e2

ri j
φβ(r j )dτ j

]
φα(ri ) (3.23)

Kβφα(ri ) =
[∫

φ∗
β(r j )

e2

ri j
φα(r j )dτ j

]
φβ(ri ).

Eα in Eq. (3.22) is the one-electron energy. After an iterative numerical procedure,
once the best self-consistent φ’s are obtained, by multiplying both sides of Eq. (3.22)
by φ∗

α(ri ) and integrating, one obtains for the i th electron

Eα = Eo
α +

∑
β

(2Iαβ − Kαβ) (3.24)

with Eo
α ≡< α|Hi |α > and Iαβ and Kαβ are the Coulomb and exchange integrals,

respectively (with Iββ ≡ Kββ). A sum over all the energies Eα would count all the
interelectron interactions twice. Thus, by taking into account that each orbital in a
closed shell configuration is double occupied, the total energy of the atom is written

ET = 2
∑

α

Eα −
∑
α,β

(2Iαβ − Kαβ) (3.25)

Although the eigenvalues obtained along the procedure outlined above are generally
very close to the experimental data for the ground-state (for light atoms within 0.1
percent) still one could remark that any approach based on the model of independent
electrons necessarily does not entirely account for the correlation effects.

Suppose that an electron is removed and that the other electrons do not readjust
their configurations. Then the one-electron energy Eα corresponds to the energy
required to remove a given electron from its orbital. This is the physical content of
the Koopmans theorem, which identifies |Eα| with the ionization energy. Its validity
rests on the assumption that the orbitals of the ion do not differ sizeably from the
ones of the atom from which the electron has been removed.

The Hartree-Fock procedure outlined here for multi-electron atoms is widely used
also for molecules and crystals, by taking advantage of the fast computers available
nowadays which allow one to manipulate the Hartree-Fock equations. When the
spherical symmetry of the central field approximation has to be abandoned numerical
solutions along Hartree-Fock approach are anyway hard to be carried out. Thus partic-
ular manipulations of the equations have been devised, as the widely usedRoothaan’s
one. Alternative methods are based on the density functional theory (DFT), imple-
mented by the local density approximation (LDA). Correlation and relativistic effects
are to be taken into account when detailed calculations are aimed, particularly for
heavy atoms. Chapter 9 of the book by Atkins and Friedman adequately deals with
the basic aspects of the computational derivation of the electronic structure.

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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Finally we mention that for atoms with a rather high number of electrons and when
dealing in particular with the radial distribution function of the electron charge in
the ground-state (and therefore to the expectation values), the semiclassical method
devised by Thomas and Fermi can be used. This approach is based on the statistical
properties of the so-called Fermi gas of independent non-interacting particles obeying
to Pauli principle, that we shall encounter in a model of solid suited to describe the
metals (Sect. 12.7.1). The Thomas-Fermi approach is often used as a first step in the
self-consistent numerical procedure that leads to the Hartree-Fock equations.

3.5 Selection Rules

Here the selection rules that control the transitions among the electronic levels in the
LS and in the jj coupling schemes are recalled. Their formal derivation (the extension
of the treatment in Appendix 1.3) requires the use of the Wigner-Eckart theorem and
of the properties of theClebsch-Gordan coefficients. We will give the rules for electric
dipole, magnetic dipole and electric quadrupole transition mechanisms, again in the
assumption that one electron at a time makes the transition. This is the process having
the strongest probability with respect to the one involving two electrons at the same
time, that would imply the breakdown of the factorization of the total wavefunction,
at variance to what has been assumed, for instance, at Sect. 2.1.

(A) Electric dipole transition

LS coupling
ΔL = 0,±1 and ΔS = 0, non rigorous (L = 0 → L ′ = 0 forbidden)
ΔJ = 0,±1, transition 0 ↔ 0 forbidden6;
ΔMJ = 0,±1 for ΔJ = 0 the transition MJ = 0 → M ′

J = 0 forbidden.6

For the electron making the transition one has Δl = ±1, according to parity
arguments (see Appendix 1.3).

jj coupling
For the atom as a whole
ΔJ = 0,±1, transition 0 ↔ 0 forbidden6;
ΔMJ = 0,±1 for ΔJ = 0 the transition MJ = 0 → M ′

J = 0 is forbidden.6

For the electron making the transition Δl = ±1, Δ j = 0,±1.

(B) Magnetic dipole transitions

ΔJ = 0,±1 and ΔMJ = 0,±1 (general validity)

LS scheme
ΔS = 0, ΔL = 0, ΔM = ±1

6Rules of general validity in both schemes.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_2
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(C) Electric quadrupole mechanism

ΔJ = 0,±1,±2 (general validity),

LS scheme
ΔL = 0,±1,±2
ΔS = 0

Problems

Problem 3.8 A beam of Ag atoms (in the ground state 5 2S1/2) flows with speed
v = 104 cm/s, for a length l1 = 5 cm, in a region of inhomogeneous magnetic field,
with dH/dz = 1 T/cm. After the exit from this region the beam is propagating freely
for a length l2 = 10 cm and then collected on a screen, where a separation of about
0.6 cm between the split beam is observed (Stern-Gerlach experiment). From these
data obtain the magnetic moment of Ag atom.

Solution: In the first path l1 the acceleration is a = F/MAg = (μz/MAg)(dH/dz)
and the divergence of the atomic beam along z turns out d ′ = (a/2) (l1/v)2. In the
second path l2, with vz = al1/v and then d ′′ = al1l2/v2.

The splitting of the two beams with different z-component of the magnetic moment
(S = J = 1/2) turns out d = 2(d ′ + d ′′) = (a/v2)(l2

1 + 2l1l2). Then

μz = MAgv
2d

dH
dz (l2

1 + 2l1l2)
� 0.93 · 10−20 erg

Gauss
.

Problem 3.9 In the LS coupling scheme, derive the electronic states for the config-
urations (ns, n′s) (i), (ns, n′ p) (ii), (nd)2 (iii) and (np)3 (iv). Then schematize the
correlation diagram to the correspondent states in the jj scheme, for the nd2 and for
the np3 configurations.

Solution:
(i) S = 1 L = 0 3S1; S = 0 L = 0 1S0

(ii) 1P1,
3 P0,1,2

(iii)
2 2 1 1 0 0 −1 −1 −2 −2 ml
1
2 − 1

2
1
2 − 1

2
1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 ms

2 1
2

2 − 1
2 4,0

1 1
2 3,1 3,0

1 − 1
2 3,0 3,−1 2,0

0 1
2 2,1 2,0 1,1 1,0

0 − 1
2 2,0 2,−1 1,0 1,−1 0,0

−1 1
2 1,1 1,0 0,1 0,0 −1,1 −1,0

−1 − 1
2 1,0 1,−1 0,0 0,−1 −1,0 −1,−1 −2,0

−2 1
2 0,1 0,0 −1,1 −1,0 −2,1 −2,0 −3,1 −3,0

−2 − 1
2 0,0 0,−1 −1,0 −1,−1 −2,0 −2,−1 −3,0 −3,−1 −4,0
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then 1S0,
3 P2,1,0,

1 D2,
3 F4,3,2,

1 G4.

The total number of states is

(
10
2

)
= 45

(iv) 4S 3
2
, 2P1

2 , 3
2
, 2D 3

2 , 5
2

The total number of states is

(
6
3

)
= 20

The correlation between the two schemes is given below for the p3

and d2 configurations

d 2

1S

1D

1G

3P

3F

1S0

1D2

1G4

3P2
3P1
3P0

3F4

3F3

3F2

(5/2,5/2)

(3/2,3/2)

(5/2,3/2) d 2

LS coupling jj coupling

Problem 3.10 By resorting to the Hund rules derive the effective magnetic moments
for Dy+++, Cr+++ and Fe+++ (See Table 3.2).

Solution: The ion Dy+++ has incomplete 4 f shell (9 electrons).
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m spin

3 ↑ ↓
2 ↑ ↓
1 ↑
0 ↑
-1 ↑
-2 ↑
-3 ↑

S = 5
2 L = 5 J = L + S = 15

2 =⇒ state 6H 15
2

according to the Pauli principle and the Hund rules.
The Landé factor is

g = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
= 1.33

thus
p = μ

μB
= g

√
J (J + 1) = 10.65

In similar way

Cr+++ (3d)3 S = 3
2 L = 3 J = |L − S| = 3

2 =⇒ state 4F3
2
;

g = 0.4 and p = 0.77

Fe+++ (3d)5 S = 5
2 L = 0 J ≡ S = 5

2 =⇒ state 6S 5
2
;

g = 2 and p = 5.92

Problem 3.11 When accelerated protons collide on 19F nuclei an excited state of
20Ne is induced and transition to the ground state yields γ emission. The emission
spectrum, as a function of the energy of colliding protons, displays a line centered
at 873.5 keV, with full width at half intensity of 4.8 keV. Derive the life time of the
excited state of 20 Ne. Comment about the difference with the emission spectrum
of 57Fe, where the transition to the ground state from the first excited state yields a
γ-photon at 14.4 keV, with life time 10−7 s.

By referring to 57Fe, considering that the transition is due to a proton and assuming
as radius of the nucleus 10−12 cm, by means of order of magnitude estimates dis-
cuss the transition mechanism (electric dipole, electric quadrupole,magnetic dipole)
driving the γ transition at 14.4 keV in 57Fe.

Solution: From

τ � �

ΔE
� 1.05 · 10−27 erg s

4.8 · 103 · 1.6 · 10−12 erg
= 1.37 · 10−19 s.
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for 20Ne, while for 57Fe

ΔE � �

τ
= 1.05 · 10−20 erg � 6.6 · 10−12 keV.

The transition mechanism driving the γ transition at 14.4 keV in 57Fe is discussed
as follows:

(a) for electric dipole transition the spontaneous emission probability (see Ap-
pendix 1.3) is

AE
21 = 32π3(E2 − E1)

3

3c3� h3
| < 2|eR|1 > |2 � 1011 s−1

for | < 2|eR|1 > |2 � (e · RN )2. Then one would expect

τ E ∼ (AE
21)

−1 ∼ 10−11 s;

(b) for electric quadrupole mechanism

AE
21

AQ
21

�
(

λ

RN

)2 1

4π2

and then
τ Q ∼ τ E · 1.9 · 106 � 1.9 · 10−5 s;

(c) for magnetic dipole mechanism

AE
21

AM
21

∼
[
eRN

μN

]2

� 4100

τM ∼ τ E · 4100 ∼ 4 · 10−7 s,

having used for the magnetic moment μN � 7.5 × 10−24 erg/Gauss.
From the experimental value it may be concluded that the transition is due to

magnetic dipole mechanism.

Problem 3.12 Derive the multiplets for the 3F and the 3D states and sketch the
transitions allowed by the electric dipole mechanism.
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Solution:

Problem 3.13 Estimate the order of magnitude of the ionization energy of 92U in
the case that Pauli principle should not operate (assume that the screened charge is
Z/2) and compare it with the actual ionization energy (4 eV).

Solution: From

E = −μZ2e4

2�2n2
= − Z2

n2
· 13.6 eV

and for n = 1 and Z = 46, the ionization energy would be

|E | = (46)2 · 13.6 eV � 2.9 · 104 eV.

Problem 3.14 The structure of the electronic states in the Oxygen atom can be
derived in a way similar to the one for Carbon (Problem 3.1) since the electronic
configuration (1s)2 (2s)2 (2p)4 has two “holes” in the 2p shell, somewhat equivalent
to the 2p two electrons. Discuss the electronic term structure for oxygen along these
lines.

Solution: From Table 3.1 taking into account that for (2p)6 one would have ML = 0
and MS = 0 the term 3P , 1D, 1S are found. Since one has four electrons the spin-orbit
constant changes sign, the multiplet is inverted and the ground state is 3P2 instead
of 3P0 (see Problem 3.1).
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Chapter 4
Atoms in Electric and Magnetic Fields

Topics

Electric Polarizability of the Atom
Linear and Quadratic Field Dependences of the Energies
Energy Levels in Strong and in Weak Magnetic Fields
Atomic Paramagnetism and Diamagnetism
Paramagnetism in the Presence of Mean Field Interactions

4.1 Introductory Aspects

The analysis of the effects of magnetic or electric fields on atoms favors a deep
understanding of the quantum properties of matter. Furthermore, electric or magnetic
fields are tools currently used in several experimental studies.

In classical physics the prototype atom is often considered as an electron rotating
on circular orbit around the fixed nucleus. In the presence of electric and magnetic
fields (see Fig. 4.1), the equation of motion for the electron becomes

m
d2r
dt2

= −e2r
r3

− eE − e

c

(
dr
dt

× H
)

(4.1)

For a static magnetic field H only (then the external electric field E = 0) from
Eq. (4.1) it is found that the Lorentz force induces a precessional motion of the charge
around z, with angular frequency (see Problem 4.1)

© Springer International Publishing Switzerland 2015
A. Rigamonti and P. Carretta, Structure of Matter,
UNITEXT for Physics, DOI 10.1007/978-3-319-17897-4_4
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Fig. 4.1 Variables used to
account for the effects of
electric or magnetic field in
the classical atom (Eq. (4.1))

ω =
√(

eH

2mc

)2

+ e2

mr3
± eH

2mc
�
√

e2

mr3
± ωL (4.2)

To give orders of magnitude, the orbital frequency in the plane of motion is ω0 =
e/

√
mr3 ∼ 1016 rad s−1 while the Larmor frequency ωL = eH/2mc is around

1011 rad s−1, for field H = 104 Oe (1 T).
The current related to the orbital motion corresponds to the magnetic moment

μ′ = μBn (see Problem 1.18): its alignment along the field, contrasted by thermal
excitation, implies the temperature dependent paramagnetism. The effective z com-
ponent of the magnetic moment is expected of the order of (μ′)z ∼ μB(μBH/kBT )

(formal description will be given at Sect. 4.4). Therefore the paramagnetic suscep-
tibility χpara = N (μ′

z)/H , for a number N = 1022 of atoms per cubic cm, is of the
order of χpara � Nμ2

B/kBT ∼ 6 × 10−5 (for T � 100 K).
The current related to the precessional motion of the orbit is i = (−eωL/2π) =

−e2H/4πmc, along a ring of area A = π(rsinθ)2 (see Fig. 4.1). The associated
magnetic moment is

(μ′′)z = i A

c
= − e2H

4πmc2
πr2sin2θ,

yielding a diamagnetic susceptibility χdia = Nμ′′/H � −e2Nr2/4mc2, as order of
magnitude around −10−6 (again for N = 1022 atoms per unit volume).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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On the ground of qualitative arguments the effect of an electric field E ‖ ẑ can be
understood by referring to the displacement δz of the orbit along the field direction:
the component of the Coulomb force e2δz/r3 equilibrates the force eE (see the sketch
below).

Then the dipole moment turns out eδz = Er3 and an atomic polarizability given
by α ∼ eδz/E ∼ r3 ∼ 10−24 cm3 can be predicted.

In the quantum mechanical description the electric and magnetic forces imply the
one-electron Hamiltonian (see Eq. (1.26))

H = 1

2m
(p + e

c
A)2 + V (r) + 2μBs · rotA − eϕ =

= p2

2m
+V (r)+2μBs · rotA − eϕ + e

2mc

[
(p · A) + (A · p)

]
+ e2A2

2mc2︸ ︷︷ ︸
HP

≡ H0+HP

(4.3)
Here the magnetic term related to the spin moment (Eq. (1.32)) has been added, while
V (r) in H0 is the central field potential energy. ϕ and A in Eq. (4.3) are the scalar
and vector potentials describing the perturbation applied to the atom.

For homogeneous electric field along the z direction

A = 0, and ϕ = −
∫ z

0
Edz = −zE (4.4)

while for homogeneous magnetic field H = ẑH0
1

ϕ = 0, and A = 1

2
H × r. (4.5)

The corrections to the energy levels can be evaluated on the basis of the eigenfunc-
tions of the zero-field Hamiltonian H0. In multi-electrons atoms this perturbative
approach is generally hard to carry out, in view of the inter-electron couplings (as
it can be realized by recalling the description in the framework of the vectorial

1In fact (1/2)rot(H × r) = ẑH0.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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model (Chap. 3)). In the following we shall describe the basic aspects of the effects
due to the fields by deriving the corrections to the atomic energy levels in some
simplifying conditions.

4.2 Stark Effect and Atomic Polarizability

Stark effect is usually called the modification to the energy levels in the presence
of the Hamiltonian HP = ∑

i eziE (first studied in the Hydrogen atom also by Lo
Surdo). In the perturbative approach energy corrections linear in the field in general
are not expected, the matrix elements of the form

∫
φ∗(ri )ziφ(ri )dτi being zero.

The second order correction can be put in the form

ΔE (2) = −α

2
E2 (4.6)

where, in the light of the classical analogy for the electric dipole2

μe = −∂ΔE

∂E , (4.7)

α defines the atomic polarizability. In fact, one can attribute to the atom an induced
electric dipole moment μe = αE . The polarizability depends in a complicated way
from the atomic state, in terms of the quantum numbers J and MJ : α = α(J, MJ ).

Let us first evaluate the atomic polarizability α1s for Hydrogen in the ground state.
Instead of carrying out the awkward sum of the second order matrix elements we
shall rather estimate the limits within which α1s falls. From Eqs. (4.3) and (4.4) one
has

ΔE (2) = −
∑
n>1

| < 1s|HP |nlm > |2
En − E1

= −1

2
α1sE2. (4.8)

| < 1s|HP |nlm > |2 is always positive and En increases on increasing n. Therefore
one can set the limits of variability of α1s/2:

− e2

E1

∑
| < 1s|z|nlm > |2 <

α1s

2
<

e2

(E2 − E1)

∑
| < 1s|z|nlm > |2. (4.9)

(note that the state n = 1 can be included in the sum, since < 1s|z|1s >= 0). On
the other hand

∑
< 1s|z|nlm >< nlm|z|1s >=< 1s|z2|1s >= 1

πa3
0

∫
4π

3
r4e−2r/a0dr = a2

0 .

2Note that the field-related energy is ΔE = − ∫ E
0 μedE ′, so that for μe = αE ′ Eq. (4.6) follows.

http://dx.doi.org/10.1007/978-3-319-17897-4_3


4.2 Stark Effect and Atomic Polarizability 125

From E1 = −e2/2a0 while (E2 − E1) = 3e2/8a0, one deduces

4a3
0 < α1s <

16

3
a3

0 .

It is recalled that the “brute-force” second order perturbative calculation yields
α1s = 4.66a3

0 . Thus the electric polarizability turns out of the order of magnitude of
the “size” of the atom to the third power, as expected from the qualitative argument
at Sect. 4.1.

An approximate estimate of the polarizability of the ground state of the Hydrogen
atom can also be obtained by means of variational procedures, on the basis of a trial
function involving the mixture of the 1s and the 2pz states:

φvar = c1φ1s + c2φ2pz . (4.10)

This form could be expected on the ground of physical arguments, as sketched below
in terms of atomic orbitals:

// z

z

+

+

-

z

+

-1s

2pz

(see Problem 2.10).
The energy function is

E(c1, c2) =
∫

φ∗
varHφvardτ∫
φ∗
varφvardτ

(4.11)

where H is the total Hamiltonian, while

H11 ≡< 1s|H|1s >,H22 ≡< 2pz|H|2pz >,H12 ≡< 1s|H|2pz >,

S12 ≡< 1s|2pz >= 0 , S11 = S22 = 1 (4.12)

From ∂E/∂c1,2 = 0

c1(H11 − E) + c2H12 = 0

c1H12 + c2(H22 − E) = 0, (4.13)

http://dx.doi.org/10.1007/978-3-319-17897-4_2


126 4 Atoms in Electric and Magnetic Fields

with secular equation (H11 − E H12

H21 H22 − E

)
= 0 (4.14)

Since H11 = E0
1s , H22 = E0

1s/4, while from Table 1.3 for Z = 1
H12= < 1s|H0|2pz>+<1s|z|2pz > eE=eE28a0/35

√
2 ≡ A, Eq. (4.14) becomes

(
E0

1s − E A

A E0
1s
4 − E

)
= 0, (4.15)

of roots

E± = 5

8
E0

1s ± 1

2

√
9(E0

1s)
2

16

(
1 + 64A2

9(E0
1s)

2

)
(4.16)

By taking into account that A 	 E0
1s , from (1 + x)1/2 � 1 + x/2 the lowest

energy level turns out

E = E0
1s + 4

3

A2

E0
1s

≡ E0
1s − 2.96

a3
0

2
E2,

corresponding to the polarizability α1s = 2.96a3
0 .

In the particular case of accidental degeneracy (see Sect. 1.4) Stark effect linear in
the field occurs. Let us consider the n = 2 states of Hydrogen atom. The zero-order
wavefunction is

φl = c(l)
1 φ2s + c(l)

2 φ2p1 + c(l)
3 φ2p0 + c(l)

4 φ2p−1 (4.17)

and the corrected eigenvalues are obtained from

⎛
⎜⎜⎝

< 2s| − ezE |2s > −E ... ...

... < 2p1| − ezE |2p1 > −E ...

... ... ...

... ... ...

⎞
⎟⎟⎠ = 0 (4.18)

Again recalling the selection rules for the z-component of the electric dipole
(Appendix 1.3), this determinant is reduced to

⎛
⎜⎜⎝

−E 0 B 0
0 −E 0 0
B 0 −E 0
0 0 0 −E

⎞
⎟⎟⎠ = 0 (4.19)

where B = −3a0eE .

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Fig. 4.2 Effect of the
electric field on the n = 2
states of Hydrogen atom,
illustrating how in the
presence of accidental
degeneracy a kind of
pseudo-orientational
polarizability arises, with
energy correction linear in
the field E

From the roots R1,2 = 0 and R3,4 = ±B the structure of the n = 2 levels in the
presence of the field is deduced in the form depicted in Fig. 4.2.

The first-order Stark effect is observed in Hydrogen and in F-centers in crystals
(where a vacancy of positive ion traps an electron and causes an effective potential
of Coulombic character which yields the accidental degeneracy).

Finally in Fig. 4.3 the experimental observation of the Stark effect on the D1,2

doublet of Na atom (see Fig. 2.2) is depicted. It is noted that the degeneracy in
±MJ ≡ ±m j is not removed, the energy correction being independent from the
versus of the field.

2P3/2

2S1/2

2P1/2

D1

D2

ε ≠0

MJ =±3/2

MJ=±1/2

MJ=±1/2

MJ=±1/2

Fig. 4.3 Ground state and first excited states of Na atom upon application of electric field and
modification of the D doublet. The energy shift of the ground state is 40.56 kHz/(kV/cm)2, corre-
sponding to an electric polarizability α = 24.11 · 10−24 cm3. The shifts of the P states are about
twice larger

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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Problems

Problem 4.1 Show how the classical equation for the electron in orbit around the
nucleus in the presence of static and homogeneous magnetic field implies the pre-
cessional motion of the orbit with the Larmor frequency.

Solution: From the force

F = −e2 r
r3

− e

c
(v × H),

for H along z

m
dvx

dt
+ e

c
Hvy + mω2

0x = 0, m
dvy

dt
− e

c
Hvx + mω2

0 y = 0,

where ω0 = √
e2/mr3 is the angular frequency of rotation in the orbit. The motion

along z is unaffected. By transforming to

x(t) = r cos ωt, y(t) = r sin ωt

one writes

dvx

dt
= −rω2 cos ωt; dvy

dt
= −rω2 sin ωt.

From the equations of motion the equation for ω

ω2 − 2ωLω − ω2
0 = 0,

is found (ωL = eH/2mc), yielding (for the positive root) ω =
√

ω2
0 + ω2

L + ωL .

Since, from order of magnitude estimates (see Sect. 4.1) ω2
L 	 ω2

0 , Eq. (4.2)
follows. See also Problem 4.3.

Problem 4.2 In the classical model for the atom and for the electromagnetic radia-
tion source (Thomson and Lorentz models) the electron was thought as an harmonic
oscillator, oscillating around the center of a sphere of uniform positive charge (see
Problem 1.5). Show that the electric polarizability α = e2/k has to be expected, with
effective elastic constant k = 4πρe/3, ρ being the (uniform) positive charge density.

By resorting to the second-order perturbative derivation of the polarizability for
the quantum oscillator show that the same result is obtained and that it is indeed the
exact result.

Solution: The restoring force is F = −(4πx3ρ/3)e/x2 and then k = 4πρe/3,
corresponding for the electron to an oscillating frequency ν0 = (1/2π)

√
k/m �

2.53 × 1015 s−1. From eE = F = kx and dipole moment ex = e2E/k, α = e2/k
follows.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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From Eq. (4.8), with perturbation Hamiltonian Hp = −eEz and quantum oscil-
lator ground and excited states

α = 2e2
∑
exc 
= f

| < exc|z| f > |2
E0
exc − E0

f

.

From the matrix elements < v|z|v−1 >= √
v�/2mω (according to the properties

of Hermite polynomials, see Sect. 10.3.1) only the first excited state |exc > has to
be taken into account. Then

α = 2e2

�

| < f + 1|z| f > |2
ω0

= 2e2

�

�

2mω2
0

= e2

k

The proof that this is the exact result is achieved by rewriting the Hamiltonian
of the linear oscillator to include the electric energy ezE and observing that a shift
of the eigenvalues by −(eE)2/2k occurs (see the analogous Problem 10.16 for the
vibrational motion of molecules, where it is also shown that α does not depend from
the state |v > of the oscillator).

4.3 Hamiltonian in Magnetic Field

From Eqs. (4.3) and (4.5), by including now the spin-orbit interaction, the perturba-
tion of the central field Hamiltonian for multi-electron atoms is written

H(1)
P = μBH

∑
i

l iz + 2μBH
∑
i

siz +
∑
i

ξinl li · si . (4.20)

The term

H(2)
P =

∑
i

e2A2
i

2mc2
(4.21)

has been left out: it shall be taken into account in discussing the diamagnetism
(Sect. 4.5). In writing Eq. (4.20) we have used the interaction in the form −μl,s · H,
as it has been proved possible at Sect. 1.6. The magnetic field is considered static,
homogeneous and applied along the z-direction.

One could emphasize that in the hypothetical absence of the spin Eq. (4.20) would
reduce to

H(1)
P = μBHLz (4.22)

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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implying corrections to the energy levels in the form ΔE = μBMH . Therefore, in
the light of the selection rule ΔM = 0,±1 (see Sect. 3.5), one realizes that for a
given emission line the magnetic field should induce a triplet, characteristic of the
so-called normal Zeeman effect (this terminology being due to the fact that for such a
triplet an explanation in terms of classical Lorentz oscillators appeared possible, see
Problem 4.3). The experimental observation that the effect of the magnetic field on the
spectral lines is more complex, as shown in the following, can be considered stringent
evidence for the existence of the spin. The real Zeeman effect (at first erroneously
considered as “anomalous”) in general does not consists in a triplet (see the case of
the Na doublet in the following). The triplet actually can occur, in principle, in the
presence of very strong field (Paschen-Back effect), as we shall see at Sect. 4.3.2.

4.3.1 Zeeman Regime

In order to derive the energy of the atom from the Hamiltonian 4.20 one has to
consider the relative magnitude of the terms μBH (magnetic field energy) and ξnl
(spin-orbit energy). In the weak field regime, for μBH 	 ξnl and in the LS coupling
scheme, the Hamiltonian is considered in the form

H(1)
P = μBH · (L + 2S) (4.23)

and acting as a perturbation on the states |E0, J, MJ > resulting from the central
field Hamiltonian, with the coupling

∑
i li and

∑
i si and the spin-orbit interaction

in the form ξLSL · S.
The operator (L + 2S) has to be projected along J by using Wigner-Eckart

theorem

< E0, J, M ′
J |Lz + 2Sz |E0, J, MJ >= g < E0, J, M ′

J |Jz |E0, J, MJ >= gMJ δM ′
J ,MJ

,

(4.24)

the constant g being obtained from the component of (L + 2S) along J:

g =< E0, J, L , S

∣∣∣∣ (L + 2S) · J
J 2

∣∣∣∣ E0, J, L , S >=

=< E0, J, L , S

∣∣∣∣ (L + S) · J + S · J
J 2

∣∣∣∣ E0, J, L , S >=

= 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
(4.25)

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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This result is in close agreement with the deduction of the Lande’ factor within the
vectorial coupling model (Sect. 3.2.2). Then the energy corrections are given by

ΔE = μBHgMJ , (4.26)

the result that one would anticipate by assigning to the atom a magnetic moment
μJ = −μBgJ and by writing the perturbation Hamiltonian as HP = −μJ · H.

As a consequence of Eqs. (4.25) and (4.26), in general the structure of the atomic
levels in the magnetic field, in the Zeeman regime, is more complicated than the
one for S = 0. The spectral lines are modified in a form considerably different
from a triplet. At the sake of illustration, the case of the Na doublet D1 and D2 is
schematically reported in Fig. 4.4. By taking into account the selection rules ΔMJ =
0,±1, for Na coinciding with the ones for single electron (see Sect. 2.1), also the
polarization of the emission lines is justified.

MJ
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-3/2
-1/2

1/2

1/2
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-1/2

MJ

MJ

D1 D2
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2P3/2

2P1/2

MJg

g=2

g=2/3

1

-1

2
2/3
-2/3
-2

σ σ σ σ σ σπ π π πD1 D2

g=4/3

MJg

D1 D2

H=0

H≠0

Fig. 4.4 Structure of the 2S1/2 ground-state and of the 2P doublet of Na atom in a magnetic field and
transitions allowed by the electric dipole selection rules ΔS = 0, ΔJ = 0,±1 and ΔMJ = 0,±1.
The D1 line splits into four components, the D2 line into six. Similar structure of the levels hold
for the other alkali atoms. On increasing the magnetic field strength the structure of the lines, here
shown for the weak field regime, progressively changes towards a central π line and two σ+ and σ−
doublets (see Problem 4.7). π lines correspond to ΔMJ = 0, while σ lines to ΔMJ = ±1

http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_2
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4.3.2 Paschen-Back Regime

When the strength of the magnetic field is increased the structure of the spectral lines
predicted within the LS coupling model and weak field condition is progressively
altered and in the limit of very strong field the condition of a triplet (as one would
expect for S = 0) is restored. This crossover is related to the fact that for μBH � ξLS
the effect of the magnetic perturbation has to be evaluated for unperturbed states
characterized by quantum numbers M and MS pertaining to Lz and Sz , while the
spin-orbit interaction can be taken into account only as a subsequent perturbation.
This is the so-called Paschen-Back, or strong field, regime.

From the field-related Hamiltonian in Eq. (4.23), in a way similar to the derivation
within the vectorial model (see Sect. 3.2), the energy correction turns out

ΔE = μBH(M + 2MS). (4.27)

From the selection rules ΔM = 0,±1 and ΔMS = 0 (the spin-orbit interaction being
absent at this point) one sees that the frequency ν(0)

12 of a given line related to the
transition |2 >→ |1 > in zero-field condition, is modified by the field in

ν(H)
12 = ν(0)

12 + μBH

h

[
(M2 − M1) + 2(M2

S − M1
S)

]
(4.28)

implying the triplet, with two lines symmetrically shifted by (e/4πmc)H .
Then the spin-orbit interaction can be taken into account, yielding

ΔE ′ = ξLS < |Lx Sx + LySy + LzSz| >= ξLS < |LzSz| >= ξLSMMS (4.29)

and causing a certain structure of the triplet (see Problems 4.4 and 4.7).
Finally we mention that the effect of magnetic fields in the jj coupling scheme can

be described by operating directly on the single-electron j moment and considering
the relationship between the magnetic energy and the inter-electron coupling leading
to total J. Again one has to use the Wigner-Eckart theorem and the results anticipated
in the framework of the vectorial model (Sect. 3.3) are derived.

Problems

Problem 4.3 By taking into account the Larmor precession (Problem 4.1), the clas-
sical picture of the Lorentz radiation in magnetic field implies a triplet for observation
perpendicular to the field and a doublet for longitudinal observation.

Discuss the polarization of the radiation in terms of the selection rules for the
quantum magnetic number.

Solution: The sketch of the experimental observation for classical oscillator in a
magnetic field is given below:

http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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The frequency shift δω can be calculated as shown in Problem 4.1. The frequency
of the electron oscillating in the z direction (see sketch above) remains unchanged.
The equations for x and y can be written in terms of u = x + iy and v = x − iy, to
find for ω0 � ωL

u = u0e
i
(
ω0+ eH0

2mc

)
t

and v = v0e
i
(
ω0− eH0

2mc

)
t
,

namely the equations for left-hand and right-hand circular motions at frequencies
ω0 ± δω, with δω = eH0/2mc. The oscillators 2 and 3 in the sketch above have to
emit or absorb radiation at frequency (ω0 ± δω), circularly polarized when detected
along H0.

Oscillator 1 is along the field and therefore the intensity of the radiation is zero
along that direction. If the radiation from the oscillators 2 and 3 is observed along
the perpendicular direction is linearly polarized.

The polarizations of the Zeeman components have their quantum correspondence
in the ΔMJ = 0 and ΔMJ = ±1 transitions. These rules are used in the so-
called optical pumping: the exciting light is polarized in a way to allow one to
populate selectively individual Zeeman levels, thus inducing a given orientation of
the magnetic moments (somewhat equivalent to the magnetic resonance, see Chap. 6).

Problem 4.4 Illustrate the Paschen-Back regime for the 2P ←→ 2S transition in
Lithium atom, by taking into account a posteriori the spin-orbit interaction. Sketch
the levels structure and the resulting transitions, with the correspondent polarizations.

Solution: The degenerate block

μBH < nlm ′m ′
s |lz + 2sz|nlmms >= μBH(m + 2ms)

is diagonal. The degeneracy is not completely removed. For the non-degenerate levels
the spin-orbit interaction yields the correction

ξnl < mms |lzsz|mms >= �
2ξnlmms .

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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For the degenerate levels one has to diagonalize the corresponding block. It is noted
that the terms l+s− and l−s+ have elements among the degenerate states equal
to zero (the perturbation does not connect the states m = 1, ms = −1/2 and
m = −1, ms = 1/2). So this degeneracy is not removed.

The levels structure and the transitions are sketched below:
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-1/2

1/2

-1/2
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ππ σσσσ
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1/2

1/2
-1/2

-1/2 1

0

-1

-1

0

1

0

0

μ H
ξ /2

Transition lines at energies
E0(P)-E0(S)+ μBH(m”-m’)+  

2ξ2pm”ms
with m= 0,±1

m’

B

2
n1

Problem 4.5 Evaluate the shift of a spectral line at λ = 1894.6 Å due to the transi-
tion from the 1P1 to the 1S0 state when a magnetic field of 1 T is applied.

Solution: The magnetic field gives rise to the triplet (ΔMJ = 0,±1) and the sepa-
ration between the components is

Δν = E1 − E0

h
= gμBH

h
� 1.4 · 1010 Hz

From Δλ � −(λ0/ν0)Δν = −(λ2
0/c)Δν one has Δλ � 1.67 × 10−2 Å.

Problem 4.6 Show that in the low-energy state of the positronium atom (1S0 and
3S1) no Zeeman effect occurs (the magnetic moment of the positron is μp = μBgSp).

Solution: The Hamiltonian is

H = −(μe + μp) · H = a(Sez − Sp
z ),

with a = μBgH . From the energy corrections

E = a < φ|Sez − Sp
z |φ >
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since in the singlet state the spin eigenfunction is antisymmetric and the operator
(Sez − Sp

z ) is antisymmetric, the matrix element must be zero. The same is true also
for the triplet state 3S1.

A more formal proof can be obtained by applying the operator (Sez − Sp
z ) on the

four spin eigenfunctions αpαe, βpβe, etc. for the two particles.

Problem 4.7 From the Paschen-Back structure of the D1,2 doublet of Sodium atom
imagine to decrease the magnetic field until the Zeeman weak field regime is reached.
Classify the states and connect the levels in the two regimes.

Solution:

2P3/2

2P1/2

H=0

2P

+ξ/2

-ξ

m m s

1 +1/2

0

-1

0

-1

+1/2

-1/2

-1/2

+1/2

+1 -1/2

m j

+3/2

+1/2

-1/2
-3/2

2P3/2

2P1/2

1/H

+1/2

-1/2

Paschen-Back regime Zeeman regime

ΔE = μBH(m + 2ms) ΔE = gμBHmj

with E0(n, l,m,ms) with E0(n, l, j,mj)
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Upon increasing the field (from right to left in the figure) the D1 and D2 lines
(Fig. 4.4) modify their structures as schematically shown below:

σ

σ

σ

σ

π

π

σ

σ

π

4.4 Paramagnetism of Non-interacting Atoms
and Mean Field Interaction

From the energy corrections induced by a magnetic field (Eq. (4.26)) in the weak
field regime and in the light of the classical analogy, one can attribute to the atom a
magnetic moment μJ = −μBgJ, with J the total angular momentum. This statement,
already used in the vectorial description at Sect. 3.2, is at the basis of the theory for
the magnetic properties of matter.

As illustrative example we shall show how the magnetic properties of an assembly
of atoms can be derived by referring to the statistical distribution on the levels, when
the thermal equilibrium at a given temperature T is achieved. The atoms will first be
considered as non-interacting (the only weak interactions occurring with the other
degrees of freedom of the thermal reservoir, so that statistical equilibrium can actually
be attained).

In the absence of field, degeneracy in the magnetic quantum number MJ occurs,
pictorially corresponding to equiprobable orientations of the magnetic moments with
respect to a given z-direction, as sketched in Fig. 4.5. When the field is switched on,
in a characteristic time usually called spin-lattice relaxation time T1 (for some detail
on this process see Chap. 6), statistical equilibrium is achieved, with the populations

http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Fig. 4.5 Pictorial sketch of
non-interacting atomic
magnetic moments in the
absence (a) and in the
presence (b) of the field. The
field removes the degeneracy
in MJ and after some time
(of the order of T1) the
statistical distribution yields
an excess population on the
low energy levels so that an
effective component of the
magnetic moment along the
field is induced

(a)

(b)

on the magnetic levels as depicted in Fig. 4.5b and with an average (statistical) expec-
tation value of the magnetic moment along the field < μz >
= 0.

< μz > is written

< μz >= −gμB

∑
MJ

MJe−xMJ∑
MJ

e−xMJ
(4.30)

where x = gμBH/kBT . For x 	 1 one has

< μz >� −gμB

∑
MJ

MJ (1 − xMJ )∑
MJ

(1 − xMJ )

and since
∑

MJ
M2

J = J (J + 1)(2J + 1)/3,

< μz >= gμBx
J (J + 1)(2J + 1)

3(2J + 1)
= μ2

J H

3kBT
(4.31)

with

|μJ | = gμB

√
J (J + 1).
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Fig. 4.6 Normalized value
of the effective magnetic
moment along the field
direction as a function of the
dimensionless variable
(gμB H/kBT ), according to
Eq. (4.32), for different J ’s
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The volume paramagnetic susceptibility is χ = Nχa , with N number of atoms
per unit volume and χa atomic susceptibility, given by χa = μ2

J/3kBT , according
to Eq. (4.31). Thus the quantum derivation of the Curie law has been obtained.
Without the approximation of low field (or high temperature), Eq. (4.30) gives

< μz >= gμB J

[
2J + 1

2J
coth

(2J + 1)x

2
− 1

2J
coth

x

2

]
, (4.32)

the function depicted in Fig. 4.6 and known as Brillouin function. For J → ∞, the
Brillouin function becomes the Langevin function, while for J = 1/2 it reduces to
tanh(x/2).

The saturation magnetization Msat = N < μz >T→0 corresponds to the sit-
uation where all the atoms are found on the lowest energy level of Fig. 4.5b and
(< μz >)T→0 = gμB J .

According to Eq. (4.31) on decreasing temperature the paramagnetic susceptibility
(in evanescent field) diverges as 1/T . However, when the temperature is approaching
zero so that the condition x 	 1 no longer holds, partial saturation is achieved and χ
reaches a maximum and then decreases on cooling. In practice this can happen only
in strong fields (of the order of several Tesla) and at low temperature.

The reference to an ideal paramagnet in practice corresponds to the assumption
that the local magnetic field is the one externally applied (apart from the diamagnetic
correction, see Sect. 4.5). This condition does not hold when some type of interaction
among the atomic magnetic moments is active, as it is common in crystals with
magnetic ions. In this case the susceptibility can diverge at finite temperature, as
sketched in Fig. 4.7.
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Fig. 4.7 Sketchy behavior of the temperature dependence of the paramagnetic susceptibility in
presence of interactions among the magnetic moments. The state below Tc corresponds to sponta-
neous ordering of the magnetic moments along a given direction as a consequence of a cooperative
process, typical of phase transitions in many-body systems, driven by the interaction among the
components (see Chaps. 15 and 17)

A simple method to deal with the interactions is the mean field approximation,
namely to assume that the local field is the external one Hext plus a second contri-
bution, related to the interactions, proportional to the magnetization:

H = Hext + λM

<μz>

Hext

H=Hext + Σi H i

<μz>

H i ∝ <μz
i>

Hint

μ

μ

Then the magnetization reads

M = N

[
χ0(Hext + Hint)

]
(4.33)

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_17
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and the susceptibility turns out

χ = χ0

1 − λχ0
(4.34)

where χ0 is the bare susceptibility of the ideal paramagnet, the one without interac-
tions. Equation (4.34) is a particular case of a more general equation, for any system
in the presence of many-body interactions (in the framework of the linear response
theory and random phase approximation, an extension of the mean field approxima-
tion to time-dependent problems, a matter to be discussed at Chap. 17).

By taking into account Eqs. (4.31) and (4.34) can be rewritten in the form

χ = Nμ2
J

3kB(T − Tc)
, where Tc = Nμ2

Jλ

3kB
(4.35)

For T → T+
c one has the divergence of the magnetic response and a phase transition

to an ordered state, with spontaneous magnetization in zero field, is induced. Typical
transition is the one from the paramagnetic to the ferromagnetic state and it can be
expected to occur when the thermal energy kBT is of the order of the interaction
energy.

It is noted that the values of Tc’s in most ferromagnets (as high as Tc = 1044 K,
for instance for Fe bcc), indicate that the transition is driven by interactions much
stronger than the dipolar one. This latter, in fact, for an interatomic distance d of the
order of 1 Å, would imply Tc ∼ μ2

J/d
3kB , of the order of a few degrees K. Instead

the interaction leading to the ordered states (ferromagnetic or antiferromagnetic,
depending on the sign of λ in Eq. (4.34)) is the one related to the exchange integral,
as mentioned at Sect. 2.2 (for details see Appendix 13.1 and Chap. 17).

4.5 Atomic Diamagnetism

The magnetic Hamiltonian (Eq. (4.3)) also implies the one-electron term (see
Eqs. (4.21) and (4.5))

H(2)
P = e2A2

2mc2

H

r

e

http://dx.doi.org/10.1007/978-3-319-17897-4_17
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_17
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with A = (1/2)H × r = (1/2)Hrsinθ, the term usually neglected in compari-
son with the one linear in the field and leading to paramagnetism. Instead H(2)

P is
responsible of the atomic diamagnetism.

Let us refer to atoms in the ground state where μL = μS = 0. The effect of
H(2)

P can be evaluated in the form of perturbation for states having L , S, M and
MS as good quantum numbers, the spin-orbit interaction being absent. Thus, from
first-order perturbation theory the energy correction due to H(2)

P is

ΔE = e2H 2

8mc2

∑
i

< |r2
i sin

2θi | > (4.36)

where the sum is over all the electrons. By resorting to μ = −(∂E/∂H), Eq. (4.36)
implies an atomic magnetic moment linear in the field and in the opposite direction.
Therefore the diamagnetic susceptibility is written

χdia = −N
e2

4mc2

∑
i

2

3
< r2

i > (4.37)

(N number of atoms per unit volume), the assumption of isotropy having been made,
so that < x2 >=< y2 >= 1/3 < r2 >. In the Table below the molar diamagnetic
susceptibilities for inert-gas atoms (to a good approximation the same values apply
in condensed matter) are reported:

He Ne Ar Kr Xe

χdia(cm3/mole)(×10−6) −2.36 −8.47 −24.6 −36.2 −55.2
Z 2 10 18 36 54

When the perturbation effects from the magnetic Hamiltonian are extended up to
the second order, a mixture of states is induced and a further energy correction is
obtained, quadratic in the field and causing a decrease of the energy. Thus, even
in atoms where in the ground state no paramagnetic moment is present, a positive
paramagnetic-like susceptibility (Van Vleck paramagnetism) of the form

χvv = 2Nμ2
B

∑
n 
=0

| < φ0|(Lz + 2Sz)|φn > |2
E0
n − E0

0

(4.38)

is found. For a quantitative estimate the electronic wavefunctions φ0 of the ground
and of the excited states φn are required. The Van-Vleck susceptibility is usually
temperature-independent and small with respect to Curie susceptibility.
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Problems

Problem 4.8 Evaluate the molar diamagnetic susceptibility of Helium in the ground
state, by assuming Hydrogen-like wavefunctions with the effective nuclear charge
derived in the variational procedure (Problem 2.6). Estimate the variation of the atom
energy when a magnetic field of 1 T is applied.

Solution: From Eq. (4.37)

χdia = − Ne2

6mc2
[< r2

1 > + < r2
2 >]

and in hydrogenic atoms (Table 1.4) < r2 >= 3
( a0
Z

)2
. For effective charge Z∗ =

Z − 5
16 = 27

16

χdia � −1.46 · 10−6 emu

mole
.

The energy variation is ΔE = (e2H 2/12mc2)[< r2
1 > + < r2

2 >] � 10−10 eV,
very small compared to the ground state energy.

Problem 4.9 In a diamagnetic crystal Fe3+ paramagnetic ions are included, with
density d = 1021 ions/cm3. By neglecting interactions among the ions and the dia-
magnetic contribution, derive the magnetization at T = 300 K, in a magnetic field
H = 1000 Oe. Then estimate the magnetic contribution to the specific heat (per unit
volume).

Solution: From Problem 3.10 for Fe3+ in the ground state the effective magnetic
moment is μ = pμB with p = g

√
J (J + 1) = √

35.
From Eq. (4.31)

M = d
μ2H

3kBT
= 0.0242 erg cm−3 Oe−1.

The energy density is E = −M ·H and for μBH 	 kBT the specific heat is

CV =
(

∂E

∂T

)
V

= d
μ2H 2

3kBT 2
= 0.081 erg K−1 cm−3.

Problem 4.10 For non-interacting spins in external magnetic field, in the assumption
of high temperature, derive the Curie susceptibility from the density matrix for the
expectation value of the effective magnetic moment.

Solution: The density matrix is

ρ = 1

Z
exp

(
−HZeeman

kBT

)
,

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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where Z is the partition function, namely the sum over all the n−states of the sta-
tistical factors exp(−En/kBT ), or Z = Tr{exp(− H

kBT
)}. Then the quantum and

statistical average (see Sect. 6.1) is written

< μz > = 1

Z
Tr

{
μzexp

(
−HZeeman

kBT

)}
� 1

Z
Tr

{
μz

(
1 − HZeeman

kBT

)}

with
μz = −gμB Sz HZeeman = SzgμBH.

Since

Tr S2
z = 1

3
(S + 1)S(2S + 1) and Z � 2S + 1

one obtains for the single particle susceptibility

χ = S(S + 1)g2μ2
B

3kBT

(as in Eq. (4.31) for S ≡ J).

Appendix 4.1 Electromagnetic Units and Gauss System

Throughout this book we are using the CGS system of units that when involving the
electromagnetic quantities is known as the Gauss system. This system corresponds
to have assumed for the dielectric constant ε0 and for the magnetic permeability μ0

of the vacuum the dimensionless values ε0 = μ0 = 1, while the velocity of light in
the vacuum is necessarily given by c = 3 × 1010 cm/s.

As it is known, the most common units in practical procedures (such as Volt,
Ampere, Coulomb, Ohm and Faraday) are better incorporated in the MKS system
of units (and in the international SI). These systems of units are derived when in
the Coulomb equation instead of assuming as arbitrary constant k = 1, one sets
k = 1/4πε0, with ε0 = 8.85 × 10−12 C2/Nm2, as electrical permeability of the
vacuum. In the SI system the magnetic field B, defined through the Lorentz force

F = qE + qv × B

is measured in Weber/m2 or Tesla.
The auxiliary fieldH is related to the current due to the free charges by the equation

H = nI , corresponding to the field in a long solenoid with n turns per meter, for a
current of I Amperes. The unit of H is evidently Ampere/m. Thus in the vacuum
one has B = μ0H, with μ0 = 4π10−7 N/A2 ≡ 4π10−7 H/m.

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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In the matter the magnetic field is given by

B = μ0(H + M)

where M is the magnetic moment per unit volume.
The SI system is possibly more convenient in engineering and for some technical

aspects but it is not suited in physics of matter. In fact, the Maxwell equations in the
vacuum are symmetric in the magnetic and electric fields only when H is used, while
B and not H is the field involved in the matter. The SI system does not display in a
straightforward way the electromagnetic symmetry. In condensed matter physics the
Gauss system should be preferred.

Thus within this system the electric and magnetic fields have the same dimensions
(another appealing feature), the Lorentz force is

F = qE + q

c
v × B, (A.4.1.1)

B is related to H by

B = H + 4πM = μH with μ = 1 + 4πχ. (A.4.1.2)

M = χH defines the dimensionless magnetic susceptibility χ. For μBH 	 kBT ,
often called evanescent field condition, χ is field independent. As already mentioned
μ0 and ε0 are equal to unit, dimensionless.

The practical units can still be used, just by resorting to the appropriate conversion
factors, such as

1 volt → 1
299.8 statvolt or erg/esu (esu electrostatic unit)

1 ampere 2.998 × 109 esu/sec
1 Amp/m 4π × 10−3 Oersted (see below)
1 ohm 1.139 × 10−12 sec/cm
1 farad 0.899 × 1012 cm
1 henry 1.113 × 10−12 sec2/cm
1 Tesla 104 Gauss
1 Weber 108 Gauss/cm2

The Bohr magneton, which is not an SI unit, is often indicated as μB =
9.274 × 10−24 J/T, equivalent to our definition μB = 0.9274 × 10−20 erg/Gauss.
The gyromagnetic ratio is measured in the Gauss system in (rad/s.Oe) and in the SI
system in (rad.m/Amp.s).

Unfortunately, some source of confusion is still present when using the Gauss
system. According to Eq. (A.4.1.2), B and H have the same dimensions and are
related to the currents in the very same way. In spite of that, while B is measured in
Gauss, without serious reason the unit of H is called Oersted. Furthermore, there are
two ways to describe electromagnetism in the framework of the CGS system. One
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with electrostatic units (esu) and the other with electromagnetic units (emu). The
latter is usually preferred in magnetism. Thus the magnetic moment is measured in
the emu unit, which is nothing else than a volume and therefore cm3. The magnetic
susceptibility (per unit volume) is dimensionless and often indicated as emu/cm3.
The symmetric Gauss-Hertz-Lorentz system (commonly known as Gauss system)
corresponds to a mixing of the esu and of the emu systems, having assumed both
ε0 = 1 and μ0 = 1.

Here we do not have the aim to set the final word on the vexata quaestio of the
most convenient system of units. Further details can be achieved from the books by
Purcell and by Blundell.

A Table is given below for the magnetic quantities in the Gauss system and in the
SI system, with the conversion factors.

Quantity Symbol Gauss SI Conversion factor*

Magnetic Induction B G ≡ Gauss T 10−4

Magnetic field intensity H Oe A m−1 103/4π

Magnetization M erg/(G cm3) A m−1 103

Magnetic moment μ erg/G(≡ emu) J/T(≡ Am2) 10−3

Specific magnetization σ emu/g A m2/kg 1

Magnetic flux φ Mx (maxwell) Wb (Weber) 10−8

Magnetic energy density E erg/cm3 J/m3 10−1

Demagnetizing factor Nd − − 1/4π

Susceptibility(unit volume) χ − − 4π

Mass susceptibility χg erg/(G g Oe) m3/kg 4π × 10−3

Molar susceptibility χmol emu/(mol Oe) m3/mol 4π × 10−6

Magnetic permeability μ G/Oe H/m 4π × 10−7

Vacuum permeability μ0 G/Oe H/m 4π × 10−7

Anisotropy constant K erg/cm3 J/m3 10−1

Gyromagnetic ratio γ rad/(s Oe) rad m/(A s) 4π × 10−3

*To obtain the values of the quantities in the SI, the corresponding Gauss values should
be multiplied by the conversion factor

Finally a mention to the atomic units (a.u.), frequently used, is in order. In this
system of units (derived from the SI system) one sets e = � = m = 1 and 4πε0 = 1.
Thus the Bohr radius for atomic Hydrogen (infinite nuclear mass) becomes a0 = 1,
the ground state energy becomes En=1 = −1/2 a.u., the a.u. for velocity is v0 = αc
with α � 1/137 the fine structure constant, so that the speed of light is c � 137 a.u..
The Bohr magneton is 1/2 a.u. and the flux quantum is Φ0 = 2π (see Appendix 13.1).
Less practical are the a.u.’s for other quantities. For instance the a.u. for the magnetic
field corresponds to 2.35×105 T and the one for the electric field to 5.13×109 V/cm.
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Problems

Problem 4.11 The magnetization curves for crystals containing paramagnetic ions
Gd3+, Fe3+ and Cr3+ display the saturation (for about H/T = 20 kGauss/K) about at
the values 7, 5, and 3μB (per ion), respectively. From the susceptibility measurements
at T= 300 K for evanescent magnetic field one evaluates the magnetic moments 7.9,
5.9, and 3.8μB , respectively. Comment on the differences. Then obtain the theoretical
values of the magnetic moments for those ions and prove that quenching of the orbital
momenta occurs (see Problem 4.12).

Solution: The susceptibility χ = Ng2 J (J + 1)μ2
B/3kBT involves an effective mag-

netic moment μeff = gμB
√
J (J + 1) different from < μz >max= gμB J obtained

from the saturation magnetization, related to the component of J along the direction
of the field.

For Gd3+, electronic configuration (4 f )7, one has S = 7
2 , L = 0, J = 7

2 and
g = 2.

Then μeff = gμB
√
S(S + 1) � 7.9 μB , while < μz >max� 2μB7/2 = 7μB , in

satisfactory agreement with the data.
For Fe3+ (see Problem 4.9) J = 5/2 and g = 2 and then μeff = 5.92 μB and

< μz >max� 5 μB .

For Cr3+, electronic configuration (3d)3, S = 3/2, L = 3, J = 3/2 and g =
2/5 = 0.4 . For unquenched L one would have μeff = (2/5)μB

√
15/4 = 0.77 μB ,

while for L = 0, μeff = 2μB
√

15/4 � 3.87 μB .

Problem 4.12 By referring to the expectation value of lz in 2p and 3d atomic states,
in the assumption that the degeneracy is removed by crystal field, justify the quench-
ing of the orbital momenta.

Solution: When the degeneracy is removed the wavefunction φ2px,y,z are real. Then,
since

< lz >= −i�
∫

φ∗ ∂

∂ϕ
φdτ

cannot be imaginary, one must have < lz >= 0. Analogous consideration holds for
3d states and for any non-degenerate state. Details on the role of the crystal field
in quenching the expectation values of the components of the angular momenta are
given at Sect. 13.3 and at Problem 13.5.

Problem 4.13 In Hydrogen, the lines resulting from the transitions 2P3/2 −→ 2S1/2

and 2P1/2 −→ 2S1/2 (see Appendix 5.1) occur at (1210−3.54 ·10−3) Å and (1210+
1.77 · 10−3) Å, respectively. Evaluate the effect of a magnetic field of 500 Gauss, by
estimating the shifts in the wavelengths of these lines, in the weak field regime.

http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Solution: The relationship between the splitting of lines and the applied field is found
from

dE2 − dE1 = −hc

λ2
dλ,

namely

dλ = −λ2

hc
(dE2 − dE1) =

(
−118

Å

eV

)
(dE2 − dE1)

The values for dE2 and dE1 are given in Table below. There are 10 transitions that
satisfy the electric dipole selection rule ΔMJ = ±1, 0. The deviation of each of
these lines from λ0 = 1210 Å is also given.

dλ0 dE2 dE1 dλ dλT = dλ0 + dλ

Å · 10−3 eV · 10−5 eV · 10−5 Å · 10−3 Å · 10−3

−3.54 +0.579 +0.289 −0.342 −3.88
−3.54 +0.193 +0.289 +0.114 −3.43
−3.54 +0.193 −0.289 −0.570 −4.11
−3.54 −0.193 +0.289 +0.570 −2.97
−3.54 −0.193 −0.289 −0.114 −3.65
−3.54 −0.579 −0.289 +0.342 −3.20

1.77 +0.096 +0.289 +0.228 +2.00
1.77 +0.096 −0.289 −0.456 +1.31
1.77 −0.096 +0.289 +0.456 +2.23
1.77 −0.096 −0.289 −0.228 +1.54

Problem 4.14 Refer to the Hα line in Hydrogen (see Problem 1.4). From the splitting
of the s and p levels when a magnetic field of 4.5 T is applied, by taking into account
that the separation between two adjacent lines is 6.29 · 1010 Hz and by ignoring the
fine structure, evaluate the specific electronic charge (e/m). Compare the estimate
with the one obtained from the observation that a field of 3 T induces the splitting
of the spectral line in Ca atom at 4226 Å in a triplet with separation 0.25 Å (do not
consider in this case the detailed structure of the energy levels).

Solution: In the Paschen-Back regime the energy correction is

ΔEm,ms = μBH0(m + 2ms),

with electric dipole selection rules. One observes three lines with splitting Δν̄ =
2.098 cm−1. Then from

ΔE = μBH0 = e�

2mc
H0 = hΔν

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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one has |e|
m

= 4πΔνc

H0
= 5.28 × 1017 u.e.s.

g
.

For Ca, from ΔE � e�H/2mc = −hcΔλ/λ2 again

|e|
m

= 4πc2

H

Δλ

λ2
� 5.2 · 1017 u.e.s.

g
.

Problem 4.15 Two particles at spin s = 1/2 and magnetic moments aσ1 and bσ2,
with σ1,2 spin operators, interact through the Heisenberg exchange Hamiltonian (see
Sect. 2.2). Derive eigenstates and eigenvalues in the presence of magnetic field.

Solution: From the Hamiltonian

H = − (a + b)

2
(σ1z + σ2z)H − (a − b)

2
(σ1z − σ2z)H + Kσ1 · σ2.

one writes

H = −(a + b)HSz + K

2
(4S(S + 1) − 6) − (a − b)

2
(σ1z − σ2z)H.

The first two terms are diagonal (in the representation in which the total spin is
diagonal). Both the triplet and the singlet states have definite parity for exchange of
particles (even and odd respectively). Thus the only non-zero matrix element of the
last term (which is odd for exchange) is the one connecting singlet and triplet states.
One finds

(σ1z − σ2z)

(
a(1)b(2) − a(2)b(1)√

2

)
= 2

(
a(1)b(2) + a(2)b(1)√

2

)
.

the only non-zero matrix element being

< 10|H|00 >= −(a − b)H.

Therefore S = 1, Sz = ±1 classify the eigenstates, with eigenvalues

E± = ∓(a + b)H + K ,

For the states with Sz = 0, the Hamiltonian can be represented by the matrix

H(Sz = 0) =
(

K −(a − b)H
−(a − b)H −3K

)
,

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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where the out of diagonal elements involve the triplet-singlet mixture. From the
secular equation the eigenvalues turn out

E±(Sz = 0) = −K ±
√

4K 2 + (a − b)2H 2.

Problem 4.16 The saturation magnetization (per unit volume) of Iron (Fe2+) is often
reported to be 1.7 · 106 A/m. Derive the magnetic moment per atom and compare it
to the theoretical estimate (density of iron 7.87 g/cm3).

Solution: From

Msat = 1.7 · 103 erg Gauss−1 cm−3

and natom = 0.85 · 1023 cm−3, one derives

μa � 2 · 10−20 erg Gauss−1

or equivalently μa = 2.2μB . For Fe2+ (S = 2, L = 2, J = 4 and g = 3
2 ) one would

expect μ = gμB J = 6μB . For quenched orbital momentum μ = 2SμB = 4μB (see
Problem 4.12 and Sect. 13.3).

Problem 4.17 A bulb containing Hg vapor is irradiated by radiation propagating
along the x axis and linearly polarized along z, along which a constant magnetic
field is applied. When the wavelength of the radiation is 2537 Å, absorption and
meantime re-emission of light along the y direction, with the same polarization,
is detected. When a RF coil winding the bulb along the y direction is excited at
the frequency 200 MHz one notes re-emission of light also along the z direction,
light having about the same wavelength and circular polarization. Explain such a
phenomenology and estimate the strength of the field.

Solution: Since spin-orbit interaction is very strong the weak-field regime holds (see
Sect. 3.3 and Fig. 3.9). The electric dipole selection rule ΔMJ = 0 requires linearly
polarized radiation. In the absence of radio frequency excitation, π radiation is re-
emitted again, observed along y. Along the z direction the radiation is not observed.

The radio-frequency induces magnetic dipole transitions at ΔMJ = ±1 among
the Zeeman levels. The re-emission of light in such a way is about at the same
wavelength λ. In fact

Δλ � λ2

c
Δν = 4.29 · 10−4 Å.

On the other hand, since among the levels involved in the emission ΔMJ = ±1,
one has circular σ polarization and so the radiation along z can be observed.

From the resonance condition

ν = ΔE

h
= gμBH

h

http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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with g = 3/2, one deduces

H = hν

gμB
= 95.26 Oe.

The levels (in the LS classification and in the weak field regime) for the Hg 1S0

and 3P1 states (see Fig. 3.9) and the transitions are sketched below:

3P1

1S0

MJ

1

0

1

σ σ σπ

Problem 4.18 Consider a paramagnetic crystal, with non-interacting magnetic ions
at J = 1/2. Evaluate the fluctuations < ΔM2 > of the magnetization and
show that it is related to the susceptibility χ = ∂ < M >/∂H by the relation
χ = < ΔM2 >/kBT (particular case of the fluctuation-dissipation theorem).

Solution: The density matrix is ρ = (1/Z)eβHMz (β ≡ 1/kBT ) and the partition
function Z = Tr

[
eβHMz

]
. The magnetization can be written (see also Sect. 6.1)3

< Mz >= 1

H

∂

∂β
lnZ .

Then

χ ≡ ∂ < Mz >

∂H
= β

[
Tr(eβHMz M2

z )

Tr(eβHMz )
−
[
Tr(eβHMz Mz)

Tr(eβHMz )

]2
]

= β < ΔM2
z > .

Without involving the density matrix, from the single-ion fluctuations

< Δμ2
z >=< μ2

z > −(< μz >)2

3From

< Mz > = − ∂

∂H
(− 1

β
lnZ)T ,

with
∂

∂H
= β

H

∂

∂β
.

http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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with < μz > statistical average of μ = −gμBJ, since

< μ2
z >= 1

4
g2μ2

B

and (see Sect. 4.4)

(< μz >)2 = 1

4
g2μ2

B tanh2

(
1

2

gμBH

kBT

)
,

by taking into account that

χ = ∂M

∂H
= 1

4
g2μ2

B

N

kBT
cosh−2

(
1

2

gμBH

kBT

)

one finds4

< ΔM2 >= N < Δμ2
z >= 1

4
g2μ2

BN cosh−2

(
1

2

gμBH

kBT

)

and then

χ = 1

kBT
< ΔM2 >= β < ΔM2 > .

Problem 4.19 Consider an ensemble of N/2 pairs of atoms at S=1/2 interacting
through an Heisenberg-like coupling H = KS1 · S2 with K > 0. By neglecting the
interactions among different pairs, derive the magnetic susceptibility. Express the
density matrix and the operator Sz on the basis of the singlet and triplet states. Finally
derive the time-dependence of the statistical ensemble average < Sz1(0) · Sz1(t) >,
known as auto-correlation function.

Solution: The eigenvalues are Es = (K/2)S(S + 1), with S = 0 and S = 1. The
susceptibility is

χ =
(
N

2

)
(p0χ0 + p1χ1),

where

pS = (2S + 1)e− Es
kB T

e− E0
kB T + 3e− E1

kB T

and

χS = g2μ2
B S(S + 1)

3kBT
.

4The single μ’s are uncorrelated i.e. < ΔμnΔμm > =< Δμn >< Δμm >, for n 
= m.
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Then

χ = Ng2μ2
B

3kBT

3e− K
kB T

1 + 3e− K
kB T

.

On the basis given by the states

|1 >= | + + >, |2 >= | − − >, |3 >= 1√
2
(| + − > + | − + >) and

|4 >= 1√
2
(| + − > − | − + >)

omitting irrelevant constants, one has

< i |H| j >=

⎛
⎜⎜⎝

K 0 0 0
0 K 0 0
0 0 K 0
0 0 0 0

⎞
⎟⎟⎠

Then the density matrix is

< i |ρ| j >=< i |e−βH| j >=

⎛
⎜⎜⎝
e−βK 0 0 0

0 e−βK 0 0
0 0 e−βK 0
0 0 0 1

⎞
⎟⎟⎠

By letting Sz1 act on the singlet and triplet states, one has

< i |Sz1| j >= 1

2

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

The autocorrelation-function is

g(t) =< {Sz1(t) · Sz1(0)} >= Re[< Sz1(t) · Sz1(0) >] where {A, B} = 1

2
(AB + BA),

< Sz1(t) · Sz1(0) >= Tr
[ ρ

Z
e− i Ht

� Sz1e
iHt
� Sz1

]

By setting ωe = K
�

, (Heisenberg exchange frequency), one writes

< Sz1(t) · Sz1(0) >= 1

4(1 + 3e−βK )
×
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Tr

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
e−βK 0 0 0

0 e−βK 0 0
0 0 e−βK 0
0 0 0 1

⎞
⎟⎟⎠×

×

⎛
⎜⎜⎝
e−iωet 0 0 0

0 e−iωet 0 0
0 0 e−iωet 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠×

⎛
⎜⎜⎝
eiωet 0 0 0

0 eiωet 0 0
0 0 eiωet 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

,

and then

g(t) = Re[< Sz1(t) · Sz1(0) >]

= 1

4(1 + 3e−βK )
[2e−βK + e−βK cos(ωet) + cos(ωet)].

For kBT � K

g(t) = 1

8
[1 + cos(ωet)].

1/ωe can be defined as the correlation time, in the infinite temperature limit.

Problem 4.20 By resorting to theBohr-Sommerfeld quantization rule (Problem 1.4)
for the canonical moment, derive the cyclotron frequency and the energy levels for
a free electron (without spin) moving in the xy plane, in the presence of a constant
homogeneous magnetic field along the z axis.

Solution: The canonical moment (see Eq. (1.26)) is p = mv − eA/c. From the
quantization along the circular orbit

∮
p · dq =

∮ (
mv − e

c
A
)
dq = mv2πR − e

c
πR2H = πeR2H

c

(R radius of the orbit). The equilibrium condition along the trajectory implies v =
eH R/mc and then the quantization rule yields

πR2
neH

c
= nh, (with n = 1, 2, . . .).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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The energy becomes

En = mv2
n

2
= e�H

mc
n ≡ �ωcn ≡ 2μBH

with

ωc = eH

mc

cyclotron frequency. For the quantum description, which includes n = 0 and the
zero-point energy �ωc/2, see Appendix 13.1.

Problem 4.21 By referring to a Rydberg atom (Sect. 1.5) and considering that the
diamagnetic correction to a givenn-level increases withn, discuss the limit of applica-
bility of the perturbative approach, giving an estimate of the breakdown value of n
for magnetic field of 1 T (see Eq. (4.36)). Then discuss why the Rydberg atoms are
highly polarizable and ionized by a relatively small electric field.

Solution: In

ΔEn = e2H 2

8mc2

2

3
< r2

n >

consider (see Table 1.4)

< r2 >nlm= n2

2
(
a0

Z
)2[5n2 + 1 − 3l(l + 1)] � a2

0n
4

for large n and l and Z = 1, as for ideal total screen. Then, by assuming that the
perturbation approach can be safely used up to a diamagnetic correction ΔEn(H) ∼
0.2E0

n , one obtains

e2H 2

12mc2
a2

0n
4
lim ∼ 0.2

e2

2a0

1

n2
lim

from which a limiting value of the quantum number n turns out around nlim ∼ 65.
As regards the electric polarizability, by considering that in Eq. (4.8) the relevant

matrix elements increase with n2 while the difference in energy at the denomina-
tor varies as 1/n3 (remember the correspondence principle, Problem 1.12) one can
deduce that the electric polarizability must increase as n7.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Chapter 5
Nuclear Moments and Hyperfine
Interactions

Topics

Angular, Magnetic and Quadrupole Moments of the Nucleus
Magnetic Electron-Nucleus Interaction
Quadrupolar Electron-Nucleus Interaction
Hyperfine Structure and Quantum Number F
Hydrogen Atom Re-Examined: Fine and Hyperfine Structure

5.1 Introductory Generalities

Until now the nucleus has been often considered as a point charge with infinite mass,
when compared to the electron mass. The hyperfine structure in high resolution opti-
cal spectra and a variety of experiments that we shall mention at a later stage, point
out that the nuclear charge is actually distributed over a finite volume. Several phe-
nomena related to such a charge distribution occur in the atom and can be described
as due to nuclear moments. One can state the following:

(i) most nuclei have an angular momentum, usually called nuclear spin. Accord-
ingly one introduces a nuclear spin operator I�, with related quantum numbers I and
MI , of physical meaning analogous to the one of J and MJ for electrons.

Nuclei having even A and odd N have integer quantum spin number I (hereafter
spin) while nuclei at odd A have semi-integer spin I ≤ 9/2; nuclei with both A and
N even have I = 0.

(ii) associated with the angular momentum one has a dipole magnetic moment,
formally described by the operator

µI = γI I� = gnMnI (5.1)

© Springer International Publishing Switzerland 2015
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where gn is the nuclear Landé factor and Mn the nuclear magneton, given by Mn =
μB/1836.15 = e�/2Mpc, with Mp proton mass. γI is the gyromagnetic ratio (see
Problems 1.21 and 3.4). gn (which depends on the intrinsic nuclear properties) in
general is different from the values seen to characterize the electron Landé factor.
For instance, the proton has I = 1/2 and μI = 2.796Mn and then gn = 5.59. For
deuteron one has I = 1 and μI = 0.86Mn . Since the angular momentum of the
neutron is I = 1/2, from the comparison of the moments for proton and deuteron
one can figure out a “vectorial” composition with the neutron and proton magnetic
moments pointing along opposite directions.

At variance with most nuclei, for which gn is positive, neutron as well as the nuclei
3He, 15N and 17O have magnetic moment opposite to the angular momentum. Thus
for them gn is negative, similarly to electron. The pictorial composition indicated for
deuteron does not account for a discrepancy of about 0.023 Mn , which is attributed
to the fact that the ground state of the deuteron involves also the D excited state, with
a little weight (about 4 percent). Properties of some nuclei are listed in Table 5.1.

(iii) nuclei with I ≥ 1 are characterized by a charge distribution lacking spherical
symmetry. Therefore, in analogy with classical concepts, they possess a quadrupole
electric moment. For charge rotationally symmetric along the z axis the quadrupole
moment is defined

Q = 1

Ze

∫ [
3z2 − r2

]
ρ(r)dτ (5.2)

For uniform charge density ρ(r), one has Q = (2/5)(b2 − a2), a and b being the
axes of the ellipsoid (see Problem 5.8). Since the average radius of the nucleus can
be written Rn = (a2b)1/3, by indicating with δRn the departure from the sphere (i.e.
b = Rn + δRn) one has Q = (6/5)R2

n[δRn/Rn].

Table 5.1 Properties of some nuclei

Nucleus Z N I /Mn gn

1

2

3

4

12

13

14

16

17

19

31

133

neutron 0 1 1/2 -1.913 -3.826 
H 1 0 1/2 2.793 5.586 
H 1 1 1 0.857 0.857 
He 2 1 1/2 -2.12 -4.25 
He 2 2 0 - - 
C 6 6 0 - - 
C 6 7 1/2 0.702 1.404 
N 7 7 1 0.404 0.404 
O 8 8 0 - - 
O 8 9 5/2 -1.893 -0.757 
F 9 10 1/2 2.628 5.257 
P 15 16 1/2 1.132 2.263 
Cs 55 78 7/2 2.579 0.737 

μ

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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(iv) since proton and neutron (I = 1/2) are fermions, a nucleus with mass
number A odd is a fermion while for A even the nuclei must obey to the Bose-
Einstein statistics; in fact the exchange of two nuclei corresponds to the exchange of
A pairs of fermions.

5.2 Magnetic Hyperfine Interaction—F States

The nuclear magnetic moment induces an interaction with the electrons of magnetic
character, that can be thought to arise from the coupling between µJ and µI . In
the framework of the vectorial model one can extend the usual assumptions (see
Sect. 3.2) to yield a coupling Hamiltonian of the form

Hmag
hyp = aJ I · J (5.3)

In the quantum mechanical description the magnetic hyperfine interaction is
obtained by considering the one-electron magnetic Hamiltonian (see Eq. (4.3))

Hm = e

2mc

(
p · A + A · p

)
+ 2μBs · ∇ × A (5.4)

with avector potential A due to the dipole moment µI at the origin (see the sketchy
description in Fig. 5.1).

By means of some vector algebra (see Problem 5.21) and by singling out the
terms with a singularity at the origin, as it could be expected on physical grounds
the magnetic hyperfine Hamiltonian can be written in the form

Hmag
hyp = −µI · he f f , (5.5)

namely the one describing the magnetic moment µI in an effective field given by

he f f = h1(l) + h2(s) + h3(sing.). (5.6)

Fig. 5.1 Pictorial view of
the nucleus-electron
interaction of magnetic
origin

∇

∝

≡
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The orbital term

h1 = −2μB l
r3

(5.7)

is derived by considering the magnetic field at the nucleus due to the electronic cur-
rent, in the a way similar to the deduction of the spin-orbit interaction (see Sect. 1.6),
from h1 = E × v/c = −el�/mcr3.

The field

h2 = 2μB

r3

(
s − 3

(s · r)r
r2

)
(5.8)

is the classical field at the origin from a dipole at r:

Finally

h3 = −2μB8π

3
sδ(r) (5.9)

is a term that includes all the singularities at the origin related to the expectation
values of operator of the form r−3 (see Table 1.4), for s states. The contact term
Hcont ∝ (I ·s)δ(r) can be derived from a classical model where the nucleus is treated
as a sphere uniformly magnetized (see Problem 5.21).

It is remarked that an analogous contact term of the form As1 · s2δ(r12), with
A = −(8π/3)(e�/mc)2, is involved in the electron-electron magnetic interaction,
as already recalled at Problem 2.12.

The three fields in Eq. (5.6) are along different directions. However, by recalling
the precessional motions and then the Wigner-Eckart theorem and the precession of
l and s around j (see Eq. (4.25)) one writes

a j = −γI�
< he f f · j >

< j2 >
= −γI� < l, s, j

∣∣∣∣he f f · (l + s)
j2

∣∣∣∣ l, s, j > (5.10)

Since r · l = 0 and < |s · r/r |2 >= 1/4, one obtains

a j = 2μBγI�

j ( j + 1)
< l, s, j

∣∣∣∣ l
2

r3
+ 8π

3
s · jδ(r)

∣∣∣∣ l, s, j > . (5.11)

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_2
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Then

a j = 16π

3
μBγI�|φ(0)|2l = 0 for s electrons (5.12)

and

a j = 2μBγI�
l(l + 1)

j ( j + 1)
< r−3 >l �=0 for l �= 0, with j = l ± 1

2
. (5.13)

For l = 0 the angular average of h2 and h1 (Eqs. (5.7) and (5.8)) yields zero: only
the contact term related to h3 contributes to a j , once that the expectation values are
evaluated (see Problem 5.5).

From the Hydrogenic wavefunctions (Sect. 1.4) one evaluates |φ(0)|2l = 0 =
Z3/πa3

0n
3 and

< r−3 >l �=0 = Z3/a3
0n

3l(l + 1/2)(l + 1), in Eq. (5.13).

Therefore the effective field turns out of the order of 8×104(Z3/n3)G for s electrons
and of the order of 3 × 104(Z3/n5)G for l �= 0.

Values of the hyperfine field at the nucleus due to the optical electron, for the
lowest energy states in alkali atoms, are reported in Table 5.2.

For two or more electrons outside the closed shells, in the LS coupling scheme
one has to extend Eqs. (5.7)–(5.10) to totalL, S and J, thus specifying aJ in Eq. (5.3).

The energy corrections related to the magnetic hyperfine interaction can be
expressed by introducing the total angular momentum F

F = I + J (5.14)

with the related quantum numbers F (integer or half integer) and MF taking the
values from −F to +F .

The structure of the hyperfine energy levels turns out

< L , S, J, F |aJ I·J|L , S, J, F >= aJ

2

(
F(F+1)− I (I+1)− J (J+1)

)
(5.15)

Table 5.2 Magnetic field (in Tesla) at the nucleus in alkali atoms, as experimentally obtained
by direct magnetic dipole transitions between hyperfine levels (see Chap. 6) or by high-resolution
irradiation in beams (see Fig. 5.3)

2
S1/2

2
P 1/2

2
P 3/2

K 63 7.9 4.6
Na 45 4.2 2.5

Rb 130 16 28.6
Cs 210 28 13

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Fig. 5.2 Magnetic hyperfine structure for J = 3/2 and I = 1

ΔF=-1

ΔF=0

ΔF=+1

F

3

2
1
0

2

1

2

1

3P

3S

2P3/2

2P1/2

2S1/2 1772 MHz

D1 D2

Fig. 5.3 Hyperfine magnetic structure of the low-energy states in Na atom, with the schematic
illustration of three lines detected by means of resonance irradiation for the D2 component in atomic
beams (for details see Chap. 6) by using a narrow band variable-frequency dye laser (Problems 5.9
and 5.20)

The hyperfine structure for the electronic state J = 3/2 and nuclear spin I = 1
is illustrated in Fig. 5.2, showing the interval rule ΔF,F+1 = aJ (F + 1). In Fig. 5.3
the hyperfine structure of the D1,2 doublet in Na atom is reported.

It is reminded that the definition of the second as time unit and its metrological
measure is obtained through the magnetic dipole F = 4 ⇔ F = 3 transition, at
9172.63 MHz, in 133Cs atom (I = 7/2) in the ground state 2S1/2.

The hyperfine energy levels for the ground state of Hydrogen are sketched in
Fig. 5.4, with the indication of the spontaneous emission line at 21 cm, largely used
in the astrophysical studies of galaxies.

A complete description of the fine and hyperfine structure of the energy levels
in Hydrogen, including the results by Dirac and from the Lamb electrodynamics, is
given in Appendix 5.1.

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Fig. 5.4 Magnetic hyperfine
structure of the ground state
in Hydrogen and line at
21 cm resulting from the
spontaneous emission from
the F = 1 state, the transition
being driven by the magnetic
dipole mechanism

≅

Finally we mention that the effect of an external magnetic field on the hyperfine
states of the atom can be studied in a way strictly similar to what has been discussed
at Chap. 4 in regards of the fine structure levels. Zeeman as well as Paschen-Back
regimes are currently observed (see Problem 5.10).

Problems

Problem 5.1 Evaluate the dipolar and the contact hyperfine splitting for the ground
state of positronium. Estimate the effective magnetic field experimented by the elec-
tron.

Solution: The hyperfine dipolar Hamiltonian is

Hd = (2μB)2

r3

[
3(r · s1)(r · s2)

r2
− s1 · s2

]
,

while the Fermi contact term is

HF = 8π

3
(2μB)2|ψ(0)|2s1 · s2

yielding

EF (S) = 8π

3
(2μB)2|ψ(0)|2 1

2
S(S + 1) + const.,

where |ψ(0)|2 represents the probability of finding the electron and the positron in
the same position, in the 1s state. Being zero the contribution fromHd , the separation
between the singlet and triplet levels is given by

EF (S = 0) − EF (S = 1) = 8π

3

(2μB)2

πa3
p

= 4μ2
B

3a3
o

= 5 · 10−4 eV,

with ap Bohr radius for positronium. The magnetic field experimented by the electron
is about 4 × 104 G.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Problem 5.2 Consider a pair of electrons and a pair of protons at the distance e–e
and p–p of 2 Å. Evaluate the conditions maximizing and minimizing the dipole-
dipole interaction, the energy corrections in both cases, and the magnetic field due
to the second particle, for parallel orientation.

Solution:

H(r) = −∇µ · r
r3

.

From the interaction energy

Eint = −µ1 · H2(r) = µ1 · µ2

r3
− 3(µ1 · r)(µ2 · r)

r5

Eint = 0 for µ1 ⊥ H2(r).
For parallel orientation of the µ’s Eint = (μ1μ2/r3)(1 − 3 cos2 θ) and for |r|

fixed the extreme values are

E ′ = −2μ1μ2

r3
for θ = 0,π

E ′′ = μ1μ2

r3
for θ = π

2
.

For two electrons at |r| = 2 Å, for μs = 2μB
√
s(s + 1)

E ′ = −6.45 · 10−17erg and |H′| = 4016 Oe

E ′′ = +3.22 · 10−17erg and |H′′| = 2008 Oe.

For two protons

μp = gpμN

√
I (I + 1), I = 1/2, μN = μB/1836, gI = 5.6

and then
E ′ = −1.5 · 10−22erg and |H′| = 6 Oe

E ′′ = 7.5 · 10−23erg and |H′′| = 3 Oe.

For the derivation of the eigenstates and eigenvalues see Problem 5.15.
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Problem 5.3 Evaluate the magnetic field at the nuclear site in the Hydrogen atom
for the electron in the states 1s, 2s and 3s. Estimate the energy difference between
the states for parallel and antiparallel nuclear and electronic spins.

Solution: From Eq. (5.15) with

a j = gIμN√
j ( j + 1)

hJ = 8π

3
ge μB gI μN |φ(0)|2

and |φ(0)|2 = 1/πa3
0n

3 the field can be written

h j = 8π

3
ge μB |φ(0)|2 [ j ( j + 1)]1/2 .

The energy separation a for j ≡ s = 1/2 (Fig. 5.4) and the field turn out

n |φ(0)|2(cm−3) a (cm−1) hJ (kGauss)
1 2.15 · 1024 0.0474 289
2 2.69 · 1023 0.00593 36.1
3 7.96 · 1022 0.00176 10.7

Problem 5.4 Consider a muonic atom (negative muon) and Hydrogen, both in the
2p state. Compare in the two atoms the following quantities:

(i) expectation values of the distance, kinetic and potential energies;
(ii) the spin-orbit constant and the separation between doublet due to 2p − 1s

transition (see Sect. 1.6);
(iii) the magnetic hyperfine constant and the line at 21 cm (note that the magnetic

moment of the muon is about 10−2 Bohr magneton).

Solution:

(i) 〈r〉 ∝ a∗
0 with a∗

0 = a0/186; Eμ
n = 186EH

n , with EH
n = −e2/2a0n2.

By resorting to the virial theorem, 〈V 〉 = 2 · 186EH
n and 〈T 〉 = −〈V 〉

2 .

(ii) From

Hs.o. = e2
�

2

2m2
μc

2

1

r3
l · s

by taking into account the scale factors for mμ and for r , one finds ξ
μ
2p =

186 ξH
2p, with doublet separation 3

2 ξ
μ
2p.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Alternatively, by considering the spin-orbit Hamiltonian in the form μe
l μe

s

〈
r−3
〉
,

since μ
μ
l ∼ μe

l /186 and μ
μ
s ∼ 10−2, the order of magnitude of the correcting

factor can be written (186)3/186 · 100.

(iii) From Hhyp = −µn · he f f and |hef f | ∝ μμ |ψ(0)|2, since μμ ∼ 10−2μB and
|φ(0)|2 ∼ (186)3/a3

0 , one has aμ
1s ≈ aH

1s · 6.5 · 104 and λ
μ
21 = λH

21/6.5 · 104.

Problem 5.5 Estimate the dipolar magnetic field that the electron in 2p1,0 states and
spin eigenfunction α creates at the nucleus in the Hydrogen atom.

Solution: From Eq. (5.8), since µs = −2μBs and −2μBsz = −μB , by taking into
account that for symmetry reasons only the z-component is effective (the terms of
the form z · x and z · y being averaged out) one has

hdipz = −μB

[
− 1

r3
+ 3z2

r5

]
= μB

r3

[
1 − 3cos2θ

]
.

The expectation value of 3cos2θ/r3 on R21(r)Y11(θ,ϕ) reads

<
1

r3
>

9

4

∫ 1

−1
d(cosθ)sin2θcos2θ = 3

2
<

1

r3
>

Thus < hdipz >= −(μB/2) < 1/r3 >. By taking < 1/r3 >211 from Table 1.4,
|hdipz | � 1.5 × 103 G, to be compared to Eq. (5.13).

For the electron in the 2p0 state one obtains < (1 − 3cos2θ)/r3 >= −(4/5)

< 1/r3 > (again considering as effective only the z component).
This condition is the one usually occurring in strong magnetic fields where only

the z components of s and of I are of interest.
The vanishing of < h2 > (Eq. (5.8)) in s states arises from

∫
(1 − 3cos2θ)

sinθdθ = 0.

5.3 Electric Quadrupole Interaction

Since the first studies of the hyperfine structure by means of high resolution spec-
troscopy, it was found that in some cases the interval rule ΔF,F+1 = aJ (F + 1)

was not obeyed. The breakdown of the interval rule was ascribed to the presence of
a further electron-nucleus interaction of electrical character, related to the electric
quadrupole moment of the nucleus. As we shall see, this second hyperfine interaction
is described by an Hamiltonian different from the form aJ I · J which is at the basis
of the interval rule.

To derive the electric quadrupole Hamiltonian one can start from the classical
energy of a charge distribution in a site dependent electric potential:

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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E =
∫

ρn(r)VP(r)dτn (5.16)

By expanding the potential VP due to electrons around the center of charge, one
writes

E =
∫

ρn(r)VP(0)dτn +
∑

α

(
∂Vp

∂xα

)
0

∫
ρn(r)xαdτn +

1

2

∑
α,β

(
∂2Vp

∂xα∂xβ

)
0

∫
ρn(r)xαxβdτn + · · · (5.17)

where one notices the monopole interaction (already taken into account as potential
energy in the electron core Hamiltonian), a dipole term which is zero (the nuclei do
not have electric dipole moment) and the quadrupole term of the form

EQ = 1

2

∑
i, j

Q′
i, j Vi, j , with Vi, j =

∫
ρelec.(r)

3xi x j − δi, j r2

r5
dτ . (5.18)

In the quantum description

Q′
i, j = e

∑
nucleons

(
3xni x

n
j − δi, j r

2
n

)
(5.19)

is the quadrupole moment operator, while Vi, j is the electric field gradient operator,

a sum of terms of the form −e(3xi x j − δi, j r2)/r5.
Without formal derivation (for details see Problem 5.22), we specify the corre-

spondent Hamiltonian in the form

HQ
hyp = bJ

[
3(I · J)2 + 3

2
I · J − I (I + 1)J (J + 1)

]
(5.20)

where bJ = eQVzz/2I (2I − 1)J (2J − 1), with eQVzz the quadrupole coupling
constant. The z-component of the electric field gradient is

Vzz =< J, MJ = J

∣∣∣∣∣−e
∑
elec.

(3z2
e − r2

e )

r5
e

∣∣∣∣∣ J, MJ = J > (5.21)

while

eQ =< I, MI = I |eQz|I, MI = I >=< I, I

∣∣∣∣∣e
∑
n

(3z2
n − r2

n )

∣∣∣∣∣ I, I > (5.22)
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Fig. 5.5 Hyperfine magnetic
and electric quadrupole
energy levels for an atom
with I = 3/2 and J = 1;
aJ is the hyperfine constant
while here b = eQVzz (see
Eqs. (5.20)–(5.22)). Q has
been assumed positive. The
value of aJ /b is arbitrary

is the quantum equivalent of the classical quadrupole moment. Q is measured in cm2

and a practical unit is 10−24 cm2, called barn. Q positive means elongation of the
nuclear charge along the spin direction while for negative Q the nuclear ellipsoid
has its major axis perpendicular to I. For I = 0 or I = 1/2, Q = 0.

It is remarked that in the Hamiltonian (5.20) the first term is the one implying the
breakdown of the interval rule.

With the usual procedure to evaluate the coupling operators in terms of the cor-
respondent squares of the angular momentum operators, one can derive the energy
corrections associated with the Hamiltonian (5.20). In Fig. 5.5 the structure of the
hyperfine (magnetic and electric) levels for I = 3/2 and J = 1 is shown.

The one-electron electric field gradient (Eq. (5.21)) is written
< j, j |(3cos2θ − 1)/r3| j, j >.

For a wavefunction of the form ϕ j, j = Rn,lYl,lχspin , since

∫
Y ∗
l,l

(
3cos2θ − 1

)
Yl,l sinθdθ = − 2l

(2l + 3)

for χspin ≡ α, one has

q ≡ −Vzz

e
= 2l

2l + 3
< r−3 >. (5.23)

In terms of j one can write

q j = (2 j − 1)

(2 j + 2)
< r−3 > (5.24)

valid for ms = 1/2 as well as for ms = −1/2. For s states the spherical symmetry
of the charge distribution implies q = 0.

For Hydrogenic wavefunctions the order of magnitude of the quadrupole coupling
constant is

e2qQ ∼ 106Q
Z3

n6
� 10−6 Z

3

n6
eV (5.25)

for Q ∼ 10−24 cm2.
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In the condensed matter the operators Vjk can be substituted by the correspondent
expectation values. The electric field gradient tensor has a principal axes frame
of reference in which VXY = VXZ = VY Z = 0, while

∑
α Vαα = 0, with

|VZZ | > |VYY | > |VXX |·η = (VXX−VYY )/VZZ is defined theasymmetry parameter
(see Problems 5.6 and 5.7).

Problems

Problem 5.6 Find eigenvalues, eigenstates and transition probabilities for a nucleus
at I = 1 in the presence of an electric field gradient at cylindrical symmetry (expec-
tation values VZZ = eq , VXX = VYY = −eq/2).

Repeat for an electric field gradient lacking of the cylindrical symmetry
(VXX �= VYY ).

Solution: From Eq. (5.20), along the lines of Problem 5.22, and by referring to the
expectation values for the electric field gradient, the quadrupole Hamiltonian is

HQ = A

{
3 Î 2

z − Î 2 + 1

2
η( Î 2

+ + Î 2
−)

}

where

A = e2qQ

4I (2I − 1)
= 1

4
e2qQ, eq = VZZ , η = VXX − VYY

VZZ
.

For cylindrical symmetry η = 0 and HQ commutes with Iz and I 2. The eigenstates
are

|1 >=
⎛
⎝ 1

0
0

⎞
⎠, |0 >=

⎛
⎝ 0

1
0

⎞
⎠, | − 1 >=

⎛
⎝0

0
1

⎞
⎠.

In matrix form

HQ = A

⎛
⎝ 1 0 0

0 −2 0
0 0 1

⎞
⎠

and

HQ | ± 1 >= A| ± 1 > HQ |0 >= −2A|0 >.

It can be noticed that magnetic dipole transitions, with ΔMI = ±1 and circular
polarized radiation, are allowed (read Sect. 6.2).

For η �= 0 the Hamiltonian in matrix form can be written1

1The matrices of the angular momentum operators for I = 1 in a basis which diagonalizes Iz and
I 2 are

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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HQ = A

⎛
⎝ 1 0 η

0 −2 0
η 0 1

⎞
⎠.

From

Det(A−1HQ − εI ) = 0 ⇒ (2 + ε)(1 + ε2 − 2ε − η2) = 0

the eigenvalues turn out

E = Aε = −2A, (1 ± η)A

with corresponding eigenvectors

| − 2A >=
⎛
⎝0

1
0

⎞
⎠ |(1 ± η)A >= 1√

2

⎛
⎝ 1

0
±1

⎞
⎠.

The unitary transformation that diagonalizes HQ is

H′
Q = UHQU

+

with

U = 1√
2

⎛
⎝ 1 0 1

0
√

2 0
1 0 −1

⎞
⎠.

Then

H′
Q = A

⎛
⎝ 1 + η 0 0

0 −2 0
0 0 1 − η

⎞
⎠.

(Footnote 1 continued)

Ix = 1√
2

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ Iy = 1√

2

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠

Iz =
⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ I 2 = 2

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

I 2
z =

⎛
⎝ 1 0 0

0 0 0
0 0 1

⎞
⎠ I+ = 1√

2

⎛
⎝ 0 2 0

0 0 2
0 0 0

⎞
⎠

I 2+ =
⎛
⎝ 0 0 2

0 0 0
0 0 0

⎞
⎠ .
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The structure of the energy levels is

with transition frequencies

ν1 = 3A

h

(
1 + η

3

)
, ν2 = 3A

h

(
1 − η

3

)

and
ν3 = 2Aη/h.

From the interaction Hamiltonian with a radio frequency field HRF (see
Problem 5.13 and for details Chap. 6)

HI = −γ�HRF · I

and by taking into account that

H′
I = UHIU

+

one finds

H′
I = −γ�

⎛
⎝ 0 HRF

x H RF
z

H RF
x 0 i H RF

y

H RF
z −i H RF

y 0

⎞
⎠ .

The transition amplitudes are

〈A(1 + η)|H′
I | − 2A〉 = −γ�HRF

x

〈−2A|H′
I |A(1 − η)〉 = iγ�HRF

y

〈A(1 + η)|H′
I |A(1 − η)〉 = −γ�HRF

z .

All the transitions are allowed, with intensity depending on the orientation of the
radio frequency field with respect to the electric field gradient.

Problem 5.7 Consider a 23Na nucleus at distance 1 Å from a fixed charge −e. Esti-
mate the eigenvalues of the electric quadrupole interaction and the frequency of the
radiation which induces transitions driven by the magnetic dipole mechanism (the
electric quadrupole moment of 23Na is Q = +0.1 · 10−24 cm2).

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Solution: From the eigenvalues of the electric quadrupole Hamiltonian (see
Problem 5.6, for η = 0)

EI,MI = eQVZZ

4I (2I − 1)
(3M2

I − I (I + 1)).

For I = 3
2

E±3/2 = 1

4
eQVZZ E±1/2 = −1

4
eQVZZ

The transition probabilities related to a perturbation Hamiltonian of the form
HP ∝ Hx

RF · I ∝ I± (see Sect. 6.2) involve the matrix elements

〈
3

2
,

3

2

∣∣∣ Î+
∣∣∣ 3

2
,

1

2

〉
= √

3

〈
3

2
,

1

2

∣∣∣ Î+
∣∣∣ 3

2
,−1

2

〉
= 2

〈
3

2
,−1

2

∣∣∣ Î+
∣∣∣ 3

2
,−3

2

〉
= √

3

Then W 3
2 , 1

2
∝ 3, W 1

2 ,− 1
2

∝ 4, W− 1
2 ,− 3

2
∝ 3. The transition frequencies turn out

ν 3
2 , 1

2
= 1

h

(
E 3

2
− E 1

2

)
= 1

2

eQVzz
h

, ν− 3
2 ,− 1

2
= 1

h

(
E− 3

2
− E− 1

2

)
= 1

2

eQVzz
h

From

VZZ = 3z2 − r2

r5
e = 2e

r3
and VXX = VYY = −e2

r3

(note that the Laplace equation holds) one estimates

ν 3
2 , 1

2
= ν− 3

2 ,− 1
2

= e2Q

hr3
� 3.5 MHz.

Appendix 5.1 Fine and Hyperfine Structure in Hydrogen

Having introduced the various interaction terms (spin-orbit, relativistic corrections
and hyperfine interaction) to be taken into account for one-electron states in atoms,
it is instructive to reconsider the Hydrogen atom and to look at the detailed energy
diagram (Fig. 5.6).

The solution of the non-relativistic Schrodinger equation (Sect. 1.4) provided
the eigenvalues En,l = −RHhc/n2. Then the spin-orbit Hamiltonian Hso =
(e2/2m2c2r3)l · s was introduced (Sect. 1.6). However we did not really discuss
at that point the case of Hydrogen (where other relativistic effects are of comparable
strength) dealing instead with heavier atoms (Sect. 2.2 and Chap. 3) where the most

http://dx.doi.org/10.1007/978-3-319-17897-4_6
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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to Dirac theory 
(l.s coupling +
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Fig. 5.6 Energy levels in Hydrogen including the effects contributing to its detailed structure. The
scale is increased from left to right and some energy splittings are numerically reported to give an
idea of the energy separations. The fine structure of the n = 2 level is detailed in Fig. 5.7

relevant contribution to the fine structure arises from Hso. At Sect. 2.2 and Prob-
lem 1.38 it was pointed out that a more refined relativistic description would imply
a shift of the s-states (where l = 0 while at the same time a divergent behaviour for
r → 0 is related to the positional part of Hso). Finally the hyperfine magnetic inter-
action was introduced (Sect. 5.2) where Hhyp. = a j I · j, with I = 1/2, j = l±1/2
and a j given by Eqs. (5.12) and (5.13).

A simple relativistic correction which could remove the accidental degeneracy in
l was already deduced in the old quantum theory. As a consequence of the relativistic
mass m = m(v), for elliptical orbits in the Bohr model, Sommerfeld derived for the
energy levels

En,k = − RHhc

n2

[
1 + α2

n2

(
n

k
− 3

4

)
+ ...

]

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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where k is a second quantum number related to the quantization of the angular
momentum

∫
pθdθ = kh (θ polar angle) (see Problem 1.4), while α = (e2/�c) �

1/137 is the fine-structure constant.
The Dirac electrodynamical theory, which includes spin-orbit interaction and

classical relativistic effects (the relativistic kinetic energy being c(p2 + m2c2)1/2 −
mc2 � (p2/2m) − (p4/8m3c2) (see Problem 1.38), provided the fine-structure
eigenvalues

E f s
n, j = − RHhcα2

n3

[
1

j + 1/2
− 3

4n

]
= E0

n

α2

n2

[
n

j + 1/2
− 3

4

]
,

with the relevant findings that the quantum number j and not l is involved and the
shift for the s-states is explicit. Accordingly, the ground state of Hydrogen atom is
shifted by −1.8 × 10−4 eV and the n = 2 energy level is splitted in a doublet, the
p3/2 and p1/2 states (this latter degenerate with s1/2) being separated by an amount of
0.3652 cm−1. The Hα line of the Balmer series (at 6562.8 Å) was then detected in the
form of a doublet of two lines, since the Doppler broadening in optical spectroscopy
prevented the observation of the detailed structure.

Giulotto and other spectroscopists, through painstaking measurements, noticed
that the relativistic Dirac theory had to be modified and that a more refined description
was required in order to account for the detailed structure of the Hα line. A few years
later (1947) Lamb, by means of microwave spectroscopy (thus inducing magnetic
dipole transitions between the levels) could directly observe the energy separation
between terms at the same quantum number j . The energy difference between 2S
and 2P states turned out 0.03528 cm−1 and the line had a fine structure of five lines,
some of them broadened. Later on, by Doppler-free spectroscopy using dye lasers
(Hansch et al., see Problem 5.20 for an example) the seven components of the Hα

line consistent with the Lamb theory could be inferred. It was also realized that this
result had to be generalized and the states with the same n and j quantum numbers,
but different l, have different energy.

The Lamb shift (reported in detail in Fig. 5.7 for the n = 2 states) triggered the
development of thequantumelectrodynamical theory, which fully account for the fine
structure of the levels on the basis of physical grounds that electrons are continuously
emitting and adsorbing photons by transitions to virtual states. These states are poorly
defined in energy due to their very short lifetimes. Qualitatively the Lamb shift can
be considered the result of zero-point fluctuations of the set of harmonic oscillators
describing the electromagnetic radiation field. These fluctuations induce analogous
effects on the motion of the electron. Since the electric field in the atom is not uniform,
the effective potential becomes different from the one probed by the electron in the
average position.

The shift of the ground state due to the Lamb correction is about six times larger
than the magnetic hyperfine splitting.

As regards the hyperfine splitting in the Hydrogen atom, at Sect. 5.2 it has been
shown how the structure depicted in Fig. 5.6 is originated.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Fig. 5.7 Lamb shift for the
n = 2 levels in Hydrogen

Problems

Problem 5.8 The electric quadrupole moment of the deuteron is Q = 2.8 · 10−3

barn. By referring to an ellipsoid of uniform charge, evaluate the extent of departure
of the nuclear charge distribution from the sphere. Assume for average nuclear radius
Rn � 1.89 · 10−13cm.

Solution: From

Q = 1

Ze
ρ

∫
V
(3z2 − r2)dτ ,

for the ellipsoid, defined by the equation (x2 + y2)/a2 + (z2/b2) = 1, one obtains
Q = (2/5)(b2 − a2). If the average nuclear radius is taken to be R3

n = a2b (the
volume of the ellipsoid is 4

3πa2b), with Rn + δRn = b, then, for δRn � Rn

a2 = R3
n

Rn + δRn
= R2

n

1 + δRn
Rn

≈ R2
n

(
1 − δRn

Rn

)

and

b2 − a2 ≈ R2
n

[
1 + 2

(
δRn

Rn

)
+
(

δRn

Rn

)2
]

− R2
n

(
1 − δRn

Rn

)

= R2
n

[
3

(
δRn

Rn

)
+
(

δRn

Rn

)2
]

≈ 3R2
n

(
δRn

Rn

)
.

Hence

Q = 6

5
R2
n

(
δRn

Rn

)

corresponding to
(

δRn
Rn

)
≈ 6.5 · 10−2.
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Problem 5.9 The D2 line of the Na doublet (see Fig. 5.3) displays an hyperfine
structure in form of triplet, with separation between pairs of adjacent lines in the
ratio not far from 1.5. Justify this experimental finding from the hyperfine structure
of the energy levels and the selection rules (see Problem 5.20 for some detail on the
experimental method).

Solution: From the splittings in Fig. 5.3 and the selection rule ΔF = 0,±1 one can
deduce that the hyperfine spectrum consists of three lines ν{3,2,1}↔2 corresponding
to the transitions 2P3

2
(F = 3, 2, 1) ↔ 2S 1

2
(F = 2) and of three lines ν{2,1,0}↔1

corresponding to the transitions 2P3
2
(F = 2, 1, 0) ↔ 2S 1

2
(F = 1). From the

interval rule

ν3,2 − ν2,2

ν2,2 − ν1,2
= 3

2
and

ν2,1 − ν1,1

ν1,1 − ν0,1
= 2.

The lines in Fig. 5.3 correspond to the transitions 2P3
2
(F = 3, 2, 1) ↔ 2S 1

2
(F =

2) (see Problem 5.20).

Problem 5.10 Plot the magnetic hyperfine levels for an atom in the electronic state
2S1/2 and nuclear spin I = 1. Then derive the corrections due to a magnetic field,
in the weak and strong field regimes (with respect to the hyperfine energy). Classify
the states in the two cases and draw a qualitative correlation between them.

Solution: In the weak-field regime the effective magnetic moment is along F. By
neglecting the contribution from the nuclear magnetic moment one writes

µF = −gFμBF

and the hyperfine correction is

ΔE = gF μB H0 mF .

gF is calculated by projecting µJ along F: µF = −gJ |J| cos F̂ J .F/|F|, with
cos F̂ J = [J (J + 1) + F(F + 1) − I (I + 1)]/2

√
J (J + 1)

√
F(F + 1).

Thus

gF = gJ
F(F + 1) + J (J + 1) − I (I + 1)

2F(F + 1)
.

A relatively small field breaks up the I · J coupling and the hyperfine Zeeman
effect is replaced by the hyperfine Paschen-Back effect. The oscillating components
in the x and y directions average to zero and the final result is that the nuclear angular
momentum vector I is oriented alongH0. The quantum number F is no longer defined
while the quantum numbers mI and mJ describe I and J. The splitting involves three
terms, one being gJ μB H0 mJ , already considered in the Zeeman effect (Sect. 4.3.2),
the other is amImJ and the third one, −μNgIm I H0, is negligible. See Fig. 5.8 for a
pictorial view of the angular momenta and of the correspondent magnetic moments.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Fig. 5.8 Hyperfine structure of the S1/2 state with I = 1: a in zero field; b in weak field, Zeeman
regime; c in strong field, Paschen-Back regime

Problem 5.11 In the Na atom the hyperfine interaction for the P state is much
smaller than the one in the S ground state. In poor resolution the hyperfine structure
is observed in the form of a doublet, with relative intensities 5 and 3. From this
observation derive the nuclear spin (see also Problem 5.20).

Solution: From

F= I+1/2 

F= I-1/2   

S1/2

The intensity being ∝ (2F + 1) and the ratio (I + 1)/I = 5/3, then I = 3/2.

Problem 5.12 For a solid ideally formed by a mole of non-interacting deuterons in
an electric field gradient, derive the contributions to the entropy and to the specific
heat, in the high temperature limit (see Problem 5.6).

Solution: The quadrupolar interaction e2qQ[3M2 − I (I + 1)]/4 yields two energy
levels, one doubly degenerate (M = 0,±1).

By indicating with ε the separation between the levels, the partition function is

Z(β) = (
1 + 2e−βε

)NA
, with β = 1/kBT .
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From the free energy

F(T ) = −kBT ln Z = −RT ln
(
1 + 2e−ε/kBT

)
,

the entropy turns out

S = −∂F

∂T
= R ln

(
1 + 2e−ε/kBT

)+ 2NAε

T

e−ε/kBT

1 + 2e−ε/kBT
.

The internal energy is

U = 2NAε
1

eε/kBT + 2
.

In the high temperature limit

U � 2

3
NAε

(
1 − ε

3kBT

)
,

so that

C = ∂U

∂T
= 2

9
R

(
ε

kBT

)2

∝ T−2,

namely the high-temperature tail of a Schottky anomaly (a “bump” in the specific
heat versus temperature), typical of two-levels systems.

Problem 5.13 Consider the Hydrogen atom, in the ground state, in a magnetic field
H0 and write the Hamiltonian including the hyperfine interaction. First derive the
eigenvalues and the spin eigenvectors in the limit H0 → 0 and estimate the frequen-
cies of the transitions induced by an oscillating magnetic field (perpendicular to the
quantization axis).

Then derive the correction to the eigenvalues due to a weak magnetic field.
Finally consider the opposite limit of strong magnetic field. Draw the energy

levels with the appropriate quantum numbers, again indicating the possibility of
inducing magnetic dipole transitions between the hyperfine levels (this is essentially
the EPR experiment, see for details Chap. 6) and from the resulting lines show how
the hyperfine constant can be extracted.

Figure out a schematic correlation diagram connecting the eigenvalues for variable
external field.

Solution: From the Hamiltonian

Hs = 2μBS · H0 − γ�I · H0 + aI · S

(γ nuclear gyromagnetic ratio, a hyperfine interaction constant, with a = hc/λ and
λ = 21 cm).

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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For H0 → 0 the eigenstates are classified by S, I , F and MF and for I = S = 1/2
two magnetic hyperfine states, F = 0 and F = 1, occur. Then E 1

2 , 1
2 ,1 = a/4 and

E 1
2 , 1

2 ,0 = −3/4a.
The spin eigenvectors are the same of any two spins system, i.e.

|αeαp >

|βe βp >
1√
2
|αeβp + αpβe >

⎫⎬
⎭ defining the triplet T1,1 T1,0 T1,−1

and
1√
2
|αeβp − αpβe > defining the singlet S0,0.

The oscillating magnetic field acts as a perturbation involving the operator μx =
2μB Sx − γ�Ix (for details see Sect. 6.2). The matrix elements for the triplet and
singlet states turn out

< 1, 1|μx |1, 0 >= 1

2

1√
2
(gμB − γ�)

< 1, 1|μx |0, 0 >= 1

2

1√
2
(−gμB − γ�)

< 1, 0|μx |1,−1 >= 1

2

1√
2
(gμB − γ�)

< 0, 0|μx |1,−1 >= 1

2

1√
2
(gμB + γ�)

< 1, 0|μx |0, 0 >=< 1, 1|μx |1,−1 >= 0.

Therefore the allowed transitions are S → T1 and S → T−1 corresponding to the
transition frequency ν = a

h = 1420 MHz (and formally T−1 → T0, T0 → T+1 at
ν = 0).

For weak field H0, neglecting the interaction with the proton magnetic moment
and considering that the perturbation acts on the basis where F2, Fz , I 2 and S2 are
diagonal, the matrix for H = aI · S + 2μBS · H0 is

⎛
⎜⎜⎝
a/4 + μBH0 0 0 0

0 a/4 0 −μBH0

0 0 a/4 − μBH0 0
0 −μBH0 0 −3a/4

⎞
⎟⎟⎠

From the secular equation the eigenvalues are found by solving

a

4
+ μBH0 − E = 0

a

4
− μBH0 − E = 0

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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(a
4

− E
)(

−3a

4
− E

)
− μ2

BH0
2 = 0

yielding E1,2 = a/4 ± μBH0 and E3,4 = −a/4 ± (a/2)[1 + 4μ2
BH0

2/a2]1/2 (the
states F = 1, MF = 0 and F = 0, MF = 0 being little affected by a weak
magnetic field).

The Breit-Rabi diagram, as reported below, holds

IS

F=0

F=1

E

H
0

In the strong field regime the eigenvalues are the ones for Sz , Iz Sz and Iz :

E = 2μBH0mS + amSMI − γ�MIH0

The first term is dominant and the diagram is

m = + ½

m = - ½

v v

M =  ½

M =  - ½

M =  - ½

M =  ½

s

s

1 2

I

I

I

I

with the electronic transitions ΔmS = ±1 (and ΔMI = 0) at the frequencies

ν1,2 = 2μBH0 ± a/2

h
.

The nuclear transitions ΔMI = ±1 (and ΔmS = 0) occur at a/2h.

Since the internal field due to the electron is usually much larger than H0 the third
term can be neglected (see the figure below).
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Electron
Zeeman 
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EPR spectrum (see Chapter 6)

Problem 5.14 The 209Bi atom has an excited 2D5/2 state, with 6 sublevels due to
hyperfine interaction. The separations between the hyperfine levels are 0.23, 0.31,

0.39, 0.47 and 0.55 cm−1. Evaluate the nuclear spin and the hyperfine constant.

Solution: From E(F, I, J ) = (a/2) [F(F + 1) − I (I + 1) − J (J + 1)] and
EF+1 − EF = a(F + 1), one finds a = 0.08 cm−1 and Fmax = 7.

Therefore F = 2, 3, 4, 5, 6, 7 and since J = 5/2 the nuclear spin must be I = 9
2 .

Problem 5.15 A proton and an anti-proton, at a given distance d, interact through the
magnetic dipole-dipole interaction. Derive the total spin eigenstates and eigenvalues
in term of the proton magnetic moment(it is reminded that the magnetic moment of
the antiproton is the same of the proton, with negative gyromagnetic ratio).

Solution: From

H = µ1 · µ2

r3
− 3

(µ1 · r)(µ2 · r)
r5

.

with µ1 = 2μps1 and µ2 = −2μps2, by choosing the z axis along r

H = −4
μ2
p

d3
s1 · s2 + 12

μ2
p

d3
sz1s

z
2.

Since s1 · s2 = S(S + 1)/2 − 3/4 and sz1s
z
2 = (1/2)M2

S − (1/2) · (1/2), one finds
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Eigenstates S MS Energies

singlet 0 0 0

1 2μ2
p/d

3

triplet 1 0 −4μ2
p/d

3

−1 2μ2
p/d

3

i.e.
1, ±1

0, 0

1, 0 

2μp
2/d

-4μp
2/d

3

3

Problem 5.16 Two electrons interact through the dipolar Hamiltonian. A strong
magnetic field is applied along the z-direction, at an angle θ with the line connecting
the two electrons. Find the eigenvalues and the corresponding eigenfunctions for the
two spins system, in terms of the basis functions α1,2 and β1,2.

Solution: In the light of Eq. (5.8) for the dipolar field (see also Problem 5.2) the total
Hamiltonian is

H = H0 + Hd

= 2μBH0(s
(1)
z + s(2)

z ) + 4μ2
B

r3

{
s1 · s2 − 3

r2
[(s1 · r)(s2 · r)]

}
.

In order to evaluate the matrix elements it is convenient to write the perturbation
Hamiltonian in the form (called dipolar alphabet)

Hd = 4μ2
B

r3
[A + B + C + D + E + F]
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where

A = s(1)
z s(2)

z

[
1 − 3 cos2 θ

]
, B = −1

4

[
s(1)
+ s(2)

− + s(1)
− s(2)

+
] (

1 − 3 cos2 θ
)
,

θ angle between H0 and r. The terms C, D, E and F involve operators of the form
s(1)
+ s(2)

z , s(1)
− s(2)

z , s(1)
+ s(2)

+ , s(1)
− s(2)

− and can be neglected. In fact these terms are off-
diagonal and produce admixtures of the zero-order states to an amount of the order
of
(
μB/r3

)
/H0 (i.e. ∼10−4 for H0 = 1 T).

Thus the dipolar Hamiltonian is written in the form

Hd = 4μ2
B

r3

(
1 − 3 cos2 θ

)
︸ ︷︷ ︸

A

[
s(1)
z s(2)

z − 1

4

(
s(1)
+ s(2)

− + s(1)
− s(2)

+
)]

,

most commonly used.
The complete set of the basis functions is α1α2, α1β2, α2β1 and β1β2 and the

matrix elements are

< αα|HT |αα > = 2 μB H0 + 1

4
A

< αβ|HT |αβ > =< βα|HT |βα >= −A
4

< αβ|HT |βα > =< βα|HT |αβ >= −A
4

< ββ|HT |ββ > = −2μBH0 + A/4

It is noted that while the term A is completely diagonal, the term B only connects
|m(1)

s m(2)
s > to states < m(1)

s +1,m(2)
s −1| or < m(1)

s −1,m(2)
s +1|. B simultaneously

flips one spin up and the other down.
The secular equation is

∣∣∣∣∣∣∣∣

(+2μBH0 + A
4 ) − E 0 0 0

0 −A
4 − E −A

4 0
0 −A

4 −A
4 − E 0

0 0 0
(−2μBH0 + A

4

)− E

∣∣∣∣∣∣∣∣
= 0.

and the eigenvalues turn out

E1 = −2μB

(
H0 − μB

2r3
(1 − 3 cos2 θ)

)
E2 = 0
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E3 = −2μ2
B

r3
(1 − 3 cos2 θ)

E4 = +2μB

(
H0 − μB

2r3
(1 − 3 cos2 θ)

)
.

The correspondent eigenfunctions beingα1α2,β1β2 and 1√
2

[α1β2 ± α2β1], as expected.

Problem 5.17 In the Ba atom the line due to the transition from the 6s 6p J = 1 to
the (6s)2 ground state in high resolution is evidenced as a triplet, with line intensities
in the ratio 1, 2 and 3. Evaluate the nuclear spin.

Solution: Since F = I + J

for J = 0 one has I = F =⇒ no splitting

for J = 1 =⇒ splitting in (2I + 1) or in (2J + 1) terms.

I = 0 =⇒ no splitting,

for I = 1

2
and J = 1 ΔF = 0,±1 =⇒ two lines

I = 1 or I > 1 =⇒ three lines.

Looking at the intensities, proportional to e−E/kBT (2F + 1), where the energy E
is about the same

for I = 1 F = 0, 1, 2 =⇒ intensities: 1, 3, 5

for I = 3

2
F = 1

2
,

3

2
,

5

2
=⇒ intensities: 2, 4, 6.

Therefore I = 3
2 .

Problem 5.18 In the assumption that in a metal the magnetic field on the electron
due to the hyperfine interaction with I = 1/2 nuclei is Hz = (a/N )Σn I zn (a
constant and same population on the two states) prove that the odd moments of the
distribution are zero and evaluate < H 2

z >. Then evaluate < H 4
z > and show that for

large N the distribution tends to be Gaussian, the width going to zero for N → ∞.

Solution: 〈Ĥ 2n+1
z 〉 = 0 for symmetry. Since (I zn )

2 = 1
4

〈(∑
n

I zn

)2〉
=
∑
n

〈
(I zn )

2
〉+∑

n �=m

〈
I zn I

z
m

〉 = 1

4
N ,
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and then 〈H 2
z 〉 = ( a

2N )2N .

〈H 4
z 〉 =

( a
N

)4 ∑
i, j,k,l

〈I zi I zj I zk I zl 〉 =
( a
N

)4
3
∑
i, j

〈
(I zi )

2(I zj )
2
〉
−
( a
N

)4∑
i

〈
(I zi )

4
〉

=
( a

2N

)4
(3N 2 − N ).

In the thermodynamical limit one has 〈H 4
z 〉 � 3

(
a

2N

)4
N 2: the first two even moments

correspond to the Gaussian moments.

Problem 5.19 Evaluate the transition probability from the state M = −1/2 to
M = +1/2 by spontaneous emission, for a proton in a magnetic field of 7500 Oe.

Solution: From the expression for A21 derived in Appendix 1.3 and extending it to
magnetic dipole transitions, one can write

A21 = 4ω3
L

3c3�
| < 2|µ|1 > |2

= 4ω3
L

3c3�

{∣∣∣∣< 1

2

∣∣∣∣μx

∣∣∣∣−1

2
>

∣∣∣∣
2

+
∣∣∣∣< 1

2

∣∣∣∣μy

∣∣∣∣−1

2
>

∣∣∣∣
2
}

with µ = γ�I. From I± = Ix ± i Iy one derives A21 = (2/3)(γ2
�/c3)ω3

L and for
γ = 42.576 · 2π · 102 Hz/G, ωL = γH0 = 2π · 31.9 MHz, yielding

A21 � 1.5 × 10−25 s−1.

Problem 5.20 High-resolution laser spectroscopy allows one to evidence the hyper-
fine structure in the optical lines with almost total elimination of the Doppler broad-
ening.

The figure below

↔

↔

↔
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shows the hyperfine structure of the 2S1/2 −2 P3/2 D2 line of Na at 5890 Å (transitions
ΔF = 0,±1 from the F = 2 level of the electronic ground state). (This spectrum
is obtained by irradiating a collimated beam of sodium atoms at right angles by
means of a narrow-band single-mode laser and detecting the fluorescent light after
the excitation. This and other high resolution spectroscopic techniques are described
in the book by Svanberg).

From the figure, discuss how the magnetic and electric hyperfine constants could
be derived and estimate the life-time of the 2P3/2 state (in the assumption that is the
only source of broadening).

Then compare the estimated value of the life time with the one known (from other
experiments), τ = 1.6 ns. In the assumption that the extra-broadening is due to
Doppler second-order relativistic shift, quadratic in (v/c), estimate the temperature
of the oven from which the thermal atomic beam is emerging, discussing the expected
order of magnitude of the broadening (see Problem 1.30).

Solution: For the ground-state 2S1/2, I = 3/2 and J = S = 1/2, the quadrupole
interaction being zero, from Eq. (5.15) the separation between the F = 2 and F = 1
states yields the magnetic hyperfine constant a = Δ1,2/(F + 1) = 886 MHz,
corresponding to an effective magnetic field of about 45 T.

The sequence of the hyperfine levels for the 2P3/2 state does not follow exactly
the interval rule. In the light of Eq. (5.20) an estimate of the quadrupole coupling
constant b can be derived (approximate, the correction being of the order of the
intrinsic line-widths).

In the assumption that the broadening (12 MHz) is due only to the life-time one
would have τ = 1/2πΔν � 13.3×10−9 s, a value close to the one (τ � 16×10−9s)
pertaining to the 32P3/2 state (Δν � 10 MHz).

The most probable velocity of the beam emerging from the oven is v =√
3kBT/MNa , that for T � 500 K corresponds to about 7 × 104 cm/s.
While the first-order Doppler broadening is in the range of a few GHz, scaling by a

term of the order of v/c leads to an estimate of the second-order Doppler broadening
in the kHz range. Thus the extra-broadening of a few MHz is likely to be due to the
residual first-order broadening (for a collimator ratio of the beam around 100 being
typically around some MHz).

Problem 5.21 From the perturbation generated by nuclear magnetic moment on the
electron, derive the effective magnetic field in the hyperfine Hamiltonian Hhyp =
−µI · he f f (Eq. (5.6)).

Solution: From the vector potential (see Fig. 5.1 and Eq. (5.4)) the magnetic Hamil-
tonian for the electron is

Hhyp = 2μB
l · µI

r3
+ 2μBs · ∇ ×

[
−∇ × µI

r

]

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Since

∇ ×
[
−∇ × µI

r

]
= −gnMn

{
I
r3

− 3(I · r)r
r5

}
+ gnMnIdiv

( r
r3

)
,

while div(r/r3) = 4πδ(r), one writes

Hhyp = 2μBgnMn
I · l
r3 − 2μBgnMn

{
s · I
r3 − 3(I · r)(s · r)

r5

}
+ 2μBgnMn(s · I)4πδ(r) ≡

≡ A + B + C,

To deal with the singularities at the origin involved in B and C , let us define
with Vε a little sphere of radius ε centered at r = 0. Then in the integral for the
expectation values

I =
∫
Vε

Bφ∗(r)φ(r)dτ ≡
∫
Vε

B f (r)dτ

one can expand f (r) in Taylor series, within the volume Vε

f (r) = f (0) + r · ∇ f (r) + 1

2
(r · ∇)(r · ∇) f (r)

In I there are two types of terms, one of the form

sx Ix
∂2

∂x2

(
1

r

)
(a)

the other of the form (
sx Iy + sy Ix

) ∂2

∂x∂y

(
1

r

)
(b)

In the expansion (r · ∇ f ) is odd while (a) terms are even, thus yielding zero in
I . The product of (a) terms with the third term in f (r) when even, contributes with
a term quadratic in ε.

The terms of type (b) are odd in the two variables, while r · ∇ f includes odd
terms in a single variable. In the same way are odd (and do not give contribution)
the terms (b) f (0). Finally the terms (b) times the third term in the expression again
contribute to I only to the second order in ε. Therefore, one can limit I to

I = 2gnMnμB f (0)
1

3

∫
Vε

(s · I)∇2

(
1

r

)
dτ .
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Since ∇2(1/r) = −4πδ(r) the magnetic hyperfine hamiltonian can be rewritten2

Hhyp = 2μBgnMn
I · l
r3 − 2μBgnMn

[
s · I
r3 − 3(s · r)(I · r)

r5

]∗
+ 16π

3
μBgnMns · Iδ(r)

Thus the effective field he f f in the form given in Eq. (5.6) is justified.
A model which allows one to derive similar results for the dipolar and the contact

terms is to consider the nucleus as a small sphere with a uniform magnetization M,
namely a magnetic moment µn = (4πR3/3)M. For r > R the magnetic field is
the one of a point magnetic dipole. Inside the sphere Hint = (8π/3)M. By taking
the limit R → 0, keeping μn constant and then assuming that M → ∞, so that∫
r<R Hintdrn = 8πμn/3, the complete expression of the field turns out

H = −µn

r3
+ 3

(µn · r)r
r5

+ 8π

3
μnδ(r).

Problem 5.22 From the energy of the nuclear charge distribution in the electric
potential due to the electron (Eq. (5.16)) derive the hyperfine quadrupole Hamiltonian
(Eq. (5.20)).

Solution: By starting from Eq. (5.18) a new tensor Qi j so that
∑

l Qll = 0 is defined

Qi j = 3Q′
i j − δi j

∑
l

Q′
ll

and in terms of Q′
i j one has

EQ = 1

6

∑
i j

Qi j Vi j + 1

6

∑
l

Q′
ll

∑
j

Vj j

The second term can be neglected since
∑

j Vj j � 0. Thus

HQ
hyp =

∑
i j

Q̂i j
V̂i j

6

where the operators are

Q̂i j = e
∑
n

(
3xni x

n
j − δi j r

2
n

)

2The star in the following equation means that in the expectation value a small sphere at the origin
can be excluded in the integration and then ε set to zero. All singularities are included in the contact
term.
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V̂i j = −e
∑
e

(
3xi x j − δi j r2

e

)
r5
e

This Hamiltonian can be simplified by expressing the five independent components
of Qi j in terms of one. Semiclassically this simplification originates from the preces-
sion of the nuclear charges around I, yielding a charge distribution with cylindrical
symmetry around the z direction of the nuclear spin.

Then Qi j = 0 for i �= j and being
∑

l Qll = 0, one has Q11 = Q22 = −Q33/2
with Q33 = ∫

ρn(r)(3z2 − r2)dτn .
In the quantum description the reduction of HQ

hyp is obtained by considering that
only the dependence from the orientation is relevant. Thus, for the matrix elements
< I, M ′

I |Q̂i j |I, MI > (other quantum numbers for the nuclear state being irrelevant),
by using Wigner-Eckart theorem one writes

< I, M ′
I |Q̂i j |I, MI >= C < I, M ′

I

∣∣∣∣32 (Ii I j + I j Ii ) − δi j I
2

∣∣∣∣ I, MI >.

By defining, in analogy to the classical description, the quadrupole moment Q in
proton charge units as

Q =< I I

∣∣∣∣∣
Q̂zz

e

∣∣∣∣∣ I I >≡< I I

∣∣∣∣∣
∑
n

(
3z2

n − r2
n

)∣∣∣∣∣ I I >

the constant C is obtained:

C < I I
∣∣3I 2

z − I 2
∣∣ I I >= C

[
3I 2 − I (I + 1)

] = eQ

Therefore all the components Qi j are expressed in terms of Q, which has the classical
physical meaning (see Eqs. (5.2) and (5.22)). Then the quadrupole operator is

Q̂i j = eQ

I (2I − 1)

{
3

2
(Ii I j + I j Ii ) − δi j I

2

}

Analogous procedure can be carried out for the electric field gradient operator:

V̂i j = eqJ

J (2J − 1)

{
3

2
(Ji J j + Jj Ji ) − δi j J

2

}

where

qJ =< J J

∣∣∣∣∣
V̂zz

e

∣∣∣∣∣ J J >=< J J

∣∣∣∣−
∑

e(3z
2
e − r2

e

r5
e

∣∣∣∣ J J >
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Finally, since
∑
i j

Ii I j Ji J j =
(∑

i

Ii Ji

)2

= (I · J)2

∑
i j

Ii I jδi j J
2 =

(∑
i

Ii

)2

J 2 = I 2 J 2

∑
i j

Ii I j J j Ji = (I · J)2 + (I · J)

the quadrupole hyperfine Hamiltonian is written

HQ
hyp = eqJ Q

2I (2I − 1)J (2J − 1)

{
3(I · J)2 + 3

2
(I · J) − I 2 J 2

}
,

as in Eq. (5.20) (see also Eq. (5.24)).

Problem 5.23 At Sect. 1.5 the isotope effect due to the reduced mass correction has
been mentioned. Since two isotopes may differ in the nuclear radius R by an amount
δR, once that a finite nuclear volume is taken into account a further shift of the atomic
energy levels has to be expected. In the assumption of nuclear charge Ze uniformly
distributed in a sphere of radius R = rF A1/3 (with Fermi radius rF = 1.2 × 10−13

cm) estimate the volume shift in an hydrogenic atom and in a muonic atom. Finally
discuss the effect that can be expected in muonic atoms with respect to ordinary
atoms in regards of the hyperfine terms.

Solution: The potential energy of the electron is V (r) = −Ze2/r for r ≥ R, while
(see Problem 1.6)

V (r) = −3
Ze2

2R

(
1 − r2

3R2

)
for r ≤ R

The first-order correction, with respect to the nuclear point charge hydrogenic Hamil-
tonian, turns out

ΔE = Ze2

2R

∫ R

0
|Rnl(r)|2

(
−3 + r2

R2
+ 2R

r

)
r2dr � Ze2

10
R2|Rnl(0)|2

The correction is negligible for non-s states, where Rnl(0) � 0, while for s states
one has

ΔE = 2

5
e2R2 Z4

a3
0n

3

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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In terms of the difference δR in the radii (to the first order) the shift turns out

δE � 4

5
e2R2 Z4

a3
0n

3

δR

R

In muonic atoms (see Sect. 1.5) because of the change in the reduced mass and in
the Bohr radius a0, the volume isotope effect is dramatically increased with respect
to ordinary hydrogenic atoms.

As regards the hyperfine terms one has to consider the decrease in the Bohr
radius and in the Bohr magneton (μB ∝ 1/m) (see Problem 5.4). For the hyperfine
quadrupole correction small effects have to be expected, since only states with l �= 0
are involved.

Finally it is mentioned that an isomeric shift, analogous to the volume isotope
shift, occurs when a radiative decay (e.g. from 57Co to 57Fe) changes the radius of
the nucleus. The isomeric shift is experimentally detected in the Mössbauer resonant
absorption spectrum (see Sect. 14.6).
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Chapter 6
Spin Statistics, Magnetic Resonance, Spin
Motion and Echoes

Topics

Spin Temperature and Spin Thermodynamics
Magnetic Resonance and Magnetic Dipole Transitions
NMR and EPR
Spin Echo
Cooling at Extremely Low Temperatures

This chapter, dealingwith nuclear and electronic angularmomenta inmagnetic fields,
further develops topics already discussed in Chaps. 4 and 5. The new arguments
involve some aspects of spin statistics and of magnetic resonance (namely how to
drive the angular and magnetic moments and to change their components along a
magnetic field). The magnetic resonance experiment in most cases is equivalent to
induce magnetic dipole transitions among Zeeman-like levels.

6.1 Spin Statistics, Spin-Temperature and Fluctuations

Let us refer to a number N (of the order of the Avogadro number) weakly interacting
spins S = 1/2, each carrying magnetic moment μ = −2μBS, in static and homo-
geneous magnetic fieldH along the z-axis. At the thermal equilibrium the statistical
distribution depicted in Fig. 6.1 occurs. The number of spins (statistical populations)
on the two energy levels are

N− = N
e

μB H
kB T

e
μB H
kB T + e

−μB H
kB T

≡ N

Z
e

μB H
kB T (6.1)
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μs

μs

Ms= +1/2

Ms=  -1/2

2μBH

H≠0

z

H=0

N++N-=N

Spin degeneracy

N+

N-

Fig. 6.1 Pictorial view of the statistical distribution of N spins S = 1/2 on the two “Zeeman
levels” in a magnetic field, with N− > N+ at thermal equilibrium. In a field of 1T the separation
energy 2μB H is 1.16 × 10−4 eV, corresponding to the magnetic temperature 2ε = 2μB H/kB =
1.343 K. An equivalent description holds for protons, with I = 1/2, with the lowest energy level
corresponding to quantum magnetic number MI = +1/2, the gyromagnetic ratio being positive
(Sect. 5.1). The energy separation between the two levels, for proton magnetic moments, is 2μp H ,
with μp = Mngn I and Mn the nuclear magneton, gn = 5.586 the nuclear g-factor. In a field of 1T,
for protons the separation turns out 1.76 × 10−7 eV (or 20.4 × 10−4 K)

and

N+ = N

Z
e

−μB H
kB T , (6.2)

with Z the partition function (for reminds see Sect.4.4, Problem4.18). The contri-
bution to the thermodynamical energy is

U = N−(−μB H)+N+(μB H) = μB H(2N+−N ) ≡
[
2N

Z
e−ε/T − N

]
μB H (6.3)

with

ε = μB H

kB
the “magnetic temperature”

(having assumed U = 0 in the absence of the magnetic field).
The statistical populations N+ or N− are modified when the temperature (or the

field) is changed and after some time a new equilibrium condition is attained. N± can
be varied, while keeping the temperature of the thermal reservoir and the magnetic
field constant, by proper irradiation at the transitional frequency ν = 2μB H/h, by
resorting to the magnetic dipole transition mechanism (the methodology is known,
in general, as magnetic resonance, described in some detail at Sect. 6.2).

http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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µµ

Fig. 6.2 Entropy S as a function of the energy U in a spin system. The statistical entropy is defined
as the logarithm of the number of ways a given spin distribution can be attained (See Sect. 6.4). The
zeroes at U = ±NμB H correspond to all spins in a single state (see also Problems 6.2, 6.4 and 6.7)

When N± are modified, in principle the energy U can take any value in between
−NμB H (corresponding to full occupation of the state at MS = −1/2) and+NμB H
(complete reversing of all the spins, with N+ = N ).

From thermodynamics, no volume variation being involved, the entropy of the
spin system can be defined

Sspin ≡ S =
∫

1

T

(
∂U

∂T

)
V

dT (6.4)

and therefore, from Eq. (6.3),

S = 2μB H
∫

1

T

(
∂N+
∂T

)
V

dT (6.5)

When the statistical distribution on the levels is modified the entropy changes, in
the way sketched in Fig. 6.2 in terms of the energy U .

Since the temperature can be expressed as

1

T
= ∂S

∂U
(6.6)

(in the partial differentiation keeping constant all the other thermodynamical vari-
ables), one can define a spin temperature Tspin in terms of N+ and N−. Thus a spin
temperature is defined also for U > 0, eventhough there is not a correspondent
thermal equilibrium temperature T of the reservoir. When, by means of magnetic
resonance methods (or, for example, simply by suddenly reversing the magnetic
field) the equilibrium distribution is altered, then Tspin �= T . It should be remarked
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that this non-equilibrium situation can last for time intervals of experimental sig-
nificance only when the probability of spontaneous emission (see Appendix 1.2) is
not so strong to cause fast restoring. This is indeed the case for states of magnetic
moments in magnetic fields (see the estimate in Problem5.19). However, exchanges
of energy with the thermal bath, related to the time-dependence of the Hamiltonians
coupling the spin system to all other degrees of freedom (the “lattice”), usually
occur. This is why a given non-equilibrium spin distribution rather fast attains the
equilibrium condition, usually through an exponential process characterized by a
time constant called spin-lattice relaxation time T1 (see Sect. 6.2). The relaxation
times T1’s, particularly at low temperatures, are often long enough to allow one to
deal with non-equilibrium states.

Let us imagine to have prepared one spin system at Tspin = −300K and to
bring it in thermal contact with another one, strictly equivalent but at thermal equi-
librium, namely at Tspin = T = 300K. The two systems reach a common equi-
librium by means of spin-spin transitions in which two spins exchange their rela-
tive orientations (this process involves a spin-spin relaxation time T2 usually much
shorter than T1). The total energy is constant while the temperatures of both the
two sub-systems evolve, as well as the entropy. The final spin temperatures are +∞
and −∞ and the entropy takes its maximum value. The internal equilibrium, with
Tspin = ±∞, is attained in very short times (for T2 � T1). Then the spin-lattice relax-
ation process drives the system towards the thermodynamical equilibrium condition,
where Tspin = T .

Now we return to the field induced magnetization

M = N < μz >H , (6.7)

< μz >H being the statistical average of the component of the magnetic moment
along the field (see Sect. 4.4).

From

−gμB
∑

MJ
MJ e−gμB MJ H/kB T

Z
= kB T

∂

(
ln(

∑
MJ

e−gμB MJ H/kB T )

)

∂H
(6.8)

with Z the partition function (see Eq. (4.30)), the magnetization can be written

M = NkB T

(
∂lnZ

∂H

)
T

. (6.9)

For J = S = 1/2

M = N

2
2μBtanh

(
μB H

kB T

)
(6.10)

Let us now evaluate the mean square deviation of the magnetization from this
average equilibrium value, i.e. its fluctuations < (M− < M >)2 > (now we have

http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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added the symbol <> to M in Eqs. (6.9) or (6.10) to mean its average character).
The magnetization has a Gaussian distribution around the average value < M >,
zero for H = 0 (See Problem6.1) and the one in Eq. (6.10) in the presence of the
field.

For the fluctuations one has

< ΔM2 >=< (M− < M >)2 >=
=< M2 > −2 < M < M >> + < M >2 =< M2 > − < M >2 (6.11)

The single < μz >’s are uncorrelated and therefore < ΔM2 >= N < Δμ2
z > with

< Δμ2
z >=< μ2

z > −(< μz >)2, yielding

< M2 >= N < μ2
z >H = 4Nμ2

B

∑
Ms

M2
s e−x Ms

Z

with x = (2μB H/kB T ) and M2
S = 1/4.

Then < M2 >= Nμ2
B and finally, from Eqs. (6.10) and (6.11)

< ΔM2 >= Nμ2
B

[
1 − tanh2

(
μB H

kB T

)]
(6.12)

Now we look for the relationship of the fluctuations to the response function, the
magnetic susceptibility χ = ∂ < M > /∂H . Again, from Eq. (6.10) one derives

χ = NμB

[
1 − tanh2

(
μB H

kB T

)]
μB

kB T
(6.13)

and therefore
< ΔM2 >= kB T χ. (6.14)

This relationship is a particular case of the fluctuation-dissipation theorem, relating
the spectrum of the fluctuations to the response functions (see Problem4.18 for an
equivalent derivation).

The considerations carried out in the present paragraph are a few illustrative
examples of the topic that one could call spin thermodynamics. This field includes
the method of adiabatic demagnetization, which allows one to reach the lowest
temperatures (Sect. 6.4). An introduction to statistical physics with paramagnets,
leading step by step the reader to the concepts suited for extending the arguments
recalled in the present paragraph, can be found in Chaps. 4 and 5 of the book by Amit
and Verbin.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_5
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Problems

Problem 6.1 Express the probability distribution of the total “magnetization” along
a given direction in a system of N independent spin S = 1/2, in zero magnetic field.

Solution: Along the z-direction two values ±μB are possible for the magnetic mo-
ment. The probability of a given sequence is (1/2)N . A magnetization M = nμB

implies 1
2 (N +n)magnetic moments “up” and 1

2 (N −n)magnetic moments “down”
(see Fig. 6.1). The total number of independent sequences giving such a distribution is

W (n) = N ![
1
2 (N + n)

]! [ 12 (N − n)
]! .

The probability distribution for the magnetization is thus W (M) = W (n)(1/2)N .
From Stirling approximation and series expansion

ln
(
1 ± n

N

)
≈ ± n

N
− n2

2N 2
± . . .

one has

ln W (M) ≈ −1

2
ln

(
πN

2

)
− n2

2N

so that

W (M) ≈
(

2

πN

)1/2

exp

[
− n2

2N

]

namely a Gaussian distribution around the value <M> = 0, at width about (N )1/2.
It is noted that the fractional width goes as N−1/2, rapidly decreasing for large N .

Problem 6.2 Express the entropy of an ensemble of S = 1/2 non-interacting spins
in a magnetic field and discuss the spin temperature recalled in Fig. 6.2.

Solution: The number of available states is

W = N !
(N+)!(N−)! .

Resorting to the Stirling approximation (see Problem6.1) the entropy is

S = kBlnW = kB[NlnN − N+lnN+ − N−lnN−].

The energy U (in Fig. 6.2) can be written U = N+α, by setting the low-energy level
at zero and α = 2μB H . Being N− = N − N+ the entropy becomes

S = kB[NlnN − ulnu − (N − u)ln(N − u)],
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with u = U/α ≡ N+. From Eq. (6.6), with ∂S/∂U = (1/α)∂S/∂u

1

T
= kB

α
[lnN− − lnN+]

or
T = α

kBln( N
u − 1)

justifying the plot in Fig. 6.2. Themaximumof S occurs for u = N/2, i.e. N+ = N/2.
From the free energy

F = − N

β
ln[1 + exp(−2β μB H)],

and S = − (∂F/∂T )H the same expression for the entropy in terms of u is obtained.

Problem 6.3 Two identical spin systems at S = 1/2, prepared at spin temperatures
Ta = E/2kB and Tb = −E/kB are brought into interaction. Find the energy and the
spin temperature of the final state.

Solution: By setting E = 0 for the low energy level, Ux = Ua + Ub is written

Ux = 2NE
exp(−E/kB Tx )

1 + exp(−E/kB Tx )
.

Since

Ua = NE
exp(−2)

1 + exp(−2)

and

Ub = NE
exp(1)

1 + exp(+1)
,

one has

exp(E/kB Tx ) = e2 + e−1 + 2e

2 + e2 + e−1
≡ z

and then

Tx = E

kB ln z
≈ 3.3

E

kB
.

Problem 6.4 Show that the entropy (per particle) of a system can be written

S = −kB

∑
n

pn ln pn

where pn is the probability that the system is found in the state at energy En , namely
for a canonical ensemble
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pn = exp(−En/kB T )

Z
,

with Z partition function. This form of S is known as Shannon-Von Neumann entropy
and it holds also for microcanonical and grand canonical ensembles.

Solution: In fact

S = −kB

Z

∑
n

exp

(
− En

kB T

)[
− En

kB T
− lnZ

]

= kB
lnZ

Z

∑
n

exp

(
− En

kB T

)
+ 1

T

∑
n

exp

(
− En

kB T

)
En

Z

= kB lnZ + 1

T

∑
n

exp

(
− En

kB T

)
En

Z
.

On the other hand, from
F = −kB T lnZ

one can write

S = U − F

T
= kB

∂(T lnZ)

∂T

and

U = kB T 2 ∂ lnZ

∂T
.

Then

S = −
[
∂F

∂T

]
v,H

= kB lnZ + kB T
∂ lnZ

∂T
.

Since
∂ lnZ

∂T
= 1

kB T 2

∑
n

exp

(
− En

kB T

)
En

Z

one has

S = kB lnZ + 1

T

∑
n

exp

(
− En

kB T

)
En

Z
.

Problem 6.5 Amodel widely used in statistics and in magnetism is the Ising model,
for which an Hamiltonian of the form H = −K

∑
i, j si s j is assumed, with the

spin variables si taking the values +1 and −1. K is the exchange integral (see
Sect. 2.2.2).1 Derive the partition function Z , the free energy F , the thermodynamical
energy U and the specific heat CV , for a system of N spins.

1It can be remarked that having assumed a site-independent interaction, this model corresponds to
the mean-field description, or equivalently to an infinite range of the interactions (see Chap.17).

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_17
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Solution: By indicating with Np,a the number of parallel (p) and antiparallel (a)
spins with Np + Na = N − 1 the number of interacting pairs, the energy of a given
spin configuration is E = −K (Np − Na) = −K (2Np + 1 − N ).

The number of permutations of the (N−1)pairs is (N−1)!, ofwhich [(N−1)!/Na!
Np!] are distinguishable. Therefore the sum over the states reads

Z = 2
N−1∑
Np=0

[
(N − 1)!
Na ! Np!

]
exp

[
+ K (2Np + 1 − N )

kB T

]

= 2 exp

[
+ K (1 − N )

kB T

] ∑
Np

[
(N − 1)!

(N − 1 − Np)!Np!
]

exp

[
+ K (2Np)

kB T

]

(the factor 2 accounts for the configurations arising under the reversing of all the spins
without changing Np or Na). The sum is the expansion of {1+exp [ (2 K/kB T )]}N−1

and therefore

Z = 2N

[
cosh

K

kB T

]N−1

.

Then

F = −kB T lnZ = −kB T

[
N ln2 + (N − 1) ln

(
cosh

K

kB T

)]
,

U = −∂(lnZ)

∂β
= −(N − 1)K tanh(βK ), with β = 1

kB T

and

CV =
(

∂U

∂T

)
N

= (N − 1)

(
K 2

kB T 2

) [
1

(cosh βK )2

]
.

6.2 The Principle of Magnetic Resonance
and the Spin Motion

Transitions involving hyperfine states or nuclear and/or electronic Zeeman-states
in magnetic fields are carried out by resorting to the magnetic dipole mechanism.
These transitions are usually performed by exploiting the phenomenon elsewhere
called magnetic resonance, which allows one to drive electronic or nuclear mag-
netic moments. This type of experiments are at the core of modern microwave and
radiofrequency spectroscopies.

The first experiment of magnetic resonance, performed by Rabi, involved mole-
cular beams (see Fig. 6.3).

The vectorial description, with classical equation of motion (Chap.3) is the fol-
lowing (see Fig. 6.4). The motion of the angular momentum L inH0 is described by

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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Fig. 6.3 aSketch of the experimental setup formagnetic resonance in beams (ABMR). Themagnetic
fields A and C have gradients along opposite directions. In region B the magnetic field H0 ‖ z is
homogeneous. The radiofrequency (or the microwave) field H1 in region B is perpendicular toH0.
In part b of the figure the sketch of a typical magnetic resonance signal is shown, detected as a
minimum in the arrival of the atoms when in region C the refocusing of the deviations is inhibited
(dotted line) by the resonance driven by H1 in region B (see text)

dL
dt

= μL × H0 i.e.
dμL

dt
= −γ(μL × H0) (6.15)

implying the precession at the Larmor frequency ωL = γH0 (see Sect. 3.2 and
Problem3.4). In a frame of reference rotating at angular frequency ω, Eq. (6.15)
becomes2

dμL

dt
= γ

(
H0 + ω

γ

)
× μL . (6.16)

Thus in the presence of the radiofrequency (or microwave) irradiation the effective
field is

He f f =
(

H0 + ωRF

γ

)
k̂ + H1 î (6.17)

2It is reminded that(
dμ

dt

)
lab.frame

=
(

∂μ

∂t

)
relative to rot. frame

+
(

dμ

dt

)
rot.frame

the latter being ω × μ. For Hx = H1cosωRF t , Hy = H1sinωRFt and Hz = H0, in the rotating
frame the magnetic field is constant: H ′

x = H1, H ′
y = 0 and H ′

z = H0 (see Fig. 6.6).

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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Fig. 6.4 Precessional
motion of the magnetic
moment μ at the angular
frequency ωL = γH0 and
rotation of the field H1 at
ωRF. For ωL = ωRF the
magnetic resonance occurs.
The gyromagnetic ratio γ is
μI /I� for nuclear moment
(see Sect. 5.1) or γ = μJ /J�

for electron magnetic
moment

Ho //z

μ

x

y
H1(in reality an oscillating 

x is applied)

H1<< Ho

field along 

Fig. 6.5 Quantum magnetic
levels for magnetic moment
μI = gMnI = γI�, for
I = 1/2 in a magnetic field.
The resonance corresponds
to transitions from
MI = +1/2 to MI = −1/2,
driven by the magnetic
dipole mechanism

WhenωRF = −γH0 (the signminus refers to clockwise precession), in the rotating
frame of reference only H1 is active and the magnetic moment precesses around it,
thus changing its component with respect to H0. As a consequence of the change in
the z-component of the magnetic moment in the region B of the Rabi experimental
set up (Fig. 6.3) the compensation of the deviations due to F = ±μz(dH/dz) in the
regions A and C does no longer occur. Then a minimum in the number of atoms (or
molecules) reaching the detector is observed.

The quantum description of the magnetic resonance corresponds to the situation
depicted in Fig. 6.5 for nuclear spin I = 1/2.

The eigenvalues are±MI gn Mn H0 and magnetic dipole transitions, with selection
ruleΔMI = ±1, are possiblewhen the condition hνRF = gn Mn H0 ≡ �ωL is verified.
The perturbation operator is

HP = −μI .H1 ≡ −γN �(Hx Ix + Hy Iy) = −γN �
H1

2
(I−eiωRF t + I+e−iωRF t ),

with only out-of-diagonal elements. By extending the description in Appendix 1.3,
the transition probability has to be written

http://dx.doi.org/10.1007/978-3-319-17897-4_5
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Ho // z

μμμ

x

y
H1

y’

x’

π/2

π

μμμ stopped in the xy plane

μμμ direction is reversed

Fig. 6.6 Illustrative examples of the spinmotions induced in pulsemagnetic resonance, by stopping
the irradiation after a given time. For the so-called π/2 pulse the time of irradiation turns out (see
text for the precession around H1) τ = (π/2)/ω1 = (π/2)/γH1 = (π/4)�/H1μI for nuclear spin
I = 1/2 and τ = (π/2)�/H1μB for electron at S = 1/2. The π pulse requires an irradiation time
2τ and it corresponds to the complete reversing of the spins in the magnetic field H0 (x ′, y′, z′ is
the rotating frame)

WRF ∝ | < I, M ′
I |I+ + I−|I, MI > |2. (6.18)

According to the properties of the I± operators3 and to the orthogonality of states
at different MI , Eq. (6.18) leads to the selection rule ΔMI = ±1. The circular
polarization required for ΔMI = ±1 transitions is the counterpart of the rotating
field H1 perpendicular to the z-quantization axis.

A treatment of quantum character is possible (for free spins) by considering the
time evolution of the expectation values for the spin components (Problem6.6).

The description in terms of spinmotion is particularly suited for understanding the
modern pulse resonance techniques, which allow one to drive the magnetic moments
along a given direction by controlling the length of the radiofrequency irradiation.
Examples are shown in Fig. 6.6.

Finally we mention that resonance experiments (NMR for nuclear, EPR for elec-
tron) nowadays are generally carried out in condensed matter, with a number of
interesting applications.

In condensed matter the interactions with the other degrees of freedom (the “lat-
tice”) or among spins themselves, play a relevant role. Phenomenologically the
interactions are taken into account by the Bloch equations, that for the expectation

3< M |I+|M − 1 > = √
(I + M)(I − M + 1),< M |I−|M + 1 > = √

(I − M)(I + M + 1), all
other elements being zero.
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values of the spin components, averaged over the statistical ensemble, in the rotating
frame can be written

d < Ix >

dt
= −< Ix >

T2
(6.19a)

d < Iy >

dt
= −< Iy >

T2
. (6.19b)

These equations account for the decay of the transverse components of < I >,
that at long time must vanish. For the longitudinal component the Bloch equation is

d < Iz >

dt
= (I 0z − < Iz >)

T1
(6.20)

(where I 0z is the expectation value of the z-component at the thermal equilibrium).
This equation describes the relaxation process towards equilibrium, after a given
alteration of the statistical populations (see Sect. 4.4 for a qualitative definition of the
relaxation time T1).

In order to have a complete description of the spin motions Eqs. (6.19) and (6.20)
must be coupled to the equation

d < I >

dt
= −gn Mn

�
< I > ×Heff (6.21)

where the effective field is defined in Eq. (6.17). Then one has a system of equations
(6.19–6.21) for the expectation values of the spin components (often written in terms
of the nuclear magnetizationMnuclear ∝ ∑

i < Ii >). These equations can be solved
under certain approximations, to yield the time evolution of < I > or of Mnuclear.

The quantum description of the time evolution of the spin operators in magnetic
resonance experiments, in the presence of the relaxation processes imbedded in
Eqs. (6.19) and (6.20), is usually basedon avariant of the time-dependent perturbation
theory, the density matrix method. The textbook by Slichter deals with this matter
to the due extent. We shall limit ourselves, in the next paragraph, to describe a very
important phenomenon, the spin echo, that in simple circumstances can satisfactorily
be treated on the basis of the semiclassical motions of the spin operators and of the
Bloch equations.

Problems

Problem 6.6 Consider a single spin s in a constant and homogeneous magnetic
field along the z-direction. From time-dependent Schrödinger equation derive the
expectation values of the spin components and show that the precessional motion
occurs.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Then consider a small oscillating magnetic field along the x-direction and prove
that at the resonance one has reversing of swith respect to the static field. Discuss the
cases of pulse application of the oscillating field for time intervals so that the rotation
of s is by angles π/2 and π. Qualitatively figure out what happens if spin-spin and
spin-lattice interactions are taken into account.

Solution: It can be noticed that the perturbation theory leading to Eq. (6.18) is valid
only for short times, so that the probability of finding the spin in the original state
is still close to unity. A solution valid for any time t can be given by means of a
procedure based on the Rabi description of two-level systems (Appendix 1.2), for
the case S = 1/2. From

μBH
(
1 0
0 −1

)
|φ(t) >= i�

d|φ(t) >

dt

where
|φ(t) >= α(t)| ↑> +β(t)| ↓>, |α(t)|2 + |β(t)|2 = 1,

one derives

α(t) = a exp (−iωL t/2) β(t) = b exp (iωL t/2)

with ωL Larmor frequency. The expectation values are

< φ(t)|sz|φ(t) >= �

2
[|α|2 − |β|2], time-independent,

while
< φ(t)|sx |φ(t) >= (a b �) cos(ωL t)

< φ(t)|sy|φ(t) >= (a b �) sin(ωL t),

indicating the precession depicted in Figs. 6.4 and 6.6.
In the presence of H1 rotating in the (xy) plane

H1(t) = H1exp[±iωt],

from the Schrödinger equation one derives

�

2
ωLα + μB H1exp[−iωt]β = i�

dα

dt

μB H1exp[+iωt]α − �

2
ωLβ = i�

dβ

dt
.
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By writing the coefficients α and β in the form

α = Γ (t)exp

[
− iωL t

2

]
β = Δ(t)exp

[
+ iωL t

2

]

those equations are rewritten

μB H1exp[−i(ω − ωL)t]Δ = i�
d Γ

dt

μB H1exp[+i(ω − ωL)t]Γ = i�
dΔ

dt
.

At the resonance

μB H1Δ = i�
d Γ

dt
and μB H1Γ = i�

dΔ

dt
.

From the derivative of the first, substituted in the second, one finds

Γ = sin(Ωt + ψ) and Δ = i cos(Ωt + ψ),where Ω = μB H1

�
.

By setting ψ = 0, by repeating the derivation of the expectation values one has

< φ(t)|sz|φ(t) >= −�

2
cos(2Ωt)

< φ(t)|sx |φ(t) >= −�

2
sin(2Ωt) sin(ωL t)

< φ(t)|sy|φ(t) >= �

2
sin(2Ωt) cos(ωL t).

These equations can be interpreted in terms of the motion of s as the superposition
of the precession around z at the Larmor frequency and the rotation around H1 at
the angular frequency 2μB H1/�.

τπ

Ho//z

Σi<si>

x

yH1

τπ/2

Ho//z

Σi<si>x

y
H1
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In the rotating frame (see Fig. 6.6) whereH1 is fixed, one has the rotation of s by a
given angle, depending on the duration of the irradiation. Thus, in principle, one can
prepare the magnetization M ∝ ∑

i < si > along any direction, as schematically
illustrated above.

It is noted that the (π/2) pulse corresponds to equalize of the statistical populations
in the two Zeeman levels andmagnetization in the xy plane. The π pulse corresponds
to the inversion of M and therefore to negative spin temperature (see Sect. 6.1).

The spin-spin interaction implies the decay to zero, in a time of the order of T2,
of the transverse components of M. The spin-lattice interaction, with transfer of
energy to the reservoir, drives the relaxation process towards the thermal equilibrium
distribution, withM alongH0, attained in a time of the order of T1 (see Problem6.11).

6.3 Spin and Photon Echoes

Let us imagine that a system of electronic or nuclear spins has been brought in the xy
plane (perpendicular to the z-axis along the fieldH0) by a π/2 pulse, by means of the
experimental procedure described at Sect. 6.2 and Problem6.6. Once in the plane,
the transverse components have to decay towards zero according to Eq. (6.19), in a
time of the order of T2, yielding in a proper receiver a signal called free induction
decay (FID).

Now let us suppose that in times much shorter than T2 another mechanism, differ-
ent from the spin-spin interaction, causes a distribution of precessional frequencies.
This mechanism could be due for instance to magnetic field inhomogeneities, to
spatially varying diamagnetic or paramagnetic corrections to the external field H0 or
to a field gradient created by external coils. Because of the spread in the precessional
frequencies, in a time usually called T ∗

2 and much shorter than T2, the transverse
components of the total magnetizationMx,y ∝ ∑

i < Ix,y(i) > decay to value close
to zero. After a time t1 larger than T ∗

2 but shorter than T2, a second pulse, of duration
π, is applied (see Fig. 6.7). Since all the spins are flipped by 180◦ around the x ′-axis,
the ones precessing faster now are forced to return in phase with the ones precessing
slower.

Thus after a further time interval t1, refocusing of all the spins along a common
direction occurs, yielding the “original” strength of the signal (only the reduction
due to the intrinsic T2-driven process is now acting, but 2t1 � T2). This is called
the echo signal. By repeating the π-pulses the envelope of the echoes tracks the real,
irreversible decay of the Mx,y components, as depicted in part b) of Fig. 6.7.

The relevance of pulse magnetic resonance experiments in the development of
modern spectroscopies can hardly be over estimated. Besides the enlightenment of
fundamental aspects of the quantum machinery, the echo experiments, first devised
by Hahn, have been instrumental in a number of applications in solid state physics,
in chemistry and in medicine (NMR imaging).
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Fig. 6.7 Schematic representation of the spin motions generating the echo signal upon application
of a sequence of π/2 and π pulses. Part a shows the FID signal following the π/2 pulse and how
the echo signal is obtained at the time 2t1 owing to the reversible decay of the magnetization in
a time shorter than T2. The rotation of the spins in the (x, y) plane, as seen in the rotating frame
of reference, evidences how refocusing generates the echo. It should be remarked that with pulse
techniques, by switching the phase of the RF field it is possible to apply the second pulse (at time
t1) along a direction different from the one of the first pulse at t = 0 (e.g. from x ′ to y′ in the
rotating frame, see Fig. 6.6). Part b shows the effect of a sequence of π pulses (after the initial
π/2), with a train of echoes, the envelope yielding the intrinsic irreversible decay of the transverse
magnetization due to the T2-controlled mechanism

Furthermore the pulse magnetic resonance methodology has been transferred in
the field of the optical spectroscopy, by using lasers. In this case special techniques
are required, because in the optical range the “dipoles” go very fast out of phase (the
equivalent of T2 is very short).

In this respect we only mention that the pseudo-spin formalism can be applied to
any system where approximately only two energy levels, corresponding to the spin-
up and spin-down states, can be considered relevant. For a pair of states in atoms, to
a certain extent coherent electric radiation can be used to induce the analogous of
the inversion of the magnetization described at Sect. 6.2 and Problem6.6, in terms
of the populations on the lower and on the upper atomic or molecular levels. The
“oscillating” electric dipole momentR21 (see Appendix 1.3) plays the role analogous
to themagneticmoment in themagnetic resonancephenomenon.After the “saturation
of the line” corresponding to the equalization of the two levels (to a π/2-pulse), a
second pulse π at a time t1 later, can force the diverging phases of the oscillating
electric dipoles to come back in phase: a “light pulse”, the photon echo, is observed
at the time 2t1.
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The analogies of two-levels atomic systems in interaction with coherent radia-
tion with the spin motions in magnetic resonance experiments, are described in the
textbook by Haken and Wolf.

6.4 Ordering and Disordering in Spin Systems: Cooling
by Adiabatic Demagnetization

Asalready shown (seeProblem6.4), the entropyof an ensemble ofmagneticmoments
in a magnetic field is related to the partition function Z :

S = −
(

∂F

∂T

)
H

=
[
∂(NkB T lnZ)

∂T

]
H

(6.22)

F being the Helmholtz free energy.
From the statistical definition the entropy involves the number ofways W inwhich

the magnetic moments can be arranged: S = kBlnW . For angular momenta J, in the
high temperature limit the MJ states are equally populated and W = (2J +1)N . The
statistical entropy is

S = NkBln(2J + 1) (6.23)

For T → 0, in finite magnetic field, there is only one way to arrange the magnetic
moments (see Sect. 6.1) and then the spin entropy tends to zero. In general, since the
probability p(MJ ) that Jz takes the value MJ is given by

p(MJ ) = e−MJ gμB H/kB T

Z
, (6.24)

the statistical entropy has to be written (see Problems6.4 and 6.7)

S = −NkB

∑
MJ

p(MJ )ln(p(MJ )) (6.25)

By referring for simplicity to non interacting magnetic ions with J = S = 1/2,
at finite temperature the entropy is

S(T ) = NkB

(
(ln2)cosh

( ε

T

)
− ε

T
tanh

( ε

T

))
, (6.26)

where ε = μB H/kB is the magnetic temperature and S(T → ∞) = NkBln2
(Eq. (6.23)).
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The temperature dependence of the entropy is plotted below:
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Now we describe the basic principle of the process called adiabatic demagneti-
zation, used in order to achieve extremely low temperatures.

A crystal withmagnetic ions, almost non-interacting (usually a paramagnetic salt)
is in thermal contact by means of an exchange gas (typically low-pressure Helium)
with a reservoir, generally a bath of liquid Helium at T = 4.2K. (This temperature
can be further reduced, down to about 1.6K, by pumping over the liquid so that the
pressure is decreased).

In zero external field the spin entropy is practically given by NkBln2. Only at
very low temperature the residual internal field (for instance the one due to dipolar
interactionor to the nuclear dipolemoments)would anyway induce a certain ordering.
The schematic form of the temperature dependence of the magnetic entropy is the
one given by curve 1 in Fig. 6.8. Then the external field is applied, in isothermal
condition at T = Tinit, up to a certain value Hm . In a time of the order of the spin-
lattice relaxation time T1, spin alignment is achieved, the magnetic temperature is
increased and (T/ε) � 1. Therefore the magnetic entropy is decreased down to
Sinit (curve 2 in the Figure), at the same temperature of the thermal bath and of the
crystal. The value Sinit in Figure corresponds to Eq. (6.26) for T � ε and implies
a large difference in the populations N+ and N− (see Fig. 6.1, where now the point
at the energy E = −NμB H is approached). The external bath (the liquid Helium)
absorbs the heat generated in the process, while the magnetic energy is decreased.
The “internal” reservoir of the sample (namely all the other degrees of freedom
besides the spins, already defined “lattice”) has its own entropy Slattice related to the
vibrational excitations of the ions (in number N ′, ten or hundred times the number
N of the magnetic ions).
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Fig. 6.8 Schematic temperature dependences of the magnetic and lattice entropies and of the
decrease of the lattice temperature as a consequence of the demagnetization process. The order of
magnitude of the lattice entropy is Slattice ∼ 10−6N ′kB T 3 (with N ′ say 10 or 100N , N being the
number of magnetic ions). The initial lattice entropy, at T = Tinit has to be smaller than the spin
entropy

Since in general the entropy is

S ∝
∫

δQ

T
=

∫
CV

T
dT,

by considering that at low temperature the specific heat CV of the lattice goes as
T 3 (see the Debye contribution from acoustical vibrational modes at Sect. 14.5) one
approximately has

Slattice ∼ 10−6N ′kB T 3

(curve 2 in Fig. 6.8).
Now the exchange gas is pumped out and the sample remains in poor thermal

contact with the external bath. The magnetic field is slowly decreased towards zero
and the demagnetization proceed ideally in isoentropic condition. The total entropy
stays constant while the magnetic entropy, step after step, each in time of the order
of T1, has to return to curve 1.

Therefore Slattice has to decrease of the same amount of the increase of the mag-
netic entropy S. Then the temperature of the “internal” thermal bath has to decrease
to T f inal � Tinit .

The amount of cooling depends from the initial external field, from the lattice
specific heat and particularly from the internal residual field Hres that limits the value
of themagnetic entropy at low temperature. In fact, it prevents the total randomization
of the magnetic moments. As an order of magnitude one has Tfinal = Tinit(Hres/Hinit).

The adiabatic demagnetization corresponds to the exchange of entropy between
the spin system and the lattice excitations. In the picture of the spin temperature
(Sect. 6.1) one has an increase of the spin temperature at the expenses of the lattice
temperature. The final temperature usually is in the range of milliKelvin, when the
electronicmagneticmoments are involved in the process. Nuclearmagneticmoments

http://dx.doi.org/10.1007/978-3-319-17897-4_14
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are smaller than the electronic ones by a factor 10−3–10−4 and then sizeable ordering
of the nuclear spins can require temperature as low as 10−6 K or very strong fields.
In principle, by using the nuclear spins the adiabatic demagnetization could allow
one to reach extremely low temperatures. However, one has to take into account
that the relaxation times T1 become very long at low temperatures (while the spin-
spin relaxation time T2 remains of the order of milliseconds). The experimental
conditions are such that negative spin temperature can easily be attained, for instance
by reversing the magnetic field.

From these qualitative considerations it can be guessed that a series of experiments
of thermodynamical character based on spin ordering and spin disordering can be
carried out, involving non equilibrium states when the characteristic times of the
experimental steps are shorter than T1 or T2.

We shall limit ourself to mention that by means of adiabatic demagnetization
temperature as low as 2.8 × 10−10 K have been obtained. The nuclear moments
of Copper have been found to order antiferromagnetically at 5.8 × 10−8 K, while in
Silver they order antiferromagnetically at TN = 5.6×10−10 K and ferromagnetically
at Tc = −1.9 × 10−9 K.

Problems

Problem 6.7 A magnetic field H of 10T is applied to a solid of 1 cm3 containing
N = 1020, S = 1/2 magnetic ions. Derive the magnetic contribution to the specific
heat CV and to the entropy S. Then estimate the order of magnitude of CV and S at
T = 1 K and T = 300 K.

Solution: The thermodynamical quantities can be derived from the partition function
Z . From the single particle statistical average the energy is

< E >=
∑

i

pi Ei

and from Maxwell-Boltzmann distribution function the probability of occupation of
the i th state is

pi = exp(−Ei/kB T )∑
i exp(−Ei/kB T )

≡ exp(−Eiβ)

Z
.

∑
i pi = 1 and the partition function normalizes the probability pi .
The total contribution from the magnetic ions to the thermodynamical energy U

(per unit volume) is
U = N < E >

and

< E >=
∑

i Ei exp(−Ei/kB T )

Z
= − 1

Z

∂ Z

∂β
= −∂ lnZ

∂β

thus yielding

U = −N
∂ lnZ

∂β
.



214 6 Spin Statistics, Magnetic Resonance, Spin Motion and Echoes

For μ = −g μB S and g = 2 (see Sect. 4.4) one has

Z = exp

(
μB H

kB T

)
+ exp

(
−μB H

kB T

)
≡ 2 cosh x

with

x = μB H

kB T
≡ βμB H.

For independent particles Ztotal = Z N . Then U = −NμB H tanh x and

CV =
(

∂U

∂T

)
H

=
(

∂β

∂T

) (
∂E

∂β

)
H

= −kB β2

(
∂U

∂β

)
H

,

i.e.

CV = NkB x2sech2x ≡ N kB x2

cosh2 x

plotted below.
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For the entropy, since (see Problem6.4) S = −kB
∑

i pi ln pi

S = −kB

∑
i

[
exp(−βEi )

Z

]
(−βEi − lnZ) = < E >

T
+ kB lnZ ,

so that
S = N kB [ln (2 cosh x) − x tanh x],

as it could also be obtained from S = −(∂F/∂T )H with F = −NkB T lnZ (see the
plot at Sect. 6.4).

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Numerically, for H = 10T, T = 1K corresponds to x>>1 and T = 300 K to
x<<1, so that

T = 1K CV ≈ 0, S ≈ 0

T = 300K CV ≈ 0, S ≈ kB Nln2

Problem 6.8 A spin system (S = 1/2) in a magnetic field of 10T, is prepared at
a temperature close to 0K and then put in contact with an identical spin system
prepared in the condition of equipopulation of the two spin states. Find the spin tem-
perature reached by the system after spin-spin exchanges, assuming that meantime
no exchange of energy with the lattice occurs. Discuss the behavior of the entropy.

Solution: The thermodynamical energies are

U1 = 0 U2 = N

2
E, with E energy separation between the two spin states.

From the final energy

Ufinal = U1 + U2 = N

2
E

the spin temperature is obtained by writing

Ufinal = 2NE
Z

exp

(
− E

kB Tspin

)
.

Thus

1 = 4

exp(E/kB Tspin) + 1

and Tspin � E/(kB · 1.1). For E = 2μB H one has Tspin = 12.2 K.
For the entropy see Problem6.7 and look at Fig. 6.1, by taking into account that

no energy exchange with the reservoir is assumed to occur.
It is noted that the increase of the entropy can be related to the irreversibility of

the process.

Problem 6.9 Prove that the mean square deviation of the energy of a system from
its mean value (due to exchange of energy with the reservoir) is given by kB T 2 CV ,
CV being the heat capacity.

Solution: The mean square deviation is

<(E − <E>)2> = <E2 − 2E<E> + <E>2> = <E2> − <E>2

where

<E> =
∑

i

Ei exp(−Ei/kB T )

Z
= − 1

Z

∂ Z

∂β
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while

<E2> =
∑

i

E2
i exp(−Ei/kB T )

Z
= 1

Z

∂2Z

∂β2
.

Therefore

<E2> − <E>2 = ∂

∂β

[
1

Z

∂ Z

∂β

]
= −∂<E>

∂β
.

Since
∂

∂β
= −kB T 2 ∂

∂T
and

∂<E>

∂T
= CV

one has
<(E − <E>)2> = kB T 2 CV ,

another example of fluctuation-dissipation relationships (see Eq. (6.14)).

The fractional deviation of the energy
[
(<E2> − <E>2)/<E>2

] 1
2 at high tem-

peratures, where <E> ≈ NkB T and CV ≈ NkB is of the order of N−1/2, a very
small number for N of the order of the Avogadro number (see Problem6.1).

Problem 6.10 Compare the magnetic susceptibility of non-interacting magnetic
moments S = 1/2 with the classical S = ∞ limit (where any orientation with
respect to the magnetic field is possible).

Solution: For S = ∞

<μ cos θ> = μ

∫
cos θ exp

(
μH cos θ

kB T

)
sin θ dθ/

∫
exp

(
μH cos θ

kB T

)
sin θ dθ

= μ

[
coth

μH

kB T
−

(
μH

kB T

)−1
]

≈ μ2H

3kB T

yielding the Langevin-like susceptibility. For S = 1/2 (see Sect. 4.4)

< μ >= μ

[
exp

(
μ H
kB T

)
− exp

(
− μ H

kB T

)]
[
exp

(
μ H
kB T

)
+ exp

(
− μ H

kB T

)] ≈ μ2H

kB T

Problem 6.11 By taking inspiration fromFig. 6.7, devise an experimental procedure
suitable to measure the spin-lattice relaxation time T1.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Solution:

At t = 0 the (π/2) pulse brings the magnetization along y, saturating the popula-
tions of the two levels and yielding the FID signal (see Sect. 6.3). After a time t1 a
second (π/2) pulse measures the magnetization Mz(t1) during the recovery towards
the equilibrium value. By applying pairs of pulses with different t1’s (e.g. t2) the
recovery plot towards the equilibrium is constructed and T1 is extracted.

Problem 6.12 For an ensemble of particles with a ground state at spin S = 0 and
the excited state at energy Δ and spin S = 1, derive the paramagnetic susceptibility.

Then, by resorting to the fluctuation-dissipation theorem (see Eq. (6.14) and Prob-
lem4.18) show that the same result is obtained.

Solution: The energy levels are sketched below:

S=1

S=0

Δ

H=0

H≠0
MS =+1

MS =-1

MS =0
EH

EH

EH =2μBH

The direct expression for the single particle susceptibility is

χ = χ0 p0 + χ1 p1

where χ0 = 0, χ1 = μ2
Bg2S(S + 1)/3kB T = 8μ2

B/3kBT and

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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p0,1 = (2S + 1)e−βE0,1

Z
,

with Z partition function. For E0 = 0 and E1 = Δ one has

χ = 8μ2
B

kB T

e−βΔ

(1 + 3e−βΔ)

It is noted that the above equation is obtained in the limit of evanescent field, condition
that will be retained also in the subsequent derivation. The magnetization is

M = N−1μz + N0.0 − N+1μz

with μz = 2μB . Then

M = N2μB

Z

{
e−β(Δ−EH ) − e−β(Δ+EH )

}

with Z = 1 + e−β(Δ−EH ) + e−βΔ + e−β(Δ+EH ). Therefore,

M = N2μB
e−βΔ[eβEH − e−βEH ]

1 + e−βΔ[eβEH + 1 + e−βEH ]
and for βEH � 1

M = 2μB Ne−βΔ 2βEH

1 + 3e−βΔ
= 8μ2

B N

kB T

e−βΔ

1 + 3e−βΔ
H,

yielding the susceptibility obtained from the direct expression.
From the fluctuation-dissipation relationship (see Eqs. (6.11)–(6.14)), being the

fluctuations uncorrelated < ΔM2 >= N < Δμ2
z > with < Δμ2

z >=< μ2
z > −

< μz >2, and

< μ2
z >= 4μ2

B

∑
MS ,S M2

Se−βE(Ms ,S)

Z
= 4μ2

B

{
e−β(Δ−EH ) + e−β(Δ+EH )

Z

}
.

From < μz >= M/N

< μz >2 = 4μ2
B

[e−β(Δ−EH ) − e−β(Δ+EH )]2
Z2

Thus

< ΔM2 >= 4Nμ2
B

e−βΔ

Z

{
eβEH + e−βEH − e−2βΔ

Z
(eβEH − e−βEH )2

}
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and again for βEH � 1

< ΔM2 >= 4Nμ2
B

e−βΔ

Z

{
2 − e−2βΔ

Z
(βEH )2

}
� 8Nμ2

B

e−βΔ

1 + 3e−βΔ
= kB T χ.

Problem 6.13 Consider an ideal paramagnet, with S = 1/2 magnetic moments.
Derive the expression for the relaxation time T1 in terms of the transition probability
W (due to the time-dependent spin-lattice interaction) driving the recovery of the
magnetization to the equilibrium, after a perturbation leading to a spin temperature
Ts , different from the temperature T = 300K of the thermal reservoir. Find the
time-evolution of the spin temperature starting from the initial condition Ts = ∞.

Solution: The instantaneous statistical populations are

N− = N

Z
eμB Hβs � N

Z
(1 + βs E−)

with βs = 1/kB Ts

N+ = N

Z
e−μB Hβs � N

Z
(1 − βs E+),

while at the thermal equilibrium

N eq
∓ � N

Z
(1 ± βE∓) � N

2
(1 ± βΔE)

with β = 1/kB T and ΔE = 2μB H .
From the equilibrium condition N−W−+ = N+W+− one deduces

W+− = W−+
N−
N+

� W−+
1 + βE−
1 − βE+

and W+− � W (1 + βΔE), with W−+ ≡ W .
Since

d N−
dt

= −N−W + N+W (1+βΔE) = −N−W + (N − N−)W (1+βΔE) = −2N−W +2N eq
− W,

then N−(t) = ce−2W t + N eq
− and from the initial condition

N−(t) = (N init
− − N eq

− )e−2W t + N eq
−

Evidently d N+/dt = −d N−/dt .
From the magnetization Mz(t) ∝ (N− − N+) one has d Mz/dt ∝ 2(d N−/dt) and

Mz(t) = (
Minit

z − Meq
z

)
e−2W t + Meq

z

implying 1/T1 = 2W .
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Mz is also inversely proportional to Ts and then one approximately writes

βs(t) = (
βinit

s − β
)

e−2W t + β

and for βinit
s = 0, βs(t) = β(1 − e−2W t )

Ts(t) = T

1 − e−2W t
(a)

For exact derivation, over all the temperature range, from Problem6.2 Ts =
(2μB H/kB)/ ln(u−1 − 1) with u = N+/N . Then the expression of the spin temper-
ature is

Ts = 2μB H

kB

[
ln

(
(N/2 − N eq

− )e−2W t + N eq
−

N − (N/2 − N eq
− )e−2W t − N eq

−

)]−1

(b)

See plots in Fig. 6.9.
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Fig. 6.9 Plot of Eq. a) (solid line) and Eq.b) (dashed line) showing the equivalence of the two
procedures for T > μB H/kB . (In plotting Eq.b) keep at least three significant digits in the expan-
sion.)
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Problem 6.14 An hypothetical crystal has a mole of Na atoms, each at distance
d = 1 Å from a point charge ion of charge−e (and nomagnetic moment). By taking
into account the quadrupole interaction (Sect. 5.2) derive the energy, the entropy and
the specific heat of the crystal around room temperature (Na nuclear spin I = 3/2
and nuclear quadrupole moment Q = 0.14 × 10−24 cm2).

Solution: The eigenvalues being E±1/2 = 0 and E±3/2 = eQVzz/2 = E (see
Problem5.7), the partition function is written

Z =
[∑

MI

e−βEMI

]NA

= [
2

(
1 + e−βE

)]NA
.

Then the free energy is (return to Problem5.12)

F = −kB T lnZ = −NAkB T ln(1 + e−βE ) − NAkB T ln2

and

U = − ∂

∂β
lnZ = NA Ee−βE

(1 + e−βE )

and

S = −∂F

∂T
= NAkBln(1 + e−βE ) + NA E

T

e−βE

(1 + e−βE )
+ kB NAln2

Since E ∼ 10−8 eV � kB T , U and S can be written

U = NA E

2

(
1 − 1

2

E

kB T

)

and

S � R

(
2ln2 − 1

8

E2

k2
B T 2

)

(see Problem6.7 for the analogous case).4 From CV = ∂U/∂T , in the high tem-
perature limit CV � (1/4)R(E/kB T )2, the high-temperature tail of the Schottky
anomaly already recalled at Problem5.12. For T = 0, U = 0 and S = Rln2.

4ln(1 + e−x ) � ln2 + ln
(
1 − x

2 + x2
4

)
� ln2 − x

2 + x2
8 .

http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_5
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Chapter 7
Molecules: General Aspects

Topics

Separation of Electronic and Nuclear Motions
Symmetry Properties in Diatomic Molecules
Labels for Electronic States
One Electron in Axially Symmetrical Potential

In this chapter we shall discuss the general aspects of the first state of “bonded
matter”, the aggregation of a few atoms to form a molecule. The related issues are
also relevant for biology, medicine, astronomy etc. The knowledge of the quantum
properties of the electronic states in molecules is the basis in order to create new
materials, as the ones belonging to the “artificial matter”, often obtained by means
of subtle manipulations of atoms by means of special techniques.

We shall understand why the molecules are formed, why the H2 molecule exists
while two He atoms do not form a stable system, why the law of definite proportions
holds or why there are multiple valences, what controls the geometry of the molecules.
These topics have to follow as extension of the atomic properties. Along this path
new phenomena, typical of the realm of the molecular physics, will be emphasized.

In principle, the Schrödinger equation for nuclei and electrons contains all the
information we wish to achieve. In practice, even the most simple molecule, the
Hydrogen molecule-ion H+

2 , cannot be exactly described in the framework of such
an approach: the Schrödinger equation is solved only when the nuclei are considered
fixed. Therefore, in most cases we will have to deal with simplifying assumptions
or approximations, which usually are not of mathematical character but rather based
on the physical intuition and that must be supported by experimental findings.

The first basic assumption we will have to take into account is the Born-
Oppenheimer approximation, essentially relying on the large ratio of the nuclear
and electronic masses. It allows one to deal with a kind of separation between the
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motions of the electrons and of the nuclei. Another approximation that often will
be used involves tentative wavefunctions for the electronic states as linear combi-
nation of a set of basis functions, that can help in finding appropriate solutions. For
instance, a set of wavefunctions centered at the atomic sites will allow one to arrive
at the secular equation for the approximate eigenvalues.

Finally in this chapter we have to find how to label the electronic states in terms
of good quantum numbers. This will be done in a way similar to the one in atoms,
by relying on the symmetry properties of the potential energy (for example, the
cylindrical symmetry) and by referring to the limit atomic-like situations of united-
atoms or of separated-atoms.

7.1 Born-Oppenheimer Separation and the Adiabatic
Approximation

For a system of nuclei and electrons the Hamiltonian is written (see Fig. 7.1)

H = −�
2

2

∑
α

∇2
α

Mα
− �

2

2m

∑
i

∇2
i +

∑
i< j

e2

ri j
+

∑
α<β

ZαZβe2

Rαβ
−

∑
α,i

Zαe2

riα
≡

≡ Tn + Te + Vee + Vnn + Vne (7.1)

The corresponding wave function φ(R, r) involves both the groupR of the nuclear
coordinates and the group r for the electrons. In the Hamiltonian the spin-orbit
interactions and the hyperfine interactions have not been included, since at a first
stage they can be safely neglected.

In order to solve the Schrödinger equation for φ(R, r) one observes the large
difference in nuclear and electronic masses (and the related differences in the elec-
tronic and roto-vibrational energies, as it will appear in subsequent chapters). This
difference suggests that in time intervals much shorter than the ones required for
the nuclei to sizeably change their positions, the electrons have been able to take

Fig. 7.1 Nuclear and
electronic coordinates used
in Eq. (7.1)
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the quantum configuration pertaining to ideally fixed coordinates R. Then one can
attempt an eigenfunction of the form

φ(R, r) = φn(R)φe(R, r), (7.2)

where φn(R) pertains to the nuclei, while the electronic wavefunction φe involves
only parametrically the nuclear coordinates, these latter ideally frozen in the config-
uration specified by R. When such a function is included in the Schrödinger equation
involving the Hamiltonian in Eq. (7.1) and the following equivalences are taken into
account

Teφnφe = φnTeφe,

Tnφnφe ≡ −�
2
∑

α

∇2
α

2Mα
φnφe = −�

2
∑

α

1

2Mα
∇α · {φe∇αφn + φn∇αφe } =

= φeTnφn + φnTnφe − 2�
2
∑

α

1

2Mα
∇αφe · ∇αφn,

then one has

[
−

∑
α

�
2

2Mα
(2∇αφe · ∇αφn) −

∑
α

�
2

2Mα
φn∇2

αφe

]
+ (7.3)

+φeTnφn + φnTeφe + (Vnn + Vne + Vee)φeφn = Eφeφn.

Let us assume that the terms included in the square brackets can be neglected
(the conditions for such an approximation, essentially corresponding to the so-called
adiabatic approximation, shall be discussed subsequently). For the electronic wave-
function one can write

Teφe + (Vne + Vee)φe = E (g)
e φe, (7.4)

where E (g)
e (R) is the eigenvalue for the electrons in a frozen nuclear configuration.

Then, from Eq. (7.3), by neglecting the terms in square-brackets, after dividing by
φe one obtains the equation for the nuclear motions:

[
Tn + Vef f (R)

]
φn = Eφn (7.5)

with Vef f (R) = Vnn(R) + E (g)
e (R). In Eq. (7.5) the effective Hamiltonian includes

the eigenvalue for the electrons E (g)
e , for given R’s, as effective potential energy.
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Thus, by assigning to the nuclear and electronic states the appropriate set of quan-
tum numbers ν and g, under the approximations discussed above the wavefunction
solution for the Hamiltonian 7.1 is

φ(g,ν)(r,R) = φ(g)
e (r,R)φ(ν)

n (R), (7.6)

with φe and φn eigenfunctions from Eqs. (7.4) and (7.5) respectively.
The electronic eigenvalue E (g)

e , entering the effective potential energy in Eq. (7.5),
is not a number as in atoms but parametrically depends from the nuclear coordinates.
The total energy of the molecule can be written

E (g,ν) = E (g)
e (Rm) + Vnn(Rm) + E (ν)

n , (7.7)

where Rm means the nuclear configuration corresponding to the minimum for
Vef f (R) (see Eq. (7.5)).

The physical contents of such a framework are more easily grasped by referring
to a diatomic molecule, where in practice the only parameter required to fix the
nuclear configuration is the distance RAB between the two nuclei, since as a first
approximation the electronic states can be considered unaffected by the rotation of
the molecule. A schematic view of the energy of the molecule for the electronic states
as a function of RAB and of the effect of the eigenvalue for the vibrational motion
of the nuclei (corresponding to a variation of RAB) is given in Fig. 7.2. Complete
understanding of this illustration will be achieved after reading Sects. 8.1 and 10.3.1.

Let us briefly comment on the possibility to neglect the terms in square brackets
in Eq. (7.3), corresponding to the validity of the adiabatic approximation. The order
of magnitude of the contribution of those terms to the energy can be estimated by
looking at the expectation values

< φeφn|
[
...

]
|φeφn >,

Therefore a first term is

− �
2

Mα

∫
φ∗
eφ

∗
n∇nφe · ∇nφndτndτe

that for φe(r,R) in real form, becomes proportional to

∫
φ∗
e∇nφedτe ∝ ∇n

∫
φ∗
eφedτe

which is zero for a given electronic state g1. The second term is

http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_10
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E e
(g) + Vnn

RAB

E (g, ν) = E e
(g) (Re) + Vnn (Re) + E n

(ν)

Requilibrium≡ RAB(min.)

from nuclear motions

eigenvalues from Eq. 7.4 (include the 
short-range repulsive term  Vnn (Re))

g1

g2

Requilibrium≡ RAB(min.)

Fig. 7.2 Schematic view of the separation of the electronic and vibrational energies in a diatomic
molecule and of the role of E (g)

e as effective potential energy for the nuclear motion, within the
adiabatic approximation. The vibrational motion occurs in an effective potential energy, while the
electrons follow adiabatically this motion

− �
2

Mα

∫
φ∗
nφndτn

∫
φ∗
e∇2

nφedτe,

and by taking into account that the electronic wavefunction depends on (r−R), one
can write

− �
2

Mα

∫
φ∗
e∇2

nφedτe � m

Mα
< |Te| >,

which is of the order of the contribution to the energy from the electronic kinetic
term scaled by the factor m/Mα and thus negligible.

Finally one would have to consider the non-diagonal terms involving the operator
∇n , of the form ∫

φ(g2)∗
e ∇nφ

(g1)
e dτe. (7.8)

These terms can be different from zero and in principle they drive transitions between
electronic states associated with the nuclear motions, in other words to the non-
adiabatic contributions. For large separation between the electronic states compared
to the energy of the thermal motions, the transition probability is expected to be
small.
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One should remark that relevant effects in molecules (and in solids) actually
originate from the non-adiabatic terms. We just mention pre-dissociation (sponta-
neous separation of the atoms), some removal of degeneracy in electronic states,
the Jahn-Teller effect and, in solids, resistivity and superconductivity, related to the
interaction of the electrons with the vibrations of the ions around their equilibrium
positions (see Chaps. 13 and 14).

7.2 Classification of the Electronic States

7.2.1 Generalities

As in atoms, also in the molecules first one has to find how to label the electronic
states in terms of constants of motions, namely derive the good quantum numbers.
In atoms l2 and lz commute with the central field Hamiltonian and then n, l, and m
have been used to classify the one-electron states. Also for molecules the symmetry
arguments play a relevant role: a rigorous classification is possible only for diatomic
(or at least linear molecules) so that one axis of rotational symmetry is present.

Let us refer to Fig. 7.3. When the z axis is aligned along the molecular axis the
potential energy V is a function of the cylindrical coordinates z and ρ, while it does
not involve the angle ϕ. Then the lz operator −i� ∂

∂ϕ
commutes with the Hamiltonian:

[
lz, V

]
∝

(
x

∂

∂y
− y

∂

∂x

)
Vφ − V

(
x

∂

∂y
− y

∂

∂x

)
φ = (r × ∇V )z,

which is zero when the z axis is along the molecular axis.

Fig. 7.3 Schematic view for
the discussion of the
symmetry arguments
involved in the classification
of one-electron states in a
diatomic molecule. A and B
are nuclei dressed by the
electrons uninvolved in the
bonding mechanism. When
A = B the molecule is
homonuclear and it acquires
the inversion symmetry with
respect to the center. Then
φe(r) = ±φe(−r) and the
classification gerade or
ungerade, according to the
sign of the wavefunction
upon inversion (parity),
becomes possible

z

x

y

A

B

ρ

ϕ

-e

r

-r

z

http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_14
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For homonuclear molecules (A = B) in terms of the positional vector r one has

|φ(r)|2 = |φ(−r)|2 i.e. φ(r) = −φ(−r) or φ(r) = +φ(−r)

and one can classify the states with a letter g (from gerade) or u (from ungerade)
according to the even or odd parity under the inversion of r with respect to the
center of the molecule (see Fig. 7.3). One should also remark that the reflection with
respect to the yz plane, bringing x in −x , changes the sign of the z-component of
the angular momentum while the Hamiltonian is invariant. It follows that the energy
must depend on the square of the lz-eigenvalue while this operator has to convert the
eigenfunction in the one having eigenvalue of opposite sign. The electronic states
with lz-eigenvalue different from zero must be double degenerate, each of the two
states corresponding to different direction of the projection of the orbital angular
momentum along the z-axis.1 On the other hand, for lz-eigenvalue equal to zero a
further − or + sign has to be used to describe the behavior of the wavefunction upon
reflection with respect to the planes containing the molecular axis.

Finally, in these introductory remarks it is noted that the z-component of the total
angular momentum, implying an algebric sum Lz = ∑

i l
i
z , is also a constant of

motion, with associated a good quantum number ML (see Sect. 7.2.3).

7.2.2 Schrödinger Equation in Cylindrical Symmetry

By referring again to Fig. 7.3 and in the framework of the Born-Oppenheimer sepa-
ration, the Schrödinger equation for the one-electron wavefunction is

−�
2

2m
∇2

z,ρ,ϕφ + Vφ = E(RAB)φ, (7.9)

where V = V (z, ρ). One should remark that if A and B are protons, namely we are
dealing with the Hydrogen molecule ion, then

V = − e2

rA
− e2

rB
. (7.10)

1This two-fold degeneracy is removed when the interaction between the electronic and rotational
motions is taken into account. Then the terms at lz �= 0 would split into two nearby levels. For
a multi-electron molecule, in the LS scheme, where Λ = Λ(Π,Δ, ...) (see end of Sect. 7.2.3)
characterizes the states at Lz �= 0, the splitting is known as Λ -doubling.
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By using ellipsoidal coordinates with the nuclei at the foci of the ellipse, then
Eq. (7.9), with V as in Eq. (7.10), is exactly solvable in a way similar to

AB

e (

(

(

)

)

)

μ

μ

, ,

/

/

=
= +

Hydrogen atom, with separation of the variables.
This solution would not be of much help, since when diatomic molecules with the

nuclei dressed by the atomic (core) electrons have to be considered, the potential is no
longer of the form in Eq. (7.10) and therefore relevant modifications can be expected.
A similar modification in the atom is the removal of the accidental degeneracy upon
abandoning the Coulomb potential. Thus we prefer to disregard the formal solution
of Eq. (7.9) for strictly Coulomb-like potential and first give the general properties
of electronic states just by referring to the cylindrical symmetry of V (again in a
way analogous to atoms, where only the spherical symmetry of the Hamiltonian in
the central field approximation was taken into account). Subsequently approximate
methods will allow us to derive specific forms of the wavefunctions of more general
use, rather than the exact expressions pertaining to the Hydrogen molecule ion.

The kinetic energy operator in cylindrical coordinates reads

∇2
z,ρ,ϕ = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ ∂2

∂z2
+ 1

ρ2

∂2

∂ϕ2
(7.11)

and by factorizing φ in the form φ = χ(z, ρ)Φ(ϕ) Eq. (7.9) is rewritten

2mρ2

�2

[
E(RAB) − V (z, ρ)

]
+ ρ2

χ

[
∂2χ

∂z2
+ ∂2χ

∂ρ2

]
+ ρ

χ

∂χ

∂ρ
= − 1

Φ

∂2Φ

∂ϕ2
, (7.12)

where at the first member one has only operators and functions of z and ρ while at
the second member only of ϕ. As a consequence, Eq. (7.12) leads to solutions of the
form φ = χΦ, where χ and Φ originate from the separate equations in which both
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members are equal to a constant independent on z, ρ and ϕ. We label that constant
λ2 and then

∂2Φ

∂ϕ2
= −λ2Φ

so that
Φ = Aeiλϕ + Be−iλϕ. (7.13)

The boundary condition for Φ is

Φ(ϕ + 2πn) = Φ(ϕ)

and exp(iλn2π) = 1, thus yielding λ integer.
The meaning of the number λ can be directly grasped by looking for the eigenvalue

of the z component of the angular momentum of the electron:

lzφ = aφ i.e. − i�
∂

∂ϕ
χΦ = χ(−i�

∂e±iλϕ

∂ϕ
) = ±λ�χΦ = ±λ�φ,

namely λ measures in � unit the component of l along the molecular axis, a constant
of motion, as it was anticipated.

From Eq. (7.12) it is realized that the eigenvalue E(RAB) depends on λ2. There-
fore we understand that from a given atomic-like state of angular momentum l, the
presence of the second atom at the distance RAB generates (l + 1) states of different
energy. These states correspond to l z = 0,±1,±2... and are in general double de-
generate, in agreement with the fact that the energy cannot depend on the sign of lz ,
as we have previously observed. These one-electron states are labelled by the letters
σ,π, δ..... in correspondence to 0, 1, 2, etc. similarly to the atomic states s, p, d...

7.2.3 Separated-Atoms and United-Atoms Schemes
and Correlation Diagram

Other good quantum numbers for the electronic states to be associated with (z, ρ) in
Eq. (7.12) can be introduced only when χ(z, ρ) can be factorized in two functions,
involving separately z and ρ. This happens when one refers to the limit situations of
united atoms (i.e. RAB → 0) or of separated atoms (i.e. RAB → ∞). In the united-
atoms classification scheme (for example the Hydrogen molecule ion H+

2 tends to
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become the He+ atom) the two further quantum numbers are n and l, while λ tends
to become m. Then the sequence of the states is

1sσ, 2sσ, 2pσ, 2pπ...

and the parity g or u is fixed by the value of l, namely l even g, l odd u.

RAB → 0 RAB = ∞RAB = 0 RAB → ∞

1s 

2p 

1sσ

2pσ

2pπ

σ 1s 

σ 1s 

σ 2s 

σ 2s 

1s

2s 

2s 
2sσ

3s 

3p 

3d 

2p 

3s 

σ 3s 

σ 3s 

σ 2p

π 2p

π 2p

σ 2p 

3pπ

3pσ

3sσ

3dδ  
3dπ

3dσ

u

g

u

g

u

g

u

g

u

g

Fig. 7.4 Classification schemes for diatomic homonuclear molecules and correlation lines yielding
a sketchy behavior of the eigenvalues E(RAB) as a function of the interatomic distance. Some of the
correlations of the high-energy states are not straightforward and can involve the mixing of other
states in the LCAO scheme
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For RAB → ∞ the atoms are far away (H+
2 becomes H with a proton at large

distance) and for heteronuclear molecule one has

σ1sA,σ1sB,σ2sA,σ2sB,σ2pA...

For A = B (homonuclear molecule) (nl)A = (nl)B , the splitting of the level due to
the perturbing effect of the other nucleus (e.g. H+ in the Hydrogen molecule ion)
removes the degeneracy and the character g or u can be assigned.

The two classification schemes are obviously correlated. For the lowest energy
levels the correlation can be established by direct inspection, by taking into account
that λ and the g or u character do not depend on the distance RAB (see Fig. 7.4). A
pictorial view of the correlation diagram in terms of transformation of the orbitals
upon changing the distance RAB is given in Fig. 7.5, having assumed the one-electron
wavefunction in the form of linear combination of 1s-atomic like wave functions and
2px -wavefunctions, centered at the two sites A and B (for the proper description see
Sect. 8.1).

The correlation diagram for heteronuclear diatomic molecules is shown in Fig. 7.6.
It should be observed that there is a rule that helps in establishing the correlation

diagram, the so-called non-intersection or non-crossing rule (Von Neumann-Wigner
rule). This rule states that two curves E1(RAB) and E2(RAB) cannot cross if the
correspondent wavefunctions φ1 and φ2 belong to the same symmetry species. In
other words they can cross if they have different values either of λ or of the parity
(g and u) or different multiplicities.

Finally we mention that the electronic states in a multielectron molecule can be
classified in a way similar to the one used in the LS scheme for the atom (Chap. 3).
From the algebraic sum Sz = ∑

i sz
(i) we construct MS , while to Lz = ∑

i l z
(i) ML

is associated. The symbols Σ,Π,Δ... (generic Λ) are used for ML = 0, 1, 2 etc.
Then the state is labelled as

2S+1Λg,u,

g and u for homonuclear molecule.
For the state Σ , namely the one with zero component of the total angular mo-

mentum along the molecular axis, in view of the consideration on the property upon
reflection with respect to a plane containing the axis, one adds the symbol + or − as
right apex. Illustrative examples shall be given in dealing with particular diatomic
molecules (Sect. 8.2). For the Λ-doubling see footnote 1.

http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_8
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Fig. 7.5 Schematic view of the correlation diagram by referring to the transformation with the
interatomic distance RAB of the shape of the molecular orbitals generated by linear combination
of atomic 1s (cases (i) and (ii)) and 2px orbitals (cases (iii) and (iv)) centered at the A and B sites
(see Sect. 8.1 for details)

http://dx.doi.org/10.1007/978-3-319-17897-4_8
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1s

3d

3p

3s

2p

2s

3dδ
3dπ
3dσ

3pπ
3pσ

3sσ

1sA

3sA

2pB

2pA

2sB

2sA

1sB

σ3sA

σ2pB

π2pA

σ2pA

σ2sB

σ2sA
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σ1sA

π2pB

United atoms
(RAB=0)

Separated atoms
(RAB→∞)RAB→

2pπ
2pσ

1sσ

2sσ

Fig. 7.6 Correlation diagram for heteronuclear diatomic molecules. For RAB → ∞ the assumption
of effective nuclear charge ZA > ZB has been made

Problems

Problem 7.1 From order of magnitude estimates of the frequencies to be associated
with the motions of the electrons of mass m and of the nuclei of mass M in a mole-
cule of “size” d, derive the correspondent velocities by resorting to the Heisenberg
principle. By using analogous arguments derive the amplitude of the vibrational
motion.

Solution: From Heisenberg principle p ∼ �/d. The electronic frequencies can be
defined

νelect � Eelect

h
∼ 1

h

p2

2m
∼ 1

h

�
2

2d2m
= �

4πmd2

For the vibrational motion, by assuming for the elastic constant K
K d2 ∼ Eelect (a crude approximation, see Sect. 10.3 and Problem 8.3) and νvib =
(1/2π)

√
K/M Evib ∼ hνvib ∼ (

m
M

) 1
2 Eelect and νvib ∼ (�/d2

√
mM)(1/2π).

Approximate expressions for the correspondent velocities are

velect ∼
√

Eelect

m
∼ �

md
,

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_8
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vvib ∼
√

Evib

M
∼

[
h �√

mM3d2

] 1
2

∼ �

m
1
4 M

3
4 d

yielding
vvib

velect
∼

( m

M

) 3
4 � 1.

From a2K ∼ hνvib and then

a2 ∼ h2

(Mm)1/2d2

1

(Eelect/d2)

one can derive for the vibrational amplitude a � 2πd(2m/M)1/4. For the rotational
motion (see Sect. 10.1)

Erot � P2

2I
∼ �

2

Md2
∼ m

M
Eelect

(P angular momentum and I moment of inertia, see Sect. 10.1) and then

vrot ∼
(
Erot

M

) 1
2

∼
[(

m
M

)
m v2

elect

M

] 1
2

∼ velect ·
( m

M

)
.
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Chapter 8
Electronic States in Diatomic Molecules

Topics

H+
2 as Prototype of the Molecular Orbital Approach (MO)

H2 as Prototype of the Valence Bond Approach (VB)
How MO and VB Become Equivalent
The Quantum Nature of the Bonding Mechanism
Some Multi-Electron Molecules (N2, O2)
The Electric Dipole Moment

In this chapter we specialize the concepts given in Chap. 7 for the electronic states
by introducing specific forms for the wavefunctions in diatomic molecules. Two
main lines of description can be envisaged. In the approach known as molecular
orbital (MO) the molecule is built up in a way similar to the aufbau method in atoms,
namely by ideally adding electrons to one-electron states. The prototype for this
description is the Hydrogen molecule ion H+

2 . In the valence bond (VB) approach,
instead, the molecule results from the interaction of atoms dressed by their electrons.
The prototype in this case is the Hydrogen molecule H2.

8.1 H+
2 as Prototype of MO Approach

8.1.1 Eigenvalues and Energy Curves

In the Hydrogen molecule ion the Schrödinger equation for the electronic wavefunc-
tion φ(r, θ,ϕ), or equivalently φ(z, ρ,ϕ) (see Fig. 8.1) is written

Hφ =
{−�

2

2m
∇2 − e2

rA
− e2

rB
+ e2

RAB

}
φ = E(RAB)φ. (8.1)
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A B 
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rA rB
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z

y

ρ

ϕ
z

RAB 

++

O

Fig. 8.1 Schematic view of the Hydrogen molecule ion H+
2 and definition of the coordinates used

in the MO description of the electronic states

As already mentioned the exact solution of this equation can be carried out in elliptic
coordinates. Having in mind to describe H+

2 as prototype for more general cases we
shall not take that procedure.

It should be remarked that in the Hamiltonian in Eq. (8.1) the proton-proton re-
pulsion e2/RAB (Vnn in Eq. (7.1); see Fig. 7.2) has been included, so that the total
energy of the molecule, for a given inter-proton distance RAB , will be found.

By taking into account that for RAB → ∞ the molecular orbital must transform
into the atomic wavefunction φ1s centered at the site A or at the site B, one can
tentatively write

φ = c1φ
(A)
1s + c2φ

(B)
1s . (8.2)

This is a particular form of the molecular orbital, written as in the so-called MO-
LCAO method, namely with the wavefunction as linear combination of atomic or-
bitals.1

From the variational procedure, by deriving with respect to ci the energy function

E(c1, c2) =
∫

φ∗Hφ dτ∫
φ∗φ dτ

(8.3)

with the tentative wavefunction given by Eq. (8.2), the usual equations

c1(HAA − E) + c2(HAB − E SAB) = 0 (8.4)

c1(HAB − E SAB) + c2(HB B − E) = 0

1A similar method is used also in more complex molecules, by writing φ = ∑
i ci φi and con-

structing the energy function E = E(ci ) on the basis of the complete electronic Hamiltonian
H = ∑

i (−�
2/2m)∇2

i − e2 ∑
α,i Zα/Riα + e2 ∑′

i, j 1/ri j , by iterative procedure evaluating the
self-consistent coefficients ci . This is the MO-LCAO-SCF method.

http://dx.doi.org/10.1007/978-3-319-17897-4_7
http://dx.doi.org/10.1007/978-3-319-17897-4_7
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are obtained. Here

HAA = HB B =
∫

φ(A)∗
1s Hφ(A)

1s dτ

represents the energy of the H+H or of the HH+ configuration.

HAB = HB A =
∫

φ(B)∗
1s Hφ(A)

1s dτ =
∫

φ(A)∗
1s Hφ(B)

1s dτ (8.5)

called resonance integral, will be discussed at a later stage.

SAB =
∫

φ(A)∗
1s φ(B)

1s dτ

is the overlap integral, a measure of the region where φ(A)
1s and φ(B)

1s are both different
from zero:

BA

1s1s

SAB

From Eq. (8.4) the secular equations yields

E± = HAA ± HAB

1 ± SAB
, (8.6)

with c1 = c2 for the sign + and c1 = −c2 for the sign −. Thus

φ+ = 1√
2(1 + SAB)

{
φ(A)

1s + φ(B)
1s

}
(8.7)

φ− = 1√
2(1 − SAB)

{
φ(A)

1s − φ(B)
1s

}
.

In order to discuss the dependence of the approximate eigenvalues E± on the inter-
atomic distance RAB one has to express HAA, HAB and SAB . One writes

HAA =
∫

φ(A)∗
1s

{Hhydr.
}
φ(A)

1s dτ +
∫

φ(A)∗
1s

e2

RAB
φ(A)

1s dτ −

εAA︷ ︸︸ ︷∫
φ(A)∗

1s

e2

rB
φ(A)

1s dτ (8.8)
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The first term is −RH hc (with RH Rydberg constant), the second is e2/RAB . The
third term, εAA, represents the somewhat classical interaction energy of an electron
centered at A with the proton at B:

A B 
+ +

dτ
rB 

εAA can be evaluated by introducing confocal elliptic coordinates (see Sect. 7.2.2).
Then

1

πa3
0

∫ 2π

0

∫ ∞

1

∫ +1

−1

R3
AB(μ2 − ν2) e−(μ+ν)RAB/2a0

4 RAB (μ − ν)
dφ dμ dν

= 1

RAB

[
1 −

(
1 + RAB

ao

)
e

−2RAB
ao

]
,

plotted below as a function of the internuclear distance in a0 units:
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Therefore

εAA = − e2

RAB
·
[

1 − e
−2RAB

ao

(
1 + RAB

ao

)]

In analogous way the overlap integral SAB and the resonance integral HAB are eval-
uated.

SAB = R3
AB

8 π a3
0

∫ 2π

0

∫ ∞

1

∫ +1

−1
(μ2 − ν2) e−μ RAB/a0 dμ dν dϕ =

=
[

1 + RAB

ao
+ 1

3

(
RAB

a0

)2
]

e
−RAB

ao (8.9)

is plotted below
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R
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 /a
0
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while

HAB =
∫

φ(B)∗
1s

{Hhydr.
}

φ(A)
1s dτ + e2

RAB
SAB −

∫
φ(B)∗

1s

e2

rB
φ(A)

1s dτ =

= SAB

(
e2

RAB
− RH hc

)
+ εAB,

with

εAB = −
∫

φ(B)∗
1s

e2

rB
φ(A)

1s dτ = − e2

ao
e

−RAB
ao

(
1 + RAB

ao

)
, (8.10)

is approximately proportional to SAB .
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Fig. 8.2 Energy curve for the ground and first excited state of Hydrogen molecule ion as a function
of the inter-proton distance RAB , according to MO-LCAO orbital (dotted lines), with the classifi-
cation of the electronic states in the separated-atoms scheme (see Sect. 7.3.3) and sketchy forms of
the correspondent molecular orbitals. The bonding character of the σg1s state grants a minimum of
the energy (in qualitative agreement with the exact calculation, solid line) while the σu1s orbital,
for which E− > −RH hc ≡ E(RAB → ∞), is anti-bonding. The exact result for E− (not reported
in figure) is well above the approximate energy E− (dotted line)

From Eq. (8.6) and the expressions for HAA, SAB and HAB , the energy curves
E±(RAB) are obtained. In Fig. 8.2 E+(RAB) is compared to the exact eigenvalue for
the ground-state that could be obtained from the solution of Eq. (8.1) through elliptic
coordinates.

The minimum in E+ indicates that when the electron occupies the lowest energy
state (the σg1s according to Sect. 7.5) bonding does occur.

http://dx.doi.org/10.1007/978-3-319-17897-4_7
http://dx.doi.org/10.1007/978-3-319-17897-4_7
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Starting from atomic orbitals pertaining to excited states, e.g. the 2px Hydrogen
states, one can obtain the molecular orbitals for the excited states, as sketched below
(see also Fig. 7.5):

with linear 
combination  + 

++

_ _

x +

πu2p 

with linear combination  
(and higher energy)

+

+_

_

πg2p

A better evaluation of eigenvalues and eigenfunctions (although still approximate)
could be obtained by using more refined atomic orbitals. For instance, in order to
take into account the polarization of the atomic orbitals due to the proton charge
nearby, one could assume a wavefunction φ(A) of the form

φ(A) = φ(A)
1s + a z e−Ze rA/a0 , (8.11)

with Ze an effective charge. Along these lines of procedure one could derive values
of the bonding energy and of the equilibrium interatomic distance Req

AB close to the
experimental ones, which are

E(Req
AB) = −2.79 eV, Req

AB = 1.06 Å. (8.12)

Rather than pursuing a quantitative numerical agreement with the experimental data,
now we shall move to the discussion of the physical aspects of the bonding mecha-
nism.

Problems

Problem 8.1 Consider a muon-molecule formed by two protons and a muon. In the
assumption that the muon behaves as the electron in the H+

2 molecule, by means of
scaling arguments evaluate the order of magnitude of the internuclear equilibrium
distance, of the bonding energy and of the zero-point energy. (The zero-point energy
hν/2 in H+

2 is 0.14 eV and it is reminded that ν = 1/2π
√

k/M , with k the elastic
constant and M the reduced mass.)

Solution: Req
AB is controlled by the analogous of the Bohr radius a0, which is reduced

with the mass by factor mμ/me. Then

http://dx.doi.org/10.1007/978-3-319-17897-4_7
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Req
AB ≈ 1

200
Req

AB(H+
2 ) 
 5 × 10−3Å.

and
E ≈ 200 E (H+

2 ) 
 500 eV .

The force constants can approximately be written k ≈ e2

R3 and then k(μ) = k(H+
2 )×

8 × 106.

The vibrational energies scale with
√

k, so that

Evib
v=0 ≈ 2.8 · 103 Evib

v=0(H+
2 ) 
 396 eV.

Problem 8.2 Write the behavior of the probability density ρ for the electron in H+
2

at the middle of the molecular axis as a function of the inter-proton distance RAB ,
for the ground MO-LCAO state, and in the assumption that SAB � 1.

Solution: From
ρ = |φ+|2 ∝ 2e− rA+rB

a0 + e− 2rA
a0 + e− 2rB

a0 ,

for rA = rB = RAB/2, ρ ∝ 4exp[−RAB/a0].
Problem 8.3 In the harmonic approximation the vibrational frequency of a diatomic
molecule is given by

1

2π

√
(d2 E/d R2)Re

μ
,

where μ is the reduced mass and R the interatomic distance (for detail see Sect. 10.3).
Derive the vibrational frequency for H+

2 in the ground-state.

Solution: From E(R) = (HAA + HAB)/(1 + SAB) (see Eq. (8.6))

∂2 E

∂R2
= [ ∂2(HAA+HAB )

∂R2 (1 + SAB) − ∂2 SAB
∂R2 (HAA + HAB)](1 + SAB)

(1 + SAB)3
−

−2[ ∂(HAA+HAB )

∂R (1 + SAB) ∂SAB
∂R − ( ∂SAB

∂R )2(HAA + HAB)]
(1 + SAB)3

From Eqs. (8.8) to (8.10), for x = R/a0 and k1 = e2/a0, one writes

SAB(x) = e−x

(
1 + x + x2

3

)
,

HAA(x) = k1e−2x

(
1 + 1

x

)
− k1

2
,

http://dx.doi.org/10.1007/978-3-319-17897-4_10
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HAB(x) = k1e−x

(
1

x
− 1

2
− 7x

6
− x2

6

)
.

Since ∂E/∂R = (∂E/∂x)(1/a0) and ∂2 E/∂R2 = (∂2 E/∂x2)(1/a2
0), one can con-

veniently express the second derivative of E(R) in terms of x .
The curves for E(R) and for (d2 E/d R2) are reported below (dashed line

(d2 E/d R2), in e2/a3
0 unit, dotted line E(R) referred to −RH hc, see also Fig. 8.2).

1 2 3 4 5 6 7
-0.1

0.0

0.1

0.2

0.3

0.4

0.5
d2E/dR2

E(R)

R/a0

At Req = 2.49a0 one finds ∂2 E/∂R2 = 0.054e2/a3
0 = 0.839 × 105 dyne/cm,

yielding a vibrational frequency ν = 5.04 × 1013 Hz (return to Problem 7.1). The
experimental value is ν = 6.89 × 1013 Hz for Req = 1.06 Å.

8.1.2 Bonding Mechanism and the Exchange of the Electron

How the bonded state of the Hydrogen molecule ion is generated? Why the bonding
orbital is the σg1s while σu1s is antibonding? Which is the substantial role of the
resonance integral HAB?

A first way to answer to these questions is to look at the electronic charge distribu-
tion, controlled by ρ± = |φ±|2, where φ can be taken as in Eq. (8.7). The intersection
of ρ with a plane containing the molecular axis is sketched in Fig. 8.3.

In order to minimize the Coulomb energy one has to place the electron in the
middle of the molecule. Thus one understands why only the σg1s state has a minimum
in the energy E versus. RAB .

It may be remarked that this consideration of forces between nuclei according to
“classical” Coulomb-like estimate of the energies is not in contrast with the quantum
character of the system. In fact, as stated by the Hellmann-Feynman theorem the
forces can actually be evaluated “classically” provided that the charge is distributed
according to the quantum description.

http://dx.doi.org/10.1007/978-3-319-17897-4_7
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Fig. 8.3 Sketches of the charge distribution according to the bonding and antibonding molecular
orbitals in H+

2 . For φ− there is no electronic charge in the plane perpendicular to the molecular axis
at the center of the molecule. On the other hand, in order to avoid repulsion between the protons,
the negative charge must be placed right in the middle of the molecule, as indicated by classical
considerations (see Problem 8.4)

Now we are going to discuss the role of the resonance integral (Eq. (8.10)) that
through HAB is the source of the minimum in the energy at a given inter-proton
distance (see Fig. 8.2). A suggestive interpretation of the role of HAB can be given in
terms of the exchange of the electron between the two equivalent 1s states centered
at the proton A and at the proton B.

According to the model developed in Appendix 1.2, by considering the basis states
|1〉 and |2〉, as sketched below
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and by writing the generic state in term of linear combination |ψ〉 = c1|1〉 + c2|2〉,
the coefficients obey the equations

i�ċ1 = H11c1 + H12c2 (8.13)

i�ċ2 = H21c1 + H22c2

with H11 = H22 = Eo. H12 is the probability amplitude that the electron moves from
state |1〉 to state |2〉.

By labeling A the value (negative) of H12, from Eq. (8.13) by taking sum and
difference, one has

c1(t) = a

2
e−i ( Eo−A

�
) t + b

2
e−i ( Eo+A

�
) t (8.14)

c2(t) = a

2
e−i ( Eo−A

�
) t − b

2
e−i ( Eo+A

�
) t .

It is noted that for the choice of the integration constant a = 0 or b = 0, stationary
states |±〉 are obtained, correspondent to σg1s and to σu1s, i.e.

|+〉 = 1√
2

[
|1〉 + |2〉

]
, |−〉 = 1√

2

[
|1〉 − |2〉

]

with energies E = Eo ± A.
The constants a and b in Eq. (8.14) can be written in terms of the initial conditions

for c1(t) and c2(t). By setting c1(0) = 1 and c2(0) = 0, one has

c1(t) = e−i Eo
�

t cos (A t/�)

c2(t) = ie−i Eo
�

t sin (A t/�)

with the behavior of the correspondent probabilities of presence P1,2 = |c1,2|2 shown
in Fig. 8.4.

Thus the formation of the molecule can be idealized as due to the exchange of the
electron from left to right and back, with the related decrease of the energy.

This description has some correspondence in classical systems, such as two
weakly-coupled mechanical oscillators or LC circuits, with their two normal modes
and the correspondent exchange of energy. Scattering experiments of protons on
Hydrogen atoms confirm that the exchange process of the electron is real. When a
proton is in the neighborhood (distance of the order of a0) of an Hydrogen atom for
a time of the order of �/2A, with A = (E+ − E−) (or multiple), an Hydrogen atom
comes out after the scattering process.
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Fig. 8.4 Time dependence
of the probability of presence
of the electron on the sites A
and B according to the
description of two-levels
states for H+

2

0
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P
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P
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P
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3π/4 ππ/2π/4

8.2 Homonuclear Molecules in the MO Scenario

From the MO description of the states in H+
2 it is now possible to analyze multi-

electron homonuclear diatomic molecules. In a way analogous to the aufbau method
in atoms, to build up the molecule in a first approximation one has to accommodate
the electrons on the one-electron states derived for the prototype. This procedure
is particularly simple if a priori one does not take into account the inter-electron
interactions (e2/ri j ), thus ideally assuming independent electrons. Then the energy
is evaluated on the basis of the complete Hamiltonian, for Φtotal = ∏

i φM O(ri ),
by considering the dynamical equivalence of the electrons when different states are
hypothesized. At Sect. 8.4 we shall discuss the hydrogen molecule to some extent,
by taking into account the spin states and the antisymmetry requirement. For the
moment, let us proceed to a qualitative description of some homonuclear diatomic
molecules by referring most to the ground states.

For H2 the ground state has the electronic configuration (σg1s)2, it is labelled
1Σ+

g (see Sect. 7.2.3) and the MO wavefunction is

φ(σg1s)2(r1, r2) = σg1s(r1)σg1s(r2), (8.15)

that in the LCAO approximation is written (see Eq. (8.7))

φ(σg1s)2(r1, r2) = 1

2(1 + SAB)

[
φ(A)

1s (r1) + φ(B)
1s (r1)

]
·
[
φ(A)

1s (r2) + φ(B)
1s (r2)

]
.

(8.16)

http://dx.doi.org/10.1007/978-3-319-17897-4_7
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The energy E(RAB), evaluated by including in the Hamiltonian the term (e2/r12)
by means of calculations strictly similar to the ones detailed for H+

2 at Sect. 8.1, is
sketched below:

In He+
2 the ground state has the electronic configuration (σg1s)2(σu1s) and the

notation is 2Σu . The third electron has to be of u character, because of the Pauli
principle.

The He2 molecule cannot exist in state a stable state.2 In fact, the electronic
configuration should be (σg1s)2(σu1s)2, with the pictorial representation sketched
below:

σ
g
1s    bonding

σ
u
1s     antibonding

R
AB

 /a
0

E

-2R
H
hc

2Van der Waals interactions (described at Sect. 13.2.2), leading to very weak bonds at large distances,
are not considered here.

http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Since for RAB 
 Req.

AB one has E− > |E+| (see Eq. (8.6)) the two antibonding
electrons force the nuclei apart in spite of the bonding role of the electrons placed in
the ground energy state.

Now we are going to discuss a pair of molecules exhibiting some aspects not yet
encountered until now. In the N2 molecule we have an example of “strong bond” due
to σ MO orbital at large overlap integral and of “weak bond” due to π MO orbitals
involving p atomic states, with little overlap. In fact one can depict the formation of
the molecule as below

x

z

+ +

_ _

y y

g2p

u2p

1s2 2s2 2p3

( g1s)2 ( u1s)2 ( g2s)2 ( u2s)2 (  u2p)4 ( g2p)2

where it is noted that the linear combination with the sign + again implies electronic
charge in the central plane (and therefore is a bonding orbital) although now the
inversion symmetry is u. The σg2p orbital, ideally generated from the combination
of 2pz atomic orbitals, implies strong overlap. Since HAB is somewhat proportional
to SAB (see Eqs. (8.9) and (8.10)) one has a deep minimum in the energy and then a
strong contribution to the bonding mechanism. On the contrary, from the combination
of 2px,y atomic orbitals to generate the π MO’s the overlap region is small and then
one can expect a weak contribution to bond. The electronic state of the N2 molecule
is labelled 1Σ+

g and the molecular orbitals are fully occupied. Thus the molecule is
somewhat equivalent to atoms at closed shells, explaining its stability and scarcely
reactive character.

Another instructive case of homonuclear diatomic molecule is O2. Here there
are two further electrons to add to the configuration of N2. These electrons must
be set on the πg2p orbital, in view of the Pauli principle. The πg2p orbital is not
fully occupied and one has to deal with LS coupling procedure, similar to the one
discussed for atoms for non-closed shells. In principle there are the possibilities
sketched below:
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State

+
+

+

+

_ _  _ 

_

_ of  g  character 

  SZ 

1Δg

    LZ 

1Σg

3Σg

•

According to Hund rules, that hold also in molecules, the ground state is 3Σ−
g

corresponding to the maximization of the total spin. The g and − characters can be
understood by inspection: in Fig. 8.5 it is shown how the property under the reflection
in a plane containing the molecular axis results from the symmetry of the π orbitals.

The molecule is paramagnetic and because of the partially empty external orbital
has a certain reactivity, at variance with N2. In fact the O3 molecule (ozone) is known
to exist.

Σ
Δ
Σ

g

g

g
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Fig. 8.5 Energy curves for the low energy states in the O2 molecule (a) and sketchy illustration
of the (+−) symmetries for π+ and π− orbitals (b). The Σ state requires a label to characterize
the behavior under reflection with respect to a plane containing the molecular axis. Since the two
electrons occupy different π orbitals, one of them is + and the other −, implying the overall −
character of the configuration
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Problems

Problem 8.4 Evaluate the amount of electronic charge that should be placed at the
center of the molecular axis for a two-proton system in order to justify the dissociation
energy (
 4.5 eV) at the interatomic equilibrium distance Req

AB = 0.74 Å.

Solution:

-ef

+e +e

RAB

e2

RAB
− e f

[
e

RAB/2
+ e

RAB/2

]
= −4.5 eV.

From
e2

Req
AB

= 19.5 eV,

f = −4.5 eV − 19.5 eV

−77.8 eV
= 0.3.

Problem 8.5 Indicate the electronic configuration and the spectroscopic terms ac-
cording to Sect. 7.2.3 for the ground states and the first excited states of the molecules
H2, Li2, B2, N2, C2 and Br2.

Solution: Molecule; ground-state; first excited states

H2; (σg1s)2, 1Σ+
g ; (σg1s)(σu1s), 3Σ+

u , 1Σ+
u .

Li2; (σg1s)2(σu1s)2︸ ︷︷ ︸(σg2s)2, 1Σ+
g ; K K (σg2s)(σu2s), 3Σ+

u , 1Σ+
u .

K K

B2; K K (σg2s)2(σu2s)2(πu2p)2, 3Σ−
g ; K K (σg2s)2(σu2s)2(πu2p)(σg2p), 3Πu .

N2; ......(πu2p)4(σg2p)2, 1Σ+
g ; ......(πu2p)4(σg2p)(πg2p), 3Πg, 1Πg .

For C2 the proper sequence of the energy levels has to be taken into account
(one electron could be promoted from πu to the σg state, see Fig. 7.4). However the
electronic configuration (σg2s)2(σu2s)2(πu2p)4 seems to be favored and the ground
state term is 1Σ+

g .

http://dx.doi.org/10.1007/978-3-319-17897-4_7
http://dx.doi.org/10.1007/978-3-319-17897-4_7
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Br2 (atoms in 2 P states), 1Σ+
g

excited states 1Σ−
u , 1Πg,

1Πu,
1Δg.

It is noted that in some cases the exact sequence of the levels is poorly known
because of the possible modifications of the energy upon excitation and for the
correlation effects. Thus the sequence of the eigenvalues reported in Fig. 7.4 for a
given RAB distance might be altered. Only elaborate computational descriptions can
lead to quantitative deductions.

8.3 H2 as Prototype of the VB Approach

In the framework of the valence bond (VB) method, where the molecule results from
the interaction of atoms dressed by their electrons, the prototype is the Hydrogen
molecule.

The Hamiltonian is written (see Fig. 8.6)

H =
[
− �

2

2m
∇2

1 − e2

rA1

]
+

[
− �

2

2m
∇2

2 − e2

rB2

]
+

[
− e2

rA2
− e2

rB1

]
+

[
e2

rAB
+ e2

r12

]
≡

≡ [a] + [b] + [c] + [d] (8.17)

A tentative wavefunction could be φ(r1, r2) = φA
1s(r1)φB

1s(r2), corresponding
to the situation in which the two electrons keep their atomic character and only
Coulomb-like interactions with classical analogies are supposed to occur. However,
this wave-function does not lead to the formation of the real bonded state. In that
case, in fact, for the [a] and [b] terms in the Hamiltonian one obtains −2RH hc and
for the interaction terms [c] and [d] one has

J = e2

RAB
+

∫
|φA

1s(r1)|2 e2

r12
|φB

1s(r2)|2 dτ1 dτ2 − 2
∫

e2

rA2
|φB

1s(r2)|2 dτ2. (8.18)

A B 

++ 

R

-e -er
r

rr r
1s 1s 

A1 A2
B1

B2

12

AB

Fig. 8.6 Definition of the coordinates involved in the Hamiltonian for the H2 molecule

http://dx.doi.org/10.1007/978-3-319-17897-4_7
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The latter term in Eq. (8.18) is twice the attractive interaction between the electron
in B and the proton A, as sketched below

All the terms in Eq. (8.18) correspond to classical electrostatic interactions and
therefore J is usually called Coulomb integral. From the evaluation of J through
elliptic coordinates, as described for εAA at Sect. 8.1.1, one could figure out that
the energy curve E(RAB) displays only a slight minimum, around 0.25 eV, in large
disagreement with the experimental findings (see Fig. 8.7). On the other hand, by
recalling the description of the two electrons in Helium atom (Sect. 2.2) the inade-
quacy of the wavefunction φA

1s(r1)φ
B
1s(r2) can be expected, since the indistinguisha-

bility of the electrons, once that the atoms are close enough to form a molecule, is
not taken into account.

Then one rather writes

φV B(r1, r2) = c1 φA
1s(r1)φB

1s(r2) + c2 φA
1s(r2)φB

1s(r1) ≡ c1 |1〉 + c2 |2〉 (8.19)

By deriving the energy function with the usual variational procedure (see Eqs. (8.3)–
(8.6)) one obtains c1 = ±c2 and

E± = H11 ± H12

1 ± S12
, (8.20)

where H11 ≡ 〈1|H |1〉 = 〈2|H |2〉, H12 ≡ 〈2|H |1〉, S12 = S2
AB and

φ± = 1√
2 (1 ± S12)

[
|1〉 ± |2〉

]
. (8.21)

The eigenvalues turn out

E±(RAB) = −2RH hc + J

1 ± S2
AB

± K

1 ± S2
AB

(8.22)

where J is given by Eq. (8.18), while

K =
∫

φA∗
1s (r1)φB∗

1s (r2)

[
− e2

rA2
− e2

rB1
+ e2

RAB
+ e2

r12

]
φA

1s(r2)φB
1s(r1) dτ1 dτ2

(8.23)

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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Fig. 8.7 Sketch of the energy curves of the Hydrogen molecule in the VB scheme as a function of
the interatomic distance RAB . The real curve (reconstructed by a variety of experiments) is indicated
as exp, while curve c illustrates the behavior expected from the Coulomb integral only (Eq. (8.18)
in the text). Curves a and b illustrate the approximate eigenvalues E± in Eq. (8.22)

is the extended exchange integral, with no classical analogy and related to the quan-
tum character of the wavefunction. K can be rewritten

K = e2

RAB
S2

AB − 2 SAB εAB +
∫

φA∗
1s (r1)φB∗

1s (r2)
e2

r12
φA

1s(r2)φB
1s(r1) dτ1 dτ2

(8.24)
where again one finds the resonance integral εAB (Eq. (8.10)) and a reduced exchange
integral

Kred =
∫

φA∗
1s (r1)φB∗

1s (r2)
e2

r12
φA

1s(r2)φB
1s(r1) dτ1 dτ2 (8.25)

analogous to the one in Helium atom and positive.
From the evaluation of J and K the energy curves can be obtained, as depicted in

Fig. 8.7. It should be remarked that most of the bond strength is due to the exchange
integral K .
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As for any two electron systems (see Sect. 2.2) the spin wave functions are

χS=1
symm i.e. α(1)α(2), β(1)β(2) and

1√
2

[
α(1)β(2) + α(2)β(1)

]

χS=0
ant i.e.

1√
2

[
α(1)β(2) − α(2)β(1)

]

and the antisymmetry requirement implies that χant is associated with φ+, corre-
sponding to the ground state 1Σg , while for the eigenvalue E− one has to associate
χsymm with φ−, to yield the state 3Σu .

At this point one may remark that the VB ground state for H2 (see Eq. (8.21)) is
proportional to the MO state

φM O(1, 2) ∝ [φA(1)φB(2) + φA(2)φB(1)] + φA(1)φA(2) + φB(1)φB(2)

(1, 2 for r1 and r2) The “ionic” configurations φA(1)φA(2) and φB(2)φB(1)

(Eqs. (8.7) and (8.16)) are present in the MO orbital with the same coefficients, in
order to account for the symmetry and to prevent electric charge transfer that would
lead to a molecular dipole moment. A more detailed comparison of the electronic
states for the Hydrogen molecule within the MO and VB approaches is discussed in
the next section.

Problems

Problem 8.6 Reformulate the description of the H2 molecule in the VB approach in
the assumption that the two Hydrogen atoms in their ground state are at a distance R
so that exchange effects can be neglected. Prove that for large distance the interaction
energy takes the dipole-dipole form and that by using the second order perturbation
theory an attractive term going as R−6 is generated (see Sect. 13.2.2 for an equivalent
formulation). Then remark that for degenerate n = 2 states the interaction energy
would be of the form R−3.

Solution: From Fig. 8.6 and Eq. (8.17) the interaction is written
V = e2/R − e2/rA2 − e2/rB1 + e2/r12.

Expansions in spherical harmonics (see Problem 2.5) yield

1

rB1
= 1

|Rρ − r1A| =
∑
λ=0

rλ
A1

Rλ+1
Pλ(cos θ) = 1

R
+ (r A1 · ρ)

R2 +3(r A1 · ρ)2 − r2
A1

2R3 +···,

1

r12
= 1

|Rρ + r B2 − r A1| = 1

R
+ (r A1 − r B2) · ρ

R2 +

+ 3[(r A1 − r B2) · ρ]2 − (r A1 − r B2)
2

2R3
+ · · ·,

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_2
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1

rA2
= 1

R
+ (r B2 · ρ)

R2
+ 3(r B2 · ρ)2 − r2

B2

2R3
+ · · ·

(ρ unit vector along the interatomic axis).
Thus the dipole-dipole term (see Sect. 13.2.2) is obtained

V = −2z1 z2 − x1 x2 − y1 y2

R3
e2,

the z-axis being taken along ρ. By resorting to the second-order perturbation theory
and taking into account the selection rules (Appendix 1.3 and Sect. 3.5), the interac-
tion energy turns out

E (2) = e4

R6

∑
mn

4z2
0m z2

0n + x2
0m x2

0n + y2
0m y2

0n

2E0 − Em − En

where xom , xon etc. are the matrix elements connecting the ground state (energy E0)
to the excited states (energies Em , En). E (2) being negative, the two atoms attract each
other (London interaction, see Sect. 13.2.2 for details). For the states at n = 2 the
perturbation theory for degenerate states has to be used. From the secular equation a
first order energy correction is found (see the similar case for Stark effect at Sect. 4.2).
Thus the interaction energy must go as R−3.

8.4 Comparison of MO and VB Scenarios in H2:
Equivalence from Configuration Interaction

Going back to the MO description for the H2 molecule, by considering the possible
occurrence of the first excited σu one-electron state and by taking into account the
indistinguishability, four possible wavefunctions are:

ΦI (g, g) ≡ φg(1)φg(2) gg a)

ΦI I (u, u) ≡ φu(1)φu(2) uu b)

ΦI I I (g, u) ≡ 1√
2

[
φg(1)φu(2) + φg(2)φu(1)

]
ugsymm c)

ΦI V (g, u) ≡ 1√
2

[
φg(1)φu(2) − φg(2)φu(1)

]
ugant d) (8.26)

In view of the four spin wavefunctions χant and χsymm , in principle 16 spin-
molecular orbitals could be constructed. Due to the Pauli principle, in the H2 molecule
one finds only 6 states, the ones of antisymmetric character.

http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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The ground MO state (σg1s)(σg1s)χant can be detailed by referring to the LCAO
specialization, so that the complete spin-MO is

φM O
T OT (1, 2) = χant

S=0

[
φV B + φA(1)φA(2) + φB(1)φB(2)

]
(8.27)

namely the VB form with the “ionic” states, as already mentioned.
To find the excited MO state corresponding to the (V B)− wavefunction, in

Eq. (8.26) one can look for the one that without the ionic states does correspond
to 8.21 φ− without the ionic states. From Eq. (8.26d) with the LCAO specialization
it is found that

ΦI V = 1√
2

[
φA(1)φB(2) − φA(2)φB(1)

]
(8.28)

is the same as φ−
V B .

From another point of view, now one understands why the 3Σu state is unstable:
it corresponds to have one electron in the g bonding MO orbital and one in the u
antibonding MO (see Sect. 8.2), this latter being strongly repulsive. In Fig. 8.8 the
lowest energy levels in H2 corresponding to 8.26 are sketched.

For a more quantitative comparison of the MO and the VB descriptions in H2, let
us look at the values for the dissociation energies and the equilibrium distances (see
also Fig. 8.9) in the ground state:

φV B Ediss 
 3.14 eV Req.

AB = 1.7 a0

φM O Ediss 
 2.7 eV Req.

AB = 1.7 a0

Experimental Ediss 
 4.75 eV Req.

AB = 1.4 a0

One should remark that the VB orbital does not include the ionic states while the
MO-LCAO overestimates their weight. In fact, the energy to remove the electron
from the Hydrogen atom (13.56 eV) is much higher than the energy gain Δ in setting
it on the configuration H−. The energy gain Δ (sometimes called electron affinity) in
principle could be estimated from the Coulomb integral in Helium atom (Sect. 2.2),
with Z = 1 for the nuclear charge (however, see Problem 2.8). From accurate
estimates one actually would find Δ = 0.75 eV. Therefore the ionic states cannot be
weighted as much as they are in the MO-LCAO orbital. This observation suggests a
tentative wavefunction of the form

φV B + λφionic, (8.29)

namely a mixture of the covalent VB and of ionic states with a coefficient λ, for
instance to be estimated variationally. From the derivative of the energy function

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_2
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Fig. 8.8 Schematic energy curves for H2 corresponding to the wavefunctions in Eq. (8.26). More
accurate forms of the energies for the 1Σ+

g and 3Σ+
u states are reported in Fig. 8.9, in comparison

with the VB eigenvalues

E(λ) one could find that the minimum corresponds to λ = 0.25. Therefore, from
the normalization of the wavefunction the weight of the ionic states is given by
λ2/(λ2 + 1), about 6 percent.

How could the MO description of the ground state in H2 be improved? Since the
wavefunctions 8.26 involve the ionic states with different coefficients, it is conceiv-
able that a better approximation is obtained if a proper combination of the wave-
functions correspondent to different configurations is attempted. This procedure is
an example of the approach called configuration interaction (CI). In the combina-
tion one has to take into account that the mixture must involve states with the same
symmetry properties and same spin. Thus one should combine the gg state with the
uu one, both coupled to χant :

φC I (1, 2) = φI + kφI I (8.30)

From this wavefunction, as usual, one generates two energy levels, one of them having
energy E < E+, E+ being the energy for φI . In this way one could find a dissociation
energy and equilibrium distance close to the experimental values. Furthermore those
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Fig. 8.9 Energy curves for
the lowest energy states in
H2: dotted lines, within the
VB approach; solid lines,
more accurate evaluations
for the 1Σ+

g and the 3Σ+
u

states according to the
procedure outlined in the text
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quantities are found to coincide with the ones associated with the VB wavefunction
with addition of the ionic states! This is not by chance. In fact, by collecting the
various terms involving the atomic orbitals, one can rewrite Eq. (8.30) in the form

φC I (1, 2) = (1 − k)φV B + (1 + k)φionic

and by defining λ = (1 + k)/(1 − k) one sees that it coincides with Eq. (8.29).
This is an example of a more general issue: the MO-LCAO method with interaction

of the configurations is equivalent to the VB approach with addition of the ionic states
to the covalent wavefunctions.

8.5 Heteronuclear Molecules and the Electric
Dipole Moment

In the following we shall recall some novel aspects present in diatomic molecules
when the two atoms are different.

First of all one remarks that the inversion symmetry, with the Hamiltonian H(r)
equal to H(−r), no longer holds. Therefore, within the separated atoms scheme one
cannot longer classify the states as g or u and the one-electron states become (see
Fig. 7.6) σ1sA, σ1sB , σ2sA, σ2sB ,...

http://dx.doi.org/10.1007/978-3-319-17897-4_7
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Fig. 8.10 Sketchy illustration of the polarized MO-LCAO orbital in HCl. The px and py atomic
orbitals are scarcely involved in the formation of the molecule since they imply small overlap
integral SAB and resonance integral HAB (see text at Sect. 8.2)

Within the MO-LCAO scheme the one-electron orbital is written

φ = cAφA + cBφB

with cA �= cB . Equivalently, in the normalized form

φLC AO
M O = 1

(1 + λ∗2 + 2λ∗SAB)
1
2

[
φA + λ∗φB

]
. (8.31)

Here λ∗ can vary from −∞ to +∞ and it characterizes the polarization of the
orbital, namely measuring the electronic charge transfer from one atom to the other.
As illustrative example in Fig. 8.10 the molecular orbital for the HCl molecule is
sketched.

In the VB description the only way to account for the charge transfer is to add
the ionic states in the molecular orbital, no longer with the same weight as for the
homonuclear molecules (see Eq. (8.29)). In practice only the ionic configuration
favoured by the polarity of the molecule can be included. Then

φhet
V B = φV B + λφionic

In HCl, for instance, the large contribution to the polar character described by λ is
due to the ionic function representing H+Cl−.

The parameters λ in the above definition and λ∗ in Eq. (8.31) are difficult to eval-
uate from first principles. They have been empirically related to the electronegativity
of the atoms or to the difference between the ionization energy with respect to the
one pertaining to the purely covalent configuration.

An illustrative relationship of λ and λ∗ to molecular properties is the one involving
the electric dipole moment μe. By referring to the sketched schematization for a given
molecular orbital with two electrons (Sect. 8.3),
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the dipole moment is written μe = 2e < z >, with < z > the expectation value of the
coordinate, corresponding to the first moment of the electronic charge distribution.

For an MO-LCAO orbital as in Eq. (8.31), one has

< z >= 1

(1 + λ∗2 + 2λ∗SAB)

∫
z

[
|φA|2 + λ∗2|φB |2 + 2λ∗φAφB

]
dτ (8.32)

The mixed term < A|z|B > is usually negligible. By assuming for simplicity SAB �
1 one obtains

< z >= 1

(1 + λ∗2)

[
−1

2
RAB + 1

2
RABλ∗2

]
(8.33)

By defining g = μe/eRAB as degree of ionicity (g being the unit for total charge
transfer and dipole moment μmax

e = eRAB), λ∗ can be expressed in terms of a relevant
property of the molecule:

g = λ∗2 − 1

λ∗2 + 1
(8.34)

In analogous way in the VB framework, where g is evidently given by the weight of
the ionic structure, one has

g = λ2

λ2 + 1
. (8.35)

As for the homonuclear molecules, the energy curve E(RAB) in principle could
be evaluated in terms of the overlap and resonance integrals.

Direct understanding of the mechanism leading to the bonded state can easily
be achieved by referring to a model of totally ionic molecule, i.e. φM O = φB (or
configuration A+ B−) and in the assumption of Coulombic interaction between point
charge ions. This is an oversimplified way to derive the eigenvalue as a function of
the interatomic distance, still allowing one to grasp the main source of the bonding.

For numerical clarity let us refer to the NaCl molecule (Fig. 8.11). One observes
that for distances RAB above about 10 Å the energy of the neutral atoms is below
the one for ions. When the distance is smaller than the R∗

AB for which e2/R∗
AB 


(EI − E A), the ionic configuration is favoured and the system reduces the energy by
decreasing the interatomic distance.
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Fig. 8.11 Energies of the
neutral atoms and of the
ionic configuration in the
NaCl molecule. EI is the
ionization energy of Na,
about 5.14 eV while
E A = 3.82 eV is the electron
affinity in Cl and it
corresponds to the energy to
remove an electron from Cl−

At short distance a repulsive term is acting. Its phenomenological form can be
written

Erep ∼ B exp [−RAB/ρ], (8.36)

an expression known as Born-Mayer repulsion. Thus the energy curve depicted as
solid line in the Fig. 8.11 is generated.

The dissociation energy E(Rmin
AB ) can be evaluated by estimating the distance

where the energy minimum occurs. A detailed calculation of this type will be used
for the cohesive energy in ionic crystals (Sect. 13.2.1).

Finally, for some polar diatomic molecules the electric dipole moment μe, the
degree of ionicity and the value of λ∗ according to Eq. (8.32) are reported below
(having used for SAB a value around 0.3).

μe (Debye) μe/eRAB λ∗
HF 1.82 0.43 1.88
HCl 1.08 0.17 1.28
HBr 0.78 0.11 1.19
KF 8.5 0.67 2.93
KCl 10.27 0.77 3.36

(1 Debye = 10−18 u.e.s cm). In H2O, μe = 1.85 Debye.

Problems

Problem 8.7 By using the united atoms classification scheme (Fig. 7.6) write the
electronic configuration and the spectral terms for HB, LiH, CH and NO. Why NO
is paramagnetic ? Figure out in detail how the HB molecule correlates to the C atom
in the united atoms scheme.

http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_7
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Solution:
HB; (1sσ)2(2sσ)2(2pσ)2, 1Σ+.
The detailed correlation diagram for the HB molecule with Carbon atom (see

Fig. 7.6) is reported below

LiH; (1sσ)2(2sσ)2, 1Σ+;
first excited configuration (1sσ)2(2sσ)(2pσ), 3Σ+ or 1Σ+.

CH; (1sσ)2(2sσ)2(2pσ)2(2pπ), 2Π ;
first excited configuration (1sσ)2(2sσ)2(2pσ)(2pπ)2, 4Σ−, 2Δ, 2Σ+, 2Σ−.

NO, from the atomic configurations 1s22s22p3 for N and 1s22s22p4 for O, the
most plausible ground-state configuration could be

NO[K K (2pσ)2(3sσ)2(3pσ)2(2pπ)4(3pπ)], 2Π . Since there is one unpaired
3pπ electron NO is paramagnetic (S = 1/2). As already mentioned the actual
sequence of the eigenvalues is rather uncertain (see Problem 8.5).

Problem 8.8 In the ionic bond approximation assume for the eigenvalue in the NaCl
molecule the expression

E(RAB) = − e2

RAB
+ A

Rn
AB

.

From the equilibrium interatomic distance Req
AB = 2.51 Å and knowing that the

vibrational frequency is 1.14 · 1013 Hz, obtain A and n and estimate the dissociation
energy.

Solution: At the minimum

(
d E

d RAB

)
RAB = Req.

AB ≡ Re

= e2

R2
e

− n A
1

Rn+1
e

= 0

http://dx.doi.org/10.1007/978-3-319-17897-4_7
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thus
e2

n A
= 1

Rn−1
e

.

The elastic constant is (see Problem 8.3)

k =
(

d2 E

d R2
AB

)
RAB = Re

= −2e2

R3
e

+ A n(n + 1)
1

Rn+2
e

Then

k = e2

R3
e

(n − 1) .

For the reduced mass
μ = 2.3 · 10−23 g

the elastic constant takes the value

k = 4π2μν2
0 = 1.18 · 105 dyne/cm

(see Sect. 10.3).
Then

n − 1 = k R3
e

e2

 8.

From

A = e2 Rn−1
e

n

the energy at Re is

Emin = − e2

Re
+ A

Rn
e

= − e2

Re

(
1 − 1

n

)
= −5.1 eV.

and then the dissociation energy turns out

Ediss = −
[

Emin + 1

2
hν0

]

 5 eV.

Problem 8.9 The first ionization energy in the K atom is 4.34 eV while the electron
affinity for Cl is 3.82 eV. The interatomic equilibrium distance in the KCl molecule
is 2.79 Å. Assume for the characteristic constant in the Born-Mayer repulsive term
ρ = 0.28 Å. In the approximation of point-charge ionic bond, derive the energy
required to dissociate the molecule in neutral atoms.

http://dx.doi.org/10.1007/978-3-319-17897-4_10
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Solution: From

V (R) = −e2

R
+ B e− R

ρ

and the equilibrium condition

(
dV

d R

)
R=Re

= 0 = e2

R2
e

− B

ρ
e− Re

ρ

one obtains

V (Re) = − e2

Re

(
1 − ρ

Re

)

 −4.66 eV.

The energy for the ionic configuration K + + Cl− is (4.34 − 3.82) eV = 0.52 eV
above the one for neutral atoms. Then the energy required to dissociate the molecule
is

Ediss = (+4.66 − 0.52) eV 
 4.12 eV.

Problem 8.10 In the molecule KF the interatomic equilibrium distance is 2.67 Å
and the bonding energy is 0.5 eV smaller than the attractive energy of purely Coulomb
character. By knowing that the electron affinity of Fluorine is 4.07 eV and that the first
ionization potential for potassium is 4.34 V, derive the energy required to dissociate
the molecule in neutral atoms.

Solution: Since

ECoulomb = e2

Re
= 8.6 · 10−12 erg = 5.39 eV

the energy required for the dissociation in ions is Ei = (5.39 − 0.5) = 4.89 eV. For
the dissociation in neutral atoms Ea = Ei + A f − Pion = 4.89 + 4.07 − 4.34 eV =
4.62 eV.

Problem 8.11 Derive the structure of the hyperfine magnetic states for the ground-
state of the Hydrogen molecular ion. Then numerically evaluate their energy sepa-
ration in the assumption of σg1s molecular orbital in the form of linear combination
of 1s atomic orbitals (the interatomic equilibrium distance can be assumed 2a0).

Solution: From the extension of Eq. (5.3) H hyp
mag = AH+

2
(I A + I B) · s, with AH+

2
the

hyperfine coupling constant. From I = I A + I B , I = 0 or I = 1, namely states
with F = 1/2, 3/2 and F = 1/2 are obtained.

Since I · s = (1/2)[F(F + 1) − I (I + 1) − s(s + 1)]
the F = 3/2 and F = 1/2 levels are separated by ΔE = (3/2)AH+

2
.

AH+
2

can be obtained from (it is noted that the dipolar term is negligible)

http://dx.doi.org/10.1007/978-3-319-17897-4_5


8.5 Heteronuclear Molecules and the Electric Dipole Moment 267

φσg1s = 1√
2(1 + SAB)

1√
πa3/2

0

[
e−rA/a0 + e−rB/a0

]

considering rA = 0 and rB = RAB . Then

|φσg1s(0)|2 = 1

πa3
0

[
1 + e−RAB/a0

]2

2(1 + SAB)

 0.41

πa3
0

for SAB ≈ 0.58 (see Eq. (8.9)).
In atomic Hydrogen where |φ1s(0)|2 = 1/πa3

0 the separation between the F = 1
and F = 0 hyperfine levels is AH/h = 1421.8 MHz. Then in H+

2 one deduces
ΔE/h = (3/2)0.41AH 
 810 MHz. (For the difference between the ortho-states at
I = 1 and the para-state at I = 0 read Sect. 10.9.)

Problem 8.12 In the assumption that an electric field E applied along the molecular
axis of H+

2 can be considered as a perturbation, evaluate the electronic contribution
to the electric polarizability (for rigid molecule and for molecular orbital LCAO).

Solution:
HP = ezE

At first order < g|HP |g >= 0 (where |g >= (1/
√

2(1 + SAB))(φA + φB)),
since it corresponds to the first moment of the electronic distribution, evidently zero
for a homonuclear molecule (see Sect. 8.5).

At the second order, involving only the first excited state
|u >= (1/

√
2(1 − SAB))(φA − φB), one has

E (2) = e2E2 | < u|z|g > |2
E+ − E−

From

< u|z|g > = 1

2

1√
1 + SAB

√
1 − SAB

∫
(φA + φB)z(φA − φB)dτ

= 1

2

1√
1 − S2

AB

[
− RAB

2
− RAB

2

]
,

E (2) = − e2E2 R2
AB

4(1 − S2
AB)(E− − E+)

and then

αH+
2

= − 1

E
∂E (2)

∂E = e2 R2
AB

2(1 − S2
AB)(E− − E+)

http://dx.doi.org/10.1007/978-3-319-17897-4_10
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From Req
AB 
 2a0, S2

AB � 1 and (E−− E+) 
 0.1e2/a0 one has αH+
2


 (Req
AB)3/0.4,

of the expected order of magnitude (see Problem 10.8).

Problem 8.13 For two atoms A and B with J = S = 1/2, in the initial spin
state αAβB , spin-exchange collision is the process by which at large distances (no
molecule is formed) they interact and end up in the final spin state βAαB (This
process is often used in atomic optical spectroscopy to induce polarization and optical
pumping). From the extension of the VB description of H2 (Sect. 8.3) one can assume
a spin-dependent interaction H = −2K (R)SA · SB , where K (R) is the negative,
R-dependent exchange integral favouring the S = 0 ground-state.

Discuss the condition for the spin-exchange process by making reasonable as-
sumptions for the collision time Rc/v, Rc being an average interaction distance and
v the relative velocity of the two atoms.

Solution: In the singlet ground-state the interaction is

E(R) = −2K (R)

[
S2 − S2

A − S2
B

2

]
= 6K (R)

4

An approximate estimate of the time required to shift from αAβB to βAαB can be
obtained by referring to the Rabi equation (Appendix 1.2), in a way somewhat anal-
ogous to the exchange of the electron discussed at Sect. 8.1.2 for the H+

2 molecule.
Here the Rabi frequency has to be written Γ ≈ E(R)/�, for R around Rc. Then
the time for spin exchange is of the order of (π/3)(�/|K (Rc)|) while the time for
interaction is τc = Rc/v (v can be considered the thermal velocity at room tem-
perature in atomic vapors, i.e. ≈ 3 · 105 cm/s, for light atoms). Thus one derives
−3K (Rc)Rc 
 π�v.

For an order of magnitude estimate one can assume that at large distance K (Rc)

is in the range 10−3 − 10−4eV thus yielding Rc in the range 6–60 Å.
These crude estimates for the spin-exchange process and the limits of validity are

better discussed at Chap. 5 of the book by Budker, Kimball and De Mille, where a
more rigorous analysis of this problem can be found.
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Chapter 9
Electronic States in Selected Polyatomic
Molecules

Topics

Polyatomic Molecules from Bonds Between Pairs of Atoms
Hybrid Atomic Orbitals
Geometry of Some Molecules
Bonds for Carbon Atom
Electron Delocalization and the Benzene Molecule

In this chapter some general aspects of the electronic states in polyatomic molecules
shall be discussed. Some more detail will be given for typical molecules where novel
phenomena not encountered in diatomic molecules occur.

The electronic structure in polyatomic molecules is based on principles anal-
ogous to the ones described for diatomic molecules. As already mentioned (see
note at Sect. 8.1.1), a general theory somewhat equivalent to the Slater theory for
many-electron atoms (Sect. 3.4) can be developed. The steps of that approach are
the following. Molecular orbitals of the form φ(ri , si ) = ∑

p c(i)p φp(ri )χ
(i)
spin are

assumed as a basis, in terms of linear combination of atomic spin-orbitals centered
at the various sites with unknown coefficients c(i)p . The determinantal wavefunction
for all the electrons is then built up and the energy function is constructed from
the full Hamiltonian (T + Vne + Vee) (see Sect. 7.1). The Hartree-Fock variational
procedure is then carried out in order to derive the coefficients c(i)p . This approach is
known as MO.LCAO.SCF (self-consistent field). Advanced computational methods
are required and the one developed by Roothaan is one of the most popular. More
recently the density functional theory is often applied in ab-initio procedures, based
on the idea that the energy can be written in terms of electron probability density,
thus becoming a functional of the charge distribution, while the local density approx-
imation is used to account for the exchange-correlation corrections. Configuration
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(a)

(b) (c)

2 2

y

Fig. 9.1 Pictorial view of the formation of the NH3 molecule in terms of combination of localized
1s Hydrogen and of 2px,y,z N atomic orbitals, with the criterium of the maximum overlap to grant
the largest contribution to the bonding energy from each bond (a). The electronic configuration
of the molecule can be written N (1s)2(2s)2[N (2p) + H(1s),σ]6. The equivalent configuration is
shown in part (b), where the molecule can be thought to result from the approach of the H atoms
along the opposite directions of the coordinate axes. The evolution of the two level states is sketched
in part c with the inversion doublet resulting from the removal of the degeneracy. The separation
energy of the doublet is related to the exchange integral. These two states were used to obtain the
first maser operation (see Appendix 9.1)

interaction (see Sect. 8.4) is usually taken into account. We will not deal with these
topics, essentially belonging to the realm of computational quantum chemistry.

We shall see how in poliatomic molecules qualitative aspects can be understood
simply in terms of the idealization of independent bonds, by considering themolecule
as resulting from pairs of atoms, each pair corresponding to a given bond. In this
way the main aspects worked out in diatomic molecules (Chap. 8) can be extended
to polyatomic molecules. Typical illustrative example is the NH3 molecule.

At Sect. 9.2 we will discuss the molecular bonds involving hybrid atomic orbitals
and giving rise to particular geometries of the molecules, typically the ones related
to the variety of bonds involving the carbon atom. In Sect. 9.3 the delocalization of
the electrons will be addressed, with reference to the typical case of the benzene
molecule.

http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_8
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9.1 Qualitative Aspects of NH3 and H2O Molecules

In the spirit of the simplified picture of orbitals localized between pair of atoms and
independent bonds, one can sketch the formation of the NH3 molecule as resulting
from three mutually perpendicular σ MO orbitals involving LCAO combination of
2p N atomic orbitals and 1s Hydrogen orbital (see Fig. 9.1).

Similar qualitative picture can be given for the H2O molecule (Fig. 9.2).
From those examples one can understand how the geometry of themolecules, with

certain angles between bonds, is a consequence of the maxima for the probability of
presence of the electrons controlled by atomic orbitals coupled with the criterium of
strong overlap, in order to maximize the resonance integral.

However it should be remarked that this qualitative picture is incomplete. In fact
the angles between bonds are far from being 90◦, in general. For instance in H2O the
angle between the two OH bonds is about 104.31◦ (see Fig. 9.2). As we shall see in
the next section, the geometry of the molecules is consistent with the assumption of
hybrid atomic orbitals involved in the formation of the MO’s.

H H

+ +

_ _
O

φ (I) φ (II)

O

+

+

+

+

HH

_ _

σ  bond 

φ (2p ) φ (2p ) 

overlap

x

x

y

y

2s2p -1s σMO 2s2p -1s σMO x y

1 2
x y

1 2

Fig. 9.2 Schematic view of the H2O molecule as resulting from two σ MO’s involving 2p O and
1s H atomic orbitals, with strong overlap of the wavefunctions when the Hydrogen atoms approach
the Oxygen along the directions of the x and y axes. The electronic configuration can be written
O(1s)2(2s2)(2pz)

2[O(2px,y) + H(1s),σ]4. The increase of the angle between the bonds with
respect to the idealized situation of π/2 can be accounted for by the formation of non-equivalent
hybrid orbitals leading to a shift of the center of the electronic cloud (or by non-localized one-
electron orbitals)
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9.2 Bonds Due to Hybrid Atomic Orbitals

By naively referring to the electrons available to form bonds by occupying the mole-
cular orbitals, the Be, B and C atoms would be characterized by valence numbers
nV = 0, 1 and 2, correspondent to the electrons outside the closed shells. The com-
mon experimental findings (nV = 2, 3 and 4, respectively) could qualitatively be
understood by assuming that when molecules are formed one electron in those atoms
is promoted to an excited state. The increase in the number of bonds, with the related
decrease of the total energy upon bonding, would account for the energy required
to promote the electron to the excited state. This argument by itself cannot justify
the experimental evidence. At the sake of clarity, let us refer to the CH4 molecule:
its structure, with four equivalent C-H bonds, with angles 109◦28′ in between, can
hardly be justified by assuming for the carbon atom one electron in each 2s, 2px , 2py

and 2pz atomic orbitals. A related consideration, claiming for an explanation of the
molecular geometry, is the one aforementioned for the angles between bonds in the
H2O molecule.

Again referring to CH4 and in the light of the equivalence of the four C-H bonds,
one can still keep the criterium of themaximum overlap provided that atomic orbitals,
not corresponding to states of definite angular momentum, are supposed to occur in
the atomwhen the molecule is being formed. These atomic orbitals are called hybrid.

To account for the geometry of the bonds in CH4 we have to generate hybrid
orbitals with maxima in the probability of presence along the directions of the tetra-
hedral environment, as sketched below

C atom

[111]

H 

H

H 

H tetrahedron

C  

Four equivalent bonds 
at angles 109°28’

From the linear combination

φC = aφ2s + bφ2px + cφ2py + dφ2pz

by resorting to the orthonormality condition, to the requirement of electronic charge
displaced along the tetrahedral directions and by considering that for symmetry
reasons the s electron has to be equally distributed on the four hybrid orbitals, one
can figure out that the coefficients must be
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a2 = 1/4 b2 + c2 + d2 = 3/4 b2 = c2 = d2,

yielding maxima for the probability of presence along the directions

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

Thus the hybrid orbitals of the C atom are

φI = 1

2

[
2s + 2px + 2py + 2pz

]

φII = 1

2

[
2s + 2px − 2py − 2pz

]

φIII = 1

2

[
2s − 2px + 2py − 2pz

]

φI V = 1

2

[
2s − 2px − 2py + 2pz

]

The individual bonds with the H atoms can then be thought to result from σ MO,
given by linear combinations of the C hybrids and of the 1s H atomic orbitals, as
sketched below

+

+

+ +

That type of hybridization is called (sp3) or tetragonal. Besides the methane
molecule, is the one that can be thought to occur in the molecular-like bonding in
some crystals, primarily in diamond (C) and in semiconductors such as Ge, Si and
others (see Chap. 11).

Another type of hybridization involving the carbon atom is (sp2) or trigonal one,
giving rise to planar geometry of the molecule, with three equivalent bonds forming
angles of 120◦ between them, such as in the ethylene molecule, C2H4. The hybrid

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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orbital can be derived in a way similar to the tetragonal hybridization, from a linear
combination of 2s, 2px and 2py . By taking into account that the coefficients b and c
are proportional to the cosine of the related angles and that a2 = 1/3, b2 +c2 = 2/3,
one has the following picture

corresponding to C hybrid orbitals

φI = 1√
3

φ2s +
√
2√
3

φ2px

φII = 1√
3

φ2s − 1√
6

φ2px + 1√
2

φ2py

φIII = 1√
3

φ2s − 1√
6

φ2px − 1√
2

φ2py
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Therefore the σ MO bonds are generated from the linear combination of the 1s H
orbitals or of the equivalent hybrid orbital of the other carbon atom, as sketched
below

The 2p electron described by the atomic orbital 2pz , perpendicular to the plane of
the molecule, is not involved in the hybrid and therefore it can form a π C-C MO
of the type already seen in diatomic molecules, leading to an additional weak bond
(see the N2 molecule at Sect. 8.2).

Another interesting hybrid orbital for the carbon atom and leading to linear mole-
cule, such as acetylene (C2H2) is the digonal (sp) hybrid. It mixes the s electron and
one p electron only. The electronic configuration sketched below is derived

The C-C bond here is a triple one (one strong bond and two weak bonds).
More complex hybrid orbitals are generated in other multi-atoms molecules, with

particular geometries. For its importance and at the sake of illustrationwemention the
(d2sp3) atomic orbitals, occurring in atoms with incomplete d shells. The hybridiza-
tion implies six bonds, along the positive and negative directions of the Cartesian
axes. By combining with 2p oxygen orbitals the octahedral structure depicted in
Fig. 9.3 originates, for example for BaTiO3.

We shall come back to this relevant atomic configuration, characteristic of the
perovskite-type ferroelectric titanates such as BaTiO3, at Sect. 13.3 when dealing
with the CuO6 octahedron, which is the structural core of high-temperature super-
conductors.

http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Fig. 9.3 The configuration
of σ bonds involving the six
atomic orbitals of the central
atom (for example Titanium)
associated with the d2sp3

hybridization. This atomic
configuration is the one
occurring, for example in the
(TiO3)2− molecular-like unit
in the BaTiO3 crystal
(oxygens are shared by two
units) (see Sect. 11.4)

x

z

y

O

O

O

O

O

O

six hybrid orbitals
for the central atom

9.3 Delocalization and the Benzene Molecule

Experimental evidences, such as X-ray diffraction (in the solid state) and roto-
vibrational spectra (see Chap.10) indicate that the benzene molecule, C6H6, is char-
acterized by planar hexagonal structure, with the Carbon atoms at the vertices of
the hexagon. The C-H bonds form 120◦ angles with the adjacent pair of C-C bonds.
According to this atomic configuration one understands that the Carbon atom is in
the sp2 trigonal hybridization, as the one discussed for the C2H4 molecule (Sect. 9.2).
The remaining 2pz electrons of the Carbon atoms, not involved in the hybrids, can
form a πMO between adjacent C atoms, yielding three double bonds. However, all
the C-C bonds are equivalent and the distances C-C are the same. This is one of
the evidences that the simplified picture of localized electrons, with “independent”
bonds between pairs of atoms, in some circumstances has to be abandoned. We shall
see that the structure of the benzene molecule, as well as of other molecules with
π-bonded atoms like the polyenes, can be justified only by delocalizing the 2pz elec-
trons all along the Carbon ring. Thus the one-electron orbitals are not necessarily
localized between pairs of Carbon atoms. The delocalization process is a further
mechanism of bonding, since the total energy is decreased, as it will be shown. At
Chap.12 we shall see that the electronic states in crystals can be described as related
to the delocalization of the electrons. Thus, for certain aspects the benzene molecule
can also be regarded as a prototype for the electronic states in crystals.

By extending to the six Carbon atoms in the benzene ring the MO.LCAO descrip-
tion, the one-electron orbital is written

http://dx.doi.org/10.1007/978-3-319-17897-4_11
http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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φM O(i) =
∑

r

crφ
(r)
2pz

(9.1)

where φ(r)
2pz

are C 2p orbitals centered at the r th site of the hexagon (r runs from 1
to 6). Then the energy function, by referring only to the Hamiltonian H for the 2pz

C electrons, is

E(cr ) =
∫

φ∗
M O HφM O dτ∫
φ∗

M O φM O dτ
(9.2)

By resorting to the concepts already used in diatomic molecules (Sect. 8.1) we
label βrs = ∫

φ∗(s)
2pz

Hφ(r)
2pz

dτ as resonance integral, while Srs = ∫
φ∗(s)
2pz

φ(r)
2pz

dτ is

the overlap integral. One has
∫

φ∗(r)
2pz

Hφ(r)
2pz

dτ = E0, energy of 2p electron in the

C atom and
∫

φ∗(r)
2pz

φ(r)
2pz

dτ = 1.
It is conceivable to assume Srs = 0 for r �= s and to take into account the

resonance integral only between adjacent C atoms: βrs = β for r = s ± 1 and zero
otherwise (this criterion was first proposed by Hückel).

Then the secular Equation for the energy function E(cr ) reads

⎛
⎜⎜⎜⎜⎜⎜⎝

(E0 − E) β 0 0 0 β
β (E0 − E) β 0 0 0
0 β (E0 − E) β 0 0
0 0 β (E0 − E) β 0
0 0 0 β (E0 − E) β
β 0 0 0 β (E0 − E)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

The roots are E0 + 2β, E0 ± β (twice), E0 − 2β (note that β < 0).
The lowest energy delocalized π orbital, correspondent to the eigenvalue E0+2β,

can accommodate two electrons, while on the state at energy E0 + β one can place
four electrons, as sketched below

E0

E

β

The bonding energy turns out 2(2β)+ 4β = 8β, lower than the energy 6β that one
would obtain for localized electrons. The energy 2β can be considered the contribu-
tion to the ground state energy due to the delocalization.

http://dx.doi.org/10.1007/978-3-319-17897-4_8
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In correspondence to the root (E0 + 2β) the coefficients cr in Eq. (9.1) are equal.
The normalization yields cr = 1/

√
6 and therefore the molecular orbital is

φM O(ri ) = 1√
6

[
φ2pz (ri − l1) + ... + φ2pz (ri − l6)

]
(9.3)

where lr indicate nra and specifies the position of the Carbon atom along the ring of
step a. The wavefunction 9.3 is sketched in Fig. 9.4.

In correspondence to the root (E0 +β) different choices for the coefficients cr are
possible (see Problem9.2 for a similar situation). One choice is

φM O(ri ) = 1√
12

[
2φ2pz (ri − l1) + φ2pz (ri − l2) − φ2pz (ri − l3) −

2φ2pz (ri − l4) − −φ2pz (ri − l5) + φ2pz (ri − l6)
]
. (9.4)

The eigenvalues can be written in the form

E p = Eo + 2βcos[(2π/6a)pa], (9.5)

while for the coefficients
c(l)p = (e2πilp/6)/(6)1/2, (9.6)

where p = 0,±1,±2, 3.
The benzene ring can be considered the cyclic repetition of a “crystal” of six

Carbon atoms. The eigenvalues and the coefficients in the forms 9.5 and 9.6 are
somewhat equivalent to the band states in a one-dimensional crystal (see Chap. 12).

The quantitative evaluation (by means of numerical methods or by resorting to
approximate radial parts of the wavefunctions) of the electronic eigenvalue as a
function of the interatomic distance a yields a minimum for a � 1.4Å, in between
the values a′ = 1.34Å and a′′ = 1.54Åpertaining to double and to simple C-C bond,

Fig. 9.4 Pictorial view of the πMO delocalized orbital correspondent to Eq. (9.3) (eigenvalue
E0 + 2β)

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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respectively. From spectroscopic and thermodynamic considerations the values of
E0 and β turn out E0 � −1.52 eV and β = −0.87 eV.

The structural anisotropy of the molecule is reflected, for instance, in the strong
dependence of the diamagnetic susceptibility χdia on the orientation. In fact, by
extending the arguments discussed for atoms (Sect. 4.5) one can expectχdia ∝ ∑

i <

r2i sin2θi >, with θ angle between the magnetic field and the positional vector of a
given electron. Then, in the benzene molecule, χ

‖
dia 
 χ⊥

dia (with ‖ and ⊥ to the
plane of the hexagon) (see Problem9.3).

Appendix 9.1 Ammonia Molecule in Electric Field
and the Ammonia Maser

According to Fig. 9.1 the Ammonia molecule can be found in two equivalent config-
urations, depending on the position of the N atom above (state |1 >) or below (state
|2 >) the xy plane of the H atoms. By considering the molecule in its ground elec-
tronic state and neglecting all other degrees of freedom, let us discuss the problem
of the position of the N atom along the z direction perpendicular to the xy plane,
therefore involving the vibrational motion in which N oscillates against the three
coplanar H atoms (for details on the vibrational motions see Sects. 10.3 and 10.6).

The potential energy V (z), that in the framework of the Born-Oppenheimer
separation (Sect. 7.1) controls the nuclear motions and that is the counterpart of
the energy E(RAB) in diatomic molecules, has the shape sketched below

V(z) (meV)

50

25

E0 Eu

Eg

-z0 +z0

9.84x10 meV

μe
|1>

μe
|2>

N

N

z

-2

The distance of the N atom from the xy plane corresponding to the minima
in V (z) is zo = 0.38 Å, while the height of the potential energy for z = 0 is
Vo � 25meV. In the state |1 > the molecule has an electric dipole moment µe along
the negative z direction, while in the state |2 > the dipole moment is parallel to the

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_7
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reference z-axis. Within each state the N atoms vibrate around +zo or −zo. As for
any molecular oscillator the ground state has a zero-point energy different from zero,
that we label Eo (correspondent to the two levels A and B sketched in Fig. 9.1c). The
vibrational eigenfunction in the ground state is a Gaussian one, centered at ±zo (see
Sect. 10.3). The effective mass of the molecular oscillator is μ = 3MH MN/(3MH +
MN ).

Thus the system is formally similar to the H+
2 molecule discussed at Sect. 8.1, the

|1 >, |2 > states corresponding to the electron hydrogenic states 1sA and 1sB , while
the vibration zero-point energy corresponds to −RH hc. Therefore, the generic state
of the system is written

|ψ >= c1|1 > +c2|2 > (A.9.1.1)

with coefficients ci obeying to Eqs. (8.13). Here H12 = −A is the probability ampli-
tude that because of the quantum tunneling the N atom jumps from |1 > to |2 > and
vice versa, in spite of the fact that Eo 
 Vo. Two stationary states are generated, say
|g > and |u >, with eigenvalues Eo − A and Eo + A, respectively. The correspon-
dent eigenfunctions are linear combinations of the Gaussian functions describing the
oscillator in its ground state (see Sect. 10.3):

-z0 -z0+z0 +z0

zz

ψ ψ

|u> | g>

The degeneracy of the original states is thus removed and the vibrational levels are
in form of doublets (inversion doublets). For the ground-state the splitting Eg − Eu =
2A corresponds to 0.793 cm−1, while it increases in the excited vibrational states,
owing to the increase of H12. For the first excited state 2A′ = 36.5 cm−1 and for
the second excited state 2A′′ = 312.5 cm−1. It can be remarked that the vibrational
frequency (see Sect. 10.3) of N around the minimum in one of the wells is about
950 cm−1.

The inversion splitting are drastically reduced in the deuterated Ammonia mole-
cule ND3 where for the ground-state 2A = 0.053 cm−1. Thus the tunneling fre-
quency, besides being strongly dependent on the height of the effective potential
barrier Vo, is very sensitive to the reduced mass μ. For instance, in the AsH3 mole-
cule, the time required for a complete tunneling cycle of the As atom is estimated to
be about two years. These marked dependences on Vo and μ explains why in most
molecules the inversion doublet is too small to be observed.

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_10
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InNH3 the so-called inversion spectrumwas first observed (Cleeton andWilliams,
1934) as a direct absorption peak at a wavelength around 1.25 cm, by means
of microwave techniques. This experiment opened the field presently known as
microwave spectroscopy.

The typical experimental setup is schematically shown below

Lock-in

Modulation Amplifier

Stark electrode

Detector

Isolator

Klystron

Voltage
ramp

Computer

Frequency measurement

Finally it should be remarked that the rotational motions of the molecule (Sect. 10.2),
as well as the magnetic and quadrupolar interactions (Chap.5), in general cause fine
and hyperfine structures in the inversion spectra.

As already mentioned the |g > and |u > states of the inversion doublet in NH3

have been used in the first experiment (Townes and collaborators) of microwave
amplification by stimulated emission of radiation (see Problem1.24). The maser
action requires that the statistical population Nu is maintained larger than Ng while
a certain number of transitions from |u > to |g > take place.

Now we are going to discuss how the Ammonia molecule behaves in a static
electric field. Then we show how by applying an electric field gradient (quadrupolar
electric lens) one can select the Ammonia molecule in the upper energy state.

In the presence of a field E along z the eigenvalue for the states |1 > and |2 >

become
H11 = Eo + μeE and H22 = Eo − μeE

The rate of exchange can be assumed approximately the same as in absence of
the field, namely H12 = −A. The analogous of Eqs. (8.13) for the coefficients ci in
Eq. (A.9.1.1) are then modified in

i�
dc1
dt

= (Eo + μeE)c1 − Ac2 (A.9.1.2)

i�
dc2
dt

= (Eo − μeE)c2 − Ac1 (A.9.1.3)

The solutions of these equations must be of the form ci = ai exp(−i Et/�), with
E the unknown eigenvalue. The resulting equations for ai are

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_8
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(E − Eo − μeE)a1 + Aa2 = 0

Aa1 + (E − Eo + μeE)a2 = 0

and the solubility condition yields

E± = H11 + H22

2
±

√
(H11 − H22)2

4
+ A2 = Eo ±

√
A2 + μ2

eE2 (A.9.1.4)

(representing a particular case of the perturbation effects described in Appendix1.2
(Eq. (A.1.2.4))). When the perturbation is not too strong compared to the inversion
splitting, Eq. (A.9.1.4) can be approximated in the form

E± = Eo ± A ± μ2
eE2

2A
. (A.9.1.5)

E± are reported below as a function of the field.

E +A

E -A

E

u

g

E +με      for με » A 

E -με

E

ε

Equation (A.9.1.5) can be read in terms of induced dipole moments μ±
ind =

−d E±/dE = ∓μ2
eE/A. Therefore, if a collimated beam of molecules passes in

a region with an electric field gradient across the beam itself, molecules in the |u >

and |g > states will be deflected along opposite directions (this effect is analogous
to the one observed in the Rabi experiment at Sect. 6.2). In particular, the molecules
in the |g > state will be deflected towards the region of stronger E2, owing to the
force −∇[−(μeE)2/2A].

In practice, to obtain a beam with molecules in the upper energy state one uses
quadrupole electric lenses, providing a radial gradient of E2. The square of the elec-
tric field varies across the beam. Passing through the lens the beam is enriched in
molecules in the excited state and once they enter the microwave cavity the maser
action becomes possible. The experimental setup of the Ammonia maser is sketched
in the following figure.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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The basic principles outlined above for the Ammonia maser are also at work in
other type of atomic or solid-state masers. In the Hydrogen or Cesium atomic maser
the stimulated transition involves the hyperfine atomic levels (see Chap.5). For the
line at 1420MHz, for instance, the selection of the atoms in the upper hyperfine state
with F = 1 is obtained by a magnetic multipolar lens. Then the atomic beam enters
a microwave cavity tuned at the resonance frequency. The resolution (ratio between
the linewidth and 1420 MHz) can be improved up to 10−10, since the atoms can be
kept in the cavity up to a time of the order of a second. The experimental value of
the frequency of the F = 1 → 0 transition in Hydrogen is presently known to be
(1420405751.781 ± 0.016Hz), while for 133Cesium the F = 4 → 3 transition is
estimated 9192631770Hz, which is the frequency used to calibrate the unit of time
(see Sect. 5.2).

Solid state masers are usually based on crystals with a certain number of para-
magnetic transition ions, kept in a magnetic field and at low temperature, in order to
increase the spin-lattice relaxation time T1 and to reduce the linewidth associatedwith
the life-time broadening (see Chap.6) (as well as to reduce the spontaneous emis-
sion acting against the population inversion). A typical solid state maser involves
ruby, a single crystal of Al2O3 with diluted Cr3+ ions (electronic configuration 3d3).
The crystal field removes the degeneracy of the 3d levels (details will be given at
Sect. 13.3) and the magnetic field causes the splitting of the MJ = ±3/2,±1/2
levels. The population inversion between these levels is obtained by microwave irra-
diation of proper polarization.

Here we have presented only a few aspects of the operational principles of masers,
which nowadays have a wide range of applications, due to their resolution (which
can be increased up to 10−12) and sensitivity (it can be recalled that maser signals
reflected on the surface of Venus have been detected).

http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_6
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Problems

Problem 9.1 Under certain circumstances the cyclobutadiene molecule can be
formed in a configuration of fourC atoms at the vertices of a square. In theMO.LCAO
picture of delocalized 2pz electrons derive the eigenvalues and the spin molteplicity
of the ground state within the same approximations used for C6H6.

Solution: The secular equation is
∣∣∣∣∣∣∣∣

α − E β 0 β
β α − E β 0
0 β α − E β
β 0 β α − E

∣∣∣∣∣∣∣∣
= 0.

Bysettingα−E = x , one has x4−4β2x2 = 0 and then E1 = −2|β|+α , E2,3 =
α , E4 = 2|β| + α .

Ground state: 4α − 4|β|. Since the Hund rules hold also in molecules (see
Sect. 8.2), the ground-state is a triplet.

Problem 9.2 Refer to the C3H3 molecule, with carbon atoms at the vertices of an
equilateral triangle. Repeat the treatment given forC6H6, deriving eigenfunctions and
the energy of the ground-state. Then release the assumption of zero overlap integral
among orbitals centered at different sites and repeat the derivation. Estimate, for the
ground-state configuration, the average electronic charge per C atom.

Solution: For Si j = 0 for i �= j , the secular equation is
∣∣∣∣∣∣

E0 − E β β
β E0 − E β
β β E0 − E

∣∣∣∣∣∣ = 0

so that
EI = E0 + 2β EII,III = E0 − β

and the ground-state energy is

Eg = 3E0 + 4β − β = 3E0 + 3β

The eigenfunctions turn out

φI = 1√
3
[φ1 + φ2 + φ3] ≡ A√

3

φII = 1√
2
[φ1 − φ3] ≡ B√

2

http://dx.doi.org/10.1007/978-3-319-17897-4_8
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φIII = 1√
6
[−φ1 + 2φ2 − φ3] ≡ C√

6

The total amount of electronic charge on a given atom (e.g. atom 1) is given by the
sum of the squares of the coefficient pertaining to φ1 in φI,II,III:

q = 2

(
1√
3

)2

+ 1

2

[(
1√
2

)2

+
(

1√
6

)2
]

= 1

(having taken the average of the two degenerate states).

For Si j ≡ S �= 0, the secular equation becomes
∣∣∣∣∣∣

E0 − E β − SE β − SE
β − SE E0 − E β − SE
β − SE β − SE E0 − E

∣∣∣∣∣∣ = 0

and the eigenvalues are

EI = E0 + 2β

1 + 2S
EII,III = E0 − β

1 − S

The ground-state energy is

Eg = 2EI + EII = 3
E0 + β(1 − 2S)

(1 + 2S)(1 − S)

with normalized eigenfunctions

φI = A√
3(1 + 2S)

φII = B√
2(1 − S)

φIII = C√
6(1 − S)

Again, by estimating the squares of the coefficients the charge at a given atom
turns out

q ′ = 1

(1 − S)(1 + 2S)
.

The charge in the region “in between” two atoms (e.g. atoms 1 and 2) is obtained by
evaluating the sum of the coefficients c1c2 (for φ1 and φ2) in φI,II,III, multiplied by
the overlap integral. Thus
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q ′′ = S(1 − 2S)

(1 − S)(1 + 2S)
.

Problem 9.3 Estimate the order of magnitude of the diamagnetic contributions to
the susceptibility in benzene, formagnetic field perpendicular to themolecular plane.

Solution: The diamagnetic susceptibility (per molecule) can approximately be
written

χψ = − nψe2

4mc2
< r2 >ψ,

where nψ is the number of electrons in a molecular state ψ and< r2 >ψ is the mean
square distance.

In benzene there are 12 1s electrons of C , with < r2 >1s� 3a2
0

Z2 (Z = 6). Then
there are 24 electrons in σ bonds for which, approximately,

< r2 >σ �
∫ L

2

− L
2

dx

L
x2 = L2

12
,

the length of the σ bond being L = 1.4Å.
Finally there are 6 electrons in the delocalized bond πz , where one can assume

< r2 >πz � L2. The diamagnetic correction at the center of the molecule is in large
part due to the delocalized electrons and from that value of< r2 >πz one can crudely
estimate χπ ≈ −0.49 · 10−28 cm3 . The experimental values for the single-molecule
susceptibility are χ⊥

dia = −1.52 · 10−28 cm3 and χ
‖
dia = −0.62 · 10−28 cm3, for

magnetic field perpendicular and parallel to the plane of the molecule.
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Chapter 10
Nuclear Motions in Molecules and Related
Properties

Topics

Rotations and Vibrations in Diatomic Molecules
How the Rotational and Vibrational States are Studied
The Normal Modes in Polyatomic Molecules
Basic Principles of Raman Spectroscopy
Nuclear Spin Statistics and Symmetry-Related Effects

10.1 Generalities and Introductory Aspects for Diatomic
Molecules

In the framework of the Born-Oppenheimer separation (Sect. 7.1), once that the
electronic state has been described and the eigenvalue Ee(R) and wavefunction
φe(r, R) have been found, then the motions of the nuclei are described by a function
φ(g)

ν (R), where g represents the quantum label for the electrons and ν are the quantum
numbers (to be found) for the nuclei. This wavefunction is solution of the equation

{
−

∑
α

�
2

2Mα
∇2

α + Ee(R)

}
φ(g)

ν (R) = Eg,ν φ(g)
ν (R) (10.1)

(note that Vnn in Eqs. (7.3) and (7.5) has been included in Ee(R), see for example
Eq. (8.1)).

Let us refer to a diatomic molecule in the ground electronic state, for which we
assume Λ = 0 and S = 0 (1Σ state) and let us indicate the effective potential
energy, resulting from the electronic eigenvalue and the nucleus-nucleus repulsion,
with V (R), R being the interatomic distance (previously often indicated by RAB). It
is reminded that V (R) has the form sketched below
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By introducing the reduced mass μ = MA MB/(MA + MB) the molecule becomes
equivalent to a single particle. By recalling the approach used for the Hydrogen atom,
Eq. (10.1) is rewritten

{
− �

2

2μ

[
1

R2

∂

∂R

(
R2 ∂

∂R

)]
+ Tθ + Tϕ + V (R)

}
φ(R, θ,ϕ) = E φ(R, θ,ϕ)

(10.2)
where the polar coordinates R, θ and ϕ have been introduced and (Tθ + Tϕ) involves
the angular momentum operator L2. The difference with respect to the radial part
of the Schrödinger equation for Hydrogen is in the potential energy V (R), obvi-
ously different from the Coulombic form although still of central character. Thus the
factorization of the wavefunction follows:

φ(R, θ,ϕ) = R(R)Y (θ,ϕ), (10.3)

YK M(θ,ϕ) being the spherical harmonics characterized by quantum numbers K and
M (the analogous of l and m in the H atom), related to the eigenvalues for L2 and Lz .

The radial part of the wavefunction, R(R), obeys the equation

TRR +
[

V (R) + K (K + 1)�2

2μR2

]
R = ER (10.4)

and corresponds to the one-dimensional probability of presence along a given direc-
tion under a potential energy including the centrifugal term, as sketched below

By indicating with Q the internuclear distance R with respect to the equilibrium
distance Re, in terms of the local displacements xA and xB one has
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Q = R − Re = xB + Re − xA − Re ≡ xB − xA. (10.5)

Thus Q is a non-local coordinate (we shall return to this point when discussing the
vibrational motions in polyatomic molecules, Sect. 10.6). Then the centrifugal term
in Eq. (10.4) can be written

K (K + 1)�2

2μR2
e

[
1

1 + Q
Re

]2

� K (K + 1)�2

2μR2
e

(
1 − 2Q

Re

)
(10.6)

having taken into account that (Q/Re) � 1.
In Eq. (10.6) the term 2Q/Re couples the vibrational and the rotational motions.

In a first approximation this term can be considered as perturbation and one can
deal with the rotational part of the Schrodinger equation only. After the analysis of
the vibrational part and the derivation of the correspondent wavefunction R(R) ≡
φvib(R), it will be possible to take into account the roto-vibrational coupling by
referring to unperturbed states described by

φ(R, θ,ϕ) = φvib(R)φrot (θ,ϕ) (10.7)

with φrot (θ,ϕ) ≡ YK M(θ,ϕ), with the perturbation term given by −(2Q/Re).

10.2 Rotational Motions

10.2.1 Eigenfunctions and Eigenvalues

From Sect. 10.1 it follows that the contribution to the energy of the molecule from
the rotational motion is

Erot = K (K + 1) �
2/2 μ R2

e (10.8)

This result can be thought to derive directly from the quantization of the angular
momentum P in the classical expression of the rotational energy P2/2I , I being the
moment of inertia I = R2

e μ.
The eigenfunctions φrot (θ,ϕ), so that φ∗

rotφrot dΩ yields the probability that the
molecular axis is found inside the elemental solid angle dΩ = sinθ dθ dϕ, coincide
with the spherical harmonics. In the light of the classical relation |P| = Iω, to a
given quantum state with eigenvalue |P| = [K (K + 1)]1/2

�, one can associate a
frequency of rotation νrot = (h/4π2 I ) [K (K + 1)]1/2.

A fundamental rotational frequency

νrot = �/2 π μ R2
e = �/2 π I (10.9)
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Fig. 10.1 Levels diagram
for the lowest-energy
rotational states

2 E

E = 
h2/µ Re

2 

E
K = 2

K = 1

K = 0

degeneracy (2K+1)

Y0,0 
+

rotational “frequency” νrot = 0

4Bhc

2Bhc

or equivalently a rotational constant (in cm−1) B = (�/4 π I c), are usually defined
(B ≡ (�2/2μR2

e )/hc). The energy diagram for the first rotational states is reported
in Fig. 10.1.

The probability distribution of the molecular axis involves Y ∗
K M YK M . Since the

ϕ-dependence of the spherical harmonics goes as exp(± i M ϕ), the distribution of
the molecular axes is characterized by rotational symmetry with respect to a given z
direction. For M = K and large value of the quantum numbers the distribution tends
to the classical one, as expected from the correspondence principle.

10.2.2 Principles of Rotational Spectroscopy

The rotational states are experimentally studied by means of spectroscopic techniques
involving the microwave range (typically 10−1 ÷10 cm−1) or the far infrared range
(10 ÷ 500 cm−1) of the electromagnetic spectrum (see Appendix 1.1). Usually the
sample is a gas at reduced pressure, since frequent collisions would prevent the
definition of a precise quantum state (which is hard to define in the liquid state, for
instance).

The generators of the radiation are often metals at high temperature or arc lamps
while the detectors are semiconductor devices (for wavenumbers typically larger than
10 cm−1). When low frequencies are required (say below 150 GHz), klystrons, mag-
netrons or Gunn diodes (usually fabricated with GaAs) are the microwave sources.
Wave guides, resonant cells and again semiconductor detectors are commonly used.

Without going into details of technical character, we shall devote attention to
the selection rules for electric dipole transitions between the states (K ′, M ′) and
(K ′′, M ′′). The electric dipole matrix element reads

R1→2 =
∫

Y ∗
K ′′ M ′′(θ,ϕ)µe YK ′ M ′(θ,ϕ) sinθ dθ dϕ (10.10)
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where µe is the dipole moment of the molecule. Therefore only heteronuclear polar
molecules, where |µe| 	= 0 can be driven into transitions between different rotational
states. Homonuclear molecules cannot interact with the radiation. From the matrix
element in Eq. (10.10), in a way similar to the deduction of the selection rules for
atomic transitions (see Sect. 3.5 and Appendix 1.3), the selection rules for electric
dipole transitions between rotational states in polar molecules are

ΔK = ±1 ΔM = 0,±1 , (10.11)

the latter being relevant when a static electric field is applied (see Sect. 10.2.4).
The energy difference between the states K and (K + 1) is

ΔEK+1, K = �
2

2I

[
(K + 2)(K + 1) − K (K + 1)

]
= �

2

I
(K + 1). (10.12)

Then in principle one expects rotational transitions at frequencies ν = n νrot (Eq.
(10.9)), with n integer.

The intensities of the lines, to a good approximation, are controlled by the sta-
tistical populations of the rotational levels. According to the Maxwell-Boltzmann
statistics (the molecules are distinguishable), the number of molecules on a given K
state, at the thermal equilibrium, is

NK = A gK e−EK /kB T (10.13)

with gK = (2K + 1). The normalization constant can be expressed in terms of the
population on the K = 0 level and thus one writes

NK (T ) = NK=0(T ) (2K + 1) e− K (K+1)�2

2I kB T , (10.14)

a function of the “variable” K of the form sketched below

 exp (-K (K+1)) 

K 

K N (T) 

K

and implying typical absorption spectrum of the form shown in Figs. 10.2 and 10.3.

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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The fundamental rotational constants B = �/4π I c for some diatomic molecules
are reported below

Molecule B(cm−1)
H2 60.8
N2 2.01
O2 1.45

HCl 10.6
NaCl 0.19

Fig. 10.2 Sketch of the expected absorption rotational spectrum for the DBr molecule on the
basis of Eqs. (10.14) and (10.9). The intensities of the lines are normalized to the one of the
K = 0 → K = 1 line. The rotational frequency ν̄ = νrot/c is around 8 cm−1, corresponding to
rotational temperature hνrot/kB ≈ 12 K. The separation between adjacent lines is 2B and θrot is
often defined as θrot = �

2/2I kB = Bhc/kB (see Sect. 10.2.1)

I/I

ν (cm-1)

HF

ν
K->K+1

 (cm-1)

K

Fig. 10.3 (Left) Absorption rotational spectrum of the HF molecule. The intensities of the lines
are normalized to the K = 0 → K = 1 line. In the right panel the wavenumbers associated with
the K → K + 1 transitions are reported as a function of K . A departure from the interval rule
is observed at large K , owing to the increased strength of the coupling between rotational and
vibrational motions (see Sect. 10.5)
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10.2.3 Thermodynamical Energy from Rotational Motions

Once the structure of the quantum levels is known, from the statistical distribution
function it is possible to derive the thermodynamical energy Urot and the specific
heat. One has

Urot =
∑

K

NK EK (10.15)

with NK given by Eq. (10.14), where NK=0(T ) can be written

NK=0 = N/Zrot (N total number of molecules)

The rotational partition function Zrot is

Zrot =
∑

K

(2K + 1) e−EK /kB T (10.16)

It is noted that the single molecule energy in terms of Zrot (see Problem 6.4) is

Urot = kB T 2 d

dT
ln Zrot .

In the high temperature limit T � θrot ≡ �
2/2I kB (θrot ∼ 5 ÷ 10 K for most

molecules, with the exception of H2 where θrot � 87 K ), the sum over K can be
transformed to an integral:

Zrot ≈
∫ ∞

0
2K e−K 2 θrot /T d K = T

θrot
. (10.17)

For one mole (N = NA), Urot ≈ NA kB T and the specific heat turns out CV ≈ R,
as expected from classical statistics.

The temperature behavior of the molar specific heat (see Problem 6.7) is schemat-
ically reported below

CV

R

θrot

T 

For relevant aspects occurring in homonuclear molecules see Problems 10.19
and 10.20.

http://dx.doi.org/10.1007/978-3-319-17897-4_6
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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10.2.4 Orientational Electric Polarizability

Let us outline how one can describe the effect of a static electric field on an assembly
of dipolar diatomic molecules and how the polarizability is evaluated.

The perturbation to the rotational states is given by the Hamiltonian

Hp = −µe · E ≡ −|µe| E cosθ,

with E electric field along the z direction.
From parity argument one notes that the first order contribution to the energy is zero:

〈K ′, M ′ |Hp | K ′, M ′〉 = 0

Thus a correction term to the eigenvalues of the form ΔE ∝ E2 and (μe f f )z ∝ E is
expected, implying an effective induced dipole moment and therefore positive polar-
izability, somewhat similar to the paramagnetic susceptibility derived at Sect. 4.4.

For the ground-state at K = M = 0 the second-order perturbation correction

ΔE (2)
0 =

∑
(K ,M)	=0

< 0|Hp|K , M >< K , M |Hp|0 >

E0 − EK ,M

reduces to

ΔE (2)
0 = − I

�2
μ2

eE2|
∫

sinθdθdφ
1√
4π

cosθ

√
3√

4π
cosθ|2 = −1

3
μ2

eE2 I

�2
, (10.18)

having taken into account that the only matrix element different from zero is the one
connecting the state K = 0 to the state K = 1, M = 0, with eigenfunctions 1/

√
4π

and
√

3/4πcosθ, respectively. Then

α(0, 0) = − 1

E
∂ΔE (2)

0

∂E = 2μ2
e I

3�2
(10.19)

For the states at K 	= 0 we report the result of the estimate similar to the one
given above:

E(K , M, E) = E0
K + μ2

e E2 I

�2

[
K (K + 1) − 3 M2

K (K + 1) (2K − 1) (2K + 3)

]
, (10.20)

for K 	= 0.
From the sum over M in a given state |K , M > (in first approximation the energy

can be considered to depend only on K ), Eq. (10.20) yields

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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α(K ) �
∑

M

α(K , M) = 0 for K 	= 0

(note that
∑M

K=−M M2 = K (K + 1)(2K + 1)/3).
Then only the ground state (K = M = 0) contributes to the orientational effective

electric moment along the field. The polarizability is temperature dependent, since
the population of this state is affected by the temperature.

The thermal average reads

〈α〉T = α(0, 0)

Zrot
(10.21)

When for Zrot the sum over K can be transformed into an integral (see Eq. (10.17)),
by taking into account Eq. (10.18) with θrot = �

2/2I kB , the single-molecule polar-
izability becomes

〈α〉T = μ2
e

3 kB T
, (10.22)

similar to the classical form

〈μe〉z = μe 〈cosθ〉

for

〈cosθ〉 =
∫

eμE cosθ/kB T cosθ dΩ∫
eμE cosθ/kB T dΩ

= ctnh x − 1

x
≡ L(x),

with L(x) Langevin function, that for x = μE/kB T � 1 becomes L(x � 1) �
x/3.

10.2.5 Extension to Polyatomic Molecules and Effect of the
Electronic Motion in Diatomic Molecules

In the following we sketch how the rotational eigenvalues can be obtained in poly-
atomic molecules when particular symmetries allows one to extend the quantum
rules for the angular momentum already recalled in diatomic molecules.

The classical rotational Hamiltonian reads

Hrot = P2
A

2 IA
+ P2

B

2 IB
+ P2

C

2 IC
(10.23)

where IA,B,C are the moments of inertia with respect to the principal axes of the
tensor of inertia (conventionally IA < IB < IC ).
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When the molecule is a prolate rotator, namely IA < IB = IC , as for instance in
CH3F sketched below

then the Hamiltonian can be rewritten

Hrot = P2
A

2 IA
+ P2

A

2 IB
− P2

A

2 IB
+ P2

B + P2
C

2 IB
= P2

2 IB
+ P2

A

(
1

2 IA
− 1

2 IB

)
(10.24)

Therefore from the quantization rules

P2 = K (K + 1) �
2 PA = M�

the eigenvalues of the rotational energy turn out

E(K , M) = K (K + 1) �
2

2 IB
+ M2

�
2

(
1

2 IA
− 1

2 IB

)
, (10.25)

where now M refers to the component along the molecular axis A.
Equivalently, for an oblate rotator, where IA = IB < IC (as for instance in C6H6

(see Sect. 9.3)), one has a similar result.
In the general case, when IA 	= IB 	= IC , no simple expressions can be derived

for the eigenvalues and therefore reference to limit situations is usually made.
Up to now, in discussing the rotational motions, the electronic motions have been

disregarded. In fact, for diatomic molecules it has been assumed the most common
case of 1Σ ground-state, where the components of the orbital and spin moments
along the molecular axis are zero.

The derivation of the rotational eigenvalues carried out for the prolate polyatomic
rotator and leading to Eq. (10.25), can be used to include the effect of the electron
motion for diatomic molecules in electronic state Λ 	= 0. In a simplified picture,
in fact, the electronic clouds can be regarded as a rigid charge distribution rotat-
ing around the molecular z-axis. Thus the diatomic molecule can be considered
somewhat equivalent to a prolate rotator, with moments of inertia IA ≡ Ielec and
IB = IC = Inucl., with IA � IB,C . Then, from extension of Eq. (10.25), at variance
with Eq. (10.8) the rotational eigenvalues for diatomic molecules in an electronic
state different from Σ turn out

http://dx.doi.org/10.1007/978-3-319-17897-4_9
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Erot (K ,Λ) = �
2

2μR2
e

[K (K + 1) − Λ2] + �
2

2Ielec
Λ2, (10.26)

Λ being the quantum number for Lz (or for Jz in the case of strong spin-orbit
coupling). The last term in Eq. (10.26), much larger than the first one and independent
from the rotational levels, is the one involved in the electron kinetic energy. When the
molecule is in a state at Λ 	= 0 the roto-vibrational structure (see Sect. 10.5) in the
spectra involving electronic states display an extra line correspondent to a transition
at ΔK = 0, called Q-branch. This line is frequently observed in the electronic lines
of band spectra (Sect. 10.8) or in Raman spectroscopy (Sect. 10.7), when transitions
between electronic states are involved (see for example Figs. 10.8 and 10.9). This
line is obviously absent when transition involves two Σ states.

Problems

Problem 10.1 As sketched in the following scheme the emission spectrum in the
far infrared region from HBr molecules displays a series of lines regularly shifted by
about 15 cm−1.

Derive the statistical populations of the rotational levels for T = 12, 36 and 120 K.
Estimate the interatomic equilibrium distance and obtain the relationship between
temperature and rotational number Kmax corresponding to the line of maximum
intensity.

Solution: The separation among adjacent lines (Fig. 10.1 and Eq. (10.12)) is 2Bhc,
then �

2/2I = 1.06 meV, yielding Re = 1.41 Å.
The maximum intensity implies (∂N (K )/∂K )Kmax = 0. Then, from Eq. (10.14),

T = �
2(2Kmax + 1)2/4kB I .
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The statistical populations as a function of K are reported below:

Problem 10.2 For an ensemble of diatomic molecules at the thermal equilibrium
write the contribution from rotational motions to the free energy F and to the entropy
S in the limits T � θrot and T → 0.

Solution: From Sect. 10.2.3, by extending Eq. (10.17) in the high temperature limit
one has

Z �
∫ ∞

0
d K (2K + 1)e−K (K+1)Θrot /T � T

Θrot

(
1 + Θrot

3T

)

while for T → 0 Z � 1 + 3 exp(−2Θrot/T ). Thus for T � Θrot the free energy
per molecule turns out

F � −kB T

[
ln

T

Θrot
+ Θrot

3T

]
,

while for the entropy S = (U − F)/T , with

U � kB

(
T − Θrot

3

)
,

so that

S � kB + kBln
T

Θrot
.

For T → 0 one finds
U � 6kBΘrot e

−2Θrot /T ,



10.2 Rotational Motions 301

F � −kB T ln(1 + 3e−2Θrot /T ) , S � 6kBΘrot

T
e−2Θrot /T + kBln(1 + 3e−2Θrot /T ).

Problem 10.3 By referring to the three rotational levels depicted in Fig. 10.1, plot
the splittings induced in the H35Cl molecule by a static electric field E (Stark effect),
indicating the transition that can be observed in rotational spectroscopy. Then assume
for the field the value E = 104 V/cm and estimate the splitting induced in the K = 1
states, giving an order of magnitude of the resolution of the spectrometer required to
evidence the doublet associated with K = 0 → K = 1 transition.

Solution: From Eq. (10.20) the K = 1 state is opened in a doublet, with a splitting
among M = 0 and M = ±1 levels of (3/20)μ2

eE2/Bhc. From Eq. (10.18) the shift of
the ground-state is μ2

eE2/6Bhc. The transitions follow the selection rule ΔK = ±1,
ΔM = 0,±1. Since the doublet associated with K = 0 → K = 1 transition is split
by the amount (3/20)μ2

eE2/Bhc, for μe � 10−18 u.e.s. cm and B � 10.56 cm−1

(correspondent to I = 2.68 × 10−40 g.cm2), one finds that the resolution required is

Δν̄

ν̄
= 3

20

μ2
eE2

Bhc

1

2Bhc
� 1.9 × 10−5

Problem 10.4 In the rotational spectrum of H35Cl two lines are detected with the
same strength at 106 cm−1 and at 233.2 cm−1. Derive the temperature of the gas
(remind that B � 10.56 cm−1).

Solution: From
ν̄ = 2B(K + 1),

with B = 10.6 cm−1, one has for ν̄1 = 106.0 cm−1 K1 = 4 and for ν̄2 =
233.2 cm−1 K2 = 10 . For intensity proportional to the population of the rotational
levels,

(2K1 + 1)e− hcBK1(K1+1)

kB T = (2K2 + 1)e− hcBK2(K2+1)

kB T

and

T = 90 hcB

kB ln(2.33)
� 1620 K.

10.3 Vibrational Motions

10.3.1 Eigenfunctions and Eigenvalues

Going back to the radial part of the Schrodinger equation (Eq. (10.4)), again disre-
garding the term −2Q/Re and without including the rotational terms K (K +1) �

2/2I
which does not depend on (R − Re), the function U (R) = RR(R) is introduced, so
that the equation becomes
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d2U

d R2
+ 2μ

�2

[
E − V (R)

]
= 0 (10.27)

While the full expression of the potential energy V (R) is unknown, the vibration
involves small displacements around the equilibrium position Re and then one can
write

V (R) = V (Re) +
(

dV

d R

)
Re

(R − Re) + 1

2

(
d2V

d R2

)
Re

(R − Re)
2 + · · · (10.28)

Since ( dV
d R )Re is zero, by omitting the constant V (Re) (namely the energy E has to

be added to the electronic energy at the equilibrium position, see Fig. 7.2), in terms
of the non-local coordinate Q = xA − xB (Eq. (10.5)), one has

V (R) = 1

2
k Q2 + · · · , (10.29)

where k is the curvature of V (R) around the equilibrium position. In the harmonic
approximation higher order terms in the expansion (10.28) are neglected. The equa-
tion for the vibration of the nuclei around the equilibrium position is thus written

− �
2

2μ

d2U

d Q2
+ 1

2
k Q2U = EU, (10.30)

the well known form for the harmonic oscillator (with −Re ≤ Q < ∞). Then the
eigenfunctions are related to the Hermite polynomials and the eigenvalues are

Ev = (v + 1/2)hνo (10.31)

with quantum number v = 0, 1, 2, 3..., while νo = (1/2π)
√

k/μ corresponds to the
frequency of the classical oscillator with same mass and elastic constant.

The eigenvalues and eigenfunctions for low energy states are depicted in Fig. 10.4.
The ground state (v = 0) is described by the wavefunction

U (Q) =
(

b

π

)1/4

e−Q2b/2, with b = 2πνoμ

�
(10.32)

implying a behavior significantly different from the one expected for classical oscil-
lator for which the maxima of probability of presence are at the boundaries of the
motion. Other relevant differences with respect to classical oscillator are the exten-
sion of the “motion” outside the extreme elongations and the occurrence of zero-point
energy Ev=0 = (1/2)hνo.

http://dx.doi.org/10.1007/978-3-319-17897-4_7
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Fig. 10.4 First vibrational states in a diatomic molecule, having assumed k = 5×105 dyne/cm and
effective mass μ = 10−23 g, corresponding to vibrational frequency ν0 = 3.6 · 1013 Hz. The dotted
lines correspond to the maxima elongations according to the classical oscillator in the parabolic
potential energy indicated by the solid line. Typical values for the force constants are (i) in H2
k � 5 × 105 dyne/cm; (ii) in O2 (where a double bond is present) k � 11 × 105 dyne/cm; (iii) in
N2 (triple bond) k � 23 × 105 dyne/cm; (iv) in NaCl (ionic bond) k � 1.2 × 105 dyne/cm

The mean square displacement from the equilibrium position reads

< Q2 >v=
∫

U ∗
v Q2 Uv d Q (10.33)

and from the expressions of the Hermite polynomials one finds

< Q2 >v= �√
μk

(v + 1/2) = Ev/k (10.34)

implying Ev = k < Q2 >v , the same relation holding for the classical oscillator.
To give a few representative examples, in the HCl molecule the vibrational fre-

quency is ν0 = 8.658 × 1013 Hz, corresponding to a force constant k = 4.76 × 105

dyne/cm, while in CO ν0 = 6.51 × 1013 Hz, corresponding to a force constant
k = 18.65 × 105 dyne/cm.
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Some vibrational constants ν̄0 for homonuclear diatomic molecules are reported
below:

Molecule (cm−1)
H2 4159 (see caption in Fig. 10.4)
N2 2330
O2 1556 (see caption in Fig. 10.4)
Li2 246
Na2 158
Cs2 42

10.3.2 Principles of Vibrational Spectroscopy
and Anharmonicity Effects

In regards of the main aspects the spectroscopic studies of the vibrational states in
molecules are similar to the ones in optical atomic spectroscopy. The spectral range
typically is within 100 − 4000 cm−1 (see Appendix 1.1) and the devices are no
longer based on glasses but rather use alkali halides, to reduce the absorption of the
infrared radiation. The diffraction gratings grant a better resolution and the detectors
are usually semiconductor devices. Details of technical character can be found in the
exhaustive book by Svanberg.

As for rotational spectroscopy, being more interested into the fundamental aspects,
we turn our attention to the transition probability due to the electric dipole mechanism.
For two vibrational states at quantum numbers v′ and v′′, the component along the
molecular axis of the electric dipole matrix element reads

(Rv′→v′′)z =
∫

U ∗
v′′μeUv′d Q (10.35)

where μe(Q) is a complicate function of the interatomic distance R.
The sketch of a plausible dependence of μe with R is given below

One can expand μe around Re in terms of Q:

μe = μe(0) +
(

dμe

d Q

)
0

Q + · · · , (10.36)
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where the first term is involved in the rotational selection rules, while the expansion
has been limited to the linear term in Q (often called linear electric approximation).

From Eqs. (10.35) and (10.36) one concludes that only heteronuclear molecules,
with μe 	= 0, can be driven to transitions among vibrational states. Furthermore, from
the term linear in Q one deduces that only states of different parity imply a matrix
element different from zero. Indeed, as it can be seen from inspection to the Hermite
polynomials, only transitions between adjacent states are allowed: Δv = ±1. One
can also remark that the frequency emitted or absorbed is the one expected for a
classical Lorentz-like oscillator.

Thus in the harmonic approximation (Eq. (10.29)) and in the linear dipole approx-
imation (Eq. (10.36)) one expects a single absorption line at the frequency νo. The
line yields the curvature of the energy of the molecule at the equilibrium interatomic
distance. The intensity of each component, to a large extent, is controlled by the
statistical population on the vibrational levels:

Nv(T ) = Ae−(v+1/2)hνo/kB T ≡ N0(T )e−vhνo/kB T (10.37)

with
N0(T ) = (N/Zvib)e

−hνo/2kB T , (10.38)

N total number of molecules and Zvib the vibrational partition function.
For kB T � hνo, as it is often the case, the ground state is by large the most

populated and therefore the absorption line is practically related to the transition
v = 0 → v = 1.

Now a brief discussion of the anharmonicity effects is in order. The electrical
anharmonicity originates from the term in Q2, neglected in the expansion (10.36).
According to the correspondent matrix element in Eq. (10.35), because of parity
characters of the operator and of the Hermite polynomials, that term implies transi-
tions between states at the same parity. Therefore the selection rule Δv = ±2 results,
for states pertaining to the mechanical harmonic approximation (Eq. (10.29)).

The qualitative effect of the terms proportional to Q3 and Q4 in the expansion
(10.28) (mechanical anharmonicity) is to cause a progressive reduction in the sepa-
ration between the states at high quantum number v, as sketched below.

E
R
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Then from the matrix element of the form correspondent to Eq. (10.35), transitions
at frequencies different from νo have to be expected.

The anharmonic terms can be analyzed as perturbation of the vibrational states
described by the wavefunctions Uv(Q). The term in Q3 must be considered up to
the second order, its expectation value being zero for unperturbed states. Thus the
eigenvalues turn out of the form

Ev = (v + 1/2)hνo − a(v + 1/2)2hνo (10.39)

where the constant a, much smaller than unit, is related to the ratio [(d3V/

d R3)Re ]2/k5/2. To give an idea, for the Hydrogen molecule H2, a = 0.027. In
H35Cl, ν0/c = 2885.6 cm−1 and a = 0.0176.

For an heuristic potential V (R) in the Morse-like form (see Sect. 10.4) one derives
a = hν0/4De, with De ≡ −V (Re), as we shall discuss in a subsequent section (see
Eqs. (10.41) and (10.47)).

Problems

Problem 10.5 Consider the H2 molecule in the vibrational ground state and in the
first excited rotational state (K = 1). Evaluate the number of oscillations occurring
during one rotation.

Solution: From

νrot = [K (K + 1)]1/2
�

2π I
=

√
2�

2πμR2
e

and νvib = (1/2π)
√

k/μ the number of oscillations is

nosc = 1

2π

√
k

μ
· 2πμR2

e√
2�

=
√

k μR2
e√

2�
� 25 .

Problem 10.6 The dissociation energy in the D2 molecule is increased by 0.08 eV
with respect to the one in H2. Estimate the zero point energy for both molecules.

Solution: From

E = −A + �ω

(
v + 1

2

)

the dissociation energy is given by Ed = +A − 1
2 �ω, for v = 0.

Since A(H) = A(D),

Ed(D) − Ed(H) = −1

2
�[ω(D) − ω(H)].
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Hence
�ω(H)[1 − ω(D)/ω(H)]

2
= �ω(H)[1 − 1/

√
2]

2
= 0.08 eV,

and the zero-point energy of H2 turns out �ω(H)/2 = 0.27 eV while for D2 one has
�ω(D)/2 = (0.27/

√
2) eV = 0.19 eV.

Problem 10.7 The infrared spectrum of a gas of diatomic molecules displays lines
equally spaced by about 1011 Hz. A static electric field of 3 kV/cm is applied. The
lowest frequency line, with intensity 2.7 times smaller than the adjacent one, splits in a
doublet, with 1 MHz of separation between the lines. Derive the molar polarizability.

Solution: From the ratio of the intensities I(1)/I(0) = 2.7 = 3 exp(−hνrot/kB T ),

with νrot = 1011 Hz, the temperature is deduced: T � 45.6 K.
Since kB T � hνrot the molar polarizability reads (see Eq. (10.22)) α =

NAμ2
e/3kB T .

The electric field partially removes the degeneracy of the K = 1 level. The
separation between levels at MK = 0 and MK = ±1 turns out (see Eq. (10.20))

Δν = 106 Hz = μ2
eE2

h2νrot

3

10

Then μ2
e = 14.6 × 10−38u.e.s.2cm2 and α(T = 45.6K ) = 4.7 emu/mole.

Problem 10.8 Evaluate the order of magnitude of the electronic, rotational and
vibrational polarizabilities for the HCl molecule at T = 1000 K (the elastic constant
is k = 4.76 × 105 dyne/cm and the internuclear distance Re = 1.27 Å). From the
Clausius-Mossotti relation (see Sect. 16.2) estimate the dielectric constant of the gas,
at ambient pressure.

Solution: For order of magnitude estimates one writes (see Problem 8.13 and
Eq. (10.22))

αel � 8a3
0 ∼ 10−24 cm3,

αrot = e2 R2
e

3kB T
� 10−22 cm3.

For the vibrational contribution (see Problem 10.16)

αv � e2

k
� 5 × 10−25 cm3.

From the equation of state PV = RT , by taking into account that at ambient pressure
and temperature the molar volume is V = 2.24∗104 cm3, at T = 1000◦ K one finds
V ∼ 8.2 × 104 cm3, corresponding to the density N � 1019 molecules cm−3.

From Δε = (4πNαrot )/[1 − 4πNαrot/3] � 4πNαrot , one derives ε ≈ 1.01.

http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_8
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10.4 Morse Potential

An heuristic energy curve for diatomic molecules that can be assumed as potential
energy for the vibrational motion of the nuclei (Eq. (10.27)) is the one suggested by
Morse:

VM = De

[
1 − exp[−β(R − Re)]

]2

, (10.40)

of the form sketched below.

VM

0

De

Re

R

This expression retains a satisfactory validity for R around the interatomic equi-
librium distance Re. De corresponds to the energy of the molecule for R = Re (the
real dissociation energy being De minus the zero-point vibrational energy (1/2)hν0),
while β is a characteristic constant.

It is noted that for R close to Re Eq. (10.40) yields VM � De Q2β2, namely the
harmonic potential with elastic constant k = 2Deβ

2 and ν0 = (β/
√

2π)
√

De/μ.
The Morse potential, often useful for approximate expression of the electronic

eigenvalue E(RAB) in diatomic molecules, has the advantage that the Schrödinger
equation for the vibrational motion (Eq. (10.27)) can be solved analytically, although
with cumbersome calculations. The eigenvalues turn out

EM = hν0[(v + 1/2) − a(v + 1/2)2] (10.41)

with a = (hν0/4De) (see Eq. (10.39)). The eigenfunctions are no longer even or
odd functions for v even or odd, respectively, at variance with the ones derived in the
harmonic approximation. Therefore one has transitions at Δv 	= ±1 without having
to invoke electrical anharmonicity.
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Problems

Problem 10.9 From the approximate expression for the energy of diatomic mole-
cules

V (R) = A (1 − exp[−B(R − C)])2

with A = 6.4 eV, B = 0.7 × 108 cm−1 and C = 10−8 cm, derive the properties of
the rotational and vibrational motions.

Sketch the qualitative temperature dependence of the specific heat. Assume for
the reduced mass the one pertaining to HF molecule.

Solution: The elastic constant is k = 2AB2 = 105 dyne/cm. For the reduced mass
μ = 0.95M (with M the proton mass), the fundamental vibrational frequency is
ν0 = 4 × 1013 Hz, corresponding to the vibrational temperature Θv = hν0/kB �
1846 K.

For an equilibrium distance Re = C , the moment of inertia is I = 1.577 ×
10−40 g cm2. The separation between adjacent lines in the rotational spectrum is
Δν̄ = 35.6 cm−1 and therefore Θr = Bhc/kB = 25.6 K.

The temperature dependence of the molar specific heat is sketched below.

Problem 10.10 In the RbH molecule (Re = 2.36 Å) the fundamental vibrational
frequency is ν0 = 936.8 cm−1 and the dissociation energy in wavenumber is De =
15505 cm−1. Derive the Morse potential and the correction due to the rotational term
for K = 40 and K = 100. Discuss the influence of the rotation on the dissociation
energy.

Solution: The parameter β for Eq. (10.40) is β = 2πν0
√

μ/2De and from the reduced
mass μ = 1.65 · 10−24 g one has β = 9.14 · 107 cm−1.

At the equilibrium distance Re the rotational constant turns out

B = h

8π2cμR2
e

� 3 cm−1.

To account for the rotational contribution the energy has to be written in terms of the
R-dependent rotational constant (see Eq. (10.4)). Therefore

Erot(R) = hcBK (K + 1) · R2
e

R2
,
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so that the effective potential becomes

Veff(R) = VM(R) + Erot(R),

plotted below.

On increasing the rotational number the equilibrium distance is increased and the
strength of the energy bond is reduced, as expected (see Eq. (10.47)).

10.5 Roto-Vibrational Eigenvalues and Coupling Effects

In high resolution an absorption line involving transitions between vibrational states
evidences the fine structure related to simultaneous transitions between rotational
states (See Fig. 10.5).

Still assuming weak roto-vibrational coupling, the wavefunction is φK ,M
rot Rv(R)

and the eigenvalues are

EK ,v =
(

v + 1

2

)
hνo + �

2 K (K + 1)

2μR2
e

(10.42)

The electric dipole matrix element connecting two states (K ′, v′) and (K ′′, v′′)
reads

RK ′,v′→K ′′,v′′ ∝
∫

φK ′′,M ′′∗
rot Rv′′(R)∗ · (µe + cjQ)φK ′,M ′

rot Rv′(R)sinθdθdφd Q

(10.43)
where j is a unitary vector along the molecular axis. The term involving µe drives
the purely rotational transitions while
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Fig. 10.5 Rotational
structure in the vibrational
spectral line of the HF
molecule and illustration of
the transitions generating the
P and R branches

RP

3700 4200ν0 

K’’

K’

v ’’=1

v ’=0

cm 

c
∫

φK ′′,M ′′
rot jφK ′,M ′

rot sinθdθdφ

∫
R∗

v′′(R)QRv′(R)d Q (10.44)

implies transitions with the selection rules ΔK = ±1 and Δv = ±1 (see Eq. (10.11)
and Sect. 10.3.2). When in the v′ → v′′ transition the quantum number K increases
then the correspondent line is found at a frequency ν > νo (branch R in Fig. 10.5)
while when K decreases one has ν < ν0 (branch P).

It is noted that the line at ν = ν0 is no longer present. When electronic states
at Λ 	= 0 are involved in a transition a component at ν0 can be observed (called Q
branch), usually in form of a broad line (see Sect. 10.2.5, Eq. (10.26) and examples
at Figs. 10.8 and 10.9).

From Eqs. (10.42) and (10.44) the wavenumbers associated with the
roto-vibrational transitions are

ν̄R = ν̄o + Bv′′(K + 1)(K + 2) − Bv′ K (K + 1) (10.45)

ν̄P = ν̄o + Bv′′ K (K − 1) − Bv′ K (K + 1) (10.46)

Since Bv′ � Bv′′ � Bv the separation between the adjacent lines turns out about 2Bv ,
as shown in Fig. 10.5. The wavenumbers of the Q branch are

ν̄Q = ν̄o + Bv′ K (K + 1) − Bv′′ K (K + 1).
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For slight differences in the rotational constants of the two vibrational levels in
practice a superposition of lines occur, yielding a single broad line, as observed in
Raman spectroscopy (Fig. 10.8).

Now a brief comment on the role of the terms coupling the rotational and vibra-
tional motions is in order. In the framework of the perturbative approach, with
unperturbed eigenfunctions YK ,M(θ,φ)R(Q), according to Eq. (10.6) the perturbing
Hamiltonian is

HP = �
2 K (K + 1)

2μe Re

(
−2

Q

Re

)
.

No correction terms to the unperturbed eigenvalues are expected at the first order.
Thus the evaluation of the roto-vibrational coupling has to be carried out at the second
order in HP .

The final result for the second order correction has the form

ΔE (2) = −a1hν0(v + 1/2)2 + a2(v + 1/2)K (K + 1) − a3 K 2(K + 1)2 (10.47)

The term in a1 is the one due to mechanical anharmonicity, already discussed (Eq.
(10.39)). The term in a2 is related to the effect on the elastic constant produced by
the centrifugal potential and by the contribution in Q and Q3. Finally the term in a3

in Eq. (10.47) reflects the increase of the moment of inertia due to the rotation of the
molecule (centrifugal distortion).

The detailed expressions for the coefficients ai in Eq. (10.47) are a1 = (�/384 π
μ k ν3

0 ) (5 α2 − 3 k β), a2 = (�3/k2 R2
e ) (Re α + 3 k) and a3 = �

4/2 k μ2 R6
e (as it

can be obtained also classically by writing k Q = μω2 R and then evaluating the
rotational energy). α and β are the coefficients of the terms in Q3 and in Q4 in the
perturbative Hamiltonian resulting in the expansion of Eq. (10.6).

Problems

Problem 10.11 The rotovibrational absorption spectrum for the HCl molecule is
shown below.

In
te

ns
ity

 (
A

rb
. U

ni
ts

)

Derive the equilibrium distance and the elastic constant for the molecule. Which
is the origin of the doublets observed at each peak? How does the spacing between
adjacent lines change for the deuterated molecule?
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Solution: From the spacing among adjacent lines Δ̄ν � 21 cm−1 = 2Bhc, the
moment of inertia being I = 2.67 × 10−40 g cm2, the equilibrium distance turns out
Re = 1.27 Å for the reduced mass μ = 0.972 MH = 1.6 × 10−24 g. The vibrational
frequency is about ν0 = 2885 cm−1 × c � 8.65 × 1013 Hz, implying an elastic
constant k = 4π2ν2

0μ = 4.56 × 105 dyne/cm.
The doublet arises from the spectra of the H35Cl and H37Cl molecules.
Deuteration implies an increase of the reduced mass μ by about a factor 2, leading

to a spacing of the lines about Δ̄ν � 10.5 cm−1. The vibrational frequency is reduced
by a factor close to

√
2.

Problem 10.12 The fundamental vibrational frequency of the NaCl molecule is
ν0 = 1.14 · 1013 Hz. Report in a plot the temperature dependence of mean-square
displacement from the equilibrium interatomic distance.

Solution: From Eqs. (10.34) and (10.37) (see Problem 10.22 for the average energy)
the plot results as below

Problem 10.13 Derive the equilibrium distance and the vibrational frequency of
a diatomic molecule in the assumption of interatomic effective potential V (R) =
4U ((a/R)12 − (a/R)6), with a = 3.98 Å and U = 0.02 eV, for reduced mass
μ = 10−22 g.

Solution: From ∂V /∂R
∣∣∣

R=Req

= 0 one has Req = a · (2)
1
6 = 4.47 Å , while

V (Req) = 4U

[
1

4
− 1

2

]
= −U = −0.02 eV .

By deriving V (R) twice, one finds



314 10 Nuclear Motions in Molecules and Related Properties

k = 4U

a2

(
12 · 13 · 2−7/3 − 6 · 7 · 2−4/3

) = 57.144
U

a2
= 11.558 · 102 dyne/cm,

and

ν = 1

2π

√
k

μ
= 5.18 · 1011 Hz .

Problem 10.14 In a diatomic molecule the eigenvalue E(R) for the ground state is
approximated in the form

E(R) = −2V0

[
1

ρ
− 1

2ρ2

]

(with ρ = R/a and a characteristic length). Derive the rotational, vibrational and
roto-vibrational energy levels in the harmonic approximation.

Solution: The equivalent of Eq. (10.4) is

− �
2

2μ

d2R
d R2

+
[
−2V0

(
1

ρ
− 1

2ρ2

)
+ K (K + 1) �

2

2μa2ρ2

]
R = ER,

where μ is the reduced mass. The effective potential has the minimum for

ρ0 ≡ 1 + K (K + 1) �
2

2μa2V0
≡ 1 + B

For V (ρ) = −V0 (1 + B)−1 + V0 (1 + B)−3 (ρ − ρ0)
2 the Schrödinger equation

takes the form for the harmonic oscillator. Then

E + V0 (1 + B)−1 = �

√
2V0

μa2
(1 + B)−3

(
v + 1

2

)
.

For B � 1 (small quantum number K ),

E = −V0 + K (K + 1) �
2

2μa2
+ hν0

(
v + 1

2

)
− 3

2

�
3 K (K + 1)

(
v + 1

2

)
μ2a42πν0

where ν0 = (1/2π)
√

2V0/μa2 (see Eq. (10.47)).

Problem 10.15 From the data reported in the figure at Problem 10.11 for the HCl
molecule, estimate the vibrational contribution to the molar specific heat, at room
temperature.

Solution: From the thermodynamical energy < E >= ∑
v Ev Nv(T ) (see Eq.

(10.37)) the molar specific heat turns out
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CV = R
(
TD

/
T

)2 eTD/T

(
eTD/T − 1

)2 ,

where TD is the vibrational temperature TD = hν0/kB , given by TD = 4.15 ·
103 K for ν0 = 0.87 · 1014 Hz.

At room temperature T � TD and CV � R(TD/T )2exp(−TD/T ) = 1.5 ·
104 erg/K mole.

Problem 10.16 A static and homogeneous electric field E is applied along the mole-
cular axis of an heteronuclear diatomic molecule. In the harmonic approximation for
the vibrational motion, by assuming an effective mass μ and an effective charge −e f
(with 0 < f ≤ 1, see Sect. 8.5) derive the contribution to the electrical polarizability,
in the perturbative approach.

Prove that the result derived in this way is the exact one.

Solution: For

Hp = f ezE

the first order correction is < v|z|v >= 0 because of the definite parity of the vth

eigenfunction of the oscillator. The matrix elements Hvv′ for z are

Hvv′ =< v|z|v′ >=
(

v + 1

2α

)1/2

for v′ = v + 1

( v

2α

)1/2
for v′ = v − 1 ,

where α = μ2πν0

�
and ν0 = 1

2π

√
k/μ, with k force constant.

The second order correction to the energy E0
v turns out

E (2)
v = ( f eE)2

{ |Hv, v+1|2
−hν0

+ |Hv ,v−1|2
hν0

}
=

= ( f eE)2

{
v+1
2α

−hν0
+

v
2α

hν0

}
= − ( f eE)2 1

8π2μν2
0

.

Then the electric polarizability is

χ = Nα = N
1

E
(

−∂E (2)
v

∂E
)

= N ( f e)2 1

k

independent of the state of the oscillator (N number of molecule for unit volume).

http://dx.doi.org/10.1007/978-3-319-17897-4_8
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The result for the single molecule polarizability α is the exact one. In fact, going
back to the Hamiltonian of the oscillator in the presence of the field

H = − �
2

2μ

d2

dz2
+ 1

2
kz2 + f eEz

by the substitution z = z′ − ( f eE/k) it becomes

H′ = − �
2

2μ

d2

dz′2 + 1

2
k(z′)2 − 1

2k
( f eE)2

implying the eigenvalues

E ′
v = E0

v − ( f eE)2

2k

and therefore α = ( f e)2/k.

10.6 Polyatomic Molecules: Normal Modes

In a polyatomic molecule with S atoms, (3S − 6) degrees of freedom involve the
oscillations of the nuclei around the equilibrium positions. If qi indicate generalized
local coordinates expressing the displacement of a given atom, as sketched below,

qi+1 

qi+2

qi 

for small displacements the potential energy, in the harmonic approximation, can be
written

V = Vo +
∑

i

(
∂V

∂qi

)
o

qi + 1

2

∑
i, j

(
∂2V

∂qi∂q j

)
o

qi q j �
∑
i, j

bi j qi q j (10.48)

Similarly, the kinetic energy is T = ∑
i, j ai j q̇i q̇ j . The classical equations of

motion become

d

dt

∂L
∂q̇i

− ∂L
∂qi

=
∑

j

ai j q̈ j +
∑

j

bi j q j = 0 , (10.49)
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namely (3S − 6) coupled equations, corresponding to complex motions that can
hardly be formally described. Before moving to the quantum mechanical formulation
it is necessary to introduce a new group of coordinates Q = ∑

j h j q j (and a group
of constants c1, c2, etc.) so that, by multiplying the first Eq. (10.48) by c1, the second
by c2, etc. and adding up, one obtains equations of the form d2 Q/dt2 + λQ = 0.
This is the classical approach to describe small displacements around the equilibrium
positions. The conditions to achieve such a new system of equations are

∑
i

ci ai j = h j (10.50)

∑
i

ci bi j = λh j . (10.51)

Therefore, in terms of the constants ci

∑
i

ci (λai j − bi j ) = 0 , (10.52)

implying
|λai j − bi j | = 0 (10.53)

This secular equation yields the roots λ(1), λ(2), ... corresponding to the conditions
allowing one to find h j so that the equations of motions become

d2

dt2
Qi + λ(i) Qi = 0 (10.54)

These equations in terms of the non-local, collective coordinates

Qi =
∑

j

hi j q j (10.55)

correspond to an Hamiltonian in the normal form

1

2

∑
i

Q̇2
i + 1

2

∑
i

λ(i) Q2
i , (10.56)

where

λ(i) ≡
(

∂2V

∂Q2
i

)
o

(10.57)

The Q’s are called normal coordinates. The normal form of the Hamiltonian will
allow one to achieve a direct quantum mechanical description of the vibrational
motions in polyatomic molecules and in crystals (see Chap. 14).

http://dx.doi.org/10.1007/978-3-319-17897-4_14
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A few illustrative comments about the role of the normal coordinates are in order.
From the inverse transformation the local coordinates are written

qi =
∑

j

gi j Q j (10.58)

and therefore, from Eq. (10.54),

qi =
∑

j

gi j A j cos

[√
λ( j)t + ϕ j

]
(10.59)

Thus the local motion is the superposition of normal modes of vibration. Each normal
mode corresponds to an harmonic motion of the full system, with all the S atoms
moving with the same frequency

√
λ( j) and the same phase. The amplitudes of the

local oscillations change from atom to atom, in general.
Taking a look back to a diatomic molecule and considering the vibration along

the molecular axis (see Sect. 10.3) it is now realized that the normal coordinate is
Q = (xA − xB). The root of the secular equation analogous to Eq. (10.53) yields the
frequency ω = √

k/μ and the (single) normal mode implies the harmonic oscillation,
in phase opposition, of each atom, with relationship in the amplitudes given by
xA = −xB(MB/MA).

The formal derivation of the normal modes in polyatomic molecules in most cases
is far from being trivial and the symmetry operations are often used to find the detailed
form of the normal coordinates. For a linear molecule with three atoms, as CO2, the
description of the longitudinal vibrational motions in the harmonic approximation is
straightforward (see for an illustrative example Problem 10.26). Figure 10.6 provides
the illustration of the four normal modes.

The coupled character of the motions is hidden in the collective frequency λ(i) ≡
( ∂2V

∂Q2
i
)o, namely in the curvature of the potential energy under the variation of the i-th

normal coordinate.
It is noted that the stability of the system is related to the sign of λ. Structural

and ferroelectric phase transitions in crystals, for instance, are associated with the
temperature dependence of the frequency of a normal mode, so that at a given tem-
perature the structure becomes unstable (λ(i) is approaching zero) and a transition to
a new phase, restoring large and positive λ(i), is driven.

Once that the vibrational motions are described by normal coordinates Qi , the
quantum formulation is straightforward. In fact, in view of the form of the classical
Hamiltonian, the eigenfunction Φ(Q1, Q2, ...) is the solution of the equation

∑
i

(
−�

2

2

∂2

∂Q2
i

+ 1

2
λ(i) Q2

i )Φ(Q1, Q2, ...) = EΦ(Q1, Q2, ...

)
(10.60)
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Fig. 10.6 Normal modes (longitudinal and transverse) in the CO2 molecule. The symmetric mode
S is not active in the infrared absorption spectroscopy, the selection rule requiring that the normal
mode causes the variation of the electric dipole moment (see Eq. (10.66)), while the antisymmetric
mode A is active. The inverse proposition holds for Raman spectroscopy (see Sect. 10.7) where the
variation of the polarizability rather than of the dipole moment is required to allow one to detect
the normal mode of vibration

(the nuclear masses are included in mass-weighted coordinates Q’s). Therefore the
wavefunctions and the eigenvalues are

Φ(Q1, Q2, ...) =
∏

i

Φ(Qi ) (10.61)

E =
∑

i

(ni + 1/2)�
√

λ(i), ni = 0, 1, ... (10.62)

where Φ(Qi ) and Ei = (ni + 1/2)�
√

λ(i) are the single normal oscillator eigen-
functions and eigenvalues. Thus, by recalling the results for the diatomic molecule
(Sect. 10.3), the vibrational state is described by a set of numbers n1, n2, ..., labelling
the state of each normal mode.

Now we are going to show that within the harmonic approximation any normal
oscillator interacts individually with the electromagnetic radiation, in other words
the normal modes are spectroscopically independent.

The electric dipole matrix element for a transition from a given initial state to a
final one, reads

Rin→ f ∝
∫

Φ∗
n f

1
(Q1)Φ

∗
n f

2
(Q2)...μe(Q1, Q2, ...)Φnin

1
(Q1)Φnin

2
(Q2)... . (10.63)
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In the approximation of electrical harmonicity (see Sect. 10.3)

μex,y,z ∝
∑

i

(
∂μex,y,z

∂Qi

)
o

Qi (10.64)

Equation (10.63) involves a sum of terms of the form

(
∂μe x,y,z

∂Qi

)
o

∫
Φ∗

n f
1
Φnin

1
d Q1

∫
...

∫
Φ∗

n f
i

QiΦnin
i

d Qi ... (10.65)

This term is different from zero when
(

∂μe x,y,z

∂Qi

)
o

	= 0, (10.66)

meaning that the i-th normal mode must imply a variation of the electric dipole
moment of the molecule. At the same time it is necessary that

n f
j = nin

j , for j 	= i

n f
i = nin

i ± 1. (10.67)

Therefore each normal oscillator interacts with the electromagnetic radiation inde-
pendently from the others, with absorption spectrum displaying lines in correspon-
dence to the eigenfrequencies of the various modes.

When the selection rule in Eq. (10.66) is verified the mode is said to be infrared
active. As a consequence of this condition, one can infer that in the CO2 molecule
only the antisymmetric longitudinal mode can interact with the radiation while the
symmetric one is silent (see Fig. 10.6).

Finally we just mention that in the harmonic approximation the contribution to
the thermodynamic energy in polyatomic molecules is obtained by adding the con-
tributions expected from each mode, of the form derived in diatomic molecules (see
Problem 10.15).

10.7 Principles of Raman Spectroscopy

As it has been remarked, by means of infrared or microwave absorption spectro-
scopies some rotational or vibrational motions cannot be directly studied. This is
the case of rotations and vibrations in homonuclear molecules or for normal modes
which do not comply with the selection rule given by Eq. (10.66). Motions of those
types can often be investigated by means of a spectroscopic technique based on the
analysis of diffuse radiation: the Raman spectroscopy.
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Phenomenologically the Raman effect can be described by referring to the exper-
imental set-up schematically reported below

The classical explanation for the occurrence of Stokes and of anti-Stokes lines
in the diffuse radiation, although not appropriate in some respects, still it enlightens
the physical basis of the phenomenon. A normal mode of vibration can be thought
to cause a time dependence of the molecular polarizability:

α = αo + α∗cos(ωi t) (10.68)

Therefore the electric component of the radiation E(t) = Eocos(ωot) (the wave-
length is much larger than the molecular size) induces an electric dipole moment

µind = E(t)α(t) = αoEocos(ωot) + 1

2
α∗Eocos(ωo − ωi )t + 1

2
α∗Eocos(ωo + ωi )t

(10.69)
From the phenomenological picture of oscillating dipoles as source of radiation one
can realize that components of the diffuse light at frequencies ωo ± ωi have to be
expected.

The inadequacy of the classical description can be emphasized by observing that
the experimental findings indicate that the anti-Stokes lines, in general, are less
intense than the Stokes lines. The interpretation based on the oscillating dipole as
in Eq. (10.69), would predict intensities proportional to the fourth power of the fre-
quency and then the anti-Stokes lines should be more intense than the Stokes ones.

The quantum description of the Raman effect is based on the process of scat-
tering of photons and provides a satisfactory description of all the aspects of the
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phenomenon. The intensity of the lines, in fact, are controlled by the statisti-
cal populations on the ground state and on excited vibrational states, as it can
be grasped from the sketch of the inelastic scattering of the photon (hνi ) given
below:

(hνi) 

(hνi - ΔE) 
i.e. Stokes 
component 

ΔE 

v = 1 

v  = 0 

virtual state (hνi) 

(hνi + ΔE) 
i.e. anti Stokes 
component 

ΔE 

v  = 0 

v  = 1 

virtual state 

The basic aspects of the Raman radiation can be realized by extending the idea
of electric dipole moment associated with a pair of states (already used in a variety
of cases) to include the field induced dipole moment. Then in

Rn→m(t) =
[∫

Φ∗
mµeΦndτ

]
e

i(Em −En )t
�

the dipole moment αE0cosωot , induced by the electric field of the incident radiation,
is included:

Rn→m(t) =
[

Eo

∫
Φ∗

mαΦndτ

]
e−i(ωo− Em −En

� )t . (10.70)

Again interpreting this expression as a kind of microscopic source of radiation some-
what equivalent to irradiating dipoles, one sees that lines at the frequencies ωo ± ωmn

have to be expected.
The amplitude of the matrix element of the polarizability in Eq. (10.70) controls

the strength of the Raman components and therefore the selection rules. By referring
for simplicity to scalar polarizability, in a first order approximation the analogous of
Eq. (10.64) can be written

α = αo +
∑

i

(
∂α

∂Qi

)
o

Qi (10.71)

Thus to have Raman radiation the conditions
(

∂α

∂Qi

)
o

	= 0 (10.72)

vm
i = vn

i ± 1 (10.73)

must be fulfilled (see Eqs. (10.66) and (10.67)).
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Going back to Fig. 10.6 now one realizes that the S mode, which is not active in
direct infrared absorption, can give Raman diffusion and vice versa.1

Raman spectroscopy can also be used to study the rotational motions. In this case
the fundamental aspect to pay attention to is the tensorial character of the molecular
polarizability. The rotation of the molecule implies the rotation of the frame of
reference Σ P of the principal axes of the polarizability tensor ¯̄α, thus modulating
the component along the direction of the electric field in the laboratory frame Σ L ,
as sketched below

L

P

E

H
k

Therefore the incident radiation interacts with a time-dependent molecular polar-
izability, “modulated” at a frequency 2 νrot (the tensor being symmetric). For a mole-
cule to be active in rotational Raman spectroscopy is not required to have a dipole
moment. Any molecule not spherically symmetric and thus having anisotropic polar-
izability, is Raman active, in principle. The selection rule in terms of the quantum
number K is ΔK = 0,±2, according to parity arguments, at variance with the selec-
tion rules 10.11 for the direct electric dipole transition between rotational states.

Problems

Problem 10.17 For a gas of diatomic molecules the roto-vibrational energy diagram
is sketched below

-1

-4

-3

Figure out which lines can be detected in infrared and in Raman spectroscopies when
the two nuclei are non-identical (heteronuclear molecules).

What do you expect if the molecule has two identical nuclei, with spin I = 0 or
I = 1/2?

Solution: The solution follows directly from Fig. 10.5 and from the selection rules
ΔK = ±1,Δv = ±1 for infrared absorption and ΔK = ±2 for Raman lines. For
identical nuclei read Sect. 10.9.

1This statement regarding the alternative role of symmetric and antisymmetric modes in Raman and
infrared activity is a general one, holding in any molecule with inversion symmetry. It is related to
the fact that the polarizability upon inversion transforms as a second order tensor while the dipole
moment is a vector.
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10.8 Electronic Spectra and Franck—Condon Principle

The band spectra or the electronic spectra (usually in the visible or in the UV ranges
of the electromagnetic spectrum (see Appendix 1.1)) associated with simultaneous
transitions between electronic and roto-vibrational states in molecules involve rather
complex selection rules.

If no coupling to the nuclear motions is taken into account, the selection rules for
transitions among electronic states can be directly obtained by referring to the matrix
elements for the electric dipole operator −∑

l erl and to the symmetry properties.
In the LS scheme and weak spin-orbit interaction, from factorization of the total
eigenfunction one immediately has the selection rules ΔS = 0 and ΔMS = 0, while
for the spatial part ΔΛ = 0,±1 (Λ being the equivalent of ML for atoms along the
molecular axis). By referring to diatomic molecules, from parity arguments for the
components of the total electric dipole, the following rules are derived:

Σ+ → Σ+ and Σ− → Σ− allowed

Σ+ → Σ− and Σ− → Σ+ forbidden.

In fact, < φ f in|z|φin >	= 0 for the first case, while it must be zero in the second case
in order to not change sign upon reflection with respect to a plane containing the
molecular axis. Also < φ f in|x |φin > and < φ f in|y|φin > must be zero, otherwise
they would change sign upon reflection with respect to the xz and yz planes.

∑
l rl

being an ungerade operator, it is evident that the g → u transitions are allowed,
while the u → u and g → g transitions are forbidden for homonuclear molecules
having equal nuclei for charge, mass and spin state (see Sect. 10.9). In the presence
of coupling of the electronic states with rotational and vibrational motions (with the
related so-called vibronic transitions) the derivation of the selection rules becomes
really complex, as already mentioned.

In diatomic molecules we only illustrate a relevant and general aspect: the Franck-
Condon principle. In Fig. 10.7 the typical energy curves for the ground and the first
excited states are sketched and some transitions involving the vibrational states are
indicated.

The classical description of the principle (given by Franck) was based on the fol-
lowing arguments. The nuclei-electron coupling is weak, the electronic transitions
occur in very short times (typically 10−15 ÷ 10−16 s in comparison to the typical
periods, around 10−13 s, of the vibrational motions). Therefore the interatomic dis-
tance can hardly change while the electrons are carried from one electronic state
to the other. Since for the classical oscillator the probability to find the atoms at a
given distance is large in correspondence to the maxima elongations, it is conceivable
to expect a certain prevalence of the end-to-end transitions, as the one indicated in
Fig. 10.7 by the arrow on the right side.

The basic aspect of the quantum description is outlined hereafter. The transition
probability is controlled by the matrix element
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Fig. 10.7 Energy curves for the electronic ground state g1 and the first excited state g2 and sketches
of the transitions involving the vibrational v′ and v′′ levels. The solid lines indicate transitions with
large Franck-Condon factors, at variance with the classical prediction. The dashed line refers to a
transition with small Franck-Condon factor

Rg1→g2,v1→v2,K1→K2 =
∫

φg2∗
e φv2∗

vibφ
K2∗
rot

[
µele + µN

]
φg1

e φv1
vibφ

K1
rot dτedτN (10.74)

withµele = −e
∑

i ri andµN = e
∑

α ZαRα. The rotational part of the wavefunction
involves only the angles θ and φ and therefore it can be considered separately. Thus
one is left with

Rg1→g2,v1→v2 =
∫

φg2∗
e φv2∗

vib

[
µele + µN

]
φg1

e φv1
vibdτedτN (10.75)

This term can be separated in two, the one involving µN being zero since the elec-
tronic wavefunctions for g1 and g2 are orthogonal. Then only the term involving
µe has to be considered and by assuming that the electronic wavefunctions are
only slightly modified when the interatomic distance is varied, the matrix element
is written

Rg1→g2,v1→v2 =
∫

φv2∗
vibφv1

vibdτN

∫
φg2∗

e

[
µele

]
φg1

e dτe = SFC

∫
φg2∗

e

[
µele

]
φg1

e dτe.

(10.76)

Thus the matrix element appears as the usual electronic term multiplied by the
Franck-Condon factor SFC . For v1 	= v2 SFC can be different from zero since



326 10 Nuclear Motions in Molecules and Related Properties

two different electronic states are involved in correspondence to the two vibrational
levels.

The Franck-Condon factor is a kind of overlap integral and now it can be realized
why for large quantum vibrational numbers the empirical formulation of the principle
is again attained. The intensity of the transition line, proportional to the square of
the transition dipole moment given by Eq. (10.76), is controlled by the factor |SFC |2
(see Problem 10.18).

Problems

Problem 10.18 Evaluate the Franck-Condon term |SFC |2 involving two v = 0
vibrational states for electronic states g1 and g2 (see Fig. 10.7) having the same
curvature at the equilibrium distances, one at Re and the other at Re +ΔRe (problem
inspired by the book of Atkins and Friedman).

Solution: The vibrational wavefunctions are

φ(1)
0 =

(
b

π

)1/4

e−bQ2/2, φ(2)
0 =

(
b

π

)1/4

e−b(Q−ΔRe)
2/2

where b = μω0/� (see Eq. (10.32)). The overlap integral is

SFC(0, 0) =
(

b

π

)1/2 ∫ +∞

−∞
e−b(Q2/2)−[b(Q−ΔRe)

2/2]d Q =

=
(

b

π

)1/2

e−b(ΔRe/2)2
∫ +∞

−∞
e−b(Q−ΔRe/2)2

d Q = e−b(ΔRe/2)2

and
|SFC |2 = e−b(ΔRe)

2/2 ,

as plotted below:
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10.9 Effects of Nuclear Spin Statistics in Homonuclear
Diatomic Molecules

Now we turn to an impressive demonstration of quantum principles, without any
classical counterpart: the influence of the nuclear spins on the statistics, the related
selection of molecular states and the occurrence of zero-temperature rotations.

Let us consider the total wavefunction of a homonuclear diatomic molecule

φT = φe φvib φrot χspin (10.77)

upon exchange of the nuclei, each having nuclear spin I . The total number of spin
wavefunctions is (2I +1)2. (2I +1) of them are symmetric, since the magnetic quan-
tum numbers m I are the same for both nuclei. Half of the remaining wavefunctions
are symmetric and half antisymmetric. Thus [(2I + 1)2 − (2I + 1)]/2 + (2I + 1) =
(I + 1)(2I + 1) are symmetric and the remaining I (2I + 1) antisymmetric.
Therefore the ratio of the ortho (symmetric) to para (antisymmetric) molecules
is (Npara/Northo) = I/(I + 1). For example, for Hydrogen 75 % of the molecules
belong to orthohydrogen type and 25 % to parahydrogen.

Let P indicate the operator exchanging spatial and spin coordinates of the nucleus
A with the ones of the nucleus B. One has PφT = +φT for nuclei with integer I
(bosons) while PφT = −φT for nuclei with half integer spin (fermions).

x

z

y

A B

-e 

For the electronic wavefunction φe the exchange of the nuclei is equivalent to:

(i) rotation by 180 degrees around the x axis;
(ii) inversion of the electronic coordinates with respect to the origin;
(iii) reflection with respect to the yz plane.

For the most frequent case of electronic ground state Σ+
g one concludes

Pφe = +φe (10.78)

The vibrational wavefunction is evidently symmetrical, i.e. Pφvib = +φvib, since it
depends only on (R − Re). For the rotational wavefunctions one has

Pφrot = (−1)K φrot (10.79)
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namely they are symmetrical (positive parity) upon rotation when the number K
is even while are antisymmetric (negative parity) the ones having odd rotational
numbers K . By taking into account Eqs. (10.77)–(10.79) one deduces the requirement
that for half integer nuclear spin (total wavefunction antisymmetric upon exchange of
the nuclei) ortho molecules (having symmetric spin functions) can be found only in
rotational states with odd K . On the contrary para molecules (having antisymmetric
spin functions) can be found only in rotational states with K even. For integer nuclear
spins the propositions are inverted. It is noted that ortho to para transitions are hardly
possible, for the same argument used to discuss the (almost) lack of transitions from
singlet to triplet states in the Helium atom (see Sect. 2.2).

A relevant spectroscopic consequence of the symmetry properties in diatomic
molecules, for instance, is the fact that in Raman spectra in H2 the lines associated
to transitions starting from rotational states at K odd (see the illustrative plot in the
following figure) are approximately three time stronger than the ones involving the
states at K even, once that thermal equilibrium is established between the two species
ortho and para (see Problem 10.19). For D2 an opposite alternation in the intensities
occurs (by a factor of two), the nuclear spin of deuterium being I = 1.

ortho

ortho

ortho

para

para

para

K
5

4

3

2

1
0

cm-1

Para

Ortho

3

532

4 2 1

0

Rayleigh

Rotational Raman lines
(ΔK= ±2, see § 10.7)

For O2, the electronic ground state being 3Σ−
g , the nuclear spin for 16O is zero and

χspin is necessarily symmetric. Then only odd K states are allowed. Thus only the
rotational lines corresponding to ΔK = ±2 and involving odd K states are observed
in Raman spectroscopy (see Fig. 10.8). If of the nuclei is substituted by its isotope
17O, all the rotational lines are detected.

For N2, the nuclear spin being I = 1, the roto-vibrational structure shows the
same alternation in the intensities expected for D2 (see Fig. 10.9).

Analogous spectroscopic effects are observed in polyatomic molecules having
inversion symmetry, such as CO2 or C2H2. In particular CO2 is a nice counterpart
of the O2 molecule. While in this latter the ground state is 3Σ−

g , in CO2 the ground

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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Fig. 10.8 Raman spectrum of 16O2 displaying the rotational structure. At ν̄ � 1556 cm−1 the Q
branch (Sect. 10.5), for ΔK = 0, is observed (broad line). The lines with even K are missing (see
the book by Haken and Wolf (2004))
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Fig. 10.9 Roto-vibrational Raman spectrum in N2 (for 14N -14N). The alternation in the line
intensities is in the ratio 1:2 (see the book by Haken and Wolf). The symmetry of the wavefunction
does not change in the Raman transitions ΔK = 0,±2, as well as for the spin function. It can be
mentioned that the bosonic character of 14N nucleus has been claimed for the first time by Heitler
and Herzberg in 1929 just from the alternation in the line intensities, before the discovery of the
neutron which three years later explained why I = 1

electronic state is 1Σ+
g . Thus in view of the change of the symmetry with respect to

the xz plane, in CO2 a variety of spectroscopic studies has evidenced that only the
rotational states at even K do occur.
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It should be stressed that for Raman spectroscopy, where virtual electronic states
are involved, the remarks given above imply that these states retain the symmetry
properties of the ground state. For optical and UV transitions between different elec-
tronic states these considerations can be applied to the roto-vibrational fine structure.
For detail see the extensive presentation by Herzberg.

As a final remark one should observe that for ortho-Hydrogen molecules the
lowest accessible rotational state in practice is the one at K = 1, unless one waits
for the thermodynamical equilibrium for very long times. Thus even at the lowest
temperature the molecules (in solid hydrogen) are still rotating. This is an example
of the so called quantum rotators.

Problems

Problem 10.19 For the molecules 3He2 and 4He2 (existing in excited states, assumed
of

∑+
g character), derive the rotational quantum numbers that are allowed. By assum-

ing thermal equilibrium, obtain the ratio of the intensities of the absorption lines in
the roto-vibrational spectra, at high temperature.

Solution: The nuclear spin for 3He is I = 1/2 while for 4He is I = 0. Therefore
in 3He2 only states at K even are possible for total spin 0 and only states at K
odd for total spin 1. The intensity of the lines for EK � k B T is proportional to
the degeneracy e−EK /kB T being practically unit. Therefore, by remembering that the
rotational degeneracy is (2K + 1), while (2I + 1)(I + 1) spin states are symmetric
and (2I + 1)I are antisymmetric, one can expect for the ratio of the intensities

Intensity of transitions from 2 K

Intensity of transitions from (2 K − 1)
= I (4K + 1)

(I + 1)(4K − 1)
.

For large rotational numbers the ratio reduces to I/(I +1), namely 1:3, as discussed
at Sect. 10.9.
For 4He2, I being 0, no antisymmetric nuclear spin functions are possible, only the
rotational states at K = 0, 2, 4... are allowed and every other line is absent.

Problem 10.20 In the assumption that in the low temperature range only the rota-
tional states at K ≤ 2 contribute to the rotational energy of the H2 molecule, derive
the contribution to the molar specific heat.

Solution: The ortho-molecules (on the K = 1 state) in practice cannot contribute to
the increase or the internal energy Urot upon a temperature stimulus. Then, only the
partition function Z para

rot of the para-molecules (on the K = 0 and K = 2 rotational
states) has to be considered in

Urot = NkB T 2 d

dT
ln Zrot .
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From
∑

K (2K + 1) exp[−K (K + 1)θrot/T ] (with θrot ≡ �
2/2I kB � 87 K in H2),

Z para
rot � 1 + 5 exp[−6θrot/T ]. Then Urot � NkB30θrot · exp[−6θrot/T ].

Since the number of para-molecules in a mole can be considered NA/4,

CV � NA/4 · 180(θrot/T )2 exp[−6θrot/T ].

Problem 10.21 Estimate the fraction of para-Hydrogen molecules in a gas of H2 at
temperature around the rotational temperature θrot = 87 K and at T � 300 K, in
the assumption that thermal equilibrium has been attained. (Note that after a thermal
jump it may take very long times to attain the equilibrium, see text). Then evaluate
the fraction of para molecules in D2 at the same temperature.

Solution: For T � 300 K the fraction of para molecules is controlled by the spin
statistical weights (see Problem 10.19). Thus, for H2, fpara � 1/(1 + 3) � 0.25.

Around the rotational temperature one writes

f para =
∑

K even(2K + 1) exp[−K (K + 1)θrot/T ]
Z para + Zortho

�

� 1 + 5e−6 + · · ·
1 + 5e−6 + · · · + 3[3e−2 + 7e−12 + · · · ] � 0.46

For D2 the rotational temperature is lowered by a factor 2 and the spin statis-
tical weights are I + 1 = 2 for K even and I = 1 for states at K odd. At
T � 300 K f para = 0.33. At T � 87 K one writes

f para =
∑

K odd(2K + 1) exp[−K (K + 1)θrot/2T ]
2ΣK even ... + 1

∑
K odd ....

� 3 exp[−θrot/T ]
2 + 1[3e−1] � 0.35

Problem 10.22 Derive the temperature dependence of the mean square amplitude
< (R−Re)

2 >≡< Q2 > of the vibrational motion in a diatomic molecule of reduced
mass μ and effective elastic constant k. Then evaluate the mean square amplitude of
the vibrational motion for the 1H35Cl molecule at room temperature, knowing that
the fundamental absorption frequency is ν0 = 2990 cm−1.

Solution: From the virial theorem < E >= 2 < V > and then
< E >= 2 · (k/2) < Q2 >≡ μω2 < Q2 > (see also Eq. (10.34)).

For the thermal average

< E >= �ω

(
1

2
+ < n >

)
, with < n >= 1/(e

�ω
kB T − 1)

one writes

< Q2 >= �

μω

(
1

2
+ 1

e�ω/kB T − 1

)
.
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For kB T >> �ω,

< Q2 >� const + kB T

μω2
.

(see plot in Problem 10.12).

For hν0 � kB T < Q2 >� (1/2)hν0/k and
√

< Q2 > � √
h/8π2ν0μ �

0.076 Å.

Problem 10.23 At room temperature and at thermal equilibrium condition the most
populated rotational level for the CO2 molecule is found to correspond to the rota-
tional quantum number KM = 21. Estimate the rotational constant B.

Solution: From Eq. (10.14), by deriving with respect to K one finds

2KM + 1 =
(

2kB T

Bhc

)1/2

Then Bhc = 2kB T /(2KM + 1)2 = 4.48 · 10−17 erg.

Problem 10.24 When a homogeneous and static electric field E = 1070 V cm−1 is
applied to a gas of the linear molecule OCS the rotational line at 24,325 MHz splits
in a doublet, with frequency separation Δν = 3.33 MHz. Evaluate the rotational
eigenvalues for K = 1 and K = 2 in the presence of the field, single out the transitions
originating the doublet and derive the electric dipole moment of the molecule.

Solution: From Eq. (10.20)

E (1, M, E) = 2Bhc + μ2E2(2 − 3M2)/20Bhc

E (2, M, E) = 6Bhc + μ2E2(2 − M2)/84Bhc

The transitions at ΔK = ±1 and ΔM = 0 yield the frequencies ν = ν0 + δν (M),
where ν0 = 4Bc while the correction due to the field is

δν (M) = μ2E2

Bh2c

(29M2 − 16)

210

Then δν (0) = −(8/105)(μ2E2)/(Bh2c), δν (1) = (13/210)(μ2E2)/(Bh2c) and
the separation between the lines is

Δν = δν (1) − δν (0) = 29

210

μ2ε2

Bh2c
= 58

105

μ2E2

h2ν0

The dipole moment of the molecule turns out

μe = h

E

√
105

58
ν0Δν = 2.37 · 10−21 erg cm V−1 = 0.71 Debye
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Problem 10.25 Derive an approximate expression, valid in the low temperature
range, for the rotational contribution to the specific heat of a gas of HCl molecules.

Solution: At low temperature only the first two rotational levels E0 and E1 can be
considered and the rotational partition function is written

Z � 1 + 3e− E1
kB T .

The energy is Urot = −∂lnZ/∂β, (β = 1/kB T ) and then

Urot (T → 0) = 3E1 e−E1/kB T

and the specific heat (per molecule) becomes

(CV )T →0 = 3E2
1

kB T 2
e−E1/kB T .

This expression can actually be used only for

kB T � �
2

μR2
e

≡ 2Bhc, where B = 10.6 cm−1

(see Sect. 10.2.2), i.e. for Tval � 30 K.

Problem 10.26 Derive the longitudinal normal modes for the system sketched
below, assuming that the force constant of the spring in between the two masses is
twice the ones for the lateral springs, that are stuck at fixed points (the springs have
negligible mass). (Problem suggested in the book by Eyring, Walter and Kimball).

Solution: In terms of local coordinates (see Sect. 10.6)

M M

T = M

2
(q̇2

1 + q̇2
2 ), V = k

2
q2

1 + 2k

2
(q2 − q1)

2 + k

2
q2

2

The equations of motion in Lagrangian form are

Mq̈1 + 3kq1 + 2kq2 = 0 and Mq̈2 + 3kq2 − 2kq1 = 0

By multiplying by c1,2 and summing

M(c1q̈1 + c2q̈2) + q1(3kc1 − 2kc2) + q2(−2kc1 + 3kc2) = 0
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The normal form in terms of the coordinates Qi is obtained for

Mc1 = 1

λ
(3kc1 − 2kc2) = h1 and Mc2 = 1

λ
(−2kc1 + 3kc2) = h2

yielding the secular equation

∣∣∣∣λM − 3k 2k
2k λM − 3k

∣∣∣∣ = 0 ,

with roots λ1 = 5k/M (implying c1 = −c2) and λ2 = k/M (c1 = c2), so that

Q1 = (Mq1 − Mq2) and Q2 = (Mq1 + Mq2)

The equations of motion in the normal form are

Q̈1 + 5k

M
Q1 = 0 , Q̈2 + k

M
Q2 = 0

One normal mode corresponds to q1 = q2, and frequency ω2 = √
k/M , while the

second one corresponds to q1 = −q2 and frequency ω1 = √
5k/M .

Problem 10.27 For the NH3 the rotational temperatures are ΘA = ΘB = 14.3 K
and ΘC = 9.08 K (oblate rotator) (see Sect. 10.2.5). Evaluate the molar rotational
energy and the specific heat at room temperature (neglect the effects of the nuclear
spin statistics).

Solution: From

E(K , M) = kBΘB K (K + 1) + kB M2(ΘC − ΘA)

the rotational partition function can be written

Zrot (T ) =
∞∑

K=0

K∑
M=−K

(2K + 1)exp[−ΘB K (K + 1)/T − M2(ΘC − ΘA)/T ]

and by changing the sums to integrals and recalling that

U (T ) = RT 2 d

dT
lnZrot

one has U (T = 300) � (3/2)RT and CV � (3/2)R.
It can be remarked that when the effects of the spin statistics are taken into account

the high temperature partition function should be scaled according to the amount of
the occupied rotational levels.
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Chapter 11
Crystal Structures

Topics

Elementary Crystallography
Translational Invariance
Reciprocal Lattice
The Bragg Law
Brillouin Zone
Typical Crystal Structures

In this chapter and in the following three chapters we shall be concerned with the
general aspects of the solid state of the matter, namely the atomic arrangements where
the interatomic interactions are strong enough to keep the atoms bound at well defined
positions. We will address the bonding mechanisms leading to the formation of the
crystals, the electronic structure and the vibrational dynamics of the atoms. The liquid
and solid states are similar in many respects, for instance in regards of the density,
short range structure and interactions. The difference between these two states of
the matter relies on the fact that in the former the thermal energy is larger than the
cohesive energy and the atoms cannot keep definite equilibrium positions.

Before the advent of quantum mechanics the solid-state physics was practically
limited to phenomenological descriptions of macroscopic character, thus involving
quantities like the compressibility, electrical resistivity or other mechanical, dielec-
tric, magnetic and thermal constants. After the application of quantum mechanics to
a model system of spatially ordered ions (the crystal lattice, indicated by Laue X-ray
diffraction experiments) quantitative studies of the microscopic properties of solids
began.
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During the last forty years the study of the condensed matter has allowed one to
develop the transistors, the solid state lasers, novel devices for opto-electronics, the
SQUID, superconducting magnets based on new materials, etc. As regards the devel-
opment of the theory, solid state physics has triggered monumental achievements for
many-body systems, such as the theories for superconductivity or of quantum mag-
netism for strongly correlated electrons, as well as the explanation of the fractional
quantum Hall effect.

Besides the spatially ordered crystalline structures there are other types of solids,
as polymers, amorphous and glassy materials, Fibonacci-type quasi-crystals, which
are not characterized by regular arrangement of the atoms. Our attention shall be
devoted to the simplest model, the ideally perfect crystal, with no defects and/or
surfaces, where the atoms occupy spatially regular positions granting translational
invariance. In the Chap. 1 we shall present some aspects of elementary crystallo-
graphic character in order to describe the crystal structures and to provide the sup-
port for the quantum description of the fundamental properties. Many solid-state
physics books (and in particular the texts by Burns, by Kittel, by Aschcroft and Mer-
min and by Ziman) report in the introductory chapters more complete treatments of
crystallography, the “geometrical” science of crystals.

11.1 Translational Invariance, Bravais Lattices
and Wigner-Seitz Cell

In an ideal crystal the physical properties found at the position r

l

r’

r

are also found at the position r′ = r + l, where

l ≡ ma + nb + pc (11.1)

with m, n, p integers and a, b, c fundamental translational vectors which charac-
terize the crystal structure.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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b
a

c

c

l

the crystalline cell, of volume v = a ×××× b . c

the lattice

a possible basis 

A 

B 

This property is called translational symmetry or translational invariance. As
we shall see in Chap. 12, it is a symmetry property analogous to the ones utilized for
the electronic states in atoms and molecules.

The extremes of the vectors l, when the numbersm, n, p in Eq. (11.1) are running,
identify the points of a geometrical network in the space, called lattice. By placing
at each lattice point an atom or an identical group of atoms, called the basis, the real
crystal is obtained. Thus one can ideally write crystal = lattice + basis.

The lattice and the fundamental translational vectors a, b, c are called primitive
when Eq. (11.1) holds for any arbitrary pair of lattice points. Accordingly, in this case
one has the maximum density of lattice points and the basis contains the minimum
number of atoms, as it can be realized from the sketchy example reported below for
a two-dimensional lattice:

Primitive (one lattice point in the cell) 

non-primitive (three lattice points in the unitary cell)

The geometrical figure resulting from vectors a, b, c is called the crystalline cell.
The lattice originates from the repetition in space of this fundamental unitary cell
when the numbers m, n and p run. The unitary cell is called primitive when it is
generated by the primitive translational vectors. The primitive cell has the small-
est volume among all possible unitary cells and it contains just one lattice point.
Therefore it can host one basis only.

Instead of referring to the cell resulting from the vectors a, b, c one can equiva-
lently describe the structural properties of the crystal by referring to the Wigner-Seitz
(WS) cell. The WS cell is given by the region included within the planes bisecting
the vectors connecting a lattice point to its neighbors, as in the example sketched
below.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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b
c

a

WS cell 

lattice point inside
the WS cell 

The lattice points are then at the center of the WS cells.
The translation of the WS cell by all the vectors l belonging to the group T of the

translational operations (see Eq. (11.1)) generates the whole lattice.
A few statements of geometrical character are the following:

1. The orientation of a plane of lattice points is defined by the Miller indexes (hkl),
namely by the set of integers without common factors, inversely proportional to
the intercepts of the plane with the crystal axes. The reason of such a definition will
be clear after the discussion of the properties of the reciprocal lattice (Sect. 11.2).

2. A direction in the crystal is defined by the smallest integers [hkl] having the same
ratio of its components along the crystal axes. For example, in a crystal with a
cubic unitary cell the diagonal is identified by [111]. One should observe that the
direction [hkl] is perpendicular to the plane having Miller indexes (hkl) (see
Problem 11.1).

3. The position of a lattice point, or of an atom, within the cell is usually expressed
in terms of fractions of the axial lengths a, b and c.

The symmetry operations are the ones which bring the lattice into itself, while leaving
a particular lattice point fixed. The collection of the symmetry operations is called
point group (of the lattice or of the crystal). When also the translational operations
through the lattice vectors are taken into account, one speaks of space group. For
non-monoatomic basis the spatial group also involves the symmetry properties of the
basis itself. The point groups are groups in the mathematical sense and are at the basis
of an elegant theory (the group theory) which can predict most symmetry-related
properties of crystal just from the geometrical arrangement of the atoms.
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The crucial point is that the requirement of translational invariance limits the
number of symmetry operations that can be envisaged to define the crystal structures.
To illustrate this restriction it is customary to recall that in a plane the unitary cell
cannot be a pentagon (which is characterized by a rotational invariance after a rotation
by an angle 2π/5) since in that case one cannot achieve translational invariance.

In three dimensions (3D) there are 32 point groups and 230 space groups collect-
ing all the symmetry operations compatible with translational invariance and with
the symmetry of the basis. These groups define 14 fundamental lattices, called the
Bravais lattices. These lattices are shown in Fig. 11.1, where the unitary conventional
cell generally used is indicated. It is noted that some cells might appear non-primitive,
since there is more than one lattice point within them (see for instance the bcc lat-
tice). However, one can easily identify the fundamental lattice vectors defining the
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Fig. 11.1 Bravais crystal lattices with the conventional unitary cells, with the relations among the
lattice lengths and among the characteristic angles (see table in the previous page)

primitive cell of the body-centered-cubic (bcc) Bravais lattice, in terms of the more
frequently used non-primitive cubic lattice vectors a, b, c shown in the figure. For
the analogous case of the fcc (face-centered cubic) lattice, see Fig. 11.4 and Prob-
lem 11.4.
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11.2 Reciprocal Lattice and Brillouin Cell

As a consequence of the translational invariance in the ideal crystal, any local function
f (r) of physical interest (for instance, the energy or the probability of presence of
electrons) must be spatially periodic, in other words invariant under the translation
Tl by a vector belonging to the translational group:

Tl f (r) = f (r + l) = 1 · f (r). (11.2)

Then one can abide by the Fourier expansion of f (r) and by referring for simplicity
to a crystal with orthogonal axes a, b and c and choosing x, y and z along these axes,
one writes

f (r) =
+∞∑

−∞ nx

Anx (y, z)e
[inx x(2π/a)] =

+∞∑
−∞ nx

Agx e
[igx x],

where nx is an integer and gx = nx (2π/a) are reciprocal lattice lengths. The coef-
ficients Anx can be Fourier-expanded along y and z and so one can put the function
f (r) in the form

f (r) =
∑

g

Age
ig·r (11.3)

where

Ag = 1

vc

∫ +∞

−∞
f (r)e−ig · rdr, (11.4)

vc being the volume of the unitary cell. g is a reciprocal lattice vector built up
by linear combination, with integer numbers nx,y,z , of the fundamental reciprocal
vectors, i.e.

g = nx (2π/a)x̂ + ny(2π/b)ŷ + nz(2π/c)ẑ. (11.5)

It follows that for any reciprocal lattice vector g and for any translational vector
l, given by Eq. (11.1), one has

eig · l = 1, (11.6)

corresponding to the necessary and sufficient condition to allow the Fourier expansion
of local functions.

The above arguments can be generalized for non-orthogonal crystal axes by defin-
ing the fundamental reciprocal vectors a∗, b∗ and c∗ in the form

a∗ = 2π

(a × b · c)
(b × c) = 2π

vc
(b × c),

b∗ = 2π

vc
(c × a),

c∗ = 2π

vc
(a × b). (11.7)
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The set of points, in the reciprocal space, reached by the vectors

g = ha∗ + kb∗ + lc∗ (11.8)

with h, k and l integers, defines the reciprocal lattice:

ba

c

g

∗

∗
∗

Instead of referring to the reciprocal lattice cell defined by a∗, b∗ and c∗, it is often
convenient to use its Wigner-Seitz equivalent, having a reciprocal lattice point at the
center. This cell is called the Brillouin cell and it is shown schematically below for
orthogonal axes:

b /2 -b /2 

-a /2 

a /2 

c /2 

-c /2 

a / 2 = π / a 

b / 2 = π / b 

c / 2 = π / c 

∗

∗

∗ ∗

∗

∗

∗

∗

∗

For instance, the Brillouin cell for the fcc lattice is obtained by taking eight recip-
rocal lattice vectors (bcc lattice, see Problem 11.4) bisected by planes perpendicular
to such vectors and when the six next-shortest reciprocal lattice vectors are also
bisected. This Brillouin cell is depicted in Fig. 11.2.

Fig. 11.2 Brillouin cell for
fcc lattice
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From the definitions of reciprocal lattice and of fundamental reciprocal vectors,
one can derive the following properties (see Problem 11.1):

(i) g(h, k, l) is perpendicular to the planes with Miller indexes (hkl);
(ii) |g| is inversely proportional to the distance among the lattice planes (hkl).

The reciprocal lattice plays a relevant role in solid state physics. Its importance
was first evidenced in diffraction experiments when it was noticed that each point of
the reciprocal lattice corresponds to a diffraction spot. When the momentum of the
electromagnetic wave (or of the De Broglie neutron wave) as a consequence of the
scattering process changes by any reciprocal lattice vector, then the wave does not
propagate through the crystal but undergoes Bragg reflection, as sketched below:

Δk= (kscatt - kinc)= g

kinc

kscatt

g

θ
(hkl) plane

This condition corresponds to the Bragg law in the form

nλ = 2dsinθ (11.9)

for the constructive interference of the radiation diffused by adjacent planes (d sep-
aration between the planes, n = 1, 2, 3 . . . , X-ray beam incident at the angle θ the
planes). In fact Δk = g is equivalent to 2π/|Δk| = d(hkl), while |kinc| = |kscatt | =
2π/λ (for elastic scattering) and Δk = (4π/λ)sinθ.

Furthermore, as we shall see at Chap. 12, the generators of the Brillouin cell, cut in
a way related to the number of the cells in a reference volume, define the generators
of a three-dimensional network in the reciprocal space. These vectors correspond to
the wave-vectors of the excitations that can propagate through the crystal. Meantime
they set the quantum numbers of the electron states.

11.3 Typical Crystal Structures

CsCl is the prototype of a family of cubic primitive (P) crystals with the basis formed
by two atoms, one at position (0,0,0) and the other at (1/2,1/2,1/2). As sketched below
the coordination number, i.e. the number of nearest neighbors around the Cs (or Cl)
atoms is 8.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Other diatomic crystals with the same structure are TlBr, TlI, AgMg, AlNi and
BeCu. Elements having the simple cubic (the basis being formed by one atom)
Bravais lattice are P and Mn.

A group of interesting crystals having a P cubic lattice with a more complex basis
are the perovskite-type titanates and niobates, such as BaTiO3, NaNbO3, KNbO3. At
high temperature (T ≥ 120 C for BaTiO3) the atomic arrangement is the one reported
in Fig. 11.3. The oxygen octahedra having the Ti (or Nb) atom at the center result
from the d2sp3 hybrid orbitals (see Fig. 9.3). These octahedra are directly involved in
the structural transitions driven by the softening of the q = 0 or of the zone-boundary
vibrational modes (see Sect. 10.6 for a comment, Chaps. 14 and 16). The distortion
of the cubic cell is the microscopic source of the ferroelectric transition and of the
electro-optical properties which characterize that crystal family. For all the crystal
lattices described above the reciprocal lattice is cubic and the Brillouin cell is also
cubic.

NaCl crystal is a typical example of face-centered cubic (fcc) lattice. The non-
primitive, conventional, unitary cell and the primitive cell are shown in Fig. 11.4. The
basis is formed by two atoms at the positions (0,0,0) and (1/2,0,0). The coordination
number is 6. The fcc lattice characterizes also the structure of KBr, AgBr and LiH
and of several metal elements such as Al, Ca, Cu, Au, Pb, Ni, Ag and Sr.

Ba Ba

BaBa

Ba

Ti

Basis

Crystal

O

O

O

Fig. 11.3 Sketch of the crystal cell in BaTiO3 (in the cubic phase). At Tc � 120 C a displacive
phase transition occurs, to a structure of tetragonal symmetry. The arrows indicate the directions
of the displacements of the ions, having taken the oxygen ions at c/2 fixed (also a slight shrinkage
in the ab plane occurs). The displacement of the positive and negative ions in opposite directions
are responsible for the spontaneous polarization arising as a consequence of the transition from the
cubic to the tetragonal phase (ferroelectric state see Chap. 16)

http://dx.doi.org/10.1007/978-3-319-17897-4_9
http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_16
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Fig. 11.4 Conventional and primitive cells for NaCl. The basis is formed by a Na atom and by a
Cl atom

The fcc lattice also characterizes the diamond (C) and the semiconductors Si, Ge,
GaAs and InSb. In these cases the basis is given by two atoms (both C for diamond,
Si and Ge) at the positions (0,0,0) and (1/4,1/4,1/4). Each atom has a tetrahedral
coordination that may be thought to result from the formation of sp3 hybrid atomic
orbitals (Sect. 9.2), as sketched below:

Carbon is known to crystallize also in the form of graphite, where the sp2

hybridization of the C atomic orbitals yields a planar (2D) atomic arrangement.
The 2D lattice is formed by two interpenetrating triangular lattices (see Fig. 11.5).

It should be mentioned that carbon can also crystallize in other forms, as for
example in the fcc fullerene, where at each fcc lattice site there is a C60 molecule,
with the shape of truncated icosahedron (a cage of hexagons and pentagons).

Another relevant crystalline form is the one having the hexagonal close-packed
lattice, with the densest packing of hard spheres placed at the lattice points. The
arrangement is obtained by placing the atoms at the vertexes of planar hexagons and
then creating a second layer with “spheres” superimposed in contact with the three
spheres of the underlying layer. The crystal lattice is the P hexagonal and the basis
is given by two atoms placed at (0,0,0) and at (2/3,1/3,1/2).

In the hard sphere model 74 % of the volume is occupied and the ratio c/a is
1.633. In real crystals with this structure one has values of c/a slightly different, as
1.85 for Zn and 1.62 for Mg.

http://dx.doi.org/10.1007/978-3-319-17897-4_9
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Fig. 11.5 In-plane atomic
arrangement of C atoms in
graphite, corresponding to
graphene

Problems

Problem 11.1 From geometrical considerations derive the relationships between
the reciprocal lattice vector g(hkl) and the lattice planes with Miller indexes (hkl).

Solution: For
g = ha∗ + kb∗ + lc∗.

let us take a plane perpendicular, containing the lattice points ma, nb and pc. Then,
since ma − nb, ma − pc and nb − pc lie in this plane, one has

g · (ma − nb) = g · (ma − pc) = g · (nb − pc) = 0.

Then hm − kn = 0, mh = pl and nk = pl, yielding m = 1/h, n = 1/k and
p = 1/ l.

From the definition of the Miller indexes one finds that the plane perpendicular
to g, passing through the lattice points ma, nb and pc is the one characterized by
(hkl).

Now it is proved that the distance d(hkl) between adjacent (hkl) planes is
2π/|g(hkl)|. Let us consider a generic vector r connecting the lattice points of
two adjacent (hkl) planes. Since g(hkl) is perpendicular to these planes one has
r · ĝ(hkl) = d(hkl). One can arbitrarily choose r = a/h. Then a · g(hkl) = 2πh
and since ĝ = g/|g| one has r · ĝ = 2π/|g|. Therefore

d(hkl) = 2π

|g(hkl)|
Problem 11.2 Derive the density of the following compounds from their crystal
structure and lattice constants:

Iron (bcc, a = 2.86 Å), Lithium (bcc, a = 3.50 Å), Palladium (fcc, a = 3.88 Å),
Copper (fcc, a = 3.61 Å), Tungsten (bcc, a = 3.16 Å).
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Solution:

Fe : ρ = atomic mass · 2

vc
= 7.93 g cm−3.

Li : ρ = 2 · 1.660 · 10−24 · 6.939

(3.5 · 10−8)3
= 0.537 g cm−3.

Pd : ρ = 12.095 g cm−3.

Cu : ρ = 8.968 g cm−3.

W : ρ = 19.344 g cm−3.

Problem 11.3 Estimate the order of magnitude of the kinetic energy of the neutrons
used in diffraction experiments to obtain the crystal structures. By assuming that the
neutron beam arises from a gas, estimate the order of magnitude of the temperature
required to have diffraction.

Solution: The neutron wavelength has to be of the order of the lattice spacing, i.e.
of the order of 1 Å. Then Ekin = h2/2Mnλ

2 � 80 meV. The corresponding velocity
is around 4 × 105 cm/s. Since Ekin = 3kBT/2, one has T � 630 K.

Problem 11.4 Show that the reciprocal lattice for the fcc lattice is a bcc lattice and
vice-versa.

Solution: In terms of the side a of the conventional cubic cell the primitive lattice
vectors of the fcc structure are (Fig. 11.4):

a1 = a

2
(i + j)

a2 = a

2
(i + k)

a3 = a

2
(j + k)

(i, j, k orthogonal unit vectors parallel to the cube edges). Note that |ai | = a/
√

2
and therefore the volume of the primitive cell is (a1 × a2) · a3 = a3/4. Then the
primitive vectors of the reciprocal lattice are

a∗
1 = 2πa2 × a3

a3/4

and similar expressions for a∗
2 and a∗

3 (Eq. (11.7)) (in the unit cube of volume a3

there are four lattice points). Thus



350 11 Crystal Structures

a∗
1 = 2π

a
(−i − j + k)

a∗
2 = 2π

a
(−i + j − k)

a∗
3 = 2π

a
(i − j − k)

The shortest (non-zero) reciprocal lattice vectors are given by the eight vectors
(2π/a)(±i ± j ± k) which generate the bcc (reciprocal) lattice.

A similar procedure applied to the primitive translational vectors of the bcc lattice

a1 = a

2
(i + j + k)

a2 = a

2
(−i + j + k)

a3 = a

2
(−i − j + k)

(yielding for the volume of the primitive cell (a1 × a2) · a3 = a3/2) implies

a∗
1 = 2π

a
(i + k)

a∗
2 = 2π

a
(−i + j)

a∗
3 = 2π

a
(−j + k)

as primitive vectors of fcc lattice.
The Brillouin cell of the bcc lattice is shown below (compared to the one in

Fig. 11.2).
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Chapter 12
Electron States in Crystals

Topics

Bands of Energy Levels
Bloch Orbital and Crystal Momentum
Effective Mass of the Electron
Density of States
Free-Electron Model
Magnetic and Thermal Properties of Metals
Perturbative Effects on Free-Electron States and Energy Gaps
Tight-Binding Model
Bands Overlap and Intrinsic Semiconductors

12.1 Introductory Aspects and the Band Concept

A fundamental issue in solid state physics is the structure of the electronic states.
Transport, magnetic and optical properties, as well as the very nature (metal, insulator
or semiconductor) of the crystals, are indeed controlled by the arrangement of the
energy levels.

The complete form of the Schrödinger equation for electrons and nuclei can hardly
be solved, even by means of computational approaches. Therefore to describe the
electron states in a crystal it is necessary to rely on approximate methods applied to
model systems.

Usually the crystal is ideally separated into ions (the atoms with the core elec-
trons practically keeping their atomic properties) and the valence electrons, which
are affected by the crystalline arrangement. The Born-Oppenheimer separation

© Springer International Publishing Switzerland 2015
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354 12 Electron States in Crystals

(Sect. 7.2) is usually the starting point, often in the adiabatic approximation.1 From
the many-body problem for the electrons, by means of Hartree-Fock description one
can devise the one-electron effective potential that takes into account the interaction
with the positive ions, the Coulomb-like repulsion among the electrons as well as
the generalized exchange integrals. We shall not derive the potential energy in detail
on the basis of that type of approach. Rather, similarly to atoms and molecules, we
shall address the main aspects of the electronic structure in crystals on the basis
of the fundamental symmetry property, namely the translational invariance for the
potential energy:

V (r + l) = V (r) (12.1)

with l lattice vector (Eq. (11.1) and Sect. 11.2).
First we shall derive the general properties and the classification of the electronic

states in terms of a pseudo-momentum vector in the reciprocal space. Then a deeper
description will be made on the basis of particular models, at the sake of illustration
of the generalities, meantime illustrating the properties of typical groups of solids.

Henceforth, by extending the molecular orbital approach (Sect. 8.1) in the LCAO
form, one can express the one-electron wave function as Bloch orbital. This is
somewhat equivalent to the delocalized MO introduced for the benzene molecule
(Sect. 9.3).

Referring to an ideal crystal formed by a chain of N one-electron atoms

“resonance”“resonance”

i-th atom i+1i-1 a

and generalizing the concepts used for H2 molecule (Sect. 8.2), the formation of
the band of electron levels can be understood as resulting from the removal of the
degeneracy of the atomic levels. In fact, by taking into account the resonance of
one electron among neighboring atoms (see sketch above), the wave function of the
electron centered at i th site is written

i�
dψi

dt
= Eoψi + Aψi−1 + Aψi+1, (12.2)

where A < 0 is the resonance integral between adjacent sites (equivalent to HAB in
Sect. 8.1). From what has been learned for the H+

2 molecule, we look for a solution
of Eq. (12.2) in the form

1As already mentioned (Sect. 7.1) several relevant phenomena belonging to the realm of solid state
physics, for instance electrical resistivity and superconductivity, require to go beyond the adiabatic
approximation.

http://dx.doi.org/10.1007/978-3-319-17897-4_7
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ψi = φi e
−i Et/� (12.3)

where E is the unknown eigenvalue, while φi is the electron eigenfunction for the
atom centered at the site i . Then

Eφi = Eoφi + A(φi−1 + φi+1), (12.4)

with φi = φ(xi ) and φi±1 = φ(xi ± a). By looking for a solution of the form
exp(ikxi ), typical of the difference equations and already used for the benzene
molecule (Sect. 9.3), Eq. (12.4) is rewritten

Eeikxi = Eoeikxi + A

[
eik(xi +a) + eik(xi −a)

]
, (12.5)

yielding

E = Eo + 2Acos(ka) (12.6)

The formation of a band of electronic levels, each level labelled by k, as a con-
sequence of the removal of the degeneracy existing for non-interacting atoms, is
illustrated below

The band of N electron levels is the generalization of the g and u levels in the H2

molecule or of the four levels in the C6H6 molecule. The energy interval between
two adjacent bands, related to different atomic eigenvalues Eo, will be called energy
gap.

We shall come back to the problem of labelling the electron states and to the
mechanisms leading to the appearance of the gap, after the discussion of suitable
crystal models (Sect. 12.7).

http://dx.doi.org/10.1007/978-3-319-17897-4_9
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12.2 Translational Invariance and the Bloch Orbital

In ideal crystals, with no defects and without surfaces, the translation operator Tl

(see Eq. (11.2)) commutes with the Hamiltonian:

TlH(r)φ(r) = H(r + l)φ(r + l) = H(r)Tlφ(r)

Then the one-electron eigenfunction φ(r) must be eigenfunction of Tl also, with
eigenvalues cl satisfying the condition |cl|2 = 1, since

|φ(r + l)|2 ≡ |Tlφ(r)|2 = |φ(r)|2.

On the other hand, two translations Tl1 Tl2 ≡ Tl1+l2 , must yield the same result of
the translation by l1 + l2:

This suggests for the eigenvalue the form cl = exp(iλl), so that

Tl1+l2φ = Tl1 eiλ2φ = eiλ2 eiλ1φ = ei(λ1+λ2)φ,

with λl real number.
For any translation vector l a vector k so that λl = k · l can be picked up in the

reciprocal space (see Sect. 11.2). Therefore one writes

Tlφ(r) = φ(r + l) = eik · lφ(r),

and by multiplying by e−ik·r

e−ik · rφ(r) = e−ik · (r+l)φ(r + l).

This condition shows that the function uk(r) = exp(−ik · r)φ(r) has the periodicity
of the lattice, as described by Eq. (11.2).

Then the one-electron wave function can be written as Bloch orbital, i.e.

φk(r) = uk(r)eik·r

uk(r + l) = uk(r), (12.7)

which couples the free-electron wave function exp(ik ·r) (characteristic of the empty
lattice, namely in the limit V (r) → 0) with an unknown wave function uk(r) having
the lattice periodicity.

http://dx.doi.org/10.1007/978-3-319-17897-4_11
http://dx.doi.org/10.1007/978-3-319-17897-4_11
http://dx.doi.org/10.1007/978-3-319-17897-4_11
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It can be remarked that up to now k in the Bloch orbital is just a vector in the
reciprocal space used to label the one-electron states in a periodic potential. In the
next section the role and the physical properties of k shall be discussed.

In order to illustrate the Bloch orbital we will take into consideration a par-
ticular form for the function uk(r). uk(r) can be found from the one-electron
Schrödinger equation Hφ(r) = Eφ(r) by writing for φ(r) the Bloch orbital accord-
ing to Eq. (12.7):

[−�
2

2m
(∇ + ik)2 + V (r)

]
uk(r) = Ekuk(r) (12.8)

Under the assumption that uk(r) is weakly k-dependent, i.e. uk(r) � uk=0(r),
one can write φk(r) = uk=0(r)eik.r. From Eq. (12.8) one sees that for k = 0 uk=0(r)
is the solution of the atomic-type Schrödinger equation. The only difference is in the
boundary conditions which impose the continuity at the border of the Wigner-Seitz
cell (see Sect. 11.1). In Fig. 12.1 the function uk=0(r) for the 3s electron, in the Na
crystal derived under these constraints (this procedure is the core of the so-called
cellular method), is sketched. The corresponding Bloch orbitals are schematically
depicted in Fig. 12.2.

Fig. 12.1 Sketch of uk=0(r)
for 3s electron in the Na
crystal, derived by Wigner
and Seitz by means of the
cellular method (by
approximating the WS cell to
a sphere; see also the book
by Slater)

within the cell

in the insulated
atoma0

φ 3s

x

Fig. 12.2 Sketch of the real
part of Bloch orbitals in a
one-dimensional crystal for
different values of k, with a
interatomic distance. The
dashed lines are the real parts
of the corresponding plane
waves

π

π

π

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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12.3 Role and Properties of k

The reciprocal space vector k, labelling the eigenvalues of the translational operator
which commutes with the Hamiltonian, is a constant of motion: its components kx , ky

and kz have to be considered as good quantum numbers for the one-electron states.
Hence, as far as the translational invariance condition holds, the electron remains in
a given state k.2

A first illustration of the role of k can be provided by considering the limiting
case of vanishing potential energy V (r), often called the empty lattice condition, as
already mentioned. Then the eigenfunctions are

φk(r) ∝ eik · r (12.9)

with eigenvalues

Ek = �
2k2

2m
. (12.10)

Therefore for the empty lattice, k represents the momentum of the electron, in � units.
When V (r) �= 0 �k is no longer the momentum of the electron (it is not the

eigenvalue of −i�∇). In fact, by referring for simplicity to the x direction, one sees
that

−i�
∂

∂x
ukx (x)eikx x �= �kx ukx (x)eikx x .

The expectation value of the momentum is given by

− i�
∫

u∗
kx

e−ikx x ∂

∂x
ukx eikx x dx = �kx + (−i�)

∫
u∗

kx

∂

∂x
ukx , (12.11)

where the second term can be considered as an “average momentum” transferred to
the lattice. Nevertheless, even for V (r) �= 0, k continues to be a constant of motion
and then it labels the state.

Furthermore k plays the role of an electron momentum in regards of external
forces. A semiclassical way to prove this role of k is to consider the elemental work
δL made by an external force Fe (e.g. the one due to an external electric field). Since

δL = Fe · vgδt

2The translational invariance can be broken by defects, free surfaces or by the vibrational motions
of the ions. In this respect, it should be observed that, at variance with the states in molecules, here
the k-electron states are very close in energy and the vibrational motions of the ions may cause
variation of the electron state. These processes contribute to the electrical resistivity (see Sect. 13.4
for remarks on these aspects).

http://dx.doi.org/10.1007/978-3-319-17897-4_13
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with the group velocity vg = (1/�)∂Ek/∂k, one has

δL = Fe · 1

�

∂Ek

∂k
δt.

By equating the elemental work δL to δE = (∂Ek/∂k) · δk, one derives

δk
δt

� = �k̇ = Fe, (12.12)

illustrating how �k behaves as a momentum. Thus it can be defined as pseudo-
momentum or crystal momentum.

Up to now k is a continuous vector in the reciprocal space. As already seen in
atoms and in molecules, the boundary conditions determine discrete eigenvalues and
then discrete values for k. In this respect one possibility would be to fix the nodes
of the wavefunctions at the surface of the crystal. Quantum conditions similar to the
ones for a particle in a box can be expected. However, this procedure would imply
the transformation of the wavefunctions from running waves to stationary waves and
surface effects would arise. It is often more convenient to impose periodic boundary
conditions (Born-Von Karman procedure), as we shall see in the next section.

Problems

Problem 12.1 For k-dependence of the electron eigenvalues given by

E(k) = Ak2 − Bk4

derive the eigenvalue E(k∗) for which phase and group velocities of the electrons
are the same. Give the proper orders of magnitude and units for the coefficients A
and B.

Solution: From vph = ω/k = (Ak − Bk3)/� and vg = ∂ω/∂k = (2Ak − 4Bk3)/�,
one has 2A − 4Bk∗2 = A − Bk∗2, yielding

k∗ =
(

A

3B

) 1
2

and E∗ = k∗2(A − Bk∗2) = 2A2/9B. The orders of magnitude of A and B are
A ∼eV Å2 and B ∼eV Å4.

Problem 12.2 Discuss the trajectory of an electron under the Lorentz force due to
an external magnetic field along the z-direction, for energy eigenvalues of the form
Ek = αk2

x + βk2
y .

Solution: According to the extension of Eq. (12.12) to the Lorentz force, from

�
dk
dt

= −evg

c
× H,
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with vg the group velocity, one writes

dk
dt

= − e

�2c
(∇k Ek × H).

For magnetic field along the z-direction one has

dk
dt

= 2eH

�2c
(αkx j − βky i)

or

k̇x = −2eH

�2c
βky k̇y = +2eH

�2c
αkx

yielding

kx = kx0 cos(ωt + φ), ky = ky0 sin(ωt + φ),

where

ω = 2eH

�2c
(αβ)1/2

The trajectory in the k plane is an ellipse. From the integration of the group
velocity

vg = (2α/�)kx0 cos(ωt + φ)i + (2β/�)ky0 sin(ωt + φ)j,

it is found that also in the real space the trajectory of the motion is an ellipse, for a
given value of the energy, so that αk2

x0 = βk2
y0 = Ek0 . The motion induced by the

magnetic field is called cyclotron motion (see Appendix 13.1 for details).

Problem 12.3 In a cubic crystal the k-dependence of the electron eigenvalues is

E(k) = C − 2V1[cos kx a + cos kya + cos kza]

(a form that can be obtained in the framework of the tight-binding model, see
Sect. 12.7.3). Derive the acceleration of an electron due to an external electric field.

Solution: From the time derivative of the group velocity vg = (1/�)∇k Ek, by
considering that k̇ = Fe/�, the tensor describing the relationship between the electric
field E and the acceleration v̇g turns out

⎛
⎝ A cos kx a 0 0

0 A cos kya 0
0 0 A cos kza

⎞
⎠ ,
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with A = 2V1a2

�2 . Then, for E = Ex i + Eyj + Ezk the acceleration is

v̇g = −A[(eEx cos kx a) i + (
eEy cos kya

)
j + (eEz cos kza) k].

Since no off-diagonal elements of the tensor are present, the acceleration is along the
same direction of the field. The ratio between the external force and the acceleration
leads to the concept of effective mass (see Sect. 12.6).

12.4 Periodic Boundary Conditions and Reduction
to the First Brillouin zone

Let us refer to a region of macroscopic size in an ideal crystal containing N cells, N1

along the a direction, N2 along b and N3 along c. The reference volume is Nvc, with
vc = (a × b) · c. The electron wavefunctions φk have to be identical in equivalent
points of that region and of a replica region. By assuming for simplicity that the
crystal axes are perpendicular and considering the vector L = N1a + N2b + N3c,
then according to Eq. (12.7) one has to write

eik · r = eik · (r+L), (12.13)

the equality of uk(r) in the replica region being obviously granted. Then the condi-
tions

kx = n1
2π

aN1
, ky = n2

2π

bN2
, kz = n3

2π

cN3
(12.14)

with ni integers are obtained. By referring to the reciprocal lattice vectors (Sect. 11.3)
a∗, b∗, c∗, thus extending the above arguments to non-perpendicular crystal axes, the
periodic boundary conditions yield

k = n1
a∗

N1
+ n2

b∗

N2
+ n3

c∗

N3
. (12.15)

It should be noticed that k can be outside of the Brillouin cell. However, as we shall
see in the following, an electron state k outside the Brillouin cell (or first Brillouin
cell) is equivalent to a given state within the cell. Therefore, one can classify the
states by means of the set of discrete N vectors k given by Eq. (12.15), with ni such
that k lies within the Brillouin zone (BZ). This statement can be understood with the

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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aid of the planar reciprocal lattice, as sketched below:

a* 

reciprocal lattice vector
g’= 3 a* + b* 

b* 

BZ 

k

k’
g’

g′ is a reciprocal lattice vector that from k′ outside the BZ brings to a point inside
it. Thus k = k′ − g′ and the wavefunction φk′ can be written

φk′ = uk′(r)eik′ ·r = eik·reig′ ·ruk′(r). (12.16)

Now one can observe that eig′ · ruk′(r) has the lattice periodicity since, according to
Eq. (11.6), eig′ · l = 1. Hence eig′ · ruk′(r) = uk(r) is the function which makes φk in
the form of a Bloch orbital. Then

φk′ = φk and Ek′ = Ek (12.17)

and the electron states can be classified by means of N vectors k inside the BZ. The
states k′ outside this zone merely correspond to equivalent states, in a representation
called extended zone representation. This representation has to be compared to the
reduced zone representation where all states are reported inside the BZ. The details
of the electron states in the framework of specific crystal models (see Sect. 12.7) will
better clarify this aspect.

For a one-dimensional (1D) crystal one has the illustrative plots reported below,
for a band of the form as in Eq. (12.6).

a
basis

Lattice l = ma
WS cell

crystal cell

Reciprocal lattice

a* ≡ 2π/a

Brillouin cell

-π/a π/a

Energy curve
equivalent states

the band

-π/a π/a kBZ

extended zone representation

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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12.5 Density of States, Dispersion Relations
and Critical Points

As discussed in the previous section, the electron states can be described by referring
to the reciprocal space and in particular to the first Brillouin zone. The state of the
whole crystal can be thought to result from the assignment of two electrons, with
opposite spins, to each state k, in a way similar to the aufbau principle used in atoms
and in molecules. For the moment we shall refer for simplicity to the condition of
zero temperature, so that one can disregard the thermal excitations to higher energy
states.

One can sketch the situation as below,

k

k

k
The Fermi surface

“limiting” surface 
 (a sphere in the     
 empty lattice model)

state k

x

y

z

with a limit surface in the reciprocal space including all the occupied electron states.
This surface, corresponding to a sphere in the empty lattice model (Eq. (12.10)), is
called Fermi surface.

The following points should be remarked:

(i) if one increases the reference volume Nvc, by increasing the number of crystal
cells, the total number of k states increases;

(ii) if the crystal cell is expanded (vc increases) the BZ volume decreases;
(iii) for monoatomic crystals, with the basis formed by a single atom with one

valence electron, the BZ is half filled by occupied states;
(iv) again for monoatomic crystal, when each atom contributes with two valence

electrons, the BZ is fully occupied (the surface of the Brillouin cell not necessarily
coincides with the Fermi surface).

The density of k states D(k) can be derived once it is noticed that within the BZ
there are N states, equally spaced in the reciprocal volume. Then, the BZ volume
being v∗

c = 8π3/vc, one has

D(k) = N

v∗
c

= Nvc

8π3
. (12.18)
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The reference volume is often assumed 1 cm3. Since for such a volume the number
of states within the BZ is around 1022, although k in principle is a discrete variable,
in practice it is often convenient to treat it as a continuous variable, so that

∑
k′

→
∫

D(k)dk ≡ Nvc

8π3

∫
dk (12.19)

The sequence of energy levels E(k) is the band, that we have already introduced
qualitatively in Sect. 12.1. In analogy to wave optics, the k-dependence of the eigen-
values is called dispersion relation.

An important quantity characterizing the structure of the energy levels is the
density of energy states D(E) (density of states), namely the number of electronic
states within a unitary interval of energy around E = E(k). D(E) is related both to
D(k) and to the dispersion relation. A general expression for D(E) can be obtained
by estimating the number of states lying between the two surfaces, in the reciprocal
space, correspondent to constant energy given by E and E + dE, respectively (see
sketch below).

k

k

k

Surface at E

δV

Surface at constant  
energy E+dE

dS

dk⊥

E

x

E

v

z

The number of states in the volume δVE is

D(E)dE = Nvc

8π3
.2.δVE ,

the factor 2 accounting for the spin degeneracy. For the volume δVE in between the
two surfaces one has

δVE =
∫

S
dSE dk⊥ =

∫
S

dSE
dE

|∇k E(k)|
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since dk⊥ = dE/|∂E/∂k|. Therefore

D(E) = Nvc

4π3

∫
S

dSE
1

|∇k E(k)| . (12.20)

From the above expression it is evident that D(E) has singularities (Van Hove
singularities) whenever the gradient of E(k) in the reciprocal space vanishes. The
points, in the reciprocal space, where this condition is fulfilled are called critical
points. These critical points are particularly relevant for the optical and transport
properties since they imply a marked denseness of states. As it will be shown in the
next section, electrons around a critical point behave as if they had particular effective
masses.

12.6 The Effective Electron Mass

As shown in Sect. 12.3 the k-dependence of the energy controls the behavior of
the electron under external forces. In fact �k̇ = Fe, while the group velocity is
vg = (1/�)(∂E(k)/∂k). By differentiating vg one has

a = dvg

dt
= 1

�

∂2 E(k)

∂k2

∂k
∂t

= 1

�2

∂2 E(k)

∂k2
Fe (12.21)

On the basis of the classical analogy, the relationship between the force and the
acceleration points out that the electron reacts to the external force as if it had a mass

m̃∗ = �
2

(
∂2 E(k)

∂k2

)−1

. (12.22)

In the empty lattice limit, or free electron model (see Sect. 12.7.1), the effective
mass coincides with the real electron mass: m∗ = �

2/[∂2(�2k2/2m)/∂k2] ≡ m.
In order to illustrate the concept of effective mass let us refer to the dispersion

curve derived in Sect. 12.1 by applying to a linear chain of atoms (1D) the idea of
resonance among adjacent atoms: E(k) = 2Acos(ka), with k along x axis and A < 0.
Then, from Eq. (12.22), the effective mass turns out (see Fig. 12.3)

m∗ = − �
2

2Aa2

1

cos(ka)
. (12.23)
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+π/a-π/a

k

m* → ∞m* 

Negative
effective mass 

BZ 

Fig. 12.3 Effective mass m∗ as a function of k for a 1D model crystal, in correspondence to the
dispersion relation E(k) = 2Acos(ka), with A < 0

Finally, as it appears from Eq. (12.22), the effective mass m̃∗ has a tensorial char-
acter, with components (see Problem 12.3)

m∗
αβ = �

2

(
∂2 E(k)

∂kα∂kβ

)−1

. (12.24)

Problems

Problem 12.4 For a one-dimensional crystal the dispersion relation

E(k) = E1 + (E2 − E1) sin2

(
ka

2

)
,

is assumed, with lattice step a = 1 Å. By referring to a single electron in the band and
by neglecting any scattering process (with defects, boundaries or impurities) derive
the effective mass, the velocity and the motion of the electron in the real space, under
the action of a constant electric field E . For E = 100 V/m and (E2 − E1) = 1 eV,
obtain the period and the amplitude of the oscillatory motion.

Solution: The group velocity is vg = [
a(E2 − E1)

/
2�̄
]

sin(akx ). The effective mass
is m∗ =�̄

2[d2 E/dk2
x ]−1 = m0 sec(akx ), where m0 = [2�̄2/a2(E2 − E1)] is the mass

at the bottom of the band. m∗ becomes infinite for kx = ±π
/

2a (see plots).



12.6 The Effective Electron Mass 367

ππ

ππ

ππ

For a single non-scattered electron in a time-independent electric field Ex the force
implies dkx/dt = (−eEx/�). Then kx scans repetitively through the Brillouin zone,
with period t∗ = (2π�/aeEx ).

In the assumption that at t = 0 E = E1, m∗ = mo, kx = 0, the electron has finite
positive mass for some time, becoming infinite at t = t∗/4.

At t = t∗/2 the electron arrives at kx = −(π/a). The equivalence of this state
with the one at kx = +π/a corresponds to the return into the BZ (this corresponds to
the Bragg reflection of the De Broglie wave, see also Sect. 12.7.2). Then kx decreases
again and the mass divergence is reached at t = (3/4)t∗.

From the velocity

vg(t) = [
a(E2 − E1)

/
2�̄
]

sin(−2πt
/

t∗) = [
a(E2 − E1)

/
2�̄
]

sin(−aeEx t
/
�̄)

it is found that in the real space an oscillatory motion occurs:

x(t) =
∫

vgdt = [(E2 − E1)
/

2eEx ] cos(−aeEx t
/
�̄)
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For a = 1Å and Ex = 102 V/m, t∗ � 4 × 10−7 s and the distance covered would
be about 1 cm.

For the case of a sinusoidally modulated electric field, see the Problem 3.30 in the
book by Blakemore.

12.7 Models of Crystals

Now we are going to apply the general description given in previous sections to par-
ticular models of crystals. This should allow one to achieve a better understanding of
the physical concepts. Meantime the models to be described, to a good approximation
correspond to particular groups of solids.

12.7.1 Electrons in Empty Lattice

The condition of potential energy V (r) going to zero has already been occasionally
addressed. Now we shall explore in more detail this ideal situation and derive some
finite-temperature properties which reflect the thermal excitations and the statistical
effects.

When V (r) → 0 the electrons delocalize in the reference volume Nvc and are
described by Bloch orbitals (Eq. (12.7)) with constant uk(r). According to the one-
electron Schrödinger equation one has

φk = 1√
Nvc

eik · r (12.25)

and

E(k) = �
2k2

2m
. (12.26)

The valence electrons can be thought to move freely in the reference volume and
they become responsible for the electric conduction. This model is suited to describe
the metals.

The theory of metals in the framework of the free electron model was actu-
ally developed before the advent of quantum mechanics. Significant successes were
achieved, as the derivation of Ohm law and of the relationship between thermal and
electrical conductivity (Wiedemann-Franz law). At variance, the behaviour of other
quantities, such as the heat capacity and the magnetic susceptibility, requiring in the
derivation the use of Fermi-Dirac distribution, could hardly be explained in the early
theories. On the other hand, in spite of the successful quantum mechanical descrip-
tion, the limits of the free electron model become obvious when one recalls the huge

http://dx.doi.org/10.1007/978-3-319-17897-4_3
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E E E
(a) (b) (c)

First  Brillouin   
zone 

k k k
-3π/a π/a π/a  2π/a 3π/a π/a 2π/a 3π/a -π/a-2π/a -π/a -2π/a -π/a-3π/a 

n=0

n=1

Fig. 12.4 Dispersion curves for the empty lattice model, in a crystal of lattice step a, within: a the
extended zone scheme, b the reduced zone scheme, c the repeated zone scheme. The indexes (in b)
indicate the number of reciprocal lattice vectors a∗ required for the reduction to the first BZ

change in the electrical conductivity from metals to insulators or the existence of
semiconductors. In these compounds the role played by a non-zero lattice potential
is crucial (see next section).

The dispersion curve for electrons in empty lattice (Eq. (12.26)) is reported in
Fig. 12.4 in the extended, reduced and repeated zone representations, along a recip-
rocal space axis.

The constant energy surfaces in k space are spherical,

k

k

k

k

Fermi surface, 
at energy E = E

At T = 0 the electrons fill all the states up to a given wavevector of modulus kF ,
called the Fermi wavevector, which corresponds to the radius of the Fermi surface
(see Sect. 12.6). In a crystal with N cells and Z electrons per cell, kF can be directly
derived by considering the volume of the Fermi sphere, the density of states D(k)

(Eq. (12.18)) and the spin variable for each k state:

Z N = Nvc

8π3
.2.

4π

3
k3

F , (12.27)
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yielding kF = (3π2 Z/vc)
1/3. The Fermi energy EF = �

2k2
F/2m turns out

EF = �
2

2m

(
3π2 Z

vc

)2/3

= �
2

2m
(3π2)2/3n2/3

d , (12.28)

where nd is the number density of electrons (per cubic centimeter).
The Fermi wavevector kF is of the order of 108 cm−1, the correspondent velocity

is of the order of 108 cm/s, while the Fermi energy is of the order of 1 − 10 eV.
The total density of states for the volume Nvc can be derived starting from

Eq. (12.20):

D(E) = Nvc

4π3

∫
S

dSE
1

|∇k E(k)| = Nvc

2π2

(
2m

�2

)3/2

E1/2 = 3NZ

2

E1/2

E3/2
F

.

The density of states per unit cell is reported below:

E E

∝ ED (E)

3Z/2E

D(E) is often defined per unit volume or per atom.
Now we briefly discuss the situation occurring at finite temperature, when the

statistical excitation of the electrons above the Fermi level has to be taken into
account. The probability of occupation of the level at energy E is given by the Fermi
function

f (E) = 1

e
E−μ
kB T + 1

, (12.29)

where for temperatures much lower than the Fermi temperature TF = EF/kB the
chemical potential μ can be considered to coincide with the Fermi energy EF (of the
order of 104 K) (see Problem 12.7).
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Then the distribution function and the density of occupied states take the forms
plotted below:

k T

D(E)f(E,T)

D(E)

E EE0

k T=0.1E

T=0

E

1
f (E,T)

B

F

F

B

F

The average energy is

< E >=
∫

E D(E) f (E)dE,

and for T → 0

< E >=
∫ EF

0
ED(E)dE = 3

5
N Z EF , (12.30)

while at finite temperatures (Problem 12.14) it turns out

< E >=� 3

5
N Z EF + π2

4
N ZkB T

T

TF
. (12.31)

It is noted that the contribution to the energy at T �= 0 takes a form similar to the
classical energy 3kB T/2 (per electron) times the “fraction” ∼ T/TF of electrons in
the neighborhood of the Fermi level.

The specific heat CV and the magnetic susceptibility χP can be derived as illus-
trated in the Problems 12.14 and 12.10.

A simple way to estimate the order of magnitude of CV and χP is to consider that
only a fraction T/TF of all the electrons can be thermally or magnetically excited. In
fact, the states at E � EF are all occupied and the Pauli principle prevents double
occupancies. Then, from the classical expressions for Boltzmann statistics one can
approximately write

CV � ∂

∂T

(
3

2
ndkB T

)
T

TF
= γT, (12.32)

with γ = 3ndkB/TF (the correct expression is γ = π2 D(EF )k2
B/3, with D(EF ) the

density of states at the Fermi energy per unit volume, see Problem 12.14), while
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χP � ndμB
2

3kB T

T

TF
= ndμB

2

3kB TF
, (12.33)

(for the correct expression χP = μ2
B D(EF ) see Problem 12.10).

12.7.2 Weakly Bound Electrons

As already mentioned the free electron model cannot account for the properties of
crystals different from metals, as for instance the semiconductors, not even at a qual-
itative level. In order to explain the basic aspects of those solids one has to take into
account, at least in the perturbative limit, the effects of the lattice potential, in the so
called nearly free electron approximation. Even a weak perturbation causes relevant
modifications with respect to the empty lattice situation and yields the appearance of
the gap, namely the energy interval where no electron states can exist. In particular,
a marked gap arises for the electrons at De Broglie wavelength (of the order of the
inverse of |k|) close to the lattice step, in analogy with the diffraction phenomenon
in optics.

The simplest way to account for the effect of the lattice potential V (r) in modifying
the electron dispersion curve E(k) is to consider the perturbative correction to empty-
lattice states Eo(k):

E(k) = Eo(k)+ < k|V (r)|k > +
∑
k′ �=k

| < k|V (r)|k′ > |2
Eo(k) − Eo(k′)

, (12.34)

where

|< k|V (r)|k′ >≡
∫

e−i(k−k′) · rV (r)dr. (12.35)

For k − k′ �= g, with g reciprocal lattice vectors, the integral vanishes due to the fast
oscillations with r of the function e−i(k−k′) · r. Whereas for k − k′ = g the matrix
element reads

|< k|V (r)|k − g >≡
∫

e−ig · rV (r)dr = Vg, (12.36)

which is non zero since it corresponds to the coefficient Vg of the Fourier expansion
of the periodic lattice potential (see Eq. (11.3)):

V (r) =
∑

g

Vgeig · r. (12.37)

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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It can be remarked that for degenerate states, where Eo(k) = Eo(k′) at the
denominator in Eq. (12.34), one should rely on the perturbation theory for degenerate
states and still < k|V (r)|k′ >= 0, for k′ �= k + g.

Therefore Eq. (12.34) is rewritten

E(k) = Eo(k) + V o +
∑
g �=0

|Vg|2
Eo(k) − Eo(k − g)

, V o =
∫

V (r)dr (12.38)

modifying the dispersion curve for free electrons, at the second order. The validity
of Eq. (12.38) requires the rapid convergence of the series of Fourier components
|V (g)|2, which should be granted by a plausible lattice potential (often a pseudo-
potential). In addition it requires that

Eo(k) �= Eo(k − g),

which corresponds to avoid the wavevectors k at the BZ boundary. In fact, recalling
that Eo(k) = �

2k2/2m, the condition Eo(k) = Eo(k − g) implies (k)2 = (k − g)2

and then

k · g = g2

2
, (12.39)

corresponding to k at the BZ boundary, as depicted below for a 2D lattice.

BZ

g

k - gk

Thus at the BZ boundaries, where the states φk and φk−g have the same energy,
one has the breakdown of the perturbative approach leading to Eq. (12.38).

The situation arising at the zone boundaries can be deduced by mean of arguments
based on the perturbation theory for degenerate states. An illustrative example is
easily carried out for a one-dimensional lattice, with perturbative periodic potential
of the form:
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The zero-order wave function is

φ(1)
k = c1φk + c2φk−g

and the secular equation becomes

(
< k|V (r)|k > −ε < k|V (r)|k − g >

< k − g|V (r)|k > < k − g|V (r)|k − g > −ε

)
= 0

The choice of the potential implies < k|V (r)|k >=< k − g|V (r)|k − g >= 0
and

< k|V (r)|k − g >= 1

2a

∫ a

0
e−igx Vo(e

i2πx
a + e

−i2πx
a )dx = 1

2
Vo. (12.40)

Thus the correction to the unperturbed eigenvalues turns out ε± = ±Vo/2, implying
a gap for the states around the BZ boundaries, as schematically shown in Fig. 12.5
(to be compared to Fig. 12.4).

The gap can be thought to arise from the Bragg reflection occurring when the De
Broglie wavelength is λ = 2a. In fact, in this case (see Eq. (11.9)) the Bragg reflected
wave, travelling in opposite direction, induces standing waves, as sketched below:

+k

-k

The cosine and sine standing waves formed by the ± linear combination of
exp[(±ikx)], with k = π/a, yield different distributions of probability density.

−π/ π/  

E

−ε −ε 
+ε

V = 0 V ≠ 0

V ≠ 0

k

+ε

a a

k

Fig. 12.5 Schematic representation of the dispersion curve for 1D crystal, in the nearly free electron
approximation, by taking into account that for k far from the BZ boundaries Eq. (12.38) is a good
approximation, while approaching the BZ boundaries the correction given by Eq. (12.40) has to be
considered

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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Thus the electron charge densities ρ(x) around the lattice sites in the two cases
imply different energies:

For a travelling wave  
ρ(x) is homogeneous 

sin (πx/a)

cos (πx/a)

ρ(x)  goes as 

2

2

The characteristic feature of the gap generation for perturbed electrons can be
derived by constructing the complete k-dependence of the eigenvalues in a periodic
square-well potential, in one dimension. The potential energy in the Schrödinger
equation is assumed V (x) = 0 for 0 < x ≤ a and V (x) = V0 for a < x ≤ a + b,
the lattice parameter being (a + b). Kronig and Penney solved this artificial model
and derived the k-dependent eigenvalues. In the limit where V (x) is characterized
by Dirac δ functions separated by distance a (the product V0b remaining finite) the
dispersion curve in the extended zone scheme has the form sketched below:

12.7.3 Tightly Bound Electrons

In this model the electrons are assumed to keep, to a large extent, the properties they
have in the neighborhood of the atoms. Only in the region in between the atoms
sizeable effects occur and the atomic levels are thus spread in a band. The model
allows one to understand how the Bloch orbitals are related to the atomic states, in
a way similar to the case discussed for the benzene molecule (Sect. 9.3).

Let us refer to the lattice potential reported in Fig. 12.6, along a given direction
in the crystal.

By extending the idea of the molecular orbital used for the delocalization of the
2p electrons along the C6H6 ring, we shall assume a one-electron wavefunction of
the form

http://dx.doi.org/10.1007/978-3-319-17897-4_9
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+
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+ ++

region where V ≠ V

V

V(x) 

E

E

Atomic eigenvalues 

Fig. 12.6 Schematic form of the potential energy for tightly bound electrons, along a given direction
in the crystal

φk =
∑

l

eik · lφa(r − l). (12.41)

φa(r − l) is an atomic wavefunction centered at the l-th site and an eigenfunction of
the equation {

− �
2

2m
∇2 + Va(r − l)

}
φa(r − l) = Eaφa(r − l). (12.42)

To show that φk in the form as in Eq. (12.41) is a Bloch orbital, one multiplies by
exp(ik · r).exp(−ik · r):

φk(r) = eik · r
∑

l

e−ik · (r−l)φa(r − l).

Then it can be observed that the term multiplying the plane wave function has the
lattice periodicity and plays the role of uk(r) in Eq. (12.7), as requested. One also
notices that φk in the form 12.41 is a combination of localized atomic orbitals and
in the neighborhood of an atom the orbital behaves in a way similar to the one for
insulated atoms. The phase factor exp(ik · l) modifies the orbital from site to site,
while |φk|2 is unaffected.

To obtain the eigenvalues Ek, the eigenfunction in Eq. (12.41) is inserted in the
one-electron Schrödinger equation (−�

2∇2/2m + V )φk = Ekφk.
By recalling Eq. (12.42) one obtains

(Ek − Ea)
∑

l

eik · lφa(r − l) =
∑

l

(V − Va)e
ik · lφa(r − l). (12.43)
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By multiplying both sides of this equation by φ∗
a(r − l) and integrating, one has

(Ek − Ea)
∑

l

eik · l
∫

φ∗
a(r − l′)φa(r − l)dr =

=
∑

l

∫
φ∗

a(r − l′)(V − Va)e
ik · lφa(r − l)dr. (12.44)

When the orthogonality condition for l �= l′ is assumed

∫
φ∗

a(r − l′)φa(r − l)dr = 0, (12.45)

by taking into account that the sum in Eq. (12.44) only depends on the difference
h = l − l′, one finds

Ek = Ea +
∑

h

eik · h
∫

φ∗
a(r + h)V1φa(r)dr. (12.46)

In the matrix element in this equation, somewhat analogous to the resonance integral
(Sect. 8.1.2), V1 is the difference between the local V (r) and the atomic potential
energy Va (see Fig. 12.6). The matrix element is negative.

For cubic crystal, with atoms of the same species,

a

a

z

x

y

assuming that the matrix element for V1 is different from zero only when nearest
neighbors are involved, Eq. (12.46) takes the form

Ek = Ea + Vo + 2 < V1 >

[
cos(kxa) + cos(kya) + cos(kza)

]
, (12.47)

depicted in Fig. 12.7, along the kx direction.

http://dx.doi.org/10.1007/978-3-319-17897-4_8
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Fig. 12.7 Dispersion
relation E(k) for k along one
of the reciprocal lattice axis
in a cubic monoatomic
crystal, according to
Eq. (12.47). V0 is often
negligible

-π/a π/a

E

k

2<V >

E

The band E(k) results from the spread of the atomic energy level when the inter-
atomic distance in the crystal is reduced. The gap is the direct consequence of the
discrete character of the atomic eigenvalues Ea’s. One also realizes that the number
of states in a single band is N (2l + 1), for N atoms in the reference volume of the
crystal (l quantum number for the atomic orbital momentum). The band width is
proportional to < V1 > and, therefore, to the overlap integral, in a way somewhat
equivalent to the molecules (see Sect. 8.1). This explains why the internal bands are
narrow and why the cores states are little affected by the formation of the crystal, as
sketched below:

Ea
2

gap

Ea
1R → Req

band12 <V1>

R → ∞

Ea

R → Req R → ∞

In the framework of the tight binding model the effective mass (see Sect. 12.6)
of the electron can be derived from Eq. (12.47). For small k, by expanding Ek , one
obtains

Ek = Eo + Vo + 6 < V1 > − < V1 > a2k2,

http://dx.doi.org/10.1007/978-3-319-17897-4_8
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yielding

m∗ = −�
2

2a2 < V1 >
> 0,

For kx , ky, kz → (π/a) one has

m∗ = �
2

2a2 < V1 >
< 0,

and the electron responds to external forces as a positive charge.
When the spread of the atomic levels leads to the superposition of adjacent bands

related to different states, one has a degenerate band that can be thought to result
from hybrid atomic orbitals:

Band
overlap

This happens, for instance, in the case of diamond, Si and Ge, as shown in Fig. 12.8.
The energy bands are usually labelled by referring to the atomic orbitals which lead

to their formation. Furthermore, since the k-dependence of the energy in the recipro-
cal space reflects all the symmetry properties of the point group (see Sect. 11.1), one
could classify the electron states in a crystal on the basis of the symmetry properties.

Problems

Problem 12.5 For a one-dimensional crystal the Fourier components of a perturba-
tive potential energy are VG (Eq. (12.38)), with G reciprocal lattice vectors. Evaluate
the effective mass m∗ for k = 0 in terms of the lattice step a. Reformulate the
evaluation for V (x) = 2V1 cos(2πx/a).

Solution: From

Ek = E0
k + V0 +

∑
G �=0

|VG |2
(E0

k − E0
k−G)

,

with E0
k = �

2k2/2m, one has

Ek = �
2k2

2m
+ V0 − 2m

�2

∑
G �=0

|VG |2
G(G − 2k)

.

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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Fig. 12.8 Sketchy picture of the energy bands for the (ns)2(np)2 electronic configurations showing
how, below a certain interatomic distance R, the p and s bands overlap and change the electronic
structure of the crystal. While for R > R∗ one has a partially filled p band and the possibility
of charge transport (see Chap. 13) (this is the case of Pb, in regards of the 6p and 6s electrons),
for R < R∗ one has an entirely filled valence band and therefore an insulator. Note that for those
elements there are two atoms for each unitary cell. Thus for R < R∗ when the zones overlap, the
lower zone system is exactly filled by eight electrons per unit cell. When the gap to the upper band
(which is empty at T = 0) is comparable to the thermal energy kB T , then the electrons can be
promoted to the upper conducting band. In this case one can have an intrinsic semiconductor, as it
happens for Si and Ge, in terms of the n = 3 and n = 4 electrons (see Sect. 13.1) (figure inspired
by Alonso and Finn book)

From Eq. (12.22)

1

m∗ = 1

�2

∂2 E

∂k2
= 1

m
− 16m

�4

∑
G �=0

|VG |2
G(G − 2k)3

.

and G = n2π/a. For k = 0 one finds

1

m∗ = 1

m
− ma4

�4π4

∞∑
n=1

∣∣VGn

∣∣2
n4

.

For V (x) = 2V1 cos(2πx /a) only VG for n = ±1 is non-zero and

m∗ = m

(
1 − 2m2a4V 2

1

�4π4

)−1

.

http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Problem 12.6 For a one-dimensional crystal of lattice step a generalize the result
obtained at Sect. 12.7.2 exactly at the zone boundary, in order to obtain the energy
E(k) as a function of k for k close to π/a.

Solution: Near k = π/a the wavefunction can be written as the linear combination
of the two degenerate unperturbed eigenfunctions (see Eq. (12.40)):

ψ = c1eikx + c2ei(k−2π/a)x .

By substituting this tentative wavefunction into the Schrödinger equation

− �
2

2m

d2ψ

dx2 + V ψ = εψ,

first multiply by e−ikx and integrate over all space. Then multiply by e−i(k−2π/a)x

and again integrate. From the secular equation for c1 and c2 (see the equivalent at
Sect. 12.7.2), the eigenvalues turns out

E = �
2k2

2m
+ �

2π

ma

⎧⎨
⎩
(π

a
− k

)
±
[(π

a
− k

)2 +
(

amV0

2π�2

)2
]1/2

⎫⎬
⎭ .

Problem 12.7 Consider a metal with one electron per unit cell in geometric dimen-
sion n = 1, 2 and 3 and derive the density of states D(E) as a function of n. Then
give a general expression for D(E) in terms of the Fermi energy. Finally derive the
chemical potential μ (Hint: write the total number of electrons in terms of the Fermi
distribution and use the identity

∫ +∞
−∞ f (t) et dt

(1+et )2 = f (0) + π2

6 f ′′(0)).

Solution: From EF = �
2k2

F/2m, since the total number of states including the spin
degeneracy is

N = 2D(k)
4πk3

F

3
for n = 3, N = 2D(k)πk2

F for n = 2,

N = 2D(k)2kF for n = 1,

one finds EF = (�2/2m)(3π2 N/V )2/3 for n = 3, EF = π�
2 N/m A for n = 2 and

EF = (�2/2m)(N/2L)2 for n = 1.
One can write

D(k)dnk = 2

(√
2m

2π�

)n

dn x
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with x = √
E . From D(E)d E = ∫

D(k)dnk

D(E) = 3N

2

E1/2

E3/2
F

for n = 3, D(E) = m A

π�2
for n = 2,

D(E) = N

2

E−1/2

E1/2
F

for n = 1.

In general D(E)d E = Nd(E/EF )n/2.
The total number of occupied states at finite temperature is

N =
∫ ∞

0

D(E)

eβ(E−μ) + 1
d E = N

∫ ∞

0

1

eβ(E−μ) + 1
d

(
E

EF

)n/2

=

= N
∫ ∞

−βμ

1

et + 1
d

(
μ + (t/β)

EF

)n/2

= N
∫ ∞

−βμ

et

(et + 1)2

(
μ + (t/β)

EF

)n/2

dt

In the low temperature limit (T � TF , −βμ → −∞) one has

1 =
(

μ

EF

)n/2

+ π2

6

n(n − 2)

4

(
T

TF

)2 ( μ

EF

)(n/2)−2

+ . . .

yielding

μ = EF

(
1 − π2

12
(n − 2)

(
T

TF

)2

+ . . .

)

Problem 12.8 The specific mass (density) of alluminum is d = 2.7 g/cm3. Evaluate
the Fermi energy, the Fermi velocity, the average velocity of the conduction electrons
and the quantum pressure (for T → 0).

Solution: The number of atoms per cubic cm turns out N = 0.54 · 1023. For three
free-electrons per atom from Eq. (12.28)

EF = �
2

2m
(3π2 Ne/V )2/3 = 11.7 eV,

(with Ne = 3N ) and vF = √
2EF/m = 2.03 · 108 cm/s. The distribution function

for the velocities is

p(v)dv = D(E)d E = Ned

(
v

vF

)3

= 3Ne
v2

v3
F

dv
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and then

< v >=
∫ vF

0
vp(v)dv = 3

4
vF = 1.5 · 108 cm/s.

From Eq. (12.30) and P = −∂ < E > /∂V one has P = (2/3)(3/5) (Ne/V )EF �
1.2 · 1012 dyne/cm2.

Problem 12.9 In the assumption that the electrons in a metal can be described as
a classical free-electron gas, show that no magnetic susceptibility would arise from
the orbital motion.

Solution: The magnetization is M = NkB T d(lnZ/d H)T . The classical partition
function is

Z ∝
∫ ∞

−∞
dx dydz

∫ ∞

−∞
dpx dpydpzexp

[
− E

kB T

]

with

E = (mv)2

2m
= (p + e

c A)2

2m

with A the vector potential and p = mv − (e/c)A the canonical moment. By trans-
forming the volume element in the phase space from canonical to kinetic moments
one has

Z ∝
∫ ∞

0
d(mv)(mv)2exp

[
− (mv)2

2mkB T

]
,

field independent, thus implying M = 0. This is the physical content of the Bohr-van
Leeuwen theorem.

Problem 12.10 Derive the paramagnetic susceptibility due to the free electrons in
a metal (Pauli susceptibility).

Solution: In the absence of a magnetic field the number of electrons with spin up N+
is equal to the number of electrons with spin down N− and the total magnetization
M = μB(N+ − N−) is zero.

From the field H the energy of spins up is lowered by an amount μB H , while
the one of the spins down is increased by the same amount and the unbalance in the
populations yields the magnetization. The number of spins up is

N+ =
∫ ∞

−μB H
f (E, T )

D(E + μB H)

2
dE,
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(the factor 1/2 in the density of states D(E) takes into account that only the electrons
with spin up are considered). Introducing E ′ = E + μB H one can write

N+ =
∫ ∞

0
f (E ′ − μB H, T )

D(E ′)
2

d E ′.

In the weak-field limit f (E ′ − μB H, T ) � f (E ′, T ) − μB H(∂ f/∂E)E ′ and

N+ = 1

2

∫ ∞

0
f (E ′, T )D(E ′)d E ′ − 1

2

∫ ∞

0
μB H

(
∂ f

∂E

)
E ′

D(E ′)d E ′.

In the same way

N− = 1

2

∫ ∞

0
f (E ′, T )D(E ′)d E ′ + 1

2

∫ ∞

0
μB H

(
∂ f

∂E

)
E ′

D(E ′)d E ′

For H → 0 χP = M/H and therefore, from M = μB(N+ − N−),

χP = μ2
B

∫ ∞

0

(−∂ f

∂E

)
E ′

D(E ′)d E ′

For EF � kB T and provided that the density of states varies smoothly around EF ,
one writes (−∂ f/∂E)E ′ � δ(E ′ − EF ), so that

χP = μ2
B D(EF )

(see Eq. (12.33)). D(E) is the density of states per unit volume and thus χP is
dimensionless.

According to the above equation one finds for the electron contribution to the spin
susceptibility in alkali metals:

Li : 1 × 10−5, Na : 0.83 × 10−5, K : 0.67 × 10−5,

Rb : 0.63 × 10−5, Cs : 0.58 × 10−5.

The experimental data are 2.5, 1.4, 1.1, 1 and 1 (in 10−5 units), respectively.

Problem 12.11 For a cubic metal at lattice step a = 5 Å and electron density
2 × 10−2 electrons per cell, evaluate the temperature at which the electron gas can
be considered degenerate and write the approximate form for the specific heat well
above that temperature.
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Solution: The electron density is

n = 2 × 10−2

a3
= 1.6 × 1020 cm−3

and the average spacing among the electrons is d � (3/4πn)1/3 � 13 Å.
The electron gas can be considered degenerate when d ≤ λDB , the De Broglie

wavelength. Since λDB � h/
√

3mkB T , the gas can be considered degenerate for
T < h2/(3d2mkB) � 8600 K. Above that temperature the gas is practically a
classical one and the specific heat is CV � (3/2)kBn.

Problem 12.12 The bulk modulus B = −V (∂P/∂V )T of potassium crystal at low
temperature is B = 0.28 × 1011 dyne/cm2. Discuss this result in the assumption that
B is entirely due to the electron gas.

Solution: The pressure of the electron Fermi gas is P = (2/5)nEF , with n electron
density (see Problem 12.8). Then

B = −V
∂P

∂V
= 2

3
nEF

For a specific mass of 0.86 g/cm3, the electron density is n = 1.4 × 1022 cm−3 and
the Fermi energy is EF = 2.1 eV. Then B � 0.32 × 1011 dyne/cm2, in rather good
agreement with the experimental finding.

Problem 12.13 Prove that in a semiconductor at thermal equilibrium the concen-
tration of electrons and of vacant states, called holes, in the valence band are given
by

n � Nce−(Ec−EF )/kB T , p � Nve−(EF −Ev)/K B T

where

Nc = 2

(
2πmekB T

h2

)3/2

Nv = 2

(
2πmhkB T

h2

)3/2

,

EF is the Fermi level (in the middle of the gap), Ec the bottom of the conduction
band and Ev the top of the valence band (me and mh are the effective masses of
electrons and of holes). Assume parabolic bands, going as (k − kc)

2 and (k − kv)
2.

Then evaluate

(a) the value of Nc for mc = m (m the electron mass) and T = 300 ◦K;
(b) the carriers concentration in Si, at T = 300 ◦K, assuming mc = mh = m, and a

gap of 1.14 eV.

Solution: At thermal equilibrium the concentration of electrons is given by
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n =
∫ Emax

Emin

Dc(E) f (E)dE

the density of states Dc(E) per unit volume being

Dc(E) = (4π/h3)(2mc)
3/2(E − Ec)

1/2.

The Fermi-Dirac distribution for (E − EF ) � kB T can be approximated as

f (E) = 1

1 + e(E−EF )/kB T
� e−(E−EF )/kB T

Then

n = 4π

h3
(2mc)

3/2e−(Ec−EF )/kB T
∫ Emax−Ec

0
x1/2e−x/kB T dx

� 4π

h3
(2mc)

3/2e−(Ec−EF )/kB T
∫ ∞

0
x1/2e−x/ kB T dx

= 4π

h3
(2mc)

3/2[e−(Ec−EF )/kB T ]1

2
π1/2(kB T )3/2

yielding

n = 2

(
2πmekB T

h2

)3/2

e−(Ec−EF )/kB T

In analogous way the hole concentration can be derived.
Since at 300 K Nc = 2.5 × 1019 cm−3 the electron and hole concentrations in

Si turn out n = p = 3.14 × 109 cm−3. It can be remarked that this value refers to
pure Si (intrinsic semiconductor), while in practice impurities induce larger carrier
concentrations.

Problem 12.14 Derive the contribution to the specific heat associated with the con-
duction electrons in a metal, for temperature small compared to EF/kB .

Solution: In a way analogous to the derivation of the Pauli susceptibility (see Prob-
lem 12.10) the increase of the electron energy when the temperature is brought from
0 to T is written in the form

U (T ) =
∫ ∞

EF

(E − EF ) f (E)D(E)dE −
∫ EF

0
(E − EF )(1 − f (E))D(E)dE.
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In the second integral (1 − f (E)) gives the probability that an electron is removed
from a state at energy below EF . Then

CV =
∫ ∞

0
(E − EF )

∂ f

∂T
D(E)d E � D(EF )

∫ ∞

0
(E − EF )

∂ f

∂T
dE.

Since

∂ f

∂T
= (E − EF )

kB T 2

e(E−EF )/kB T

[e(E−EF )/kB T + 1]2

by utilizing
∫∞
−∞ x2ex dx/(ex + 1)2 = (π2/3), one obtains

CV = π2

3
D(EF )k2

B T

This result can be read as the derivative of the product kB T times the fraction T/TF

of the electrons in the energy range kB T around EF (see Eqs. (12.31) and (12.32)).

Problem 12.15 Derive the equation of state (relation between P, V and T ) for the
Fermi gas, in the limit T → 0.

Solution: From the energy (see Eq. (12.31))

U = (3/5)N EF

(
1 + 5π2

12

(
kB T

EF

)2

+ . . .

)

with

EF = (�2/2m)

(
3π2 N

V

)2/3

(Eq. (12.28)), one writes

P = −∂U

∂V
= 2

5

N EF

V

(
1 − 5π2

18

(
kB T

EF

)2

+ . . .

)

i.e.

PV = (2/5)N EF

(
1 − 5π2

18

(
T

TF

)2

+ . . .

)
.

Problem 12.16 The temperature dependence of the specific heat in Gallium is
reported in the figure
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Noticing that at low temperature the contribution to the specific heat due to lattice
vibrations (see Sect. 14.5) can be neglected, from the data derive the Fermi energy
and the electric field gradient at the nucleus (assume for simplicity that 69Ga with
I = 3/2 and Q = 0.168 barn is the only isotope).

Solution: From the experimental data one deduces the straight line CvT 2 = (a+bT 3)

with a � 4 · 10−4mJ · K/mole and b � 0.6 mJ/moleK2. The second contribution is
associated with conduction electrons. From Cv = (π2/3) · k B

2T D(EF ), one derives
EF � 5.6 eV (see Problem 12.14 and Sect. 12.7.1).

The first term for CV , going as 1/T 2, is the high-temperature tail of the Schottky-
like specific heat C Q

v associated with the hyperfine split by quadrupolar inter-
action, with energy separation E . Since for kB T � E, for a mole one has
C Q

v = (1/4)NAkB(E/kB T )2 (see Problem 5.12), one finds E � 6.3 × 10−20 erg.
For I = 3/2 the splitting between the MI = ±1/2 and MI = ±3/2 levels due to
quadrupole interaction is E = eQVzz/2, with Vzz the principal component of the
electric field gradient (see Sect. 5.3). Then one obtains Vzz � 16 × 1014 u.e.s./cm3.

Problem 12.17 Consider two cubic clusters of Lithium (lattice step a = 3.5 Å
and bcc structure) formed by 1.6 × 107 and 16,000 atoms, respectively. Evaluate
the Fermi energy for each cluster and estimate the separation among the electronic
levels in proximity of the center of the Brillouin zone.

Solution: The electron density is n = 2/a3 = 4.6×1022 cm−3 and the Fermi energy
EF = 4.7 eV, size independent. The size affects the spacing among k states. The first
cluster is a cube of size L1 = 200a, while the second one of size L2 = 20a. Then
the separation among the lowest energy levels is

ΔE = �
2

2m

(
2π

L1,2

)2

,

http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_5
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namely ΔE1 = 0.11 × 10−15 erg and ΔE2 = 1.1 × 10−14 erg � 6.9 meV, corre-
sponding to T � 80 K. Quantum size effects can be expected at low temperature.

Problem 12.18 The density of Lithium is 0.53 g/cm3. Evaluate the contribution
to the bulk modulus due to electrons, in the low temperature range. Compare the
estimated value with the experimental result B � 0.12 × 1012 dyne/cm2.

Solution: From Problem 12.12, the electron density being n = 4.7 × 1022 cm−3 and
the Fermi energy EF = 4.74 eV, then B = 2.4 × 1011 dyne/cm2, not far from the
experimental result.

Problem 12.19 In semiconductors the concentration of itinerant electrons is low
and one can expect that the Pauli susceptibility turns to a Curie-like susceptibility
characteristic of localized electrons. Discuss the derivation of the Pauli susceptibility
for semiconductors (neglect the electron-electron Coulomb interaction).

Solution: The Pauli susceptibility is

χP = μ2
B

∫ ∞

0

(−∂ f

∂E

)
E ′

D(E ′)d E ′

(see Problem 12.10).
For diluted Fermi gas, at room temperature the statistical distribution function can

be written f (E) � e−(E−EF )/kB T (see Problem 12.13).
Thus −∂ f/∂E = f/kB T and the susceptibility turns out

χP = μ2
B

kB T

∫ ∞

0
f (E ′)D(E ′)d E ′ = n

μ2
B

kB T

with n concentration of conduction electrons.
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Chapter 13
Miscellaneous Aspects Related
to the Electronic Structure

Topics

Covalent, Metallic, Ionic and Molecular Crystals
Cohesive Energies and Bonding Mechanisms
Lennard-Jones Potential
Crystal-field Effects in Magnetic Ions
Electric Current Flow
Magnetic Properties of Itinerant Electrons

13.1 Typology of Crystals

In the light of the main aspects involving the electronic properties, a classification of
crystalline solids can be devised. This can be done either in a valence-bond scenario
by looking at the bonding mechanisms or by referring to the electric conduction and
the band structure.

In the first case the crystals can be divided in covalent, metallic, ionic and mole-
cular. In covalent crystals the bonding mechanism and the strength of bonds are
similar to the ones in covalent molecules. In other words, the crystal can be con-
ceived as a “macroscopic” molecule with marked directional bonds between pairs
of atoms where spin-paired electrons can be placed. Therefore, covalent crystals are
stiff, scarcely plastic and fragile. Illustrative examples can be found in carbon-based
crystals, such as diamond and graphite. Diamond, as well as the isostructural Ge,
Si, Sn and Pb crystals, result from an ideally infinite network of sp3 hybrid orbitals
(Sect. 9.2). On the other hand, in graphite the sp2 hybridization yields a planar atomic
arrangement, with weak interaction among adjacent planes (see Sect. 11.3).

Metallic crystals are somewhat equivalent to large molecules with electrons
delocalized through all the volume, an extension of what discussed in benzene
(Sect. 9.3). The description of these systems in a VB-like framework would require
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the superposition of a large number of equivalent configurations. It is evident that
a Bloch-like approach is more convenient for the metallic crystals. A suitable way
to describe these solids is to refer to a model of positive ions at the lattice sites
embedded in a sea of electrons, with a nearly uniform charge distribution. In general
the bonds are not saturated. For instance, in Li metal (bcc structure) each ion has 8
nearest neighbors and in a molecular-like picture one can think that there is 1/4 of
electron on each orbital.

In ionic crystals the electrons are characterized by molecular-like orbitals centered
at the atoms having larger electronegativity, as in the case of strongly heteronuclear
molecules (see Sect. 8.5). The attractive interaction may often be approximated to
the one for point charge ions and in a crude approximation the ions can be assumed
to have the closed shells configurations. For example, in LiF crystal, the (1s)2 shell
for Li+ and the (2p)6 shell for F−. From the X-ray diffraction peaks one can estimate
the actual number of electrons at a given site. For instance, in NaCl it turns out that
there are 17.85 electrons at Cl site. Thus the order of magnitude of the bond energy
per pair is −(0.85e)2/R, with R interatomic distance.

The hydrogen bond O-H-O typical of hydrides, of the ferroelectric KDP (potas-
sium dihydrogen phosphate) and of other organic compounds, can be considered as a
type of ionic bond. The hydrogen atom can be thought in a local double-well poten-
tial. Several electric and elastic properties of these crystals are rather well explained
within this simple model.

In molecular-like scenarios one can hardly devise any bonding mechanism for
neutral molecules at high ionization energy or for closed shell atoms, such as inert
gases. In these cases the aggregation into a solid state can occur because of an
interaction that we have not directly considered in molecules: the Van der Waals
forces, associated with fluctuating electric dipoles. This mechanism yields a weak
attractive potential decreasing as R−6 and leads to the formation of molecular crystals
(a mention has been given in Problem 8.6 and that interaction shall be described in
some detail at Sect. 13.2.2).

The classification scheme based on the bonding mechanisms is not very suited to
describe the properties involving the electrical transport. This aim is better achieved
by referring to the band scheme, in the framework of Bloch orbitals. Let us remind that
a band arising from s atomic states can be occupied by 2N electrons (N the number of
atoms in a reference volume) while in the p band this number is 3 × 2N . As already
mentioned, the electrical conductivity originates from the “acceleration”(namely
from the change of state) induced by the electric field, for a single electron described
by the equation �dk/dt = −eE (see Sect. 12.3). A few observations can be made
in regards of the current flow (for some more detail see Sect. 13.4). In a fully filled
band each k state is occupied by two electrons and a neat flow of current is not
possible (unless the electric field is so strong to alter the unperturbed bands) and one
has an insulator. For a partially filled band electrical transport can occur and one
has a conductor. When the gap between full valence band and an empty conduction
band is of the order of 0.1–1 eV, then one has an intrinsic semiconductor. These
crystals are insulators for T → 0, while progressive increase in the conductivity
with increasing temperature occurs, as a consequence of the partial filling up of the

http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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conduction band. At variance, in a metal the conductivity decreases with increasing
temperature due to the increase in the scattering rate between the electrons and the
ionic vibrational modes.

In such a scenario one can predict that alkali crystals as Li, Na, Rb, etc. and
transition metals as Cu, Ag and Au are metallic conductors, since they have an
odd number of electrons per unit cell. This rule however, is not quite valid and
often one has to pay attention to other details. For instance, although As, Sb and Bi
atoms convey five electrons in the conduction band, they generate a crystal which
is essentially insulator. Without going into the real aspects of the electronic band
structure, we only mention that the reason for the quasi-insulating character is related
to the generation of five bands that are completely filled by the valence electrons of
the two atoms present in the unit cell.

In some crystals there is also the possibility of a tiny superposition of bands,
giving a small metallic character and causing electrical conduction with a particular
temperature dependence: these are the semimetals.

Strong band overlap (see Sect. 12.7.3 and Fig. 12.8) can drastically change the
simplified picture given above. For instance, according to the previous statements Be
crystal (atomic configuration (1s)2(2s)2) should be insulator. This is not the case:
the overlap between s and p orbitals generates a partially occupied hybrid band, a
situation similar to the one in diamond (Fig. 12.8). The overlap of these bands yields
a fully occupied valence band and an empty conduction band in this latter crystal. At
the equilibrium distance characteristic of Si and Ge the gap between the two band
diminishes and a semiconducting behavior can be observed. On the other hand, Sn
can undergo a transition from metallic to semiconductor, in view of the proximity to
the overlap condition. Finally Pb is a metal, since the 6p band is only partially filled
(Fig. 12.8).

Semiconducting behavior can be expected for a class of materials with tetrahedral
structure generated by sp3 hybridization. The so-called III-V semiconductors are the
crystals in which the basis, instead of being formed by the same atoms at (0,0,0) and
(1/4,1/4,1/4) in the fcc structure (as in C, Si, Ge and Sn) involves one element of the
third group (Ga for instance) and one of the fifth group (As, for example). The covalent
“transfer” of one electron from As to Ga gives rise to the s2 p2 configuration in both
atoms, as in Ge or Si, thus triggering the sp3 hybrid bands and the semiconducting
behavior. The band gaps in Ge (0.75 eV) and in Si (1.14 eV) (indirect gaps, the
maximum of the valence band and the minimum of the conduction band occurring
at different points of the Brillouin zone) are of the same order of magnitude in GaAs
(1.52 eV) and in GaSb (0.81 eV).

In ionic crystals the gap between the fully occupied valence band and the empty
conduction band can be larger than about 5 eV, thus explaining their insulating
behavior.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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13.2 Bonding Mechanisms and Cohesive Energies

The cohesive energy is defined as the difference between the energies of the atoms
for interatomic distance R → ∞ and the one for R = Re, the interatomic equilib-
rium distance. From thermodynamical and spectroscopic measurements the order of
magnitude of the cohesive energies turn out:

(i) around 5 eV/atom in covalent crystals (e.g. 7.36 eV for diamond);
(ii) around 1 eV/atom in metallic alkali crystals;
(iii) around 5-10 eV/(pair of atoms) in ionic crystals;
(iv) from 10−2 to 10−1 eV in molecular crystals, with a sizeable increase in the

binding energy with increasing atomic number for inert atoms crystals.
Quantitative estimates of the cohesive energy are evidently difficult, since in prin-

ciple they correspond to the derivation of the eigenvalues in the Schrödinger equation
for the electronic states. It is possible to achieve satisfactory descriptions of the rel-
evant aspects of the binding mechanisms and to obtain rather good estimates of
the cohesive energies by referring to limit ideal situations. For instance, one usu-
ally refers to molecular-like scenarios or to ionic atomic configurations. In covalent
crystals, where the bonds are similar to the ones in molecules, the cohesive energy
per molecule is expected around the one described at Chap. 8. The bonding mecha-
nism in metals can be considered as due to the attractive term related to the electron
delocalization (favored by the band overlap) and the repulsive term arising from the
increase of the Fermi energy when the electron density increases (see Eq. (12.28)).

More quantitative descriptions of the binding energies for ionic and molecular
crystals shall be given in the subsequent subsections.

13.2.1 Ionic Crystals

Let us refer to a crystal with N positive and N negative ions, per cubic cm. In the
point-charge approximation the interaction between two ions is written

Vi j = ± e2

Ri j
+ Be−Ri j /ρ, (13.1)

where the sign of the first term depends on the signs of the charges at the i th and
j th ions. The second term has the Born-Mayer form used to take into account the
short-range repulsion in heteronuclear molecules (Eq. (8.36)).

For a given i th ion the energy is Vi = ∑′
j Vi j and by writing the distance Ri j =

pi j R (R being the nearest neighbour distance) one has

Vi =
′∑
j

Vi j = e2

R

∑
j

′ (±1)

pi j
+ zBe−R/ρ, (13.2)

http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_8


13.2 Bonding Mechanisms and Cohesive Energies 395

where in view of its short-range character the repulsive term has been limited to the
z nearest neighbours. Then the total energy becomes

VT = N Vi = − Ne2

R
α + N zBe−R/ρ, (13.3)

with

α =
∑

j

(±1)

pi j
, (13.4)

the Madelung constant.
From Eq. (13.3) one realizes that α has to be positive, in order to grant the

aggregation of the ions to form a crystal. At the equilibrium interatomic distance

(
dV

d R

)
R=Re

= 0 = Nαe2

R2
e

− N z

ρ
Be−Re/ρ (13.5)

and then (ραe2/zB) = R2
e e−Re/ρ, thus giving for the total energy

V eq
T = − Nαe2

Re

[
1 − ρ

Re

]
. (13.6)

The characteristic constant ρ � Re can be estimated from the crystal compress-
ibility (see Problem 13.1) and usually turns out of the order of 0.1Re. Thus Eq. (13.6)
shows that the cohesive energy is of the order of the dissociation energy of the ideal
molecule formed by positive and negative ions and that it is largely controlled by the
Madelung constant.

The estimate of α is not trivial due to the slow convergence of the sum in Eq. (13.4).
It has to be noticed that the series of the positive and of the negative terms, taken
separately, diverge in 3D crystals. Numerical methods to grant fast convergence for
α have been devised a long ago, based on the choice of reference regions where
the monopole contribution vanishes (Ewald procedure). The remaining dipole or
quadrupole contributions converge with increasing distance faster than the Coulomb
terms.

Typical values for the Madelung constants are α = 1.7475 for crystals with NaCl-
type structure and α = 1.7626 for crystals with CsCl-type structure. In the simple
case of a chain with alternating positive and negative ions the evaluation of α is
straightforward:

α = 2

[
1 − 1

2
+ 1

3
− 1

4
+ ...

]
= 2ln2. (13.7)
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13.2.2 Lennard-Jones Interaction and Molecular Crystals

In order to describe the bonding mechanism in molecular crystals let us first derive
the form of the attractive interaction among the atoms when no molecular-like mech-
anisms (as the ones described in Chaps. 8 and 9) are active. The mechanism we shall
consider originates from fluctuating electric dipoles, first described as Van der Waals
interaction and later on known in the quantum mechanical scenario as London inter-
action.

To derive the London interaction let us refer to two hydrogen atoms along the x
direction:

R

x x

H H

x

rr
1

2

1

1

2

2

The distance R is larger than the one at which the bonding mechanisms leading to the
Hydrogen molecule would become relevant (in other words R is a distance where the
overlap, resonance or exchange integrals can be neglected; see Problem 8.6). Then
the unperturbed wavefunction is

φo(1, 2) = φn1, l1(r1)φn2, l2(r2), (13.8)

with eigenvalue Eo = Eo
n1, l1 + Eo

n2, l2. The perturbation Hamiltonian is the dipolar
one

Hd = e2

R3

[
r1 · r2 − 3(r1 · x̂)(r2 · x̂)

]
,

that is rewritten in the form (see Problem 8.6)

Hd = − e2

R3

[
2x1x2 − y1 y2 − z1z2

]
. (13.9)

From second order perturbation theory the ground-state energy turns out

E(R) = 2Eo
1s+ < 0|Hd |0 > +

∑
k �=0

< 0|Hd |k >< k|Hd |0 >

Eo
0 − Eo

k

(13.10)

Hd is an odd function and < 0|Hd |0 >= 0.

http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_9
http://dx.doi.org/10.1007/978-3-319-17897-4_8
http://dx.doi.org/10.1007/978-3-319-17897-4_8
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By resorting to arguments already used in the derivation of the atomic polarizability
(Sect. 4.2) and noticing that the denominator varies from −e2/ao to −3e2/4ao, one
can write

E(R) � 2Eo
1s − ao

e2

[∑
k

< 0|Hd |k >< k|Hd |0 >− < 0|Hd |0 >< 0|Hd |0 >

]

= 2Eo
1s − ao

e2
< 0|H2

d |0 >. (13.11)

Thus from Eq. (13.9),

E(R) � 2Eo
1s − ao

e2

e4

R6

[
4 < x2

1 >< x2
2 > + < y2

1 >< y2
2 > + < z2

1 >< z2
2 >

]
.

(13.12)

For Hydrogen the expectation values of the square of the components x, y and z are
< r2 > /3 = a2

o and then

E(R) � 2Eo
1s − 6e2a2

o

R6
a3

o, (13.13)

showing that an attractive interaction has arisen.
The London interaction can be depicted as related to the dipolar interaction

between an instantaneous dipole in one atom and the one induced in the neighboring
atom, thus explaining the role of the atomic polarizability α ∝ a3

o (see Sect. 4.2), as
schematically described below

R

µ µ

1 2

µ  = αε ≈ αµ /R 

interaction   µ µ /R   ∼ αµ /R 
(the interaction is attractive for 

any direction of  µ )

1 2 2 1
3

3
1 2

2

1

6  ∼ 

The result in Eq. (13.13) can be generalized, leading to the assumption of an
attractive potential energy of the form

Vatt � −e2a2
o

R6
α, (13.14)

with α proper atomic polarizability. A short-range repulsive term given by Vrep =
B/R12 can be heuristically added.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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The Lennard-Jones potential between two atoms collects the concepts described
above and it reads

Vi j (R) = ε

[(
σ

Ri j

)12

− 2

(
σ

Ri j

)6]
, (13.15)

where ε and σ are related to the repulsion coefficient B and to the atomic polariz-
ability α.

Note that according to the form (Eq. 13.15) for the Lennard-Jones potential ε and
σ are simply related to the shape of the interaction energy:

R

V(R)

ε

σ

To evaluate the cohesive energy in molecular crystals one can proceed in a way
similar to the one carried out in ionic crystals (Sect. 13.2.1). At variance with that
case one can now limit the summation to the z first nearest neighbors for both the
repulsive and the attractive terms. From the condition of minimum at R = Re, one
derives

V eq
T = − N z

2R6
e

e2a2
oα. (13.16)

The assumption of London interaction and of short-range repulsion as in Eq.
(13.15) qualitatively justifies the cohesive energy in inert atoms crystals. In particular,
through the dependence of the atomic polarizability from the third power of the “size”
of the atom, Eq. (13.16) explains why the cohesive energy increases rapidly with the
atomic number (see Fig. 13.1).

Problems

Problem 13.1 For ionic crystals assume that the short-range repulsive term in the
interaction energy between two point-charge ions is of the form R−n . Show that the
cohesive energy is given by

E(Re) = − Nαe2

Re

(
1 − 1

n

)
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Fig. 13.1 Energy curves in
crystals of inert atoms as a
function of the interatomic
distance
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with α Madelung constant and Re equilibrium nearest neighbor distance. Then, from
the value of the bulk modulus B = 2.4 · 1011 dyne/ cm2, estimate n for NaCl crystal.
In KCl Re is 3.14 Å and the cohesive energy (per molecule) is 7.13 eV. Estimate n.

Solution: Modifying Eq. (13.3) we write

E(R) = −N

(
αe2

R
− A

1

Rn

)

where A = ρz (z number of first nearest neighbors and ρ a constant in the repulsive
term ρ/Rn

i j ). From

(
d E(R)

d R

)
R=Re

= 0

E(Re) = − Nαe2

Re

(
1 − 1

n

)
.

The compressibility is defined (being the entropy constant)

k = − 1

V

dV

d P

and from d E = −PdV the bulk modulus is

B = k−1 = V
d2 E

dV 2
.
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(see Problem 12.18).
For N molecules in the fcc Bravais lattice the volume of the crystal is V = 2N R3

(with R nearest neighbors distance) and then

d2 E

dV 2
= d E

d R

d2 R

dV 2
+ d2 E

d R2

(
d R

dV

)2

.

From

(
d R

dV

)2

= 1

36N 2 R4

one obtains

k−1 = 1

18N Re

(
d2 E

d R2

)
R=Re

.

Since

d2 E

d R2
= −N

[
2αe2

R3
− n(n + 1)A

Rn+2

]
,

k−1 = (n − 1)αe2

18R4
e

.

For NaCl α = 1.747 while Re = 2.82 Å, therefore n � 7.8 .

For KCl, from E(Re) = −7.13 eV/molecule, one obtains n = 9.

Problem 13.2 In KBr the distance between the first nearest-neighbors is Re = 3.3
Å, while the Madelung constant is α = 1.747. The compressibility is found k =
6.8 · 10−12 cm2/dyne. Evaluate the constant ρ in the Born-Mayer repulsive term and
the cohesive energy.

Solution: From V = 2N R3 and dV = 6N R2d R, the pressure is

P = − 1

6R2

d E

d R
,

where E is the cohesive energy per molecule. Then

d P

d R
= − 1

6R2

(
d2 E

d R2

)
+ 1

3R3

d E

d R

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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The second term being zero for R = Re, the compressibility becomes

k = − 3

R

d R

d P
.

Since
d2 E

d R2

∣∣∣
R=Re

= 18Re

k

and

E = −αe2

R

[
1 − Rρ

R2
e

e− (Re−R)

ρ

]
,

one finds
ρ

Re
=

(
2 + 18R4

e

αe2κ

)−1

,

so that Re/ρ � 9 , and ρ � 3 · 10−9 cm. The cohesive energy per molecule turns out

EC = |E | = αe2

Re

(
1 − ρ

Re

)
� 6.8 eV .

13.3 Electron States of Magnetic Ions in a Crystal Field

In a crystal the energy levels of partially filled d and f shells of transition metal
and rare earth atoms are modified by the electric field generated by the neighboring
atoms, yielding significant changes in the electronic and magnetic properties.

To account for the perturbative effect two approaches can be used: the crystal
field (CF) approximation or the ligand field theory. In the first case the magnetic
ion is assumed to be surrounded by point charges (with no covalency) which modify
the electronic energies, in a way analogous to the Stark effect (Sect. 4.2). Thus one
writes

H = Hatom + VC F , (13.17)

where

Hatom =
∑

i

(
− �

2

2m
∇2

i − Ze2

ri

)
+

∑
i> j

e2

ri j
+

∑
i

ξ(i)
nl li · si (13.18)

The ligand field theory, at variance, takes into account the formation of covalent
bonds with the neighboring atoms, within the molecular-orbital theory.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Let us discuss a few basic aspects of the electronic states for a magnetic ion within
the CF approach. As regards the order of magnitude of the VC F term one can remark
the following:

(a) for 4d and 5d states usually one has VC F >
∑

i> j
e2

ri j
> ξnl . In this strong field

limit the CF yields splitting of the atomic levels of the order of 104 cm−1.
(b) for 3d states one usually has

∑
i> j

e2

ri j
≥ VC F > ξnl . In this case the splitting

of the atomic levels due to the CF is of the order of 103 − 102 cm−1.
(c) for rare-earth atoms

∑
i> j

e2

ri j
> ξnl > VC F , since the CF on the 4 f electrons

is sizeably shielded by the 5s and 5p electrons. Thus small CF splitting occurs, of
the order of 1 cm−1.

To understand qualitatively the role of the CF local symmetry in removing the
d electron degeneracy, let us first consider the effect of point charges Ze placed at
distances a from the reference ion along the x, y, z axes:

Then the perturbative potential, for instance from the charge at (a, 0, 0) is

VC F = − Ze2

|r − ai| = − Ze2√
(x − a)2 + y2 + z2

≡ − Ze2

a

1√
1 + r2/a2 − 2x/a

,

(13.19)

where r is the nucleus-electron distance within the reference ion.
For r � a, by collecting the various terms and using1

(1 + x)−1/2 = 1 − x

2
+ 3x2

8
− 5x3

16
+ 35x4

128
+ ...

one writes

VC F = −Ze2

[
6

a
+ 35

4a5

(
x4 + y4 + z4 − 3

5
r4

)
+ ...

]
. (13.20)

1

1

|r ± ai| � 1

a
∓ x

a2 − r2

2a3 + 3x2

2a3 + ...

(see Problem 13.5).
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More in general, the CF potential due to the surrounding ions, on a given i th
electron is written

VC F (ri ) = −
N∑

k=1

Zke2

|Rk − ri | , (13.21)

with Zk the charge of the ion at Rk . Since ri � Rk , the validity of the Laplace
equation ∇2V (ri ) = 0 is safely assumed. Then the CF potential can be expanded in
terms of Legendre polynomials Pl (see Problem 2.5):

VC F (ri ) = −e2
N∑

k=1

Zk

∞∑
l=0

rl
i

R(l+1)
k

Pl(cosΩki ), (13.22)

with Ωki angle between ri and Rk . By expressing Pl in terms of spherical harmonics

Pl(cosΩki ) = 4π

(2l + 1)

l∑
m=−l

Ylm(θi ,φi )Ylm
∗(θk,φk), (13.23)

the CF Hamiltonian is written

HC F =
n∑

i=1

∞∑
l=0

l∑
m=−l

Am
l r l

i Ylm(θi ,φi ), (13.24)

with

Am
l = −4πe2

(2l + 1)

N∑
k=1

ZkYlm
∗(θk,φk)

R(l+1)
k

, (13.25)

The coefficients Am
l can be calculated once that the local coordination of the ion

is known.
To give an example, let us consider the CF potential on one electron of a transition

metal ion placed at the center of a regular octahedron formed by six negative charges
Ze at distance R along the coordinate axes. In this case Eq. (13.24) reads

HC F = Ze2

[
6

R
+ 7

√
πr4

3R5

(
Y 0

4 +
√

5

14
(Y 4

4 + Y −4
4 )

)]
+ ... (13.26)

resembling Eq. (13.20).
Now one has to look for the effects of this perturbative hamiltonian on the degen-

erate d states. The electron wavefunction has to be of the form

φ = coφo + c1φ1 + c−1φ−1 + c2φ2 + c−2φ−2, (13.27)

http://dx.doi.org/10.1007/978-3-319-17897-4_2
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where φ0,±1,±2 are eigenfunctions of the unperturbed Hamiltonian.
One can notice that the matrix elements < φ0,±1,±2|HC F |φ0,±1,±2 > are

all of the form nDq, with n an integer, D = Ze2/6R5 and q ∝< r4 >.
The secular equation becomes

⎛
⎜⎜⎜⎜⎝

Dq − E 0 0 0 5Dq
0 −4Dq − E 0 0 0
0 0 6Dq − E 0 0
0 0 0 −4Dq − E 0

5Dq 0 0 0 Dq − E

⎞
⎟⎟⎟⎟⎠ = 0 (13.28)

with solutions E1 = E2 = 6Dq and E3 = E4 = E5 = −4Dq, in correspondence
to the eigenfunctions φ′

1 ≡ φ0 ≡ dz2 , φ′
2 = (1/

√
2)(φ2 + φ−2) ≡ dx2−y2 , φ′

3 =
(1/

√
2)(φ1 +φ−1) ≡ dxz , φ′

4 = (−i/
√

2)(φ1 −φ−1) ≡ dyz and φ′
5 = (−i/

√
2)(φ2 −

φ−2) ≡ dxy .
The structure of the energy levels is shown in Fig. 13.2.

The core of high-temperature superconductors is an octahedron of oxygen atoms
surrounding the Cu2+ 3d9 ion, yielding the splitting of the 3d levels depicted in
Fig. 13.2 (it should be reminded that the CF levels for a single hole in the 3d sub-
shell are equivalent to the ones for a single electron).

The case of one p electron in a perturbative CF due to ions in an octahedral
symmetry is discussed in Problem 13.5, including the effect of an external magnetic
field.

Due to A Y term
(see Eq. 13.26)

Free ion

eg (z2, x2-y2)

t2g (zx, xy, yz)

Δ2= 4Dq

Δ1= 6Dq

Δ2

Δ1 Δ0= 10Dq
Crystal field 

splitting
0

000

Fig. 13.2 Crystal field splitting of the 3d electron levels in regular octahedral coordination. The
elongation of the octahedron along the z axis would cause the further splitting of the upper eg levels
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13.4 Simple Picture of the Electric Transport

Let us first recall a few introductory remarks based on the Drude model, basically
classical considerations for a free electron gas, which help to grasp some aspects of
electrical conductivity in solids.

In analogy to the molecular collisions in classical gases, for the electrons colliding
with impurities or with the ions (oscillating around their equilibrium positions, see
Chap. 14) one can define a mean free path λ. This is the average distance covered
by an electron between two collisions, while it is moving with an average velocity
< v >. This average velocity can be related to the Fermi energy EF by referring
to the average energy < E >� 3EF/5 (see Sect. 12.7.1): < v >= √

< v2 > ∼√
EF/m � 108 cm/s.
An external electric field E modifies the random motions of the electrons in

such a way that a charge flow opposite to the field arises, with a neat drift velocity
vd . The drift velocity is estimated as follows. After a collision a given electron
experiences an acceleration a = eE/m, for an average time λ/ < v >. Then
vd = aλ/ < v >= −eEλ/m < v >, which is usually much smaller than < v >.
Then, indicating with n the electron density, the current density turns out

j = −nevd = ne2Eλ

m < v >
. (13.29)

This equation corresponds to the Ohm law, where the resistivity is ρ = E/j .
The mobility μ, defined by the ratio |vd |/|E|, is thus given by

μ = eλ/m < v > and the conductivity σ is

σ = neμ. (13.30)

For totally filled bands the conductivity is zero, as it will be emphasized sub-
sequently. When a band is almost filled an expression for the conductivity due to
positive charges (holes) can be considered. A contribution to the conductivity anal-
ogous to Eq. (13.30) can then be written: σh = nhehμh .

It should be noticed that due to the opposite sign of their charges and of their drift
velocities, both electron and hole conductivities contribute with the same sign to the
electric transport.

In the Drude model for metallic conductivity all the free electrons contribute to
the current, a situation in contradiction to the Pauli principle. In fact, the electron at
energy well below EF cannot acquire energy from the field, the states at higher energy
being occupied. Furthermore the temperature dependence of the conductivity (which
around room temperature goes as σ ∝ T −1) is not explicitly taken into account in
Drude-like descriptions, the ions being considered immobile. Note that according to
that simplified model the mean free path can increase to several lattice steps in the
low temperature range (see Problem 13.3).

http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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The quantum mechanical description of the current flow would require solving
Schrödinger equation in the spatially periodic lattice potential in the presence of
electric field. Here we shall limit to a semi-classical picture in order to better clarify
the phenomenological concepts given above, taking into account the band structure
and resorting to the wave-packet-like properties of the electrons.

In the semiclassical approach the motion of the electron (see Sects. 12.3 and 12.6)
is based on the equation for the increase of energy δE in a time δt , due to the force
associated with the electric field E:

δE = −eE · vδt. (13.31)

Here v represents the group velocity of the Bloch wave-packet describing the
electron:

v = ∇kω(k) ≡ 1

�
∇kE(k). (13.32)

It is recalled that in order to have particle properties, still retaining the required
wave-like structure, an electron cannot have a precise definite momentum but must
possess a range of k values.

From Eqs. (13.31) and (13.32) the equation of motion

�k̇ = −Ee (13.33)

describes how the wave-vector and hence the state of the electron, changes. From
Eqs. (13.32) and (13.33) the effective mass m∗, reflecting the effect of the crystal field
included in E(k), was obtained (Sect. 12.6). From the components of the acceleration

v̇α = 1

�

d

dt
(∇kE)α = 1

�

∑
β

∂2 E

∂kα∂kβ
k̇β = 1

�2

∑
β

∂2 E

∂kα∂kβ
(−eEβ)

the components of the effective mass tensor turn out (see Eq. (12.24) and
Problem 12.3)

(m∗)−1
αβ = 1

�2

∂2 E(k)

∂kα∂kβ
. (13.34)

As already discussed at Sect. 12.6, the effective mass concept is useful to describe
the effect of the lattice in regards of the response of the electrons to external forces.
It has already been emphasized how the effective mass changes along a given band
E(k), so that the electrons can move along the direction of the electric field or along
the opposite direction.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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By extending Eq. (13.32) and considering that the density of k states is Nvc/8π3,
the current density (Eq. (13.29)) can be written

j = −e

8π3�

∫
B Z

∇kEkdk, (13.35)

where the integration is over all states occupied by electrons, within the Brillouin
zone. For a fully occupied band the integral extends over all the BZ.

It must be remarked that for each electron with velocity v(k) there is another
electron at −k for which

v(−k) = 1

�
∇kE(−k) = −1

�
∇−kE(−k) = −1

�
∇kE(k) = −v(k) (13.36)

(since E(k) = E(−k), due to the inversion symmetry). Thus the current associated
with a full band is zero, as it was anticipated. The crystal is an insulator, if no thermal
excitation to the upper empty band is considered.

occupied  
states 

-π/a π/a

t = 0 
E

-π/a π/a

time t later

E

For a partially filled band, according to Eq. (13.33) the electric field redistributes
the electrons, so that the distribution is no longer symmetric around k = 0. Therefore
for a certain time interval there is no cancellation of the contributions to the drift and
an electronic current flow along −E occurs, as sketched above in one-dimensional
reciprocal space.

By extending to the band what has been derived for a single electron at
Problem 12.4, one realizes that after some time the distribution in k-space changes.
The states at positive k are refilled, as sketched below (for the moment, as in
Problem 12.4, no scattering process is assumed to occur).

-π/a π/a

total j = 0 

E

states at positive 
k are refilled 

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Then, at this moment the current flows due to the regions at positive and at negative
k’s compensate each other. Later on a neat flow in opposite direction (see Eq. (13.36))
should occur. Therefore, as a whole, an oscillating current should be expected upon
application of a constant electric field (the so-called Bloch oscillations, see Prob-
lem 12.4 for a single electron). However, we have to take into account the inelastic
collisions of the electrons with impurities or oscillating ions. In a simple description
one can imagine that after each collision the entire group of electrons is forced to
re-take the equilibrium thermal distribution over the k-states. Then, for frequent col-
lisions, only the evolution of the system in the first time interval mentioned above is
practically effective. The net effect of the field can be thought to generate a stationary
distribution skewed in the opposite direction of the field:

-π/a π/a

E

yielding a net flow of current.
For almost totally filled bands a description in terms of pseudo-particles (the

holes) occupying the empty states can be given, as anticipated. In fact, the integral in
Eq. (13.35) extends only over the occupied states. Therefore for the current density
one can write

j = −e

8π3

[∫
B Z

v(k)dk −
∫

empty
v(k)dk

]
= + e

8π3

∫
empty

v(k)dk. (13.37)

Thus the current has been formally transformed to a current of positive particles
occupying empty electron states. To those quasi-particles Eqs. (13.31–13.35) and
the related concepts do apply.

At the thermal equilibrium the holes are usually confined to the k states in the
upper part of the band, where the electron effective mass is usually negative. Thus
the holes behave as positive charges with a positive effective mass m∗

h moving along
the electric field direction.

These concepts are particularly useful in intrinsic semiconductors, where the
thermal excitations promote a limited number of electrons from the valence band
(fully occupied at T = 0) to the conduction band (fully empty at T = 0). Since
the holes in the valence band and the electrons at the bottom of the conduction band
move along opposite directions and have opposite charges, the neat effect is that the
electron and hole conductivities sum up.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Appendix 13.1 Magnetism from Itinerant Electrons

The magnetic properties associated with localized magnetic moments, therefore
of crystals with magnetic ions, have been addressed at Chap. 4. At Sect. 12.7 and
Problem 12.10 the paramagnetic susceptibility of the Fermi gas has been described.

The issue of the magnetic properties associated with an ensemble of delocalized
electrons, with no interaction (Fermi gas) or in the presence of electron-electron
interactions, is much more ample. In this Appendix we first recall the diamagnetism
due to free electrons (Landau diamagnetism). Then some aspects of the magnetic
properties of interacting delocalized electrons (ferromagnetic or antiferromagnetic
metals) are addressed, in a simplified form.

The conduction electrons in metals are responsible of a negative susceptibility,
associated with orbital motions under the action of external magnetic field. To account
for this effect one has to refer to the generalized momentum operator (see Eq. (1.26))
−i�∇ + (e/c)A, with A = (0, H x, 0) (second Landau gauge),2 for a magnetic field
H along the z axes.

Then the Schrodinger equation takes the form

− �
2

2m

[(
∂

∂x

)2

+
(

∂

∂y
+ ieH x

�c

)2

+
(

∂

∂z

)2]
ψ = Eψ (A.13.1.1)

Since −i�∇y,z describe constants of motion with eigenvalues �ky,z one can rewrite
this equation in the form

[
− �

2

2m

∂2

∂x2
+ 1

2

e2 H 2

mc2

(
x − �kyc

eH

)2

+ �
2k2

z

2m

]
ψ = Eψ (A.13.1.2)

where the first two terms represent the Hamiltonian for a displaced linear oscillator,
with characteristic frequency

ωc = eH

mc
= 2μB H

�
= 2ωL (A.13.1.3)

(ωL Larmor frequency, see Problem 3.4). ωc is the cyclotron frequency, while xo =
�cky/eH is the center of the oscillations.

Therefore, from Eq. (A.13.1.2) the eigenvalues turn out

Enkz = �
2k2

z

2m
+

(
n + 1

2

)
�ωc (A.13.1.4)

where the quantum number n labels the Landau levels.

2This gauge is translationally invariant along the y-axis, with eigenstates of the y-component of the
momentum.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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The one-electron eigenfunctions in the presence of the magnetic field are plane
waves along one direction (dependent on the choice of the gauge for A) multiplied
by the wavefunctions for the harmonic oscillator.

The semiclassical view of the result given at Eq. (A.13.1.4) is that under the
Lorenz force FL = −(e/c)vg × H (with vg the group velocity) the evolution of the
crystal momentum �dk/dt = FL induces a cyclotron rotational motion in the xy
plane while the electron propagates along the z direction (see Problem 12.2).

It is noticed that each Landau level is degenerate, the degeneracy depending on the
number of possible values for xo. For a volume V = Lx .L y .Lz , then 0 ≤ x0 ≤ Lx ,
while one has 0 ≤ ky ≤ Lx eH/�c ≡ kmax

y . Therefore, ky being quantized in
steps Δky = 2π/L y , the degeneracy of each Landau level, given by the number of
oscillators with origin within the sample, is

NL(H) = kmax
y

Δky
= Lx L y H

e

hc
= Φ(H)

Φo
, (A.13.1.5)

where Φ(H) is the flux of the magnetic field across the crystal and Φo = hc/e �
4 × 10−7 Gauss cm2 is the flux quantum.3

It is observed that the degeneracy, the same for all the n levels, increases linearly
with H . Hence, by increasing H one can vary the population of each level and
eventually when H is very high (and for moderate electron densities) all electrons
will occupy just the first n = 0 level. Accordingly, on increasing H different Landau
levels will cross the Fermi energy.

By resorting to the results outlined above one can calculate the energy of the elec-
trons E(H) in presence of the field and then the magnetization. One can conveniently
distinguish two regimes, for kB T large or small compared to �ωc. For kB T � �ωc

an oscillatory behaviour of E(H) is observed. The oscillations occur when the Lan-
dau level pass through the Fermi surface and cause changes in the energy of the
conduction electrons, namely for

(n + 1

2
)�ωc = EF , (A.13.1.6)

Characteristic oscillations in the magnetization, known as De Haas-Van Alphen oscil-
lations can be detected.

For kB T � �ωc the discreteness of the Landau levels is no longer effective and
the energy increases with H 2:

E(H) ∝ �ωc[�ωc D(EF )],

corresponding to an increase by �ωc of the energy for all the �ωc D(EF ) electrons in a
Landau level (D(EF ) density of states at the Fermi level, see Sect. 12.7.1). Therefore,

3The flux quantum here is by a factor 2 larger than the superconducting fluxon ΦSC = hc/2e, since
in the latter case a Cooper pair, of charge 2e, is involved (see Chap. 18).

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_18
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the susceptibility turns out

χL = − 1

12

(
e�

mc

)2 D(EF )

Nvc
= − 1

12π2

e2

mc2
kF , (A.13.1.7)

kF being the Fermi wave vector. From the Pauli susceptibility χP (see Problem 12.10)
one can write

χL = −1

3
χP . (A.13.1.8)

Modifications in χL (as well as in χP ) have to be expected when the effective
mass m∗ of the electrons is different from me. For instance, when m∗ � me (as for
example in bismuth, where m∗ ∼ 0.01me) the metal can become diamagnetic. In
fact, the total susceptibility for non-interacting delocalized electrons has to be written

χtotal = μ2
B D(EF )

[
1 − 1

3

(me

m∗
)2

]
≡ χP

[
1 − 1

3

(me

m∗
)2

]

For further insights on the behaviour of the Fermi gas in the presence of constant
magnetic field, Chap. 15 in the book by Grosso and Pastori Parravicini should be
read.

In transition metals, with partially occupied d bands, the electrons involved in the
magnetic properties are itinerant, with relevant many-body correlation effects. The
Fermi-gas picture for the conduction electrons is no longer adequate and significant
modifications to the Pauli susceptibility have to be expected, including the possibility
of the transition to an ordered state. In these cases one often speaks of ferro (or
antiferro)magnetic metals. For example, an experimental evidence of a particular
itinerant ferromagnetism is iron metal: the magnetic moment per atom is found
around 2.2μB . This value cannot be justified in terms of localized moments on Fe2+
ion, in the 5 D4 state (see Sect. 3.2.3).

The simplest model to account for the correlation effects on the magnetic prop-
erties of itinerant electrons is the one due to Stoner and Hubbard. In this model the
electron-electron Coulomb interaction is replaced by a constant repulsive energy U
between electrons on the same site, with opposite spins according to Pauli principle.
Then the total Hamiltonian is written

H =
∑
k

E(k)(nk,↑ + nk,↓) + U
∑

m

pm,↑ pm,↓ (A.13.1.9)

where the first term is the usual free electron kinetic Hamiltonian, while the second
term describes the repulsive on-site interaction, with the sum running over all lattice
sites.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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The total magnetization can be derived in a way analogous to the one used for the
Pauli susceptibility (Problem 12.10), by estimating the numbers of electrons with spin
up and spin down, following the application of the magnetic field. For N electrons
per cubic cm, in the conduction band of width larger than U , N↑ and N↓ are the
numbers of electrons of spin up and spin down respectively. Then the energy for
spin-up electrons turns out

E(k)↑ = E(k) + Un↓ + μB H (A.13.1.10)

while for electrons with spin-down

E(k)↓ = E(k) + Un↑ − μB H. (A.13.1.11)

where n↑,↓ = N↑,↓/N .

The decrease of the energy of the spin-down band with respect to the spin-up
band yields an increase in the population of spin-down electrons and a non-zero
magnetization. Since (see again Problem 12.10) for N↑,↓ one writes

N↓ = 1

2

∫ ∞

Un↑−μB H
f (E)D(E − Un↑ + μB H)d E �

� 1

2

∫ ∞

0
f (E)D(E)d E + 1

2
(μB H − Un↑)D(EF ) (A.13.1.12)

while

N↑ � 1

2

∫ ∞

0
f (E)D(E)d E − 1

2
(μB H + Un↓)D(EF ). (A.13.1.13)

The magnetization (per unit volume) becomes

M = μB
(N↓ − N↑)

V
� μBU D(EF )

2N
(N↓ − N↑) + μ2

B D(EF )H (A.13.1.14)

(V the reference volume). Therefore the magnetic susceptibility becomes

χ = M

H
= μ2

B D(EF )

1 − U D(EF )

2N

= χP

1 − (UχP/2μ2
B N )

, (A.13.1.15)

with χP Pauli susceptibility (for bare electrons) and D(EF ) the density of states per
unit volume.

It is noted that when U D(EF )/2N → 1 (Stoner criterium) the susceptibility
diverges and ferromagnetic order is attained.

Even if the Stoner condition is not fulfilled, Eq. (A.13.1.15) shows that the sus-
ceptibility is significantly modified with respect to the one for bare free-electrons.
Equation (A.13.1.15) can be considered a particular case of Eq. (4.33), where the

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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enhancement factor corresponds to the mean field acting on a particular electron
due to the interaction with all the others. Stoner criterium rather well justifies the
ferromagnetism in metals like Fe, Co and Ni, as well as the enhanced susceptibility
(about 5 χP ) measured in Pt and Pd metals.

Finally a few words are in order about the magnetic behaviour of itinerant electrons
when the concentration n is reduced (diluted electron fluid in the presence of electron-
electron interaction).

As shown in Problem 13.4 the Coulomb repulsive energy of the electrons goes as
< EC >∝ e2n1/D (D the dimensionality), while for the kinetic energy (for T → 0)
one has < E >∝ n2/D . Thus the electron dilution causes a decrease of the average
kinetic energy < E > which is more rapid than the one for the average repulsion
energy. Eventually, below n3D = 1.77 × 10−1/a3

o and below n2D = 0.4/a2
o , when

< EC > becomes dominant, a spontaneous “crystallization” could occur, in principle
(Wigner crystallization).

Monte Carlo simulations predict a three-dimensional crystallization into the bcc
lattice at densities below 2 × 1018 cm−3, while at densities below 2 × 1020 cm−3

the Coulomb interaction should be strong enough to align all the spins, according to
the Stoner criterium. Charge or spin ordering are hard to be experimentally tested,
mainly because of the difficulty of the physical realization of the electron fluid at
low density sufficiently free from impurities and/or defects.

Problems

Problem 13.3 Silver is a monovalent metal, with density 10.5 g/cm3 and fcc struc-
ture. From the values of the resistivity at T = 20 K and T = 295 K given by
ρ20 = 3.8 · 10−9 Ω cm and ρ295 = 1.6 · 10−6 Ω cm, estimate the mean free paths λ
of the electrons.

Solution: The Fermi wavevector turns out kF = 1.2 ·108 cm−1 and the Fermi energy
is EF = 64390 K. The electron density is n = 5.86 × 1022 cm−3.

From ρ = m/ne2τ , λ =< v > τ and < v >∼ √
EF/m (see Sect. 13.4), one

derives

λ = 3.6 · 10−6 cm at 295 K and λ = 1.53 · 10−3 cm at 20 K .

Problem 13.4 For three-dimensional and for two-dimensional metals, in the frame-
work of the free-electron model and for T → 0, evaluate the electron concentration
n at which the average kinetic energy coincides with the average Coulomb repul-
sion (which can be assumed U = e2/d, with d the average distance between the
electrons).

Solution: In 3D d = 1/(4πn/3)1/3, while in 2D d = 1/n1/2. Thus

U 3D = e2

(
4π

3

)1/3

n1/3 and U 2D = e2n1/2
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The average kinetic energy per electron (for T → 0) is < E >= ∫ EF

0 D(E)Ed E ,

with D(E)3D = (3/2)E1/2/E3/2
F and D(E)2D = 1/EF .

Then < E >3D= (3/5)EF = (3�
2/10m)(3π2n)2/3

and < E >2D= (1/2)EF = �
2πn/2m.

The average kinetic energy coincides with the Coulomb repulsion for n3D = 1.77 ×
10−1/a3

0 and n2D = 0.4/a2
0 , with a0 Bohr radius.

Problem 13.5 A magnetic field is applied on an atom with a single p electron in
the crystal field at the octahedral symmetry (Sect. 13.3), with six charges Ze along
the ±x, ±y, ±z axes. Show that without the distortion of the octahedron (namely
a = b, with a the distance from the atom of the charges in the xy plane and b the
one along the z axis) only a shift of the p levels would occur. Then consider the case
b �= a and discuss the effect of the magnetic field (applied along the z axis) deriving
the eigenvalues (neglect the spin magnetic moment).

Solution: By summing the potential due to the six charges, analogously to the case
described at Sect. 13.3, for r � a the crystal field perturbation turns out (see footnote
1 in this chapter)

VC F = −Ze2

{(
1

a3
− 1

b3

)
r2 + 3

(
1

b3
− 1

a3

)
z2

}
+ ..... = A(3z2 − r2) + const

where A �= 0 only for b �= a.
From the unperturbed eigenfunctions the matrix elements of VC F are

< φpx |VC F |φpx > = A
∫

r2|R(r)|2r2dr
∫

sin2 θ cos2 φ(3 cos2 θ − 1) sin θ dθ dφ

= −A < r2 >
8π

15
=< φpy |VC F |φpy >

while

< φpz |VC F |φpz >= A < r2 >
16π

15
.

In the absence of magnetic field the energy levels are

px,py

pz E1

E2

A< r 2>8π/5
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This effect can be interpreted in terms of quenching of angular momentum (see
Problem 4.12). It can be observed that for orthorombic crystal symmetry, where the
lowest degree ploynomial solution of the Laplace equation yields VC F = Ax2 +
By2 − (A + B)z2, with A and B constants (with A �= B), total quenching of the
components of the angular momentum would occur.

For the electron in octahedral symmetry and in the presence of the field, the total
perturbative Hamiltonian becomes VC F + μB lz H .
The diagonal matrix elements of lz in the basis of the unperturbed eigenfunctions are
zero. In fact,

< φ2px |lz|φ2px >= +i�
∫ ∞

0
f (r)dr

∫ π

0
sin3 θ dθ

∫ 2π

0
sin φ cos φ dφ = 0

(Problems 4.11 and 4.12) and, analogously,

< φ2py |lz|φ2py >=< φ2pz |lz|φ2pz >= 0.

The non-diagonal matrix elements are < φ2py |lz|φ2px >=
i� = − < φ2px |lz|φ2py >.

The secular equation becomes

∣∣∣∣∣∣
E0 − E −iμB H 0
iμB H E0 − E 0

0 0 E1 − E

∣∣∣∣∣∣ = 0

yielding E ′ = E1 and E ′′ = E0 ± μB H, as sketched below

2µBHpx,py

pz unchanged

magnetic splitting
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Chapter 14
Vibrational Motions of the Ions
and Thermal Effects

Topics

Elastic Waves in Crystals
Acoustic and Optical Branches
Debye and Einstein Models
Phonons
The Melting Temperature
Mössbauer Effect

14.1 Motions of the Ions in the Harmonic Approximation

Hereafter we shall afford the problem of the motions of the ions around their equilib-
rium positions in an ideal (disorder- and defect-free) crystal. The motions are called
lattice vibrations. The Born-Oppenheimer separation and the adiabatic approxima-
tion (Sect. 7.1) will be implicit and the concepts involved in the description of the
normal modes (Sect. 10.6) in the harmonic approximation will be used. In fact, the
crystal cell will be considered as a molecular unit: its normal modes propagate along
the crystal with a phase factor, in view of the spatial periodicity.
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A. Rigamonti and P. Carretta, Structure of Matter,
UNITEXT for Physics, DOI 10.1007/978-3-319-17897-4_14

417

http://dx.doi.org/10.1007/978-3-319-17897-4_7
http://dx.doi.org/10.1007/978-3-319-17897-4_10


418 14 Vibrational Motions of the Ions and Thermal Effects

According to the definitions sketched below,

u

u

l , s

l, s 
x

y

atom at site s in the cell at l

l
R

, ,

within the harmonic approximation the potential energy will be written

V2 = 1

2

∑
l,s,α

∑
l′,s ′,β

(
∂2V

∂α(l, s)∂β(l′, s ′)

)
o

uα(l, s)uβ(l′, s ′)

≡
∑
l,s,α

∑
l′,s ′,β

Φ
(α,β)

l,s,l′,s ′uα(l, s)uβ(l′, s ′), (14.1)

where Φ
(x,y)

l,s,l′,s ′ involves the force along the x direction on the ion at site s of the lth
cell when the ion at site s ′ in the l ′ cell is displaced by the unit length along the y
direction. From Eq. (14.1) the equations of motion turn out

ms
d2ul,s

dt2
= − ∂V2

∂ul,s
= −

∑
l′, s ′

Φl,s,l′,s ′ul ′,s ′ , (14.2)

namely 3SN coupled equations (S number of atoms in each cell).
Recalling the normal modes in the molecules (Sect. 10.6) it is conceivable that due

to the translational invariance, the motion of the atom at site s in a given cell differs
only by a phase factor with respect to the one in another cell (this is the analogous
of the Bloch orbital condition for the electron states). Therefore the displacement of
the (l, s) atom along a given direction is written in terms of plane waves propagating
the normal coordinates within a cell:

u(q)
α (l, s) = Uα(s, q)eiq · R(l,s)e−iωqt , (14.3)

where q are the wavevectors defined by the boundary conditions (the analogous of
the electron wavevector k, Sect. 12.4).

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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From Eqs. (14.2) and (14.3) for each q, by taking h = ls − l′s ′ , one has

msω
2
qUα(s, q) =

∑
β,s ′

Uβ(s ′, q)Mα,β(s, s ′, q), (14.4)

where

Mα,β(s, s ′, q) ≡
∑

h

Φ
(α,β)

l,s,l′,s ′eiq·h (14.5)

is the dynamical matrix, namely the Fourier transform of the elastic constants.

14.2 Branches and Dispersion Relations

For a given wave-vector Eq. (14.4) can be rewritten in the compact form

ω2mU = MU (14.6)

where M is a square matrix of 3S degree, m is a diagonal matrix and U is a column
vector. As for the normal modes in molecules (see Eq. (10.53)) the condition for the
existence of the normal coordinates is

|M − ω2m| = 0. (14.7)

For each wavevector q Eq. (14.7) yields 3S angular frequencies ω2
q, j . Here j is a

branch index. 3S−3 branches are called optical since, as it will appear at Sect. 14.3.2,
they can be active in infrared spectroscopy, while 3 branches are called acoustic,
since in the limit q → 0 the crystal must behave like an elastic continuum, where
ωq = vsoundq. At variance, for the optical branches (see Sect. 14.3.2) for q = 0 one
has ωq, j �= 0.

The q-dependence of ωq, j is called dispersion relation. In analogy to the density
of k-states for the electrons (Sect. 12.5), one can define a density of q values in
the reciprocal space: D(q) = Nvc/8π3. One also defines the vibrational spectrum
D j (ω) for each branch, with the sum rule

∑3S
j=1

∫
D j (ω)dω = 3N S.

In the next section illustrative examples of vibrational spectra will be given.

14.3 Models of Lattice Vibrations

In this section the classical vibrational motions of the ions within the harmonic
approximation will be addressed for some model systems.

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_12


420 14 Vibrational Motions of the Ions and Thermal Effects

14.3.1 Monoatomic One-Dimensional Crystal

Let us refer to a linear chain of identical atoms, for simplicity by considering only
the longitudinal motions along the chain direction:

N  “cells” 

u
1D

cell l 

l 

site s

s

≡ 1

a
,

The equations of motions are of the form Eq. (14.2), the index s being redundant.
One first selects in the reciprocal space a wavevector q = n12π/Na, with −N/2 ≤
n1 ≤ N/2. Then one writes the ul,s displacement as due to the superposition of the
ones caused by the waves propagating along the chain, for each q (correspondent to
Eq. (14.3)). From Eqs. (14.2) and (14.4) one writes

msω
2
qU (s, q) =

∑
s ′

U (s ′, q)M(s, s ′, q), (14.8)

where

M(s, s ′, q) ≡
∑

h

Φl,s,l′,s ′eiq · h (14.9)

is the collective force constant, representing the Fourier transform of the elastic
constants. Equations (14.8) and (14.9) describe the propagation of the normal modes
of the “cell” along the chain.

By limiting the interaction to the nearest neighbors,

+2 

spring constant 

+1 0 -1 -2 

“cell” 0, single site, index 0 

index 

the equation of motion for the atom in the cell at the origin (l = 0) turns out

m
d2u0

dt2
= −2ku0 + ku1 + ku−1 (14.10)

implying Φ(0, 0) = 2k and Φ(±1, 0) = −k.
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The dynamical matrix (Eq. (14.5)) is reduced to

M = Φ(0, 0) +
∑

n=±1

Φ(n, 0)eiqna

and Eq. (14.8) takes the form

mω2
qUq = (2k − 2kcos(qa))Uq , (14.11)

namely the one for a single normal oscillator, with an effective elastic constant taking
into account the coupling to the nearest neighbors.

The solubility condition (Eq. (14.7)) corresponds to

ω2
q = 2k

m
(1 − cos(qa)), (14.12)

yielding the dispersion relation

ωq = 2

√
k

m
sin(qa/2) (14.13)

sketched below:

ω =vq

-π/a π/a0 q

ω q

ωm=2(k/m)1/2

The vibrational spectrum, or density of states D(ω) = D(q)dq/dω, with D(q) =
Na/2π, turns out

D(ω) =
(

2N/π
√

ω2
m − ω2

)
, (14.14)
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reported below

only q > 0 are considered here 

ω ≡ 2 (k/m)

2N /πω

D(ω )

ω

D(ω) = (Na/2π) • 2  2  2 • (2 / a) • 1/(ω  - ω )

m

m

m
0.5

1/2

The situation arising at the zone boundary, where ωq=π/a ≡ ωm, is equivalent to
the one encountered at the critical points of the electronic states (see Sect. 12.5).

14.3.2 Diatomic One-Dimensional Crystal

For a chain with two atoms per unit cell, with mass m1 and m2 (m1 > m2), again
considering the longitudinal modes and assuming a single elastic constant and nearest
neighbour interactions,

m

cell -1

single elastic 
constant 

m a a

cell 

l 2

2l

cell +1

u u

ll l

the equations of motions for the atoms at sites s = 1 and s = 2, within the lth cell,
are

m1
d2ul,1

dt2
= −2kul,1 + kul,2 + kul−1,2

m2
d2ul,2

dt2
= −2kul,2 + kul,1 + kul+1,1 (14.15)

Again resorting to solutions of the form

u(l, 1) = U1eiq2lae−iωq t

and
u(l, 2) = U2eiq(a+2la)e−iωq t

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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(the index q in U1,2 is dropped here), one has

(
2k

m1
− ω2

)
U1 − k

m1
(eiqa + e−iqa)U2 = 0

− k

m2
(eiqa + e−iqa)U1 +

(
2k

m2
− ω2

)
U2 = 0. (14.16)

The dynamical matrix is

M =
(

2k −k(eiqa + e−iqa)

−k(e−iqa + eiqa) 2k

)

and the solubility condition

(
2k − m1ω

2 −2kcos(qa)

−2kcos(qa) 2k − m2ω
2

)
= 0

leads to

ω2
q = k

(
1

m2
+ 1

m1

)
± k

[(
1

m2
+ 1

m1

)2

− 4

m1m2
sin2(qa)

] 1
2

. (14.17)

The dispersion relations are shown in Fig. 14.1, with μ reduced mass.
At the boundaries of the Brillouin zone (q = ±π/2a) the frequencies of the

acoustic and optical modes are ωA = √
2k/m1 and ωO = √

2k/m2, respectively.
It is noted that when m1 = m2 the two frequencies coincide, the gap at the zone

boundary vanishes: the situation of the monoatomic chain is restored, once that the
length of the lattice cell becomes a instead of 2a.

For a given wavevector one can obtain the atomic displacements induced by each
normal mode. For instance, by choosing q = 0 for the acoustic branch one derives
UA(0, 1) = UA(0, 2), the same displacement for the two atoms, corresponding to

Fig. 14.1 Frequencies of the
acoustic (A) and optical (O)
longitudinal modes in
one-dimensional diatomic
crystal, according to
Eq. (14.17)

-π/2a π/2a

ω
(2k/µ)

0
q

(2k/m )

(2k/m )

A

O

1/2

1/2

1/2

q

2

1
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the translation of all the crystal. For the optical mode, again for q = 0 one has
m1UO(0, 1) = −m2UO(0, 2), keeping fixed the center of mass. As for the diatomic
molecule (see Sect. 10.6) the difference of the two displacements corresponds to the
normal coordinate.

In a similar way one can derive the displacements associated with the zone bound-
ary wavevectors (Fig. 14.2, where also the transverse modes are schematized).

From the dispersion relations (Eq. (14.17)) the vibrational spectra reported in
Fig. 14.3 are derived.

Up to now only longitudinal modes have been considered. To describe the trans-
verse vibrations the elastic constants for the displacements perpendicular to the chain
should be considered. In this way, for a given wave-vector, 3 vibrational branches
would be obtained for the monoatomic chain and 6 branches for the diatomic one, at
longitudinal (L) and transverse (T) optical and acoustic characters (see Fig. 14.2).

Finally one should observe that the interaction with electromagnetic waves
requires the presence of oscillating electric dipole within the cell. To grant energy
and momentum conservation, the absorption process should occur in correspondence
to the photon momentum q = �ω/c, which for typical values of the frequencies

Acoustic mode 

Acoustic mode 

q = π/2a

Longitudinal modes 
q = 0 m m

Transverse modes 

q = 0 

q = π/2a

Optical mode

Optical mode

Optical mode 

 Optical mode

 Acoustic 
mode

Acoustic mode 

1 2

Fig. 14.2 Atomic displacements associated with the q = 0 and the q = π/2a acoustic (A) and
optical (O) modes, for one-dimensional diatomic crystal

http://dx.doi.org/10.1007/978-3-319-17897-4_10
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Fig. 14.3 Vibrational
spectra for the longitudinal
acoustic (A) and optical (O)
branches in one-dimensional
diatomic crystal

ω 

D(ω) 

(2k/µ)

(2k/m )(2k/m )

A

O

1/2 1/2

1/2

1 2

(ω ∼ 1013 − 1014 rad s−1) is much smaller than h/2a. For q → 0, at the center of
the Brillouin zone, the acoustic modes do not yield any dipole moment. Therefore
only the optical branches, implying in general oscillating dipoles (as schematized in
Fig. 14.2), can be active for the absorption of the electromagnetic radiation, similarly
to the case described for the molecules.

14.3.3 Einstein and Debye Crystals

The phenomenological models due to Einstein and to Debye are rather well suited
for the approximate description of specific properties related to the lattice vibrations
in real crystals.

The Einstein crystal is assumed as an ensemble of independent atoms elastically
connected to equilibrium positions. The interactions are somewhat reflected in a
vibrational constant common to each oscillator, yielding a characteristic frequency
ωE . As regards the dispersion curves, one can think that for each q there is a threefold
degenerate mode at frequency ωE . Thus, the vibrational spectrum could be schema-
tized as below:

D(ω)  3N

ω

δ (ω - ω ) 

ωE

E
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Although introduced to justify the low-temperature behavior of the specific heat
(see Sect. 14.5), the Einstein model is often applied in order to describe the properties
of the optical modes in real crystals, at least at qualitative level. In fact, the optical
modes are often characterized by weakly q-dependent dispersion curves with a nar-
row D(ω), not too different from the delta-like vibrational spectrum of the Einstein
model heuristically broadened, as sketched below:

zone boundary 

D(ω)  

Γ

ω ωq 

ω
∼ω

schematic 
dispersion curve 

~ΓE

E

In the Debye model it is assumed that the vibrational properties are basically the
ones of the elastic (and sometimes isotropic) continuum, with ad hoc conditions in
order to take into account the discrete nature of any real crystal. In particular:

(i) the Debye model describes rather well the acoustic modes of any crystal, since
for q → 0 the dispersion curves of the acoustic branches practically coincide
with the ones of the continuum solid, the wavelength of the vibration being
much larger than the lattice step.

(ii) the model cannot describe the vibrational contribution from optical modes.
(iii) one has to introduce a cutoff frequency ωD in the spectrum in order to keep the

number of modes limited to 3N (for N atoms).
(iv) only 3 branches have to be expected, with dispersion relations of the form

ω
j
q = v j

soundq, where the sound velocity can refer to transverse or to longitudinal
modes.

For a given branch, in the assumption of isotropy, the vibrational spectrum turns
out

D j (ω) = Nvc

8π3
dq = Nvc

8π3
4πq2dq = Nvc

8π3

4πω2

v3
j

. (14.18)

One can introduce an average velocity v and again in the isotropic case, 3/v3 =
2/v3

T + 1/v3
L . Therefore

D(ω) = Nvc

8π3

12πω2

v3
= Nvc

v3

3

2π2
ω2, (14.19)

the typical vibrational spectrum characteristic of the continuum.
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Now a cutoff frequency ωD (known as Debye frequency) has to be introduced.
The role of ωD in the dispersion relation and in the vibrational spectrum D(ω) is
illustrated below:

D(ω )

ω ω

∝ ω

q 

ω

ω

dispersion 
relation 

qD

D

D

2

ωD can be derived from the condition
∫

D(ω)dω = 3N or, equivalently, by
evaluating the Debye radius qD of the sphere in the reciprocal space which includes
the N allowed wavevectors.

Thus (Nvc/8π3)(4πq3
D/3) = N and then

qD =
(

6π2

vc

) 1
3

(14.20)

and

ωD = vqD = v

(
6π2

vc

) 1
3

. (14.21)

In real crystals detailed descriptions of the vibrational modes are often difficult.
One can recall the following. In the q → 0 limit one can refer to the conditions of
the continuum and the acoustic branches along certain symmetry directions can be
discussed in terms of effective elastic constants. These constants are usually derived
from ultrasound propagation measurements.

The frequencies of the various branches can become equal in correspondence
to certain wavevectors, implying degeneracy. Although the optical branches have
non-zero frequency even for q = 0 they are not always optically active, since do
not always imply oscillating electric dipoles. For instance, in diamond, although the
optical modes cause the vibration of the two sublattices (see Sect. 11.3) against each
other, no electric dipole is induced and no interaction with the electromagnetic waves
can occur.

The dispersion curves are usually obtained by inelastic neutron spectroscopy. The
schematic structure of a triple axes neutron spectrometer is reported below:

http://dx.doi.org/10.1007/978-3-319-17897-4_11
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A suited description of the lattice vibrations, with theory and basic aspects of
neutron spectroscopy, can be found in the report by Cochran.

14.4 Phonons

While discussing the normal modes in molecules (Sect. 10.6) it was shown how a
non-normal Hamiltonian (in terms of local coordinates) could be transformed into a
normal one by writing the local displacements as a superposition of excitations, each
one associated to a normal oscillator. The collective normal coordinate was shown
to be a linear combination of the local ones. The treatment given at Sect. 10.6 can be
extended to the displacements of the atoms around their equilibrium positions in a
crystal. Thus, returning to Eq. (14.3), for each branch ( j) we write the displacement
in the form

u =
∑

q

Uqeiq · Re−iωqt (14.22)

Therefore the problem is reduced to the evaluation of the normal coordinates Q( j)
q of

the crystal cell, that one can build up from the amplitudes Uq by including the masses
and the normalization factors. The translational invariance of the crystal implies the
propagation of the normal excitations of the cell with phase factor eiq·R.

Hence, one can start from Hamiltonians of the form H = ∑
j H j [Q j (q)], for

each wavevector q of a given branch j . By indicating with Q the group of the normal
coordinates and with φ(Q) the related wavefunction, one expects

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_10
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φ(Q) =
∏
q, j

φ( j)
q (Q j (q)). (14.23)

In the harmonic approximation φ
( j)
q is the eigenfunction of single normal oscillator,

characterized by quantum number n j (q) and eigenvalues

E ( j)
q = �ω( j)

q

[
1/2 + n j (q)

]
.

The total energy is

ET =
∑

j

∑
q

(
n j (q) + 1

2

)
�ω( j)

q . (14.24)

Therefore the vibrational state of the crystal is defined by the set of 3SN numbers
| . . . , . . . , n j (q), . . . > that classify the eigenfunctions of the normal oscillators. At
T = 0, the ground-state is labelled |0, 0, 0 . . . > and the wavefunction is the product
of Gaussian functions (see Sect. 10.3.1).

At finite temperature one has to take into account the thermal excitations to excited
states, for each normal oscillator. Two different approaches can be followed:

(A)—the normal oscillators are distinguishable and the numbers n j (q) select the
stationary states for each of them. Then the Boltzmann statistics holds and for a given
oscillator with characteristic frequency ν the average energy is

E =
∑

v

pv Ev, (14.25)

with

pv = e−Ev/kB T∑
v e−Ev/kB T

and

Ev = (v + 1/2)hν v = 0, 1, 2, . . .

For each normal mode the average energy E is found as shown at Problem 1.25 for
photons (Planck derivation), here having to include the zero-point energy:

E = hν

(
1

2
+ 1

ehν/kB T − 1

)
(14.26)

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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The energy turns out the one for the quantum oscillator, provided that an average
excitation number

< v >= 1

e
hν

kB T − 1
(14.27)

is introduced.
The total thermal energy of the crystal is obtained by summing Eq. (14.26) over

the various modes, for each branch.
(B)—the crystal is considered as an assembly of indistinguishable pseudo-

particles, each of energy �ωq, j and momentum �q = (�ωq, j/v j,q)q̂ . These quasi-
particles are the quanta of the elastic field and are called phonons in analogy with
the photons for the electromagnetic field.

Then the total energy has to be written

< E >=
∑
q, j

(
nq, j + 1

2

)
�ωq, j , (14.28)

where the average number of pseudo-particles is given by the Bose-Einstein statistics,
i.e.

nq, j = 1

e
�ωq, j
kB T − 1

, (14.29)

for a given branch j .
The two ways A and B to conceive the aspects of the lattice vibrations give

equivalent final results, as it can be seen by comparing Eq. (14.26) (summed up to
all the single oscillators) and Eq. (14.28). The derivation of some thermal properties
(Sect. 14.5) will emphasize the equivalence of the two ways to describe the quantum
aspects of the vibrational motions of the ions.

14.5 Thermal Properties Related to Lattice Vibrations

All the thermodynamical properties related to the vibrational motions can be derived
from the total partition function ZTOT = ∏

q, j Zq, j , with

Zq, j =
∑

e
−E(q, j)

kB T (14.30)

where the sum is over all the energy levels, for each q-dependent oscillator of each
branch.
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The thermal energy can be directly evaluated by resorting to the vibrational spectra
D(ω), in the light of Eqs. (14.28) and (14.29), by writing

U =
∫

�ω

(
1

2
+ 1

e
�ω

kB T − 1

)
D(ω)dω. (14.31)

For instance, for Einstein crystals where D(ω) = 3Nδ(ω − ωE ) one derives

U = 3N�ωE

[
1/2 + 1/

(
e

�ωE
kB T − 1

)]
.

The molar (N = NA) specific heat for T 	 ΘE ≡ �ωE/kB (ΘE often defined
Einstein temperature) turns out CV 
 3R. At variance with the classical results, for
T � ΘE one has

CV 
 3R

(
ΘE

T

)2

e
−ΘE

T (14.32)

For Debye crystals, from Eq. (14.31) by resorting to Eq. (14.19), one writes

CV = ∂

∂T

{∫ ωD

0
D(ω)�ω

1

e
�ω

kB T − 1
dω

}

and then, for N = NA

CV = 9R

(
T

ΘD

)3 ∫ ΘD/T

0

z4ez

(ez − 1)2
dz, (14.33)

with z = �ω/kB T .
For T 	 ΘD , with ΘD ≡ �ωD/kB (known as Debye temperature), one again

finds the classical result CV → 3R.
In the low temperature range (ΘD/T → ∞) Eq. (14.33) yields CV 
 (12π4/5)

R(T/ΘD)3. Equation (14.33) points out that the vibrational specific heat of Debye
crystals is a universal function of the variable T/ΘD . From Eq. (14.21) ΘD can be
written ΘD = (�v/kB)(6π2/vc)

1/3.
The temperature dependences of the molar specific heat in the framework of

Einstein and Debye models are sketched below:

D

ln T

C

E

3R
v

D,E
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For T → 0 the Debye specific heat C D
V vanishes less rapidly than the Einstein C E

V .
The different behavior of C D

V for T → 0 originates from the fact that the vibrational
spectrum in the Debye model includes oscillatory modes with energy separation of
the order of kB T , even at low temperature. On the contrary in the Einstein crystal in
the low-temperature range one has �ωE 	 kB T .

In the Table below the Debye temperatures of some elements are reported.

θ
θ

By resorting to the expression for the thermal energy in terms of the vibrational
spectra, the mean square displacement of a given ion as a function of temperature
can be directly derived. According to the extension of Eq. (14.3) to include all the
normal excitations, the mean square vibrational amplitude of each atom around its
equilibrium position is written

< |u|2 >=
∑
q, j

|Uq, j |2. (14.34)

By recalling that for each oscillator the mean square displacement can be related to
the average energy, < u2 >=< E > /(mω2), then for a given branch j one can
write |Uq|2 =< Eq > /Nmω2

q. Hence,

< u2 >= 1

m N

∑
q, j

< Eq, j >

ω2
q, j

= �

m N

∫ [
1

2
+ 1

e
�ω

kB T − 1

]
D(ω)

ω
dω. (14.35)

For Debye crystals, at temperatures T 	 ΘD , from Eq. (14.19) one obtains

< u2 >
 9kB T

mω2
D

(14.36)

and at low temperature < u2 >
 9�/4mωD .
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It should be remarked that < u2 > controls the temperature dependence of the
strength of the elastic component in scattering processes, through the Debye-Waller
factor e−4π<u2>/λ2

, with λ wavelength of the radiation (see Sect. 14.6 for the deriva-
tion of this result).

According to the Lindemann criterium the crystal melts when the mean square
displacement < u2 > reaches a certain fraction ξ of the square of the nearest neighbor
distance R, < u2 >= ξR2.

Empirically it can be devised that ξ is around 1.5 × 10−2 (
√

< u2 > 
 0.12R).
This criterium allows one to relate the melting temperature Tm to the Debye temper-
ature. From Eq. (14.36)

Tm = ξΘ2
D

mkB R2

�2
. (14.37)

Problems

Problem 14.1 Derive the vibrational entropy of a crystal in the low temperature
range (T � ΘD).

Solution: From C D
V (Eq. (14.33)) in the low temperature limit, by recalling that

S =
∫ T

0

C D
V

T
dT

the molar entropy is S(T ) = [12Rπ4/(15Θ3
D)]T 3. This result justifies the assumption

for the lattice entropy used at Sect. 6.4. The contribution from optical modes can often
be neglected.

Problem 14.2 Derive the vibrational contribution to the Helmoltz free energy and
to the entropy in Einstein crystals.

Solution: For N oscillators the total partition function is ZT = Z N , with

Z = e−�ωE /2kB T
∑

v

e−�ωE v/kB T = e−�ωE /2kB T

1 − e−�ωE /kB T

(remind that
∑

xn = 1/(1 − x), for x < 1).
Then the total free energy turns out

F = −NkB T lnZ = N

{
�ωE

2
+ kB T ln

(
1 − e−�ωE /kB T

)}

and the entropy is

S = −
(

∂F

∂T

)
V

= −NkB

{
ln

(
1 − e−�ωE /kB T

) − �ωE

kB T

1

e�ωE /kB T − 1

}
.

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Problem 14.3 Evaluate the specific heat per unit volume for Ag crystal (fcc cell,
lattice step a = 4.07 Å) at T = 10 K, within the Einstein model (the elastic constant
can be taken k = 105 dyne/cm) and within the Debye model, assuming for the sound
velocity v 
 2 × 105 cm/s.

Solution: The Einstein frequency ωE 
 √
k/MAg, corresponds to the temperature

ΘE 
 170 K. In the unit volume there are n = 1/(NAvc) moles, with vc = a3/4 the
volume of the primitive cell. Then, since T = 10 K � ΘE , from Eq. (14.32) one
derives C E

V 
 280 erg/K cm3.
The Debye frequency can be estimated from Eq. (14.21) and the corresponding

Debye temperature turns out ΘD 
 220 K 	 10 K. Then

C D
V 
 12π4kB

5vc

(
T

ΘD

)3


 1.72 × 105 erg/Kcm3.

Problem 14.4 Specific heat measurements in copper (fcc cell, lattice step a = 3.6 Å,
sound velocity v = 2.6 × 105 cm/s) show that CV /T (in 10−4 Joule/mole K2) is
linear when reported as a function of T 2, with extrapolated value (CV /T ) for T → 0
given by about 7 and slope about 0.6. Estimate the Fermi temperature and the Debye
temperature and the temperature at which the electronic and vibrational contributions
to the specific heat are about the same (from the equations at Sects. 12.7.1 and 14.5)
and compare the estimates with the experimental findings.

Solution: From the specific mass ρ = 9.018 g/cm3 the number of electrons per cm3

is found n = 8.54 · 1022 cm−3. From Eq. (12.28) TF = 7.8 · 104 K.

The Debye temperature, for the primitive cell of volume vc = a3/4, is
θD = (�v/kB)

(
6π2/vc

)1/3 = 323 K.
From

π2

2
nkB

T ∗

TF
= 1

vc
kB

12π4

5

(
T ∗

θD

)3

,

(per unit volume) the temperature T ∗ at which the electronic and vibrational contri-
butions are the same is obtained:

T ∗ = √
5vcn(ΘD)3/2/

(
π
√

24TF

)

 3 K.

From the experimental data according to Eq. (12.31) for N Z = NA

γ = π2 R/(2TF ) = 7 × 103 erg/ mole K2, one finds TF 
 5.8 · 104 K and from

C D
V 
 12π4 R

5

(
T

ΘD

)3

,

one derives θD 
 343 K.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Problem 14.5 Write the zero-point vibrational energy of a crystal in the Debye
model and derive the bulk modulus for T → 0.

Solution: The zero-point energy is E0 = 1
2

∫ ωD

0 �ωD(ω)dω (Eq. (14.31)). From
Eq. (14.19) one derives E0 = 9N�ωD/8.

At low temperature the bulk modulus is (B 
 V ∂2 E0/∂V 2). Then, by writing
ωD in terms of the volume V = Nvc one finds

B = 1

2

N

V
�ωD ≡ 1

2

1

vc
kBΘD.

14.6 The Mössbauer Effect

The recoil-free emission or absorption of γ-ray (for the first time experimentally
noticed by Mössbauer in 1958) is strictly related to the vibrational properties of the
crystals. Meantime it allows one to recall some aspects involving the interaction of
radiation with matter.

Let us consider an atom, or a nucleus, ideally at rest, emitting a photon due to
the transition between two electronic or nucleonic levels. At the photon energy hν is
associated the momentum (hν/c). Then in order to grant the momentum conservation
the atom has to recoil during the emission with kinetic energy ER = (hν/c)2/2M ,
with M the atomic mass. Because of the energy conservation the emission spectrum
(from an assembly of many atoms) displays a Lorentzian shape,

E

E - E

I (E)  
E

ΔE
E

E

photon 

emis

B

B

A

A

R

at least with the line broadening ΔE related to the life-time of the level (the inverse of
the spontaneous emission probability, see Problem 1.24). Another source of broaden-
ing arises from the thermal motions of the atoms and the emission line usually takes
a Gaussian shape, with width related to the distribution of the Doppler modulation
in the emitted radiation (see Problem 1.30).

Let us suppose to try the resonance absorption of the same emitted photon
from an equivalent atom (or nucleus). Again, by taking into account the energy and
momentum conservation in the absorption process, the related spectrum must have
an energy distribution of Gaussian shape, centered at E = (EB − EA) + ER:

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
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E

E - E

I (E)  
E

B A

R
abs

From the comparison of the emission and absorption spectra one realizes that the
fraction of events that grant the resonance absorption is only the one corresponding
to the energy range underlying the emission and absorption lines.

In atomic spectroscopy, where energy separations of the order of the eV are
involved, the condition of resonant absorption is well verified. In fact, the recoil
energy is ER ∼ 10−8 eV, below the broadening ΔE ∼ 10−7 eV typically associated
with the life time of the excited state. At variance, when the emission and the absorp-
tion processes involve the γ-rays region, with energies around 100 keV, the recoil
energy increase by a factor of the order of 1010. Since the lifetime of the excited
nuclear levels is of the same order of the one for electronic levels, only a limited
number of resonance absorption processes can take place, for free nuclei.

In crystals, in principle, one could expect a decrease in the fraction of resonantly
absorbed γ-rays upon cooling the source (or the absorber), due to the decrease of the
broadening induced by thermal motions. Instead, an increase of such a fraction was
actually detected by Mössbauer at low temperature. This phenomenon is due to the
fact that in solids a certain fraction f of emission and absorption processes occurs
without recoil. Thus the spectrum schematically reported below

ER ER

EB-EA E

emission absorption

can be conceived, with a sizeable superposition of events around the energy difference
(EB − E A).

The momentum conservation is anyway granted, since the recoil energy goes to
the whole crystal, with negligible subtraction of energy to the emitted or absorbed
photons. The reason for the recoilless processes can be grasped by referring to the
Einstein crystal, with energy �ωE larger than ER . It is conceivable that when the
quantum of elastic energy cannot be generated, then the crystal behaves as rigid.
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Another interpretation (not involving the quantum character of the vibrational
motions) is based on the classical consideration of the spectrum emitted by a source
in motion. For a sinusoidal motion with frequency ωS , the emitted spectrum has
Fourier components at ωi ,ωi ±ωS, . . . , so that a component at the intrinsic frequency
ωi should remain.

The fraction f of recoilless processes can be evaluated by considering, in the
framework of the time dependent perturbation theory used in Appendix 1.3, the
emitting system as one nucleus imbedded in the crystal, looking for the transition
probability between states having the same vibrational quantum numbers, while
the nuclear state is changed. Since the long wave-length approximation cannot be
retained, the perturbation operator reads

∑
i Ai · ∇i (the sum is over all nucleons)

(see Eq. (A.1.3.3)).
Let us refer to an initial state corresponding to the vibrational ground-state

|0, 0, 0, . . . >, by writing the amplitude of the time-dependent perturbative Hamil-
tonian

∑
i eik · Ri . Expressing Ri in terms of the nucleon coordinates with respect to

the center of mass, the effective perturbation term entering the probability ampli-
tude f 1/2 is of the form eik · u, with u the displacement of the atom from its lattice
equilibrium position: f 1/2 ∝< 0, 0, 0 . . . |eik · u|0, 0, 0 . . . >.

The proportionality factor includes the matrix element of the variables and spins
of the nucleons as well as the mechanism of the transition.

The vibrational ground-state (see Eq. (14.23)) for a given branch is ||0, 0, 0 . . . >

= ∏
q e−Q2

q/4Δ2
q . The displacement u can be written as a superposition of the nor-

mal modes coordinates: u = ∑
q αqQq (αq normalizing factors which include the

masses). Then, by referring to the component along the direction of the γ-rays, one
writes

f 1/2 ∝
∫ +∞

−∞

∏
q

e
−Q2

q
2Δ2

q eikαq Qq d Qq ∝
∏

q

e
−α2

qΔ2
qk2

2 = e− 1
2

∑
q α2

qΔ2
qk2

The mean square displacement turns out

< 0, 0 . . . |u2
x |0, 0 . . . >≡< 0, 0 . . . |

∑
q,q′

αq Qqαq′ Qq′ |0, 0 . . . >=

=
∑

q

α2
q < 0, 0 . . . |Q2

q|0, 0 . . . >=
∑

q

α2
qΔ

2
q

and then

f ∝ e−k2<u2
x > = e−k2<u2>/3.

Since for k = 0 one can set f = 1, one has

f = e−k2<u2>/3. (14.38)

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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For T → 0 f depends from the particular transition involved in the emission
process (through k2) and from the spectrum of the crystal through the zero-point
vibrational amplitude < u2(T = 0) >.

The temperature dependence of f originates from the one for < u2 >. f is
also known as the Debye-Waller factor, since it controls the intensity of X-ray and
neutron diffraction peaks. The Bragg reflections, in fact, do require elastic scattering
and therefore recoilless absorption and re-emission.

By evaluating < |u|2 > for the Debye crystal, for instance, (see Eq. (14.36)) for
T � ΘD one has

f = e−(3ER/2kBΘD). (14.39)

The typical experimental setup for Mössbauer absorption spectroscopy is sketched
below

Source 

γ-emission

Absorber 
Detector  counters 

motion 

isomer shift

Counter 

v = 0  v (mm/sec) 

Area 

The source (or the absorber) is moved at the velocity v in order to sweep through
the resonance condition. As a function of the velocity, one observes the Mössbauer
absorption line, the area being proportional to the recoilless fraction f .

The shift with respect to the zero-velocity condition, isomer shift, is related to
the finite volume of the emitting and absorbing nuclei (try to understand the shift by
returning to Problems 1.6 and 5.23).

Since the motions do not affect the linewidth, the resolution of the Mössbauer
line in principle depends only on the intrinsic lifetime of the level. Typically,
for ∼100 keV γ-rays, a resolution around 10−14 can be achieved. Therefore, the
Mössbauer spectroscopy can be used in solid state physics to investigate the mag-
netic and electric hyperfine splitting of the nuclear levels. It has been used also in
order to detect subtle relativistic effects (see Problem 14.13).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_5
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Problems

Problem 14.6 Show that an approximate estimate of the Debye temperature in a
monoatomic crystal can be obtained from the specific heat, by looking at the tem-
perature at which CV 
 23 · 107 erg/mole K.

Solution: From Eqs. (14.19) and (14.31)

U =
∫ ωD

0

�ω

e
�ω

kB T − 1
D(ω)dω = 3

2π2

Nvc

v3

∫ ωD

0

�ω3

e
�ω

kB T − 1
dω,

(having neglecting the zero-point energy which does not contribute to the thermal
derivatives). v is the sound velocity (an average of the ones for longitudinal and
transverse branches). From Eq. (14.33) the specific heat can be written

CV = 9R

[
4

(
T

θD

)3 ∫ θD
T

0

z3

ez − 1
dz − θD

T

1

e
θD
T − 1

]
.

For T = θD

CV (T = θD) 
 36R

[∫ 1

0

z3

ez − 1
dz − 1

1.72

]

and then CV (T = θD) 
 2.856R 
 23.74 · 107 erg/mole K.

Problem 14.7 In a 1D linear diatomic crystal of alternating Br− and Li+ ions and
lattice step a = 2 Å, the sound velocity is v = 2.7 · 105 cm/s. Derive the effective
elastic constant for the sound propagation under the assumption used at Sect. 14.3.2.
Estimate the gap between the acoustic and optical branches.

Solution: From Eq. (14.17), in the q → 0 limit, the sound velocity turns out

v =
√

2k

m1 + m2
a.

Then the elastic constant is

k = 1

2
(m1 + m2)

(v

a

)2 
 1.32 × 104 dyne/cm.

The gap covers the frequency range from ωmin = (2k/m1)
1/2 to ωmax = (2k/m2)

1/2,
with

ωmin = 0.14 · 1014rad s−1 and ωmax = 0.47 · 1014rad s−1.
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Problem 14.8 For a cubic crystal, with lattice step a, show that within the Debye
model and for T � ΘD , the most probable phonon energy is �ωp 
 1.6kB T and
that the wavelength of the corresponding excitation is λp 
 aΘD/T .

Solution: In view of the analogy with photons (see Problem 1.25) the number of
phonons with energy �ω is given by

n(ω) = D(ω)/(e�ω/kB T − 1).

From Eq. (14.19) and from dn(ω)/dω = 0, one finds

�ωp

kB T
e�ω/kB T = 2(e�ω/kB T − 1)

and then �ωp/kB T 
 1.6.
Since λp(ωp/2π) = v, the average sound velocity, one has λp 
 2πv�/1.6kB T .

For cubic crystal ΘD = (v�/kBa)(6π2)1/3, and then λp 
 aΘD/T .

Problem 14.9 Show that in a Debye crystal at high temperature the thermal energy
is larger than the classical one by a factor going as 1/T 2.

Solution: From Eqs. (14.19), (14.21) and (14.31) the thermal energy is

U = 9NkB T

(
T

ΘD

)3 ∫ xD

0

(
x3

ex − 1
+ x3

2

)
dx

with xD = ΘD/T and x = �ω/kB T . For x → 0, after series expansion of the
integrand

∫ xD

0

(
x3

ex − 1
+ x3

2

)
dx 


∫ xD

0

(
x3

x + x2

2 + x3

6 + · · · + x3

2

)
dx 




∫ xD

0

[
x2

(
1 − x

2
+ x2

12
− · · ·

)
+ x3

2

]
dx 


∫ xD

0
x2

(
1 + x2

12
− · · ·

)
dx.

Note that the second term of the expansion cancels out the zero-point energy. Then
one can write

U = 9NkB T

(
T

ΘD

)3
(

1

3

(
ΘD

T

)3

+ 1

60

(
ΘD

T

)5

+ · · ·
)

.

The molar specific heat turns out

CV 
 3R

(
1 − 1

20

(
ΘD

T

)2

− · · ·
)

.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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Problem 14.10 In the figures below

0.000

0.004

0.008

0.012

0.016

0.020

0.00 0.05 0.10 0.15 0.20 0.25 0.300.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.5

1.0

1.5

2.0

2.5

T  (K )

C
 /T

 (
m

J/
m

ol
e.

K
)

2 2

2

T  (K )2 2

v C
 /T

 (
m

J/
m

ol
e.

K
)2

v

the low temperature specific heats of two crystals are reported. Are they metals or
insulators? Estimate the Debye temperatures and the Fermi energy.

Solution: From CV /T = A + BT 2, A = R(π2/3)D(EF )kB is the term associated
with the free-electron contribution (see Problem 12.14 for NA electrons), while B =
(12π4/5)(R/Θ3

D) originates from the phonon contribution. Hence the figure on the
left refers to a metal while the one on the right to an insulator (A = 0).

From the data on the left A 
 2.1 × 104 erg/K2mole one finds EF 
 1.7 eV.
From B 
 2.6 × 104 erg/K4mole, then ΘD 
 90 K. From the data on the right
B 
 590 erg/K4mole, yielding ΘD 
 320 K.

Problem 14.11 Derive the vibrational contribution to the specific heat for a
monoatomic 1D crystal, at high and low temperatures, within the Debye and the
Einstein approximations. Compare the results with the exact estimates obtained in
the harmonic approximation and nearest-neighbor interactions (Sect. 14.3.1).

Solution: Within the Debye model the vibrational spectrum is D(ω) = Na/(πv)

and then according to Eq. (14.31)

UD = N

2
�ωD + N

ωD

∫ ωD

0

�ω

eβ�ω − 1
dω.

The molar specific heat turns out CV 
 R for T 	 ΘD = �ωD/kB and CV 

2I R(T/ΘD) for T � ΘD , with I = ∫ ∞

0 x/(ex − 1)dx.
Within the Einstein model D(ω) = Nδ(ω − ωE ) and results independent from

the dimensionality are obtained (see Eq. (14.32)). One has CV 
 R(ΘE/T )2

exp(−ΘE/T ) for T � ΘE and CV 
 R for T 	 ΘE .

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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In the harmonic approximation with nearest neighbors interactions the density of
vibrational states is D(ω) = (2N/π)(1/

√
ω2

m − ω2) for ω ≤ ωm , while it is zero for
ω > ωm (see Eq. (14.14)). Then

U = N

2
�ω + 2NkB T

π

∫ xm

0

1√
x2

m − x2

x

ex − 1
dx

with x = β�ω and xm = β�ωm . For T 	 Θm = �ωm/kB one has

U 
 N

2
�ω + 2NkB T

π

(π

2
− xm

2
+ · · ·

)

and the molar specific heat is CV 
 R. For T � �ωm/kB ≡ Θm

U 
 N

2
�ω + 2N (kB T )2

π�ωm
I

so that

CV 
 4I

π
R

T

Θm

showing that the Debye approximation yields the same low temperature behavior.

Problem 14.12 A diatomic crystal has two types of ions, one at spin S = 1/2 and
g = 2 and one at S = 0. The Debye temperature is ΘD = 200 K . Evaluate the
entropy (per ion) at T = 20 K in zero external magnetic field and for magnetic field
H = 1 kGauss, for no interaction among the magnetic moments.

Solution: The vibrational entropy is

Svib =
∫ T

0

CV (T ′)
T ′ dT ′

where for T � ΘD , neglecting the optical modes (see Problem 14.1)

CV (T ′) = 12π4

5
kB

(
T ′

θD

)3

.

Then at T ′ = 20 K

Svib = kB
12π4

15

(
T ′

θD

)3

= 0.078 kB .
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The magnetic partition function is

Zmag = exp

(
−1

2
y

)
+ exp

(
1

2
y

)

 2 + y2

4

with

y = μBgH

kB T

 0.9 · 10−20

1.38 · 10−16
g

H

T
= 6.72 · g

H

T
· 10−5 � 1.

From

F = −kB T ln Z and S = −∂F

∂T

with

Smag(T
′) 
 kB

[
ln 2 − y2

4

]

 kBln2

one has

S = Svib + 1

2
Smag = kB[0.078 + 0.34] = 0.42kB/ion.

Problem 14.13 The life time of the 57Fe excited state decaying through γ emission
at 14.4 keV is τ 
 1.4 × 10−7 s (see Problems 1.24, 1.30 and 3.13). Estimate the
height at which the γ-source should be placed with respect to an absorber at the
ground level, in order to evidence the gravitational shift expected on the basis of
Einstein theory.

Assume that a shift of 5 % of the natural linewidth of Mössbauer resonant absorp-
tion can be detected [in the real experiment by Pound and Rebka (Phys. Rev. Lett.
4, 337 (1960)) by using a particular experimental setup resolution of the order of
10−14 −10−15 could be achieved, with a fractional full-width at half-height of the
resonant Lorentzian absorption line of 1.13 × 10−12]. Try to figure out why the
source-absorber system has to be placed in a liquid He bath.

Solution: On falling from the height L the energy of the γ photon becomes

hν(0) = hν(L)

[
1 + gL

c2

]

where mgL/mc2 can be read as the ratio of a gravitational potential energy mgL
to the intrinsic energy mc2 (mass independent and therefore valid also for photons).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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The natural linewidth of the Mössbauer line is 2�/τ . Therefore, to observe a 5 %
variation

2�

20τ
= hν(L)

gL

c2

and then

L = �c2

10 gτ14.4 keV
= 284 m

(in the real experiment the height of the tower was about 10 times smaller!). Note
that the natural linewidth, when sweeping with velocity v the absorber (or the source)
corresponds to a velocity width

Δv = 2�c

hντ

 0.2 mm/s

(the actual full-width at half height in the experiment by Pound and Rebka was
0.43 mm/s).

A difference in the temperatures of the source and the absorber of 1 K could prevent
the observation of the gravitational shift because of the temperature-dependent
second-order Doppler shift resulting from lattice vibrations, since< v2 >∼ kB T/M .
Low temperature increases the γ-recoilless fraction f .
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Chapter 15
Phase Diagrams, Response Functions
and Fluctuations

Topics

Phenomenology of Phase Transitions
Critical Points and Thermodynamic Relationships
The Concept of Order Parameter
Free Energy at Phase Transitions
Homogeneous and Non-homogeneous Systems
Fluctuations and Their Time Dependence
Dynamical Structure Factor and Generalized Susceptibility
Experimental Techniques

During the last decades emerging scientific attention has been directed towards the
subject of phase transitions, namely the dramatic changeover in the properties of a
macroscopic system upon variation of a thermodynamic variable (in most cases the
temperature). In this chapter and in the subsequent three chapters, we shall deal with
the description of some phases of solid state matter and describe the basic aspects
of the microscopic mechanisms that control the transition between different phases.
The key concept and the role of the order parameter will be introduced, first in the
framework of the thermodynamic description and then in the framework of specific
theories dealing with the microscopic dynamics that drive the crossover from one
phase to the other.

It will be shown how on approaching the critical point, marking the boundary
between two phases at second-order phase transitions, the fluctuations around the
average quantities exhibit strong enhancement. At the same time the metastable
“heterophase droplets” of one phase into the other (reminiscent of the liquid droplets
forming in the vapour phase when cooling along the critical isochore towards the
vapour-liquid transition point) live longer and longer in time, thus implying slowing-
down of the fluctuations.

A rather general description of phase transitions and of the critical dynamics deal-
ing with the behaviour of thermodynamic functions, shall be given in the framework
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of a Landau-type statistical theory, which can be considered to include more specific
mean field approaches, such the Weiss theory for magnetic systems and the Van der
Waals theory for fluids.

In developing those topics we will have the chance to recall, and at the same time
to systematize, some issues and phenomena already mentioned in previous parts of
the book, for instance clarifying the concepts of instability at a critical point or the
meaning of the fluctuations and their role in forcing the transition from one phase to
the other.

15.1 Phase Diagrams, Thermodynamic Responses
and Critical Points: Introductory Remarks

Condensed matter is conventionally considered to be found in solid, liquid and
gaseous states, also known as phases. In the solid state, a variety of other “phases” can
indeed be defined, regarding electric properties (dielectrics, ferroelectrics), magnetic
properties (paramagnets, ferro or antiferromagnets), transport properties (insulators,
semiconductors, metals, superconductors), crystal structures (polymorphs, ordered
or disordered binary alloys). Furthermore in condensed matter other particular phe-
nomena accompanying phase transformations are known, such as superfluidity, the
incommensurate phases, the transitions in disordered crystals and in martensitic
materials, the roughening of the surfaces or the collapse transition in gels. Other
phases can be obtained through artificial lattices produced by optical confinement
as, for example, the Bose-Einstein condensate.

The phenomena occurring in the neighbourhood of the crossover from one phase
to the other, when one physical variable (e.g. the temperature, pressure or exter-
nal electric or magnetic fields) drives the system in a different state, have attracted
strong scientific interest. Instability phenomena, criticality of some parameters or
critical divergences of some quantities are detected at the transition, accompanied
by enhancement and slowing down of the fluctuations, as we shall discuss in sub-
sequent sections. In spite of the relevant microscopic differences in these systems
and phenomena, the phase transitions can be discussed within a common theoretical
framework, by means of rather general approaches that justify the large variety of
the related effects.

The phase diagrams divide the planes defined by certain electric, magnetic or
thermodynamic variables in areas which refer to the existence of a given state. The
typical phase diagramof gas-liquid-solidmatter, as thewater, is shown in Fig. 15.1. In
the phase diagram the vaporization curve is conveniently defined as the coexistence
line and it ends at the critical point, where the critical pressure Pc and critical
temperature Tc are defined. For instance, for water the critical temperature is Tc =
647K and Pc is 218atm, in correspondence to a critical density ρc = 0.329g/cm3.
It should be remarked that for water the line dividing the solid and liquid states has
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Fig. 15.1 The water
pressure-temperature phase
diagram

negative derivative along the fusion curve (see Fig. 15.1). This is a very special case
in condensed matter (see Problem15.1).

When on increasing temperature the solid melts the temperature stays constant
for the time of complete melting. Similarly, when heat is provided and the liquid is
crossing to vapour, along the vaporization process the temperature remains constant.
Melting and vaporization are phase transitions for which onemust provide heat along
the process, meanwhile the temperature is constant, namely the latent heat1 For these
transitions, by moving along pathways parallel to the temperature axis in the figure
above, the crossover from one phase to the other is discontinuous, both for increasing
or for decreasing temperature.2 Other changes of states requiring latent heat are the
ones related to polymorphism in crystals.

1The melting latent heat is the one required to transform a gram of solid into liquid (for ice
79.7cal/g). To push the liquid into the vapour phase the latent heat of vaporization Lvap is required
(for water 539.6cal/g = 40.7kJ/mol). When at the boiling temperature Tb water is transformed in
steam, a jump in the entropy occurs and correspondently a spike in the heat capacity is observed.
From the definition Lvap = (ΔQ)rev = TbΔS, the discountinuous jump in the entropy turns out
ΔS = 110 J/K.mol, that corresponds to 13.1R (namely Lvap = 13.1RTb) in approximate agreement
with the empirical Trouton rule Lvap � 10RTb. This rule can be approximatively derived from the
comparison of the liquid and the vapour densities, by resorting to the definition of entropy in terms
of the number of microstates available for a given macrostate (see Problem15.2).
2A certain asymmetry is related to the delay in the solidification process for a liquid, when the
meta-stable under-cooled liquid is produced, while no analogous thermal hysteresis is detected in
the melting process of the solid. On the other hand, the meta-stable state of superheated liquid is
known to be possible.
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When latent heat is required the transition can be defined to be first order, for
reasons related to the discontinuity of the first derivative of the thermodynamic
potentials, as it will be discussed subsequently. It should be remarked that there
are phase transitions that do not involve latent heat and occur with continuity. This
is the case of the transition at the critical point at the end of the vapour pressure
curve, at the values Pc and Tc in Fig. 15.1. In the neighbourhood of this type of
transition critical phenomena occur. In solids several transitions between different
phases involve a critical point, as it will be recalled subsequently. The studies of
transitions at the critical points have promoted important developments and novel
ideas in the theories of cooperative effects in many-body systems.

On the basis of the possible paths that could be followed in the phase diagram
sketched above, some observations about the concept of broken symmetry at the
transition are in order. The solid-liquid transition involves a change of symmetry
that cannot be achieved gradually. The liquid has more symmetry than the solid
since, after statistical averaging, any point in the liquid is exactly the same as any
other point, corresponding to full translational and rotational symmetry. The solid,
still retaining some residual symmetry (the translational symmetry) has lost the full
symmetry of the liquid.

The broken symmetry concept is better understood at the paramagnetic-
ferromagnetic phase transition. Above Tc complete rotational symmetry is present,
since the magnetic moments can point in any direction. Instead, below the ordering
temperature (see Sect. 4.4) a unique direction for all the spins is chosen, thus breaking
the rotational symmetry present in the disordered phase.

The path from gas to liquid and viceversa does not involve discontinuous sym-
metry breaking but still implies a discontinuous change of the density and there is
not a critical point. By moving along a line which goes around the critical point any
discontinuous change would be avoided. Thus there is no change of symmetry and
the gas and the liquid differ only in their densities. Only at the end of the coexistence
line (the vaporization curve) between liquid and gas a critical point is present.

By cooling a gas along the critical isochore the critical point is reached at the
temperature Tc and a continuous change of density starts to occur on further reducing
the temperature. In fact, another diagram known from elementary physics is the
one dealing with the isotherms of a real gas (or Van der Waals isotherms), often
accompaniedby theClapeyron equation for the derivative of the pressure as a function
of temperature in terms of the specific volumes (inverse of densities), as sketched in
Fig. 15.2.

In Fig. 15.3 the analogies between the transition at the critical point of a fluid and
the ones occurring in ferroelectrics and in magnetic systems are illustrated.

Pressure, electric and magnetic fields are called fields. The volume (or the inverse
density ρ−1), the electric polarization P and the magnetization M are the densities,
thermodynamically conjugated to the corresponding fields. The densities go grad-
ually to zero on approaching the critical points by moving along the coexistence

http://dx.doi.org/10.1007/978-3-319-17897-4_4


15.1 Phase Diagrams, Thermodynamic Responses and Critical Points … 449

1
2

B

Fig. 15.2 The pressure-volume phase diagram for a fluid. The solid lines are isothermal curves.
Line 1 is at T � Tc and line 2 at T = Tc. In region B one has liquid and vapour. The Clapeyron
equation is (dP/dT ) = ΔS/ΔV = L/T (V2 − V1), with L the latent heat and V1,2 the specific
volumes. For water at 100 ◦C, one has (dP/dT ) = 27mmHg/K. Since at the liquid-ice transition
V1 > V2, (dP/dT ) turns out to be negative, as shown in Figs. 15.1 and 15.3 (see Problem15.1)

curves and thus they can be assumed as the thermodynamic order parameter3 ρ, M
or P .

Other systems displaying critical points are the binary alloys. For example in
CuZn the Cu and Zn atoms are randomly distributed on the lattice sites of two
interpenetrating cubic lattices in the high temperature disordered phase (above Tc �
640 ◦C). The percent of atoms on a given sub-lattice are nCu = nZn = 1/2. In the
totally ordered phase (for temperature close to zero) the bcc structure has nCu = 1
and nZn = 0 in a sub-lattice and nCu = 0 and nZn = 1 in the other one. The order
parameter (nCu − nZn) is zero in the disordered phase and 1 in the totally ordered
phase. No latent heat is required at the transition.

Other phase transitions we shall deal with occur in antiferromagnets and in super-
conductors. Finally it is mentioned that the Helium superfluid transition, around
2.16K, is known as λ transition , in view of the temperature behaviour of the spe-
cific heat, resembling this Greek letter. In this case the ordering does not involve

3The thermodynamic order parameter is usually related to the local order parameter, namely the
statistical average (see Eq. (15.1)) of a given microscopic variable (for instance the expectation
values of spin components for magnetic systems) through a sum, with proper phase factors. In the
presence of inhomogeneities, with spatial variation of the local order parameter, as it is the casewhen
thermal fluctuations are taken into account (Sect. 15.3), the definition of the local order parameter
requires an averaging process over a certain number of lattice sites (coarse grain average).
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Fig. 15.3 Sketches which illustrate the analogies among different kind of phase transitions: from
left to right the ferromagnetic transition in CrBr3, the vapour-liquid transition in water and the
ferroelectric transition in BaTiO3. In the first line the phase diagrams are shown. The second line
reports the behaviours of the order parameters while in the third and fourth lines the behaviours of
some response functions are sketched. The last line, at the bottom, reports alternative representations
of the phase diagrams. P , E and H are the fields; V = ρ−1, P and M the densities. The density
going to zero on moving along the coexistence curve defines the thermodynamic order parameter
(see text)
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the positions of the atoms but rather it occurs in the momentum space. Below 2.2K
Helium suddenly acquires unusual flow properties, with no viscosity, as the conse-
quence of the “order” of the atoms in the state of zero momentum.

Now a few recalls of thermodynamic-statistical relations are in order. The statis-
tical thermal average of an observable O is written

< O >=
∑

n e
−βEn < n|O|n >∑

n e
−βEn < n|n >

≡ Tr{ρO}
Tr{ρ} (15.1)

where< n|O|n > are the eigenvalues of the observable while ρ = exp(−βH) is the
density matrix and Z = Tr{ρ} the partition function (see Problems4.10 and 4.18).

The Gibbs free energy is

G = F + x X = U − TS + x X (15.2)

where U , the internal energy, is the statistical thermal average of the Hamiltonian,
i.e. U =< H >, while here X indicates the fields and x the conjugated densities
(which are extensive variables, as the entropy S).

The Helmholtz free energy F = U − TS (see Problem6.4) is

F = −kBT lnZ (15.3)

The Gibbs free energy G = G(X, T ), with x X = PV , is the relevant thermo-
dynamic potential for a system at given T and X . At the equilibrium, coexistence
phases have the same chemical potential and dGtotal = 0. The Helmholtz free energy
F = U − TS is the thermodynamic potential in terms of T and V . The latent heat
corresponds to the discontinuity in the first derivative of G and in particular in the
entropy and the density. The discontinuities in the specific heat (see Fig. 15.3) and
in the compressibility correspond to the discontinuities in the second derivatives of
G. The discontinuity in the third derivative of G with respect to T implies the diver-
gence of the specific heat at constant pressure for T → Tc and it accompanies the λ
transition.

The order parameters are the first derivatives of free energy with respect to the
conjugated variable:

ρ−1 = −(∂G/∂P)T (15.4)

M(H, T ) = −(∂G/∂H)T (15.5)

P(E, T ) = −(∂G/∂E)T (15.6)

In view of the fluctuation-dissipation relationships (see Problems4.18 and 6.12 and
Eq. (6.14)) one can figure out that the divergences in the response functions must cor-
respond to an enhancement of the fluctuations, as it will be addressed subsequently.
In fact, it is reminded that the specific heat CV = [∂U/∂T ] = −T [∂2F/∂T 2] can
be related to the energy fluctuations (see Problem6.9):

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_6
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_6
http://dx.doi.org/10.1007/978-3-319-17897-4_6
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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CV = −1

T 2

∂

∂β

(
TrHe−βH

Tre−βH

)
= 1

kBT 2

(
< E2 > − < E >2

)
, (15.7)

while for the susceptibility χ = (< ΔM2 > /kBT ) (see Eq. (6.14)) and for the
isothermal compressibility of a fluid κT /κ0 =< ΔN 2 > / < N >, with N the num-
ber of particles (e.g. molecules) and κ0 the compressibility for the non-interacting
particles (see Problem15.5).

According to the criterion envisaged by Ehrenfest, first order phase transitions
are the ones with discontinuity in the first derivatives of the free energy, such as the
entropy, yielding a latent heat and a change of volume as observed in the melting
and solidification of a fluid. Second order phase transitions show discontinuities in
the second derivatives of the thermodynamic potentials as most of the magnetic,
ferroelectric and superconductive phase transitions.4

The response functions are defined as the derivatives of the densities with respect
to the fields:

κT = −
(
1

V

)
(∂V/∂P)T = −

(
1

V

)
(∂2G/∂P2)T (15.8)

χT = (∂M/∂H)T = −
(
1

V

)
(∂2G/∂H 2)T (15.9)

CP = T (∂S/∂T )P = −T (∂2G/∂T 2)P (15.10)

CV = −T (∂2F/∂T 2)V (15.11)

Then one can again observe that at second order phase transition the discontinuities
only involve the response functions and not the order parameters.5

By referring to Fig. 15.3 one notices that the order parameter and the response
functions in the proximity of Tc follow power laws, characterized by critical indexes
α,β, γ, etc. The index is defined as the limit, for reduced temperature ε = (T −
Tc)/Tc going to zero, of the ratio ln f (ε)/ lnε, for a given “critical function” f. For
example, in regards of the order parameter, β defines the slope of the magnetization
or of the polarization for temperature approaching Tc from below. γ and γ′ define
the slope of the response functions on approaching the critical points.

4Fisher defines the second order phase transition as continue (discontinuities occurring at higher
order, as in the compressibility or in the specific heat). For structural and ferroelectric phase
transitions in crystals Landau defines as first order transition the one with sudden variation of the
order parameter at Tc and with equilibrium of two phases without symmetry constrains at this
temperature. At variance, according to the Landau criterion are second order the transitions with
symmetry constrains (the point group below Tc is a subgroup of the one above Tc) and for them
an expansion of the free energy in terms of powers of the order parameter is allowed (see our
generalization at Sect. 15.2).
5It is remarked that most second order transitions in practice display some discontinuity in the
order parameter at Tc. When the discontinuity is small one speaks of quasi second-order transitions
and the same theoretical framework is used, possibly with renormalization of some quantities, for
instance the transition temperature.

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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The critical indexes depend on two main factors: the system dimensionality D
(namely if the interactions involve one, two or three dimensions) and the dimension-
ality of the critical variable d . To illustrate the meaning of this last quantity let us
refer to an insulating magnetic system where the critical variables corresponds to the
spins localized at the lattice sites. If the spin is fully isotropic, namely its x, y and
z components are equivalent, the system is called an Heisenberg system (d = 3). If
the z component is zero and the x and y components are equivalent one says it is an
XY system (d = 2). If only the z component is different from zero one says it is an
Ising system (d = 1). For a magnetic system the dimensionality d is thus determined
by the magnetic anisotropy, typically driven by the spin-orbit interaction. Once D
and d are defined the critical exponents are determined (see Table15.1), no matter
which is the nature of the interaction causing the phase transition. In order to clarify
those relevant quantities involved in phase transitions here we are anticipating some
issues to be dealt with at Chap. 17.

Accordingly, different systems as, for example, magnetic ones and fluids, can be
characterized by the same critical behaviour if D and d are the same, namely if they
belong to the same universality class. As it is shown in Table15.1 in some cases
(e.g. D = 2 and d = 3) the critical exponents are not defined. This is due to the
fact that for certain universality classes no phase transition at a finite temperature is
permitted. Indeed, as demonstrated by theMermin-Wagner-Berezinkskii theorem , for
anHeisenberg systemno phase transition at a finite temperature is allowed for D < 3.
In Table15.2 the occurrence or not of a phase transition for the different universality
classes is summarized. A special case is represented by the two-dimensional XY
systems which are characterized by anomalies in the response functions but the
order parameter is non-zero below Tc just in the case of finite size systems.

We conclude this introductory section with some observations on the thermo-
dynamic description of magnetic systems. In general terms that description can
be obtained from the usual thermodynamics of a gas by replacing −V by the

Table 15.1 The values of the critical exponent β for different dimensionalities of the lattice D and
of the critical variable d (see also Sect. 17.1)

D/d 3 (Heisenberg) 2 (XY) 1 (Ising)

3 0.345 0.33 0.3125

2 – 0.235 for finite systems 0.125

1 – – –

Table 15.2 The occurrence (
⊙

) or the absence (×) of the phase transition at finite temperature is
reported for different dimensionalities of the lattice D and of the critical variable d

D/d 3 (Heisenberg) 2 (XY) 1 (Ising)

3
⊙ ⊙ ⊙

2 × ⊗ ⊙
1 × × ×
the D = 2 XY system, where at the Berezinskii-Kosterlitz-Thouless transition a divergence in the
correlation length occurs while the order parameter remains zero for an infinitely large system

http://dx.doi.org/10.1007/978-3-319-17897-4_17
http://dx.doi.org/10.1007/978-3-319-17897-4_17
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magnetizationM and the pressure P with the field H . However somemore comments
are in order.

Let us refer to a solenoid of length L and with N turns of area A, wound around
a magnetic sample. The field created by the current i is H = 4πni/c (n = N/L
number of turns per unit length). The elementarywork required to increase the current
from i to i + di is given by

dW = −E · idt = −(N Ai/c)dB = N AH · dB/4πn, (15.12)

having used for the electromotive force E = (N/c)dΦ/dt = (N A/c)dB/dt . Since
B = H + 4πM, one has

dW = V

[
H · dM + H · dH/4π

]
; (15.13)

the first term is the magnetic work done on the sample while the second term is the
work, independent from the presence of the sample, required to create the energy
density (H 2/8π) in the empty coil. Then the first law of thermodynamics, expressed
per unit volume, becomes

dU = TdS + PdV + H · dM + d(H 2/8π), (15.14)

namely

dU � TdS + H · dM, (15.15)

having considered that dV � 0 and neglecting terms not involving the sample.
H · dM is the work on the sample equivalent to −PdV in a fluid.

The internal energy could be defined in terms of S and M but usually it is more
convenient to work with the external field and the temperature as variables. Then, by
taking into account Eq. (15.15), one writes the thermodynamic potentials G(T, H)

or F(T, M) as

dG = dU − SdT − TdS − M · dH − H · dM = −SdT − M · dH. (15.16)

F and G are related by the Legendre transformation

G(T, H) = U − TS − H · M(H) = F[T,M(H)] − H · M(H), (15.17)

F is the thermodynamic potentialmost usedwhen T andM are constant. In fact,when
the induced magnetization is small G and F practically coincide. This equivalence
is commonly used in superconductors around the transition temperature Tc (where
on the other hand the term H 2/8π has to be added to F in order to account for the
magnetic energy in the volume, see Sect. 18.9).

http://dx.doi.org/10.1007/978-3-319-17897-4_18
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15.2 Free Energy for Homogeneous Systems

The phenomenology recalled in the previous section evidences that phase transitions
are collective phenomena occurring in many-body systems with inter-particle inter-
actions. Once that a local “force” (an external force or even an “internal” force related
to the fluctuations around the equilibrium value) initiates to induce a certain order
in a given system of variables, the interaction can propagate the order to distances
larger than the interaction range. Thus, without any external action, as a consequence
of the fluctuations a collective response can occur, with the spontaneous transition
to the “ordered” state. In general terms, when a phase transition is driven at a finite
temperature, one can look at the free energy F = U − TS and observe that the inter-
action energy U favours order, the entropy S favours disorder and T is the tilting
factor in the balance.

A rather general description of the phase transitions and of the underlying dynam-
ics involving some microscopic variables, can be given according to a Landau-type
statistical approach, which includes more specific theories such as the Weiss mean
field theory for magnetic systems and the Van der Waals theory for fluids. This
approach is suited for second order or slightly first-order transitions where one
observes anomalous behaviours (such as divergences or tendencies to zero) of the
response functions, the derivatives of the thermodynamic densities (magnetization,
particle density, entropy) with respect to the conjugate fields (magnetic or electric
fields, pressure, temperature). It will be shown that those behaviours reflect the onset
of correlation and slowing down of the fluctuations around the equilibrium values,
driven by some microscopic critical dynamics.

In the framework of Landau-type statistical theory one defines a generalized site-
dependent order parameter m(r) having h as thermodynamically conjugated field
(we shall use local scalar quantities for simplicity). An appropriate average < m >

of m(r) is defined as the thermodynamic density introduced at Sect. 15.1, going
gradually to zero on moving along the coexistence curve towards the critical point.
From a microscopic point of view there is a certain correspondence of < m > to a
local critical variable (e.g. magnetization corresponding to the expectation values of
local spins).

The general principle is to expand the free energy density f [m(r, T )] in powers
of m(r), with coefficients that depend on (T − Tc), the total free energy being
F = ∫

f [m(r, T )]dr. By taking into account that f must increase when a gradient
ofm occurs (and that∇mmust be involved to the second power for isotropic systems),
one writes6

f [m(r, T )] = f0(T ) + αL(T )m2(r) + βL(T )

2
m4(r) + γL(T )|∇m(r)|2. (15.18)

6The cost in energywhen the order parameter varies in the space can be derived in the form involving
∇m(r) (Eq. (15.18)) from the limit for h → 0 of the expression

∑
h[m(r + h)−m(r)]2/|h|2 (limit

of the continuum condition).



456 15 Phase Diagrams, Response Functions and Fluctuations

In this expansion the odd terms are not present because the form of the forces cannot
change on reversing the sign of m. The term ∇m has the role of damping out the
spatial variation in m (for γL(T ) > 0), f having a minimum for m constant.7

The expansion does not converge but it is customary to suppose that this involves
the coefficients of the terms not explicitly considered.

It is reasonable to expand αL(T ) and βL(T ) in series of (T − Tc). Then, for a
homogeneous system |∇m(r)| = 0 and by assuming βL(T ) = b0, temperature-
independent, and αL(T ) = a0(T − Tc), Eq. (15.18) is rewritten

f [m, T ] = f0(T ) + a0(T − Tc)m
2 + b0

2
m4. (15.19)

For T > Tc the minimum of f as a function of m is at m = 0. For T < Tc the
minimum is at the temperature-dependent equilibrium value

me =
[
−a0
b0

(T − Tc)

]1/2

= m0(−ε)1/2, (15.20)

where ε = (T − Tc)/Tc (see sketch below).
Therefore the critical exponent describing the temperature dependence of the

order parameter on cooling below Tc is β = 1/2, often indicated as the classical or
mean-field exponent.

From the equation of state yielding m = m(T, H) (as for instance the equation
for the magnetization in the Weiss mean field theory, see Sect. 4.4, or for the inverse
density ρ−1 = V for the isotherms of real gases) one can find the response ofm to the
conjugate field, namely the generalized susceptibility χ = dm/dh. According to the
mean field derivation at Sect. 4.4 (see also Sect. 15.1), around Tc for a ferromagnet
one has χ ∝ |(T − Tc)|−1, namely a classical critical exponent γ = 1.

7The condition for stability are d f/dm = 0 and d f 2/dm2 > 0. In order for f to have a true
minimum at m = 0 for T > Tc the term in m3 has to be eliminated.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_15


15.2 Free Energy for Homogeneous Systems 457

From the free energy density as in Eq. (15.18), the specific entropy and the specific
heat (the response function to thermal stimulus) can be directly derived (examples
are given at Chap.6).

It should be anticipated that for the superconducting transition the role of the free
energy expansion requires further discussion. In fact, in that case the order parameter
Ψ (r) = √

nCexp(iθ(r)) is complex (with nC the density ofCooper pairs and θ(r) the
phase) and it cannot be considered site-independent, as we shall discuss at Sect. 18.9.

15.3 Non Homogeneous Systems and Fluctuations

Theassumptionof homogeneity form fails in the neighbourhoodof a phase transition,
where the fluctuations around the equilibrium value play a key role, the curvature of
f as a function of m going to zero for T → Tc, according to Eq. (15.19). One could
say that it is just the enhancement of the fluctuations for T → Tc from above that
drives the transition to the low-temperature phase.

Statistical mechanics yields for the probability in a subsystem of the fluctuation
of m around the mean value, at constant temperature, the expression

W (m) = AeST (m)/kB , (15.21)

where ST is the entropy of the total system, which is characterized by a peak around
the average < m > and by a Gaussian distribution (see Problem6.1). The local
fluctuation at constant temperature implies an increase of the free energy

δF(m(r)) = δU − T δS. (15.22)

Since the total system remains in equilibrium δUT = 0 and then δST = −δF/T .
Thus

W [m(r)− < m(r) >] ∝ e−ΔF/kBT . (15.23)

where here ΔF = F[m(r)] − F[< m(r) >].
When the transition is approached, the free energy being a slowly varying function

of m (see the sketchy behaviour above), large fluctuations occur. The mean square
value < m2 > is related to the response function χ by the fluctuation-dissipation
relationship. Therefore the divergence of χ at the critical point, for a second-order
phase transition, evidences the divergence of the fluctuations, as already mentioned.

Furthermore, as it is known from the variational principle in thermodynamics,
when a fluctuation occurs the system tends to return to the equilibrium according to
the law ∂F/∂t ≤ 0 (or the analogous one in term of G for T and fields constant).

Then, in the presence of fluctuations around the equilibrium value < m > (that
is zero above Tc) one has to go back to Eq. (15.18) by considering γL �= 0, often

http://dx.doi.org/10.1007/978-3-319-17897-4_6
http://dx.doi.org/10.1007/978-3-319-17897-4_18
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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assumed temperature independent.8 The term in m4 is neglected in the so called
Gaussian approximation, or first-order fluctuation correction.9 Furthermore one has
to expand m(r) in Fourier series

m(r) =
∑
q

mqe
−iq · r (15.24)

and then

ΔF

V
=

∫
( f − f0)dV

V
=

∑
q

|mq|2αL(T )

(
1 + γLq2

αL(T )

)
. (15.25)

One has to take the thermodynamic average of |mq|2 over all the possible values of
the fluctuating order parameter, in accordance to Eqs. (15.23) and (15.25):

< |mq|2 >=
∫ |mq|2e−ΔF/kBT dmq∫

e−ΔF/kBT dmq
, (15.26)

namely

< |mq|2 >= kBT

2VαL(T )

(
1 + γLq2

αL (T )

) . (15.27)

In the light of the form for αL(T ) = a0(T − Tc) (see Eqs. (15.19) and (15.20)) this
expression is rewritten

< |mq|2 >= kBT

2VTca0

(
ε + γLq2

a0Tc

) ∝
(

ε + q2

k20

)−1

, (15.28)

with k0 a constant wave vector. For uniform fluctuations (i.e. q = 0) this equation
predicts the divergence of < |mq|2 > as for the static homogeneous susceptibility
(at q = 0 and ω = 0), with critical exponent γ = 1. This is the phenomenon of
the enhancement of the fluctuations on approaching the transition. Here q = 0 can
be defined as the critical wave vector. Notice that for antiferromagnets the critical

8When the system is non-homogeneous the free energy as in Eq. (15.18) is no more a local function
of themagnetization, instead becoming a functional of the fieldm(r), in the form of a proper integral
of the energy density. For the concept of functional and its role at the superconductive transition,
where inhomogeneities are crucial, see Sect. 18.9.1.
9This approximation breaks down in the so-called critical region. In most systems this region
corresponds to a very narrow temperature range. Only in particular cases one cannot neglect the
term inm4, as for instance in restricted dimensionality or for the superconducting transition in small-
size grains, where the critical region is expanded. It is remarked that the range of the interactions
(long or short range) also controls the width of the critical region.

http://dx.doi.org/10.1007/978-3-319-17897-4_18
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wave-vector qc is not q = 0 but, for example in a planar antiferromagnet on a
square lattice, qAF = (π/a,π/a) sincem(r) has a periodicity which is twice the unit
cell. Accordingly the Fourier components of |mq|2 will be peaked around qAF and
Eq. (15.28) still applies provided that the wave vectors origin is shifted to qAF (see
Appendix 15.1). This aspect will be clarified at Chap.17.

Equation (15.28) is often written in the form

< |mq|2 >= < |mq=0|2 >(
1 + q2ξ(T )2

) , (15.29)

where

ξ(T ) =
√

γL

αL(T )
= 1

k0εν
= ξ0ε

−1/2, (15.30)

is the correlation length, divergingwith the critical exponent ν = 1/2, for T → Tc.10

k(T ) = k0εν is called the inverse correlation length.
The role of ξ as a correlation length can be better understood by looking at the

spatial correlation function for m(r). By referring for simplicity to the T > Tc
temperature range, where < m(r) >= 0, the correlation function is

g(r, r′) =< m(r)m(r′) >=
∑
q

< |mq|2 > e−iq·(r−r′), (15.31)

For R = (r − r′), from Eq. (15.28) and through the usual transformation
∑

q →
(V/8π3)

∫
dq one obtains

g(R) ∝ kBT

R
e−Rk0(T−Tc)1/2/T

1/2
c ∝ kBT

R
e−R/ξ(T ), (15.32)

showing that ξ(T ) is indeed a measure of the correlation. For T � Tc one has a fast
decay of the correlations,while at Tc, where ξ(T ) diverges (note that γL > 0), g(R) ∝
(kBTc/R). Thus the onset of correlated fluctuations and their enhancement for T
approaching Tc fromabove, has been deduced.Below Tc, where thefluctuations occur
around < m(r) > �= 0 and α = 2a0(Tc − T ), analogous divergences are obtained
for < |mqc |2 > and for the correlation length, with the same critical exponents as
above Tc.

In Problem15.6 the divergence of the correlation length and the relationship to
the response function are illustrated for a fluid.

10As recalled in Table15.1 in most cases the critical exponents are different from the “classical”
values derived in mean field theories. In particular the difference might be relevant when the tem-
perature range of the critical region is expanded, when the interactions are short-range or when the
dimensionality of the system is reduced.

http://dx.doi.org/10.1007/978-3-319-17897-4_17
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15.4 Time Dependence of the Fluctuations

So far we did not have to take into account the time-dependence of the fluctuations.
However the life time of the fluctuations, the corresponding microscopic dynamics
of the local critical variables (spin-components or local density for fluids, to which
the macroscopic order parameter can be connected) have a crucial role around the
phase transitions.

In the framework of Landau-type statistical theory, the time-dependence ofm(r, t)
around the equilibrium value can be discussed by starting from an equation based
on the thermodynamics of the irreversible processes. For the collective components
and for q around the critical wave vector, the following heuristic equation

M
d2mq

dt2
+ Ωq

dmq

dt
+ kqmq = 0, (15.33)

typical of damped harmonic oscillators, will be assumed.11

In Eq. (15.33) the effective elastic constant kq must be of the form kq=0 ∝ |T −Tc|,
since it is related to the curvature of the free energy as a function ofm. The generalized
mass M can be assumed temperature independent.

From theEq. (15.33) for the collective generalized order parametermq twoways to
obtain the correlation and the slowing down of the fluctuations are possible. One way
is to look for the response of the system to an external,wave-dependent andoscillating
field, thus deriving the response function, the generalized susceptibility χ(q,ω).
Then, by means of the fluctuation-dissipation theorem, the power spectrum of the
correlation function for the collective component < mq(0)m−q(t) > is obtained.
This power spectrum, which is the q and ω transform of the correlation function
g(R, t) (including the time t in Eq. (15.31)) is known as the dynamical structure
factor (DSF):

S(q,ω) =
∫

e−i(ωt−q ·R)g(R, t)dRdt.

Another method to describe the fluctuations consists in constructing directly
the correlation function from Eq. (15.33). As it is shown in Problem15.7, or by

11This equation can be justified by extension of the thermodynamics of the irreversible processes,
in which for the order parameter one writes dm/dt = −c(∂ f/∂m), meaning that the speed to
approach the equilibrium (after a variation induced by the fluctuation) is proportional to the restoring
force. Then, from f = a0|T − Tc|m2 (Eq. (15.19)) for δm = m− < m >, one would have
δm(t) = δm(0)exp(−t/τ ), that for τ ∝ (T − Tc)−1, describes the classical Landau-Khalatnikov
slowing down of the fluctuations. With respect to the usual relaxation function, in Eq. (15.33) we
have added an inertial term, with generalized mass M . This term completes the relaxation function
yielding a form which allows an underdamped motion. In particular, this term is required in order
to describe structural transitions, while it can be neglected for magnetic transitions where the local
critical variable can be identified with spin operator.
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resorting to the susceptibility of damped harmonic oscillator (see Appendix15.1 and
Eq. (15.46)), one derives

S(q,ω) ∝ 4Ωqω
2
q/M

(ω2
q − ω2)2 + (4Ω2

qω
2
q/M)

, (15.34)

namely in the form of two resonant peaks centered at −ωq and +ωq with width
Ωq/M .

For any extent of the damping, the solution of Eq. (15.33) can be written in the
form

mq(t) = exp(−i ω̃t), (15.35)

ω̃ being a complex frequency with immaginary part Ωq/2M and real part√
[4Mkq − Ω2

q]/2M . If T ∗ is defined as the temperature at which for a given

wavevectorΩ2
q = 4Mkq, then for T < T ∗ both poles lie on the imaginary axis and the

frequency ω = −ikq=0/Ωq=0 moves towards the origin of the complex plane.
Accordingly the transition is approached with this frequency going as (T − Tc).

Thus Eq. (15.35) describes the slowing-down of the fluctuations for T → T+
c . In

terms of theDSF it can be said that above a given temperature T ∗ one has temperature-
dependent resonant peaks of constant width while for T < T ∗ the slowing-down
is rather described by a diffusive-type central peak, centered at ω = 0, its width
decreasing while the transition is approached. Equivalently, an effective correlation
time τq=0 = i[ωq=0]−1 goes to infinity for T → T+

c .
As already mentioned, the fluctuation-dissipation theorem relates the spectrum

of the fluctuations to the response to a dynamic perturbation and in its more general
form it can be written as

S(q,ω) = 2�χ′′(q,ω)

1 − e−�ω/kBT
, (15.36)

χ′′(q,ω) being the dissipative imaginary part of the generalized susceptibility. Notice
that the static structure factor is

S(q) = 1

2π

∫
S(q,ω)dω, (15.37)

and then by using the Kramers-Kronig relations (see Problem15.4) one writes

S(q) = kBTχ(q, 0), (15.38)

Now one faces the problem to express the q-dependence of the static and the
dynamical quantities involved in the above equations, that are correct only in the
limit of q close to the critical wave-vector, for which the thermodynamic approach
is valid. For temperature around Tc where the fluctuations at the critical wave vector
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are dominant, for the amplitude of the fluctuations (and then for the static structure
factor) one can adopt the form given in Eq. (15.29) in term of the correlation length.

The q-dependence of the frequencies involved in the time-dependent phenomena
is a complicated issue, in essence dealing with the dynamics of cooperative effects.
Several tentative theories have been developed, all with limitations and possible
criticism. One could use an expansion of the time-dependent correlation function
in series of t , the coefficients being the equal-time correlation functions related to
the lowest moments of the spectral function. Then approximants are often used,
the procedure being essentially the attempt to guess the long-time behaviour of
g(r, t) from the short-time behaviour. Other theoretical lines are based on the Mori
continuous fraction approximation or on Monte Carlo computer simulations.

Here we will illustrate a phenomenological approach based on scaling concepts.
We start by writing the spectral density for the dynamical part of the DSF in the form

Jq(ω) = S(q,ω)

S(q)
= 2π

Γq
G(ω/Γq), (15.39)

where Γq(T ) is a characteristic frequency and G(ω/Γq) is a well behaved function
which depends on the frequency only through the ratio (ω/Γq) and has width and
area of the order of unity. The detailed form of the function G has to be determined
experimentally or according to theoretical models.

Then, both the amplitude of the fluctuations and their decay rates Γq are scaled
in their q-dependence in term of the correlation length.

With a slight generalization (see Eq. (15.29)) we shall write

< |mq |2 >= kBTχ(q, 0) ∝ ξ2−ηFs(qξ), (15.40)

with a correction term η that is negligible for lattice dimensions D ≥ 2. The simplest
form for Fs is

Fs(qξ) = 1

1 + (qξ)2
, (15.41)

as suggested by Eq. (15.29).12

For the decay rate the analogous equation is

Γq(T ) = Γq=0Gs(qξ) = Γq=0[1 + (qξ)2] (15.42)

in its simplest form, namely with Gs = F−1
s . According to the arguments given

above the critical decay rate, the one corresponding to the critical wave vector qc,
must decrease towards zero for T → Tc. It can be assumed of the form

12This form for the static part of the DSF corresponds to the Orstein-Zernike expansion of the
correlation function in the theory for the critical opalescence at the vapour-liquid transition.
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Γqc(T ) ∝ ξ−z (15.43)

where z is the dynamical critical exponent.13

It is noted that our scaling relationships correspond to scale the generalized
susceptibility in the form

χ(q,ω) = χ0ξz F ′(qξ,ω/ξz) (15.44)

χ0 being the single particle response function. In other words χ(q,ω) can be
expressed as a function independent of the reduced temperature ε provided that
length and frequencies are rescaled by appropriate powers of ε. It can be remarked
that if one assumes zν = γ = 1 then the so-called thermodynamic slowing-down
condition is attained: on approaching Tc from above the size of the “islands” where
the correlation is effective (correlation length) increases at the same rate of their
life-time.

15.5 Generalized Dynamical Susceptibility
and Experimental Probes for Critical Dynamics

As mentioned in the illustration of the phenomenological aspects in Sect. 15.1, in the
neighborhood of a critical point complex cooperative motions occur, that one can
call critical dynamics. This dynamic is usually “anomalous” in comparison to the
ordinary excitations of the system, as for example the phonons, the spin waves, the
rotational and diffusion motions in fluids. The critical dynamic represents the micro-
scopic correspondence of the enhancement and slowing down of the fluctuations,
described at Sects. 15.3 and 15.4 in general terms. One could say that is just the criti-
cal microscopic dynamic that drives the phase transition, by inducing marked spatial
and temporal correlations, controlling the transport coefficients and the responses to
external perturbations.

The modern theories on phase transitions represent the link between the
thermodynamic-statistical description and the microscopic phenomena or, in other
words, between the anomalous critical dynamics and the response functions or
between single-particle response function and the cooperative response for the
strongly correlated systems.

In Appendix15.1 it is described a simple model to derive the linear response of a
system, in the equilibrium state and within the mean field approximation, to a time-
dependent perturbation in the presence of fluctuations. It is shown that the generalized
dynamical susceptibility χ(q,ω) is related to the single particle susceptibility χ0(ω)

according to a relation that generalizes the one in Eq. (4.34):

13In the dynamical scaling theory z also controls the q-dependence of Γq at Tc, i.e. Γq ∼ Aqz ;
in other words the exponent expressing the q-dependence of Γq at Tc is the same exponent that
expresses the dependence of Γq above Tc. For details see the book by Stanley.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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χ(q,ω) = χ0(ω)

1 − Iqχ0(ω)
, (15.45)

where Iq is the Fourier transform of the interaction. In the light of this equation
the generalized susceptibility for model systems can be obtained. Notice that the
static susceptibility derived within the Stoner-Hubbard model in Appendix13.1,
accounting for the effect of electronic correlations in a metal, is a particular case
of the more general Eq. (15.45).

For instance, for a one-dimensional dampedoscillator, forwhich the single particle
equation in the presence of external stimulus of amplitude e f0 is written

m

(
d2x

dt2
+ γ

dx

dt
+ ω2

0x

)
= e f0e

−iωt . (15.46)

The stationary solution x(t) = x0exp(−iωt) yields the well known response

χ0(ω) = (e/m)

ω2
0 − ω2 − iωγ

= χ0(0)ω2
0

ω2
0 − ω2 − iωγ

(15.47)

(with ω0 proper frequency and γ damping factor), the collective susceptibility
becomes

χ(q,ω) = χ0(0)ω2
0

ω2
q − ω2 − iωγ

, (15.48)

having written
ω2
q = ω0(1 − Iqχ

0(0)). (15.49)

Thus one sees that the static susceptibility at the critical wave vector diverges when
ωqc tends to zero, in correspondence to Iqcχ

0(0) → 1, in agreement with the deduc-
tion at Sect. 15.3 (see an illustration in Fig. 15.4).

For a Debye-type relaxor the single particle susceptibility is

χ0(ω) = (e/m)

ω2
0 − iωγ

= χ0(0)

1 − iωτD
, (15.50)

where τD = γ/ω2
0 is the Debye relaxation time. In an analogous way, when the

homogeneous static susceptibility at q = 0 goes to infinity, a generalized frequency
defined as ωq = iτ−1

q goes to zero. Equivalently, the collective relaxation time at the
critical wave vector goes to infinity. More details regarding the above description,
including the spectrum of the fluctuations, are given in Appendix15.1.
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ω

Fig. 15.4 Temperature dependence of the frequency of the q = 0 phonon mode close to the
paraelectric-ferroelectric transition of tris-sarcosine calcium chloride, as derived from dielectric
measurements (see R. Mackeviciute et al., J.Phys. Condens. Matter 25, 212201 (2013)). To under-
stand how the frequency is obtained from the real and the imaginary part of the dielectric constant
see Chap.16

Now we briefly mention the main experimental approaches that can be used
to investigate the critical dynamics, giving access to the generalized susceptibility
χ(q,ω) or equivalently to the DSF. These experiments, essentially of spectroscopic
character, may differ in the wave vector q and in the frequency ω of the stimulus and
thus probe different characteristics of the response of the system under study.

The cross section of inelastic neutron scattering (for some detail see Sect. 14.3)
is often considered the most complete tool. In fact, in principle one can select the
wave vector q and the energy �ω and thus the whole spectrum of the excitations
can be probed. With appropriate experimental arrangements also the character of the
interaction (e.g. magnetic or elastic) can be selected. In practice, some restrictions
are obviously present: the frequency can typically be chosen in the range 1010–
1014 Hz while geometrical constrains imply limitations to the resolution in q-space.
Furthermore the sample usually needs to be a rather large one (�1cm3).

Dielectric measurementswith conventional audio, RF bridges, Q-meters or wave-
guides directly can provide the real and the imaginary part of the electric susceptibil-
ity, in a wide frequency range that typically spans from zero up to 1010 Hz. However,
since the response to a uniform field is detected, only the q = 0 wave-vector is
probed. Analogous performances have the conventional equipments for susceptibil-
ity in regards of the magnetic properties, as the apparatus using double coils or the
modern ones based on SQUID units (extremely sensitive but usually limited to a
frequency range up to 106 Hz, see Chap.18).

The light scattering is particularly useful in fluids, by means of the homodyne
or heterodyne spectroscopy of the Rayleigh diffusion: even the very low frequency
range is explored but the wave vectors are usually limited to values much smaller
that the ones characteristic of the excitations of the systems. Synchrotron radiation
can provide more insights.

http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_18


466 15 Phase Diagrams, Response Functions and Fluctuations

Radio frequency (NMR) and microwave (EPR) spectroscopies based on nuclear
or electron magnetic resonances respectively (in particular through the relaxation
processes) or theMuon spin relaxation (μSR) and also theMössbauer spectroscopy
(see Sect. 14.6) span the corresponding frequency ranges and have local character.
Therefore they correspond to responses involving an average over wide ranges of the
wave vectors of the elementary excitations.

Somemore illustration of the results derived by those experimental techniques for
the studies of phase transitions shall be given in subsequent chapters when dealing
with special topics or systems.

Appendix 15.1 From Single Particle to Collective Response

The main lines of a general procedure which allows one to derive the response of a
collective system (in the mean-field equilibrium state) to a time-dependent external
perturbation are sketched in the following. The condition of linear response to both
the external force and to the internal fluctuations shall be assumed. Furthermore inter-
action of bi-linear character will be considered while the local potential is somewhat
arbitrary. The relevant advantage of this model is to include the fluctuations in the
framework of the mean field approximation, where they are usually neglected. Thus
the simplicity of the mean field approach is retained in spite of the inclusion of the
fluctuations.14

The system is perturbed by a time-dependent perturbation ΔFe−iωt , which mod-
ifies the local critical variable vl according to

v′
l(t) = Δvl e

−iωt + vl(t)

Weak perturbations and linear responses Δvl = χ0(ω)ΔFl are assumed, while vl(t)
represents the spontaneous “local dynamics”. Finally the interactions among the
local variables are described through a bilinear Hamiltonian

H = 1

2

∑
ll ′

Ill ′vlvl ′ ,

as for the Heisenberg exchange or for the harmonic lattice vibrations, for example.
Then vl will not experience just the external perturbation ΔF but also the feedback∑

l ′ Ill ′vl ′(t). Hence, vl will be globally perturbed by a term

ΔFl(t) = ΔFe−iωt +
∑
l ′

Ill ′Δvl ′e
−iωt +

∑
l ′

Ill ′vl ′(t)

14For details on the basic assumptions see H. Thomas in the book edited by K.A. Müller and
A. Rigamonti.

http://dx.doi.org/10.1007/978-3-319-17897-4_14
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where the last term describes the interactions involving the spontaneous fluctuations,
which are present also in the absence of external stimulus. Within the mean field
approximation one writes

Δvl = χ0(ω)

[∑
l ′

Ill ′Δvl ′ + ΔFl

]
,

where χ0(ω) is the single-particle “bare” susceptibility. By resorting to the normal
coordinates Δvq and expanding the stimulus in its Fourier components

Δvl = 1√
N

∑
q

Δvqe
iq·Rl

ΔFl = 1√
N

∑
q

ΔFqe
iq·Rl

from the previous equation one has

∑
q

Δvqe
iq·Rl = χ0(ω)

[∑
l ′

Ill ′
∑
q

Δvqe
iq·Rl

′ +
∑
q

ΔFqe
iq·Rl

]
,

which is rewritten in the form

∑
q

Δvq = χ0(ω)

[∑
q

∑
l ′

Ill ′Δvqe
iq·(Rl′ −Rl) +

∑
q

ΔFq

]
.

Thus for each q one has

Δvq = χ0(ω)

[∑
l ′

Ill ′Δvqe
iq·(Rl′ −Rl) + ΔFq

]

= χ0(ω)
[
IqΔvq + ΔFq

]
,

where Iq = ∑
l ′ Ill ′e

iq·(Rl′ −Rl) is the Fourier transform of the spatially varying inter-
action. The collective susceptibility is

χ(q,ω) = Δvq

ΔFq
,



468 15 Phase Diagrams, Response Functions and Fluctuations

(a) (b)

Fig. 15.5 Sketchy forms of local strongly anharmonic potential (a) and of quasi-harmonic potential
(b). a can describe order-disorder, relaxational-type systems while b quasi-harmonic vibrational
lattices, displacive type systems (see Chap. 16)

and then

χ(q,ω) = χ0(ω)

1 − χ0(ω)Iq
. (A.15.1.1)

One observes that at Tc, for a given wavevector qc, so that χ0(0)Iqc → 1, a
divergence of the static susceptibility χ(qc, 0) occurs, implying the onset of a long
range order with a modulation of the local variable determined by qc.

Let us refer to a system that can be described by a local quasi-harmonic potential
of the form (b) sketched in Fig. 15.5.
In the case of no interaction the susceptibility would be the one of damped oscillator

χ0(ω) = χ0(0)
ω2
0

ω2
0 − ω2 − iγω

,

with ω0 fundamental frequency and γ the damping parameter. The frequency ω0 can
be considered slightly temperature dependent, for instance in the formω0 ∝ (a+bT ),
a � bT (quasi-harmonic approximation, see Problem15.3). As a consequence of
the interactions, from Eq. (A.15.1.1), one writes

χ(q,ω) = 1
1

χ0(ω)
− Iq

= ω2
0χ

0(0)

ω2
0 − ω2 − iγω − Iqχ0(0)ω2

0

,

which preserves the same form of the susceptibility, with a frequency of the mode at
wavevector q renormalized as

ω2
q = ω2

0(1 − Iqχ0(0)). (A.15.1.2)

In fact

χ(q,ω) = ω2
0χ

0(0)

ω2
q − ω2 − iγω

= ω2
qχ(q, 0)

ω2
q − ω2 − iγω

http://dx.doi.org/10.1007/978-3-319-17897-4_16
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and

χ(q, 0)

χ0(0)
= ω2

0

ω2
q
.

When for T → Tc Iqχ0(0) → 1 , ωq → 0.
For particles in a double-well strongly anharmonic potential (see (a) in the sketch

above) (which with some modifications allows one to describe the parallel suscepti-
bility of magnetic systems, see Chap.17) the single particle susceptibility is given by
Eq. (15.50) (relaxational behaviour) and the relaxation time τ is usually temperature
dependent in the form τ � τ0exp(ΔE/kBT ). Then, from

χ(q,ω, T ) = χ0(0, T )

1 − Iqχ0(0, T ) − iωτ
,

a frequency ωq = i/τq goes to zero when according to Eq. (A.15.1.1) χ(q, 0, T )

goes to infinity and

τq = τ

1 − Iqχ0(0, T )

also diverges (here the T−dependence is explicitly indicated).
Summarizing, it has been derived that for a given wave vector q, for which as

a function of the temperature Iqχ0(0, T ) approaches unity, a critical temperature
Tc(q) exists so that χ(q, 0, T ) → ∞ and ωq moves towards zero (see sketch below).
Correspondingly the phase at < vl >= 0 becomes unstable against the generalized
mode for which Tc(q) takes the largest value.

ω

≠

The temperature dependence of the soft mode corresponds to the slowing down
discussed at Sect. 15.4 in a different scenario. The detailed temperature dependence
of the soft mode would need the knowledge of the microscopic Hamiltonian.

http://dx.doi.org/10.1007/978-3-319-17897-4_17
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Since for fluctuations decoupled from the response the fluctuation-dissipation
theorem holds, the spectrum of the collective fluctuations is written

∫ +∞

−∞
< vq(0)vq(t) > e−iωt dt = −2kBT

ω
χ"(q,ω, T ).

The mean square amplitude of the fluctuations is directly obtained:

< |v2
q| >= 1

2π

∫ −2kBT

ω
χ"(q,ω, T )dω = kBTχ(q, 0, T )

At T = Tc the amplitude of the fluctuations for the collective component at qc

diverges. In other words, on cooling towards Tc larger and larger fluctuations become
correlated over longer times until at the instability limit one has long-range fluctua-
tions at zero frequency.15

Problems

Problem 15.1 In the light of theClapeyron equation discuss the slope of the function
P versus T of the solid -liquid line for water in comparison to the one for all the
other systems (see Figs. 15.1 and 15.3), explaining why ice is required in order to
allow skating rather than using a floor of any solid material.

Solution: The particular behaviour of ice versus water is related to the fact that ice
has a specific volume reducedwith respect towater. Thus V2 < V1 (return to Fig. 15.2
caption) and from the Clapeyron equation [dP/dT ] < 0. The pressure due to the
sharp blade of the skater melts the surface of the ice, thus allowing a smooth sliding.

Another aspect related to the particular behaviour of water is the fact that rivers
and lakes freeze from the top.

Problem 15.2 Derive an approximate expression of the entropy jump at the boiling
process of water by resorting to the definition of entropy in terms of the number of
microstates corresponding to a given macrostate (estimate inspired from the book by
Blundell and Blundell).

Solution: The number Ω of microstates (states that can be labelled by the wave
vector k) can be related to the volume occupied by a given quantity, in analogy to
the cases of the normal modes of the radiation (see Problem1.25) or of the electronic
states in crystals (see Sect. 12.5). For a mole of vapour or of liquid, the ratio of the
specific number of states can be written

Ωvap/Ωliq = (Vvap/Vliq)
NA ∼ (1000)NA ,

15Once again it should be remarked that the breakdown of the mean field approximation is expected
when entering the critical region, where the fluctuations become strong. Correspondingly also the
decoupling of the fluctuations from the responses and the linear response approximation can be
expected to loose part of their validity.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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having assumed a ratio between vapour and liquid densities around 103. Then, from
S = kBlnΩ , the jump of the entropy turns out

ΔS = Δ(kBlnΩ) ∼ kBln(1000)NA ∼ 7R.

The Trouton rule (see footnote 1) is usually written Lvap � 10RTb. A remarkable
violation is found for Helium, where Lvap/RTb = 2.4, an indication of quantum
effects.

Problem 15.3 From the equation of motion of a single normal mode Q(t) with an
effective elastic constant linearly temperature dependent, by assuming a local electric
field proportional to the polarization and then to Q, show that instability can occur,
with a frequency approaching zero (return to Sect. 10.6). This problem somewhat
anticipates some issues to be described at Chap. 16 (see Problem16.5).

Solution: The equation of motion is

μQ̈(t) + (a + bT )Q(t) = qEloc = αQ(t),

(which pertains to a transverse optical mode, see Sect. 16.3). μ is a reduced mass.
Thus

μQ̈(t) + b[T − (α − a)/b]Q(t) = 0

and the effective frequency becomes Ω2(T ) = (b/μ)[T − Tc] with Tc = (α− a)/b.
In order to have instability Tc must be positive.

In crystals the electric polarization associated with a transverse optical mode at
zero wave vector is the sum of an ionic term NqQ (q the ionic charge) plus the
term due to the local field Eloc = 4πP/3. In general a small correction to the short
range elastic constant occurs (this justifies why at Sect. 14.3.2 it has been neglected).
Transition of displacive character to a ferroelectric phase might occur when the
proportionality factor between Eloc and P is larger than the Lorentz factor 4π/3 (see
Sect. 16.2).

Problem 15.4 Starting from the fluctuation-dissipation relationship and by resort-
ing to Kramers-Kronig relationships derive the expression for the paramagnetic
static uniform susceptibility in the high temperature limit (T � J , the exchange
interaction).

Solution: The Kramers-Kronig relationships are

χ′(q,ω) − χ′(q,∞) = 1

π
P

∫
χ′′(q,ω′)
ω′ − ω

dω′

χ′′(q,ω) = − 1

π
P

∫
χ′(q,ω′)
ω′ − ω

dω′

http://dx.doi.org/10.1007/978-3-319-17897-4_10
http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_16
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(for remind see Sect. 16.1).
From the first equation by expressing the imaginary part of the spin susceptibility

in terms of the DSF (see Sect. 15.4 and Eq. (15.36)), one notices that for ω → 0

χ′(0, 0) = 1

π
P

∫
χ′′(0,ω′)

ω′ dω′

= 1

π
P

∫
dω′ω′Sαα(0,ω′)

eβ�ω − 1

2eβ�ω
,with β = 1

kBT

For β�ω � 1 one can write

χ′(0, 0) = 1

�

∫
1

kBT

�ωdω

ω

∫
dteiωt < Sα

0 (t)Sα
0 (0) >=

= 1

kBT

∫
dtδ(t = 0) < Sα

0 (t)Sα
0 (0) >=

= 1

kBT
<

∣∣∣∣∣
∑
i

Sα
i

∣∣∣∣∣
2

>

For kBT � J the spins are uncorrelated and one has

χ′(0, 0) =
∑
i

<
∣∣Sα

i

∣∣2 >

kBT
= S(S + 1)

3kBT
,

having assumed isotropic spin fluctuations (return to Problem4.10).

Problem 15.5 Show that the isothermal compressibility of a fluid is proportional to
the fluctuation of the mean square number of particles.

Solution: In a grand canonical ensemble the fluctuation in the total number of par-
ticles N is

< (N− < N >)2 > = 1

Z

∞∑
N=0

1

N !h3N
∫

dr dp N 2e−βUN eβμN −

−
[
1

Z

∞∑
N=0

1

N !h3N
∫

drdp Ne−βUN eβμN

]2

= (kBT )2
∂2lnZ

∂μ2
.

http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Since PV/kBT = lnZ (see the book by Amit and Verbin).

< (N− < N >)2 >= (kBT )2
[
∂2PV/kBT

∂μ2

]
T,V

= kBT V

[
∂2P

∂μ2

]
T,V

Now
[

∂P
∂μ

]
T,V

= <N>
V = n, so that

< (N− < N >)2 > = kBT V

[
∂(<N>

V )

∂μ

]
T,V

= −< N > kBT V

V 2

[
∂V

∂μ

]
T,N

.

By recalling that KT = − 1
V

[
∂V
∂μ

]
T,N

< (N− < N >)2 >= < N >2 kBT

V
KT =< N > nkBT KT .

In ideal gas PV = NkBT and then

K 0
T = − 1

V

∂(NkBT/P)

∂P
= 1

V

1

P2
NkBT = V

N

1

kBT
= 1

nkBT

and finally

KT

K 0
T

= < (N− < N >)2 >

< N >
.

For detailed description see the books by Stanley and by Amit and Verbin.

Problem 15.6 Derive the relationship between the isothermal compressibility and
the density correlation function in fluids. Then, show that the intensity of the radiation
scattered with momentum q is directly proportional to the static structure factor.

Solution: Since

< (N− < N >)2 > = <

∫
dr(n(r)− < n(r) >)

∫
dr′ (

n(r′)− < n(r′) >
)

>

=
∫ ∫

drdr′g(r − r′) = V
∫

g(R)dR,

while for a fluid g(r′ − r) =< (n(r′)− < n >)(n(r)− < n >) >, according to
Problem15.5

KT

K 0
T

= 1

n

∫
g(r)dr.
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The behaviour of the correlation function can be studied by means of radiation
scattering techniques. The intensity of the scattered radiation, after having exchanged
a wavevector q with the fluid, is

I (q) =<

∣∣∣∣∣∣
∑
j

a j (q)

∣∣∣∣∣∣
2

>,

where a j (q) = ae−iq·rj is the amplitude of the radiation scattered at wave vector

q by the molecule at site j . Then I (q) = a2 <

∣∣∣∑N
j=1 e

−iq·rj
∣∣∣2 >, in the case of

uncorrelated molecules leading to I 0(q) = Na2. Thus

I (q)

I 0(q)
= 1

N
<

∑
i, j

e−iq·(ri−rj) >

= 1

N

∫ ∫
drdr′ <

∑
i, j

δ(r − ri)δ(r′ − rj)e−iq·(r−r′) >

= 1

N

∫ ∫
drdr′e−iq·(r−r′) <

∑
i

δ(r − ri)

︸ ︷︷ ︸
n(r)

∑
j

δ(r′ − rj)

︸ ︷︷ ︸
n(r ′)

>

= 1

N

∫ ∫
drdr′e−iq·(r−r′) [

g(r − r′) + n2
]
.

Namely

I (q)

I 0(q)
= 1

n

∫
dRg(R)eiq·R + V 2

N
n2δ(q).

The first term, the Fourier transform of the correlation function at wavevector q, is
the static structure factor S(q) which gives the amplitude of the collective modes at
wave-vector q

S(q) =
∫

dRg(R)eiq·R ∝< |mq|2 >∝ (1 + q2ξ2)−1

(see Eq. (15.40)). The compressibility, being the response function to a uniform
q = 0 perturbation, is directly proportional to S(q = 0).
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As illustrative example, the neutron scattering intensity is reported above as a
function of the wavevector q exchanged with D2O on approaching the critical tem-
perature Tc � 637 K (left). The enhancement of the fluctuations at q = 0 is detected.
The inverse intensity is reported as a function of q2 in the plot on the right and a linear
trend is observed, as expected. The intercept is proportional to the inverse correlation
length. The decrease in the intercept on approaching Tc evidences the divergence in
the correlation length.

Problem 15.7 From the equation of motion for underdamped oscillator, derive the
dynamical structure factor.

Solution: For underdamped normal oscillators, i.e. such that Ω2
q � 4kqM , the

solution of Eq. (15.33) is

mq(t) = e− Ωq t
2M

(
mq(0)cosωqt +

[
∂mq(t)

∂t
+ mq(0)Ωq

2M

]
sinωqt

ωq

)
,

with

ωq =
(
kq
M

− Ω2
q

4M2

)1/2

.

yielding for the correlation function

gq(t) =< |mq(0)|2 > e−Ωqt/2M

(
cosωqt +

[
Ωq

2Mωq

]
sinωqt

)
.

Due to the deterministic character of the motion the statistical ensemble average for
the correlation function only involves the initial condition, i.e. the value ofmq(0). In
the equation above one can set ∂mq(0)/∂t = 0 since the recovery of the collective
order parameter towards equilibrium, after a fluctuation, initiates with zero velocity.
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The mean square value is related to the temperature by the average over the initial
amplitude Aq:

< |mq(0)|2 >= 1

2Aq

∫ +Aq

−Aq

mq(0)
2dmq = A2

q

3
= 2kBT

3kq
.

Thus from the Fourier transform of gq(t) one obtains

S(q,ω) = 2kBT

3kq

4Ωqω
2
q/M

(ω2
q − ω2)2 + (4Ω2

qω
2
q/M)

.

corresponding to Eq. (15.34).
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Chapter 16
Dielectrics and Paraelectric-Ferroelectric
Phase Transitions

Topics

Local Electric Fields in Solids
Dielectric Relaxation
Clausius-Mossotti Relation
Instability of Crystal Lattice and Optical Modes for Displacive Ferroelectrics
Lyddane-Sachs-Teller Relation
Critical Dynamics for Quasi-Harmonic Lattice
Order-Disorder Ferroelectrics and Pseudo-Spin Dynamics

16.1 Dielectric Properties of Crystals. Generalities

In the linear approximation the dielectric displacementD = E+4πP and the electric
field E are connected by a second order tensor ε, the dielectric function, invariant
under the point-group symmetry operation of the crystal. We shall assume for sim-
plicity scalar ε and dielectric susceptibility χ (in P/E = χ and ε = 1 + 4πχ).

The frequency dependence of the complex dielectric constant can be determined
from the decay function g(t) describing the gradual decrease of D when the field is
suddenly turned off:
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A. Rigamonti and P. Carretta, Structure of Matter,
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In fact, let us suppose to apply an electric field pulse for a time interval dτ :

τ ττ

One has an immediate responseDimm which defines the high frequency dielectric
constant

Dimm = ε(∞)E(τ ). (16.1)

Furthermore, in view of the tendency ofD to lag in phase behindE , some polarization
persists for t > τ + dτ . Thus, if one imagines to apply a varying field divided
into a series of pulses, in the assumption that the same decay function holds for
each element, at the time t the total displacement resulting from a sequence of field
pulses is

D(t) = Dimm + Dret = ε(∞)E(t) +
∫ t

−∞
E(τ )g(t − τ )dτ . (16.2)

For periodically varying field E(t) = E0cos(ωt) (that one can assume to persist
for time much longer than a characteristic time τc over which g(τ ) vanishes), D will
be periodic in t , although in general dephased with respect to E(t), namely

D(t) = D0cos(ωt − δ).

By introducing the real and imaginary part of the ω-dependent dielectric constant

D(t) = E0

[
ε′(ω)cos(ωt) + ε′′(ω)sin(ωt)

]
,

as it is shown in Problem16.2, from Eq. (16.2) one can obtain

ε′(ω) = ε(∞) +
∫ ∞

0
g(t)cos(ωt)dt (16.3)

ε′′(ω) =
∫ ∞

0
g(t)sin(ωt)dt. (16.4)

In a single complex equation one writes

ε(ω) = ε(∞) +
∫ ∞

0
g(t)e−iωt dt, (16.5)

where the Fourier transform at the frequency ω of the decay function appears.
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α ω

α

ω

α
α

Fig. 16.1 Schematic form of the polarizabilities as a function of the frequency

ε′ and ε′′ being derived from the same function cannot be independent. In fact, by
resorting to Fourier transformation (see Problem16.3) one obtains

ε′(ω) − ε(∞) = 2

π
P

∫ ∞

0
ω′ ε′′(ω′)

ω′2 − ω2
dω′

ε′′(ω) = −2ω

π
P

∫ ∞

0

ε′(ω′) − ε(∞)

ω′2 − ω2
dω′. (16.6)

which are the Kramers-Kronig relations (see Sect. 15.4 and Problem15.4). P means
the integral principal value.

It should be noted that, according the above relationships, from the measurements
of ε′′ over a broad frequency range ε′ can be derived. For example, for a delta-like
absorption peak of the form ε′′(ω) ∼ δ(ω − ω0), from Eq. (16.6) a static dielectric
constant ε′(0) inversely proportional to ω0 is expected.

From a phenomenological point of view the typical frequency dependence of
the dielectric constant (or of the electric polarizability α(ω)) can be sketched as in
Fig. 16.1.

In the frequency range up to about 108 Hz the dipolar polarizability αdip(ω) may
be related to permanent dipoles and its decrease above a frequency of that order
is related to the inability of these dipoles to follow the field. Usually audio and
RF bridges or Q-meters are used for dielectric measures. The ionic polarization
(involving αionic(ω)) is related to field-induced dipoles in the crystal cell. In the
correspondent frequency range (1011 − 1013 Hz) the typical device to measure the
polarizability is the infrared spectrometer. The electronic polarizability (see Stark
effect at Sect. 4.2 for αelectronic(0)) involves very high frequency, where only the
electronic clouds can respond to the field. Special techniques, belonging to the realm
of the optical spectroscopies of solids, are used to measure the dielectric constant.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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16.2 Clausius-Mossotti Relation and the Onsager
Reaction Field

The relationship between the polarizabilities α’s and the macroscopic dielectric con-
stant (known as Clausius -Mossotti relation) can be derived from the total polariza-
tion P expressed in term of the external field Eext, by taking into account that while
P = NαEloc, the local field Eloc is different from the external one (N is the number
of atoms or of dipoles per unit volume).

In dielectric crystals the local field must be evaluated by considering various con-
tributions. First, the total “external” field (the one entering into Maxwell equations)
is Eext + EP, where EP = −DPP is the depolarization field, due to the outer sur-
face charges. The proportionality factor (depolarization factor) is DP = 4π/3 for a
sphere, DP = 4π for a slab perpendicular to the applied field and DP = 0 for a slab
with the plane along the field direction. Furthermore one has to add the Lorentz field
EL due to the charges in a fictitious spherical cavity centered at the reference atom.
From elementary electrostatics one derives that EL = (4π/3)P.

Finally there would be the field due to the dipoles inside that fictitious cavity. This
is averaged to zero for cubic lattice or for an isotropic distribution of the dipoles and
we shall not consider it. Thus we write the local field in the Lorentz form1:

Eloc = Eext + 4π

3
P. (16.7)

By referring to the geometry of samples in form of a slab within the plates of a
capacitor,2 one can use for the local field the Lorentz expression (Eq. (16.7)). Then
the electric polarization becomes

P = Nα

[
Eext + 4π

3
P
]
, (16.8)

1The Lorentz form for the local field is not totally appropriate when there are permanent dipoles
inside the reference cavity. In that case the Onsager reaction field (measuring the dis-alignment
of the dipoles) has to be taken into account. The Onsager field has the relevant result of modify-
ing the relationship between the single particle and the collective response functions. Instead of
Eq. (15.45) one has to write

χ(q,ω) = χ0(ω)/

[
1 − Iqχ0(ω) + λ(q)

]

and the correction factor λ(q) allows one to preserve the validity of the fluctuation-dissipation
theorem in the framework of the mean field approximation (see Appendix 15.1 and Sect. 15.4.).
2The contributions −4πP (from the depolarization) and the one +4πP , resulting from the plates
of the condenser in the usual experimental set-up for the measure of the dielectric constant (usually
carried out from the comparison of the capacity in the presence and in the absence of the specimen)
compensate each other and do not appear in the local field (for illustration see the book by Kittel).

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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and since D = ε(Eext + 4πP), the Clausius-Mossotti relation is found:

P
Eext

= Nα

1 − 4π
3 Nα

= ε − 1

4π

or

ε = 1 + 8π
3 Nα

1 − 4π
3 Nα

. (16.9)

From this relation it is noted that when Nα → 3/4π, then ε → ∞. Therefore
one can make the qualitative prediction of finite polarization in zero field, or the
ferroelectric catastrophe. For permanent dipoles this consideration (that for instance
would predict a ferroelectric transition in water, see Problem16.4) does not hold. In
fact in Eq. (16.8) one has to add the Onsager field: the dipoles are mis-aligned and
the local field is close to the external one.

16.3 Dielectric Response for Model Systems

For the orientational polarization due to permanent dipoles (namely the dipolar
polarizability, see Fig. 16.1) a crude approach could be to rely on second-order per-
turbation theory, as described at Sect. 10.2.4, in the assumption of purely rotational
states for the permanent dipoles in a crystal. Then

P = Nμe < cosθ >= L(x), (16.10)

where θ is the angle formed by the permanent dipole µe and the electric field and
L(x) is the Langevin function for the variable x = μeEext/kBT . For x → 0, a
rather standard experimental condition, the orientational contribution to the electric
susceptibility would be

χ = N
μ2
e

3kBT
.

The assumption to neglect the field due to the dipoles nearby the reference one may
be justified in view of the reaction field, which in practice almost cancels the Lorentz
field.

A more realistic description for the contribution of permanent dipoles to the
orientational polarization, in particular for its frequency dependence, is based on
the model of local double-well potential (see Appendix 15.1), which in the presence

http://dx.doi.org/10.1007/978-3-319-17897-4_10
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of the external electric field can be sketched in the form

μ

The polarization is P = (N1 − N2)μe, with N1,2 statistical populations on the
levels, while N1/N2 = exp(2μeE/kBT ) and N1 + N2 = N .

For periodically oscillating field the susceptibility can be derived from the equa-
tions at Sect. 16.1 once that a certain decay function g(t) is assumed. Following
the theory due to Debye and by recalling that g(t) must be of the form ε/t with
normalization to unit, one can assume

g(t) = ε′(0) − ε(∞)

τ
e−t/τ . (16.11)

On physical grounds the correlation time τ is often written in the form

τ = τ0e
ΔE/kBT , (16.12)

with τ0 slightly T -dependent and typically of the order of 10−11 − 10−13 s. Then

ε(ω) = ε(∞) + ε(0) − ε(∞)

1 − iωτ
, (16.13)

as it has been assumed in general terms in Appendix 15.1 for overdamped harmonic
oscillators. It should be remarked that in most cases a single correlation time is not
appropriate and one has to refer to a distribution of τs (see Appendix 16.2).

For the ionic dielectric response, related to the charge displacements within the
crystal cell, we remind that the static polarizability can be written (see
Problem10.16)

αion = ( f e)2

μω2
0

with f eEloc = μω2
0Δx, (16.14)

where fe is an effective electric charge of the ions, μ the reduced mass and μω2
0 the

elastic constant. In spite of the crudeness of this assumption, still for ionic crystals
the order of magnitude of the static dielectric constant is rather well accounted for.
For instance, by assuming an atomic-like polarizability aroundα � 10−24 cm3, from
the Clausius-Mossotti relation, for a number density of ions around 1022 cm−3, one

http://dx.doi.org/10.1007/978-3-319-17897-4_10
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estimates static dielectric constants in the range 3–5. The experimental value for
NaCl is ε(0) = 5.6, and it includes the high frequency contribution expected around
ε(∞) � 2.2.

To derive the frequency dependent contribution for αion one can assume a dielec-
tric response typical of underdamped harmonic oscillators, namely of the form
exp(−γt)cos(ω0t). This assumption might be appropriate for optical modes (see
Sect. 14.3) at wave vector close to zero (the homogeneous electric field in the dielec-
tricmeasurements evidently corresponds to q = 0, see Sect. 15.2). Then, consistently
with Eq. (16.5) and according to Eq. (15.48) one has

ε(ω) = ε(∞) + (ε(0) − ε(∞))ω2
0

(ω2
0 − ω2) − iγω

. (16.15)

Thus, the frequency dependence of the ionic contribution to the dielectric constant
takes the form qualitatively sketched at Sect. 16.1 for αion .

According to Kramers-Kronig relations (Eq. 16.6) the absorption peak in ε′′(ω)

implies

ε(0) = ε(∞) + 2

π
P

∫ ∞

0

ε′′(ω′)
ω′ dω′.

Now we show that the fundamental frequency ω0 of the underdamped oscillator
appearing in Eq. (16.15) must correspond to an transverse optical (TO) mode of the
lattice vibrations. From simple pictorial models for the q = 0 vibration of longi-
tudinal and transverse character in an ionic crystal one deduces that ωT0 � ωL0.
In fact, for the q = 0 longitudinal modes planes of ions move back and forth and
the front and rear surfaces have sheets of positive and negative charges, so that
Eloc = −4πP + (4π/3)P = −(8π/3)P (see sketch below).

http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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In other words the bulk polarization, i.e. the local field (originated from long
range interactions and therefore not considered at Sect. 14.3), tends to resist to the
deformation.At variance, for transverse opticalmodes aroundq = 0, nomacroscopic
polarization is generated and the local field (4π/3)P acts as a feedback mechanism
that enhances the distortion associated with the mode.

Thus, being necessarily ωT 0 � ωL0 one can expect ε′(ω � ωT O) � 0 and for
frequencies much larger than ωT O one writes

ε′(ω) − ε(∞) � 2

π
P

∫ ∞

0
ω′ ε′′(ω′)

ω′2 − ω2
LO

dω′ � 2

π
P

∫ ∞

0

ω2
T O

ω′
ε′′(ω′)

ω2
T O − ω2

LO

dω′ or

−ε(∞) =
(

ω2
T O

ω2
T O − ω2

LO

) (
ε(0) − ε(∞)

)
, (16.16)

ε′′(ω) being peaked around ωT O .
By collecting ε(0)/ε(∞) along this approximate derivation one obtains the rele-

vant result

ε(0)

ε(∞)
� ω2

LO

ω2
T O

, (16.17)

known as Lyddane-Sachs-Teller (LST) relation.3 It is noted that according to the LST
relation the divergence of the static dielectric constant at the ferroelectric transition
(see Sect. 15.1 and Appendix 15.1) implies

ω2
T O ∝ (T − Tc), (16.18)

that can be considered the indication of the existence of a soft mode, the transverse
optical mode at q = 0. This represents a first insight about the existence of a critical
dynamics driving the transition to the ferroelectric state in ionic crystals.

Nowwe devote a few lines to the electronic contribution to the dielectric constant.
At Sect. 4.2 we have already given some insights on the static polarizability α(0). As
regards the frequency dependence the simplest model is the one of damped harmonic
oscillator. Thus, similarly to Eq. (16.15), one writes

α(ω) = (e2/m)

(ω2
e − ω2) − iγω

and the electronic contribution to the dielectric constant turns out

ε(ω) � 1 + (Ne2/m)

(ω2
e − ω2) − iγω − (e24πN/3m)

, (16.19)

3For a purely relaxational oscillator (over-dampedmode) the analogous of Eq. (16.17)would involve
the Debye relaxation times at constant field and at constant polarization (see Sect. 15.4).

http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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where the last term at the denominator can be neglected when the local field is close
to the external one (see Eqs. (16.8) and (16.9)).ωe is typically in the ultraviolet range.
The behaviour of ε(ω) as a function of frequency is similar to the one for the ionic
contribution, with the shift of the central frequency from ω0 to the characteristic
electronic frequency ωe.

16.4 The Ferroelectric Transition in the Mean
Field Scenario

Ferroelectrics are polar crystals in which the polarization can be reversed by an
electric field. The reason of this behaviour is that the polar phase is a non-polar
one only slightly distorted. According to the phenomenological pictures given at
Sect. 15.1 the dielectric response, the elastic and the electro-optical properties display
divergences around the transition temperature.

Below the transition temperature the raise of the spontaneous polarization (the
order parameter) is observed, often with a small discontinuity. It should be remarked
that the dielectric constants around the transition are several orders of magnitude
larger than the usual ones. In the ferroelectric phase the polarization as a function
of the electric field shows an hysteretic behaviour similar to the one in ferromagnets
(see Fig. 16.2).

When permanent dipoles are involved in the ferroelectric transition one usually
speaks of order-disorder ferroelectrics. When in the paraelectric phase no permanent
dipoles are present then the transition involves ionic displacements from the equi-
librium positions of the ions above Tc and one speaks of displacive ferroelectrics.
Some crystals exhibiting mixed effects are known.

A list of a few examples for both types of ferroelectric crystals, with data for the
spontaneous polarization, is given in Table16.1.

Fig. 16.2 Schematic behaviour of the polarization as a function of the external field in a ferroelectric
crystal (left) and in anti-ferroelectric crystal (right). For antiferroelectrics a strong field is usually
require to drive the crystal in the condition to display a plot similar to the one in the ferroelectric
state. To understand this effect it may help to look at Sect. 17.3 for the similar case of ferromagnets

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_17
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Table 16.1 The values of the critical temperature Tc and of the polarization Ps (at the temperature
on the right column) for a group of ferroelectric compounds

Tc(K ) Ps (μC cm−2) At the Temperature (K)

Order-disorder ferroelectrics

CsH2AsO4 143 – –

HCl 98 1.2 83

KH2AsO4 92 5 78

KH2PO4 (KDP) 123 4.75 96

NaNO2 436 8 373

RbH2AsO4 110 – –

RbH2PO4 147 5.6 90

TGS 323 2.8 293

Displacive ferrolectrics

BaTiO3 393 26 296

KNbO3 712 30 523

LiNbO3 1483 71 296

PbTiO3 763 >50 300

Illustrations of the vibration mode driving the transition for the typical displacive
ferroelectric BaTiO3 (see Fig. 11.3) and for the typical order-disorder ferroelectric
NaNO2, in terms of the electric dipole NO−

2 , are provided below. A sketch of the
correspondent local potential is recalled (see Appendix 15.1).

As already mentioned, the enhancement and slowing down of the fluctuations
described in general terms at Chap. 15 have microscopic correspondence in the crit-
ical dynamics of some local variables. The critical dynamics can involve the optical
soft mode of vibrational character, as pointed out at Sect. 16.3, or low-frequency
relaxational modes, sometimes reported as re-orientational modes. In the vicinity
of the transition both these excitations display anomalies in the temperature depen-
dence, in comparison to the usual temperature dependence when no transition is
involved.

Now we give a description of the paraelectric-ferroelectric transition based on the
mean field approximation (MFA) and by referring to a generic local critical variable
v(t). v(t) can be an atomic displacement around the equilibrium position or the
orientation of permanent dipoles along two directions. The interaction among the
variables is assumed in the bi-linear form, as it was done in Appendix 15.1 when
deriving the connection between single particle and collective responses. First we
shall derive the temperature dependence of the thermal average < v >, that is the
quantity involved in themacroscopic order parameter (the electric polarization). Then
some form of the dynamics for v(t) shall be specialized.

http://dx.doi.org/10.1007/978-3-319-17897-4_11
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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The model Hamiltonian we shall refer to is

∑
l

(
Π2

l

2

)
+ V (v1, v2, v3, . . . vN ) =

∑
l

[
Π2

l

2
+ Vl

]
+ interaction terms,

(16.20)

while the rest of the crystal is considered embedded in the thermal bath. Πl is the
conjugate momentum of vl . The local potential Vl for each single particle is a quasi-
harmonic one for displacive transitions or a double-well potential for order-disorder
transitions (see sketch above). The interaction is written as bilinear coupling

H = −1

2

∑
l,l ′

Il,l′vlvl ′ , (16.21)

that can approximately describe, in a simplified form, dipolar interactions, Ising
or Heisenberg type Hamiltonians. In the presence of the external field E the term
−∑

l vlEl is added to the Hamiltonian in Eq. (16.20). As already emphasized in
other circumstances, MFA consists in singling out a particular vl while all other vl ′

are replaced by their thermal average. Thus a single-particle Hamiltonian is written
in the form

H = Π2
l

2
+ V (vl) − Evl −

∑
l ′

Il′vl < vl ′ > . (16.22)
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The thermal averages have to be determined self-consistently (see Eq. (15.1)):

< vl >=
∑

i < i |vl |i > e−Ei /kBT

Z
, (16.23)

where Ei are the eigenvalues and Z the partition function. When the eigenvalues
are not known, as usual for complicated local potentials, then the classical ensemble
averages are taken:

< vl >=
∫ ∞
−∞ vl e−El/kBT dvl∫ ∞
−∞ e−El/kBT dvl

, (16.24)

with
El = V (vl) − Evl − Ivl < vl ′ >

where I = ∑
l ′ Il,l′ and< vl ′ >=< vl >=< vl >E . Thus an implicit equation for the

“displacement”< v > (to be related to the polarization) as a function of temperature
and field, is obtained.

For T > Tc and in the absence of field < v >= 0, while for E 
= 0 the local
susceptibility is involved.

For T < Tc the Eqs. 16.23 or 16.24 can have a temperature-dependent solution

< v >E=0 
= 0,

namely a spontaneous polarization arises as a consequence of the interactions (for a
preliminary illustration in magnetic systems return to Sect. 4.4). The equation

< v >0,T=< v >0,0 f [V (vl), T ], (16.25)

corresponds to the temperature dependence of the order parameter. In Problem16.1 it
is shown how from Eq. (16.25), applied to Ising-like local variable corresponding to
spin 1/2, in the absence of interactions, the Brillouin function for< v > is obtained,
with a Curie-like law for the susceptibility χ0 =< v > /E .

By accounting for the interactions, in the MF scenario the total field is

Etot = I < v >E +E, (16.26)

and then
< v >E,T= vB

(
v(I < v >E + E)

kBT

)
, (16.27)

which specializes Eq. (16.25) by showing that the Brillouin function B now includes
the mean field.

For zero external field the implicit equation for < v >T≡< v > becomes

< v >= v0B

(
Iv < v >

kBT

)
(16.28)

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_4
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which can be rewritten

< v >

v
= tanh

[(
Iv2

kBT

) (< v >

v

)]
(16.29)

or yz = tanh(y), with z = (kBT/Iv2) and y = (< v > /vz). A graphical solution
can be found by looking for the intersection of the curve tanh(y) versus y with a
series of straight lines yz versus y, for various z.

As it appears from the sketch above a solution is obtained for z ≤ 1, namely for
kBT ≤ Iv2, in other words for T ≤ Tc, with critical temperature Tc = (Iv2/kB).

The temperature behaviour of < v > in the vicinity of the transition to the
ferroelectric phase canbe found fromEq. (16.28) by expanding theBrillouin function,
since around Tc one can assume < v >� v. Then, from the expansion of < v >

/v = B[(< v > /v)/(T/Tc)] one finds

< v >∝
(
1 − T

Tc

)1/2

. (16.30)

Thus, the critical exponent β = 1/2 for the order parameter is found, typical MFA
result, as already anticipated at Sect. 15.2. On the other hand, in more sophisticated
descriptions which take into account critical effects, the critical exponent β for three-
dimensional lattices turns out β � 1/3. Furthermore, often a small discontinuity in
the temperature dependence of the polarization is present below Tc, indicating quasi-
second order transition.

To derive the susceptibility the presence of the external field must be considered
and one writes

< v >E,T = vB

((
v

kBT

)
(I < v > + E)

)
. (16.31)

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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Again, by expanding the Brillouin function

< v >�
(

v2

kBT

)
(I < v > + E)

or

< v >∝ (Ev2/kBT )
T
Tc

− 1
(16.32)

and then χ = (< v > /E) ∝ [(T − Tc)/Tc]−1 yielding the critical exponent γ = 1.
It can be noticed that below the transition< v > tends to saturate toward the value

v0 and therefore the response decreases because of the biasing due to the polarization,
in a way equivalent to the presence of a strong field (see for instance Fig. 4.6), a field
that here is of internal origin (see plots in Fig. 15.3).

For order-disorder ferroelectrics, in the simplest form with permanent dipoles
having two eigenvalues corresponding to the orientations of the dipole in the local
double-well potential, < v > has to be thought as the statistical or the quantum
average of the pseudo-spin variable taking the values+1 or−1. The description given
above evidently yields MFA results. However in some cases a relevant improvement
is necessary. One has to take into account the possibility of quantum tunnelling
between the two wells of the local potential. This is particularly true in the case, as
for instance the KDP-type ferroelectric family, where the Hydrogen atom can take
the right and left positions in the local potential. The dramatic change of the transition
temperature from Tc = 123 K for ordinary KDP and Tc = 213 K for the deuterated
crystal, indicates that some other term must be added to the Hamiltonian16.20 in
order to describe in a proper way the mass dependence.

This type of description can be carried out in the framework of the pseudo-spin
formalism by associating to the dipole a fictitious spin 1/2 operator and introducing
the possibility of quantum tunnelling with a rate Γ between the two orientations by
means of the spin matrix Sx for the transverse component, namely the tunnelling
operator. The Hamiltonian16.20 is therefore written

H = −2Γ �

∑
i

Six −
∑
i, j

′ Ii j Siz S
j
z , (16.33)

where

Sx = 1

2

(
0 1
1 0

)
and Sz = 1

2

(
1 0
0 −1

)

are the spin operators. The bilinear interaction Hamiltonian is the Ising-like one
(involving in most cases the dipolar coupling among the dipoles, see Problems5.2
and 6.5 for the magnetic case).

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_5
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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The MFA leads to

H =
∑
i

[
−2Γ �Six − Siz I0 < Sz >

]
≡

∑
i

Hi , (16.34)

with I0 = ∑
j Ii j .

Thus the single-particle HamiltonianHi is the one of a pseudo-spin in a pseudo-
field. In the paraelectric phase < Sz >= 0 and the pseudo-spin precesses around Hx

(see sketch below).

Γ

The expectation value reads (see Sects. 4.4 and 6.1)

< Sx >= Tr [Sxe−Hi /kBT ]
Tr [e−Hi/kBT ] = tanh

(
Γ �

kBT

)
. (16.35)

Below Tc < Sz >
= 0 and the polarization P = 2μe < Sz > arises.
The diagonalization of the pseudo-spin Hamiltonian is obtained by the transfor-

mation
Sx = S⊥cosθ + S‖sinθ Sz = −S⊥sinθ + S‖cosθ,

with cosθ = Hz/Hef f and sinθ = Hx/Hef f (Hef f = [H 2
x + H 2

z ]1/2).
The single spin Hamiltonian becomes Hi = −S‖Hef f , with < S⊥ >= 0 while

< S‖ >= Tr [S‖e−Hi /kBT ]
Tr [e−Hi/kBT ] = 1

2
tanh

(
S‖Hef f

2kBT

)
. (16.36)

Then

< Sz >=
(

Hz

Hef f

)
< S‖ >= (16.37)

= I0 < Sz >

[(2Γ �)2 + (I0 < Sz >)2]1/2 · tanh
( [(2Γ �)2 + (I0 < Sz >)2]1/2

2kBT

)
,

which is the self-consistent equation corresponding to Eq. (16.29) and pertaining to
the rise of the polarization. By singling out the temperature at which the crossover

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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from < Sz >= 0 to < Sz >
= 0 occurs, in a way analogous to what done for
Eq. (16.29), one has

2Γ �

I0
= tanh

(
Γ �

kBTc

)
, (16.38)

which sets the condition for the occurrence of the ferroelectricity: I0 > 2Γ �.
One sees that the driving interaction is the local field (favouring the polar state)

while the restoring force is the tunnelling, which favors the state of equal populations
in the two wells of the local potential.

16.5 The Critical Dynamics Driving the Transition

In displacive ferroelectrics the general concept regarding the microscopic dynamics
leading to the transition, is the soft mode, as already mentioned. The stability of a
crystal structure requires that all the normal modes have frequency real and positive,
while as a consequence of the softening of a given mode the condition of “lattice
instability” is approached.

In the framework of the pseudo-spin formalism for order-disorder ferroelectrics
the critical dynamics can be described, in the MFA approximation,4 by resorting to
Heisenberg equations for the time-dependence of the spin operators involved in the
Hamiltonian16.33. In the assumption that the tunnelling term in the Hamiltonian
is neglected one could also describe the slowing down of a collective pseudo-spin
component by resorting to an extension to the dipole lattice of the Glauber model,
which forces the dynamics in the Ising-likeHamiltonian by considering the role of the
thermal bath. In Appendix 16.1 the main lines of the above mentioned descriptions
are recalled.

Here we give some more insights on the critical dynamics for displacive ferro-
electrics. We shall refer to a cubic crystal, with ions at charge±Q, in the simplifying
assumption that the negative ions have infinite mass and zero electronic polarizabil-
ity. Thus the equations for the motion of the positive ion of mass M (single particle
per cell and negative ions not involved) and for the polarization are written

Mẍ = −kx + QEloc, (16.39)

P = Qx

Vc
+ αeEloc,

with αe the electronic polarizability (see Fig. 16.1).

4The mean field approximation extended to time-dependent phenomena corresponds to the eval-
uation of the commutator [Si ,H] in the Heisenberg equation with the substitution of the density
matrix of the N -body system with the product of the single-spin density matrix. It is usually called
random phase approximation (RPA)(see Appendix 16.1).
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In the light of the derivation at Sect. 16.3, the local field is

Eloc = Eext + 4π

3
P for transverse waves, (16.40)

Eloc = Eext + 4π

3
P − 4πP for longitudinal waves,

with the correction related to the depolarization field. For vibrational modes at q = 0,
in the absence of external field, from the equation for motion and polarization one
obtains

− ω2
T x = − k

M
+ βion

1 − βelec
for transverse waves

−ω2
L x = − k

M
− 2βion

1 + 2βelec
for longitudinal waves, (16.41)

where βion = 4πQ2/3MVc and βelec = 4παe/Vc.
Therefore two results are addressed:
(i) for the transverse optical mode (at zero wave vector)

ω2
T → 0 when (k/M) → βion/(1 − βelec), (16.42)

(ii) for the dielectric constant

ε(∞)

ε(0)
= 1 − βelec − βion

1 + 2(βelec − βion)
· 1 + βelec

1 − βelec
= ω2

T

ω2
L

, (16.43)

namely the LST relation already anticipated (see Eq. (16.17)).
One should remark that the condition of ω2

T → 0 (Eq. (16.42)) is unlikely in
most ionic crystals. Returning, for instance, to the case of NaCl order of magnitude
estimates yield

k

M
� 2

βion

1 − βelec

and therefore no instability can be expected. The effect of the local field generated
in the vibration motions is to reduce by a factor around 30% the frequency ωT

with respect to the value controlled by the short range elastic constant. At variance,
in ferroelectric crystals the elastic and the electric terms are of the same order of
magnitude and some temperature dependence of the form k = (a+bT ), as assumed
in the quasi-harmonic approximation, leads to

ω2
T ∝ a(T − T0) and ε(0) = C

T − T0
,

(see Problem15.3).

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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The generalized electric susceptibility is written

χ(q,ω) = C

ω2(q) − ω2 − i2γω

where C is a constant characteristic of the crystal. The q-dependence of the vibra-
tional frequency can be taken

ω2(q) = α(T − T0) + δq2

as the result of the expansion of the interaction term I (q) (see Appendix 6.1,
Eq. (A.16.1.11)). It is remarked that Tc(q) < Tc(q = 0), namely the instability
temperature is the highest for the wave-vector corresponding to the homogeneous
(q = 0) polarization in the ferroelectric phase.

Appendix 16.1 Pseudo-Spin Dynamics for Order-Disorder
Ferroelectrics

In the following the response of an assembly of interacting dipoles µe to a small
and time-dependent external field is described in the framework of the mean field
approximation, by resorting to the pseudo-spin formalism.

In the light of Eq. (16.33) one starts from the Hamiltonian

H = −2Γ �

∑
i

Six −
∑
i, j

′ Ii j Siz S
j
z − 2μe

∑
i

Hi (t)S
i
z, (A.16.1.1)

Hi being the local field. The statistical average of the spin operators is time-dependent
according to the equation

d < Si > (t)

dt
= − i

�
[< Si >,H]t (A.16.1.2)

The MFA extended to time dependent phenomena (the so called RPA, random phase
approximation) corresponds to evaluate the commutator by substituting the density
matrix of the N -body system with the product of single-spin density matrices (note
4 in the present chapter). In turn, this is equivalent to substitute the products as
< SiαS

j
β > (with i 
= j and α, β = x, y, z) with the products of the expectation

values of the type < Siα >< S j
β >. Thus the equations of motions can be written in

terms of single particle, becoming

d < Si > (t)

dt
=< Si > (t) × Hi(t) (A.16.1.3)
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where the average field is

Hi(t) = −∂ < H > (t)

∂ < Si > (t)
,

< H > (t) being the expectation value of the Hamiltonian in MFA.
In the light of the description given at Sect. 16.4, Eq. (A.16.1.3) corresponds to

the single spin precession around an effective instantaneous, time-dependent mean
field.

In the assumption of linear response to the external field,< Si > (t) is the sum of
the expectation value plus δ < Si > exp(iωt), corresponding to the deviation due
to the field

H = Hi + δHi e
iωt

From Eq. (A.16.1.3), by taking into account only the terms linear in δ < Si > and
in δHi, one has

iωδ < Si >= δ < Si > ×Hi+ < Si > × δHi (A.16.1.4)

< Si > ×Hi being zero, the mean value of the spin operator being along Hi. The
excitations are the deviations from the time-independent values and the eigenfre-
quencies are obtained from Eq. (A.16.1.4) for zero external field.

By taking into account that the average molecular field is

Hx
i = 2Γ �, Hy

i = 0, Hz
i =

∑
j

′ Ii j < S j
z >t ,

the equation of motions for the spin deviations turn out

iωδ < Six >=
(∑

j

Ii j < S j
z >

)
δ < Siy >

iωδ < Siy >= 2Γ �δ < Siz > −
∑
j

[
Ii j < S j

z > δ < Six > −Ii j < Six > δ < S j
z >

]

(A.16.1.5)
iωδ < Siz >= −2Γ �δ < Siy >,

namely 3N coupled linear equations. Then we turn to the collective components

< δSq >=
∑
i

δ < Si > exp[−iq · Ri].

http://dx.doi.org/10.1007/978-3-319-17897-4_16
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In the paraelectric phase, being < Sz >= 0, for a given wave vector q one has

iωδ < Sx
q >= 0

iωδ < Sy
q >= 2Γ �δ < Szq > −Iq < Sx

q > δ < Szq > (A.16.1.6)

iωδ < Szq >= −2Γ �δ < Sy
q >

with Iq = ∑
i, j Ii j exp[−iq · (Ri − Rj)].

As usual, the excitation frequencies are given by the secular equation
⎛
⎝ iω 0 0

0 iω −2Γ � + Iq < Sx
q >

0 2Γ � iω

⎞
⎠ = 0. (A.16.1.7)

One of the eigenfrequencies pertains to the longitudinal motion along the molecular
field (along Sx )while two frequencies describe the precessionalmotion of the pseudo-
spin around the mean field.

For temperature well above the transition temperature the only excitation involves
the tunnelling frequency ω2

2,3(q) = 4Γ 2. On decreasing temperature one has

ω2
2,3(q) =

(
I0 < Sz >

�

)2

+ 2Γ

(
2Γ − Iq < Sx >

�

)
, (A.16.1.8)

the first term being zero for T > Tc, while < Sx >= tanh(Γ �/kBT ) (see
Eq. (16.35)).

Equation (A.16.1.8) evidences the slowing down of the frequencies and the insta-
bility limit for q = 0 in correspondence to the maximum value of the Fourier
transform of the interaction, the one for q = 0. On approaching Tc, for q = 0 one
can expand the above equation in power of (T − Tc), then writing

ω2
2,3(q = 0) =

(
∂ω2

2,3(q = 0)

∂T

)
T=Tc

(T − Tc) = Γ 2 Iq=0

kBT 2
c cosh

2
(

Γ �

kBTc

)
(
T − Tc
Tc

)
≡

≡ Aqc=0

(
T − Tc
Tc

)
, (A.16.1.9)

indicating a dynamical critical exponent γ = 1, as expected.
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According to Eq. (A.16.1.9), the pictorial behaviour (derived from Eq. (A.16.1.5)
without assuming < Sz >= 0) of the frequencies are sketched below (see also
Chap.15)

ω

≠

As regards the response to the external field, by resorting to Sect. 15.4 and adding
at hand a damping factor, the generalized susceptibility is written

χ′′(q,ω) ∝ Nμ2
e

(ω(q)2 − ω2)2 + γ(q)2ω2
, (A.16.1.10)

The modes have resonant character for small damping while turn to relaxational
modes for strong damping.

Two comments are in order. The tunnelling integral being expected mass-
dependent, one can realize why the deuteration in KDP increases the transition
temperature from 123K to 213K.

For the cubic lattice of dipoles at distance a, from

Iq = 2I [cos(qxa) + cos(qya) + cos(qza)],

by expanding Iq and ω2
2,3(q) around q = 0 Eq. (A.16.1.9) becomes

ω2
2,3(q) = Aq=0

T − Tc
Tc

+ 4Γ 2 a
2q2

6
, (A.16.1.11)

a dispersion relation for the pseudo-spin excitations consistent with the general form
of the q-dependence discussed at Sect. 15.4.

It is also reminded thatwhen Iq ismaximum in correspondence to a zone-boundary
wave vector QBZ then the transition involves the crossover to an antiferroelectric
phase, the order parameter is the sublattice polarization and the crystal cell doubles
below Tc.

Finally we just mention that when the maximum of the Fourier transform of
the interaction is neither at q = 0 nor at QBZ, the transition can involve an

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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incommensurate phase, in which the order parameter of the critical variable (e.g.
the expectation value of the pseudo-spin or the lattice displacement of an atom) is
not commensurate with the underlying lattice.

A few words about the order-disorder ferroelectrics below Tc can be added. In the
ferroelectric phase both< Sx > and< Sz > are different from zero and the fictitious
effective field is in the xz plane. From the equations for the spin deviations and the
secular equations one can obtain

ω2
2,3(q) =

(
I0 < Sz >

�

)2

+ 4Γ 2

(
1 − Iq

I0

)
. (A.16.1.12)

The critical mode is at q = 0 and ω2,3(q = 0) ∝ I0 < Sz >. The temperature
dependence of the polarization related to < Sz > follows. In fact, the effective field
(Hx + Hz) below Tc implies the eigenvalues ±W = ±[Γ 2 + (I0 < Sz >)2]1/2.

The partition function being Z = 2cosh(W/kBT ), the polarization is

P = 1

kBT

∂lnZ

∂H
= I0 < Sz >

2W
tanh

(
W

kBT

)
∝

∝ tanh

[ [Γ 2 + (I0 < Sz >)2)]1/2
kBT

]
.

For exhaustive presentation of the issues related to Sect. 16.4 and particularly
to this Appendix, the book by Lines and Glass or the one by Blinc and Zeks are
suggested.

Appendix 16.2 Distribution of Correlation Times and Effects
around the Transition

For a system of permanent dipoles with single-particle response of Debye character
Eq. (16.13) holds and then

ε′(ω) = ε(∞) + ε(0) − ε(∞)

1 + ω2τ 2
(A.16.2.1)

ε′′(ω) = (ε(0) − ε(∞))ωτ

1 + ω2τ 2

where τ (T ) = τ0exp(ΔE/kBT ) is the relaxation time.
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Inmono-dispersive crystals,where a single correlation timeoccurs, these equations
can be used for the MFA dielectric response measured at q = 0, with (see Appendix
15.1)

τp = τq=0 = τ (T )

1 − Iq=0χ0
(A.16.2.2)

Real dielectrics are hardly mono-dispersive and rather exhibit a distribution of τ ′s.
that has to be taken into account, particularly around the transition from the disor-
dered to the ordered phase. Empirical account of dielectric dispersion and absorption
measurements in poly-dispersive systems can be given by using for the dielectric con-
stant the following relations:

ε′(ω) = [ε′(0) − ε(∞)] 1 + bZ

1 + 2bZ + Z2

ε′′(ω) = ε′(ω)
aZ

1 + bZ
(A.16.2.3)

where a = sin(πB/2), b = cos(πB/2) and Z = (ωτp)
B , while B measures the

width of the distribution of the relaxation times, with 0 < B ≤ 1.
These equations are known as Cole-Cole relationships and result from the inte-

gration over τ of Eq. (A.16.2.1) with a distribution function of the form

y(τ ) = 1

π

sin(Bπ)

x B + x−B + 2cos(Bπ)
(A.16.2.4)

with x = τ/τp, τp being the correlation time measured with the homogeneous
electric field (see Eq. (A.16.2.2)), with the critical behaviour

τp ∝
(
T − Tc
Tc

)−Δ

,

for T → T+
c . The critical exponent is Δ = γ = 1, in the MFA. For B = 1

in Eq. (A.16.2.3) one again obtains the Debye relations, consistent with the MFA
susceptibility at q = 0.

For B 
= 1, by plotting ε′′(ω) versus ε′(ω) and then [ε′′/(ε′a − ε′′b)]1/B , one can
extract ε(0), B and τp. For illustration and for comparison with a 3D MFA system
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(return to Fig. 15.4), see the plots reported below for a 2D system with short-range
interactions (SnCl2.2H2O).

β
τ ±

Illustrative plots of the data around the transition temperature Tc = 219.45 K
in a ferroelectric crystal characterized by planar structure of dipoles (data from
Mognaschi, Rigamonti and Menafra, Phys. Rev. B 14, 2005 (1976)). It is noted
that the MFA value γ = 1 is clearly ruled out.

Problems

Problem 16.1 By applying Eq. (16.25) to permanent electric dipoles with Ising-like
pseudo-spin variable v of dichotomic character, show that the Brillouin function
for < v > (in terms of x = vE/kBT ) and the Curie-like law are obtained, in the
assumption of no interactions.

Solution: For no interaction one rewrites

< v >= vexp(vE/kBT ) + (−v)exp(−vE/kBT )

Z

and from the expansion of the Brillouin function

χ0 = < v >

E = v2

kBT
.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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Problem 16.2 By starting fromEq. (16.2) and considering two frequency dependent
in-phase and out-of phase dielectric constants, derive Eqs. (16.3) and (16.4).

Solution: By changing the variable from τ to t ′ = t − τ in Eq. (16.2), one writes

D(t) = ε(∞)E0cos(ωt) + E0

∫ t

−∞
cos(ωτ )g(t − τ )dτ =

= ε(∞)E0cos(ωt) + E0

∫ ∞

0
cos(ω(t − t ′))g(t ′)dt ′.

Thus

D(t) = ε(∞)E0cos(ωt) + E0

∫ ∞

0
g(t ′)[cos(ωt)cos(ωt ′) + sin(ωt)sin(ωt ′)]dt ′ =

= E0cos(ωt)

[
ε(∞) +

∫ ∞

0
cos(ωt ′)g(t ′)dt ′

]
+ E0sin(ωt)

∫ ∞

0
sin(ωt ′)g(t ′)dt ′.

Then, from

D(t) = E0

[
ε′(ω)cos(ωt) + ε′′(ω)sin(ωt)

]

Equations (16.3) and (16.4) follow.

Problem 16.3 Derive the relationship between ε′(ω) and ε′′(ω).

Solution: By Fourier transformation of Eqs. (16.3) and (16.4)

g(x) = 2

π

∫
[ε′(ω) − ε(∞)]cos(ω′x)dω′

g(x) = 2

π

∫
ε′′(ω)sin(ω′x)dω′,

Equations (16.6) follow.

Problem 16.4 In the light of Eq. (16.9) show that without theOnsager reaction field
one would predict the ferroelectric catastrophe in water.

Solution: One has α = μ2
e/3kBT and from Eqs. (16.7) and (16.9) for μH2O

e = 1.87
Debye

ε = 1 + 4πNμ2
e

3kB(T − Tc)

with Tc = (4πNμ2
e/9kB) � 1200 K.
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Problem 16.5 From the equation of motion of a single ion in the lattice under short-
range elastic constant (temperature dependent in the form ksh + bT ) and a long
range electrostatic force kel x , derive the susceptibility and the temperature at which
the frequency goes to zero, with lattice instability.

Solution: The equation of motion is

mẍ + γ ẋ + (ksh − kel + bT )x = qE0e
iωt .

The polarization is Nqx . Then, by solving this equation

χ(ω) = Nq

m(ω2
0 − ω2 + iγω)

(see Eq. (15.47)) and

ω2
0 = b

m

(
T + ksh − kel

b

)
.

Thus ω0 → 0 for T → Tc, with Tc = −(ksh − kel)/b (return to Problem15.3).

Problem 16.6 By referring to the vibrational motion of a diatomic chain and by
considering anharmonic terms of the form (V4/4!)∑

i (xi+1 − xi )4, show that the
frequency of the q = 0 optical mode goes to zero at the critical temperature Tc =
2|k1|k2/(V4kB), with k1 and k2 elastic constants for nearest neighbours and next
nearest neighbours.

Solution: The equations of motion for optical and acoustic modes in the absence of
anharmonic terms follow from

mẍi = −2(k1 + k2)xi + k1(xi+1 + xi−1) + k2(xi+2 + xi−2),

yielding ω2
ac(q) and ω2

op(q) (see Eq. (14.15)).
With the anharmonic contribution, by writing the Hamiltonian in terms of the

normal coordinates and averaging the acoustic ones, one derives

ω2
op(q) =

[
V4kBT

2mk2
− 4|k1|

m

]
cos2

(qa
2

)
+

(
4k2
m

)
sin2(qa).

Thus, for T = Tc = 2|k1|k2/V4kB the lattice instability occurs.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_14
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Chapter 17
Magnetic Orders and Magnetic Phase
Transitions

Topics

Electronic Correlations and the Hubbard Hamiltonian
The Magnetic Phase Transition within the Mean-Field Approximation
Ferromagnets and Antiferromagnets
Ordered Magnetic Systems and Magnons
Scaling Arguments
Dimensionality Effects
Superparamagnetism, Spin Glasses and Magnetic Frustration
Two-dimensional Quantum Heisenberg Antiferromagnet

17.1 Introductory Aspects on Electronic Correlation

In previous sections (Chaps. 4 and 6) the cases of isolated magnetic moments, with
the related phenomena of atomic diamagnetism and paramagnetism, have been
addressed. Some of the experimental techniques for the study of their properties
(magnetic resonances, muon andMossabuer spectroscopies, neutron scattering) have
been mentioned. In general terms, the scenario of localized and weakly interacting
magnetic moments can be defined as the local moments representation.

Another model scenario previously described along the book is the one of delocal-
ized electrons in the Fermi gas, particularly for the paramagnetism and diamagnetism
of itinerant electrons inmetals (see Sect. 12.7.1, Problems12.10 and 12.19,Appendix
13.1).

In the framework of the local moments representation themagnetizationM(J, H)

has been derived (Sect. 4.4). A way to take into account the interactions among the
magnetic moments has been indicated by resorting to the mean field approximation
(MFA), writing for the total magnetic field (see Eq. (4.33)) experienced by a given
magnetic moment H = Hext + λM. The MFA susceptibility
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χ = χ0

1 − λχ0
(17.1)

was derived, with χ0 the bare susceptibility for non-interacting moments (Eq.4.34).
The transition from the disordered to the ordered state is thus conceivable, with
a transition temperature Tc = Nμ2

Jλ/3kB . One could argue that in Eq. (17.1) the
parameter λ hides exchange and correlation effects, to be addressed subsequently.

In the scenario of delocalized electrons, the Pauli and Landau susceptibilities
have been derived and it has been observed how by decreasing the electron concen-
tration the average kinetic energy of the electrons decreases faster than the Coulomb
repulsive interaction U (see Appendix 13.1).

Experimental evidences indicate that one has to go beyond those simple descrip-
tions and that the detailed role of interactions/correlations has to be considered.
Among others one can mention: (i) in 3d electron metals the saturation magnetic
moment per atom is not an integer number of Bohr magnetons; (i i) in alloys the aver-
age magnetic moment per site is not linearly dependent on the concentration of the
magnetic atoms and sometimes magnetization is found in alloys of non-magnetic
atoms; (i i i) the pressure usually decreases the saturation magnetization, while in
principle it should be rather insensitive to the small variations in the interatomic
distances; (iv) first order transitions, with discontinuous jumps of the magnetization
can be driven by an external magnetic field. Thus one can realize that it is necessary
to go beyond the mean field approach and the one-electron approximation.

A simple way to account for interaction and correlation effects has been men-
tioned through the introduction in Eq. (17.1) of Stoner correction λ = U/2μ2

BN , a
term which yields a susceptibility enhancement and then a drive towards the ordered
state (Eq.A.13.1.15). That result has been derived starting from the Stoner-Hubbard
Hamiltonian (Eq.A.13.1.9). The many-body Hubbard Hamiltonian has been con-
structed in the space of single-electron Wannier functions, namely wave functions
centered at a given lattice site and obtained as a sum over all the states k of a band
of normalized Bloch functions (Eq.12.41). The properties of these functions are
such that the overlap integral between adjacent sites i and j is exactly zero. Thus
the assumption in Eq. (12.45) is no longer required and the tight-binding approach
extends its validity. The more general expression of the many-particle Hamiltonian
devised by Hubbard in order to account for correlation effects, for a single band, is

H =
∑
i, j,σ

ti j c
†
iσc jσ + 1

2

∑
i, j,i ′, j ′,σ,σ′

< i j |V |i ′ j ′ > c†iσc
†
jσci ′σ′c j ′σ′ , (17.2)

where c are fermionic annihilation or creation (c†) operators of an electron at
a given site and σ and σ′ labels the spin up or down states. ti j represents the
hopping integral for a single electron between sites i and j which corresponds
to the one derived in the tight-binding approximation in the band theory. The term
< i j |V |i ′ j ′ >=< i j |e2/ri j |i ′ j ′ > in Eq. (17.2) is the matrix element of the two
electrons interaction.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Inmany systems one can assume ti j �= 0 for i and j nearest neighbours and ti j = 0
otherwise. The interaction term is more conveniently treated by making the strong
assumption that only on-site Coulomb repulsion is at work: < i j |V |i ′ j ′ >= U for
i = j = i ′ = j ′ and < i j |V |i ′ j ′ >= 0 otherwise. Under these approximations
Hubbard Hamiltonian takes the form

H =
∑

<i, j>σ

ti j c
†
iσc jσ +U

∑
i

n̂i↑n̂i↓, (17.3)

where n̂i,σ are the number operators n̂i,σ = c†i,σci,σ and the sum runs over the lattice
sites while < i, j > means that it is limited to the nearest neighbour pairs.

The first term of the Hubbard Hamiltonian is sometimes represented in the k-
space as

∑
k,σ Eka

†
k,σak,σ , where ak,σ indicate fermionic operators for the creation

and the destruction of the elementary particles at wave vector k and spin σ. Ek is the
electron band dispersion of width W , derived within a tight-binding approximation.
In 3d metals one has typical values for W around 4eV while the repulsion energyU
is of the order of 1–3eV.1

The Hamiltonian in Eq. (17.3) has the remarkable role to allow one to bridge the
gap between localized (U > W ) and delocalized electrons (W > U ) scenarios: now
the positions and the motion of all the electrons are correlated, since they interact
each other inducing forces among them during the motion.

Unfortunately the Hubbard Hamiltonian, in spite of its apparent simplicity, can
be solved analytically for any value of the ratioU/W only in one dimension and for
a single band. Many solutions in the limits U � W or W � U have been reported.
For U/W � 1 the Hartree-Fock approach is usually employed, corresponding to
a first-order perturbation in U/W . When the density functional method (Sect. 3.4
and Chap.9) includes the spin, one deals with the spin-density functional theory.
The energy of the ground state, written as a functional of the electron density and of
the spin polarization, is then minimized. The exchange-correlation term (not exactly
known) is thought to include all the many body effects. Nevertheless, from numerical
approaches good results for the band structure and for the spin density are usually
achieved.

The oppositeU � W limit has to be considered in several other cases. In particu-
lar when from band calculation one would predict a metallic state while the localized
electrons condition is actually attained. An example of such a situation is found in
many transition metal oxides, as La2CuO4, which is the parent of high Tc supercon-
ductors. In fact, La2CuO4 is an insulating crystal while neglecting the correlation
one would predict a metal (see Appendix 17.1). In the U � W limit the hopping
term can be considered as a perturbation (to the second order) of the purely repulsive
term of Eq. (17.3). In that limit, for a half-filled band (namely one electron per site),

1When W is of the same order of U upon slight variation of certain interaction parameters the
transition from the insulated to the metal compound is possible. This is the Mott transition. The
Hubbard model is possibly the simplest way to show how the electronic interaction can produce
novel magnetic states in solids.

http://dx.doi.org/10.1007/978-3-319-17897-4_3
http://dx.doi.org/10.1007/978-3-319-17897-4_9
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the Hubbard Hamiltonian yields an effective interaction which has the Heisenberg
form

He f f =
∑
i �= j

|ti j |2
U

(
4Si · Sj − 1

2

)
, (17.4)

with exchange coupling given by 4|ti j |2/U (see Problem17.4). It is noted that in this
case, the coupling being essentially positive, an antiferromagnetic state is induced by
the correlations (see Sect. 4.4 and Appendix 17.1). This is what happens in La2CuO4.

For non-half filled bands the Heisenberg-like Hamiltonian has to be replaced by
the t − J Hamiltonian, where instead of U the exchange interaction J is present.

Similarly to Eq. (17.3), several other Hamiltonians have been introduced as start-
ing points in order to describe themagnetic properties of strongly correlated electrons
systems. They are generally defined model spin systems. A large variety of mod-
els with analytical or numerical solutions is known. From the Heisenberg nearest-
neighbours Hamiltonian

He f f = −
∑
i, j

Ji jSi · Sj, (17.5)

the spin models are characterized on the basis of the dimensionality d (generally 1,
2, 3) of the order parameter (here the spin S) and of the dimensionality D of the
lattice (see Sect. 15.1). Analytical solutions for the partition function, so that all the
thermodynamical quantities can be derived, are known for: (i) d = 1, D = 1 and
J > 0 (namely positive exchange constant for nearest neighbours), known as 1D
Ising model, with ferromagnetic ground state occurring only at T = 0 (namely no
transition to an ordered state at finite temperature) as for all D = 1 cases; (ii) for
d = 1 and D = 2 (Onsager model); (iii) for all the cases at D = 4 or more, since
the MFA solutions turn out to be valid; (iv) for all the cases where the range of the
interaction can be considered infinite (again the MFA solutions are valid); (v) for
the case of d → ∞ and any D (the so called spherical model); (vi) for d = 2 (XY
model) where no phase transition is known to occur below D = 2 (see Table15.2).

No exact solutions are known for the most interesting case, namely D = 3 and
limited range of the interaction parameter J . A general semi-empirical method to
attack the problems of the possible transition to ordered states and of the critical
behaviour for spin models is the one based on scaling arguments and on the concept
of universality (see Sect. 15.1 and Appendix 17.2 for some insights).

Here, we only recall the description of the transition from the high temperature
paramagnetic phase to the low temperature ordered state by resorting to themeanfield
approximation. The description of phase transition in the thermodynamic framework
and the relationships between the single particle and collective responses have been
developed (Sect. 16.2, Appendix 15.1) in a way to allow direct transposition to the
case of spin variables. In particular it is reminded that within the MFA the total
magnetic field in paramagnets is written

H = Hext + I < S >Hext≡ Hext + λM, (17.6)

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_16
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where the energy scale I rather than being related to the dipolar interaction (as at
Sect. 16.4) has to be related to the exchange integral. The magnetization is

M(Hext, T ) = M0BS

[
(Hext + λM(Hext))μBgS/kBT )

]
, (17.7)

with BS the Brillouin function and M0 the saturation magnetization.
In the absence of external field the implicit equation for the spontaneous magne-

tization is derived

M(0, T ) = M0BS

[
λM(0, T )μBgS/kBT

]
∝< Sz > (T ), (17.8)

which, for the case S = 1/2 is written

M(0, T ) = M0tanh

[
λM(0, T )μBgS/kBT

]
, (17.9)

yielding for T → T−
c , i.e. M(0, T ) � M0,

M(0, T ) ∝< Sz > (T ) ∝
(
1 − T

Tc

)1/2

, (17.10)

corresponding to the critical exponent β = 1/2 (see comment at Sect. 15.3). For the
response χ(q, 0) see Sects. 4.4 and 16.4.

In subsequent sections of this chapter we shall clarify how the magnetic interac-
tion, in most cases the exchange interaction, originates for atoms at different lattice
positions. Then ordered states will be described and the elementary excitations in
ordered systems, called magnons, presented. It is observed that magnetism in solids
has a very large variety of aspects. We shall only mention the superparamagnetism,
spin-glasses and themagnetic frustration . Magnetic systems are also ideal cases for
the theoretical treatments of exact statistical models (such as Ising and Heisenberg
models) and in order to emphasize the dimensionality effects.

Some more specific topics shall be discussed in the Appendices of the present
chapter: magnetic scaling and the phase diagram of the two-dimensional S = 1/2
Heisenberg antiferromagnet (2DQHAF), that besides being a very interesting system
for quantum magnetism, is the father of the high temperature superconductors (to
be described at Chap. 18). It will also give the chance to illustrate in some detail the
correlation effects and how they can be taken into account in an apparently simple
way by means of the Hubbard Hamiltonian.

http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_18
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17.2 Mechanisms of Exchange Interaction

In solids, in most cases the overlap between the wave functions centered at different
atomic sites is small, because of their short range character. Therefore the exchange
mechanism described at Sect. 2.2 for the two electrons in He atom cannot be simply
transferred in the attempt to justify themagnitude of the exchange interaction leading
to the I or J terms in the Hamiltonians introduced in the previous section. As it can
be argued from the discussion given at Sect. 17.1, the exchange mechanism cannot
be thought as resulting from the overlap of localized electrons but rather one has to
include the electron itinerancy as well as correlation effects.

Illustrative examples, in this respect, are offered by transition metal oxides, sys-
tems to which the Hubbard model was initially (1963) applied. Let us refer toMnO,
which involves Mn2+ ions with the 3d5 subshell implying J = S = 5/2, according
to the Hund rules described at Sect. 3.2.3. The value of the magnetic moment exper-
imentally determined from susceptibility measurements is around 5.9μB . MnO is
an antiferromagnet (AF) below TN = 116K, with the localized magnetic moments
of Mn2+ nearest neighbours, connected by Oxygen atoms, pointing along opposite
directions. In other terms, the antiferromagnetic coupling via the Oxygen lowers the
energy of the whole magnetic structure. In a simple picture one can justify the occur-
rence of the AF state by involving in the exchange mechanism also the 2p electrons
of O. In fact, the decrease in the kinetic energy induced by the electron delocalization
along the Mn-O-Mn unit, and the strong overlap between 3d Mn and 2p O orbitals
(thanks to Pauli principle) yields a neat AF coupling. A sketch of this superexchange
mechanism is shown in Fig. 17.1.

Fig. 17.1 Sketch of the
superexchange mechanism
yielding the MnO
antiferromagnetic structure
(partial view)

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_3
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One can think that the ordering process is related to a magnetic Hamiltonian of
the type in Eq. (17.4). Although the presence of five 3d electrons of theMn2+ ion and
of two 2p electrons of the Oxygen make things more complicated, the basic aspects
of the superexchange mechanism can be described through the simple form given in
Eq. (17.5). Similar situation occurs in the planar array of Cu2+ and Oxygen ions in
AF La2CuO4, as we shall discuss in Appendix 17.1. In general the superexchange
coupling is related to the overlap between atomic orbitals and hence it significantly
depends on the angle formed by the paramagnetic ions (Cu2+, for example) and the
diamagnetic ion (O2−). In fact, one can notice a change by orders of magnitude in
the superexchange coupling upon varying that angle from π to π/2 (Fig. 17.2).

There is also another mechanism of indirect magnetic coupling between localized
moments: the one mediated by delocalized electrons. This indirect (or itinerant)
exchange in metals is known as RKKY interaction (from Ruderman, Kittel, Kasuya
and Yoshida, the discoverers). This interaction, mediated by the Fermi sea, is a
long range one, with an oscillating behaviour with the distance. Thus, depending
on the distance between the magnetic ions, the exchange coupling can change from
ferromagnetic to antiferromagnetic. This behaviour is at the basis of the spin-glass
state found in metals doped with paramagnetic ions, as Cu1−xMnx and it is the
relevant coupling in many intermetallic systems formed by paramagnetic lanthanide
ions.

In order to derive the formof theRKKYcoupling let us consider two paramagnetic
ions, say A and B, coupledwith the itinerant electrons of themetal via a local contact-
like interaction J

He−A = −J
∑
i

SA · siδ(rA − ri), (17.11)

with SA the localized spin and si the ith itinerant electron spin. Accordingly the
itinerant electrons will experience a local effective field Hef f = −J SA/gμB and the
electron gas will acquire a neat spin polarization

Fig. 17.2 Superexchange
coupling J versus the
Cu-O-Cu angle in a series of
copper oxides
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Fig. 17.3 Schematic view of the RKKY coupling between two localized spins through the polar-
ization of the itinerant electrons via non-local susceptibility χP (r − rA)

< s(r − rA) >= −χP(r − rA)
Heff

gμB
= 1

V

∑
q

eiq·(r−rA)χP(q)SA
J

g2μ2
B

, (17.12)

where χP(q) is the static q-dependent Pauli susceptibility (see Problem17.3).
For three-dimensional Fermi gas one obtains

1

V

∑
q

eiq·r′
χP(q) = 3g2μ2

B

8EF

N

V

k3F
16π

[
sin(2kFr ′) − 2kFrcos(kFr ′)

(kFr ′)4

]
, (17.13)

(r′ = r− rA) which evidences how the electron gas spin polarization oscillates with
a periodicity determined by Fermi wavevector kF and changing sign upon varying
the distance from the localized ion A. The polarized itinerant electrons will in turn
interact with the localized spin SB , so that at the end an effective coupling between
SA and SB described by the Hamiltonian

HAB = − J 2

g2μ2
B

1

V

∑
q

eiq·(rA−rB)χP(q)SA · SB (17.14)

occurs. Thus, the exchange coupling between SA and SB oscillating with the distance
between the two spins (Fig. 17.3). It is noticed that since χP(q) changes significantly
with the lattice dimensionality (see Problem17.3 and return to Problem12.7)2 the
same occurs for the RKKY coupling.

In some oxides a ferromagnetic-type exchange mechanism could occur, known as
double exchange or mixed valency, due to the fact that the magnetic ion can exist in
more than one oxidation state. The hopping of the electrons between one ionic species
and the other is favouredwhen the spin does not change its orientation, yielding a neat
ferromagnetic coupling. This process describes the indirect ferromagnetic exchange
in magnetite (Fe3O4), having an equal mixture of Fe2+ (3d6) and Fe3+ (3d5) ions,
and in manganites formed by Mn3+ and Mn4+ ions.

2In one-dimensional conductors the topology of the Fermi surface yields a divergence of χP (q) at
q = 2kF , resulting in the appearance of spin density wave (SDW) phases, an ordered state where
the spontaneous local spin polarization of the Fermi gas varies with a periodicity determined by
2kF .

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Finallywemention that in away similar to the superexchangemechanism the spin-
orbit interaction can lead to an anisotropic exchange interaction via the exchange
process of the excited state of an ion with the ground state of the nearby ion. This
process involves an interaction Hamiltonian of the form

HDM = D · Si × Sj (17.15)

as derived by Dzyaloshinsky andMoriya, with a vectorial term D which is zero only
when the crystal field has inversion symmetry. This coupling mechanism is rather
common in antiferromagnets and since it tends to induce a canted ferromagnetic
structure in the spins, one often speaks of weak ferromagnetism.

17.3 Antiferromagnetism, Ferrimagnetism and Spin
Glasses

Again by referring to the generic Hamiltonian (Eq.17.5), when the exchange inter-
action Ji j is negative the ordered state is antiferromagnetic, with nearby spins along
opposite direction. Illustrative example is provided by MnF2 crystal. Below about
67K the structure of MnF2 can be seen as resulting from two interpenetrating sublat-
tices of cubic structure, each one being characterized by ferromagnetic order, while
the sublattices have magnetic moments along opposite directions. No net magnetiza-
tion is obviously present for the whole crystal and only a rather small discontinuity
is usually observed in the susceptibility at the ordering temperature, known as Néel
temperature TN . As for the case of the ferromagnetic transition, anomalies in the
specific heat and in the expansion coefficient are detected around TN .

A simple picture of the AF state and of the phase transition can be provided in the
two sub-lattices model within the mean field approximation. By limiting the range
of the interactions to the first and to the second nearest neighbours3 the internal field
at the A site is written

HintA = −λABMB − λAAMA (17.16)

where λAB is positive in view of the negative sign of the exchange integral which
grants an antiferromagnetic order, while λAA, which is expected much smaller than
λAB , in principle could be positive or negative. Equivalently, at the sites of the B
sublattice one has

HintB = −λBAMA − λBBMB (17.17)

When the atoms in the two sublattice are the same, as in the example of the MnF2
crystal, one can set λAB = λBA = λ and λAA = λBB = α. Then, in the presence of
the external field, by extending Eq. (17.7), we write for the magnetization of the A
sublattice

3It should be remarked that only for the bcc crystal one can refer to a model of first n.n. of type A
and second n.n. of type B. This separation would not be possible, for instance, for the fcc crystal
structure, where four sublattices have to be considered.
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MA = 1

2
NμJ BJ

[
μJ HA

kBT

]
, (17.18)

with HA = Hext − λMB − αMA (N is the number of atoms per unit volume).
Analogous expression holds forMB. Since Eq. (17.18) is strictly similar to Eq. (17.7),
the derivation of the susceptibility and of the phase transition for an antiferromagnet
follows the same procedure as for ferromagnets (see Chap. 4). For weak external
magnetic field, one can develop the Brillouin functions for MA and for MB and

MA = C

2T

[
Hext − λMB − αMA

]
, (17.19)

MB = C

2T

[
Hext − λMA − αMB

]
, (17.20)

with C = Nμ2
J/3kB the Curie constant. In the paramagnetic region the internal and

the external fields are parallel and then

χ = MA + MB

Hext
= C

2T Hext

[
2Hext − (λ + α)(MA + MB)

]
= C

T + �
, (17.21)

with� = (C/2)(λ + α)Curie-Weiss temperature. The transition from the disordered
to the ordered state for each sublattice can be expected at a temperature where for
Hext = 0 the homogeneous system of Eqs. (17.19) and (17.20) has non-zero solution
for MA and MB . By setting to zero the determinant of the coefficients for MA and
MB one finds (2T/C) + α = λ and then the Néel temperature turns out4

TN = C

2
(λ − α) (17.22)

and (TN/�) = (λ − α)/(λ + α), showing that when the second n.n. interaction is
neglected TN = �. At T = TN one hasMA = −MB, namely opposite directions of
the sublattice magnetizations arise.

For T < TN the response to the external field Hext can be evaluated in the same
way as for the ferromagnet, by expanding the Brillouin function as for Eq. (17.9). If
the field is applied along the magnetization direction the susceptibility (the response
to a homogeneous field, therefore at q = 0 and at ω = 0, see Sect. 15.3) is obtained
expanding the Brillouin functions in term of the variables

xA = μJ

kBT

[
Hext + λMB − αMA

]
(17.23)

4It can be observed that on increasingα the magnetic moments belonging to a given sublattice tends
to align in the AF configuration and a magnetic structure of more than two sublattices should be
considered.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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and

xB = μJ

kBT

[
−Hext + λMA − αMB

]
, (17.24)

around the value x0 of xA and xB derived for Hext = 0. Thus, one obtains (see
Problem17.1)

χ‖(T ) = Nμ2
J |
dBJ

dx
|x=x0

[
kBT + α + λ

2
Nμ2

J |
dBJ

dx
|x=x0

]−1

, (17.25)

which for T → 0 yields χ‖ = 0. For field perpendicular to the magnetization, for
T < TN , the spin canting mechanism yields an effective magnetization along the
field (Problem17.8) and

χ⊥(T ) = 1

λ
, (17.26)

namely a temperature independent susceptibility directly related to the exchange
coupling (and α-independent) (see Fig. 17.4).

For powder or polycrystalline sample, by averaging over the angle formed by the
sublattice magnetization and the magnetic field, the isotropic susceptibility becomes

χmeas = 1

3
χ‖ + 2

3
χ⊥, (17.27)

so that for T → 0 χmeas → (2/3)χ⊥ (see Fig. 17.4).
In several real cases TN �= �, as it is shown in Table17.1 for some typical

antiferromagnets.

Fig. 17.4 Susceptibility of
S = 5/2 antiferromagnet
with TN = 67K. Below TN
the behaviour of χ for field
parallel and perpendicular to
the sublattice magnetization
is shown, as well as for
powder samples
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Table 17.1 Néel temperature
and Curie-Weiss temperature
for selected antiferromagnetic
compounds

TN (K ) � (K )

MnO 122 610

MnF2 67 80

FeO 198 570

NiO 515 ∼2000

CoO 291 330

FeF2 85 117

It is noted that in antiferromagnets the order parameter for the transition (see
Sect. 15.1) is the sub-lattice magnetization or the amplitude of the staggered magne-
tization, being equivalent to the difference MA − MB of the two sub-lattice magne-
tizations.

In the description of the antiferromagnetic state given above we have assumed
that the two sublattices have the same type of magnetic ions and equal magnetiza-
tions in modulus. When in the sublattices there are different magnetic ions (or there
are non-equivalent sublattices for crystallographic reasons) then a net magnetiza-
tion arises below TN . These type of magnetic compounds, typically the ferrites, are
called ferrimagnets. A representative case is magnetite (Fe3O4), typical example of
semiconducting ferrite family (the majority being insulators) where two types of iron
magnetic ions are present, involving the double exchange process.

A large number of other magnetic structures are known.When nearest neighbours
and next-nearest neighbours exchange couplings are competing helical phases may
appear with an order parameter characterized by a period of modulation of several
lattice steps or which can even be incommensurate.5

We shall only mention a group of systems called spin glasses (while at Sect. 17.5
some attention to the frustratedmagnets and to superparamagnetismwill be devoted).
Spin glasses are crystals in which magnetic ions are diluted in a random way. An
example may be the MnCu alloy, with a few percent of magnetic manganese ions
diluted in the Copper matrix. The interaction among the Mn2+ ions is via RKKY
mechanism (Sect. 17.2). The description of non-interacting magnetic ions (for which
themagnetic properties are essentially the ones of the insulated atoms) has to bemod-
ified since some interaction is significantly active. On the other hand, the localized
magnetic moments do not benefit of the translational invariance adopted for stan-
dardmagnetic configurations. On cooling cooperative freezing of the spin excitations
occurs, leading to a kind of ordered state, with “critical” temperature Tg (the spin-
glass freezing temperature) below which the spins are frozen in random directions.
While < Si > �= 0 still

∑
i < Si >= 0. A suitable order parameter can be written

qEA = 1

N

∑
i

< Si >2
T,J , (17.28)

5For a concise presentation of the many ordered magnetic structures the Chaps. 5 and 8 in the book
by Blundell are suggested.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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which is different from zero for T < Tg (Edward-Anderson order parameter). The
local “critical” variable is first thermally averaged and subsequently averaged over
the distribution of the interactions.

√
qEA becomes an indication of the “frozen”

local moment per lattice site. The occurrence of a real phase transition in the ther-
modynamical sense can be debated. In fact, no long range preferential orientation
occurs and furthermore Tg (as detected for instance by the peak in the susceptibility)
might be found different according to the different time scales of the experiment, as
a result of a wide distribution of correlation times for the local spins. In spin glass
the randomness in the distances implies a distribution of the interaction so that even
the sign of the coupling constant is not defined in a definite way. Thus the so-called
magnetic frustration is present and a single ion cannot take a precise direction with
respect to the ones nearby (see Sect. 17.5). There is not a defined ground state but
rather a large number of different ground states.

17.4 The Excitations in the Ordered States

At zero temperature ferromagnets (FE) or antiferromagnets (AF) are perfectly
ordered and neglecting the quantum, not-thermally driven, fluctuations (see Appen-
dix 17.1) no excitations are present. On increasing temperature the order is somewhat
disrupted bymagnetic excitations, calledmagnons, similar to the phonons in the crys-
tal lattice. A relevant fact is that for isotropic FE or AF even a vanishing thermal
energy is effective in creating excitations. At variance, in the presence of magnetic
anisotropy an energy gap in the excitations is found. Usually FE’s and AF’s differ in
the energy dependence on the wavevector (the dispersion relations, see at Sect. 14.3
for the phonons): for q → 0 the energy of the magnons is parabolic in the wave
vectors for FE’s while it is linear for AF’s.

In the following the magnon excitations in an isotropic FE, in the low temperature
range are described. For high temperature and for the transition from the paramag-
netic to the ordered state it is reminded that the spin dynamics driving the transition
is rather of diffusive character, poorly quantized, as it has been illustrated in general
terms at Chap. 15. A simplified semiclassical approach (resembling the pseudo-spin
dynamics described for order-disorder ferroelectrics) is given in the following, by
referring to a one-dimensional lattice of spins interacting with the nearest neigh-
bours only.

From the Heisenberg HamiltonianH (Eq. 17.5) for ferromagnets the time depen-
dence of the expectation value of a given spin operator is

d < S j >

dt
= 1

i�
< [S j ,H] >

= −2J

i�
< [S j , . . . + S j−1 · S j + S j · S j+1 + . . .] >

= −2J

i�
< [S j ,S j−1 · S j ] + [S j ,S j · S j+1] >

= 2J

�
< S j × (S j−1 + S j+1) > . (17.29)

http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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At low temperatures for the low energy excitations in the transverse components
Sx,y
j � S and by considering the spins as classical vectors, one writes

dSx
j

dt
� 2J S

�
(2Sy

j − Sy
j−1 − Sy

j+1)

dSy
j

dt
� −2J S

�
(2Sx

j − Sx
j−1 − Sx

j+1)

dSz
j

dt
� 0. (17.30)

As discussed at Sect. 14.2, one looks for normal mode solutions, namely Sx
j =

A exp[i(q ja − ωt)] and Sy
j = B exp[i(q ja − ωt)]. Then one derives A = i B

and the dispersion relation for the spin waves turns out

ω(q) = 4J S

�
[1 − cos(qa)], (17.31)

and for q → 0 �ω(q) � 2Ja2q2, as anticipated.
In a way similar to what carried out at Sect. 14.5, the excitations being bosons as

the phonons, the number of magnons at a given temperature is written

nm =
∫ ∞

0

D(ω)

e(�ω/kBT ) − 1
dω. (17.32)

Since the dispersion curve is quadratic in thewave vector as the one for free electrons,
one immediately realizes (see Chap.12) that in three dimensions the density of states
D(ω) ∝ ω1/2 and by setting z = �ω/kBT one rewrites

nm =
(
kBT

�

)3/2 ∫ ∞

0

z1/2

ez − 1
dz ∝ T 3/2. (17.33)

The reduction of the magnetization upon thermal excitation is proportional to the
number of the magnons being excited. Then the Bloch T 3/2 law follows:

M(0) − M(T )

M(0)
∝ T 3/2,

while the thermodynamic energy associated to the spin waves is

U =
∫ ∞

0

�ωD(ω)

e(�ω/kBT ) − 1
dω ∝ T 5/2. (17.34)

Therefore the magnons contribution to the specific heat in a ferromagnet is propor-
tional to T 3/2.

http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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In the schematic plot given below, the temperature behaviour of themagnetization
(in an ideal single domain of a ferromagnetic crystal) is reported in the temperature
range up to the transition to the paramagnetic phase, the critical behaviour in the
vicinity of Tc being deduced as described at Chap.15 or in theMFA as in Eq. (17.10).

It can be remarked that the integral in Eq. (17.32) diverges for lattice dimen-
sionalities d = 2 and d = 1. Therefore, in correspondence to the infinity in the
number of magnons being excited by an infinitesimal increase of temperature the
magnetization is zero at any finite temperature (provided that the magnetic com-
pound is of Heisenberg isotropic character). This observation corresponds to the
Mermin-Wagner-Berezinskii theorem: no long range order is possible for d ≤ 2 in
the presence of continuous symmetry. At variance, for anisotropic systems in d = 2
this is no longer the case (see Problem17.5).

α

β

At this point it is appropriate to remark that the considerations carried out until
now refer to the ideal case of a single magnetic crystal, namely to an ideally infi-
nite array of ordered spins. In reality such a configuration is not stable, the energy
due to the dipolar interaction (disregarded in the above, being much smaller than the
short-range exchange interaction) does not favours such an extended order. Therefore
the magnetic compounds are arranged in mesoscopic regions (domains) each hav-
ing the spin-orientational properties considered until now, but differing each other
in the direction of the spontaneous magnetization. Thus a macroscopic magnetic
compound does not exhibit, in general, a spontaneous magnetization. The complex
domain structure is energetically favourable with respect to an ordered state with
magnetization pointing along the same direction over an infinite range of distances.

The domains are separated each other by the domain walls, regions of the sample
where rapid variations in the direction of the spontaneous magnetization occur. The
width of the domain walls depends on the ratio between the magnetic anisotropy and
the exchange coupling (seeProblem17.6), being progressively reduced for increasing
magnetic anisotropy.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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The domain structure is responsible of the magnetization curve

B = Hext + 4πM

versus Hext in a ferromagnet, the classical loop being associated with the domains
motions, with the possibility of the remnant field B for Hext = 0 when the domains
alignment is locked. We will not discuss these aspects pertaining to macroscopic
magnetism.6

Finally we remind that in regards of the local field at a given site in a mag-
netic compound, all the considerations given at Sect. 16.1 for the electric field can
be transferred to the magnetic field, including in particular the issue related to the
depolarization factors.

17.5 Superparamagnetism and Frustrated Magnetism

If a certain amount of ferromagnetic nano-sized particles (see the figure below) is
diluted in a non-magnetic matrix and the average distance is much larger than the
interaction range, for sufficiently high temperature the compound will behave like
a paramagnet with a “local” magnetic moment resulting from the coupling of many
elementary magnetic moments.

θ

E
ne

rg
y

kBT

0 π

The temperature excitations in superparamagnets are somewhat similar to the
ones already discussed for permanent electric moments in a double well potential
(see sketch above). In particular one can define a relaxation time as in Appendix
15.1, with a barrier E , of the form

τ = τ0e
(E/kBT ) (17.35)

and τ0 is typically of the order of 10−9 s.

6Chapter 33 of the book by Ashcroft and Mermin can be advised in this respect.

http://dx.doi.org/10.1007/978-3-319-17897-4_16
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The slowing down, on cooling, of the reorientational fluctuations of the effective
magneticmoment of the nanoscopic particles implies that belowa certain temperature
Tg (that might depend on the time scale of the experiment) the superparamagnet
appears ordered, with each particles locked into one of the two minima of the local
potential. It should be noted that the barrier E is related to the volume of the particle,
to the magneto-crystalline anisotropy and/or to the shape anisotropy related to the
demagnetization factors.

The difference between spin glasses and superparamagnets is basically in the
range of the interaction. While in superparamagnets the particles are essentially
independent, in the spin glass there are sizeable interaction and the transition to
the quasi-ordered state is a cooperative effect (the transition to the ordered state
being possibly frustrated by the disorder in the positions of the elementary magnetic
moments).

Frustrated spin systems are characterized by a highly degenerate ground state
which prevents to reach a unique state of minimal energy. The frustration is related
to the impossibility in fulfilling, at the same time a given configurational interaction
among different pairs of magnetic moments. There are several sources of possible
frustration in spin systems. The simplest case is when a particular geometry of the
magnetic lattice is responsible for it. The prototype situation of this type is the
triangular lattice, as sketched below:

The coupling is assumed through n.n. Heisenberg-like Hamiltonian, with J neg-
ative: two spins try to arrange anti-parallel to each other and the third remains frus-
trated. Another way to understand the presence of a two-fold degenerate ground-state
is by considering that classically the energy of the triangular spin configuration can
be minimized once adjacent spins form an angle of 2π/3. That condition can be
attained either for positive chirality of the three spins or for negative chirality:
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Fig. 17.5 The Kagomé lattice (top left). On the right the degeneracy arising from the possible
chiralities is evidenced

Another example of frustrated geometry is provided by the Kagomé lattice, char-
acterized by corner sharing triangles arranged in a star-like fashion, as shown in
Fig. 17.5. Starting from a triangle with a given chirality one realizes that the adjacent
triangle can have either positive or negative chirality, yielding a neat macroscopic
degeneracy of the magnetic ground-state, namely frustration.

Among the three-dimensional frustrated systems the one which has recently
attracted more attention is that formed by paramagnetic rare-earth (RE) ions on
a pyrochlore lattice. In this system RE magnetic moments characterized by a large
uniaxial magnetic anisotropy are at the vertices of regular tetrahedra. The anisotropy
usually favours the orientation of the moments along the direction connecting the
vertex with the center of the tetrahedron. In the presence of dipolar interaction among
the RE magnetic moments of the same order of magnitude of the exchange coupling
among nearest neighbour spins the energy of each tetrahedron is minimized if the
ice-rule is obeyed: two spins point inwards and two outwards (see plot).

For each tetrahedron there are 6 different configurations that comply to this rule
and since there are 4 spins per tetrahedron, for the pyrochlore latticewith N tetrahedra
there will be W = (6/4)N degenerate configurations. Accordingly the T → 0
entropy S = kBlnW = NkBln(3/2) arises (see Fig. 17.6). These systems are called
spin-ices since the possible spin configurations inside the tetrahedron are equivalent
to those characterizing the displacement of H+ ions around oxygen in ice. In fact, the
low-temperature entropy of the spin-ice is identical to that calculated in the thirties
by Pauling for ice.
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Owing to the large magnetic anisotropy the Hamiltonian describing the spin-ice
is Ising-like

H = Jef f
∑
i, j

′ σiσ j

with σi = ±1 and Jef f = Jnn+Dnn is an effective exchange coupling including both
n.n. exchange (Jnn) and dipolar (Dnn) couplings. Depending on the ratio between
those two latter quantities the spin-ice or an antiferromagnetic ground-state can be
stabilized.

As already mentioned another possible source for frustration is the disorder of the
magnetic lattice, as in the spin glass systemCu1−xMnx , with dilution of the paramag-
netic ion Mn2+ in the Copper metallic matrix. The RKKY interaction is responsible
for frustration because of the change in the sign with the distance. Accordingly,
for random distribution of Mn2+, a given ion can interact either through ferromag-
netic or antiferromagnetic couplings with its nearest neighbours and these competing
interactions will generate frustration.

Finally frustration may arise from the geometry of the competing interactions. An
emblematic case is represented by the so-called J1 − J2 configuration on a square
lattice, where the nearest neighbour exchange interaction J1 competes with the next-
nearest neighbour exchange interaction J2 provided that the latter one is of antifer-
romagnetic character (as in the sketch below). For J2 → 0 the ground state is the
standard Néel antiferromagnetic order. In the opposite limit J2/J1 → ∞ one can
view the system as formed by two interpenetrating Néel orders which can freely
rotate one with respect to the other by an angle θ suggesting an infinitely degenerate
ground-state.

Fig. 17.6 Temperature
dependence of the magnetic
entropy in Ho2Sn2O7, a
typical spin ice compound
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However, for S = 1/2, at any finite J1 value, the exact solutions of the J1 − J2
Hamiltonian

H = −J1
∑

<i, j>

′ Si · Sj − J2
∑

�i, j�
′ Si · Sj,

the first sum running over all n.n. and the second one over n.n.n. spins, yields a
two-fold degenerate ground-state, characterized by wave-vector q = (π/a, 0) or
q = (0,π/a). The two degenerate ground-states sketched above are separated by
an energy barrier ΔE related to J1, J2 and ξ, the in-plane correlation length (see
Chap.15 and Appendix 17.1). When kBT < ΔE the system collapses in one of the
two ground states through an order-disorder Ising transition analogous to the one
described in ferroelectrics at Chap.16. For |J2/J1| � 0.5 frustrations is so strong
that no magnetic order sets in.

Appendix 17.1 Phase Diagram and Related Effects in 2D
Quantum Heisenberg Antiferromagnets (2DQHAF)

Since the discovery that La2CuO4, the parent of high temperature superconductors
(see Sect. 18.8), is the experimental realization of the model for two-dimensional
(2D) quantum (S = 1/2) Heisenberg antiferromagnet (2DQHAF), a great deal of
interest was triggered towards low-dimensional quantummagnetism. As sketched in
Fig. 17.7, the system we are going to discuss is basically a planar array of S = 1/2
magnetic ions onto a square lattice, in antiferromagnetic interaction and described
by the magnetic Hamiltonian

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_16
http://dx.doi.org/10.1007/978-3-319-17897-4_18
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Fig. 17.7 Sketch of a planar
antiferromagnet with weak
inter-planes interaction J⊥

H = J
∑
i, j

′ Si · Sj, (A.17.1.1)

with J > 0 and summation limited to the nearest neighbors spins.
S = 1/2 characterizes the quantum condition and Heisenberg character means

the absence of single ion anisotropy.
We shall devote our attention to a variety of aspects involving static and dynam-

ical properties of that 2D array: (i) the temperature dependence of the in-plane
magnetic correlation length ξ2D entering in the equal-time correlation function
< Si(0) · Sj(0) >; (ii) the critical spin dynamics driving the system towards the
long-range ordered state (at T = 0 in pure 2DQHAF in the absence of interplanar
interaction J⊥); (iii) the validity of the dynamical scaling, where ξ2D controls the
relaxation rate Γ of the order parameter according to a law of the form Γ ∝ ξ−z

2D ,
with critical exponent z (see Sect. 15.1).

We shall also comment on the modifications induced by spin dilution (or spin
doping) namely when part of the S = 1/2 magnetic ions are substituted by non-
magnetic S = 0 ions, as well as mentioning the effects related to charge doping,
namely the injection (for instance by hetero-valent substitutions) of S = 1/2 holes,
thus creating local singlets which can itinerate onto the plane, locally destroying the
magnetic order and inducing novel spin excitations. These aspects are of particular
interest in the vicinity of the percolation thresholds, where the AF order is about to
be hampered at any finite temperature. This can be considered a situation similar
to a quantum critical point (QCP), where no more the temperature but rather the
Hamiltonian parameters can drive the transition.

In Fig. 17.8 the phase diagram for the system sketched in Fig. 17.7 is shown. This
diagram results from a variety of experimental studies in synergistic interplay with
theoretical descriptions, that will not be recalled in detail.7 We only present it and
define some characteristic parameters.

7For an introduction and an exhaustive review of the studies of the magnetic properties of
2DQHAF’s, see Johnston.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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Fig. 17.8 Phase diagram
reporting the regimes
theoretically proposed for
2DQHAF, as a function of
temperature and of the
parameter g related to the
strength of quantum
fluctuations

ξ

ρ ξ πρ

ρ

ξ

In the Figure g is a dimensionless parameter measuring the strength of quantum
fluctuations and it can be related to spin wave velocity csw and to the spin stiffness
ρs :

g = �csw
√
2π

kBρsa
(A.17.1.2)

(a lattice parameter, see Fig. 17.7). The spin stiffness ρs measures the increase in the
ground state energy for rotation of the magnetization of the two sublattices by an
angle θ (ΔE = ρskBθ2/2). It can be written ρs ∝ (c2sw/χ⊥) χ⊥ being the transverse
spin susceptibility. The parameter g is expected to increase upon doping and disorder.

It has been customary to map the Hamiltonian (A.17.1.1) onto the so-called non-
linear σ model, that for T → 0 is the simplest continuum model with the same
symmetry and the same spectrum of excitations. In this way the diagram in Fig. 17.8
has emerged.

Below a given value gc the ground state, at T = 0, is the Néel AF state, which
extends to finite temperature TN because of the interplane interaction J⊥ � J .

The percolation threshold for the AF state at T = 0 as a function of g is at gc.
For g < gc, upon increasing temperature, above TN , one enters in the renormalized
classical (RC) regime. Here the effect of the quantum fluctuations is to renormalize
ρs and csw with respect to the mean field values for the “classical” 2D Heisenberg
paramagnet. Thus the in-plane correlation length goes as

ξ2D ∝ e2πρs/T . (A.17.1.3)

Weakly damped spin waves exist for wave vectors q ≥ ξ−1 while for longer wave
lengths only diffusive spin excitations of hydrodynamic character are present (see
Sect. 15.4). For T ≥ J/2 � 2ρs instead of entering into the classical limit (that
would be reached for T � J ) the planar QHAF should cross to the quantum critical
(QC) regime. In this phase, typical of 2D and 1D quantum magnetic systems, the

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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only energy scale is set by temperature and ξ ∝ J/T . On increasing g, according to
proposals still under debate (in the scenario of quantum phase transitions theories)
the increase in quantum fluctuations can inhibit an ordered state even at T = 0. The
system is then in the quantum disordered (QD) regime, the correlation length being
short and temperature independent. In the spectrum of spin excitations a gap of the
order of hcsw/ξ2D opens up.

The somewhat speculative phase diagram illustrated in Fig. 17.8 is still debated.
In particular the validity of the non-linear σ model is not entirely accepted for large
T and/or for large g regions. Furthermore, there is not clear evidence of crossovers
from RC to QC or to QD regimes. Also the real nature of the low-energy excitations
remains an open question. The cluster-spin-glass (SG) phase is the one for g > gc in
which the experiments indicate the presence ofmesoscopic “islands” of AF character
separated by domains walls, with effective magnetic moments undergoing collective
spin freezing, without long range order even at temperature close to zero.

Above a certain amount of charge doping (e.g. hole injection as in La2−ySryCuO4,
see Sect. 18.8), as discovered byMüller and Bednorz, the systems become supercon-
ductors (SC phase), with the so-called underdoped and overdoped regimes charac-
terized by a transition temperatures Tc < Tmax (the one pertaining to the optimal
doping).

In SC underdoped phases a gap in the spin excitations at the AF wave vector
qAF = (π/a,π/a) has been experimentally observed to arise at a given temperature.
The spin-gap (and charge pseudo-gap) region has possibly to be related to supercon-
ducting fluctuations (see Sect. 18.11) of “anomalous” character or to AF fluctuations
locally creating a “tendency” towards a mesoscopic Mott insulator. Exotic excita-
tions of various nature have been considered to occur in the regions of high g’s. We
shall not go into detail involving these aspects, which are still under debate and less
settled than the ones for low g, namely for the doped non-superconducting 2DQHAF.

Summarizing conclusions that can be drawn from the studies in pure 2DQHAF are
the following: (i) the absolute value and the temperature dependence of the in-plane
magnetic correlation length follows rather well the theoretical expression given by
A.17.1.3; (ii) in La2CuO4 and in similar 2DQHAF the RC regime appears to hold,
up to temperature of the order of 1.5 J ; (iii) no evidence of crossover to QC or QD
regimes has been clearly observed.

Some more quantitative comments can be given about the effect of spin dilution.
As alreadymentioned, in La2CuO4 spin dilution is obtained by S = 0Zn2+ (orMg2+)
for S = 1/2 Cu2+ substitutions. While in La2−ySryCuO4 the Néel temperature drops
very fast with the Sr content, analogous effect but at much lower rate, is driven by
the spin dilution (see Fig. 17.9).

In the limit of weak doping, the dilution model should hold. The dilution model
modifies the Hamiltonian A.17.1.1 simply by considering the probability that a given
site is spin-empty:

H = J
∑
i, j

′ piSi · p jSj = J (0)(1 − x)2
∑
i, j

′ Si · Sj. (A.17.1.4)

http://dx.doi.org/10.1007/978-3-319-17897-4_18
http://dx.doi.org/10.1007/978-3-319-17897-4_18
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Fig. 17.9 Doping
dependence of the Néel
temperature in diluted
2DQHAF
(La2Cu1−x (Zn,Mg)xO4)
and in hole-doped 2DQHAF
(La2−xSrxCuO4), from a
variety of measurements

μ

μ

μ

Then the spin stiffness should depend on doping according to ρs(x) = ρs(0)(1−x)2,
the correlation length becoming (see Eq.A.17.1.4)

ξ2D(x, T ) � ξ2D(0, T )e−(2−x)x1.15J (0)/T .

An indication for the value of the correlation length at TN can be obtained from the
mean field argument:

ξ22D(x, TN )J⊥(x) = TN (x)

Then for the correlation length one can write

ξ2D(x, TN ) � ξ2D(0, TN )
(1 − 4x)1/2

1 − x

In Fig. 17.10 the doping dependence of the spin stiffness8 is compared with the
prediction of the dilution model. As it could be expected, the dilution model is
reasonably well obeyed for light doping while for x amount of the non-magnetic
ions larger than about 0.1 it evidently fails.

It should be remarked that although in the strong dilution regime the reduction of
the spin stiffness dramatically departs from the one predicted by the dilution model,
still the transition to the AF state occurs when the correlation length reaches an
in-plane value around 150 lattice steps, as in pure or lightly doped systems.

Another quantity of interest for the quantum effects in disordered 2DHQAF is
the zero-temperature staggered magnetic moment < μ(x, T → 0) > along the local
quantization axis, in other words the dependence of the sub-lattice magnetization on
spin dilution. The staggeredmagneticmoment is different from the classical S = 1/2
value because of the quantum fluctuations, which in turn are expected to increase
with spin dilution. The quantity

8Derived also from measurements of NQR relaxation rates, that we shall not report.
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Fig. 17.10 Spin stiffness
ρs(x) in spin diluted
La2CuO4 and comparison
with the dependence
expected within the dilution
model

ρ

ρ
ρ

R(x, T = 0) = < μ(x, 0) >

< μ(0, 0) >

has been obtained to a good accuracy from the magnetic perturbation due to the local
hyperfine field on 139La NQR spectra, from μSR precessional frequencies and from
neutron scattering also close to the percolation threshold of Zn-Mg doped La2CuO4

(see Fig. 17.11).
While the classical doping dependence (for S → ∞) as well as the one predicted

by the quantum non-linear σ model are not supported by the experimental findings,
the data indicate a doping dependence of the form R = (xc − x)β , with critical
exponent β = 0.45, close to the behaviour deduced from spin wave theory.

Fig. 17.11 The zero
temperature normalized
sublattice magnetization in
spin diluted La2CuO4.
Comparison with spin-wave
theory (SWT), Quantum
Monte Carlo (QMC) and
classical spin (S → ∞)
theoretical behaviour is
presented

μ
μ

β

μ
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Fig. 17.12 Temperature
dependence of the sublattice
magnetization in spin diluted
La2CuO4

μ
μ

β

As regards the temperature dependence of R, it appears that both in the light
doping regime as well as for strong dilution a universal law of the form

R(x = const, T ) ∝ [TN (x) − T ]β

holds, with a small critical exponent β that appears to be around 0.2 for light doping
while on approaching the percolation it increases to 0.3 (Fig. 17.12).

Details and further experimental data can be found in the article by Rigamonti,
Carretta and Papinutto in Novel NMR and EPR Techniques, J. Dolinsek, M. Vilfan
and S. Zumer (Eds.) Springer (2006).

Appendix 17.2 Remarks on Scaling and Universality

An example of scaling and universality is offered by the equation of state of real
gases.As it is known fromelementary physics, all the fluids obey to the same equation
of state once that the thermodynamic variables, pressure (P), temperature (T ) and
volume (V ), are scaled in terms of the correspondent critical variables Pc and Tc (see
Sect. 15.1). The Van der Waals equation takes a universal form, independent on the
microscopic parameters that control pressure and volume:

P = f (T,V),

with P = P/Pc, T = T/Tc (and V = V/Vc, the volume being the inverse density).
The law of the correspondent states can be considered an example of universality in
the thermodynamic relationships.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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It is conceivable that also at the phase transitions of the second order, when
on approaching the critical temperature the correlation length tends to infinity, the
thermodynamic behaviour becomes independent on the detailed parameters of the
short range interaction. Then some kind of universal laws can bewritten, disregarding
irrelevant terms and/or variables. This is also the root of the so-called renormalization
group theory (RG) which has been devised by Wilson in order to determine the
partition function or the critical exponents very close to Tc by means of recursion
relations.

To give some remarks about the property of scale invariance and an example of
class of universality of the thermodynamic potentials, let us return to the free energy
for homogeneous system (Eq.15.19):

f [m, T ] = f0(T ) + a0(T − Tc)m
2 + 1

2
b0m

4 + · · · (A.17.2.1)

From h = (∂ f/∂m)T the equation of state involving the field h and themagnetization
m around the transition is written

h = 2a0Tcεm + 2b0m
3, (A.17.2.2)

with ε = (T − Tc)/Tc, namely in the form

h = q

[
2

(
m

p

)
+ 4

(
m

p

)3
]

, (A.17.2.3)

having defined new factors p = (2a0Tcε/b0)1/2 and q = (a0Tcε)3/2/(b0/2)1/2.
From Eq. (A.17.2.3) it is noted that

(
m

p

)
= g±(h/q) (A.17.2.4)

where g± is universal function (g− corresponding to ε < 0, g+ to ε > 0), namely
the same function for any system (provided with the same symmetry properties). In
other words, when the magnetization is scaled by ε1/2 it is no more a function of
temperature and field separately but it becomes a function only of the ratio h/ε3/2.
Then the equation of state A.17.2.3 involves a single independent variable instead
of two, ε and h. In a similar way it is possible to rewrite the free energy A.17.2.1
in terms of (h/q) and (m/p) to get a universal function, with f [m, T ] scaled by
pq ∝ ε2 in terms of the variable (h/ε3/2).

The possibility to rescale the independent variables of a function in a way to
decrease their number is a characteristic of the homogeneous functions. By following
a conjecture by Widom we reformulate the scaling properties sketched above by
writing the equation of state in the form

h = mψ(ε,m1/β) (A.17.2.5)

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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where ψ is homogeneous function of degree γ, meaning ψ(λx,λy) = λγψ(x, y).
Therefore, if one knows the value of the function at the point x0, y0 and the degree of
homogeneity γ as well, then the function is known everywhere. This is the condition
of scale invariance analogous to the one described by the equation of correspondent
states: the equation of state does not change (it has the same functional form) when
the thermodynamic variables are scaled by any given quantity λ to a certain expo-
nent. Thus, Eq.A.17.2.5 indeed takes universal form, being invariant under the scale
transformations

ε → λε, m → λ1/βm and h → λγ+1/βh.

In this way the critical behaviour appears to be controlled by two parameters only,
β and γ. Again in analogy to the law of correspondent states, according to the
scaling hypothesis (which has been supported by more advanced theories as the
renormalization group, by solutions of exactmodels and particularly by experiments)
one can speculate that for a certain class of materials (for instance having the same
dimensionality D of the lattice and d of the order parameter, see Sect. 17.1) universal
behaviour occurs, with a minimum number of free parameters. In particular, all the
critical exponents should be related to the two, β and γ, defined above.

Now we are going to show that β and γ indeed are critical exponents, namely the
same phenomenological exponents introduced at Sect. 15.1 and already derived in the
MFA scenarios for ferroelectrics and for magnetic systems. In fact, the spontaneous
magnetization ms is solution of the implicit equation

h(ε,ms) = 0

(return for similarities at Sect. 16.4 andEqs. (17.6)–(17.10)).Then fromEq. (A.17.2.5)
we set

ψ(ε,m1/β
s ) = 0

ψ being homogeneous, i.e. ψ(ε,m1/β) = λ−γψ(λε,λm1/β), so that ψ(λε,λm1/β)

= 0. The solution being a function of ε only, one can write

m1/β
s = g(ε)

and in analogous way for the scaled equation λm1/β
s = g(λε). Therefore g must be

homogeneous of degree 1 and thus

ms ∝ (ε)β .

Analogous demonstration can be carried out for the critical exponent γ, that controls
the temperature dependence of the isothermal susceptibility for evanescent field.
From Eqs.A.17.2.3 and A.17.2.5, the derivative of h with respect to m yields the
inverse of the susceptibility:

http://dx.doi.org/10.1007/978-3-319-17897-4_17
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_16
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χ−1(h → 0) =
(

∂h

∂m

)
T

=
[
ψ(ε,m1/β) + m

(
∂ψ(ε,m1/β)

∂m

)]
h→0

(A.17.2.6)

For T > Tc m = 0 and then

χ−1(h → 0) = ψ(ε, 0) = λ−γψ(λε, 0).

By setting the scaling factor λ = ε−1 one derives

χ−1(h → 0) = εγψ(1, 0)

and since ψ(1, 0) is temperature-independent, γ is the critical exponent for χ.
Below Tc it can be proved, by starting from Eq. (A.17.2.6), that the same critical

exponent controls the temperature dependence of χ for T → T−
c .

A comprehensive presentation of the scaling theory and of the related conse-
quences on the critical behaviour at the phase transitions (in particular in regards of
the relationships among the various critical exponents) can be found in the book by
Stanley.

Problems

Problem 17.1 Derive Eq. (17.25).

Solution: The expansion of the Brillouin function in the mean field approximation
reads

MA = NμJ

2

[
BJ (x0) + μJ

kBT

(
Hext + λ(MB − M0) − α(MA − M0)

)
|dBJ

dx
|x0

]

and in analogous way

MB = NμJ

2

[
BJ (x0) + μJ

kBT

(
−Hext + λ(MA − M0) − α(MB − M0)

)
|dBJ

dx
|x0

]

with M0 the magnetization in zero field. Being the magnetization M = (MA − MB),
the susceptibility (M/Hext ) turns out as in Eq. (17.25).

Problem 17.2 By means of quantum mechanical procedure re-derive Eq. (17.31).

Solution: The ground state of a ferromagnet consists of all the spins (S = 1/2) along
the z-direction and the Heisenberg Hamiltonian reads

H = −2J
∑
i

[
Siz S

i+1
z + 1

2

(
Si+S

i+1
− + Si−S

i+1
+

)]
.
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The eigenvalue for the ground state is−NS2 J .When an excitation arises a given spin
at the site j is flipped and as a consequence the total spin of the system is changed
by 1/2 − (−1/2) = 1. By applying the Hamiltonian one has

H| j >= 2

[
(−NS2 J + 2SJ )| j > −SJ | j + 1 > −SJ | j − 1 >

]
,

showing that it is not an eigenstate.
The Hamiltonian can be diagonalized by looking for plane wave solutions

|p >= 1√
N

∑
j

| j > eiq·R j

the total spin of the state |p > being (NS − 1). Thus H|p >= E(p)|p > with
E(p) = −2NS2 J + 4J S[1 − cos(qa)], implying energy of the excitation as in
Eq. (17.31).

The present treatment follows the one by Blundell. A comprehensive description
of the spin waves in terms of response to the time-dependent and space-dependent
external field can be found at Chap.6 of the book by White.

Problem 17.3 Derive the q-dependent static magnetic susceptibility χ(q, 0) for
delocalized, non-interacting electrons (the Fermi gas) in lattice dimensions D = 3, 2
and 1. In this latter case comment how the divergence of χ(q, 0) at q = 2kF implies
a spin density wave instability (Kohn anomaly).

Solution: χ(q, 0) is the response function to a static spatially varying magnetic field
yielding a perturbationHP = gμBS ·Hcos(q · r). Since the eigenstates of the Fermi
gas Hamiltonian are |k >= exp(ik · r), one immediately realizes that for any q �= 0
HP does not give any first order correction. In fact, the cosine term yields non-zero
matrix elements of the form < k|HP |k ± q >, connecting an initial state |k > with
a final state |k ± q >. Then, from second order perturbation theory, by weighting
for the probability that the initial state is occupied with Fermi-Dirac distribution
function fk and that the final state must be empty, one derives

ΔE = −μ2
BH

2

2

∑
k

[
fk(1 − fk+q)

Ek+q − Ek
+ fk(1 − fk−q)

Ek−q − Ek

]
,

with Ek the free-electron dispersion curve. Since the sum runs over all |k > states it
is possible to replace kwith k+q in the second term and taking the second derivative
of the energy with respect to the magnetic field one derives

χ(q, 0) = μ2
B

∑
k

fk − fk+q

Ek+q − Ek



Appendix 17.2 Remarks on Scaling and Universality 535

(for the derivation of Eq. (17.13) see the book by White). The sum depends on the
lattice dimensionality. The above equation shows that one should expect a large
contribution to χ(q, 0) at those wave-vectors q connecting a large number of initial
filled states with quasi-degenerate empty final states. This happens if q connects
large portions of the Fermi surface or, in other terms, if q is a nesting wave-vector.
In particular, this occurs in quasi-1D systems for q = 2kF , where a divergence is
present, as shown below.

χ

μ

Problem 17.4 Starting from the Hubbard Hamiltonian (Eq.17.3) show that for half-
filled band in the U � t limit one derives an effective antiferromagnetic exchange
coupling as in Eq. (17.4).

Solution: For U � t the hopping term Ht of the Hamiltonian in Eq. (17.3) is a
perturbation of the term HU involving U . The energies of the triplet and singlet
configurations for two electrons on neighbouring sites i and j are

|S = 1, MS = 1 >= | +i + j >, |1,−1 >= | −i − j >,

|1, 0 >= 1√
2

(
| +i − j > +| −i + j >

)

and

|0, 0 >= 1√
2

(
| +i − j > −| −i + j >

)
.

These four states are characterized by single occupancy and are eigenstates of HU

with eigenvalue E0
n = 0. Now consider the effect of Ht on these four states. Since

the electron hopping driven by Ht leads to double occupancy it will generate states
orthogonal to these four states and no first order correction. At the second order, i.e.

ΔE (2)
n =

∑
m �=n

| < m|Ht |n > |2
E0
n − E0

m

,

Ht applied to |1,±1 > triplet states yields zero correction since it would lead to
double occupancy of a given site with same spin orientation. On the other hand

Ht | +i − j >= t (| +i −i > +| + j − j >),while
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Ht | −i + j >= −t (| +i −i > +| + j − j >),

where the change of sign is associatedwith the different order of the spin orientations.
By taking into account of the sign reversal one realizes that < m|Ht |1, 0 >= 0,
thus none of the triplet states show second order correction. For the singlet |0, 0 >

state one has

Ht |0, 0 >= 2t√
2
(| +i −i > +| + j − j >).

Since the doubly occupied states in parentheses are eigenstates ofHU with eigenvalue
U it turns out

ΔE (2)
|0,0> = | < +i −i |Ht |0, 0 > |2

0 −U
+ | < + j − j |Ht |0, 0 > |2

0 −U
= −4|t |2

U
,

showing that the energy of the singlet state is lowered by 4|t |2/U with respect to the
one of the triplet state. So, for U � t Eq. (17.4) holds.

Problem 17.5 From the dispersion curve for the magnons in isotropic (Heisen-
berg) ferromagnet (Eq.17.31) show that no magnetic order can be present in two-
dimensions (2D), while in the presence of single ion anisotropy magnetic order can
exist.

Solution: From Eq. (17.32) the number of magnons excited at a given temperature
is given by

nm =
∫ ∞

0

D(ω)

e�ω/kBT − 1
dω,

with D(ω) the density of states. The dispersion relation for a ferromagnet in the
q → 0 limit is quadratic in q, in 2D D(ω) is constant. Hence

nm ∝ kBT

�

∫ ∞

0

1

ex − 1
dx

with x = �ω/kBT . For x → 0 the integrand is 1/x , giving rise to a logarithmic
divergence in the number of excited magnons and then to the disruption of the
magnetization. On the other hand, if anisotropy is present there will be a minimum
energy cost in exciting a spin wave and an energy gap Δ in the dispersion curve
arises. Then the previous equation can be written

nm ∝ kBT

�

∫ ∞

Δ/kBT

1

ex − 1
dx,

the logarithmic divergence is truncated and a magnetic order can set in.

Problem 17.6 Consider a domain wall in a ferromagnet and show that the size is
related to the magnetic anisotropy and to the exchange coupling.
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Solution: Consider a π rotation of the magnetic moments across the domain wall.
Then, for a domainwall of N lattice steps, with N � 1, the cost in exchange energy is

Eexc = N J S(S + 1)

(
π

N

)2

.

The cost for the anisotropy energy is given by Ean = KanN , with Kan a phenom-
enological constant accounting for the magnetic anisotropy. From the derivative of
Eexc + Ean with respect to N one derives

N =
(

π2 J S(S + 1)

Kan

)2

.

Thus the thickness of the domain wall increases with J and decreases with the
magnetic anisotropy.

Problem 17.7 For a one-dimensional antiferromagnet with elastic coupling among
the nearest neighbour magnetic ions, show that the spatial dependence of the
exchange coupling favours a lattice distortion.

Solution: By including in the Heisenberg Hamiltonian an elastic coupling character-
ized by a constant kel , for small displacements from the equilibrium configuration,
the energy variation for a pair of adjacent spins turns out

ΔE = 1

2
kelΔx2 −

(
∂ J

∂x

)
0

S(S + 1)Δx .

ΔE is minimized for

Δx =

(
∂ J
∂x

)
0

S(S + 1)

kel
,

namely for any finite change of the exchange coupling with the distance. In quasi-
one-dimensional antiferromagnets (e.g.CuGeO3) a structural dimerization is present
at the so-called Spin-Peierls transition.

Problem 17.8 Show that in antiferromagnet the static uniform susceptibility for
magnetic field perpendicular to the sublattice magnetization is given by Eq. (17.26).
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Solution: The magnetic field yields the canting of the sublattice magnetizations as
shown below (return to Fig. 17.4):

θ
θ
θ

One writes the energy as

E = λMA · MB + αMB · MB + αMA · MA − Hext · (MA + MB)

with λ,α > 0. For small θ values, by indicating with M the absolute value of the
sublattice magnetizations, one has

E = −λM2

[
1 − 1

2
(2θ)2

]
+ 2αM2 − 2MHextθ,

which is minimized for θ = Hext/(2λM), α-independent. The transverse suscepti-
bility is χ⊥ = Mef f /Hext = 2Mθ/Hext and Eq. (17.26) follows.
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Chapter 18
Superconductors, the Superconductive
Phase Transition and Fluctuations

Topics

Phenomenology and Main Experimental Aspects
Cooper Pairs
Special Meaning of the Superconductive Wave Function
Meissner Effect and London Penetration Length
Flux Quantization in Rings
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High Temperature Superconductors
Ginzburg-Landau Theory
Flux Lines
Superconductive Transition, Fluctuations and Diamagnetic Effects
Nanoparticles, Zero-Dimensional Condition and Critical Region

18.1 Historical Overview and Phenomenological Aspects

In the following the main steps in the study of the superconductive state along the
twentieth century are schematically collected.

The first detection of the sudden drop to zero-resistance on cooling Mercury1

to about 4K goes back to Kamerlingh-Onnes, in 1911. A few years later the

1The use of Hg, a liquid metal at room temperature, was related to the possibility to perform a
series of distillation processes at relatively low temperature, since at that time a role of the impu-
rities in levelling to a finite value the resistivity in metals at very low temperatures was suspected.
Kamerlingh-Onnes first claimed that the drop to zero of the resistance supported his point of view,
that without the impurities the resistance had to tend to zero on cooling towards zero temperature.
Then he corrected himself, observing that in reality a new state, that he called superconductivity,
was induced on crossing the critical temperature of about 4.2K.
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superconductivity was found in other metals (Sn at the temperature Tc = 3.2K,
Pb at Tc = 7.2K and Nb at Tc = 9.1K). In 1933 the Meissner effect (repulsion of
a magnetic field from the sample on crossing the superconducting transition tem-
perature Tc), was discovered. While Tc was found to increase up to about 20K in
intermetallic alloys,2 the London brothers (1935) were able to formulate a first quan-
titative description of the properties of the superconducting state. For reasons to be
pointed out subsequently, the London theory, based on the existence of superfluid
electrons, had substantial successes in spite of the fact that no quantum mechanics
was used and no knowledge of the pairing mechanism was at hand.

The first steps towards the microscopic theory of superconductivity, around the
years 1950, can be attributed to Frölich, for the observation of the isotope effect
(namely the modification of Tc upon isotopic substitution) and to Cooper, for the
concept of novel pseudo-particles, the Cooper pairs, resulting from the pairing in the
singlet state (S = 0) of two electrons. Meantime a powerful semi-phenomenological
theory was developed by Ginzburg and Landau, theory which later on turned out to
have deep microscopic roots. At the same time, that approach allowed Abrikosov to
formulate a predictive theory on the existence of a novel type of superconductivity,
namely the type II superconductors, implying high critical fields and critical currents.

In 1955 Bardeen, Cooper and Schriffer published the famous BCS theory, a
comprehensive quantum-mechanical description of the superconducting state. In the
early sixties Josephson predicted the possibility that the Cooper pairs could jump

2The increase of the superconducting temperature and of the critical fields and critical currents in
the alloys is related to the reduction of the coherence length accompanying the decrease of the mean
free path of the electrons. The alloying process transforms the metallic superconductors from first-
type to second type (Sects. 18.7 and 18.9).
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across an insulating layer, thus extending the superconductivity to a system known as
Josephson junction, extremely sensitive tomagnetic field. That discovery initiated the
field of the superconductive electronics and of a variety of electromagnetic devices
with extraordinary properties.

Meantime the critical temperature Tc, evidently a crucial parameter for the appli-
cations, was increasing to a slow rate (see sketch above): up to about 1980 the record
was around 23K, for Nb-based alloys. An unexpected and sudden jump in Tc hap-
pened in 1986, when Bednorz and Muller discovered the superconductivity in some
Lanthanum-Barium Copper oxides (nowadays the family is known as cuprates, or
high temperature superconductors, HTcSC) that not only were poorly conducting at
room temperature but also included a magnetic ion (Cu2+, at S = 1/2), a feature that
was previously thought to be detrimental for superconductivity. With proper substi-
tution of some atoms (thus increasing the internal chemical pressure) just one year
later Chu was able to overcome the liquid nitrogen temperature with the Yttrium-
Barium-Copper oxide (nowadays known with the acronyms YBCO). In other Hg
based cuprates the transition temperature can be increased up to 164K, under a pres-
sure of about 30GPa. Other compounds that can be considered HTcSC are MgB2

(Tc = 39K, where on the other hand the pairing mechanism basically is of the form
of the conventional BCS scenario) or the Fe-based superconductors (discovered in
2008) which, similarly to the cuprates, are characterized by a layered structure and
where the pairing mechanism is still under debate (as substantially it remains for the
cuprate family as well).

It is remarkable that several crystals with a poor room temperature conductivity
do attain the superconducting state while very good conductors, such as Cu, Au or Ag
(as well as the magnetic metals Fe or Ni) do not exhibit superconducting transition
down to very low temperature.

The most striking phenomenological aspect of the transition from the ordinary
to the superconducting state probably is the sudden drop to zero3 of the resistivity.
In reality other dramatic phenomena occur around Tc, for instance the anomalous
behaviour of the electronic contribution to the specific heat (see Sect. 12.7) as shown
in Fig. 18.1. It should be remarked that in the temperature range involved in this
figure the contribution to the specific heat from lattice vibrations (see Sect. 14.5) can
be neglected.

The superconducting transition (which in the absence of external magnetic field
is a second order one, with no latent heat, see Sects. 15.1 and 15.2) implies the
crossover to a more ordered state. The behaviour of the specific heat below Tc is
typical of electronic systems with gap (see Sect. 12.7.2):

3The resistance does actually drop to zero, provided that competing processes like flux flow of the
vortices are properly avoided. From precise measures by means of NMR spectra (see Sect. 6.3) of
the magnetic field due to superconducting current launched in a solenoid, it can be proved that no
appreciable variation would occur at least for a period of about 105 years. However the resistance
is not zero for alternate current and in the presence of external magnetic field.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Fig. 18.1 Sketchy
behaviour of the specific heat
in the superconducting state
of Aluminium

Fig. 18.2 Sketchy
behaviour of the temperature
dependence of the critical
field in Lead, approximately
of the form
Hc(T) = Hc(0)[1− (T/Tc)

2]

Cp ∝ exp[−Δ/kBT ],

with Δ turning out numerically around kBTc.
It is noted that a magnetic field can suppress the superconductivity (as indicated in

Fig. 18.1, straight line). Analogous effect has an electric current, the critical current
(in classical metals of the order of some hundreds of Amp per square mm, evidently
by amechanism similar to the one related to the external magnetic field).4 A sketch of
the temperature behaviour of the magnetic critical field for lead is given in Fig. 18.2.

4The maximum current in a wire can be related to the critical field. Approximately one has Imax �
5RHc, in Amp., the radius R of the wire being in cm and Hc in Oe.
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The superconducting state is preserved in the presence of electromagnetic radi-
ation, provided that the frequency is below a certain threshold. The response to the
electromagnetic radiation involves the frequency dependence of the conductivity,
which in turns controls, for instance, the reflection from a bulk sample or the trans-
mission through thin films of the superconductor. Therefore, when an energy gap Δ

in the electronic excitation spectrum opens up below Tc, the high frequency conduc-
tivity becomes remarkably different from the one in the normal state: no electronic
absorption is observed, provided that �ω ≤ Δ. On the contrary, above this threshold
the behaviour of the conductivity is the one for the normal state.

For temperature well below Tc the threshold value of the electromagnetic fre-
quency turns out of the order of kBTc/� ∼ 1012 rad s−1, in the range of microwave
or far infrared frequencies. At the optical frequencies the behaviour of the supercon-
ductor becomes the same as in the normal state.

The interplay of superconductivity with associated total conductivity in regards
of the magnetic response, in particular the perfect diamagnetism, is worthy of further
comment.

Let us refer to an ideal metal that becomes a perfect conductor below a given
temperature, in the absence of any external field Hext . Below that temperature the
magnetic field is applied: inside the material B stays zero, since the induced currents
cause a field that according to the Lenz law is against the one applied. Therefore
one has total screening. One could think that the total diamagnetism, the Meissner
effect, could just be due to the occurrence of zero resistivity ρ. In fact in this case the
electric field E is necessarily zero (to avoid the catastrophic increase in the electron
velocity in view of the relation E = ρj, for finite current density j). Then, from5

rotE = −1

c

∂B
∂t

, (18.1)

one infers that the magnetic field B inside the sample cannot change. Therefore in a
perfect conductor at zero electric resistance below the so-defined Tc the application
of an external field cannot induce B �= 0. However, since B inside the sample cannot
change in a perfect conductor one could have two possible states6 below Tc: one at

5This equation has to be takenwith a certain care since in its general form it is valid only in stationary
condition, while a variation of the magnetic field launches a transitory current. On the other hand
the currents launched in the transient circulate in a narrow outer sheet of the material and the electric
field in the bulk has to be considered zero.
6Thus in the condition of total conductivity only, one would not have a single thermodynamic
state and the equilibrium thermodynamics could not be applied. This is another relevant difference
between the total conductor and the superconductor. In the superconductor the magnetic field is
anyway repelled, irrespective of the order of the operations, cooling in themagnetic field or applying
the field below Tc (the field to be considered is smaller than the critical field).
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B = 0 and the second at B �= 0, according to the order of the cooling process and of
the field application, as schematically described below:

≠≠

≠≠

≠

≠

(a)

(b)

(c)

Therefore the superconductor auto-generates the currents exactly of the strength
required in order to expel the fieldHext , either on crossingTc on cooling or by applying
the field below Tc.

Since B = μHext = [1 + 4πχ]Hext , the B = 0 condition implies

χ = − 1

4π
, (18.2)

and the superconductor can be defined as a superdiamagnet, with the maximum
diamagnetic susceptibility7 χ and no dependence from the magnetic history. It is
reminded that according to the derivations atChaps. 4 and 13, the volumediamagnetic
susceptibility in ordinary insulating or metallic compounds is around 10−6, a factor
105 smaller than in the superconducting state. The electromagnetic properties of the
superconductor can be derived in the framework of phenomenological descriptions
based on the equilibrium thermodynamics, as carried out by Heinz and Fritz London.
The London equations (to be discussed a t Sect. 18.3) seemed to indicate that all the

7Such a strong value of the diamagnetic susceptibility makes possible the phenomenon of the
diamagnetic levitation of large masses. It can be remarked since now that for strongly type II
superconductors, as the HTcSC cuprates, a similar impressive phenomenon is the diamagnetic
suspension: the superconductor follows a magnet lifted up, thus appearing magically suspended.

http://dx.doi.org/10.1007/978-3-319-17897-4_4
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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current carriers (in 1935 they were thought the superconducting electrons) should
be found in the same macroscopic quantum state, evidently in contrast with the
distribution (Sect. 12.7.1) expected according to the Fermi-Dirac statistics.

18.2 Microscopic Properties of the Superconducting State

As recalled in the historical overview, significant progresses towards the
understanding of the microscopic properties of the conventional superconductors
(metals and alloys) go back to the early 1950. The discovery of the isotope effect
(emphasizing the role of lattice vibrations) and the understanding of the pairing
mechanisms between two electrons (for which the electron-phonon interaction acts
as glue for the Cooper pseudo-particles) paved the way to the BCS theory, that
can be considered one of the most impressive solutions of many-body problems
in condensed matter. Being more interested to the aspects of the superconducting
phase transition in terms of the Landau-type statistical description, we shall not go
into the details of the BCS theory, for which one could read, among the many texts
dealingwith solid state theory, the comprehensive treatments achieved byGrosso and
Pastori Parravicini or by Annett. Rather we shall first (Sect. 18.2.1) clarify how two
electrons can pair in a singlet state as a consequence of an arbitrarily weak attractive
interaction related to the polarization of the lattice (the second electron “follows”
the first one through the polarization tail that this latter leaves in the positive ions
of the crystal8). Then in the state of correlated electrons each Cooper pair has the
momentum of any other, irrespective of the momenta �k of the individual electrons.
This pair, at total crystal momentum k = 0 and total spin S = 0, then a boson, is
the key to overcome the problem of the Pauli principle, since it grants the possibil-
ity of condensation in a common state, the BCS state. Then (Sect. 18.2.2) the main
properties of this state shall be recalled. Finally the meaning of the wave function
of all the Cooper pairs and the related physical consequences will be emphasized
(Sect. 18.2.3).

18.2.1 The Cooper Pair

Let us consider the Bloch-type wave function of two independent electrons (see
Chap.12)

φ(k1,k2) = φ(k1)φ(k2), (18.3)

8One could observe that an electron, after having caused a local shrinking of the positive lattice,
leaves the place at a speed of the order of the Fermi velocity while the distortion evaporates in much
longer times, the process involving the sound velocity.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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neglecting for the moment the spin part. After a scattering process involving a quan-
tum vibrational excitation according to the sketch below

the wave function becomes φ(k1
′)φ(k2

′) and the total momentum b is conserved:

k1
′ + k2

′ = k1 + k2 = b.

The energies E and E′ of the initial and final states cannot differ more than by
the typical phonon energy �ωD, ωD being the Debye frequency (see Sect. 14.3.3).
Furthermore the available states must be around the Fermi level EF , namely must
have k � kF . On the other hand, from Ek = �

2k2/2m, it turns out that the change in
energy implies a change in momentum of about

δk = |k1 − k1
′| � mωD

�kF
� kF . (18.4)

As sketched in Fig. 18.3 the number of electrons satisfying the above conditions
is maximized when b = 0. Therefore the best situation to decrease the energy occurs
when

k2 = −k1 so that b = 0.

Thus one can write the two-particles wave function as

ψ(r1 − r2) ≡ ψ(r) = 1

Vcrystal
exp[ik · (r1 − r2)].

Fig. 18.3 The volume
measuring the states
available is about
V = 2πkFsinθ(δk)2,
maximized when b = 0, in
this case becoming
V = 4πk2Fδk

δ

δ

θ

http://dx.doi.org/10.1007/978-3-319-17897-4_14
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For the Schrodinger equation

[
− �

2

2m
(∇2

1 + ∇2
2 ) + V(r1 − r2)

]
ψ(r) = (2EF + ε)ψ(r) (18.5)

and by expanding the wavefunction in the k-space in the form ψ(r) = ∑
k gkexp(ik ·

r), from Eq. (18.5) it can be shown (see Problem18.2) that the pair is bounded, i.e.
ε < 0, the new state thus having energy less than 2EF . The total spin of the pair will
depend on the symmetry of the orbital wave function. In many cases for repulsive
interactions (e.g. e2/r12 in the Helium atom, Sect. 2.3) the lowest energy state is the
triplet. One argues that since here the electron-electron interaction is attractive, the
singlet state is favoured. Thus the complete, spin part included, wave function for
the pair is written

ψ(r) = φ↑(k)φ↓(−k), (18.6)

with two electrons having energy below2EF and oppositemomenta and spin. Beyond
this simple picture for the pair, the more rigorous description accounting for the cor-
rect antisymmetry of the wave function and taking into account the matrix elements
for the electron-phonon-electron interaction, allows one to obtain the decrease of the
energy in the form

ΔE � −2kBΘDexp[−2/D(EF)V ], (18.7)

D(E) being the density of states, V the interaction energy for two electrons around
the Fermi surface (see Sect. 12.7.1) and ΘD the Debye temperature (Sect. 14.5) (see
Problem18.2).

18.2.2 Some Properties of the Superconducting State

Asaconsequenceof the pairs formation theFermi gas is unstable towards an attractive
potential, even very weak. Therefore, according to the general concepts described
at Chap.15, a phase transition has to occur. The superconductive state involves the
pairing of a sizeable part of about 1022 electrons per cubic centimeter. The pairs at
S = 0 obey the Bose-Einstein statistics and all can set in a single quantum state,
while single electrons are continuously scattered in different single-electron states
in the momentum range δk (see Eq. (18.4)). The BCS theory describes a variety of
properties of the superconducting state resulting from the transition driven by pair
condensation. We are going to summarize a few of these properties.

Somewhat consistent with Eq. (18.7) the transition temperature turns out

Tc = 1.14�ωD

kB
exp[−1/D(EF)V ] � θDexp[−1/λ], (18.8)

http://dx.doi.org/10.1007/978-3-319-17897-4_2
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_14
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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Fig. 18.4 Density of states
in a superconductor in
comparison to the one in an
ordinary metal, at zero
temperature and at finite
temperature. The dashed
area indicates D(E) times the
electron distribution
function. In the
superconducting state, on
measuring energies from EF ,
one can write to a good
approximation that
D(E) = D(0)E/

√
E2 − Δ2,

for |E| ≥ Δ

ΔΔ

Δ

where we have introduced the coupling factor λ = D(EF)V , which usually falls in
the range 0.1–0.5. ThereforeTc is expected a small fraction of theDebye temperature.
The isotope effect is evidently implicit in this term.

In the sketch in Fig. 18.4 the density of states in the superconductor is compared
to the one in the metallic state (see Sect. 12.7), at zero and at finite temperature (in
zero external magnetic field). The dashed areas correspond to occupied states. 2Δ is
the lowest energy required in order to carry electrons from the superconducting to
the ordinary state. The theory provides the temperature dependence of the gap Δ(T)

through a self-consistent implicit equation that can easily be solved in two limits. In
the neighbourhood of the transition temperature one has

Δ(T) � Δ(0)

(
1 − T

Tc

)1/2

, (18.9)

while for T → 0
Δ(0) = 2�ωDexp[−1/λ].

Thus, from Eq. (18.8) one can write

2Δ(0) = 3.5kBTc. (18.10)

This relevant relation is rather well obeyed for weak coupling (namely sys-
tems at small V ) while it breaks down for strong electron-phonon interaction. The

http://dx.doi.org/10.1007/978-3-319-17897-4_12
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extension of theBCS theory to the strong coupling situation,9 carried out primarily by
Eliashberg and by Mc Millan, leads to rather good agreement with the experimental
findings for a variety of properties of most superconducting metals. The behav-
iour of the critical field and of the specific heat, as well as the Meissner effect, are
well explained in microscopic terms. The fact that no electric resistance is involved
in the transport can be crudely justified in terms of scattering process of the pair
(Problem18.1).

It should be remarked that the density of pairs in the BCS picture is expected
fairly large. In fact, the complete superconducting wave function is the product of
single-pairs wave functions of the form (18.6) and the correlation range between
the two electrons of the pair is much larger than the lattice constant.10 Therefore in
the “region” of a pair a large number of centers of mass of other pairs do fall (see
Problem18.3).

18.2.3 The Particular Meaning of the Superconducting
Wave Function

The large pairs density nc in the same quantum state allows one to give a particular
meaning to the superconducting wave function ψSC . In fact, because of this situation
ψ∗

SCψSC becomes the real number of pairs per unit volume and the charge density in
the superconducting state can be written −2eψ∗

SCψSC .
From the probability of presence P(r, t) = ψ∗

SC(r, t)ψSC(r, t) and the condition
of charge continuity, one writes

∂P

∂t
= ψ∗

SC

∂ψSC

∂t
+ ψSC

∂ψ∗
SC

∂t
= −divj, (18.11)

j being the current density. On the other hand the Schrodinger equation for a particle
of mass m∗ and charge q in the presence of an electromagnetic field described by a

9The relationship between transition temperature Tc and the Debye temperature to a good approx-
imation is provided by the semi-empirical formula due to McMillan

Tc = ΘD

1.45
exp

( −(λ∗ + 1)

[λ∗ − μ∗(1 + 0.62λ∗)]
)

,

where the electron-phonon coupling parameter λ∗ typically varies in the range 0–2 while the repul-
sive Coulombic parameter μ∗ is between 0.1 and 0.2. λ∗ and μ∗ are usually determined by means
of electron tunneling experiments.
10At Sect. 18.9, in describing the Ginzburg-Landau theory in the general framework of phase transi-
tions, it will be shown that the “correlation range” can be considered the equivalent of the coherence
length introduced at Sect. 15.2. It is remarked that in most cases the distance over which the corre-
lation is effective is limited to an almost temperature-independent mean free path of the electrons.
The Cooper pair coherence length is smaller than the Ginzburg-Landau coherence length that we
shall introduce at Sect. 18.9. Only when the mean free path of the electrons can be assumed infinite
the two coherence lengths (Cooper and Ginzburg-Landau) coincide.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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potential vector A reads

1

2m∗

(
−i�∇ − qA

c

)2

ψSC + qϕψSC = i�
∂ψSC

∂t
, (18.12)

with divA = 0 in the Coulomb gauge, ϕ = 0 and−i�∇ = p (see note 3 at Sect. 1.6).
By comparing this equation with Eq. (18.11) one obtains for ∂P/∂t the divergence
of a function, which according to Eq. (18.11), implies a current density due to the
pairs given by

j = 1

2m∗

[([
p − qA

c

]
ψSC

)∗
ψSC + ψ∗

SC

([
p − qA

c

]
ψSC

)]
. (18.13)

For reasons again related to the large number of particles in the same state this
expression for the current can be used to describe a charge current of macroscopic
character. Therefore in the superconducting state both the charge density and the
electrical current are directly connected to the wave functions of the pairs, which take
a physical meaning of macroscopic, quasi-classical character, somewhat resembling
the situation pertaining to the electromagnetic field in terms of the photons, other
non-interacting bosonic particles.

Then the most general form for the wave function shall be written

ψSC = √
nc(r)exp[iθ(r)], (18.14)

where one has the square root of the number of pairs per unit volume nc = |ψSC |2
and the general phase factor involving θ(r).11

In the superconducting state even the phase factor acquires a precise physical
meaning. In fact, from Eq. (18.14) and by resorting to Eq. (18.13), one obtains

j =
[
−�∇θ + 2eA

c

]
2enc

m∗ = e∗ncvSC, (18.15)

showing that the phase θ is involved through its gradient in part of the current or
equivalently in the velocity vSC = [�∇θ + (e∗A/c)]/m∗ of the pair. One should
remark that is just the “coincidence” of quantum parameters with classical charge
and current that explains why in spite of the classical approach the London brothers
have been able to derive results quantitatively correct (see Sect. 18.3).

11One could argue that this form of the wavefunction, being based on the condition of very large
correlation range, could break down in superconductors where the range of the interaction in the
pair (namely the correlation length) is a few lattice steps, as for instance in the high temperature
superconductors (Sect. 18.8). In reality, the Ginzburg-Landau theory, valid both in the BCS super-
conductors at very large coherence length as well as in high Tc superconductors, is based on the
inspiring guess that the density of superconducting carriers (the order parameter in the scenario of
the phase transition, see Sect. 15.2) can be written as the modulus square of some effective wave
function.

http://dx.doi.org/10.1007/978-3-319-17897-4_1
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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18.3 London Theory and the Flux Expulsion

The valuable equations that the London brothers derived before any quantumdescrip-
tion of the superconducting state were based on some heuristic assumptions. When
a certain fraction of electrons become superconducting the current density has to be
written

j = −neev,

where v is an average velocity and ne the density of these electrons. A transient
electric field E (required in order to have ∂B/∂t �= 0, according Eq. (18.1)) launches
the supercurrent through

−eE = m
∂v
∂t

.

Then
dj
dt

= ne
e2

m
E

and from Maxwell equation (see Eq. (18.1))

rot
dj
dt

= ne
e2

m
rotE = −ne

e2

mc

∂B
∂t

. (18.16)

Here B is due to the external field and to the superconducting current. Therefore

∂

∂t

[
rotj + ne

e2

mc
B

]
= 0. (18.17)

This equation in itself holds for any metal, but cannot explain the Meissner effect
(Sect. 18.1). In addition to any arbitrary solution of Eq. (18.17) with j and B con-
stant, in order to have B = 0 from this equation London argued that the argument
of the derivative had to be zero. Thus Eq. (18.15) was anticipated. In fact, for a
superconducting block at the equilibrium one must have

divj = 0 and divA = 0

(London gauge or Landau or Coulomb gauge). In Eq. (18.15) the phase is constant
and one derives

j = −nee2

mc
A or rotj = −nee2

mc
B, (18.18)

known as London equation (here m∗ = m and e∗ = e according to the London’s
scenario).
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From rotB = (4π/c)j, being rot(rotA) = ∇divA − ∇2A, and

∇2A = −4π

c
j (18.19)

one obtains

∇2A = − A

λ2
L

or ∇2B = − B

λ2
L

or ∇2j = − j

λ2
L

. (18.20)

Furthermore
∂j
∂t

= E nee2

m

and

λ2
L = m∗c2

4πnc(2e)2
, (18.21)

where here we take into account that pairs are the real charge carriers. It is noted that
since m∗ = 2m, nc = ne/2 and e∗ = 2e the London length λL could not prove that
the carriers are pairs.

As a consequence, while the field E does not penetrate in the superconducting
metal at all, the vector potential A and therefore the magnetic field B exponentially
decreases from the surface towards the interior of the material, as sketched below
(see Problem18.4):

λ

The penetration length λL turns out of the order of 103 Å for typical values
of the electron density in metals, increasing on decreasing nc. For its temperature
dependence we mention that one should write

λL(T) = λL(0)

[
1 −

(
T

Tc

)4]−1/2

. (18.22)

Thus one observes that the supercurrents are running in a narrow sheet of the order
of λL, screening the external magnetic field so that B = 0 in the bulk of the material.

It is noted that the density of charge carriers is only about 10−4 the conduction
electrons density, around the transition temperature. Furthermore λL is affected by
impurities and to a certain extent by the external magnetic field.
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Fig. 18.5 Trapping of the external magnetic field in a ring. a Hext is applied for T > Tc; b the
metallic ring is FC below Tc; c the field is removed. Part d of the figure shows the line for the
electric field circulation (well inside the ring) and the surfaces we are referring to

For the temperature dependenceof thepenetrationdepthwe shall see at Sect. 18.9.5
how it is derived from the Ginzburg-Landau theory in a form consistent with
Eq. (18.22).

18.4 Flux Quantization in Rings

Rather than to a block of bulk superconducting material now we shall refer to a ring
having thickness much larger than λL, in the presence of magnetic field Hext applied
above Tc. Then the ring is cooled down in the presence of the field (FC) and when
in the superconducting state, the Meissner expulsion having occurred, the field is
removed (Fig. 18.5a–c).

When the external field is removed the flux through the surface defined by the
ring cannot change since ∂Φ/∂t = 0, as it is inferred from the circulation of the
electric field E along the line internal to the ring itself12:

∂Φ

∂t
= − ∂

∂t

∫
S
B · ds = c

∫
rotE · dl = 0. (18.23)

12See note for Eq. (18.1). The currents launched in the transient circulate in a narrow sheet close to
the surface of the ring, while the electric field is zero along the internal line.
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Therefore one concludes that when Hext is removed superconducting currents (that
flow in a sheet of the ring of the order of λL) are triggered so that the flux is kept
constant. In other words these currents can either produce the trapping of the field
inside the area of the ring or to screen the field from the interior of the material.

Now the magnitude of the flux Φ is evaluated. Since along the line l in the
Fig. 18.5d j is zero, by taking into account Eq. (18.15), one deduces for

Φ =
∫

circ
A · dl since �∇θ = −2e

A
c

, Φ = �c

−2e

∫
circ

∇θ · dl. (18.24)

Equation (18.24) yields the variation of the phase while one moves along the ring and
it is not necessarily zero (itwouldbe zero in ablockof bulkmaterial simply connected,
A being zero). θmust be an integermultiple of 2π, in view of the periodicity condition
for the wave function. Therefore

|Φ| = 2πn
�c

2e
= n

hc

2e
= nΦ0. (18.25)

Namely the flux trapped by the ring is an integer number n of the fluxon Φ0 given by
Φ0 = 2.07 × 10−7 Gauss·cm2.

This quantum phenomenon, which has been proved by experiments, is a further
support for the formation of Cooper pairs. In fact, the flux quantum in the supercon-
ductor differs by a factor 2 from that derived in a metal (hc/e) when Landau levels
form (see Appendix13.1). One should also remark that having deduced that result
from the circulation of the potential vector along a line of macroscopic length, this
implies that the superconducting wave function maintains its coherence all along the
ring (in the experiments of diameter around 10−2–10−1 cm).

Finally it is anticipated that the flux penetration plays a role of particular relevance
in type II superconductors, as we shall discuss subsequently (Sects. 18.7 and 18.10).

18.5 The Josephson Junction

The phase of a superconductor can be compared with the one in an analogous
compound nearby, causing the occurrence of very interesting effects predicted by
Josephson in 1962. Basically, the Josephson effect consists in the fact that the super-
current can tunnel across an insulating layer in between two superconductors A
and B, without loosing the coherence of the wave function and without dissipation.
The insulating layer is usually the oxide (O) of a metal, of thickness around some
tens of Å. The amount of supercurrent is related to the difference in the phases θA

and θB. This current flow is usually known as continuous Josephson effect and it is
extremely sensitive to an external magnetic field, as it will be shown. On the other
hand it is also possible to induce in the junction SCA-O-SCB an alternating current
by applying a continuous voltage to the insulating layer. This alternating Josephson
effect is currently used in a variety of application (the superconductive electronics)
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including, for instance, radiation detectors, manipulation of high frequency signal or
for fast-switching devices as the ones used in computers and in metrology.

We shall only derive the basic principles of the Josephson junction by resorting
to the time evolution of a two-state system (see Appendix1.2).13

ψA and ψB being the wave functions of A and B (superconducting compounds
that shall be assumed of the same nature), the coupling between the two is granted
by a tunnelling integral K , a constant characterizing the junction A-O-B, as sketched
below:

SCA

SCB

ψψ

SCA SCB

As for any two-states system the equations for the wave functions can be written

i�
∂ψA

∂t
= EAψA + KψB

i�
∂ψB

∂t
= EBψB + KψA, (18.26)

where EA and EB are the energies for the ground state of the two superconductors.
EA = EB in the absence of external electric field, while for a voltage V applied at the
junction EA − EB = −2eV. With a shift in the reference for the energy one writes

i�
∂ψA

∂t
= eVψA + KψB

i�
∂ψB

∂t
= −eVψB + KψA. (18.27)

For ψA and ψB the expression given in Eq. (18.14) holds. By equating the real and
the imaginary parts, four equations are obtained, for the time dependencies of the
densities of the Cooper pairs and for the phases. From the pair densities

�
∂nA

∂t
= 2K(nAnB)1/2sin(θB − θA)

�
∂nB

∂t
= −2K(nAnB)1/2sin(θB − θA)

13Such an approach as been devised by Feynman and it is often reported as the two-states Feynman
model.
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the current is written

jA = 2e
∂nA

∂t
= 2e

2K

�
(nAnB)1/2sin(Δθ)

or jB = 2e
∂nB

∂t
= −2e

2K

�
(nAnB)1/2sin(Δθ) (18.28)

withΔθ = (θB−θA). By assuming nA and nB constant14 and equal to the nc previously
defined (see Sect. 18.2.3) one writes for the current

j = jA − jB = j0sin(Δθ), (18.29)

j0 = (4eK/�)nc being a characteristic of the junction. This situation is extremely
sensitive to a magnetic field. A simple derivation of this property is given in Prob-
lem18.6. Besides Eq. (18.29), from the equation for the phases one obtains

∂θA

∂t
= −K

�
cos(θB − θA) − eV

�

∂θB

∂t
= −K

�
cos(θB − θA) + eV

�
.

Being (∂Δθ/∂t) = (∂θB/∂t) − (∂θA/∂t) = 2eV/�, then

Δθ(t) = Δθ(0) + 2e

�

∫ t

0
V(t′)dt′. (18.30)

Equations (18.29) and (18.30) represent the essence of the Josephson effect.
By referring to the current-voltage curve sketched below, one can comment the

following.

Δ
Δ

14nA and nB are constant while a non-zero charge flows because the source acts in order to feed
the junction of further pairs. To take into consideration also the currents provided by the source
would not modify the current related to the tunnelling of the insulating layer, which is the one we
are evaluating here (see the book by Feynmann).
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For voltage V < |2Δ/e| the current is apparently missing. In reality a current at
very high frequency is running, undetected by the meter (see text and Eq. (18.31)).
For V � |2Δ/e| the system behaves as an ordinary resistor.

For V = 0 the phase difference is constant although not necessarily zero and from
Eq. (18.29) one can expect a current through the junction, up to j0, with zero voltage
between SCA and SCB. Therefore one has supercurrent through the insulator. While
in a block of superconducting material the current requires a gradient of the phase
(see Eq. (18.15)) through the junction the current is driven by the difference in the
phases of the correspondent wave functions. If the current provided by the generator
is modified one has an instantaneous voltage that re-adjusts the phase to a new value
of the current: when the equilibrium is attained again one has V = 0.

If a constant voltage V0 is applied at the junction, Eqs. (18.29) and (18.30) show
that the current oscillates at the frequency

ν0 = 2e

h
V0 = 483.6MHz/μV, (18.31)

usually undetected by a meter (see the sketch above). The oscillations of the current
have been experimentally recorded with proper apparatus (see the book by Buckel).

18.6 The SQUID Device

The SQUID (from Superconducting QUantum Interference Device) is based on the
interference of Josephson currents running in junctions set in parallel, according to
the schematic representation for a Nb ring given below:

v

In away resembling the interference phenomenon in optics, when the two currents
have different phases they can interfere to zero. On the other hand, the phases are
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strongly sensible to the flux though the ring associated to an external magnetic field
and the device can measure very fable fields.

A current generator provides the currents flowing in parallel along the two arms in
the sketch above, while a voltmeter measures the voltage V . For identical junctions
and zero magnetic field one has V = 0 and the two currents IA and IB, with phases
φA and φB, sum up so that

IT = IA + IB = I0[sinφA + sinφB] = 2I0sin

(
φA + φB

2

)
cos

(
φA − φB

2

)
.

(18.32)

Now it is shown that when the ring collects a flux equal to Φ0/2 (see Eq. (18.25))
the superconducting current goes to zero and a voltage appears at the voltmeter.

In the presence of a magnetic field, by moving along an internal line of the left
side of the ring, following Eq. (18.24) the phase changes by

δA = φA − 2e

�c

∫
A
A · dl. (18.33)

Along the right side

δB = φB − 2e

�c

∫
B
A · dl. (18.34)

If one imagines to move all along the ring (for the side B in the opposite sense of
side A) the whole phase difference must be zero (here we set n = 0 in Eq. (18.25))
and then

φA − φB = 2e

�c

∫
circ

A · dl = 2e

�c
Φ, (18.35)

Φ being the flux through the ring. Hence, from Eq. (18.32) the maximum current that
can flow through the device is

Imax = 2I0cos|eΦ

�c
| = 2I0cos

(
πΦ

Φ0

)
, (18.36)

i.e. a function of the fieldwithmaxima in correspondence to the flux valuesΦ = nΦ0.
When the flux through the ring is Φ0/2 the condition of zero current is attained: the
correction to the phases along the two arms causes the destructive interference of the
two currents.

Bymeans of apparatus based on the SQUIDprinciplemagnetic fluxmeasurements
of the order of 10−5Φ0 in a bandwidth of 1Hz, can be carried out (fields of the order
of 10−11 Oe can be detected) with a variety of applications in diagnostics (through
the so called biomagnetism), in magneto-telluric detection, in the search of oil basins
and in basic research for precise study of magnetic properties.

The SQUID has been used to prove the occurrence of the Bohm-Aharonov effect,
i.e.the physical reality of the potential vector A in the regions where the magnetic
field is absent.
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π

Fig. 18.6 Magnetization curves and Gibbs free energies (difference between normal N and super-
conducting S state) in type I (top) and type II (bottom) superconductors. For details see Sects. 18.9
and 18.10. Hc is the thermodynamical critical field (Sect. 18.1)

18.7 Type II Superconductors

Up to the years 1960 the superconducting materials at the highest Tc where the
alloys, as Nb3Sn with Tc = 18.4K and critical field at 4.2K around 20T. The
superconducting properties of the alloys are due their type II character, a behav-
iour predicted by Abrikosov and Shubnikov before the experimental discovery of
that type of superconductors. The type II superconductors strongly differ from the
ones implicitly described until now in regards of their response to magnetic field.
In fact, in type II superconductors once that a certain value Hc1 is attained the mag-
netic field penetrates in the material in form of flux lines, each carrying a quantum
of flux, until a second critical field Hc2 is reached. Above Hc2 one has the transi-
tion to the ordinary state (see Fig. 18.6). The properties of these superconductors
will be described at Sect. 18.9 in the framework of the Ginzburg-Landau theory.
Here we only mention that the type II superconductors are the most suitable for the
applications.15

In Fig. 18.7 a schematic one-dimensional representation of the properties of a flux
line is given.

15Themagnets with conventional (BCS) type II superconductors, as NbTi or Nb3Sn, can reach up to
10T and are the ones generally used in NMR imaging (see Sect. 6.3). The magnetic levitation force
can be of the order of 104 N/m2. The quality factor of superconducting microwave cavities can be
increased up to 1010, as in the ones currently used in particle accelerators. For extensive description
of the applications, most for BCS superconductors, see the book by Buckel.

http://dx.doi.org/10.1007/978-3-319-17897-4_6
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Fig. 18.7 Sketch of the structure of the vortex in terms of London penetration length λL and
coherence length ξ (a); of the radial dependence of the magnetic field (b); of the density current (c)
and of the order parameter (see Sect. 18.9.5) (d). It is noted that for r � λL thematerial is completely
superconducting. The condition ξ � λL is the one for the realization of type II superconductors
(see Sect. 18.10)

18.8 High-Temperature Superconductors

As described in the phenomenological overview (introductory section) since 1986 a
new family of superconducting compounds has been discovered, now known with
the acronym HTcSC. The core of these compounds is the CuO2 plane: the electronic
properties of the Cu2+ ions, with its localized magnetic moment, play the dominant
role (see Appendix17.1).16

At Sect. 13.3 it has been shown how the crystal field at octahedral coordination
produced by the oxygen ions causes the structure of the eg doublet (see Fig. 13.2).
The elongation of the oxygen octahedron removes the doublet degeneracy and the
generation of σ-bonds with the nearby oxygen in the plane is induced. Thus the
planar atomic configuration can be sketched as in Fig. 18.8.

16This is true for the family of the cuprate superconductors. In MgB2 the relatively high Tc
(about 39K) is still related to conventional BCS mechanism, in the presence of particular elec-
tronic band structure and phonon bath. In the iron-based superconductors discovered in 2008 (the
Fe-oxypnictides) the magnetic ion is Fe and the pairing mechanism possibly involves magnetic
excitations.

http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Fig. 18.8 Sketch of Copper 3d, Oxygen 2p orbitals and of the singlet induced by charge (hole)
doping of the CuO2 plane of high temperature superconductors

This is the planar CuO2 structure occurring in the prototype La2CuO4, an
insulating antiferromagnetic crystal that besides being the experimental realization
of the 2DQHAF (see Appendix17.1) can be considered the father of HTcSC. In fact,
in this crystal the charge carriers (holes) are injected through Sr2+ for La3+ substi-
tution, so that singlets at S = 0 can propagate onto the CuO2 plane, as sketched
in Fig. 18.8. As a result of this doping a complicate phase diagram (see Fig. 18.9)
originates, which for the light charge doped region has been already reported at the
Appendix17.1 in another form.

The transport properties and the low-energy physics of the CuO2 plane in the
presence of the extra-holes due to the heterovalent substitutions can be discussed by
referring to a model of charge hopping onto a square 2D lattice, a particular form
of the Hubbard model (see Sect. 17.1). That simplified model takes into account
the electron-electron correlation through a repulsive energy U between electrons on
the same site and the delocalization energy t, namely the hopping matrix element
between sites ith and (i + 1)th (see Sect. 12.7.3).

As alreadymentioned at Sect. 17.1, although apparently rather simple (and already
being an oversimplification of the real physics in cuprates superconductors) the
Hubbard Hamiltonian can be solved for arbitrary ratios of U/t only for the one-
dimensional geometry. At half filling, namely for one electron per site, in the planar
square lattice it is known that a metal-to-insulator transition occurs when the ratio
U/t is increased above a certain value.

The parent compound, La2CuO4, is considered aMott insulator,17 the localization
of the carriers being due to the correlation energy. The hopping that in principle one

17With reference to Chap.12, the Mott insulator is somewhat opposite to the band insulator, its
existence being due to the strong repulsive correlation, an effect that can hardly be described in the
band-type theories.

http://dx.doi.org/10.1007/978-3-319-17897-4_17
http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_17
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Fig. 18.9 Phase diagram of cuprates as a function of the hole doping. T∗ schematically indicates the
temperature belowwhich anomalies in some quantities occur (effect commonly reported as pseudo-
gap opening). TCDW is the temperature belowwhich a charge density wave phase is detected. On the
left side the decrease of the Néel temperature TN in the antiferromagnetic (AF) phase as a function
of hole doping is reported (for details return to Appendix17.1 and Fig. 17.9). CSG indicates a cluster
spin-glass phase which develops in between the AF and SC phases and may also coexist with the
latter one

has to consider in order to reduce the energy through the term t would require double
occupation on a given site and then it would cost energy U larger than t. The array of
electrons localized at the planar square lattice takes the antiferromagnetic (AF) order,
with AF exchange integral J around 1500K, through a super-exchange mechanism
typical of oxides (see Sect. 17.2).

TheAF spin alignment is the one that permits virtual hoppingwith a gain of energy
given by J = 4t2/U (see Appendix17.1) while for parallel spin (ferromagnetic
alignment) no hopping at all is possible because of the Pauli principle.

At the opposite limit t � U the hopping drives the system to a metallic-like
state, with fermionic particles at pseudo-momentum �k, with the Fermi surface and
Fermi-Dirac statistical behaviour.

When the electron vacancies are produced into the CuO2 plane of the parent AF
(hole doping) the AF order is rapidly destroyed by a few percent of holes (return to
Appendix17.1).

On increasing the doping extent x the superconducting phase is obtained, with the
optimally doped condition for x = 0.15, as shown in Fig. 18.9.

In the framework of the scenario of electronic bands structure, the situation in
the cuprates can be thought as generated from the copper d and oxygen p levels
hybridisation, with the resulting half-filled anti-bonding band. Then the Coulomb
correlation splits that band, causing the lower Hubbard band (LHB) and the upper
Hubbard band (UHB), with energy gap U.

http://dx.doi.org/10.1007/978-3-319-17897-4_17
http://dx.doi.org/10.1007/978-3-319-17897-4_17
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The undoped La2CuO4 corresponds to the filling of the LHB, with AF correlation.
The charge doping generates electronic levels in the gap between LHB and UHB,
allowing the itinerary of the carriers, as schematically indicated below:

These qualitative considerations about the complex electronic structure in doped
cuprates can be summarized by stating that superconductivity arises when vacant
states are induced in 2D Heisenberg AF, the charge transport involving holes that
jump in an antiferromagnetic background, with spin fluctuations.

Rather than trying to recall the many theories that have been attempted in order
to describe HTcSC (the pairing mechanisms being nowadays still under debate), in
the following the experimental and theoretical aspects that can be retained with a
reasonable deal of confidence are summarized. In the next Sect. 18.9 the Ginzburg-
Landau theory, that works very well (with some refinements and/or extensions) even
for HTcSC, will be developed.

HTcSC’s are strongly type II, with a relevant role of the granularity and of the
anisotropy, so that the effective mass, the London penetration length (λL typically
varying between 1500 and 5000Å) and the coherence length (ξ ∼ 2 − 40Å) have
tensorial character.18

The critical fields have been well established: for temperature close to zero Hc1 is
of the order of a few hundreds of Oe while Hc2 is very high (possibly around 106Oe).
The general properties regarding the behaviour under RF or microwave irradiation
have been studied and are close to the ones for any good superconductor.

Thepenetration of the magnetic field in the intermediate rangeHc1 < H < Hc2 has
been clearly evidenced and studied; the dynamics of the vortices (see Sect. 18.10)
has been clarified to a large extent. The vortices have been found to move very
easily for temperatures not so far below Tc and they control the transport properties.

18In anisotropic superconductors, in the reference frame aligned with the principal axes, there are
three coherence lengths ξ(i) and three penetration lengths λ

(i)
L . These six lengths, not independent

from each other, are commonly introduced in order to extend the isotropic Ginzburg-Landau theory
by referring to λL = [λ(1)

L λ
(2)
L λ

(3)
L ]1/3 and ξ = [ξ(1)ξ(2)ξ(3)]1/3 (see Sect. 18.9).
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Only below a so-called irreversibility temperature19 Tirr < Tc the vortices can be
considered fixed (in a way depending from impurities and/or defects) and thus no
dissipation occurs.

In short, one could say that in spite of the uncertainties on the pairing mecha-
nism and of the anomalous (and not yet understood) properties of the underdoped
compounds (see Fig. 18.9) the Ginzburg-Landau approach works rather well and the
main aspects of this novel family of superconductors can be satisfactorily described.

As regards the more controversial theoretical framework one can summarize the
following. The carriers are pairs in a singlet state, the superconducting gap is of
d-character (in the k-space there are nodes where the gap is zero). The pairing
mechanisms should be considered strong, Δ(0) being about 7kBTc. The BCS theory
can be applied only partially and is not sufficient in order to describe the ordinary state
as well as the superconducting state. The high Tc is due both to a large value of the
term θD (see Eq. (18.8)) and to a large effectiveλ, possibly enhanced by the proximity
to a metal-insulator crossover, as it occurs in the superconducting fullerides.

Likely the cuprates are on the verge of a so-called quantum critical point, namely
in the proximity of crossovers driven by terms of the interactions rather than the
usual transition driven by temperature. Therefore they can be expected to be much
sensible to a certain number of parameters, including impurities and defects. Further
elements about the properties of HTcSC are given in the subsequent section, in the
form of the results obtained along the Ginzburg-Landau description.

18.9 Ginzburg-Landau (GL) Theory

18.9.1 The GL Functional

The GL theory for the superconductive state and the related superconducting transi-
tion is basically an extension of the Landau theory for the phase transition discussed
at Sect. 15.2. The main success of the GL approach has been the one obtained by
Abrikosov: the existence of the type II SC’s was predicted before their experimental
discovery. Furthermore the GL theory is the only practical approach to deal with the
cases where spatial inhomogeneities play a crucial role (presence of magnetic field,
thin films, boundary and proximity effects and to a large extent the fluctuations).

19Below Tirr one observes a difference between the diamagnetic susceptibility χdia (Meissner
effect, see Sect. 18.3) measured after cooling in the presence of the magnetic field (FC condition)
and the one measured at the same temperature after cooling in zero field (ZFC condition). In a
certain temperature range below Tirr the ZFC diamagnetism is time-dependent, since the vortices
are forced to penetrate inside the bulk, driving the relaxation process leading from the ZFC to the
FC condition.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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In the GL theory one has to reformulate the treatment given at Sect. 15.2 by
applying it to a complex order parameter (due to gauge invariance20) of the form

ψ(r) = |ψ(r)|eiθ(r), (18.37)

ψ(r)∗ψ(r) being the density of pairs at point r. The phase θ(r) is related to the
superconducting current, as shown at Sect. 18.2 (Eq. (18.15) in particular).

We shall first assume ψ(r) = 0 for T > Tc and ψ(r) �= 0 for T < Tc, by
neglecting for the moment the role of the superconducting fluctuations, that actually
are significant in HTcSC (see Sect. 18.11). Then according to an expansion similar
to the one given at Sect. 15.2, a Gibbs free energy functional (see note 8 at Sect. 15.3)
is introduced in the form

GS[ψ] = G0 + 1

V

∫ [
a|ψ(r)|2 + b

2
|ψ(r)|4 +

+ 1

2m∗ |
(

−i�∇ + e∗A
c

)
ψ|2 + H2(r)

8π
− H(r) · M(r)

]
dr, (18.38)

where the usual expression for the e.m. moment has been used in order to account for
the presence of magnetic field into the gradient term, while the magnetic energy den-
sity is given by the last term (see Eqs. (15.7)–(15.10)).21 Furthermore in Eq. (18.38)
we have e∗ and m∗ to mean the application to the pairs (e∗ = +2e or −2e according
to the sign of the carriers, electrons or holes, and m∗ = 2meff ). Finally it is reminded
that, according to Eq. (15.14), in Eq. (18.38) one has to assume b(T) = b0 > 0 and

a(T) = a0

[
T

Tc
− 1

]
≡ a0ε. (18.39)

For T > Tc (normal state) the field is the external one and M � 0. Thus in the
thermodynamical potential the only magnetic contribution is the magnetic energy
per unit volume for the “empty coil” creating the field.

Well below Tc, in the region of the sample where full superconductivity occurs,
then B = 0 while M = −(1/4π)Hext and the magnetic contribution

−
∫

H(r) · M(r)dr

20The phase and the magnetic vector potential A depend on the choice of the gauge but all the
physical variables, including the magnetic field B, are gauge-invariant (see Problem18.14).
21Equation (18.38) should be considered a masterpiece of physical intuition. It has a possible jus-
tification in the light of the analogy with the Schrodinger equation by assigning to ψ the character
of wavefunction. The BCS theory has clarified many aspects related to that equation. Gor’kov has
shown that the GL theory can be derived from the BCS theory when the latter is generalized to
include spatially varying situations, near the transition. ψ corresponds to the wavefunction of the
centre of mass of the Cooper pair (see Sect. 18.2.3).

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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in Eq. (18.38) becomes H2
ext/4π. When the magnetic terms are negligible G[ψ] =

F[ψ], the Helmholtz free energy. In Eq. (18.38) ψ(r) andA(r) are both the unknown
functions. The occurrence of superconductivity re-arranges the currents so that G[ψ]
is minimized.

Finally it is noted that if one uses the definition of velocity vSC = (1/m∗)(�∇ +
2eA/c) according to Eq. (18.15), then the kinetic term involving gradient and field
in Eq. (18.38) can be rewritten

1

2m∗

[
�
2(∇|ψ|)2 +

(
�∇θ + e∗A

c

)2

|ψ|2
]

= 1

2
m∗v2

SCnc + �
2

2m∗ (∇|ψ|)2, (18.40)

namely the kinetic energy of the superconducting pairs and the energy term related
to the gradient of the order parameter. In a superconducting block at the equilibrium,
with constant order parameter, the London’s scenario (Sect. 18.3) is recovered.

18.9.2 The GL Equations

In order to derive the equations controllingψ(r) andA(r) one has tominimize theGL
functional (Eq. (18.38)). By deriving with respect to ψ∗ while keeping ψ constant22

one obtains the first GL equation:

aψ + b|ψ|2ψ + 1

2m∗

[
−i�∇ + e∗A

c

]2

ψ = 0 =

= 1

2m∗

[
�
2∇2ψ + 2i�e∗

c
A · ∇ψ − e∗2A2

c2
ψ

]
− aψ − b|ψ2|ψ, (18.41)

(being divA = 0). By deriving with respect to the vector potential A one has

i�e∗

2m∗

[
ψ∗∇ψ − ψ∇ψ∗

]
+ e∗2

m∗c
A|ψ|2 + ∇ × (∇ × A)

c

4π
= 0, (18.42)

and from B = ∇ × A and ∇ × B = (4π/c)j, the current density turns out

j = − i�e∗

2m∗

[
ψ∗∇ψ −ψ∇ψ∗

]
− e∗2

m∗c
A|ψ|2 =

[
e∗

�

m∗ ∇θ − e∗2

m∗c
A

]
|ψ|2 = e∗|ψ|2vSC,

(18.43)

22∂F/∂ψ(r)∗ = 0 involves the functional derivative, the free energy being a function of infinitely
many variables. By deriving with respect to ψ(r) the complex conjugate of Eq. (18.41) would be
obtained.
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corresponding to j = −∂F/∂A(r). Equation (18.43) is the second GL equation. By
taking the curl of both members, since rot∇ = 0 the London equation (Eq. (18.18))
is found.

Equations (18.41) and (18.43), when simultaneously solved yield the properties
of the superconducting state. It is noted that A(r) is the microscopic vector potential
due to Hext and to the superconducting currents.

In the next Subsections we are going to apply the GL equations to particular
situations, on one part deriving some of the properties already discussed in different
context while novel aspects will emerge, particularly for type-II superconductors.

18.9.3 Uniform and Homogeneous SC and No Magnetic
Field

In this case |ψ| is site-independent, ∇|ψ| = 0 and the density of the Cooper pairs
nc inside the SC is constant.23 The second GL equation goes to zero while from
Eq. (18.41), the phase being arbitrary and therefore set to zero, one has

aψ + bψ|ψ|2 = 0, (18.44)

corresponding to the minimization of FSC = [a|ψ|2 + (b/2)|ψ|4]V . Then
|ψ|2 = −a/b and ΔF = −a2/2b (see sketch below):

ψ
Δ

On the other hand the condensation energy per unit volume must correspond to
H2

c /8π, with Hc thermodynamical critical field (see Sect. 18.1 and Fig. 18.6). Thus,
from a|ψ|2 + (b/2)|ψ|4 = H2

c /8π, by using |ψ|2 = −a/b, one derives

a = − 1

4π

H2
c

nc
and b = 1

4π

H2
c

n2
c

23These conditions are also rather well verified in nanoparticles, namely particles of size much
smaller than the coherence length (see Sect. 18.12), this case being often called zero-dimensional
condition.
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with nc equilibrium density of the Cooper pairs (see Eq. (18.14)). Furthermore, near
Tc, by returning to Eq. (18.39) one sees that24

nc(T) = −a

b
= a0

b
|ε|, (18.45)

and
Hc(T) ∝ |ε|. (18.46)

The condensation energy is ameasure of the gain in the free energy per unit volume
when the transition from the normal to the superconducting state occurs. VH2

c /8π is
usually very small, of the order of a few μeV per atom (see Problem18.8).

18.9.4 Surface Effects (in Bulk SC and in the Absence
of Field)

From the second GL equation for A = 0 and j = 0, one has ψ∗∇ψ = ψ∇ψ∗ and
therefore the phase θ is site independent and it can be assumed zero. From the first
GL equation, for A = 0 one has

−�
2

2m∗ ∇2ψ = −aψ − b|ψ|2ψ. (18.47)

In order to discuss the situation occurring at the boundary between a bulk SC and
the vacuum (or an ordinary metal) we shall refer to the 1D condition:

By change of variable, with ψ = [a/b]1/2p (p being a kind of normalized order
parameter), Eq. (18.47) is rewritten

−�
2

2m∗|a|
d2p

dx2
+ (1 − p2)p = 0, (18.48)

resembling the one-dimensional non-linear Schrodinger equation. Then a dimen-
sionless variable η = (x/ξ), with

ξ2(T) = �
2

2m∗|a| ∝ |ε|−1, (18.49)

24Over the whole temperature range below Tc more appropriate temperature dependencies are
Hc(T) ∝ [1 − (T/Tc)

2] and |ψ|2 = nc ∝ [1 − (T/Tc)
4].
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is introduced (see Problem18.10), so that Eq. (18.48) takes the form

d2p

dη2
+ (1 − p2)p = 0,

of solution p = tanh(η/
√
2). Going back to the order parameter one writes

ψ(ηξ) =
( |a|

b

)1/2

tanh

(
η√
2

)
= ψ(∞)tanh

(
η√
2

)

with the behaviour illustrated below.

One observes that

ξ(T) = �√
2m∗|a| ≡ ξ(0)|ε|−1/2 (18.50)

is a characteristic length measuring the variation of the order parameter on entering
the bulk superconductor, thus it is the coherence length already defined at Sect. 18.2.2
and at Sect. 15.2.25 Another definition of the coherence length shall be given in
dealing with the fluctuations and the correlation function, at Sect. 18.11.

The critical exponent defining the divergence of ξ(T) for T → T−
c is therefore

1/2, as itwill turn out at Sect. 18.11, in the framework of theGaussian approximation.
An approximate expression for the correlation length can also be obtained as shown
at Problem18.10.

Finally we remark that by resorting to the expression of ξ the first GL equation
can also be written in the form

−
[
∇ − ie∗A

�c

]2

ψ + ψ

ξ2
+ b

2m∗

�2
|ψ|2ψ = 0, (18.51)

of frequent use, particularly in its linearized form.

25Return to the note n.10 of the present Chapter.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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18.9.5 The London Penetration Length

From the secondGL equation, by assuming for simplicity the homogeneity condition
so that the variation in the order parameter can be neglected and |ψ|2 = |ψ0|2, from

j = −e∗2

m∗c
A|ψ0|2 (18.52)

and ∇2A = −(4π/c)j, one derives the equation for the penetration length already
obtained from the London theory (Eq. (18.21)), leading to

λ2
L = m∗c2

4πe∗2|ψ0|2 ∝ |ε|−1, (18.53)

in the 1D configuration sketched below

with
Hz(x) = H0exp[−x/λL]

Ay(x) = A0exp[−x/λL],

implying the boundary conditions at the surface (see Problem18.4).
As shown in Problem18.7, from the second GL equation by circulating the cur-

rent density along a close ring and imposing the periodicity condition to the phase
because of the unicity of the order parameter, the flux quantization, already derived
at Sect. 18.4, can be obtained.

Since both λL and ξ diverge at Tc with |a|−1/2, in the framework of the GL theory
their ratio

κ = λL

ξ
(18.54)



18.9 Ginzburg-Landau (GL) Theory 571

is temperature independent.26 Furthermore, taking into account Eqs. (18.49) and
(18.53), it is noted that

Hc(T)λL(T)ξ(T) = Φ0

2π
√
2

= constant (18.55)

Finally it should be remarked that the constants a and b, that in the framework
of the GL theory control all the properties of a superconductor, according to the
equations derived in this section can be obtained from the experiments.

18.10 The Parameter κ and the Vortex

The ratio κ = λL(T)/ξ(T) = √
8πλ2

L(T)Hc(T)/Φ0, with λ2
L = m∗c2/4πe∗2|ψ|2 and

Φ0 = hc/2e, differentiates type I from type II superconductors:

κ <
1√
2

type I, κ >
1√
2

type II,

with the magnetic phase diagrams sketched hereafter.

The relevant role ofκ can be proved as follows. For a second-order phase transition
(see Sect. 15.2) with small order parameter, from the first GL equation, by neglecting
the contribution from currents, one writes

aψ = 1

2m∗

[
−i�∇ + 2eA

c

]2

ψ, (18.56)

namely the Schrodinger equation for a particle in magnetic field. The lowest-energy
eigenvalue (see Eq. (A.13.1.4)) is E0 = �ωc/2, with ωc = eH/mc the cyclotron
frequency.

26κ is the only parameter that really plays the crucial role in the GL theory.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Non-zero solution and then superconductivity, are present for H < Hc2 with

e�Hc2

mc
= −a

and being ξ2 = (�2/2m∗|a(T)|),

for Hc2(T) = 2m∗c

e∗�
|a(T)| = Φ0

2πξ2(T)
(18.57)

or Hc2(T) = κ
√
2Hc, (18.58)

Hc being the thermodynamic field (see Sect. 18.1). Thus κ = 1/
√
2 represents the

threshold value for having Hc2 > Hc.
It should be remarked that the transition occurring at Hc2 by varying the field or

by varying the temperature, is a second order one since for any T below Tc the order
parameter grows with continuity. At variance, for type I superconductors when on
cooling one crosses a finite value of Hc(T) the order parameter jumps from zero to
a finite value and then the transition is first order (see Sect. 15.1).

According to the sketch in the previous page, Hc1 can be defined as the field
required to have the entrance in the material of just one vortex. For a vortex, schema-
tized as below

ξ
λ

the energy cost is
(fSC − f0)V � (H2

c2/8π)ξ2d. (18.59)

On the other hand the field penetrates only for a length of the order of λL and the
energy gain therefore is of the order of (H2/8π)dλ2

L. Therefore the positive balance
to have a vortex requires λL � ξ. Approximate expression for Hc1 and Hc2 are
obtained at Problem18.927:

Hc1 � Hc√
2κ

lnκ � Φ0

4πλ2
L

(18.60)

27For details and for considerations on the effects of the magnetic field in other experimental
conditions, see the book by Poole, Farach and Creswick. One could remark that an entire volume
would not be sufficient in order to illustrate all the applications of the Ginzburg-Landau theory in
a variety of circumstances, as remarked by the authors.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
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and
Hc1Hc2 � H2

c lnκ , or Hc2 � Hc

√
2κ. (18.61)

Finally it is reminded that for superconductors arising from ordinary metals
λL � 500−1000 Å while ξ � 3000−5000Å. At variance, in HTcSC ξ � 2−40Å
and λL ∼ 1000Å, both anisotropic. The alloying process in ordinary metals induces
the so-called “dirty” regime by reducing the electronic mean free path, thus causing
a much smaller effective coherence length. Therefore κ � 1 and II type supercon-
ductivity arises, with the increase of critical fields and critical currents.

In the field range Hc1 � H � Hc2 the vortices density n (number per square cm)
is approximately given by

n = < Bint >

Φ0
, (18.62)

where < Bint > is an average internal field, being to a good approximation propor-
tional to the applied field so that n � Hext/Φ0.

By referring to a single isolated vortex, for radial distance r much larger than the
vortex core, according to Sect. 18.9.4, from the second GL equation and by taking
the curl of both members of Eq. (18.52) and using the definition of the penetration
length as in Eq. (18.53), one writes

∇ × ∇ × B(r) = −B(r)

λ2
L

, (18.63)

as in the London scenario.
Now one has to consider that within the vortex, approximately a cylinder of radius

ξ much smaller than λL, the external field penetrates and the flux is just a fluxon Φ0.
Thus in order to derive the field outside the vortex core we complete the Eq. (18.63)
by writing

(∇ × ∇ × B(r))λ2
L + B(r) = zΦ0δ(r) (18.64)

ẑ being the direction of the external field, where the two-dimensional delta function
reflects the singularity for r = 0 in the plane perpendicular to the field, meantime
imposing the condition of the fluxon inside the core. By means of a lengthy mathe-
matical procedure in cylindrical coordinates it can be shown that the solutions of this
equation are modified Bessel functions. The field in the material, outside the vortex,
is approximately28

B(r) � Φ0

2πλ2
L

K0

(√
r2 + 2ξ2

λL

)
, (18.65)

28It is reminded that for material strongly anisotropic in their superconducting properties, as the
HTcSC, significant modifications to the expressions derived above have to be taken into account.
For further details see the book by Poole, Farach and Creswick.
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with r = (x2 + y2)1/2 and where K0 has the limits −ln(x) for x � 1 and√
π/2xexp(−x) for x � 1. Then for r � λL one has B(r) ∝ exp(−r/λL). On

the other hand the superconducting current |j| ∝ |∇ × B| = (dB/dr) is flowing
around the vortex in a sheet of the order of λL. Thus the main features involved in the
Fig. 18.7 are now justified. The GL theory, particularly in the ingenious and exten-
sive application carried out by Abrikosov, can be used to described other important
aspects involving proximity effects, interfaces and boundary conditions, flux flow and
dissipation (when the vortices are not sufficiently pinned by impurities or defects29).
Furthermore the GL scenario is suited for the description of the superconducting
fluctuations, as we shall see in the subsequent sections.

18.11 Effects of Superconducting Fluctuations

18.11.1 Introductory Remarks

As it has been pointed out at Sect. 18.2.2, in conventional superconductors (often
reported as BCS superconductors) in the coherence volume, of the order of ξ3, there
is a large number of pairs. Thus it is not a surprise that the superconducting fluc-
tuations, of nature similar to the ones described in general terms at Chap. 15, can
play a significant role only in a very narrow temperature range around Tc, of difficult
experimental detection in BCS superconductors. Correspondingly, one could say that
mean field approaches to the superconducting transition yield reliable descriptions.

At variance, in HTcSC the coherence length is very small, the carrier density is
reduced and the transition temperature is increased. Thus strong enhancement of the
fluctuations occurs and several effects are detectable on approaching the transition.
As a consequence of the superconducting fluctuations (SF) the temperature behaviour
of the order parameter can be depicted as in Fig. 18.10.

A comprehensive description of the superconducting fluctuations and of the
related effects (particularly the excess conductivity and the fluctuating diamagnetism
above Tc) can be given by applying to the superconducting order parameter the basic
recipe of the Ginzburg-Landau theory, through expansion of the free energy similar
to the one used at Sect. 15.3 (see also Eq. (18.38)). Therefore the free energy density
is written in the form30

29Pinning has technological importance in order to lock the vortices and avoid dissipation. For
a current j flowing perpendicular to the field H the Lorentz force pushes the vortices along the
j×H direction. The flux variation implies electric field parallel to j and then an effective electrical
resistance. Also the Magnus sideway acting force can be involved in the vortex motions.
30Here we write α and β instead of a and b to emphasize that in this section we deal with the
fluctuations around the equilibrium values.

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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ψ
ψ

ψ

ψ

Fig. 18.10 The average value of the order parameter modulus (solid line) is different from zero
even above Tc and smearing of the transition temperature also occurs. Above T∗

c one can say that
local pairs, without long-range spatial coherence, are generated and they decay slower and slower
on approaching the transition (see Sect. 15.2 for equivalence to other systems)

f = f0 + α(T)|ψ|2 + β

2
|ψ|4 + 1

2m∗ |(−i�∇ + (e∗/c)A)ψ|2, (18.66)

which includes spatial variations and the magnetic field through the potential vector
A. According to Eq. (18.39) α(T) = α0(T − Tc)/Tc ≡ εα0.

It is remarked that when the term in |ψ|4 in Eq. (18.66) is neglected one operates in
the so-called Gaussian approximation or first-order fluctuation correction. However,
for T � Tc (see subsequently a more quantitative definition) where the fluctuations
are strongly enhanced, that term is no longer negligible and it plays a crucial role, as it
will be shown in describing the effects of fluctuations in nanoparticles (Sect. 18.12).

First in Eq. (18.66) we shall setA = 0 and derive the collective amplitude and the
decay time of the fluctuations in a way resembling what has been done at Sect. 15.3,
for temperature above Tc.

The order parameter is expanded in the free-particle eigenfunctions:

ψ(r) =
∑
k

ψkeik·r, (18.67)

equivalently to the Fourier expansion at Sect. 15.3. From Eq. (18.66) with A = 0, by
omitting the term in |ψ|4, the free energy density becomes

f = f0 +
∑
k

[
α + �

2

2m∗ k2
]
|ψk|2, (18.68)

Now a thermodynamical average over the possible values of the order parameter has
to be performed (see Eq. (15.19)):

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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< |ψk|2 >=
∫ |ψk|2exp(−f /kBT)dψkdψ∗

k∫
exp(−f /kBT)dψkdψ∗

k
. (18.69)

Similarly to Eq. (15.20) one obtains

< |ψk|2 >= kBT

α(1 + k2ξ2)
≡ < |ψk=0|2 >

1 + k2ξ2
, (18.70)

where ξ(T) is a coherence length analogous to the one in Eq. (18.49):

ξ(T) = �√
2m∗α

= ξ0

(
Tc

T − Tc

)1/2

= ξ0ε
−1/2, (18.71)

with ξ0 = ξ(T = 0). ξ(T) enters in the correlation function for the fluctuations

g(r − r′) ≡< ψ(r)ψ∗(r′) >=
∑
k

< |ψk|2 > eik·(r−r′).

In fact, from Eq. (18.70) and by integration in the reciprocal space,31 for R = r − r′
one derives

g(R) = m∗kBT

2π�2

e−R/ξ

R
, (18.72)

as it could be expected in the light of Eq. (15.23). In the present context ξ(T) is a
measure of the distance over which the fluctuations are coherent. In a pictorial view
ξ(T) is the “size” of the metastable superconducting “droplets” formed above the
bulk transition temperature.

As regards the time dependence of these fluctuating “droplets” one can start from
the general equation for the deviation from the equilibrium of an order parameter
(see Eq. (15.25)), by writing

∂ψ

∂t
= −1

γ

∂f

∂ψ∗ .

From Eq. (18.66) under the condition A = 0

− γ
∂ψ

∂t
= αψ − �

2

2m∗ ∇2ψ + β|ψ|2ψ. (18.73)

31The sum over k should be limited to a cut-off value of the order of the inverse coherence length
ξ−1
0 , somewhat in analogy with the cut-off at the boundary of the Brillouin zone or at the Debye
wave vector (see also footnote 33).

http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
http://dx.doi.org/10.1007/978-3-319-17897-4_15
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When the non-linear terms are neglected (as it is suited when the order parameter
is small) the relaxation time of the uniform (k = 0) mode, for which ∇2ψ = 0,
turns out32

τGL = γ

α
∝ Tc

T − Tc
. (18.74)

Thus, according Eqs. (18.66) and (18.70), the so called linearized time-dependent
GL equation can be written in the form

− τGL
∂ψ

∂t
= (1 − ξ2∇2)ψ , for T > Tc. (18.75)

When ψ is expanded as in Eq. (18.67) one finds that the correlation function for each
mode of the collective quantity decays exponentially in time:

< ψ∗
k(0)ψk(t) >=< |ψk|2 > e−t/τk ,

where
τk = τGL

1 + ξ2(T)k2
, (18.76)

the equivalent of the slowing down of the fluctuations described at Sect. 15.3.
A proper average of τk, with boundary of the order of ξ−1

0 , can be considered
a sort of lifetime of the Cooper pair τCP. Furthermore, one can extend the use of
this lifetime, controlled by τGL, also in the condensed state below Tc (notice that the
extension of τk in the form as in Eq. (18.76) to k-values far from k = 0 is somewhat
arbitrary). An heuristic estimate of τCP can be obtained by resorting to Heisenberg
uncertainty principle. In fact, by observing that the lifetime of a pair is equivalent
to the time required to destroy a pair, implying a transition from the boundaries of
the energy gap 2Δ, from Δt � �/ΔE and considering that ΔE � 2Δ one can write
τCP � �/2Δ. Since 2Δ ∼ kBTc, for Tc around 10K τCP would turn out of the order
of picoseconds.

18.11.2 Paraconductivity and Fluctuating Diamagnetism

As a consequence of the SF’s one can remark that channels with no electrical resis-
tance are being opened above Tc. Thus the conductivity for T → T+

c is expected to

32The Ginzburg-Landau (GL) correlation time is often written τGL = (γ�/α) by adding � to the
coefficient in Eq. (18.74) in order to get correspondence with the expression τGL = �/8kB(T − Tc)

derived in the microscopic theories. It can be observe that in this way, without the non-linear term,
Eq. (18.73) takes a form consistent with the time-dependent Schrodinger equation.

http://dx.doi.org/10.1007/978-3-319-17897-4_15


578 18 Superconductors, the Superconductive Phase Transition and Fluctuations

exhibit the raise of an extra-contribution, usually called paraconductivity. A sketch
of a typical experimental evidence33 is reported below:

R
(T
)/
R
(1
.3
3T

C
)

T/T
C

In the light of Eq. (18.43) the current density to be related to SF’s is written (for
A = 0)

j = e∗
�

m∗ |ψ|2∇θ, (18.77)

where ∇θ has to be obtained from the linearized Eq. (18.73) for ψ = |ψ|exp(iθ). A
term e∗Vψ is added in order to account for an electric field E . The imaginary part of
that equation yields

γ

[
dθ

dt
+ e∗V

�

]
= �

2

2m∗ ∇2θ, (18.78)

implying the phase evolution θ(t) = θ0 − (e ∗ /�)
∫ t
0 Vdt, as already discussed (see

Eq. (18.30)).
For each mode k contributing to the extra current with a density of carriers <

|ψk|2 >, with an acceleration given by (dvSC/dτk) = (�/m∗)∇[∂θ/∂τk] = e∗E/m∗,
the extra-conductivity (responsible for the rounding in the resistivity above Tc) is
written

σSF = j
E = e∗2

m∗
∑
k

< |ψk|2 > τk. (18.79)

This form for σSF could be written on the basis of the analogy with the Drude
conductivity (see Sect. 13.4)

σD = e2neτ

m
.

33A variety of data and extensive theory can be found in the book by Larkin and Varlamov. A
comprehensive description of fluctuation effects, at a level comparable to the present text, is given
at Chap.8 of the book by Tinkham.

http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Equation (18.79) points out that paraconductivity involves an effective collision time
and, instead of the electron density ne, a kind of effective density of Cooper pairs
averaged in the k space.

The fluctuating pairs associated to SF’s also cause an extra-contribution to the
magnetic susceptibility through a negative magnetization. This can somewhat be
considered a precursor effect with respect to the Meissner diamagnetism described
at Sect. 18.1.

For evanescent magnetic field (i.e.H → 0), disregarding for themoment anyfield-
related quenching of the pairs (see Sect. 18.12), from Eq. (18.66) in the Gaussian
approximation, with A = H × r/2, the diamagnetic magnetization Mdia can be
obtained by expanding the free energy in terms of the eigenfunctions for Landau
levels En,kz (see Appendix13.1).

From the usual relation for the statistical average < f >= −kBTlnZ in terms of
the partition function

Z =
∏ πkBT

En,kz

,

< f > is evaluated to the second order in H, so that Mdia = −d < f > /dH turns
out linear in H. Finally the susceptibility could be found in the form

χdia = −πkBT

6Φ2
0

ξ(T). (18.80)

Instead of the lengthy procedure outlined above one can express an approximate
expression of χdia equivalent to Eq. (18.80) by attributing to each Cooper pair a
diamagnetic susceptibility as for atoms (see Sect. 4.5) with < r2 > substituted by
ξ2(T), with the number of pairs per unit volume from the k-integration of< |ψk|2 >

(see Problem18.11).
According to Eq. (18.80) the expected behaviour of the susceptibility would be as

sketched below

In reality the behaviour of the diamagnetic susceptibility for T → T+
c is rather

different from the one described above. First, for finite value of H one has the
breakdown of the evanescent field approximation. For relatively large magnetic field

http://dx.doi.org/10.1007/978-3-319-17897-4_4
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Mdia is no longer linear in the field andTc is decreased. In otherwords, the field affects
the fluctuating pairs and decreases the diamagnetic contribution to themagnetization.

Furthermore one often observes an upturn in the field dependence and |Mdia|
decreases on increasing H . The upturn in the magnetic field dependence of Mdia cor-
responds to the breakdown for finite field of theGL theory in the original formulation.
The original theory has been integrated by Gor’kov to include short wave length
(large k) fluctuations and non-locality effects and then the magnetization curves
associated with the SF above Tc are fully accounted for (see the book by Larkin and
Varlamov).

In Problem18.12 it is shownhow in the assumption of fluctuating superconducting
droplets of size of the order or smaller than the coherence length (so that site-
independent order parameter can be assumed, corresponding to zero-dimensional
condition) then in a simple way the inversion in the field dependence of Mdia at the
upturn field can be understood.

18.12 Superconducting Nanoparticles
and the Zero-Dimensional Condition

A nice system that mimics the model of zero-dimensional condition, namely site-
independent order parameter, is represented by a sample of independent nanoparticles
each having diameter d smaller than the zero temperature coherence length ξ(0).
Then in Eq. (18.66) the condition of ψ site-independent is strictly valid and the
gradient term can be set to zero.Meantime, by assuming spherical shape the potential
vector is A = H2d2/10 (see Problem18.12), then from the complete GL functional
includingmagnetic field and the term in |ψ|4, the exact partition function and the field
dependence of Mdia can be obtained also in the so-called critical region. In simple
terms one can define as critical region the temperature range where the first-order
perturbation theory breaks down and the term in |ψ|4 in the GL functional cannot be
neglected, the fluctuations having grown to high extent.

Typical temperature dependence of the diamagnetic susceptibility in nanoparticles
is reported in Fig. 18.11.

It is noted that the first order correction theory (solid lines in the figures and
corresponding to Eq. (18.80)) has to be abandoned close to the transition temperature
and that χdia takes a finite value at Tc.

Going back to Eq. (18.66), for nanoparticles one can write the normalized wave
function ψ(r) ≡ ψ0 = ψ(Vpart)

1/2, the GL functional being reduced to

f [ψ(r)] = f0 + α0[T − Tc(0)]|ψ0|2 + β

2
|ψ0|4 + e∗2A2

2m∗c2
|ψ0|2, (18.81)

where α0 = (�2/ξ202m∗) while A2 = (H2d2/10), as it is obtained in analogy to the
evaluation of the moment of inertia of a sphere.
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Fig. 18.11 Illustration of the
temperature dependence of
the diamagnetic
susceptibility in the
neighbourhood of the
transition temperature in
samples of independent Pb
nanoparticles of diameter
750Å (a) and 160Å (b). The
solid lines track the
behaviour expected in the
framework of the first-order
fluctuation correction
(Eq. (18.80)) [the
experimental data have been
taken at very small applied
field, so that Tc(H) � Tc(0)
(see Bernardi et al., Phys.
Rev. B 74, 134509 (2006))

(a)

(b)

-

-

-

Thus one notices that the effect of the magnetic field is simply to renormalize the
term in |ψ0|2. By remembering Sect. 18.9.3 one observess that the transition occurs
at the temperature Tc(H) where

α0ε + π2
�
2H2d2

10m∗Φ2
0

= 0, (18.82)

namely at

Tc(H) = Tc(0)

[
1 − 4π2H2d2ξ20

10Φ2
0

]
. (18.83)
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As regards the field dependence of Mdia, if the term in |ψ0|4 in Eq. (18.81) is
neglected,34 then from f = −kBTln(πkBT/α0ε) (see Problem18.12) again by simply
rescaling the term in |ψ|2 one has

f0 = −kBTln

[
πkBT

α0[ε + (4π2H2d2ξ20/10Φ
2
0 )]

]
. (18.84)

Then the single particle magnetization is

Mdia = − ∂f0
∂H

= −kBT
(4π2d2ξ20/5Φ

2
0 )H

ε + (2π2H2d2ξ20/5Φ
2
0 )

. (18.85)

For evanescent field the diamagnetic susceptibility turns out

χdia = −kBT
4π2d2ξ20
5Φ2

0

ε−1, (18.86)

corresponding to the solid lines above Tc in Fig. 18.11.
From Eq. (18.85) one observes that for magnetic field of the order of Hup �√

εΦ0/ξ0d Mdia initiates to decrease on increasing H, corresponding to the upturn
in the field dependence discussed at Problem18.12.

If the term in |ψ|4 in Eq. (18.81) is taken into account the partition function takes
the form

Z0 =
(

π3VpartkBT

2β

)1/2

|exp(x2)(1 − erf (x))|,

with x = α(H)[Vpart/2βkBT ]1/2 and the diamagnetic magnetization turns out

Mdia =
[
2α/(βVpart)

1/2

][
k3/2B TcT 1/2Hπ2ξ20d2

2.5Φ2
0

][
x − exp(x2)

π1/2(1 − erf (x))

]

This expression accounts for susceptibility almost temperature independent within
the critical region (see Fig. 18.11).

34To give a quantitative estimate of the temperature range where this assumption is appropriate, it is
mentioned that theGinzburg-Levanyuk parameter above which the first-order fluctuation correction
is substantially valid, in zero-dimension is given by

Gi(0) � 13.3[Tc(0)/TF ][ξ0/d]3/2

with TF Fermi temperature. (For details see Chap.2 of the book by Larkin and Varlamov.)
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Problems

Problem 18.1 Give a qualitative description of the lack of electric resistance by
considering the scattering event of a Cooper pair.

Solution: For an electric field not so strong to destroy the pairing each pair is acceler-
ated in a way analogous to what illustrated at Sect. 13.4 for the electrons. When scat-
tering occurs one electron changes its individual k and the second electron readjusts
its one k in order to regain the wave function in the form (18.6), after the scattering
event. Thus no change of the momentum of the pair occurs and the scattering is
ineffective. The currents flows through the action of the field on the pairs as a whole
and no change of state due to impurities or lattice vibrations is induced. The Cooper
pair becomes the charge carrier introduced by Londons in their phenomenological
equations.

Problem 18.2 From Eq. (18.5), derive Eq. (18.7).

Solution: The wave function can be written in the k-space in the form

ψ(r) =
∑
k

gkeik·r.

In the absence of interaction the electrons would set in a given k eigenstate and
therefore only one coefficient gk would be present in the summation. The effect of
the interaction is to scatter the pair in other states and more than one coefficient will
be different from zero. The states below EF being occupied gk = 0 for k < kF .

When ψ(r) is substituted in Eq. (18.5) and both members are multiplied by
exp(−ik′ · r) and then integrate over the volume VC , one gets

�
2k2

2m
gk +

∑
k′

gk′Vk,k′ = (ΔE + 2EF)gk,

where Vk,k′ = (1/VC)
∫

V(r)exp[i(k− k′) · r]dr (note that (1/VC)
∫

exp[i(k− k′) ·
r]dr = δk,k′). The scattering matrix element Vk,k′ can be different from zero only
when the two states are separated by an energy of the order of �ωD around the Fermi
surface. Thus one can assume Vk,k′ = −V (attractive potential) for �

2k2/2m �
�
2k′2/2m < EF + �ωD and zero otherwise. Then

�
2k2

2m
gk +

∑
k′

gk′Vk,k′ = (ΔE + 2EF)gk � �
2k2

2m
gk − V

∑
k′

gk′ = (ΔE + 2EF)gk,

with the sum limited to the energy shell specified above. Therefore

gk = A

ΔE + 2EF − (�2k2/m)

http://dx.doi.org/10.1007/978-3-319-17897-4_13
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with A = −V
∑

k′ gk′ k independent, yielding

A = −V
∑
k

A

[
ΔE + 2EF − (�2k2/m)

]
,

that can be rewritten

1 = V
∑
k

1

2ζ − ΔE
,

being ζ the departure of the energy from the Fermi energy, ζ = (�2k2/2m)− EF . By
transforming the sum over an integral over the energy range EF and EF + �ωD (see
Sect. 12.5 and Eq. (12.20)) and assuming that the density of states D(E) in terms of
ζ can be written D(ζ) � D(0), one has

1 = 1

2
VD(0)ln

(
ΔE − 2�ωD

ΔE

)

giving

ΔE = 2�ωD

1 − exp(2/D(0)V)

For small V , so that exp(2/D(0)V) � 1, Eq. (18.7) is found.
This sketch of treatment, with several approximations, can only be considered

the starting point for the full BCS theory. Besides the books by Grosso and Pastori
Parravicini and by Annett mentioned at Sect. 18.2, for presentations of the BCS
picture of the superconducting state the books by Goodstein or by Ibach and Luth
are also suggested.

Problem 18.3 Give an approximate estimate of the size of the Cooper pair by using
the uncertainty principle.

Solution: An approximate estimate of the range ξ or the “size” of the pair, can be
given as follows. Since the energies involved are of the order of Δ and therefore
δE � δ(p2/2m) � (�kF/m)δp � vFδp, from

ξ � �

δp
� EF

kFΔ

one obtains ξ ∼ 103–104 Å, for the typical values of Δ = EF(10−3–10−4).
Since about 1019–1020 electrons are involved in the pairing, in the “volume” of a

pair, namely ξ3 � 10−12 − 10−15 cm3, one finds the center of mass of about 105–108

other Cooper pairs.

http://dx.doi.org/10.1007/978-3-319-17897-4_12
http://dx.doi.org/10.1007/978-3-319-17897-4_12
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Problem 18.4 From the London equations evaluate the magnetic field and current
density in a bulk superconductor occupying the half-space above the xy plane and
inside an infinite superconductor slab according to the geometry sketched below.

Solution: For symmetry reasonsB and j depend on z but not on x and y. Furthermore
jz = 0. Only components in the xy plane are expected for rotj andB (See Eq. (18.18)).
Since one can set Bx(z) = Bx(0)f (z), from ∂2f /∂z2 = (1/λL)f one derives f (z) =
f (0)exp(−z/λL). The same z-dependence holds for j andB. It is noted, however, that
j and B are perpendicular, within the xy plane.

For the slab, field and current are functions of x only. Since the electric field is zero
j is constant in time. From Eq. (18.20) d2By(x)/dx2 = By(x)/λ2

L, with the boundary
condition By(±d) = Hext , one has

By(x) = Hext
cosh(x/λL)

cosh(d/λL)
.

For the current density, from

(4π/c)j = rotB = −k∂B/∂x = −k(1/λL)Hextsinh(x/λL)/cosh(d/λL)

and from B = Hext + 4πM,

rotM = j
c
.

Problem 18.5 In the assumption that the supercurrent along a ring can be consid-
ered equivalent to two electrons running friction-free along one of the Bohr orbit
in the Hydrogen atom, prove that the flux quantization can be obtained from the
Bohr-Sommerfeld condition (see Problem1.4.4) for the angular momentum.

Solution: One can imagine that the current has been launched by increasing an exter-
nal field perpendicular to the ring. The e.m. force F = (−1/c)dΦ/dt corresponds
to an electric field E = F/2πR = −(1/2πRc)dΦ/dt. The acceleration of the charge
2e yields 2eE = 2mdv/dt and then

dΦ = −(2πc/e)d(mvR).

http://dx.doi.org/10.1007/978-3-319-17897-4_1
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From the Bohr condition
∫

d(mvR) = n� one has Φ = −n(hc/2e).
Analogous result is obtained by writing Φ = Li, with L the inductance of the

ring, the energy being (1/2)Li2 = (1/2)(2mv2) and the current i = 2ev/2πR. Thus

Φ = 2mvR

2e
2π = n

hc

2e
= nΦ0,

having used 2mvR = n�.

Problem 18.6 Consider an external magnetic field Hext applied perpendicularly to
the surface defined by a ring including an S-N-S junction in it. The flux collected is
due to Hext plus the one due to the current induced by the variation of the field itself.
Show that when the induced current reaches the value characteristic of the junction a
jump in the flux occurs. Discuss how a signal can be collected and why the sensitivity
is so high.

Solution: The flux, including the term due to the induced current, isΦ = Φext +Li/c.
When the superconducting current reaches Ic:

Φ

Φ

Φ

The change in the flux is very fast (it occurs in a time of the order of picosecond),
then dΦ/dt is very large and another coil nearby the ring can collect the signal.

Problem 18.7 By resorting to the second GL equation and extracting the density
current and circulating it along a close ring, prove that flux quantization can be
derived.
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Solution: From Eq. (18.43), since

∇ψ = iψ∇θ + eiθ∇|ψ(r)|

the current density turns out j = (�e∗/m∗)|ψ|2 − (e∗2/m∗c)|ψ|2A. From the cir-
culation along a ring, by taking into account that

∫
circ ∇θ · dl = n2π and that∫

circ A · dl = Φ, once again Φ = nΦ0.

Problem 18.8 By estimating the condensation energy for each Nb atom show that
the gain in free energy density in the superconducting phase is very small compared
to the thermal and Fermi energies.

Solution: For Nb, with Tc = 9.1K, the critical field at zero temperature is around
2000Oe. The condensation energy is about H2

c /8π � 1.6 × 105 erg/cm3.
In Nb metal (bcc structure and lattice constant 3.3Å) the volume of the cell is

about 3.6×10−23 cm3. The condensation energy per atom turns out 1.8µeV. Accord-
ing to the BCS theory the condensation energy is of the order of (kBTc)

2D(EF) �
kBTc(Tc/TF).

Problem 18.9 Derive approximate expressions of the critical fields Hc1 and Hc2

from the estimate of the flux in correspondence to the first vortex and when the
vortices are in contact.

Solution: When the first vortex is entering the sample Hext is about Hc1 and then
Hc1πλ2

L � Φ0 yielding Hc1 � Φ0/πλ2
L. When Hext is close to Hc2 the effective area

including a fluxon is now reduced to πξ2. Thus Hc2 � (Φ0/πξ2) � √
2κHc, Hc1 �

Hc/
√
2κlnκ and Hc1Hc2 � H2

c lnκ (Eq. (18.58)). It is reminded that, for isotropic
superconductors, more correct expressions for the critical fields are Hc1 � Φ0/4πλ2

L
and Hc2 � Φ0/2πξ2.

Problem 18.10 From Eq. (18.48) directly obtain an approximate estimate of the
coherence length (for the deduction based on the fluctuation effects see Sect. 18.11.1).

Solution: From

ξ2
d2f

dx2
+ f − f 3 = 0,

by introducing (g − 1) = f (with f � 1), to the first order f − f 3 � (1 + g) −
(1 + 3g + · · · ) � −2g and d2g/dx2 � 2g/ξ2 and g(x) � exp(±√

2x/ξ(T)) with
ξ2(T) = �

2/2m∗|a(T)|.
Problem 18.11 By assuming for each pair due to superconducting fluctuations
above Tc the diamagnetic susceptibility as for a system of two electrons at a dis-
tance given by the coherence length, express the diamagnetic susceptibility (for unit
volume) to be attributed to the fluctuating diamagnetism.
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Solution: From χat = −e2 < r2 > /mc2 with < r2 >� ξ2(T) = [�2/2m∗α(T)],
by evaluating the number density of Cooper pairs from

< |ψ|2 >=
∑
k

< |ψk|2 >= 1

8π3

∫ 1/ξ0

0
4πk2 < |ψk|2 > dk

then Eq. (18.80) follows (it is noted that it is an approximate expression).

Problem 18.12 By referring to a model situation of fluctuating superconducting
droplets of spherical shape and size d smaller than the coherence length (so that
the order parameter can be considered site-independent) from Eq. (18.66), by con-
sidering that the potential vector is A = H2d2/10 (analogously to the moment of
inertia of a sphere), derive the effect of the magnetic field in correcting the transition
temperature Tc(0) and explain why the magnetization curves have an upturn in the
field dependence of Mdia versus H.

Solution: The partition function for zero dimension is Z0 = ∫
d2ψ0exp(−f [ψ0]/

kBT)35 with
f [ψ0] = α(T)|ψ0|2 + (e∗2/2m∗c2)A2|ψ0|2. For A = 0 one would have F0 =

−kBTlnZ0 = −kBTln[πkBT/α(T)]. With A �= 0 one can simple correct this result
by writing

F0 = −kBTln

(
πkBT

α0[ε + (4πξ2 < A2 > /Φ2
0 )]

)
,

with α0 = �
2/4mξ20 (according to the GL coherence length, see Eq. (18.71)) while

Φ0 = hc/2e. Then

Tc(H) = Tc(0)

[
1 − 4πξ2H2d2

10Φ2
0

]

and

Mdia(ε, T) = −∂F0

∂H
= −kBTH

(4π2ξ20d2/5Φ2
0 )

ε + (2π2ξ20H2d2/5Φ2
0 )

,

with an upturn field at Hup � εΦ0/4ξ20 (for d � ξ).

Problem 18.13 In the assumption that the first GL equation holds at all temperatures
below Tc(0), evaluate the temperature dependence of the upper critical field Hc2(T).

Solution: Let us refer to the transition from the normal to the superconducting state
occurring in the presence of an external field at Tc(H) < Tc(0). For type II super-
conductors the transition is second order (see Sect. 18.10). Thus at the onset of the
superconductivity the concentration of Cooper pairs nc = ψ∗ψ is small and the term
b|ψ|2ψ in Eqs. (18.41) or (18.51), can be neglected. For the magnetic field inside

35This is the expression coming as functional integral
∫

d2ψ(r)exp(−f [ψ(r)]/kBT) over the “field”
ψ(r). Thus Z0 = ∫ ∞

0 d|ψ0|2exp(−α|ψ0|2/kBT) = πkBT/α(T).



18.12 Superconducting Nanoparticles and the Zero-Dimensional Condition 589

the material one can assume B � Hext . By referring to the second Landau gauge for
which A = Hext(0, x, 0), Eq. (18.51) is written

(
∂2

∂x2
+ ∂2

∂z2

)
ψ +

(
∂

∂y
− i

2eHextx

�c

)
ψ = −ξ−2ψ

as already used for the Landau diamagnetism (Eq. (A.13.1.1)) and reminiscent of the
Schrodinger equation for free particles in magnetic field. As for the derivation of the
Landau levels (Appendix13.1) the eigenfunctions are of the form

ψ(x) = φ(x)ei(kyy+kzz)

and by redefining x′ = x − (�c/2eHext)ky one has

(
−�

2

2

d2

dx′2 + 2e2H2
ext

c2
x′2

)
φ(x′) =

(
�
2

2ξ2
− �

2k2z
2

)
φ(x′)

(see Eq. (A.13.1.2)). This equation is formally the one for a displaced harmonic
oscillator (of unit mass) for which the eigenvalues are En = (n + 1/2)�ωc with
ωc = 2eHext/c.

Thus one writes
�
2

2ξ2
− �

2k2z
2

=
(

n + 1

2

)
2�eHext

c
.

The maximum allowed value of Hext with non-zero solution is Hmax
ext = Hc2(T)

corresponding to n = 0 an kz = 0. Therefore

Hc2(T) ≡ Hmax
ext = �c

2e

1

ξ2(T)
= �c

2eξ2(0)

(
1 − T

Tc

)
.

Problem 18.14 By considering a gauge transformation that adds∇f (r) to the vector
potential and that changes the phase of the order parameter, prove that the Ginzburg-
Landau theory satisfies the gauge invariance.

Solution: From A(r) = A(r) + ∇f (r) by considering the momentum operator
p = −i�∇ + (e∗A/c) (see Eq. (18.38)), by changing the order parameter from ψ(r)
to ψ(r)exp(iθ(r)), one sees that

eiθ(r)
(

−i�∇ + e∗A
c

)
ψ(r) + ψ(r)eiθ(r)

�∇θ(r) =

= eiθ(r)
[
−i�∇ + e∗

(
A + �

e∗ ∇θ(r)
)]

ψ(r).

http://dx.doi.org/10.1007/978-3-319-17897-4_13
http://dx.doi.org/10.1007/978-3-319-17897-4_13
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Thus, when the phase is changed, transforming ψ(r) to ψ(r)exp(iθ(r)), andA trans-
formed intoA+(�/e∗)∇θ(r) the free energy is unchanged, as well as all the physical
variables.
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Ashcroft, N.W., 338, 520
AsH3 molecule, 282
Asymmetry parameter

of the electric field gradient, 169
Atomic diamagnetism, 140
Atomic orbitals, 11
Atomic polarizability, 123, 124, see also

Stark effect
of Hydrogen (ground state), 124

Atomic units, 145
Au crystal, 346
Auger effect, 70
Auto-correlation function, 151
Auto-ionizing states, 70

B
B3+ atom, 80
B2 molecule, 252
Ba atom, 184
Balmer spectroscopic series, 15, 17, 174
Balzarotti, A., 86
Band of levels

degenerate, 379
in crystals, 354, 355, 364
overlap, 380, 393

Band spectra (in molecule), 299
Bardeen, Cooper and Schriffer (BCS), 540

theory, 540, 545, 547, 549, 564, 565, 587
Barn, 168
BaTiO3, 277, 346
Be2+ atom, 73, 80
Be crystal, 393
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BeCu crystal, 346
Bednorz, J.G., 527, 541
Benzene molecule, 278–280, 298, 355, 375,

see also C6H6
Berezinskii-Kosterlitz-Thouless, 453
Bessel functions, 573
Bi atom, 181

crystal, 393
Binary alloys, 446, 449
Black-body radiation, 44, 46, 52
Blakemore, J.S., 368
Bloch equations, 204

orbital, 354, 356, 375, 392
oscillations, 366, 408
T 3/2 law, 518
wave packet, 406

Blundell, S.J., 145, 470
Bohm-Aharonov effect, 558
Bohr atom, 15

magneton, 26, 144
model, 15, 26, 30, 173
radius, 7, 145
radius in positronium, 163, 414

Bohr-Sommerfeld condition, 15, 153
Bohr-van Leewuen theorem, 383
Boltzmann statistics, 44, see also Maxwell-

Boltzmann
Bonding (and anti-bonding) orbitals, 242,

245
Born-Mayer repulsion, 263, 394, 400
Born-Oppenheimer separation, 224, 281,

289, 353, 417
Born-Von Karmann, 48, 359
Born-VonKarmann boundary conditions, 48
Bose-Einstein condensate, 446
Bose-Einstein statistical distribution func-

tion, 49
Bosons and bosonic particles, 327
Br2, 252
Brackett series, 17
Bragg law, 345

reflection, 374, 438
Branches, acoustic and optical, 417, 419,

427, 439
Bravais lattice, 338, 346
Breit-Rabi diagram, 180
Brillouin cell and zone, 343–345, 350

function, 138
reduction to, 361, 423, 425

Broken symmetry, 448
Buckel, W., 557, 559
Budker, D., 40, 268
Bulk modulus, 399, 435

Burns, G., 338

C
C atom, 263, 274, 278, 286, see also carbon

atom
C2H2 molecule, 277, 328
C2H4 molecule, 275, 278
C3H3 molecule, 286
C6H6, 278, see also benzene

susceptibility, 281
Ca atom, 147
Ca crystal, 346
Calcium atom, 75
Canonical moment, 153
Carbon atom, 272, 274, 275, 277, 278, 286
Cellular method, 357
Central field approximation, 1–3
Central peak, of diffusive type, 461
Centrifugal distortion, 312
Centrifugal term, 7
Cesium maser, 285
CH, 263
CH4, 274, 277
Charge transfer, 256
Chirality, 521
Chu, P.C.W., 541
Cini, M., 86
Cl, 263, 265
Cl−, 263, 266
Clapeyron equation, 448, 449
Clausius-Mossotti relation, 307, 481
Clebsch-Gordan coefficients, 92, 114
Cleeton, 283
Clementi-Raimondi rules, 112
Closed shells, 91–92
Cluster spin glass, 562
CO2 molecule

modes infrared active, 320
normal modes, 318
rotational levels, 332

Coarse-grain average, 449
Cochran, W., 428
Coexistence line, 446
Coherence length, 540, 549, 550, 563
Cohesive energy, 394, 401

for inert atoms crystals, 398
in KCl, 400
in molecular crystals, 398

Cole-Cole relationships, 499
Collapse transitions (in gels), 446
Compound doublets, 67
Compressibility, 399, see also bulk modulus
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Conductivity, 405, see also electric transport
Configuration interaction CI, 259
Contact term, 160, 161, 163, 188, see also

Fermi contact interaction
Cooper andCooper pairs, 410, 457, 540, 545,

554, 555, 568, 579, 584
lifetime, 577

Copper, 213
crystal, 348, 434

Copper oxides (cuprates), 511, 541
Hg-based, 541

Correlation diagram (separated-united
atoms), 231

Correlation effects, 113, 411
electronic, 505–509
energy, 561

Correlation length, 453
in 2DQHAF, 524–530

Correlation time, 153
distribution and effects on dielectric con-
stants, 498–502

Correspondence principle, 23, 154, 292
Cosmological principle, 50
Coulomb gauge, 550
Coulomb integral, 71, 74, 76, 111, 254, 255,

258
Covalent crystals, 391, 394
Cr3+ ion, 146
CrBr3, 450
Creswick, R.J., 573
Critical

behaviour, 445, 497
current, 540
divergences, 446
exponents, 453, 489, 499, 525, 529, 531
exponents, dynamical, 463
Ising-like pseudo-spin, 500
isochore, 448
point, 362, 422, 445, 446
quantum, 525, 564
region, 458, 514, 580
temperature, 446
variable, local, 466, 486, 488
wave-vector, 459, 461

Critical fields
Hc1 and Hc2, 559, 563
thermodynamic, 559, 572

Crystal field, 401
Crystal momentum, 358, 410
Crystal structures, 338–342, 345–348
Cs atom, 161, see also Alkali atoms

spin-orbit doublet, 67
CsCl crystal, 345

Cu crystal, see copper
Cu2+ ions, 560
Cu1−xMnx , 511
CuGeO3, 537
CuO6 octahedron, 277
Curie law, 138

susceptibility, 142, 488, 502
Curie-Weiss temperature, 514, 516
Current density, 405, 408
Cyclotron frequency, 153
Cyclotron motion and frequency, 360
Cylindrical coordinates, 228–231

D
d2sp3 hybridization, 277, 278, 393
1D Ising model, 508
D2 molecule dissociation energy vs H2, 306

and Raman spectra, 328
Darwin term, 57
DBr molecule, 294
De Broglie, 345
De Broglie wavelength, 367, 372, 374, 385
De Haas-Van Alphen oscillations, 410
De Mille, D.P., 40, 268
Debye, 212, 576

correlation time, 482
frequency and wave-vector, 426, 427,
576

model for lattice vibration, 417, 419, 425,
426, 428, 430

radius, 427
temperature, 431, 432, 434, 439, 442
temperature for elements, 431, 433, 434,
441, 547, 548

Debye-type relaxor, 464
relaxation time, 464

Debye-Waller factor, 433, 438
Degeneracy from dynamical equivalence, 6
Degeneracy, accidental and necessary, 11,

126
Degree of ionicity, 262
Delocalization, 272
Density (of k-modes or of k-states), 48, 363
Density (of modes or of energy states), 364,

547
Density functional theory, 113, 271
Density matrix, 142, 150, 205, 451, 492, 494
Depolarization, factor and field, 480
Determinantal eigenfunctions, 81
Deuterium, 22, 23

quadrupole moment, 175, 177
Diamagnetic levitation, 544
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Diamagnetic susceptibility, 122, 141, 142,
281, 288, 544, 564, 587

for inert gas atoms, 141, 142
in superconducting nanoparticles, 580–
582

Diamagnetic suspension, 544
Diamagnetism (atomic), 141

Landau, 409
perfect, 543
superdiamagnets, 544

Diamond, 347, 379, 391, 393, 394, 427, see
also carbon

Diatomic
crystal, 346, 423, 439, 442
one-dimensional crystal, 423, 425

Dielectric measurements, 465
Dielectric response, ionic, 481–482, 485
Dielectrics, 446
Diffuse (series lines), 67
Digonal hybridization, 277
Dilution model, 527–529
Dipolar alphabet, 182
Dipolar field, 182
Dipole magnetic moment, 157

field induced, 322
Dipole moment

field induced, 322
Dipole-dipole interaction, 164, 181
Dirac, 26, 28, 58, 90, 162, 174

δ function, 42, 375
Disordered crystals, 446
Dispersion relations, 363, 419, 423, 424,

426, 427, 517
Displacive ferroelectrics, 485, 492
Dissociation energy, 252
Distribution (of the Maxwellian velocities),

53, 56
Dolinsek, J., 530
Doppler

second-order shift, 444
Doppler modulation, 435

broadening, 53, 56
first and second-order, 444

Double exchange (mixed valency), 512
Double excited states, 70
Double-well, 469
Doublet (spin-orbit), 61

for alkali atoms, 67
2DQHAF, 524–530

spin dilution and spin doping, 525
Drude model and conductivity, 405
Dy3+, 116
Dynamical equivalence, 5, 6, 248

Dynamical matrix, 419, 421
Dynamical structure factor, 460–462, 465,

472, 475
Dzyaloshinsky-Moriya, anisotropic ex-

change, 513

E
Edward-Anderson order parameter, 517
Effective electron mass, 365, 385
Effective hyperfine field, 161
Effective nuclear charge, 5, 72, 78, 83, 142
Effective potential, 3, 5
eg levels, 13, 404
Ehrenfest criterion, 452
Einstein

model of crystal, 417, 425, 426, 431, 432,
436, 441

relations, 41, 44, 45
relativity theory, 443
temperature, 431

Electric and magnetic field effects in atoms,
121

Electric dipole approximation, 41
induced, 124, 319
mechanism of transition, 41, see also se-
lection rules

of molecules, 260
oscillating (in crystals), 424
quantum, associated to a pair of states,
43

Electric field gradient, 169, see alsoQuadru-
pole interaction

Electric polarizability, 125
for quantum oscillator, 128
rotational, 293

Electric quadrupole (mechanism of transi-
tion), 43, 118

Electric quadrupole moment, 166, see also
Quadrupole interaction

of deuteron, 175
Electric quadrupole, selection rules, 114
Electric transport, 405–408
Electrical harmonicity, 320
Electrical permeability, 143
Electro-optical properties, 346
Electromagnetic ranges, 36
Electromagnetic symmetry, 144
Electromagnetic units, 145
Electron affinity, 80, 258
Electron-electron repulsion, 74

repulsive interaction, 2
Electronic charge transfer, 261
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Electronic configuration, 33, 98
in atoms, 33, 91
in molecules, 228–235

Electronic spectra, 324
Electron states in crystals, 353–379
Eliashberg, 549
Ellipsoidal coordinates, 230
Empty lattice model, 363, 368
Energy functional, 78
Entropy

from quadrupole levels, 221
from rotational motion, 295, 300
in spin systems, 210, 211
magnetic and lattice, 212
of radiation, 50
vibrational, 433

Entropy and specific heat, 177, 221, see also
Specific heat

EPR, 178, 181, 204
Equipartition principle, 47
Eu2+ atom, 104
Eu3+ atom, 99
Evanescent field condition, 144, 218
Ewald procedure, 395
Exchange and correlation, 506, 507
Exchange degeneracy, 1, 92
Exchange frequency

Hamiltonian, 75
Exchange integral, 74, 90, 98, 140, 200

extended (in molecules), 255
reduced, 255

Exchange interaction, 61, 510
Exchange symmetry, 6, 73, 74
Experimental probes, for critical dynamics,

465, 492, 493
in 2DQHAF, 528–530

Exponents, dynamical, 463, 499

F
19F nucleus, 117
F quantum number, 161
F-center, 127
Fanfoni, 86
Farach, H.A., 572, 573
Fe atom, 81, see also Iron
57Fe nucleus, 117
Fe2+ atom, 149, 411
Fe3+ atom, 142, 512
Fe-based superconductors and oxypnictides,

541, 550
Fermi, 114

contact interaction, 85

energy, 441
gas, 409, 411
surface, 363, 410
temperature, 434
wavevector, 413

Fermi-Dirac statistic or distribution, 368,
386, 562

Fermions, 327
Ferrimagnetism, 513
Ferroelectric catastrophe, 481, 501
Ferroelectric state, 346
Ferroelectric transition, 318, 346

in the mean field scenario, 485–492
Ferroelectrics, 446
Ferromagnetic and antiferromagnetic, 446
Ferromagnetic metals, 409, 412

ordered states, 508, 517
Feynman, R.P., 39, 555
Fibonacci crystals, 338
FID, 208, 209
Fine structure, 28, 32
Fine structure constant, 43, 57, 145, 174
Finite nuclear mass, 21
Finite size of the nucleus, 19
Finite width of the lines, 44
Fisher criterion, 452
Fluctuation-dissipation theorem, 150, 197,

217, 460, 461, 470
Fluctuations, 445

enhancement, 445, 446, 451
quantum, 509, 517
slowing-down, 445, 446, 460, 461, 463,
486

time-dependence, 460
Fluctuations of the e.m. field, 174

of the magnetization, 452
Flux expulsion, 551
Flux flow, of vortices, 574
Flux quantization, 410

in superconducting rings, 553–554
Fluxon (superconductivity) and flux lines,

410, 554, 573
Fock, 5, 112, 114
Fourier components, 373, 379

expansion, 343, 372
transform, 419, 420

Fr atom, 61
Frölich, 540
Franck-Condon

factor, 325
principle, 324–326

Free electron model, 365, 368
Free energy, 178
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Free energy density
expansion, 455

Frenkel, 27
Friedman, R.S., 113
Frustration, 509, 520–524
Fullerene, 347
Functional, 458
Fundamental constants, 36

G
GaAs, 347, 393
Gallium specific heat, 387

crystal, 388
quadrupole moment, 388

γ emission (from 57Fe), 117
Gamma-ray, 435–437
Gap (energy gap in crystals), 355, 372, 374,

385, 392
GaSb, 393
Gauge invariance, 565
Gaussian approximation, 458, 569, 575
Gaussian distribution (around the mean

value), 197
Gauss system, 143–145
Gd3+, 146
Generalized moment, 25
Generalized susceptibility, 497
Gerlach, 115
Germanium atom, 108

crystal, 347, 379, 391
Gibbs free energy, 451

functional, 565
Ginzburg, 540
Ginzburg-Landau, 549

correlation time, 577
equations, 566
theory, 549, 550, 553, 564–571
time-dependent, 577

Ginzburg-Levanyuk parameter, 582
Giulotto, L., 174
Glauber model, 492
Goldstein, H., 25
Goodstein, D.L., 584
Gor’kov, L., 565, 580
Graphite, 347
Grosso, G., 411
Grotrian diagram, 62
Ground states of various atom, 99, 104
Group theory, 340
Group velocity, 359, 360, 365
Gunn diodes, 292
Gyromagnetic ratio, 31, 89, 93, 103, 144,

158, 203

H
H atom, see Hydrogen
H− atom, 258
H2 molecule, 306

comparison MO and VB, 257
in the VB approach, 256
mechanical anharmonicity, 305, 306
Raman spectra, 328
rotational constant, 294
rotations and vibrations, 306
specific heat, 330
VB scenarios, 257
vibration constant, 306

H2O, 263, 273, 274
H+
2 , 223, see also Hydrogen molecule ion

Hα line, 23, 174
Hβ,γ,δ lines, 23, 174
Hahn, 208
Hahn echo, 208
Haken, H., 210, 329
Hall effect (fractional), 338
Hansch, 174
Harmonic approximation, 244, 302, 305,

417, 419, 429
Harmonic potential, quasi-, 468, 487, 493
Hartree, 3, 5, 89, 112–114
Hartree-Fock theory, 354
HB, 263
HBr, 263

rotational constant, 299
HCl, 261, 263

and specific heat, 333
rotational constant, 294
rotational states, 333
rotovibrational spectrum and deuterated
molecule, 312

Stark effect on rotational states, 301
vibrational constant, temperature and
specific heat, 314

He+, 17, 86, 232
He2, 249
He+2 , 249
Heisenberg, 148, 235, 453, 487, 492, 508,

519, 525, 537
exchange frequency, 152
Hamiltonian, 75, 148
principle, 44, 235
systems, 453

Heitler, 329
Helium atom, 2, 6, 69–76, 80, 81, 90, 110,

142, 254, 255, 328
Hellmann-Feynman theorem, 245
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Helmholtz free energy, 210, 221, see also
Free energy

Hermite polynomials, 129, 302, 303
Hertz, 145
Herzberg, G., 329
Heteronuclear molecules, 260, 305
HF, 263, 294, 309
Hg atom, 76
High-temperature (HTcSC), 560–564
Hole doping, 562
Holes, 385, 405, 408
Homogeneous functions, 531
Homonuclear molecules

MO scenario, 248
Hopping integral, 506, 512
Hubbar bands (LHB, UHB), 562
Hubbard, 411
Hubbard Hamiltonian, 561, see also Stoner-

Hubbard
Hückel, 279
Hückel criterium, 279
Hund rules, 97, 100, 104, 251
Hybrid band, 393
Hybrid orbitals, 83, 273, 346, 347
Hybridization, 391, see alsoHybrid orbitals,

d2sp3

Hydrogen atom, 7
fine and hyperfine structure, 31
intergalactic, 56
life-time of the 2p states, 51
under irradiation, 56

Hydrogen bond, 392
Hydrogen molecule, 223, see also H2 mole-

cule
Hydrogen molecule ion, 223
Hydrogenic atoms, 1

Darwin term in, 57
expectation values, 204
in weak and strong magnetic field, 166
polarizability, 124
quadrupole coupling constant, 167

Hyperfine quadrupole hamiltonian, 188, see
also electric quadrupole and quadru-
pole interaction

Hyperfine structure, 31, 157
for Na doublet, 176
in Hydrogen, 172
in Hydrogen molecule ion, 266

I
Incommensurate phases, 446, 498
Independent electron approximation, 71

Inert gas atoms, cohesive energy, 394
diamagnetic susceptibility, 141, 142

Infrared radiation, 304
InSb, 347
Instability, 446
Intergalactic Hydrogen, 56
International system of units, 143
Interval rule, 94, 105, 162
Inversion doublet, 272, 282, 283
Inversion symmetry, 323
Inverted multiplet, 98
Ionic crystals, 391–395, 398

cohesive energy, 394–395, 398
Iron crystal (bcc), 348, 411
Irreversibility temperature, 564

FC and ZFC conditions, 553, 564
Ising model, 200, 508
Ising systems, 453
Ising-like pseudo-spin, 500
Isomer shift, 191, 438
Isotope effect, 540
Isotopic shift, 22, 68
Itinerant electrons, 413

magnetic properties, 409, 411

J
J1-J2 model, 523
Jahn-Teller effect, 228
jj scheme, 91, 105–109
Johnston, D.C., 525
Josephson, 540

effects, 554–557
junction, 554–557

K
K atom, see Alkali atoms
K+, 266
Kα line, 23, see also X-ray lines
Kagomé lattice, 522
Kamerlingh Onnes H., 539
κ parameter, 571–574
KBr crystal, 346, 400
KCl, 263, 399, 400
KDP, 392
KDP-type ferroelectrics, 490, 497
KF, 263
Kimball, D.F., 40, 268
Kittel, C., 338
Klystron, 292
k, momentum of the electron, role and prop-

erties, 358, 359
Kohn anomaly, 534
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Koopmans theorem, 113
Kramers-Kronig relations, 461, 471, 483
Kronig and Penney model, 375

L
La atom, 104
La2CuO4, 507, 508, 511, 524, 527, 529, 561,

563
Lamb, 28, 162, 174
Λ-doubling, 229
λ transition, 449
Landau, 551

criterion, 452
diamagnetism, 409
gauge, 409
levels, 409, 410
statistical theory, 455, 460

Landau-Khalatnikov, 460
Lande’ g factor, 32, 131
Lande’ g nuclear, 158
Langevin function, 138

susceptibility, 216, see also Magnetic
susceptibility

Laplace equation, 403
Larkin, A.I., 578, 580, 582
Larmor frequency, 95, 103, 122, 128, 409

precession, 132, 202
Laser, 23, 185
Latent heats, 447, 449, 452, 541
Lattice vibrations, 417, 545
Laue X-ray diffraction, 337
LCAO molecular orbitals, 242
Lead crystal, 346, 391, see also Pb
Legendre polynomials, 71, 76, 111
Legendre transformation, 454
Lennard-Jones potential, 391, 396, 398
Li atom, 61, see also Alkali atoms

Grotrian diagram, 62
Li crystal, 392
Li+ atom, 61
Li2+ ion, 15, 17
LiF crystal, 392
Life-time, 23, 435, 436, 438
Ligand-field theory, 401
Light scattering, 465
LiH, 263
LiH crystal, 346
Lindemann criterium, 433
Line at 21cm, 163
Linear electric approximation, 305
Linear response theory, 140
Lithium

bulk modulus, 389
crystal, 348, 388

Lo Surdo, 124
Local density approximation, 113, 271
Local moments and delocalized electrons

representation, 505
London

equations, 544
theory, 551–553

London (Heinz and Fritz), 544
London gauge, 551
London interaction, 257, 396, 398
Long-wave length approximation, 41
Lorentz

field, 480
force, 121, 143, 144, 359, 574
gauge, 25
oscillator, 130

LS scheme, 91–95, 108, 109, 111, 114, 115,
130, 150

in molecules, 233
LST relation, 484, 493
Lyman series, 16

M
Madelung constant, 395, 400
Magnetic anisotropy, 453
Magnetic dipole (mechanism of transitions),

43, 149, 169, 171, 174, 178, 194, 201
selection rules, 114

Magnetic domains and domain walls, 519,
537

Magnetic field expulsion, 553
Magnetic field Hamiltonian, 129
Magnetic frustration, 509, 517
Magnetic moments, 25, 90, 95

effective, 95, 98, 136, 137
in field, 137
of nuclei, 158

Magnetic permeability, 143
Magnetic resonance, 201–209
Magnetic splitting, 26, 29
Magnetic susceptibility, 144
Magnetic temperature, 210
Magnetite, 512
Magnetization

curves, 146
field induced, 196
saturation, 138
spontaneous, 140, 519, 532

Magnetron, 292
Magnons, 509, 517
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Magnus force, 574
Manganites, 512
Martensitic materials, 446
Maser, 44, 283
Matrix Hamiltonian, 39
Maxwell-Boltzmann statistics, 47
Mc Millan, 549
Mean field exponents, 456
Mean field interaction, 121, 136
Mean field interaction or approximation

(MFA), 486, 487, 494, 500, 505, 519
bare susceptibility, 506

Mean free path, 405, 413
Mean free path of electrons, 413, 540, 549,

573
Mean square vibrational amplitude, 432
Mechanism of transition, see selection rules
Meissner effect, 540, 543, 549, 551, 564
Melting, 447
Mercury atom, 76
Mermin, N.D., 338, 519
Mermin-Wagner-Berezinsky theorem, 453,

519
Metals and metallic crystals, 391, 394
Mg crystal, 347
MgB2, 541, 560
Miller indexes, 340, 345, 348
MKS system of units, 143
Mn, 346, 516
MnF2, 513
MnO, 510
MO-LCAO, 238–262
MO-LCAO-SCF, 238
Mobility, 405
Modes (of the radiation), 46

of vibration, see Vibrational motions
Molecular crystals, 391–392, 394, 398
Molecular orbitals (MO), 242, see alsoMO-

LCAO
Molecular velocities, 55
Moments, angular, magnetic and quadrupo-

lar, of the nuclei, 158
Monoatomic one-Dimensional

crystal,lattice vibrations, 420
Monte Carlo simulations, 413, 462
Mori continuous fraction, 462
Morse potential, 306, 308–309
Moseley law, 53
Mössbauer effect, 53, 417, 435, 438, 443

spectroscopy, 438
Mössbauer spectroscopy, 438, 466
Motional broadening, 53
Mott

insulator, 527, 561
transition, 507

Müller, K.A., 527, 541
Multi-electron atoms, 1
Multiplets (quantum theory), 110
Muon, 22

life-time, 22
molecule, 243

Muonic atom, 1, 22, 23, 190

N
N2 molecule, 250

rotational constant, 294
rotovibrational structure and Raman
spectra, 328, 329

vibrational constant, 304
N−
2 , N

+
2 , 252

Néel, temperature, 513, 514, 516, 527
antiferromagnetic order, 523

Na atom, 25, see also Sodium atom and al-
kali atoms

doublet, 63
doublet hyperfine, 176
quantum defect, 67
Stark effect, 127

Na crystal, 357
Na2 molecule, vibrational constant, 304
NaCl crystal, 346, 392, 395, 399, 400, 493
NaCl molecule, 263

rotational constant, 294
vibrational constant, 303, 313

NaNbO3, 346
NaNO2, 486
Nanoparticles (superconducting), 567, 575
Natural broadening, 44, 51
20Ne nucleus, 117
Nearly free electron model, 372, 374
Negative temperature, 46
Nesting and nesting wave-vector, 535
Neutron

diffraction, 345, 349, 438
spectroscopy, 427

Neutron diffraction, 329, 438
inelastic scattering, 322
spectroscopy, 427

Ni crystal, 346
Ni metal, 413
NMR, 193–204

imaging, 208
NO, 263
Non-crossing rule (or non-intersecting rule),

233
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Non-linear σ model, 527, 529
Normal coordinates, 317
Normal modes

in polyatomic molecules, 289, 319
infrared active, 320
spectroscopically independent, 319

Nuclear g-factor, 194
Nuclear magneton, 158
Nuclear moments, 157, 213, see also Nuclei
Nuclear motions

in diatomic molecules (separation of ro-
tational and vibrational motions), 289–
294

in molecules, 289, 333
Nuclear spin statistics (in homonuclear di-

atomic molecules), 327, 330
Nuclear-size effects, 22, 24
Nuclei, properties of, 158

O
O2 molecule, 250

Raman spectra and rotational lines, 328
rotational constant, 294
vibrational constant, 304

O3, 251
Oblate rotator, 298
OCS molecule, rotational states in electric

field, 332
Octahedral coordination

crystal field, 404, 414
of oxygen atoms, 404

Ohm law, 368, 405
Onsager

field and reaction, 480–481
model, 508

Optical electron, 63, 70
Optical pumping, 133, 268
Order parameter, 445

for superconductive transition, 458
Order-disorder ferroelectrics, 485, 490
Orientational electric polarizability, 296–

297, 480–481
Ornstein-Zernike expansion, 462
Ortho molecules and rotational states, 328
Ortho-Hydrogen, 330
Orthohelium, 70, 85
Overlap (band overlap), 393
Overlap integral, 239
Oxygen atom, 119
Oxygen octahedra, 346

P
P and R branches, 311
P crystal, 345
Palladium crystal, 348
Para molecules and rotational states, 327
Para-Helium, 70, 85
Para-Hydrogen, 327
Paraconductivity, 577–580
Paramagnetic susceptibility, 122, 138, 139,

217, see alsoMagnetic susceptibility
for Fermi gas, 409

Paramagnetism, 122, 141
Van-Vleck, 141

Parity, 12
Partition function, 430, 433, 443
Paschen series, 16, 17
Paschen-Back

effect, 130
on the Na doublet, 135, 136, 163, 176
regime, 97, 132, 133

Pastori Parravicini, G., 411, 545
Pauli principle, 6, 74, 80, 89, 92, 119, 371,

405
paramagnetism, 368, 383
susceptibility and, 389, 411, 412

Pauling entropy, 522
Pb crystal, 346, 380, see also Lead
Pd metal, 413
Penetration length, 552, 560, 563, 570–571
Percolation threshold, 526
Periodic boundary conditions, see alsoBorn-

Von Karmann
Periodical conditions, 48
Perturbation effects (in two levels system),

37
Pfund series, 17
Phase diagrams, 446–454
Phase transitions, 139, 140, 318

paramagnetic-ferromagnetic, 448
Phonons, 430
Phosphorous atom, 102
Photon echoes, 208
Photons (as bosonic particles), 47
Photons momentum, 424, 436
Pinning, 574
Planck distribution function, 47, 429
Point groups, 340
Polarizability

anisotropic, 323
dipolar, ionic and electronic, 296
electronic, 479
in HCl, 307
in hydrogen, 397
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in molecule, 316
of the harmonic oscillator, 315
orientational, 296–297
pseudo-orientational, 127

Polarization of the radiation and transitions,
43, 132

Polarization, spontaneous, 346, 485, 488
Polyatomic molecules, 271

normal modes, 316
Polymorphs and polymorphism, 446, 447
Poole, C.P., 572, 573
Population inversion, 46
Positron, 22
Positronium, 22, 24

hyperfine splitting, 163
Potassium crystal, 385
Potential energy, 2, 5, 19, 25, 123, 225, 227,

281, 302, 308, 318, 354, 358, 375,
397

Pound, 443, 444
Pre-dissociation, 228
Primitive

cell and vectors, 339
lattice, 341, 349–350

Principal (series lines), 67
Prolate rotator, 298
Proton magnetic moment, 194
Protonium, 24
Pseudo-gap, 562
Pseudo-potential, 373
Pseudo-spin

dynamics, in order-disorder ferro-
electrics, 494–498

formalism, theory, 490–492
interaction, 75

Pt metal, 413
Purcell, E.M., 145

Q
Q-branch, 299, 311, 329
Quadrupole electric lens, 284
Quadrupole interaction and quadrupole cou-

pling constant, 167
Quadrupole moment, 158

(of deuterium), 175
of Gallium, 388

Quality factor, in microwave cavities, 559
Quantum critical (QC) regime, 526
Quantum defect, 62, 65, 68
Quantum disordered (QD) regime, 527
Quantum electrodynamics, 26
Quantum number F, 157

Quantum pressure (from electron gas), 382
Quantum rotator, 330
Quantum tunneling (in ferroelectrics), 490
Quasi-harmonic approximation, 493
Quasi-second order transitions, 489
Quenching of orbital momenta, 146, 415

R
Rabi, 180, 201, 268, 284
Rabi equation, 40
Radial equation and radial functions, 7
Radial probability density, 10, 65
Radiation damping, 46
Radiofrequency spectroscopy, 201
Radius of the first orbit (in Bohr atom), 7
Raman spectroscopy, 321–323, 330
Random phase approximation, 140
Rare earth atom (electronic configuration

and magnetic moments), 98
Rayleigh diffusion, 321, 328
Rb atom, 24, see also Alkali atoms
RbH molecule, vibrational frequency and

dissociation energy, 309
Rebka, 443, 444
Reciprocal lattice, 337, 340, 343–345

vectors (fundamental), 343
Recoil energy, 53, 436
Recoilless fraction, 438, 444
Reduced mass, 21, 22, 190
Relativistic

effects, 438
mass, 173
shift, 186
terms, 28
transformation, 27

Relaxation mechanisms, 40, see also Reso-
nance technique

Relaxational
behaviour, 469
critical, 486
modes, 486

Renormalization group, theory, 531
Renormalized classical (RC) regime, 526
Residual charge, 6
Residual first-order Doppler broadening,

186
Resistivity, 228, 337, 354, 358, 413, 539,

541, 543, see also Conductivity
Resonance absorption, 53, see also Möss-

bauer effect
Resonance integral, 239, 241, 354
Resonance technique, pulsed, 204



602 Index

Response functions, 446–454
Riemann zeta function, 49
RKKY interaction, 511–523
Roothaan, 271
Rotational

constant, 292
frequency and motions, 291
spectroscopy (principles), 292
temperature, 294

Roto-vibrational
eigenvalues, 310, 312
levels, 314

Rubidium atom, 68, 393
hyperfine field, 161

Rydberg atoms, 1, 21, 23, 25, 154
Rydberg constant, 7, 69
Rydberg defect, 62

S
Sb crystal, 393
Scalar potential, 25, 41
Scaling concepts, 462

dynamical, 463, 525
hypothesis, 532
universality, 508

Scattering
of electrons, 407
of photons, 321

Schottky anomaly, 178, 388
Screening cloud, 3
Second order transition, 531, 571
Selection rules, 41, 114, 126, 131, 132

electric dipole, 292, 323
for quantum magnetic number, 132, 176

Self-consistent field, 5
Semiconductors, 369, 385, 386, 393
Semimetals, 393
Separated atoms scheme, 231
Shannon-Von Neumann entropy, 200
Sharp (series lines), 67
Shift (relativistic), 29, 31, 186
Shubnikov, L., 559
Si atom, 108
SI system of units, 143
Silicon crystal, 347, 379, 380
Silver, 213, 413, see also Ag crystal
Slater

determinant, 6, 61, 81
radial wavefunctions, 110
theory for multiplets, 7, 110

Slater, J.C., 5, 81, 110, 357
Slichter, C. P., 205

Sm atom, 98
Sn atom, 108
SnCl2 · 2H2O, 500
Sodium atom, 53, 130, see also Na

hyperfine field, 176, 177, 186
Paschen Back effect, 135
Zeeman effect, 131

Soft modes, 484, 486, 492
optical modes, 502

Solid state lasers, 338
Sommerfeld

quantization, 15, 173
Sound velocity, 426, 439
sp2 hybridization, 347, 391
sp3 hybridization, 393
Space groups, 340
Spatial quantization, 15
Specific electronic charge (e/m), 147
Specific heat, 142, 200, 212, 295
Spectroscopic notations, 33
Spherical harmonics, 4, 7, 20, 43

addition theorem, 76, 403
Spherical model, 508
Spin, 26

echoes, 193, 208
eigenfunctions, 26, 84

Spin-density functional, 507
Spin-density waves, 512
Spin dynamics, critical, 525
Spin-exchange collisions, 268
Spin glass, 511, 516, 517, 521

freezing temperature, 516
Spin ice and ice, 522, 523
Spin-orbital, 26, 28
Spin-orbit interaction, 1, 23, 25, 26, 28, 30,

32, 52, 61, 67, 74, 76, 90, 100, 102,
105, 129, 130, 132, 149, 160, 174

Spin-Peierls transition, 537
Spin-spin interaction, 92–97, 102
Spin-spin transitions, 196
Spin statistics, 193
Spin stiffness, 529

doping dependence, 529
Spin temperature, 193, 195, 196, 198, 212,

215, 219
negative, 213

Spin thermodynamics, 193, 197
Spin waves, 526, see also Magnons
Spontaneous emission, 23, 44, 46
Squaring rule, 93
SQUID, 338, 557–559
Sr crystal, 346
Stanley, H., 463, 473, 533
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Stark effect, 301
linear, 126
on the Na doublet, 127
quadratic, 124

Stationary states, 15
Statistical

populations, 44, 193, 194
temperature, 45
weights, 45

Stefan-Boltzmann law, 49
Stern-Gerlach experiment, 115
Stimulated emission, 44, 46
Stirling approximation, 198
Stokes and anti-Stokes lines, 321
Stoner, 411

criterium, 412
Stoner-Hubbard model, 464, 506
Sun, 52

energy flow, 52
Superconducting fluctuations, 574–577

correlation function, 576, 577
first order correction, 581

Superconducting gap, temperature depen-
dence, 548

Superconducting transition, order, 540, 564,
572, 588

Superconductors
coupling factor, 548
density of states, 548
high-temperature, 277, 404
surface effects, 568–569
underdoped and overdoped, 527
zero-dimensional condition, 580

Superexchange, mechanism, 510
Superfluidity, 446
Superselection rule, 80, 81
Susceptibility, 409, see alsoLandau diamag-

netism
magnetic, 368, 383
negative, 409
of Fermi gas, see also Landau diamag-
netism

see Pauli susceptibility, 383
Susceptibility, generalized, 497

magnetic, 368, see alsoMagnetic suscep-
tibility

of a Fermi gas, see Pauli susceptibility
Svanberg, S., 186, 304

T
T 3/2 law, 518
T1, 136, 137, 196, 205, 213, 218–219

T1 and spin temperature, 219, 220
T2, 196, 208, 209, 217
Tetrahedral or tetragonal hybridization, 274,

393
t2g levels, 13
Thermal

broadening, 53, 57, 436
effects in crystals, 430, 438, 440
energy in Debye crystal, 440
properties (related to lattice vibrations),
430–433

Thomas, 27, 114
Thomas and Frenkel semiclassical moment,

27, 30, 57
Thomas-Fermi method, 114
Thomson model, 18, 128
Tightly bound electron model, 375–378
Time-dependent perturbation, 38–41
Tin atom, 108, 109
Tin crystal, 391, 393
Tinkham, M., 578
t − J Hamiltonian, 508
TlBr crystal, 346
TlI crystal, 346
Townes, 283
Transition metal oxides, 510
Transition metals ions, in crystal field, 401–

404
Transition probabilities, 41–43

for quadrupole interaction, 43
magnetic, 43, 146, 169

Translational
invariance or translational symmetry,
338–342, 354, 428, 448

operations, 340, 358
Trigonal hybridization, 275
Trouton rule, 447, 471
Tungsten

crystal, 348
Tunnelling integral, 555
Two-level system, 37–40, 178, 210, 248

U
92U atom, 119
Ultrasound propagation, 427
Under-cooled and superheated liquid, 447
Unitary cell, 339–340, 342, 343, 346, 380
United atoms scheme, 224, 231–233, 263
Universality, 453, 508, 530
Universe (expansion), 47, 50, 51
Unsold theorem, 20, 90
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V
V3+ atom, 104
Vacuum permeability, 145
Valence band, 385, 392, 393, 408
Valence bond, 237, 253–260, 391, see also

VB
Van der Waals, 249, 392, 396, 448, 455, 530
Van Hove singularities, see Critical points
Van Vleck paramagnetism, 141
Vaporization, 447
Variable frequency laser, 162
Variational principle, procedure, 5, 78, 457
Varlamov, A.A., 578, 582
VB approach, 253, 255, 256, 260, 391
Vector potential, 25, 123, 159, 186
Vectorial model, 28, 81, 90, 111, 159
Venus, 285
Verbin, Y., 197
Vibrational

frequency in H+
2 , 244

models of lattice vibrations, 419, 426,
427

motions in molecules, 289
Vibrational motions

in crystals, 419
in polyatomic molecules, 316–320

Vibrational spectra, 424
Vibrational temperature, 309, 315
Vibronic transitions, 324
Vilfan, M., 530
Virial theorem, 16, 165, 331
Volume shift, in Hydrogen and in muonic

atoms, 190
Von Neumann-Wigner rule, 233
Vortex, 560, 571–574, see also Fluxon

W
W crystal, see Tungsten
Wannier and Bloch functions, 506
Weak magnetic field (condition or regime),

95, 121, 130, 178
Weiss, 446

mean field theory, 455
White, M., 534

Widom, 531
Wiedemann-Franz law, 368
Wien law, 47, 49
Wigner crystallization, 413
Wigner-Eckart theorem, 97, 110, 130, 132,

160, 189
Wigner-Seitz cell, 339, 344
Williams, 283
Wilson, 531
Wolf, H.C., 210, 329

X
X-ray lines, 53, 54

diffraction, 392, 438, see also Bragg law
X-rays, 53
XY systems and model, 453, 508

Y
Yb3+ atom, 104
YBa2Cu3O7−x (YBCO), 541
Yellow doublet (for Na atom), see also Na

atom

Z
Zeeman effect, 130

anomalous, 130
in Hg, 149
in positronium, 134
levels, 194, 208
normal, 130
regime on hyperfine states, 163
weak field, 130

Zeeman regime
on hyperfine states, 177
weak field, 130

Zero-point energy, 243
Zero-temperature rotations, 327
Zn crystal, 347
Zone representation (reduced, extended, re-

peated), 362, 369
Zumer, S., 530
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