
123

Ernesto Damiani
Fulvio Frati
Dirk Riehle

Anthony I. Wasserman
(Eds.)

11th IFIP WG 2.13 International Conference, OSS 2015
Florence, Italy, May 16–17, 2015
Proceedings

Open Source Systems:
Adoption and Impact

IFIP AICT 451

IFIP Advances in Information
and Communication Technology 451

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

Foundation of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Security and Privacy Protection in Information Processing Systems
Yuko Murayama, Iwate Prefectural University, Japan

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Jan Gulliksen, KTH Royal Institute of Technology, Stockholm, Sweden

Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for soci-
eties working in information processing, IFIP’s aim is two-fold: to support information
processing within its member countries and to encourage technology transfer to devel-
oping nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of
information technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and publi-
cations. IFIP’s events range from an international congress to local seminars, but the
most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is also rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

Any national society whose primary activity is about information processing may
apply to become a full member of IFIP, although full membership is restricted to one
society per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for associate or
corresponding membership. Associate members enjoy the same benefits as full mem-
bers, but without voting rights. Corresponding members are not represented in IFIP
bodies. Affiliated membership is open to non-national societies, and individual and hon-
orary membership schemes are also offered.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102

Ernesto Damiani · Fulvio Frati
Dirk Riehle · Anthony I. Wasserman (Eds.)

Open Source Systems:
Adoption and Impact
11th IFIP WG 2.13 International Conference, OSS 2015
Florence, Italy, May 16–17, 2015
Proceedings

ABC

Editors
Ernesto Damiani
Department of Information Technology
Università degli Studi di Milano
Crema
Italy

Fulvio Frati
Computer Science Department
Università degli Studi di Milano
Crema
Italy

Dirk Riehle
Department Informatik
Friedrich Alexander University

Erlangen-Nürnberg
Erlangen
Germany

Anthony I. Wasserman
Carnegie Mellon University
Moffett Field, CA
USA

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-17836-3 ISBN 978-3-319-17837-0 (eBook)
DOI 10.1007/978-3-319-17837-0

Library of Congress Control Number: 2015936520

Springer Cham Heidelberg New York Dordrecht London
c© IFIP International Federation for Information Processing 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Welcome to the 11th International Conference on Open Source Systems, marking 10
years since the initial OSS conferences. This annual conference is now recognized as the
primary event for the open source research community, attracting not only high-quality
papers, but also building a community around the technical program, a collection of
workshops, and a Doctoral Consortium. We made several changes in planning the tech-
nical program this year. First, we sharply reduced the size of the Program Committee
and added people who had not previously served on as an OSS Program Committee.
That step made it easier for the Program Committee members and the Program Com-
mittee chairs to calibrate the reviews. We were very pleased to receive 50 submissions
for the technical program, from which we selected 15. We are most grateful to the Pro-
gram Committee members for handling the larger than average reviewing load, and for
their thoughtful reviews, all done on a tight schedule.

We chose the title “Open Source Systems: Adoption and Impact” for this volume
in recognition of the change in the role of open source software within companies and
organizations. When the OSS conferences started in 2005, open source software was
often treated as a “second-class” citizen, with many organizations claiming (incorrectly
in most cases) not to use open source and its advocates viewed as being out-of-touch
with “real world” software development and deployment issues. Now, however, open
source software is fully mainstream. Virtually all of the major software and systems
companies are active users of open source, and are often contributors as well. Com-
panies have established their own policies for use of open source, and routinely in-
clude open source in their products. Linux servers are common, while organizations
rely on Hadoop and other open source tools for managing large volumes of data. Most
importantly, open source software has moved from its early status of providing func-
tional equivalents of proprietary software to today’s situation where developers and
researchers are innovating with open source software. In key software areas such as
data management, cloud infrastructure, service-oriented architectures, mobile operat-
ing systems, and the Internet of Things, open source software solutions are frequently
among the leaders in their category. Even so, proprietary software still has a major role,
and will retain that role in the foreseeable future. Organizations and institutions still
have massive existing investments in proprietary software, with many disincentives for
moving away from those products. However, as organizations look for ways to save
money, open source software becomes increasingly attractive, particularly as poten-
tial users gain greater confidence in its quality and security. The open source research
community is helping to drive this transition, working with organizations to help them
evaluate and adopt open source, often based on research studies published in the OSS

VI Preface

conference series. We are pleased to contribute this volume of papers to the growing
body of knowledge about open source software. The research results presented in this
conference can have a significant influence on the future of open source software.

May 2015 Anthony I. Wasserman
Dirk Riehle

Ernesto Damiani

Organization

Organizing Committee

General Chair

Ernesto Damiani Università degli Studi di Milano, Italy

Program Chairs

Dirk Riehle Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

Anthony I. Wasserman Carnegie Mellon University, USA

Ph.D. Contest Chair

Slinger Jansen Utrecht University, The Netherlands

Regional Publicity Chairs

Moataz Ahmed King Fahd University of Petroleum
and Minerals, Saudi Arabia

Scott Hissam Software Engineering Institute, Carnegie Mellon
University, USA

Karl Reed La Trobe University, Australia
Francesco Zavatarelli Università degli Studi di Milano, Italy

Organizing Chairs

Nadia Fusar Poli Università degli Studi di Milano, Italy
Fulvio Frati Università degli Studi di Milano, Italy

Finance Chair

Fulvio Frati Università degli Studi di Milano, Italy

VIII Organization

Program Committee

Chintan Amrit University of Twente, The Netherlands
Luciano Baresi DEIB - Politecnico di Milano, Italy
Paolo Ciancarini University of Bologna, Italy
Francesco Di Cerbo SAP Research Sophia-Antipolis, France
Jonas Gamalielsson University of Skövde, Sweden
Jesus M. Gonzalez-Barahona Universidad Rey Juan Carlos, Spain
Imed Hammouda Chalmers University of Technology and University

of Gothenburg, Sweden
Abram Hindle University of Alberta, Canada
Netta Iivari University of Oulu, Finland
Stefan Koch Boğaziçi University, Turkey
Fabio Kon University of São Paulo, Brazil
Luigi Lavazza Università degli Studi dell’Insubria, Italy
Eda Marchetti ISTI-CNR, Italy
Audris Mockus University of Tennessee, Knoxville, USA
Sandro Morasca Università degli Studi dell’Insubria, Italy
John Noll Lero - the Irish Software Engineering Research

Centre, University of Limerick, Ireland
Mauro Pezzè University of Lugano, Switzerland
Stephane Ribas Inria, France
Gregorio Robles Universidad Rey Juan Carlos, Spain
Steve Schmid Open Technology Foundation, Australia
Alberto Sillitti Free University of Bozen-Bolzano, Italy
Diomidis Spinellis Athens University of Economics and Business,

Greece
Megan Squire Elon University, USA
Klaas-Jan Stol Lero - the Irish Software Engineering Research

Centre, University of Limerick, Ireland
Giancarlo Succi Free University of Bozen-Bolzano, Italy
Davide Tosi University of Insubria, Italy
Aaron Visaggio University of Sannio, Italy
Stefano Zacchiroli Université Paris Diderot, France

Organization IX

Sponsored by

Supported by

Keynote Talks

Building a Commercial Open Source Software
Company

Paul Fremantle

School of Computing, University of Portsmouth, Portsmouth, UK
paul.fremantle@port.ac.uk

Abstract. This paper is based on personal experiences in building a venture-
capital backed Open Source company, starting in 2005. WSO2 is now a company
with hundreds of customers including major brands like eBay, Boeing, Fidelity,
Trimble, UBS, and many others. For example, eBay’s systems running WSO2’s
servers handle more than 6 billion requests per day. In that time there has been
a significant shift in the business models, approaches, funding and valuations of
Open Source Software companies.

1 Choosing a Business Model

The first challenge of creating a company around Open Source is choosing a business
model. There are multiple options. You can create a company that mainly does support
for an existing project, which is fundamentally a Professional Services company. This
reduces the valuation of your company1, but is quicker and more cost-effective to get
started. However, most companies aspire to be Product companies. Ten years ago the
most popular approach for this was to use the GPL license and to offer companies a
more “business-friendly” proprietary license to those who would pay. This model was
used by MySQL. Since then a more popular model has emerged - often called “Open
Core”. In this model there are two versions of the product: a “community edition” that
is licensed as Open Source, and an extended version that is proprietary.

WSO2 actually did not choose any of these options: we chose to use the Apache
License and only have a single version, which is completely Open Source without using
the GPL license, and WSO2 maintains this approach to the present day. This approach
does leave the possibility that people will use the full enterprise-class product without
paying. But in return it simplifies the model: when working with a community; accept-
ing fixes; and encouraging true partnerships with customers - who become more willing
to contribute to the codebase. It also creates a model where the success of the company
is based on contented customers, not on license terms.

2 Changes in Open Source World

In the ten years since we started WSO2, there has been a large shift in the perception
of Open Source. It is both better understood and less hyped. There is much more casual

1 Industry standard valuations of Professional Services companies are roughly 2 – 3x revenue,
whereas “Product” companies or companies with recurring revenue usually attract a valuation
of 10x revenue.

XIV P. Fremantle

use of 1Industry standard valuations of Professional Services companies are roughly
2 – 3x revenue, whereas “Product” companies or companies with recurring revenue
usually attract a valuation of 10x revenue Open Source by companies, and governments
in particular see it as a major differentiator when choosing software. However, in my
experience, most commercial companies see it as just one of several factors but not
the dominant one when choosing software. Ten years ago, it was seen as the “cheaper”
alternative (e.g. MySQL vs Oracle). Today companies who understand Open Source
well know that there are other more subtle reasons to choose Open Source: better knowl-
edge of the code, more opportunity to influence the roadmap, more self-reliance. But
the main benefit is that most Open Source projects fit well together into ecosystems and
hence end up with simpler, cleaner solutions. The ability to contribute to an ecosystem
is an important part of any new Open Source project or product: the ecosystems around
Hadoop and Docker exemplify this.

3 Open Source Foundations

Many Open Source contributions are shepherded by foundations, such as Apache,
Eclipse, OpenStack, and others. When we started WSO2, we modelled a lot of the
company around practices from Apache and we also worked (and continue to work)
closely with projects at Apache.

Foundations have three useful benefits to the community: independent ownership of
the copyright; well-defined ground rules of operation (e.g. contribution, committership,
IP rules, license, etc); and branding. However, the last few years have seen the rise of a
different model: Github.

Although Github has no clear ground rules, and no enforcement or ownership of
copyright, it has a strong brand and this has attracted millions of projects and forks.

4 The First Mover Advantage Is Over

In the last ten years, almost every single area has multiple open-source projects. Ten
years ago, there was a considerable benefit to being the first well-known Open Source
product in a market segment. Apache, MySQL, OpenOffice, and many others exemplify
this. That time is over. Now, in order to succeed as an Open Source company you need to
succeed just like any other company: by having a clearly visible competitive advantage
independent of your software license.

Thanks

Thanks to Sanjiva Weerawarana, CEO and Founder of WSO2, and to all the team at
WSO2 who have made it such a success.

How the Eclipse Community Works

Mike Milinkovich

Executive Director, Eclipse Foundation
Ottawa, Ontario, Canada

mike.milinkovich@eclipse.org

Abstract. Eclipse was the first of the open source foundations created as a con-
sortium of corporations, starting a trend that has recently accelerated with the
creation of corporate backed consortia for OpenStack, Cloud Foundry, OpenDay-
light, and the like.

Mixing corporate and open source community interests in a single institution
can be a recipe for conflict. But after 11 years of operation, the Eclipse Founda-
tion remains remarkably functional and collegial. We have accomplished this by
identifying a number of fundamental principles and sticking to them. This talk
will describe those key principles and how we have implemented them within
the Eclipse community. There will be lessons to be learned about how to balance
the interests of many stakeholders, while remaining true to the core values of the
broad open source community.

1 Foundations and Communities

There is a wide spectrum of open source project governance approaches, ranging from
laissez faire, to Benevolent Dictator for Life, to community-supporting foundations.
There is no shortage of opinion in the broader open source community about which
approach is best. We do not view this as a conflict, but rather as a spectrum.

Projects and communities will have different needs and requirements during their
lifetimes. In addition the other stakeholders in the ecosystem have their requirements.
Something which is new and novel requires a very different governance structure than
a project which has become widely adopted by industry.

2 Fundamentals Principles

The Apache Way first fully documented the key principles of openness, transparency
and meritocracy, and those remain the bedrock of all well-governed open source project
communities. Eclipse has added a couple of additional principles to that list such as
vendor-neutrality, freedom of action, level-playing field for participants of all sizes, and
community trademark control.

3 Balancing Stakeholders

It is a common assumption amongst the open source cognoscenti that the only accept-
able approach to community and project governance is that the developers on the project

XVI M. Milinkovich

are responsible for all aspects of governance. The Eclipse model is a blended approach:
projects are clearly self-governing meritocracies, but the governance of the Foundation
itself pulls in a wider group of stakeholders.

These additional stakeholders include companies that have made a strategic com-
mitment to Eclipse projects and technologies, companies which have adopted Eclipse
technologies in their products, and (of course) the committers that work on Eclipse
projects.

I will argue that this more diverse group of stakeholders has had a very positive
affect on the overall governance.

4 Anti-Patterns

Eclipse was the first consortia-backed open source foundation, but in recent times it has
been joined by quite a collection of others. Some of these have structural failings in
their governance approaches. We’ll take a looks at the anti-patterns in the consortia-led
foundations.

Contents

Open Source Software Engineering

An Empirical Study of the Relation Between Strong Change Coupling
and Defects Using History and Social Metrics in the Apache Aries Project . . . 3

Igor Scaliante Wiese, Rodrigo Takashi Kuroda, Reginaldo Re,
Gustavo Ansaldi Oliva, and Marco Aurélio Gerosa

Scaling and Internationalizing an Agile FOSS Project: Lessons Learned 13
Stephan Fellhofer, Annemarie Harzl, and Wolfgang Slany

How Developers Acquire FLOSS Skills . 23
Ann Barcomb, Michael Grottke, Jan-Philipp Stauffert,
Dirk Riehle, and Sabrina Jahn

Communication and Collaboration

Implicit Coordination: A Case Study of the Rails OSS Project 35
Kelly Blincoe and Daniela Damian

The Diffusion of Pastebin Tools to Enhance Communication
in FLOSS Mailing Lists. 45

Megan Squire and Amber K. Smith

Examining Usability Work and Culture in OSS . 58
Mikko Rajanen and Netta Iivari

Examples and Case Studies

On the Availability and Effectiveness of Open Source Software for Digital
Signing of PDF Documents . 71

Jonas Gamalielsson, Fredrik Jakobsson, Björn Lundell, Jonas Feist,
Tomas Gustavsson, and Fredric Landqvist

A Systematic Approach for Evaluating BPM Systems: Case Studies
on Open Source and Proprietary Tools . 81

Andrea Delgado, Daniel Calegari, Pablo Milanese, Renatta Falcon,
and Esteban García

Smart Route Planning Using Open Data and Participatory Sensing 91
Vivek Nallur, Amal Elgammal, and Siobhán Clarke

Adoption, Use, and Impact

A Qualitative Study on the Adoption of Open Source Software
in Information Technology Outsourcing Organizations 103

Lakshmanan Ramanathan and Sundaresan Krishnan Iyer

Surveying the Adoption of FLOSS by Public Administration Local
Organizations . 114

Davide Tosi, Luigi Lavazza, Sandro Morasca, and Marco Chiappa

The RISCOSS Platform for Risk Management in Open Source Software
Adoption . 124

X. Franch, R. Kenett, F. Mancinelli, A. Susi, D. Ameller, M.C. Annosi,
R. Ben-Jacob, Y. Blumenfeld, O.H. Franco, D. Gross, L. Lopez,
M. Morandini, M. Oriol, and A. Siena

Intellectual Property and Legal Issues

First Results About Motivation and Impact of License Changes
in Open Source Projects . 137

Robert Viseur and Gregorio Robles

On the Variability of the BSD and MIT Licenses . 146
Trevor Maryka, Daniel M. German, and Germán Poo-Caamaño

The Right to a Contribution: An Exploratory Survey on How Organizations
Address It . 157

Germán Poo-Caamaño and Daniel M. German

OSS 2015 Ph.D. Contest

Open Source Software Ecosystems: Towards a Modelling Framework 171
Oscar Franco-Bedoya

Author Index . 181

XVIII Contents

Open Source Software Engineering

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-17837-0_1

An Empirical Study of the Relation Between
Strong Change Coupling and Defects Using History

and Social Metrics in the Apache Aries Project

Igor Scaliante Wiese1(), Rodrigo Takashi Kuroda2, Reginaldo Re1,
Gustavo Ansaldi Oliva3, and Marco Aurélio Gerosa3

1 Departament of Computing, UTFPR – Universidade Tecnológica Federal Do
Paraná/Campus Campo Mourão, Campo Mourão, Brazil

{igor,reginaldo}@utfpr.edu.br
2 PPGI - UTFPR/Campus Cornélio Procópio, Cornélio Procópio, Brazil

rodrigokuroda@gmail.com
3 Departament of Computer Science, IME/USP – University of Sao Paulo,

Sao Paulo, Brazil
{goliva,gerosa}@ime.usp.br

Abstract. Change coupling is an implicit relationship observed when artifacts
change together during software evolution. The literature leverages change
coupling analysis for several purposes. For example, researchers discovered that
change coupling is associated with software defects and reveals relationships
between software artifacts that cannot be found by scanning code or documen-
tation. In this paper, we empirically investigate the strongest change couplings
from the Apache Aries project to characterize and identify their impact in soft-
ware development. We used historical and social metrics collected from com-
mits and issue reports to build classification models to identify strong change
couplings. Historical metrics were used because change coupling is a phenome-
non associated with recurrent co-changes found in the software history. In turn,
social metrics were used because developers often interact with each other in is-
sue trackers to accomplish the tasks. Our classification models showed high
accuracy, with 70-99% F-measure and 88-99% AUC. Using the same set of me-
trics, we also predicted the number of future defects for the artifacts involved in
strong change couplings. More specifically, we were able to predict 45.7% of
defects where these strong change couplings reoccurred in the post-release.
These findings suggest that developers and projects managers should detect and
monitor strong change couplings, because they can be associated with defects
and tend to happen again in the subsequent release.

1 Introduction

Some artifacts are changed together throughout software development. The concept of
change coupling captures this implicit connection [1]. Some benefits of change coupl-
ing analysis were discussed by D’Ambros and colleagues [2]. For example, change
couplings reveal relationships not present in the code or in the documentation. Other
researchers showed that change couplings affect software quality [3,4]. Previous

4 I.S. Wiese et al.

studies discovered which artifacts changed together in the past by mining logs from
version control systems, such as SVN and Git [1,5,6]. Zimmermann et al. [6], for
example, implemented a tool to predict change propagation based on change coupl-
ing. The underlying assumption in their approach is that entities that changed together
in the past are likely to change together in the future.

Differently from Zimmermann’s work, our focus is to characterize and identify the
impact of strong change couplings. Literature studies have provided some evidence
that these couplings are associated with defects. D’ambros, Robbles & Lanza [4]
mined historical data from three open source projects and showed that change coupl-
ings correlate with defects extracted from a bug repository. Cataldo et al. [7] reported
that the effect of change coupling on fault proneness was complementary and signifi-
cantly more relevant than the impact of structural coupling in two software projects
from different companies. In another study, Cataldo and Nambiar [8] investigated the
impact of geographic distribution and technical coupling on the quality of 189 global
software development projects. By technical coupling, they mean overall measures of
the extent to which artifacts of the system are connected. Their results indicated that
the number of change couplings among architectural components were the most sig-
nificant factor explaining the number of reported defects. Other factors they took into
consideration include the number of structural coupling, process maturity, and the
number of geographical sites.

In this sense, the main goal of this paper is twofold. First, we empirically investi-
gate the relation between strong change couplings and the number of defects
associated with them. Afterwards, we characterize strong change couplings using
historical and social metrics.

We investigated the following research questions using data from the Apache
Aries project:

- RQ 1. Are strong change couplings related to defects? We found that strong
change coupling are associated with defects. In releases with more change coupl-
ings identified, more than 50% of them are associated with at least one defect. In
releases with fewer change couplings identified, we found that at least ¾ of
change coupling are associated with at least one defect. These values suggest that
strong change couplings can be problematic for software projects.

- RQ 2. Can historical and social metrics identify if a change coupling is
strong? We built models that identify strong change couplings with high accura-
cy (70-99% F-measure and 88-99% AUC). In addition, we applied the feature
selection analysis to reduce the effort in building the prediction models and gain
insights about which metrics are more important. We found that the length of a
task discussion in the issue tracker, number of distinct committers, experience of
committers, number of defect tasks associated with a change coupling, and age of
change coupling were the best predictors.

- RQ 3. Can we predict defects associated with strong change couplings? We
built a defect prediction model to help developers and managers to predict which
strong change dependencies will have associated defects in the post-release. We
correctly predicted 45.7% of the defects.

An Empirical Study of the Relation Between Strong Change Coupling and Defects 5

Results of our empirical study suggest that software engineers should detect and
monitor strong change couplings, since they are associated with defects. Moreover,
strong change couplings tend to happen again in the post-release to fix new defects.

This paper is structured as follows. In Section 2, we describe the methodology. In
Section 3, we answer RQ1 and RQ2. Section 4 discusses the results of RQ3. Finally,
conclusions and plans for future work are presented in Section 5.

2 Methodology

This section describes the methodology we followed to collect data and identify
change couplings.

2.1 Identifying Strong Change Couplings

To identify the strong change couplings, we mined the change history of each release
of the Apache Aries project. We considered just the changes submitted as a patch to
an issue. If an issue had more than one associated commit, we grouped all commits in
one single change transaction and, for each transaction, we employed a data mining
technique called frequent itemset mining [1]. This technique was used in previous
research [1,5,6] to uncover frequently occurring patterns (co-changed classes or me-
thods) in a given set of transactions (change-sets/commits).

The frequency is typically measured by the metric of support value, which simply
gives the number of transactions in which an itemset appears. In our study, the sup-
port value of an itemset consisting of files A and B corresponds to the number of
issues in which they appeared together. The strength of a change coupling from A to
B is determined by the ratio of co-changes (support value) and the number of times
the artifact B changed. The artifact B in this example was the file that changed in
more issues compared to artifact A. Based on these metrics, we used a quartile analy-
sis to determine the “relevant” change couplings: all couplings with support higher
than the third quartile were labeled as “strong”. All other couplings were labeled as
“weak.”

2.2 Data Collection

In this paper, we collected data from the Apache Aries project, which delivers a set of
pluggable Java OSGi components. We started the data collection extracting all issues
from the Jira issue tracking system. For each issue, we collected its metadata and the
associated source code changes from the version control repository. Since these two
pieces of information were stored in different environments, we searched by words
“defect, bug, fix” and an issue ID normally annotated by developers as “#”+issue
number (e.g. #10). Using this query, we parse the commit messages and link each
issue to their respective set of commits.

6 I.S. Wiese et al.

Table 1 summarizes the data collected from the Apache Aries project. It presents
the release number, the number of issues, the number of change couplings, and the
ratio of change couplings per issue for each release.

Table 1. Data collection summarization

Release # of
Issues

of change coupl-
ings

Change couplings
per issue

Duration of release
(mm/dd/yy) - # months

0.1 194 4919 25.35 09/01/09 - 05/13/10 (8 months)
0.2 61 136 2.22 05/13/10 - 09/06/10 (4 months)
0.3 129 2465 19.10 09/06/10 - 02/21/11 (5 months)
0.4 85 469 5.51 02/21/11 - 11/08/11 (9 months)
1.0 62 300 4.83 11/08/11 - 10/12/12 (11 months)
1.1 25 48 1.92 01/29/13 - 01/23/14 (12 months)

We notice from the data above that Aries’ releases have differences in the ratio of

change couplings per issue report and in their duration. For example, release 0.2 lasted
4 months and involved fixing 61 issues and changing few files together. On the other
hand, even though release 0.3 was one month longer, the number of fixed issues were
higher (129) and many more files were changed together (2465) to fix these issues.

2.3 Classification Approach

We run the random forest technique to construct classifiers to identify strong change
couplings. The random forest technique builds a large number of decision trees at
training time using a random subset of all of the attributes. In our study, these
attributes correspond to the historical and social metrics [9]. The technique performs a
random split to ensure that all of the trees have a low correlation between them [9].
The random forest technique was already used in previous research [10].

Using an aggregation of votes from all trees, the random forest technique decides
whether the final score is higher than a chosen threshold to determine if a specific
change coupling will be deemed as strong or weak. To obtain the testing set and eva-
luate the performance of our classifiers, we used 10-fold cross-validation. Cross-
validation splits the data into ten equal parts using nine parts for the training set and
one part for the testing set.

We used two well-known metrics to evaluate our classifiers: F-measure and the
Area Under the Curve (AUC). F-measure computes the harmonic mean of precision
and recall for each class. AUC plots true positive rates against the false positive rates
for various values of the chosen threshold used to determine whether a change coupl-
ing is classified as strong. The values of both metrics range from 0 to 1. Values close
to 1 are desirable and indicate the best classifiers. We also analyzed the number of
change couplings correctly predicted to further evaluate our classifiers.

3 Characterizing Strong and Weak Change Couplings

In this study, we conjecture that the set of strong change couplings are more relevant
and consequently demands more attention from software developers In Section 3.1

An Empirical Study of the Relation Between Strong Change Coupling and Defects 7

(RQ1), we characterize strong change couplings by investigating if they are asso-
ciated with software defects. In Section 3.2 (RQ2), we investigate whether historical
and social metrics aids in the identification of strong couplings.

3.1 RQ1: Are Strong Change Couplings Related to Defects?

To answer this research question, we first counted the number of defect issues asso-
ciated with strong change couplings in each release.

Table 2 depicts the number of instances labeled as strong change coupling with de-
fects, the total of strong change couplings found, and the ratio of change couplings
with defects. We found that the majority of the strong change couplings could be
associated with at least one defect.

Table 2. Strong Change couplings (sCC) summary

Release sCC with
defects

Total of
sCC

sCC with defect /
total sCC (%)

By number of defects
1 2 3 4 5 6 7

0.1 719 1269 57.00% 531 151 20 15 2 0 0
0.2 9 9 100.00% 5 3 1 0 0 0 0
0.3 497 529 94.00% 128 276 67 19 3 5 1
0.4 63 82 77.00% 21 39 3 0 0 0 0
1.0 10 10 100.00% 0 6 4 0 0 0 0
1.1 3 4 75%% 1 2 0 0 0 0 0

To check just how correlated strong change couplings and defects are, Spearman's

rank correlation coefficient (rho) was used. The Spearman correlation is a nonparame-
tric measure of statistical dependence between two variables. The value returned by the
Spearman correlation can range between +1 (positive correlation) to -1 (negative corre-
lation). We calculated the correlation between the number of defects and the number of
co-changes for each strong change coupling (considering all the releases in a
whole).We found that strong change couplings are moderately correlated (rho 0.46, p <
0.001) with the number of defects. We noticed that releases 0.1, 0.3, and 0.4 have the
majority of the strong change couplings that are correlated with defects. It is important
to highlight that releases 0.1, 0.3 and 0.4 had more files changed and issues fixed com-
pared to the releases 0.2, 1.0 and 1.1 (as shown in Table 1).

Considering the minor releases, we observed that the relation between strong
change couplings and defects were higher, showing that at least 75% of the strong
change couplings have at least one defect associated. Previous research also shows
that, in general, change coupling is correlated with defects, both in open source [4]
and industrial projects [3]. A possible reason for that is related to design issues that
change couplings can be associated with. For example, some authors have associated
these change couplings with the information hiding principle [11,12] described by
Parnas [13]. The principle of information hiding indicates that two elements depend-
ing on the same internal class should be placed into the same module to hide the de-
sign decisions.

8 I.S. Wiese et al.

We found that strong change couplings are correlated with defects in the Aries
project. We found positive correlation even when couplings happened in a small
amount (fewer pairs of file co-changing).

3.2 RQ 2: Can Historical and Social Metrics Identify if a Change Coupling is
Strong?

Previous research investigated the interplay between structural dependencies and
change coupling [14,15]. They concluded that structural dependencies often could not
explain or justify the emergence of change couplings. Thus, we do not yet have a
clear idea of the nature of change couplings [7]. In this paper, instead of structural
dependencies, we relied on historical and social metrics to build models and classify
change couplings as “strong” or “weak.” As we mentioned in Section 2.2, we distin-
guish between strong and weak change couplings based on a quartile analysis of their
support value. Table 3 presents the number of change couplings per class and the
values of F-measure and AUC.

Table 3. Prediction results to strong and weak change couplings using cross-validation 10-fold

Release #strong #weak Total of
Instances

F-measure
Strong

F-measure
Weak

AUC

0.1 1269 3650 4919 0.98 0.99 0.98
0.2 9 127 136 0.75 0.98 0.88
0.3 529 1936 2465 0.98 0.98 0.98
0.4 82 387 469 0.90 0.97 0.94
1.0 10 290 300 0.70 0.99 0.99

**The release 1.1 was used only as a test set

Table 4 presents the results when we train the models using data from a previous

release to identify strong change couplings in the current release. The results show
that for two releases we correctly predict more than 78% of all strong change coupl-
ings. However, the class imbalance problem in these cases affected the results for
three releases (0.3, 1.0, and 1.1), since we got a few number of strong change coupl-
ings instances in the training set to perform the prediction in the following release.

To reduce the class imbalance problem, we grouped all previous releases to train
the models and the next release to test. Table 5 presents the results of this new predic-
tion model. Three (0.3, 1.0, and 1.1) out of four releases had better results. For exam-
ple, in release 0.3 we noticed an improvement of 35.54% (20.79% to 56.33%). It is
important to mention that in a practical scenario, a project may not have sufficient
history to group the data. Furthermore, when classification models are used, the smal-
lest the training set size, the lower the effort to build it.

An Empirical Study of the Relation Between Strong Change Coupling and Defects 9

Table 4. Prediction results to strong change couplings using a previous release to train and next
release to test

Release Test % of Correct predictions for strong CC # of strong CC tested
0.2 100.00% 9 (9)
0.3 20.79% 110 (529)
0.4 78.04% 64 (82)
1.0 30.00% 3 (10)
1.1 0.00% 0 (4)

Table 5. Prediction results to strong change couplings using all previous releases to train and
next release to test

Release Train Release Test % of Corrected strong CC
predicted

of strong CC
tested

0.1 + 0.2 0.3 56.33% 298 (529)
0.1 + 0.2 + 0.3 0.4 76.82% 63 (82)
0.1 + 0.2 + 0.3 + 0.4 1.0 60.00% 6 (10)
0.1 + 0.2 + 0.3 + 0.4 + 1.0 1.1 100.00% 4 (4)

Our prediction model based on historical and social metrics accurately identi-

fied strong change couplings, with F-measure ranging from 70% to 98% and AUC
ranging from 88 to 99%. As expected, grouping data from previous releases to
predict subsequent change couplings improved the results. The percentage of
correctly predicted strong change couplings range from 56% to 100%.

3.2.1 Which are the Best Metrics to Identify Strong Change Couplings?
To identify the best set of historical and social metrics to predict change couplings,
we used the Correlation Feature Selection (CFS) algorithm. CFS evaluate subsets of
features based on identified good feature subsets that contain features highly corre-
lated with the classification, yet uncorrelated with each other. By using CFS, we
wanted to reduce the training time, enhance generalization by reducing overfitting,
and improving the model interpretability by finding the best metrics that predict
strong change couplings. It is also important to find the best set of metrics to reduce
the effort to collect the metrics and apply the models in practice.

Table 6 presents the number of selections made by the feature selection technique
for each metric selected in at least one release. All metrics were sorted by their relev-
ance. Wordiness (number 1 in the table) was the most important metric to identify
strong change couplings. This metric was selected in four out of the five releases that
were used to train the models.

In average, we concluded that 5 metrics by release were sufficient to identify
strong change couplings. We deemed as relevant the metrics 1 to 6, since they were
chosen in at least two different releases.

10 I.S. Wiese et al.

Table 6. Strong change couplings (CC) summary

Release

Software Metrics
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.1 X

0.2 X X X X X X X

0.3 X X X

0.4 X X X X X X X X X X X

1.0 X X X

**blue columns are social metrics | white columns are historical metrics
1-wordiness, 2-devCommitSUM, 3-oexp, 4-oexp2, 5-taskDefect, 6-ageTotal,
7-devCommenters, 8-add, 9-clsMAX, 10-dgrSUM, 11-commits, 12-taskImprovement,
13-efvSizeMdn, 14-efvSizeMax, 15-MinorContributors, 16-devCommitAvg

*experience of committers is given by: dividing the total number of lines changed in the file in each re-

lease by the number of lines changed by each developer that changed the file in the same release. We got

the maximum value of experience for each file involved in a change coupling.

**ageTotal is measured for each release and corresponds to the number of weeks in the period deli-

mited by the first and the last commits in which the two files co-changed.

For the Aries Project, the best subset of metrics were composed by: length of
discussion in terms of the number of words used (wordiness), number of distinct
committers (devCommitSUM), experience of committers* (oexp, oexp2), number
of defect tasks associated with a change coupling, and ageTotal**.

4 Application

4.1 RQ 3. Can we Predict Defects Associated with Strong Change Couplings?

To evaluate the applicability of our models, we wanted to check if pairs of files
deemed as strongly change coupled in a release tend to co-change in the post-release.
This gives us an idea of how many change couplings relationships “propagate” to the
subsequent release.

Table 7. Prediction results to identify strong change couplings with defects

Release Train /
Release Test

of Strong CC with defects
(next release)

% of correct predictions

0.1 / 0.2 40 60% (24)
0.2 / 0.3 7 100% (7)
0.3 / 0.4 30 20% (6)
0.4 / 1/0 4 0% (0)
1.0 / 1.1 0 -

Table 7 presents the defect prediction results for the strong change couplings iden-

tified in each release. For example, release 0.1 has 1270 strong change couplings
(Table 2 – column total of strong change coupling). We found that 40 out of these

An Empirical Study of the Relation Between Strong Change Coupling and Defects 11

1270 couplings occur in at least one bug-fixing issue in the consecutive release. We
labeled these 40 change coupling as “defective” and all the others strong change
couplings as “clean.” Performing the same machine learning analysis used in the pre-
vious section, we predicted whether a strong change coupling would have a defect.

We found that 81 strong change couplings happened again in the following re-
lease to fix defects and we correctly predicted 37 (45.67%) of them.

5 Conclusions

Our results show that strong change couplings are positively correlated with the num-
ber of defects. This corroborates previous results from the literature [4,7,8]. We no-
ticed that by using the Random Forest machine-learning algorithm, it was possible to
identify strong and weak change couplings for each release. In some cases, just the
previous release was sufficient to train the models. In the cases where the previous
releases had few strong couplings in the training set, we added all the previous history
of strong and weak change couplings to improve the model accuracy. We were able to
predict 45% of strong change couplings that happened again in the post-release to fix
defects. These findings suggest that developers and projects managers should detect
and monitor strong change couplings, since they propagate to future releases.

Potential threats to the validity can affect the results of our study. The first concern
is the generalizability. In our analysis, we presented a single case study. However,
based on this limited scope, our results might not generalize to other projects and
domains. On the other hand, the choice of a single project allowed us to control more
variables and better understand the data we collected. Another threat refers to the
possible presence of tangled code changes [16] in the commits we mined.

As future work, we want to reevaluate our results on additional projects. We also
want to go deeper and investigate the ways in which strong change couplings can
influence code quality. This would serve as a basis for the development of new tools
that would help managers monitor and track the damage caused by these couplings.

Acknowledgments. We thank Fundação Araucária, NAPSOL, NAWEB, FAPESP, and CNPQ
(461101/2014-9) for the financial support. Igor receive grants from CAPES (BEX 2039-13-3).
Gustavo receives individual grant from CAPES.

References

1. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on product release
history. In: Proceedings of the International Conference on Software Maintenance, p. 190.
IEEE Computer Society, Washington, DC, USA (1998)

2. D’Ambros, M., Lanza, M., Lungu, M.: Visualizing co-change information with the evolu-
tion radar. IEEE Trans. Software Eng. 35, 720–735 (2009)

12 I.S. Wiese et al.

3. Kirbas, S., Sen, A., Caglayan, B., Bener, A., Mahmutogullari, R.: The effect of evolutio-
nary coupling on software defects: an industrial case study on a legacy system. In: Pro-
ceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, pp. 6:1–6:7. Torino (2014)

4. D’Ambros, M., Lanza, M., Robbes, R.: On the relationship between change coupling and
software defects. WCRE 2009, pp. 135–144 (2009)

5. Ying, A.T.T., Murphy, G.C., Ng, R., Chu-Carroll, M.C.: Predicting source code changes
by mining change history. IEEE Trans. Softw. Eng. 30, 574–586 (2004)

6. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining version histories to guide
software changes. IEEE Trans. Software Eng. 31, 429–445 (2005)

7. Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies, work de-
pendencies, and their impact on failures. IEEE Trans. Software Eng. 35, 864–878 (2009)

8. Cataldo, M., Nambiar, S.: The impact of geographic distribution and the nature of technic-
al coupling on the quality of global software development projects. Journal of Software
Maintenance and Evolution: Research and Practice (2010)

9. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
10. McIntosh, S., Adams, B., Nagappan, M., Hassan, A.E.: Mining co-change information to

understand when build changes are necessary. In: Proc. of the 30th Int’l Conf. on Software
Maintenance and Evolution (ICSME), pp. 241–250 (2014)

11. Beck, F., Diehl, S.: On the congruence of modularity and code coupling. In: Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Founda-
tions of Software Engineering, pp. 354–364. ACM, Szeged (2011)

12. Silva, L.L., Valente, M.T., de A. Maia, M.: Assessing modularity using co-change clusters.
In: Proceedings of the 13th International Conference on Modularity, pp. 49–60. ACM, Lu-
gano (2014)

13. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15, 1053–1058 (1972)

14. Geipel, M.M., Schweitzer, F.: The link between dependency and cochange: empirical evi-
dence. IEEE Trans. Software Eng. 38, 1432–1444 (2012)

15. Oliva, G.A., Gerosa, M.A.: On the interplay between structural and logical dependencies
in open-source software. Simpósio Brasileiro de Engenharia de Software, pp. 144–153
(2011)

16. Herzig K., Zeller, A.: The impact of tangled code changes. In: Proceedings of the 10th
Working Conference on Mining Software Repositories, pp. 121–130. IEEE Press, San
Francisco (2013)

Scaling and Internationalizing an Agile
FOSS Project: Lessons Learned

Stephan Fellhofer(B), Annemarie Harzl(B), and Wolfgang Slany(B)

Institute for Software Technology, Graz University of Technology,
Inffeldgasse 16b/II, 8010 Graz, Austria

stephan.fellhofer@gmail.com, annemarie.harzl@ist.tugraz.at,

wolfgang.slany@tugraz.at

Abstract. This paper describes problems that arose with the scaling
and internationalization of the open source project Catrobat. The prob-
lems we faced were the lack of a centralized user management, insufficient
scaling of our communication channels, and the necessity to adapt agile
development techniques to remote collaboration. To solve the problems
we decided to use a mix of open source tools (Git, IRC, LDAP) and com-
mercial solutions (Jira, Confluence, GitHub) because we believe that this
mix best fits our needs. Other projects can benefit from the lessons we
learned during the reorganization of our knowledge base and communi-
cation tools, as infrastructure changes can be very labor-intensive and
time-consuming.

Keywords: Agile development · Kanban · Distributed software devel-
opment ·Documentation management · Communication · Scaling · Inter-
nationalization

1 Introduction

Scaling and internationalizing a Free and Open Source Software (FOSS) project
is not an easy task, at least not in our experience. Our project grew from five
contributors in 2010 to over 130 in 2014, which lead to various organizational
problems. In this paper we describe our problems, approaches we devised to solve
them, and lessons learned along the way. We think that other FOSS projects can
profit from our experiences.

In our project Catrobat we develop a visual programming language which has
been inspired by Scratch [11] from the Lifelong-Kindergarten-Group at the MIT
Media Lab. Our aim is to empower children and teenagers to easily create their
own programs and to express themselves creatively using their smartphones.
To reach this goal we develop Integrated Development Environment (IDE) and
interpreter apps natively for several mobile platforms. Our app, Pocket Code, is
available for Android on Google Play1. Versions for iOS, Windows Phone, and
1 https://play.google.com/store/apps/details?id=org.catrobat.catroid

c© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 13–22, 2015.
DOI: 10.1007/978-3-319-17837-0 2

https://play.google.com/store/apps/details?id=org.catrobat.catroid

14 S. Fellhofer et al.

HTML5 capable browsers are currently in development. Catrobat was initiated
by Wolfgang Slany and a team of students from Graz University of Technol-
ogy, seeking development challenges beyond those seen in class and to practice
what they have learned. This eagerness to apply software development principles
taught in courses heavily influenced the basic structure of the project, with all
its advantages and disadvantages.

On the positive side the usage of agile development methods such as Kanban
[2,5] enables us to stay flexible and to easily adjust the scope of our project
as we go. eXtreme Programming (XP) (especially pair programming [3]) facili-
tates knowledge transfer between developers. Test-Driven Development (TDD)
[4] ensures that the code remains functional and testable while new developers
join and former developers leave the project. On the negative side our contribu-
tors additionally have to learn about agile development methods, which steepens
the learning curve.

A dedicated Usability and User Experience (UX) team applying the personas
method [6] and other usability techniques helps us focus on the users. This is
particularly important because, in contrast to most FOSS projects, Catrobat’s
developers (mostly university students) are not a subgroup of Catrobat’s tar-
geted users (mostly children and teenagers). The UX team helps to create an
understanding of user needs in all developing teams.

Communication within our teams was initially mainly face-to-face, which is
good for localized agile teams, but leaves many decisions undocumented, which
is disadvantageous for a larger, distributed FOSS project. Discussions tend to
get started over and over again, when nobody remembers why and based on
what information a decision was made in the first place. Later we will elaborate
on the communication problems, because they are at the core of our difficulties
with scaling and internationalizing.

The increasing number of contributors from five in 2010 to over 130
in 2014, and the participation of international contributors in our project
made organizational problems apparent. Documentation was not equally avail-
able for everyone, the entire current project status was not visible online
and we lacked important communication channels. For example most of our
contributors did not use Internet Relay Chat (IRC), which is often an inte-
gral infrastructure of FOSS projects and compulsory for the participation in
Google Summer of Code (GSoC)2, in which our project participates since 2011.
To address these problems and to be able to integrate more and international
contributors, we had to change our project infrastructure, the ways we commu-
nicate and some of our tools.

Section 2 gives a short overview of work related to the approaches we formu-
lated. In Section 3 we will identify the problems in greater detail and describe
our approaches to solve them. Section 4 contains the lessons we learned on our
2 A global program from Google to support FOSS projects by sponsoring students and

pairing them with mentors to develop given tasks over summer (https://developers.
google.com/open-source/soc/)

https://developers.google.com/open-source/soc/
https://developers.google.com/open-source/soc/

Scaling and Internationalizing an Agile FOSS Project: Lessons Learned 15

way from a small, localized to a larger, more international project. Subsequently
we discuss possibilities for future work and provide some concluding remarks.

2 Related Work

Our main goal was to enable and facilitate contributions from project members
around the world. Various studies ([7,9,10,13,14]) highlight the importance of
communication in FOSS projects or in projects which use agile development
techniques.

We focused on optimizing the communication for FOSS and agile soft-
ware development projects. Specifically, we tried to address some of the issues
and approaches highlighted in the literature: Layman et. al [9] recommended
among other things that “when face-to-face, synchronous communication is
infeasible, use an email listserv” and “use globally-available project manage-
ment tools”. Korkala et al. [7] suggested to “enable and support direct commu-
nication between the developers”. Some technologies and common practices used
in FOSS development such as instant messaging, IRC, news postings, how-to
guides, Frequently Asked Questions (FAQ), or wikis are listed in [12,13]. In [16]
technologies such as versioning systems and TODO lists are mentioned. Dif-
ficulties for newcomers like “selection of a suitable task”, “lack of up-to-date
development documents”, or “no response from core developers for their doubts”
are mentioned in [15].

3 Optimizing Services for Distributed Participation

Our project grew faster than the supporting infrastructure, which led to orga-
nizational problems. For each part of our infrastructure we will first describe
the initial situation, then problems which occurred over time and finally how we
resolved them.

3.1 User Management

Initial Situation. In the beginning there was no consistent user management.
Every piece of infrastructure (for example: instant messaging, source code reposi-
tory) had its own built-in user management, and accounts were created manually
on demand. Since some services were used through shared user accounts, there
was no accountability.

Resulting Problems. The effort necessary for user management and maintenance
increased tremendously with the growing number of contributors, because every
user had to be created manually and every change had to be populated manu-
ally to all platforms. This resulted in missing and outdated account information.
Rights management was not even a topic. Sometimes this lack of restrictions
caused inexperienced contributors to inadvertently change or delete infrastruc-
ture. Shared accounts made it impossible to trace who made changes to project
services. On the side of the contributors the account management was elaborate
too, as for every service, contributors had to use different credentials.

16 S. Fellhofer et al.

Method of Resolution. Our goal was to simplify the management of user
databases and to support the contributors by providing them with only one
account for (almost) all our infrastructure. Most parts of our infrastructure have
a built-in support for Lightweight Directory Access Protocol (LDAP), so LDAP
was the most suitable solution to simplify our user management. We decided to
use LDAP groups as well for various reasons:

– different experience levels need different rights
– different contributor groups need different resources and services
– no shared accounts, so there are clear responsibilities
– infrastructure administration should be left to experienced contributors

The goal was to design a user management which serves experts and begin-
ners alike. Experts should have all the rights they need, while beginners are not
overwhelmed by too many services and rights too soon.

Unfortunately, not all services support LDAP. For example, externally hosted
services such as GitHub do not support foreign user directories and still need
additional maintenance. Other services like Crowdin3 support OAuth4 as authen-
tication method, but to take the user groups and corresponding rights needed for
our project into account, the service’s Application Programing Interface (API)
or an additional configuration interface must be used.

3.2 Communication

Our project was and still is allowed to use a room at Graz University of Technol-
ogy, where our local contributors can meet, discuss, and code. In the beginning
all contributors fit in the room, and communication was mainly face-to-face.
The reliance on face-to-face was very beneficial in the beginning but caused some
communication and documentation problems later on as mentioned in Section 1.

Instant Messaging

Initial Situation. Other means of communication were and still are e-mail, mail-
ing lists5 as recommended in [9] and Instant Messaging (IM). In the beginning
we used a Skype group chat for project discussions with all contributors.

Resulting Problems. Many contributors joined the Skype group chat but did not
participate actively, because they preferred face-to-face communication, e-mail,
or were overwhelmed by the number of messages that did not concern them.
This massive number of messages was a direct result of the growing number of
contributors.

Another problem with Skype was that group chats are invite-only, which
made it difficult for aspiring contributors to join the discussion. They first had
3 Tool to help non-developers to translate texts (https://crowdin.com/)
4 http://oauth.net/
5 https://groups.google.com/forum/?hl=en#!forum/catrobat

https://crowdin.com/
http://oauth.net/
https://groups.google.com/forum/?hl=en#!forum/catrobat

Scaling and Internationalizing an Agile FOSS Project: Lessons Learned 17

to find a project member to invite them. Yet another problem with our Skype
group was the language used. Almost all messages were in German, because all
of the initial team members spoke German.

In our attempt to open up our project and allow for internationalization, we
created an IRC channel, which was open to everyone and where it was obligatory
to use English.

This attempt failed, because project issues were, as a matter of habit, still
discussed in Skype and hardly anyone used IRC. So theoretically we maintained
an IRC channel, but interested contributors still got “no response from core
developers for their doubts and support request” [15].

Method of Resolution. We decided to switch our whole synchronous communi-
cation to IRC and deleted the Skype group chat. The reasons for this decision
were:

– one IM platform for all purposes
– anybody can join the channel he or she is interested in
– ‘irrelevant’ messages are reduced, because messages are posted only to the

channels where they belong
– faster responses to questions from aspiring contributors due to increased

online time of project members
– topic specific channels can be created and deleted easily, when needed

To make the communication with IRC more attractive for our contributors
we provide them with an IRC bouncer which records all messages when the user
is offline and replays them when the user goes online. In our attempt to minimize
the amount of messages every contributor has to read, we decided to split the
conversation into different channels. There exist separate channels for subteams,
technical support teams (for example for our continuous integration server) and
one channel for general information and announcements. Contributors may still
miss important information, if they do not join all channels, but the risk of
information overload should be diminished.

One disadvantage of IRC as communication platform is that the technology
seems old-fashioned to our contributors and most of our contributors have never
used IRC before. Another disadvantage is that it is more time consuming to
configure IRC with the bouncer than it is to configure Skype. Contributors have
to authenticate to freenode6 and to the project bouncer with different credentials.

Today IRC is widely accepted by our community and the communication
improved compared to Skype because contributors only have to join and read
channels they are interested in and people are by now used to IRC.

3.3 Agile Development Management

Initial Situation. As already mentioned we were and still are allowed to use a
room at the university for our project. There, we have whiteboards serving as
6 IRC network where our project runs all its channels (https://freenode.net/)

https://freenode.net/

18 S. Fellhofer et al.

Kanban boards, as well as story cards on paper at our disposal. Initially every
subteam had its own Kanban board in the room, though this became impossible
as the number of subprojects grew. Our project used and still uses GitHub7

as source repository. Previously, we used the integrated issue tracker not just
to track bugs and issues reported by users but also as a digital version of our
local Kanban boards. Labels of issues were used to indicate which kind of issue
it was (bug, story, enhancement, . . .), the current working status (to do, in
development, done, . . .), the priority (low, medium, high, or critical) and which
part it affected (development environment or interpreter). To enable children
and teenagers to report bugs and issue requests without bothering with Github,
we created a Google Group8.

Resulting Problems. Our user stories and bug reports had to be synchronized
between three different platforms, namely the local Kanban board, Github, and
the Google Group. It is not hard to imagine that this had negative consequences:
the local Kanban board was often outdated and the issue tracker did not cover
stories, which were created locally on the Kanban board. The Github issue
tracker did not support our Kanban board and lacked the functionality of hiding
security relevant issues.

Method of Resolution. We decided to switch to an online distributed agile devel-
opment environment. There exist various tools and we did a comparison of some,
namely GitHub, Bugzilla9, Redmine10, and Jira11. We compared them based on
the following criteria:

– they should support LDAP, virtual whiteboards, and different layers of vis-
ibility for security relevant issues

– the workflow should be customizable to our needs
– the tool should be expandable through add-ons
– means for reporting and analysis should be integrated
– a wiki system should be integrated because the old one needed to be replaced

(for further details see Section 3.4)

We compared the basic versions of the different tools, without considering
all the available add-ons, because add-ons can be more easily abandoned by
their developers than complete tools, and we can not afford commercial add-
ons. Table 1 shows the results of our comparison. Based on this comparison we
decided to try Jira, because together with Confluence12, it would satisfy all our
criteria and both tools are free for FOSS projects.
7 https://github.com/Catrobat
8 https://groups.google.com/forum/?fromgroups=#!forum/pocketcode
9 https://www.bugzilla.org/

10 http://www.redmine.org/
11 Planning and tracking tool for agile project management by Atlassian (https://www.

atlassian.com/software/jira)
12 Wiki system by Atlassian which is free for FOSS projects - https://www.atlassian.

com/software/confluence

https://github.com/Catrobat
https://groups.google.com/forum/?fromgroups=#!forum/pocketcode
https://www.bugzilla.org/
http://www.redmine.org/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/confluence

Scaling and Internationalizing an Agile FOSS Project: Lessons Learned 19

As a pilot test we used Jira during GSoC 2013. Every mentor/student pair
received their own project with a simple Kanban board. Over this trial period we
realized we had to customize the original workflow of issues to fit our developing
principles (specifically review of newly created issues and code acceptance by
experienced developers) and to integrate usability reviews into the workflow.

After the successful pilot test we decided to introduce Jira as a globally-
available project management tool (recommended by [9]) and as replacement
for the local whiteboards. This proved to be another important step towards
becoming an international FOSS project.

Table 1. Comparison of bug tracker/project management software

GitHub Bugzilla Redmine Jira/Confluence

Free for FOSS Yes Yes Yes Yes
LDAP support No Yes Yes Yes
Restrict viewing rights No Yes Yes Yes
Workflow (customizable) Manually with labels Yes Yes Yes
Agile development support 3rd-party websites Add-ons Add-ons Yes
Reporting Basic graphs Yes No Yes
Integrated wiki system Yes No Yes Yes
Expandable Via API Yes Yes Yes

3.4 Documentation Management

Initial Situation. Initially Google Docs, Dropbox, and a wiki system were used
for distributing documents and information. The wiki system grew more or less
naturally and the structure was seldomly revised. For a group of five people,
which communicates mainly face-to-face, a less formal documentation manage-
ment was useful, but once the number of contributors grew, we experienced
severe problems.

Resulting Problems. Document owners left the project and the owner rights
were not transferred. Documents were not updated, became outdated, and there
was no general overview of documents and their content. File sharing tools like
Google Drive and Dropbox were neither integrated in our wiki nor were they
supporting our new user management with LDAP. These facts made it harder
to share and find current information, documents, and their owners.

The wiki was not well maintained on all of its pages, and the organically
grown structure could be an additional hurdle if one did not take the time
to learn how to use the included tools. As discussed in [15], outdated develop-
ment documents lead to difficulties for newcomers. Even some of our experienced
project members tended to avoid using the wiki because of its partly outdated
content and complex structure.

20 S. Fellhofer et al.

Method of Resolution. As explained in Section 3.3 we decided to use Jira as
globally-available project management tool and Confluence as new knowledge
management platform. The switch of systems provides us with an incentive to
revise the structure and to eliminate or correct outdated information. This will
make it easier to find up-to-date and useful information. The introduction of
Confluence is still ongoing, because the information representation needs major
rework.

Scacchi [13] introducedFree and Open Source Software Development (FOSSD)
informalisms, which are easy to use and publicly accessible resources like: threaded
discussion forums, group blogs, news postings, how-to guides, to-do lists, and FAQ.
Most of these technologies are supported either by Jira orConfluence andwe expect
that they will support our contributors in their search for information.

4 Lessons Learned

4.1 Human Related

Introducing and switching to IRC as the new IM service was time consuming and
resulted in resistance. We believe that the confusions described in Section 3.2,
the out-dated and uncomfortable user interface of IRC clients, and our under-
estimation of the need for change management were mainly responsible for the
long (and still ongoing) resistance. To reduce this opposition to change we used
techniques described in [1,8] during the introduction of Jira. We involved more
developers during the configuration period of Jira and the workflow adapta-
tion. We communicated the benefits of the new system more clearly. We believe
that this communication of benefits, training, involvement of GSoC mentors
and optimizing the workflow led to a smooth change of our issue tracker and the
introduction of Jira as a project management tool.

4.2 Technology Related

Centralized management of team member accounts and information about them
should ideally be introduced from the very beginning as it tremendously sim-
plifies the administration of contributors and saves a lot of time later. User
rights management should be well structured and at the same time adjustable
to future changes. Integrated services are preferable from a maintenance per-
spective, because they save time and effort related to organizational tasks. This
time can then be spent on project goals. Not all external services, for example
GitHub support LDAP, but if an API is available for that service, and user
maintenance for this service consumes a lot of time, at least some parts should
be automated by scripts.

5 Future Work

The transition to the newly deployed services is not yet finished for every team.
Jira is already widely applied throughout the teams, but some teams still have

Scaling and Internationalizing an Agile FOSS Project: Lessons Learned 21

to make the transition. As stated in Section 3.4 Confluence is not yet deployed
since the restructuring of the old system takes time and the focus is on easily
accessible and maintainable data. Confluence will contain how-to guides, FAQ,
blog-like news entries, and meeting notes to be more transparent and to provide
new contributors with the most relevant and up-to-date information [13]. To
support the transition [1,8] from the wiki system to Confluence we did a survey
to detect main concerns and problems with the current wiki and are involving
senior contributors in the content adaptation process.

6 Conclusion

As explained in Section 2 communication and documentation are essential parts
of agile software development and even more important in distributed develop-
ment [15]. Face-to-face communication is suitable at the beginning, but with the
growth and internationalization of a project, good communication channels and
project management tools have to be introduced. Every change of workflow or
established tools is time consuming and needs proper change management to
succeed. So before changing major aspects it should be well considered, if the
changes are worth the effort. Appropriate user and rights management simplifies
the administration of infrastructure and contributors. It saves time and sup-
ports contributors by giving them access to the project’s services ideally with
one account.

Acknowledgments. Thanks to all contributors of Catrobat13 and also other support-
ing parties14. This work has been partially funded by the EC H2020Innovation Action
No One Left Behind, http://www.no1leftbehind.eu/, Grant Agreement No. 645215.

References

1. Aladwani, A.M.: Change management strategies for successful erp implementation.
Business Process management journal 7(3), 266–275 (2001)

2. Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology
Business. Blue Hole Press (2010)

3. Andres, C., Beck, K.: Extreme Programming Explained: Embrace Change, 2nd
Edition. Addison-Wesley Professional (2004)

4. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional
(2003)

5. Hiranabe, K.: Kanban applied to software development: from agile to lean (2008).
http://www.infoq.com/articles/hiranabe-lean-agile-kanban, [Online; accessed
15-December-2014]

6. Hussain, Z., Lechner, M., Milchrahm, H., Shahzad, S., Slany, W., Umgeher, M.,
Vlk, T., Koeffel, C., Tscheligi, M., Wolkerstorfer, P.: Practical usability in xp soft-
ware development processes. In: ACHI 2012, The Fifth International Conference
on Advances in Computer-Human Interactions, pp. 208–217 (2012)

13 http://developer.catrobat.org/credits
14 http://developer.catrobat.org/special thanks

http://www.no1leftbehind.eu/
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
http://developer.catrobat.org/credits
http://developer.catrobat.org/special_thanks

22 S. Fellhofer et al.

7. Korkala, M., Abrahamsson, P.: Communication in distributed agile development:
A case study. In: 33rd EUROMICRO Conference on Software Engineering and
Advanced Applications, 2007, pp. 203–210. IEEE (2007)

8. Kotter, J.P., Schlesinger, L.A.: Choosing strategies for change. Harvard Business
Review (1979)

9. Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication prac-
tices for extreme programming in a global software development team. Information
and Software Technology 48(9), 781–794 (2006)

10. Poole, C.J.: Distributed product development using extreme programming. In:
Eckstein, J., Baumeister, H. (eds.) XP 2004. LNCS, vol. 3092, pp. 60–67. Springer,
Heidelberg (2004)

11. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
programming for all. Communications of the ACM 52(11), 60–67 (2009)

12. Scacchi, W.: Understanding the requirements for developing open source software
systems. In: IEE Proceedings on Software, vol. 149, pp. 24–39. IET (2002)

13. Scacchi, W.: Collaboration practices and affordances in free/open source software
development. In: Collaborative software engineering, pp. 307–327. Springer (2010)

14. Schümmer, T., Schümmer, J.: Support for distributed teams in extreme program-
ming. In: Proceedings of eXtreme Programming and Flexible Processes Software
Engineering - XP2000, pp. 355–377. Addison Wesley (2000)

15. Shibuya, B., Tamai, T.: Understanding the process of participating in open
source communities. In: FLOSS 2009. ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development, 2009, pp. 1–6. IEEE
(2009)

16. Yamauchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration with lean
media: how open-source software succeeds. In: Proceedings of the 2000 ACM con-
ference on Computer supported cooperative work, pp. 329–338. ACM (2000)

How Developers Acquire FLOSS Skills

Ann Barcomb, Michael Grottke, Jan-Philipp Stauffert,
Dirk Riehle(B), and Sabrina Jahn

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{ann.barcomb,michael.grottke,jan-philipp.stauffert,

sabrina.jahn}@fau.de, dirk@riehle.org

http://www.fau.de

Abstract. With the increasing prominence of open collaboration as
found in free/libre/open source software projects and other joint pro-
duction communities, potential participants need to acquire skills. How
these skills are learned has received little research attention. This arti-
cle presents a large-scale survey (5,309 valid responses) in which users
and developers of the beta release of a popular file download applica-
tion were asked which learning styles were used to acquire technical and
social skills. We find that the extent to which a person acquired the rel-
evant skills through informal methods tends to be higher if the person
is a free/libre/open source code contributor, while being a professional
software developer does not have this effect. Additionally, younger par-
ticipants proved more likely to make use of formal methods of learning.
These insights will help individuals, commercial companies, educational
institutions, governments and open collaborative projects decide how
they promote learning.

Keywords: Competencies · Informal learning · Non-formal learning ·
Open source · Skills · Software developer

1 Introduction

Free/libre and open source software (FLOSS) is important to the economy, with
many companies now relying on FLOSS components not only internally but also
as the basis for their commercial offerings. Fostering FLOSS talent is critical for
companies, which now support an estimated 50% of FLOSS development [1].
Governments have also become increasingly concerned not only with FLOSS
adoption but with building capacity for FLOSS development as a means of
promoting innovation. It is therefore in the interests of companies, governments
and FLOSS communities to know which skills or competencies1 are necessary
for FLOSS development and how they can be trained.
1 Some authors distinguish between competencies and skills while others do not. In

this paper the terms are used interchangeably.

c© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 23–32, 2015.
DOI: 10.1007/978-3-319-17837-0 3

24 A. Barcomb et al.

Contributing code to a FLOSS project requires both technical skills and
social skills such as the ability to coordinate with others, to clearly articulate an
argument [2], to give constructive feedback and to comply with social rules [3].
Basic information and communications technology (ICT) skills are described
as including “the use of computers to retrieve, assess, store, produce, present
and exchange information, and to communicate and participate in collaborative
networks via the Internet” [4].

People can acquire skills through formal, non-formal and informal learning,
often making use of multiple methods in acquiring a single skill [5]. Formal
learning follows a course structure and results in certification, non-formal learn-
ing is structured but is not formally certified, while informal learning is neither
structured nor formally recognized.

Although the skills necessary for FLOSS development have been identified, it
is unclear which learning methods are being used to acquire them, especially by
people who are not involved in FLOSS development. Our research shows that
being a FLOSS code contributor and being a professional software developer
have different effects on the learning methods used, and that age is an important
factor in how FLOSS skills are acquired. We make use of an internet survey of
users and developers of the beta release of a popular file download application to
statistically validate the learning methods employed in the acquisition of FLOSS
skills by group.

This paper makes three contributions. We confirm that the fact that someone
is a FLOSS code contributor tends to make it more likely for the person to have
used informal learning to acquire FLOSS skills, as discovered by Ghosh et al. [2].
We determine that being a FLOSS code contributor and being a professional soft-
ware developer have different effects on the learning methods employed. Finally,
we demonstrate that age affects the learning methods used.

2 Related Work

We identified three topics related to our research: the learning style preferences
of individuals and groups, FLOSS and ICT skills acquisition, and comparisons
between FLOSS code contributors and professional software developers.

Studies have examined the relationships between learning preferences and
many other factors, such as hemisphericity (‘right’- or ‘left’-brain), social prefer-
ences, chronobiology and culture [6]. Age as an explanatory factor has recently
attracted attention due to popular press claims that immersion in technology
has created a generation of ‘digital natives’ with a uniquely self-directed and
interactive learning style. Little support has been found for the premise in the
literature [7]. A preference for informal learning was found in young students [8],
but a preference for the informal techniques was observed irrespective of age in
students aged from under 20 to over 30 [7]. In a study of Canadian adults, older
people were found to make greater use of independent learning [9].

FLOSS code contributors strongly prefer informal methods such as reading
source code and weakly prefer non-formal methods such as participating in work-
shops over formal study [2]. Contributors already possess many FLOSS skills

How Developers Acquire FLOSS Skills 25

before joining the community [10], but younger cohorts do improve skills signif-
icantly within the community [11]. In contrast with these studies, our research
looks at FLOSS code contributors in relation to others.

The learning styles being used to acquire technical skills, regardless of pref-
erence, are largely informal and non-formal. One of the largest surveys of skills
acquisition indicates that the majority of Europeans acquired their ICT skills
informally, through learning by doing, informal assistance from others, self-study
materials, or through non-formal courses [4]. In a survey of Canadian adults,
computer skills related to employment were among the skills most frequently
acquired informally [9]. These studies focus on how skills are acquired, but they
do not examine differences between groups. Our research shows that the same
skills may be acquired differently by different groups of people.

FLOSS code contributors are often professional software developers or other-
wise employed in the ICT sector [12]. They often already possess technical skills
before joining a FLOSS project [13]. However, there are some demographic dif-
ferences between FLOSS code contributors and professional software developers:
FLOSS code contributors are more likely to be male [12] and come from North
America or north-western Europe [14]. In terms of motivations, most FLOSS
volunteers do not differ significantly from paid FLOSS code contributors [15],
with most being motivated by need rather than altruism [16]. In FLOSS projects,
a small percentage of people contribute most of the code [17], just as in other
joint production communities. Top contributors in such projects participate in
fundamentally different ways than others [18], and have different motivations
[16]. Our research compares the effects of being a FLOSS code contributor and
being a professional software developer and establishes that there are differences
in learning methods used in the acquisition of FLOSS skills.

3 Theory Development and Hypotheses

We consider three methods of learning—formal, non-formal and informal—which
differ on two key attributes: whether it is structured and if it includes certifica-
tion. Formal learning “refers to the education received from a recognized edu-
cation center that leads to a certification” [5]. “Non-formal learning is provided
by any organised, structured and sustained educational activity. . . but typically
does not lead to certification” [4]. “Informal learning is undertaken on one’s own,
either individually or collectively, without either externally imposed criteria or
the presence of an institutionally authorized instructor” [9].

FLOSS code contributors expressed a strong preference for informal learn-
ing and a weaker preference for non-formal learning compared to the formal
method of learning [2]. In this, they differ from respondents of another large
survey (of government employees) [19]. Because the effectiveness of a learning
method depends on how well it matches a person’s learning style [6], we expect
that FLOSS code contributors will make less use of formal learning than other
respondents.

Hypothesis 1a: Being a FLOSS code contributor makes it more likely that
FLOSS skills have been acquired via informal learning methods.

26 A. Barcomb et al.

Hypothesis 1b: Being a FLOSS code contributor makes it more likely that
FLOSS skills have been acquired via non-formal learning methods.

It has been demonstrated that there are differences between prolific contribu-
tors and ordinary contributors in open collaborative projects [16,18] but there is
no indication that the average FLOSS code contributor differs from professional
software developers. Indeed, many FLOSS code contributors work in the ICT
sector [12]. Therefore we anticipate that being a professional software developer
exhibits the same effects on the learning methods used for skills acquisition as
being a FLOSS code contributor.

Hypothesis 2a: Being a professional software developer makes it more likely
that FLOSS skills have been acquired via informal learning methods.

Hypothesis 2b: Being a professional software developer makes it more likely
that FLOSS skills have been acquired via non-formal learning methods.

The majority of studies which examined the relationship between age and a
preference for learning methods found no indication that age affects preferences
[7,20].

While a preference for a particular method does not require that a person
acquire a skill using that method, informal methods of acquiring technical skills
are readily accessible and we expect that people will make use of their preferred
methods of learning when the opportunity exists. We do not expect that age will
affect the learning methods used in the acquisition of FLOSS skills.

Hypothesis 3a: Age does not influence the extent to which FLOSS skills
have been acquired via informal learning methods.

Hypothesis 3b: Age does not influence the extent to which FLOSS skills
have been acquired via non-formal learning methods.

4 Data Sources and Research Method

4.1 Data Sources

The primary data source for this paper is an online questionnaire conducted
between December 2013 and January 2014 [21]. The survey was distributed to
users of JDownloader 2 Beta via a link in the client interface. JDownloader2 is
an open source download management tool used by about 20 million people. A
subset of users run the beta version.

The questionnaire was developed as a split survey with seven parts. In all
parts, participants were asked common demographic questions and about their
FLOSS participation. The distinct portion in each part related to the acquisition
of FLOSS skills identified in prior work [2,3,22]. The questions connected with
each of the skills examined (see Table 1 in Section 5) were ordered randomly and
each appeared in two survey parts. Participants were randomly directed to one
of the seven parts, resulting in a different number of responses for each question.

A second data source is the FLOSS 2013 survey [12] on demographics of
FLOSS participants, which was conducted in late 2013.
2 http://jdownloader.org/

http://jdownloader.org/

How Developers Acquire FLOSS Skills 27

4.2 Survey Reliability

An estimated 200,000 people use JDownloader 2 Beta, of which a total of 26,853
people started to answer one of the survey parts and 5,878 continued to the end.

We compared the completed responses to incomplete responses, and found
that people who completed the survey were more likely to have engaged in soft-
ware development and to have participated in FLOSS. Although the question-
naire stressed that the survey was intended for a broad audience, the focus on
ICT may have discouraged some respondents.

We further eliminated responses where the participant failed to answer follow-
up questions or where we suspected age misreporting because the response was
outside the expected age range (born 1930–2000) of our population, leaving a
total of 5,309 responses for the combined survey.

Internal reliability of the survey was demonstrated by computing Cronbach’s
alpha for the original versions of the skills questions against the control versions.
All results were in the range of 0.6 to 0.9, which is considered acceptable.

4.3 Survey Representation

In our survey, we provided several ways for people to describe their FLOSS
participation. We compared our respondents who selected from the five options
which had close representations in FLOSS 2013 by gender, age and income. This
comparison involved all FLOSS participants, not just FLOSS code contributors.

Using Pearson’s Chi-squared test for gender we determined that there were
differences, with our FLOSS participants being less likely to be female (1.4%
compared to 11.1%).

To determine age in FLOSS 2013, needed for a t-test, we used the year of
initial FLOSS participation and age at the time. Interval values with a range were
adapted with random numbers from a uniform distribution within the range.
Unbounded intervals were adapted as follows: “before 1960” was set to 1960,
“10 or younger” was given a distribution from the set {8, 9, 10} and “55 or
older” followed a distribution from {55, . . . , 65}. A Welch two sample t-test
showed with 95% confidence that our sample differed. Our sample was younger,
as expected from the JDownloader population.

Income was expressed in intervals in both surveys. For a t-test, we converted
the observations to values drawn from a uniform distribution within the interval
limits and adjusted values to cover the same length of time. The results were
consistent with a younger sample: our group had a lower average income.

4.4 Survey Design and Modeling Approach

Learning Style. Participants were asked to gauge their mastery of each skill
shown in Table 1, by moving a slider between the extremes of “I am not skilled at
all” and “I am very skilled.” The maximum value corresponded with 10,000 but
the numeric value was hidden from the participant. Participants who indicated
some measure of skill were subsequently asked to evaluate to what extent various

28 A. Barcomb et al.

methods were used to acquire the skill. Five options were presented: ‘learning in
school, university or apprenticeship’ (formal); ‘reading a book or online tutorial’
(informal); ‘observing other people perform the activity or the result of their
work’ (informal); ‘participating in workshops or advanced training courses’ (non-
formal); and ‘learning by doing’ (informal). Learning styles were also displayed
as unnumbered sliders with an effective range of 0–100 and a visible range of
“nothing at all” to “all.” Informal learning was favored by all participants for all
skills, accounting for 62–80% of learning, while non-formal learning had a range
of 9–16% and formal learning from 11–26%.

FLOSS Code Contributors. People who answered positively to the question
“Have you ever participated in a FLOSS project?” and subsequently selected one
or both of the participation options ‘code contributions’ and ‘project founder’
were categorized as FLOSS code contributors. The binary variable FCC was used
to indicate if a respondent is a FLOSS code contributor. We observed that
FLOSS code contributors differed from the rest of our sample by being younger
(by 1.5 years) and less likely to be female (1.5% versus 3.4%).

Professional Developers. Professional software developers were classified by
their selection of the answer “I work or worked in software development as part
of my job” to the question “Have you worked in software development?” Based
on this classification we created an indicator variable, Prof. It should be noted
that all possible combination of values for the variables FCC and Prof occurred,
giving us four different groups. The smallest group size was 196.

Age. Age was operationalized based on the year of birth, variable YoB, reported
in the questionnaire by the respondents.

Technical Knowledge. We created a control variable, TechK, to describe an
individual’s technical knowledge. It contained the sum of the self-estimates of
the mastery of technical skills (2, 5, 7, 11, 12 and 13) in Table 1.

Modeling Approach. For each skill, the vector y = (ya, yb, yc) observed for
a participant was assumed to follow a Dirichlet distribution with expectation
π = (πa, πb, πc) and precision φ, using the alternative parameterization pro-
posed by Maier [23]. Here, ya, yb and yc represent the observed relative learning
acquired through informal, non-formal and formal learning styles, respectively,
while πa, πb and πc denote the corresponding expected values. Choosing formal
learning as the reference category, the parameters were modeled to depend on
the explanatory variables and the control variable as follows:

ln
(

πj

πc

)
= β0j + β1j · FCC + β2j · Prof + β3j · YoB + β4j · TechK, j ∈ {a, b},

ln φ = γ0 + γ1 · FCC + γ2 · Prof + γ3 · YoB + γ4 · TechK.

How Developers Acquire FLOSS Skills 29

After estimating this model based on all observations available for a certain skill,
we tested the null hypotheses H0(ij) : βij ≤ 0 for i ∈ {1, 2} and j ∈ {a, b} using
t-test statistics. If the related p value of such a test statistic was smaller than the
chosen significance level α, then the null hypothesis could be rejected, indicating
support for the respective alternative hypothesis, which was one of the Hypoth-
eses 1a–2b formulated in Section 3. In contrast to this, the simple Hypotheses
3a and 3b formed the null hypotheses H0(3j) : β3j = 0 with j ∈ {a, b}.

5 Results

When fitting the above Dirichlet regression model for each one of the 17 skills
listed in Table 1, only those respondents could be taken into account who met
the following conditions: they all had some mastery of the respective skill, they
allocated a non-zero value to at least one learning method for acquiring this
skill, they gave their year of birth, and they answered the questions necessary
for determining their technical knowledge as well their membership in the FLOSS
code contributor and professional software developer groups. Table 2 lists the
sample sizes N available for the 17 models, as well as the p values pij obtained
when testing the six null hypotheses H0(ij), i ∈ {1, 2, 3}, j ∈ {a, b}. Results
significant at a level α of 5% are shown in bold type.

Hypothesis 1a was supported for skills 1–3, 5, 10–13, and 15. Descriptions
of the skills can be found in Table 1. As expected, the fact that a person is
a FLOSS code contributor tends to increase his/her use of informal learning
methods in the acquisition of some FLOSS skills.

Table 1. Skills (skills shown in gray had control questions)

Skill # Description

1 to evaluate the work of others

2 to work on own software module alone

3 to communicate with many different target groups

4 to understand English, especially technical discussion

5 to document code

6 to clearly articulate an argument

7 to understand different software architectures

8 to show respect for the work of others

9 to follow discussions on mailing lists

10 to communicate without offending others

11 to write code in a way that can be reused

12 basic/introductory programming skills

13 to acquaint yourself with code from others

14 to maintain contact with a community

15 to coordinate own work with the work of others

16 to change criticized behavior

17 to understand and work with people from different cultures

30 A. Barcomb et al.

Table 2. Sample sizes and test results

Skill # N p1a p1b p2a p2b p3a p3b

1 964 0.0115 0.5337 0.6664 0.0945 0.0200 0.0000
2 758 0.0019 0.1479 0.9986 0.9698 0.0032 0.0000
3 475 0.0498 0.8459 0.3033 0.4610 0.0072 0.0122
4 815 0.3313 0.8751 0.0847 0.0532 0.0003 0.0000
5 697 0.0095 0.2109 0.8809 0.9791 0.0057 0.0000
6 916 0.1645 0.0588 0.8712 0.4882 0.0361 0.0000
7 790 0.1832 0.6709 0.9999 1.0000 0.0000 0.0000
8 343 0.2783 0.2505 0.0640 0.4892 0.0060 0.0043
9 395 0.1483 0.4034 0.2757 0.1426 0.0125 0.0020
10 636 0.0071 0.2223 0.4565 0.1272 0.0189 0.0000
11 709 0.0030 0.0654 0.7705 0.6665 0.0011 0.0000
12 1046 0.0000 0.0000 1.0000 0.9956 0.0028 0.0000
13 591 0.0133 0.1295 0.2402 0.5800 0.1011 0.0020
14 350 0.0967 0.2230 0.1388 0.2587 0.1805 0.0641
15 751 0.0144 0.1769 0.6464 0.3472 0.0005 0.0000
16 527 0.3298 0.2965 0.4763 0.5724 0.0227 0.0005
17 390 0.3763 0.2838 0.3794 0.3056 0.0158 0.2393

Hypothesis 1b was not supported, except for skill 12. Being a FLOSS code
contributor does not make it more likely that non-formal learning methods have
been used to acquire FLOSS skills.

Hypothesis 2a and Hypothesis 2b were not supported. The fact that a
person is a professional software developer does not tend to increase his/her use
of informal or non-formal learning methods in the acquisition of FLOSS skills.

Hypothesis 3a was rejected except for skills 13 and 14. Hypothesis 3b was
rejected except for skills 14 and 17. For most FLOSS skills, age influences the use
of informal and non-formal methods of learning. More specifically, our results
indicated that for all skills where age has an effect, being older is associated with
a higher likelihood of having acquired FLOSS skills informally and non-formally.

6 Discussion and Limitations

The learning methods used by FLOSS code contributors were expected, but the
fact that not all skills showed this increased tendency toward informal learning
suggests that future work is needed to determine why this variation exists.

There are important implications of the finding that in the acquisition of
skills necessary for FLOSS development, being a professional software developer
has a different effect from being a FLOSS code contributor. It has generally
been assumed that the pool of potential FLOSS code contributors consists of
all software developers, but our results suggest that there may be fundamental
differences between professional software developers who contribute to FLOSS
projects and those who do not. Future research should examine the extent of
these differences, in order to determine if it is possible to encourage FLOSS

How Developers Acquire FLOSS Skills 31

participation among software developers or if only a certain type of person—
one who makes greater use of independent learning and exploration—is likely to
become a FLOSS code contributor.

The effects of age on skills acquisition may reflect the availability of learning,
rather than preferences. Previously, there were fewer formal options for acquiring
FLOSS skills. This suggests it may not be futile to try to teach FLOSS skills,
since they can be acquired through more formal methods. Future research could
examine not only the methods by which skills were acquired, but the extent
to which the skills were mastered. It should be noted that in our sample the
age effect tended to offset the higher preference for informal learning among the
FLOSS code contributors, because the FLOSS code contributors were younger.

Our sample was one of convenience optimized for response rate and is not
representative of the general population, FLOSS code contributors, or software
developers (see Section 4.3). Although this may limit the general applicability
of our findings, the results are relevant for young adults, a group which is one of
the most important targets for increasing FLOSS skills. Furthermore, as all our
respondents came from the same population, our observations about the relative
use of informal learning methods by different groups likely remain true.

7 Conclusions

In this paper, we presented a statistical analysis of a survey on the learning
methods employed in the acquisition of FLOSS skills. We found that—unlike
being a professional software developer—the fact that someone is a FLOSS code
contributor tends to make it more likely for the person to have used informal
learning methods to master a number of skills. Moreover, age strongly predicted
differences in learning methods, with younger people proving more likely to make
use of formal learning.

Our results provide some indication of how companies, FLOSS projects and
governments can promote the acquisition of FLOSS skills, but also demonstrate
the need for further research on how and to what extent FLOSS skills are learned.

Acknowledgments. The authors would like to thank Thomas Rechenmacher and
JDownloader for promoting the survey and Nicole Kimmelmann for her contribution
to the survey design.

References

1. Riehle, D., Riemer, P., Kolassa, C., Schmidt, M.: Paid vs. volunteer work in open
source. In: Proc. 47th Hawaii Int. Conf. System Sciences. pp. 3286–3295 (2014)

2. Ghosh, R.A., Glott, R., Krieger, B., Robles, G.: Free/libre and open source soft-
ware: Survey and study. Tech. rep., International Institute of Infonomics, Univer-
sity of Maastricht (2002). http://flosspols.org/deliverables.php

3. Kimmelmann, N.: Career in open source? Relevant competencies for successful
open source developers/Karriere in Open Source? Relevante Kompetenzen für
erfolgreiche Open Source Entwickler. it-Information Technology 55(5), 204–212
(2013)

http://flosspols.org/deliverables.php

32 A. Barcomb et al.

4. Ala-Mutka, K.: Review of learning in ICT-enabled networks and communities.
Tech. Rep. 24061, Institute for Prospective Technological Studies (2009)

5. Galanis, N., Mayol, E., Alier, M., Garcia-Peñalvo, F.J.: A social framework for
supporting, evaluating and validating informal learning. In: Proc. 2nd Int. Conf.
on Technological Ecosystems for Enhancing Multiculturality, pp. 589–594 (2014)

6. Dunn, R., Beaudry, J.S., Klavas, A.: Survey of research on learning styles.
California Journal of Science Education 2(2), 75–98 (2002)

7. Lai, K.W., Hong, K.S.: Technology use and learning characteristics of students in
higher education: Do generational differences exist? British Journal of Educational
Technology (2014)

8. Hong, K.S., Aziz, N.A.: Technology use and digital learning characteristics among
malaysian undergraduates. Sains Humanika 2(1), 117–124 (2014)

9. Livingstone, D.W.: Exploring the icebergs of adult learning: findings of the first
Canadian survey of informal learning practices (1999)

10. Ghosh, R., Glott, R.: Flosspols: skills survey interim report: 32. MERIT, University
of Maastricht, Maastricht (2005)

11. Glott, R., Meiszner, A., Sowe, S.K.: FLOSSCom phase 1 report: analysis of the
informal learning environment of FLOSS communities (2007). http://kn.open.ac.
uk/public/getfile.cfm?documentfileid=12042

12. Arjona-Reina, L., Robles, G., Dueas, S.: The FLOSS2013 free/libre/open source
survey (2014). http://floss2013.libresoft.es

13. Fang, Y., Neufeld, D.: Understanding sustained participation in open source soft-
ware projects. Journal of Management Information Systems 25(4), 9–50 (2009)

14. Takhteyev, Y., Hilts, A.: Investigating the geography of open source software
through GitHub (2010). http://www.takhteyev.org/papers/Takhteyev-Hilts-2010.
pdf

15. Lakhani, K.R., Wolf, R.G.: Why hackers do what they do: understanding motiva-
tion and effort in free/open source software projects. In: Feller, J., Fitzgerald, B.,
Hissam, S., Lakhani, K.R. (eds.) Perspectives on Free and Open Source Software,
pp. 3–22 (2005)

16. Shah, S.K.: Motivation, governance, and the viability of hybrid forms in open
source software development. Management Science 52(7), 1000–1014 (2006)

17. Kagdi, H., Hammad, M., Maletic, J.I.: Who can help me with this source code
change? In: Proc. IEEE Int. Conf. Software Maintenance. pp. 157–166 (2008)

18. Panciera, K., Halfaker, A., Terveen, L.: Wikipedians are born, not made: a study
of power editors on wikipedia. In: Proc. ACM 2009 Int. Conf. Supporting Group
Work, pp. 51–60 (2009)

19. Grundmann, S.T.: Making the Right Connections: Targeting the Best Competen-
cies for Training. DIANE Publishing (2011)

20. Byrne, P., Lyons, G.: The effect of student attributes on success in programming.
ACM SIGCSE Bulletin. 33, 49–52 (2001)

21. Jahn, S.: Teaching open source competency (2014). http://osr.cs.fau.de/2014/04/
02/final-thesis-teaching-open-source-competency/, bachelor thesis

22. Kimmelmann, N.: Private communication (2013)
23. Maier, M.: DirichletReg: dirichlet regression for compositional data in R. Tech.

Rep. 125, Vienna University of Economics and Business (2014)

http://kn.open.ac.uk/public/getfile.cfm?documentfileid=12042
http://kn.open.ac.uk/public/getfile.cfm?documentfileid=12042
http://floss2013.libresoft.es
http://www.takhteyev.org/papers/Takhteyev-Hilts-2010.pdf
http://www.takhteyev.org/papers/Takhteyev-Hilts-2010.pdf
http://osr.cs.fau.de/2014/04/02/final-thesis-teaching-open-source-compe tency/
http://osr.cs.fau.de/2014/04/02/final-thesis-teaching-open-source-compe tency/

Communication and Collaboration

Implicit Coordination: A Case Study
of the Rails OSS Project

Kelly Blincoe(B) and Daniela Damian

University of Victoria, Victoria, Canada
kblincoe@acm.org, danielad@uvic.ca

Abstract. Previous studies on coordination in OSS projects have stud-
ied explicit communication. Research has theorized on the existence of
coordination without direct communication or implicit coordination in
OSS projects, suggesting that it contributes to their success. However,
due to the intangible nature of implicit coordination, no studies have con-
firmed these theories. We describe how implicit coordination can now be
measured in modern collaborative development environments. Through
a case study of a popular OSS GitHub-hosted project, we report on how
and why features that support implicit coordination are used.

1 Introduction

There are many large Open Source Software (OSS) development projects that
succeed despite spanning geographic, organizational and social boundaries. Such
boundaries normally create coordination barriers and make coordination more
expensive [1]. Previous research hinted at the promise of implicit coordination,
defined as coordination “reached without discursive communication, shared plans
or even previous commitment among the actors” [2], in reducing coordination
overhead on OSS projects [2–4]. Bolici et al. [2] identified cases where depen-
dencies between tasks existed with no evidence of explicit communication and
theorized that implicit coordination was used to fulfill these dependencies. How-
ever, since implicit coordination occurs without explicit communication, it is
difficult to examine, and no studies have confirmed these theories.

Modern software development tools provide unprecedented support for
implicit coordination in OSS projects. Developers can understand relevant tasks
without interrupting the developers assigned to those tasks for explicit com-
munication. For example, details of a dependent task can be reviewed to gain
awareness about the task. Developers can document all task related decisions
within task reports and insert comments directly into the source code, all of
which can be easily reviewed by others. Additionally, tools like GitHub provide
notifications of project activity to help developers stay aware. This transparency
supports implicit coordination and makes collaboration easier [5].

We describe how modern development environments enable implicit coordi-
nation. We report on a case study of a popular OSS project hosted on GitHub.
GitHub is a code hosting service and collaboration environment. Its transparency

c© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 35–44, 2015.
DOI: 10.1007/978-3-319-17837-0 4

36 K. Blincoe and D. Damian

[5] and built-in social features enable implicit coordination. In a mixed-method
research approach, we surveyed 986 developers, interviewed 14 developers and
conducted a repository analysis. We find that two GitHub features that support
implicit coordination —issue subscriptions and following relationships —are used
frequently and report on how and why these features are used.

2 Implicit Coordination

Previous studies on coordination in OSS projects [6,7] studied explicit coordina-
tion mechanisms likes emails and bug report comments. Coordination that occurs
without explicit communication is known as implicit coordination, which consists
of consequential communication and feedthrough [8]. Consequential communica-
tion is watching a developer complete their tasks to learn about their activities.
Feedthrough is obtaining information about tasks by examining changes to arti-
facts and is an example of stigmergy. Stigmergy is a concept from biology that
states “work done by one agent provides a stimulus that entices other agents to
continue the job” [4]. Stigmergy occurs when enough information is contained
within an artifact or a task report to enable a new developer to complete an
ongoing task or start a new dependent task without explicit coordination. This
occurs frequently on OSS projects [4]. Even independent tasks build on the work
of others [9], so stigmergy plays a key role in OSS development.

Awareness is “an understanding of the activities of others, which provides a
context for your own activity” [10]. Developers need to be aware of tasks (and
associated artifact changes) and people [11]. A lack of awareness can result in
coordination breakdowns [12,13]. Previous research found that, on OSS projects,
developers obtain awareness through explicit communication [8], but it can also
be achieved through implicit coordination. Modern software development tools
make development work more visible and transparent [5] providing awareness
and potential for implicit coordination. Therefore, the study we present here
investigated awareness and implicit coordination and was guided our research
question:

How are the features that enable implicit coordination being used on modern
software development environments?

We describe features of modern software development environments that sup-
port awareness of tasks and people and enable implicit coordination in OSS
projects. We then describe our study to address this research question.

3 Implicit Coordination Enabled by Modern
Development Environments

While explicit coordination is characterized by communication, implicit coordi-
nation is achieved by obtaining awareness of the information needed to complete
a task without communication. Modern software development environments have
introduced features that enable implicit coordination. We describe how modern

Implicit Coordination: A Case Study of the Rails OSS Project 37

Issue 1 Technical Dependency

A
ssigned To

A
ssigned To

Following Users
(Awareness of Others’ Activity)

P2

Issue 2

P1

Implicit
Coordination
Relationships
between tasks,
 people & tools

Fig. 1. Awareness Mechanisms for Implicit Coordination in GitHub

development environments support implicit coordination by enabling awareness
of tasks and people. We specifically highlight the GitHub features that support
implicit coordination and illustrate them in Fig. 1. Issues are GitHub’s repre-
sentation of tasks, so we refer to issues and tasks synonymously. In Fig. 1, a
coordination need exists between developers P1 and P2 due to the technical
dependency that exists between their tasks.

1) Awareness of Tasks

In a previous study, we found that developers prefer to review task details
to understand a task rather than interrupting the task assignee to ask about
the task [14]. Reviewing details of related tasks and the changes made to the
source code as a result of those tasks can help developers gain an understanding
of dependent tasks. Task details can be obtained from the task report in the
team’s issue or bug tracker. Reviewing artifacts in the source code management
system can make developers aware of code changes, and comments left in the
code may provide insight into why the changes were made.

Developers can obtain awareness of tasks by subscribing to feeds. Feeds
broadcast project-related or user events such as incoming issues or code changes.
Developers use feeds to track work and get information [15].

Support in GitHub: GitHub supports awareness of tasks through its issue
subscription feature. When users are subscribed to issues, they receive notifi-
cations of the activity occurring around that issue on their GitHub dashboard
and, if configured, via email. Users are automatically subscribed to issues when
they comment on or are tagged in a comment on that issue. Users can unsub-
scribe if desired. In Fig. 1, developer P1 becomes aware of task 2 through issue
subscription.

Other Development Environments/Tools: SourceForge, another web-based
code management tool, allows users to subscribe to issues through an RSS feed.
Other issue trackers, like Jira and Bugzilla also allow users to obtain notifi-
cations of the activity occurring around issues. Jira has an issue subscription
feature similar to the one provided in GitHub. The cc feature in Bugzilla works
similarly, allowing developers to add themselves to a change request’s cc list to
receive notifications about that change request.

38 K. Blincoe and D. Damian

2) Awareness of Others’ Activity

Developers can gain an understanding of others’ activity by reviewing their
work. This was previously accomplished by monitoring version control check-in
logs [8] and has been made easier through feeds that broadcast user activity.
Many software development tools allow users to follow users. When someone
follows a user, they receive notifications about that user’s activity in their feeds.

Support in GitHub: Users can follow others by clicking on the follow button
in a user’s profile. The follower will then receive notifications about that user’s
activity across all GitHub projects. In Fig. 1, developer P1 is following developer
P2 and, therefore, is aware of the activity of P2.

Other Development Environments/Tools: SourceForge enables following of
other users through RSS feeds. In Bugzilla and Jira, you can search for issues or
bugs a user is participating on, but feeds of a user’s activity is not available.

Developers can gain a further understanding of others’ activity by review-
ing information shared through social media. Software developers have
adopted social media tools like wikis, blogs and microblogs. Studies have found
that sharing information through these forums allows easy access to knowledge
and can serve as a coordination method [16].

Support in GitHub: GitHub does not allow developers to share information
about their activity in wikis, blogs or microblogs. External tools are often used
in conjunction with GitHub such as Twitter [16] for this functionality.

Other Development Environments/Tools: No currently adopted development
tools offer integrated blogging or microblogging.

4 Case Study

We examined Ruby on Rails, a popular project hosted on GitHub, often referred
to simply as Rails. Rails is an open source web application framework written
in the ruby programming language. Many companies and other OSS projects
use the framework for creating web applications. Rails, therefore, attracts many
contributors looking to fix bugs affecting their own products or add new features
that are useful for them. We choose to study Rails since it has a large group of
code contributors, resulting in frequent coordination needs.

To answer our research question, we collected and analyzed both qualitative
and quantitative data through a survey, developer interviews, and a statistical
analysis of Rails project repository data. We applied a grounded theory app-
roach on the survey and interview data [17]. For the project repository analysis
on Rails, we obtained data from GHTorrent [18], which provides a mirror of
the GitHub API data. GHTorrent obtains its data by monitoring and recording
GitHub events as they occur. We selected the project with the most code con-
tributors in the GHTorrent 2014-04-02 dataset —Rails. We analyzed the most
recent release available in that dataset, 4.0, which was developed from January
20, 2012 to June 25, 2013. Using GHTorrent, we obtained issue subscription
information for all issues and following relationships for all users. We included

Implicit Coordination: A Case Study of the Rails OSS Project 39

data from the main branch and any associated forks as recommended in [19]. We
included all 2,437 issues that were closed during that release. There were 7,935
users who contributed through commits, comments, or issues. We refer to users
and contributors interchangeably since we are studying only Rails contributors.

4.1 Methods

To answer our research question, we analyzed data from an online survey, inter-
views with 14 contributors, and the project repository.

Survey instrument. We sent an online survey to all 7,492 GitHub users with
valid email addresses that participated on Rails during the release of interest.
Any user who performed one of the following actions was identified as a partic-
ipant: committed code; created an issue; submitted a pull request; commented
on a commit, issue or pull request; closed, merged or reopened an issue or pull
request; or subscribed to an issue.

We asked survey participants if, how and why they used the features that sup-
port implicit coordination in GitHub, subscribing to issues and following users.
The questions in the survey were both multiple-choice and open-ended. Our
survey is available at http://web.uvic.ca/∼kblincoe/survey.pdf. We used unbal-
anced (skewed towards the positive) rating scale questions since we expected
mostly positive answers and wanted to measure the degree of the responses [20].
We received 986 responses (12.4% response rate). We used standard qualitative
coding techniques [17] to categorize responses and identify themes.

Interview instrument. To gain a better understanding of how implicit coordi-
nation takes place, we interviewed 14 of the survey respondents who volunteered
for interviews. We randomly selected participants from the 19.2% of respondents
who identified themselves as currently active participants of the Rails project.
Interviews were semi-structured and lasted 30 minutes on average. The inter-
views were focused on coordination with questions like ‘How do you know what
others are working on?’ and ‘Are there ways you stay aware of project activ-
ity and avoid duplicate work or conflicts in your own work without explicitly
communicating with other teammates?’ Similar to the survey data, we used a
grounded theory approach in our analysis of the interview transcripts [17].

Repository analysis. We examined how the features that support implicit
coordination are used in GitHub by examining their frequency of use.

4.2 Results

1) Awareness of Tasks: Issue Subscription

Issue subscriptions are used extensively on Rails. 79.7% of issues have at least
one subscriber. Of the issues with subscriptions, many (35.6%) have subscribers
who have not commented or been tagged within a comment. For issues with
subscribers, there is an average of 4.1 subscribers per issue (median is 3).

Many contributors subscribe to issues. Through repository analysis, we found
that 48.1% of contributors are subscribed to at least one issue. Users who sub-
scribed to issues were subscribed to 3.9 project issues on average (median is 1).

40 K. Blincoe and D. Damian

Our interviewees talked about how the notifications make it easier to stay aware
of what is going on. While you can see what others are working on by looking
through the code to identify changes, issue notifications are much more efficient.
“Trying to look at the actual code, like the todos or comments in the code or
that people have open branches on that, that ends up being really difficult. You
can spend a long time looking and not figure it out.” [P10]

Many contributors subscribe to issues they are not participating on. Nearly half
(49.4%) of our survey respondents said that they subscribe to issues that they are
not actively participating on (where active participation considers reporting the
issue, developing code or commenting on the issue). This is important because it
implies that they are using these notifications for awareness of tasks that they are
not working on (like developer P1 in Fig. 1 becomes aware of Issue 2 by subscribing
to that issue even though she is not working on that issue).
“[Issue notifications] are the best way to passively stay up to date with things
that are going on.” [P11]

In fact, many of our survey respondents (65.9%) stated that they use the
information obtained from issue notifications differently than when they are
actively participating on an issue. When actively participating on an issue, they
“use the notifications for more direct actions rather than just a general feeling
of what’s going on.” They treat the notifications as a ‘to-do’ list. When they are
not actively participating on the issues, they use the notifications more passively.
They gave several reasons why they would subscribe to notifications for issues
they are not participating on:

– Dependencies. 31% of respondents explicitly state that they subscribe to
issues because of dependencies in their code or because they are experiencing
the same issue. One respondent stated, “Something I’m working on could be
depending on the outcome of the resolution.” Another respondent said, “I ran
into the same issue . . . when they fix it, I will update to [the new version].”

– Issue Status. 31% of respondents simply reported that they subscribe to
know when the issue is resolved without giving a more detailed reason.

– Project Status. 22% subscribe to maintain an overall awareness of project
activity. “For some projects that I’m not actually interested in contributing
actively, [subscribing to issues] is the closest you can get to a newsletter to
get to know what new features are getting in and other general stuff.”

– General Interest / Education. 9% subscribe because of general interest in
the issue or to learn from the discussion or solution. One respondent said,
“I like to see the changes and comments made by others to learn more.”

– Awareness for Future. 7% subscribe to obtain knowledge for future develop-
ment. One respondent said the notifications around certain issues “may help
me make changes in the area in the future more easily”. Other respondents
noted they follow certain issues so they can offer help if needed.

One of the most common reasons for receiving notifications (31%) is to obtain
information on dependencies. This is a form of implicit coordination. The respon-
dents who receive notifications to provide awareness for the future (7%) are also

Implicit Coordination: A Case Study of the Rails OSS Project 41

Does information obtained from issue notifications reduce the amount
direct communication needed to coordinate your development work?

Does information obtained from issue notifications help keep you
aware of what others are working on?

78% 22%

 Not at all Insignificantly Somewhat Significantly Very Significantly

8% 14% 50% 24% 4%

94% 6%
2% 4% 28% 48% 17% % 4%%

Fig. 2. Survey Responses around Issue Notifications

implicitly coordinating. They obtain awareness about code changes so they are
familiar with the code and the design decisions to be able to contribute in the
future more efficiently. Only a small number of our survey respondents subscribe
to issues out of general interest (9%). Our interviewees only subscribe to issues
that affect them directly.
“I used to try to follow things that I was just interested in to know what was
going on with them, and I found that it was totally irrelevant. If I’m not actively
using a repository, I really don’t need the notifications.” [P5]

Subscribing to issues helps reduce communication and increase awareness.
Fig. 2 shows that 78% of survey respondents found that the information obtained
from issue notifications can reduce the amount of direct communication and 94%
said it can increase awareness of what others are working on. One respondent
said, “I can stay up-to-date on others thinking and inputs on a specific topic
without needing to talk to them.” Another respondent focused on the awareness
he obtains from the information contained in issue notifications saying, “through
their comments and patches I can see what others are working on and what their
progress is.” Our interviewees talked about how the notifications help reduce
direct communication around issue status.
“If I am waiting for a fix on something, then the notifications will help me stay
up-to-date . . . I don’t have to contact the developer for the status.” [P5]

Interviewees also noted that communication is often limited to only when differ-
ences of opinion occur.
“I might see that someone is working on a particular issue and . . . take a look
at the code that has actually been implemented and see if it is along the same
lines as what I was thinking, kind of a preview. So if somebody is off on the
wrong track or going down a code path that I don’t think is actually going to
fix the bug or implement that feature then I might send them an email or hop
in a chat.” [P9]

The notifications also help keep developers aware of dependencies or work
that has been done on related issues, according to our interviewees.
“If we have multiple pull requests that rely on each other. . . just seeing com-
ments come across and the pull requests come in, helps me know where that is
in the process.” [P6]

42 K. Blincoe and D. Damian

Do notifications obtained from following others reduce the amount of
direct communication needed to coordinate your development work?

Do notifications obtained from following others keep you aware of
what others are working on?

43% 28% 22% 5% 1%

28% 72%

80% 20%
9% 11% 40% 32% 9%

 Not at all Insignificantly Somewhat Significantly Very Significantly
11%

Fig. 3. Survey Responses around Following

2) Awareness of Others’ Activity: Following

Many users follow other users. 66.7% of survey respondents say they follow
other GitHub users. This is consistent with our repository analysis, which found
that 64.3% of all Rails contributors follow other GitHub users. The reasons for
following others are quite varied:

– Track activity. 41.8% follow others to see what they are up to and track their
activity. “As a means of seeing what they are working on. Their contributions
are working towards solutions in my general problem space.” This reason is
the most suggestive of implicit coordination, unlike the ones that follow.

– Learn about new projects. 23.8% follow others to see what projects they
contribute to or star. “I have discovered a lot of projects from looking at
what users I am following are looking at.”

– Social. Many respondents (21.2%) said they follow others for social reasons.
“That’s basically the ‘friend’ feature on GitHub. I just follow others I know.”

– Useless. Some survey respondents (6.8%) stated that the following feature is
useless. “[It] is not really a useful feature because it adds too much noise.”

– Education. 3.6% said they follow others to learn. “I follow experts in certain
code bases to educate myself by reviewing their check-ins and comments.”

– Bookmark users. 2.8% said they follow others to ‘bookmark’ interesting
GitHub users since it “makes it easier to find their profiles in future.”

Users often follow other contributors on their projects. 46.1% of Rails con-
tributors are following other Rails contributors. Those who are following other
contributors are following 7.2 project contributors on average (median is 3).

Following other users does not reduce communication but does increase aware-
ness. Fig. 3 shows 72% of survey respondents found that the notifications obtained
from following others does not reduce the amount of direct communication. How-
ever, 80% found the notifications did increase awareness of what others are work-
ing on. One respondent said, “I can see other people’s activity and what projects
they are actively working on.” Our interviewees noted that the notifications from
following others is too high-level to be useful for coordination.
“I just see the repositories they create, the repositories they fork, what they star
and stuff like that. . . . It is just a general overview of what they are doing, and
if I want to know anything in detail, I have to still ask them or go to them or
just look at the code to see what’s going on.” [P2]

Implicit Coordination: A Case Study of the Rails OSS Project 43

In addition, since following others results in notifications related to their
activity on all repositories, the notifications can contain a lot of noise.
“When I follow a person, they work on an assortment of repositories, most of
which have nothing to do with me probably. I follow very few people.” [P5]

5 Discussion

The findings from our study of Rails, a prominent OSS project hosted in GitHub,
indicate that both issue subscription and following other users are widely adopted
by OSS users. There are various reasons why users choose to use these features.
The main reason for subscribing to issues is to obtain information on dependen-
cies, a form of implicit coordination. Survey respondents believed that subscrib-
ing to issues reduced their direct communication.

However, many of our interviewees and survey respondents indicated that
notifications from following others introduced too much noise and, therefore,
were not useful. Additional surveys or interviews could shed some light on what
notifications are most useful for implicit coordination so the notifications can be
minimized to only the most relevant information. Important research questions
include: What is the most useful information for inclusion in notifications of
other’s activity? Are users influenced by the actions of the users they follow?

The effect of explicit coordination has been studied by quantitatively assess-
ing how the coordination structure of a team aligns with the teams’ coordination
needs. Conway’s Law [21] was the first to introduce the idea of such an alignment.
Now that implicit coordination can be measured through features like issue sub-
scription and following, future research can study the impact of implicit coordi-
nation. If implicit coordination improves productivity and quality, managers can
encourage implicit coordination to reduce coordination overhead. Further, tools
that provide coordination recommendations to developers could focus on less
expensive, implicit means of coordination. While bringing new knowledge about
indirect collaboration in modern, open development environments, this study is
only the beginning of our exploration into indirect coordination. We investigated
only one project in detail; thus, it suffers from some threats to validity regarding
generalizability. Our survey respondents and interviewees were all Rails contrib-
utors and were self-selected. We reached saturation in our results, but they may
not generalize to other GitHub projects. However, many of our interviewees were
active contributors to many GitHub projects and their responses drew on their
experience across multiple projects. Additional studies can continue this inves-
tigation on other GitHub projects. Further, this investigation can be continued
through future studies of implicit coordination in other modern development
environments like SourceForge, Jazz or Bitbucket.

44 K. Blincoe and D. Damian

References

1. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordi-
nation. In: FSE 2007, pp. 188–198. IEEE Computer Society (2007)

2. Bolici, F., Howison, J., Crowston, K.: Coordination without discussion? socio-
technical congruence and stigmergy in free and open source software projects. In:
STC 2009 (2009)

3. Elliot, M.: Stigmergic collaboration: The evolution of group work. m/c journal 9
(2006)

4. Heylighen, F.: Why is open access development so successful? stigmergic organi-
zation and the economics of information. arXiv preprint cs/0612071 (2006)

5. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in github: trans-
parency and collaboration in an open software repository. In: CSCW 2012, pp.
1277–1286. ACM (2012)

6. Bird, C.: Sociotechnical coordination and collaboration in open source software.
In: ICSM 2011, pp. 568–573. IEEE (2011)

7. Crowston, K., Wei, K., Li, Q., Eseryel, U.Y., Howison, J.: Coordination of
free/libre and open source software development (2005)

8. Gutwin, C., Penner, R., Schneider, K.: Group awareness in distributed software
development. In: CSCW 2004, pp. 72–81. ACM (2004)

9. Howison, J., Crowston, K.: Collaboration through open superposition: A theory
of the open source way. MIS Quarterly 38, 29–50 (2014)

10. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In:
CSCW 1992, pp. 107–114. ACM (1992)

11. Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated software devel-
opment teams. In: ICSE 2007, pp. 344–353. IEEE CS (2007)

12. Damian, D., Izquierdo, L., Singer, J., Kwan, I.: Awareness in the wild: Why
communication breakdowns occur. In: ICGSE 2007, pp. 81–90. IEEE (2007)

13. de Souza, C.R., Redmiles, D.F.: An empirical study of software developers’ man-
agement of dependencies and changes. In: ICSE 2008, pp. 241–250. ACM (2008)

14. Blincoe, K., Valetto, G., Damian, D.: Facilitating coordination between software
developers: A timely and efficient approach. Technical Report DCS-354-IR (2014)

15. Treude, C., Storey, M.: Awareness 2.0: staying aware of projects, developers and
tasks using dashboards and feeds. In: ICSE 2010, pp. 365–374. IEEE (2010)

16. Singer, L., Figueira Filho, F.M., Storey, M.A.D.: Software engineering at the speed
of light: how developers stay current using twitter. In: ICSE 2014, pp. 211–221
(2014)

17. Corbin, J., Strauss, A.: Basics of qualitative research: Techniques and procedures
for developing grounded theory. Sage (2008)

18. Gousios, G., Spinellis, D.: Ghtorrent: Github’s data from a firehose. In: MSR
2013, pp. 12–21. IEEE (2012)

19. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian,
D.: The promises and perils of mining github. In: MSR 2014, pp. 92–101. ACM
(2014)

20. Parasuraman, A., Grewal, D., Krishnan, R.: Marketing research. Cengage Learn-
ing (2006)

21. Conway, M.E.: How do committees invent. Datamation 14, 28–31 (1968)

http://arxiv.org/abs/cs/0612071

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 45–57, 2015.
DOI: 10.1007/978-3-319-17837-0_5

The Diffusion of Pastebin Tools to Enhance
Communication in FLOSS Mailing Lists

Megan Squire() and Amber K. Smith

Elon University, Elon, NC, USA
{msquire,asmith90}@elon.edu

Abstract. This paper describes how software developers who use mailing lists
to communicate reacted and adjusted to a new supplementary collaboration
tool, called a pastebin service. Using publicly-available archives of 8800 mail-
ing lists, we examine the adoption of the pastebin tool by software developers
and compare it to the model presented in Diffusion of Innovation (DoI) theory.
We then compare the rate at which software developers decided whether to ac-
cept or reject the new pastebin tools. We find that the overall rate of pastebin
adoption follows the S-curve predicted by classic DoI theory. We then compare
the individual pastebin services and their rates of adoption, as well as the reac-
tion of different communities to the new tools and the various rationales for ac-
cepting or rejecting them.

Keywords: Open source · Pastebin · Email · Diffusion of innovations ·
Software development

1 Introduction

Software developers working in distributed teams, such as on free, libre, and open
source software (FLOSS) projects, have historically used digital tools to communicate
with each other about bugs, features, and decisions related to the project. Developers
on these types of projects are also often geographically and temporally distributed,
making the use of digital media a requirement for communication. Traditionally, the
most common digital tool for software development communication has been the
email mailing list. Many of these email mailing lists are publicly-viewable and arc-
hived for the long term, since FLOSS development relies on a certain level of open-
ness in participation, transparency in decision making, and institutional memory.
Apache Software Foundation projects, for example, are required to conduct all official
project business on the mailing list (e.g. [1] [2]). Software developers can use email
mailing lists to send each other long text artifacts for review, such as bug reports,
code snippets, error logs, and the like.

However, when compared to newer social media web sites, email mailing lists can
seem simplistic. As [3] explains, over time, more software development will be con-
ducted by "social programmers" using web sites and apps designed for sharing arti-
facts, and mailing lists risk obsolescence. For example, while mailing lists can be
expressed as a type of primitive social network [4], they are not nearly as expressive
of social relationships as are microblogging services like Twitter or the pull request
system of Github. For reputation management, email lacks the badging and voting

46 M. Squire and A.K. Smith

features of Q-and-A web sites like Stack Overflow. For collaborative editing, mailing
lists are not as easy-to-use as a wiki or a shared code editor.

And yet, email persists as a pillar of "social programming". In the mid-2000s a
class of web site was created to facilitate sharing source code via email. A site like
this is called generically a "pastebin", after Pastebin.com, one of the first such sites. A
pastebin is a web site that allows a user to paste in text and receive back a permanent
short URL to the text that was pasted. Some pastebins even include syntax highlight-
ing for common programming languages. This can be an appealing advantage when
constructing an email with source code in it, or multiple attached log files, or long
error logs, or complicated bug reports. Developers using a pastebin advocate that it
enhances the utility of the email mailing list as a social communication tool: it makes
sharing text easier and reading more efficient.

For this paper, our research questions center around diffusion of these pastebin
tools on software development mailing lists, as follows:

• RQ1: What is the rate of diffusion for pastebins among FLOSS developers using
mailing lists?

• RQ2: Does the rate of diffusion change between different variants of the innova-
tion?

• RQ3: What are the stated reasons for and against adopting this innovation?

By studying the rates of diffusion of this pastebin tool, we can better understand
how contemporary distributed software development is done, and whether certain
tools designed to facilitate social programming on older communication tools will be
adopted or not.

To answer these questions, Section 2 gives some background on the pastebin inno-
vation itself and we review the tenets of classical Diffusion of Innovation (DoI)
theory. In Section 3 we present our methods for measuring the diffusion of this inno-
vation in the FLOSS developer community, specifically in its email mailing lists. In
Section 4, we review the results of this analysis and present our findings for how and
why the innovation diffused, including differences across tools. In Section 5 we dis-
cuss the implication of our method and analysis on our research questions. In Section
6 we explain limitations of our method and in Section 7 we make recommendations
for future study.

2 Background

2.1 Pastebins

As the frequently asked questions (FAQ) document of one popular pastebin tool ex-
plains, the website "is mainly used by programmers to store pieces of sources [sic]
code or configuration information, but anyone is more than welcome to paste any type
of text. The idea behind the site is to make it more convenient for people to share
large amounts of text online." [5] Examples of pastebins include: Pastebin.com,
Github Gists, and Paste.org.

The innovation of a plain pastebin represents the unification of several previous
ideas: a pastebin at this level is simply a very quick way to publish a text document on

 The Diffusion of Pastebin Tools to Enhance Communication in FLOSS Mailing Lists 47

the web and give it a shortened URL suitable for sharing. Pastebin.com requires no
authentication (although that option is available), and the URLs can be set to expire in
increments ranging from minutes to "never". The goal is to simplify the publication
process from a complicated one involving file transfer and permissions-setting, to one
involving only pasting into a web form.

More recently, there is also a class of web sites called an online IDE (integrated
development environments) which not only allow the developer to paste in code and
provides a link back, but also allows this code to be modified and run in the browser.
Examples of online IDEs include CodePen, jsFiddle, and JS Bin (for testing Java-
Script code), SQL Fiddle (for testing SQL), PhpFiddle (for testing PHP code), and
CodePad (supports a variety of languages).

We should note that because of the anonymity and convenience provided by paste-
bin sites (and even online IDEs), they have also been used for non-software related
purposes, including some illegal or of questionable legality (for example sharing of
password lists, posting stolen credit card numbers, high volumes of spam link farm-
ing, and the like). See [6] for a description and timeline of some of the more notable
illegal activities on Pastebin.

Another important aspect of all pastebin sites is the longevity of the provided URL.
Each pasted document is initially given a unique URL, but if the document is allowed
to expire, this URL will become a dead link ("link rot"). Pastebin sites have also gone
defunct (perhaps due to their site administrators not expecting the high volume of
"alternative" uses of their sites, see [7] for details about the expense involved in eradi-
cating spam on Pastebin.com) and this means any links are also defunct.

2.2 Diffusion of Innovations

We are particularly interested in how these pastebin tools diffused into common usage
among software developers. How innovations diffuse (diffusion of innovations, or
DoI) has a rich literature, stemming from the work of Everett Rogers [8] who laid the
foundation for how to systematically study the process that a new idea goes through
as it becomes accepted or rejected by a community. Among Rogers' contributions was
to document the "S-curve" that innovations typically go through on their way to be-
coming accepted or diffused. If we plot time on an X-axis and usage/acceptance of an
innovation on the Y-axis, the typical path of an innovation over time will look some-
thing like the letter "S". See Figure 1 for an example. The steepness or shallowness of
the S will be interesting to the diffusion researcher (as will the lack of an "S" shape, if
the innovation was not successful in diffusing at all).

DoI research also tends to be concerned with the processes that led to that particu-
lar rate of diffusion, including characteristics of the community (or individuals) that
would affect the diffusion, such as the compatibility of the innovation with the com-
munity's values or the effectiveness of a change agent to champion the innovation.
Diffusion can be quite complex, especially with technologies that are themselves
complex or networked systems [9]. Entities (governments, companies or individuals)
with a stake in getting their particular innovation adopted will attempt to understand
the myriad variables that can affect the rate or likelihood of diffusion, in order to
make that diffusion process more effective.

48 M. Squire and A.K. Smith

Fig. 1. Typical Diffusion of Innovations curve (modeled after Rogers, 1964)

Once diffusion is determined to have occurred, interesting questions may center
around the following: describing the initial discovery of the tool by early adopters, the
steps taken by early adopters to encourage others to use the tool, the rejection and
refusal by some community members to use the tool, and the expectation-setting and
rule-setting by the community governing use of the new tool.

For this project, we are primarily interested in doing the foundational work of cal-
culating the rate of diffusion of pastebin tools within the community of social pro-
grammers who use mailing lists to communicate. We also take the first steps toward
understanding how early adopters encouraged later adopters to use the pastebin inno-
vation.

3 Methods

3.1 Data Collection

To answer our research questions, we needed first to retrieve the count of times each
pastebin tool was mentioned on software development mailing lists over time. The
result will be plotted as a rate-of-diffusion curve. To get this data we first identified a
source for searching software development mailing lists by keyword. All of our mail-
ing list data came from a publicly-available email aggregation web site called Mark-
Mail.org. MarkMail provides a search interface for approximately 70 million emails
from more than 8800 software development mailing lists, in the time period 1992-
2014. MarkMail allows broad keyword searches, and also allows searching within
typical email headers (e.g. from, subject, and list address).

With MarkMail as a reliable source of email data, we then had to figure out which
words were being used to describe pastebin services. The web site Pastebin.com was
begun in 2002, and the first mention of either the Pastebin.com web site or the generic
noun ("pastebin") on a mailing list was on May 11, 2003 [10]. Though Pastebin.com
was probably the first in widespread, public usage [7], there are many more pastebin-
style websites in existence now.

The generic noun "pastebin" is still used to refer to both the site type ("Use a pastebin
to post your code!") and the actual text having been pasted ("I can't find that pastebin
you sent"), but other, newer pastebin tool names are often used generically as well (for
example, "I'm going to create a gist" or "Did you get my dpaste?"). We therefore needed
to search for full or partial web site URLs (e.g. "pastebin.com", "gist.github.com"), and

 The Diffusion of Pastebin Tools to Enhance Communication in FLOSS Mailing Lists 49

the corresponding generic nouns ("send me a pastebin" or "as you can see from my
gist"). To answer our first research question about the rate of diffusion we needed to
count all mentions of pastebins, whether by URL or by generic noun.

To identify relevant pastebin tools to use as search terms, we constructed a master
list of 38 pastebin web sites and online IDEs that are used in software development.
We then searched for each tool in MarkMail to see which were most used by software
development teams. The results are shown in Table 1.

Table 1. Top 12 Most Used Pastebin Websites on MarkMail (2003 - 2014)

Rank Pastebin Website Message Count Rank Pastebin Website Message Count

1 Pastebin.com 64009 7 Codepad 847

2 Github Gists 39557 8 Paste.org 467

3 Pastie 13397 9 Codepen 224

4 jsFiddle 10536 10 IDEone 196

5 Dpaste 6740 11 SQLFiddle 54

6 JS Bin 2416 12 all others < 50 ea.

Most of the tools have the same common name as their URL domain (e.g. jsFid-
dle). However, two of the pastebin tools, Github Gists and Paste.org, were harder to
search for as generic nouns since their relevant stem is already a word in common
English usage. Table 2 shows the results for paste and gist as generic nouns, versus
their URL-specific versions.

Table 2. Comparing the message count for 'gist' and 'paste' as words and as URLs

Original Keyword Message Count New Keyword Message Count
gist 68706 gist.github 39557
paste 674760 paste.org 467

To fix these problems, we decided to search for Github Gists using the partial URL
gist.github only, and we limited results for the "Paste.org" website to only those mes-
sages that included the partial URL paste.org. We recognize that, by doing this, we
may have missed some instances of gist or paste used generically to refer to the pas-
tebin tool. We also implemented some basic data cleaning procedures. One mailing
list (com.googlegroups. jquery-br) used the words JS Bin and jsFiddle in nearly every
signature line on over 50,000 messages sent. We removed these.

For each of the four most frequently used pastebin sites shown in Table 1 (more than
10,000 mentions), we collected the data for usage over time (message counts by month
and year). We wrote scripts to download the counts for each term. The scripts are available
on Github for anyone to use [11]. The next section describes our analysis of this data.

3.2 Data Analysis

We have created several charts showing the count of messages with each of the top
four pastebin sites mentioned. Figure 2 (next page) shows the overall percentage of

50 M. Squire and A.K. Smith

messages mentioning any p
centage of mail mentioning
ly hovers around 0.5% of al

Fig. 2. Percent of mailing

Fig. 3. Comparison of pasteb

h

pastebin site from May 2003 until February 2014. The p
g any pastebin tool ranges from less than 0.1%, but curre
ll mail.

 list messages making reference to any pastebin, 2003 - 2014

bin tool references as a percentage of all mail sent, 2003 - 201

per-
ent-

14

 The Diffusion of Pastebin Tools to Enhance Communication in FLOSS Mailing Lists 51

Figure 3 shows each particular diffusion line for the different pastebin tools. The
X-axis (time) for each sub-graph in Figure 3 differs by when that pastebin site was
created. For example, the first mention of Pastebin.com itself was in May 2003 [10],
whereas the first mention of Github Gist was in July 2008 [12]. Each sub-graph in
Figure 3 has been smoothed, and each Y-axis shows the keyword as a percent of all
mailing list messages in MarkMail (to take into account natural variations in email
usage over time by teams in general). These range from <0.1% to nearly 0.3%.

4 Discussion

Figure 3 shows some of the same steep increases and "S-curve" that is expected in
DoI theory for the largest pastebin sites (pastebin.com, Github Gists), and to a smaller
extent with jsFiddle. Pastie is comparatively flat throughout its existence. In this sec-
tion we describe each of the diffusion curves individually, compare their shapes, and
give reasons for the differences.

4.1 Pastebin.com Discussion

The curve for diffusion of Pastebin.com is shown in the top bar of Figure 3. The web
site for Pastebin.com claims that it was started in 2002, and indeed the first Paste-
bin.com snapshot [13] on the Wayback Machine [14] was taken on November 23,
2002. But the first mention of Pastebin.com on any of the email mailing lists was six
months later on May 11, 2003 [10]. By November of 2003, or one year after its crea-
tion, some mailing list users were treating the use of Pastebin.com as a social norm
(an expectation for doing business on the mailing list), and some were actually sham-
ing "newbies" for NOT using it [15]:

> You need to get a website and post a link to the site instead
of posting a giant email
> with code that's not even indented and probably wrapped in
some places.

Agree with CP here – please don't post large code get some web-
space, or use www.pastebin.com; please don't send attachments;
please don't send your messages priority, request return re-
ceipts; please turn of [sic] vacation auto-responders, please
use plain text, and above all else, please don't top post.
(where's that weekly newbie email?)

In Rogers' description of the diffusion of innovations, early adopters often become
the champions or advocates of the innovation. However, one thing that is interesting
about the message in [15] is that not only does this admonishment happen relatively
quickly in the life of the pastebin tool, but this particular list (php-general) is a mail-
ing list specifically designed for all types of users, whereas the original place that the
tool was diffused was a developer-specific list. New users ("newbies") are apparently
expected to know about the existence of this tool very quickly.

Indeed, the "weekly newbie email" to which the email author refers was indeed
sent out just the day before the exchange above [16], but it did not mention

52 M. Squire and A.K. Smith

Pastebin.com nor did it even encourage people to point to code on the web by using a
URL. In fact, this idea was not officially recommended to newbies on that mailing list
until April of 2004, five months after this user was admonished. [17]

Another interesting pattern we see in the diffusion of Pastebin.com is how rapidly
"pastebin" becomes a generic noun, and how quickly copycat web sites spring up. The
first mention of a copycat web site is about 13 months after Pastebin.com was first
created, and about 7 months after the first use of 'Pastebin.com' on mailing lists [18].
The first mention of pastebin as a generic noun is in a February 2004 message [19]
describing a new tool called "Trash: a pastebin application written using the Twisted
framwork" [sic].

Eventually (certainly by 2009) there is some pushback in at least some portions of
the developer community to using a pastebin on mailing lists. The common reasons
given are, first, that emails with pastebin links are annoying to read because you have
to click a separate link. As [20] begs,

...please (please please) don't use pastebin. Just include the
output inline in the mail message. It is much easer[sic] to get
at then.

Second, developers noticed that the pastebin URLs eventually time out or disap-
pear ("link rot"), making them unreliable for long-term issue tracking. For example
the developer in [21] explains,

...Pastebin is a useful tool for sharing information between
people, but please do not reference pastebin URLs in Jira Tick-
ets. Pastebin entries are not guaranteed to survive for any pe-
riod of time, and they can and will disappear at some point.
This means of [sic] you open a ticket and you put a backtrace in
the pastebin, if the pastebin is cleared so is your backtrace.

4.2 Github Gists Discussion

Github introduced its Gists service on July 21, 2008, and the first mention of
'gist.github' on a mailing list was two days later [12]. Whereas Pastebin.com took six
months to diffuse onto mailing lists, the fact that it took Gists two days to diffuse
confirms the fact that pastebins were well-understood by developers at this point.
Thus the Gists adoption curve tracks upward more quickly than Pastebin (Figure 3).

However, we still find evidence of some pro-innovation diffusion behaviors inside
the developer community using Gists: developers encouraging others to use Gists
when it is first introduced [22], new users commenting on the fact that they are trying
Gists for the first time [23] developers or teams setting rules or community proce-
dures around Gists [24][25], and new technical reasons for using Gists (e.g. the
mailing list is set to reject attachments [26], or the mailing list software itself rejects
messages with code in them [27]). Like with Pastebin.com, there is even occasional
shaming when others do not use Gists [28].

 The Diffusion of Pastebin Tools to Enhance Communication in FLOSS Mailing Lists 53

Some developers also make the case for Github Gists as an improvement to the
mailing list experience in terms of increased "social programming" power [23] as
follows:

> I've never used pastebins before. I heard about them the other
day when I got roundly booed for pasting some code into an irc
window. Can someone tell me how they work?

This lets someone see that file with syntax highlighting in a
browser, instead of in an IRC window, etc.(…) I think it's kinda
cool to be able to collaborate that way with someone who might
not know much about git or source control tools in general, bet-
ter than posting revisions (…) or sending patches around on
mailing lists.

4.3 jsFiddle Discussion

jsFiddle represents an interesting case of a language-specific (JavaScript) online IDE
which also provides static, sharable URLs. As such, jsFiddle does not have as broad a
potential developer user base as Pastebin.com or Gists, both of which are language-
neutral. Its adoption curve is therefore smaller than the other two (Figure 3). Also,
jsFiddle is designed to help a developer code and test in the browser, so it will not be
effective for error logs or other non-code messages. Finally, most of the mailing lists
indexed by MarkMail are for FLOSS projects that are written in high-level, multi-
purpose, non-browser languages (for example Java, Python, Ruby, C++), so they have
little use for a language-specific interface-driven tool like jsFiddle. (We also ran into
some issues with the way MarkMail collected data that affected jsFiddle, and these
are discussed in the Limitations section.) Another study did note the popularity of
jsFiddle on Stack Overflow [29], finding that it was the sixth most common domain
linked in postings.

The first mention of jsFiddle on the mailing lists in MarkMail was in January of
2010, but it took a year for jsFiddle mentions to accelerate to more than 100 mentions
per month (0.03% of messages). As we mentioned in Section 3.1, we had to clean the
data to remove one particular mailing list (jquery-br) because a list-wide email signa-
ture line was artificially inflating the numbers for both JS Bin and jsFiddle. However
it is worth pointing out that the reason that the list members put that request in their
signature lines ("Use JSBIN.COM / JSFIDDLE.NET for code") in the first place was
as a way of directing the community towards a preferred behavior. This was the same
pattern that we noticed in Pastebin.com, and Github Gists as well: the developers
themselves would decide to adopt the innovation and then attempt to encourage others
to use it by modeling positive behaviors, social norming and rule-setting, or shaming.
Here is an exchange between a new user and a more experienced developer regarding
jsFiddle [30]:

> Maybe you can get your issue into jsFiddle?

Thanks for the suggestion to use jsfiddle. It helped to quickly
allow me to test out my solution. You can see it in action
here...

54 M. Squire and A.K. Smith

5 Results

Our first research question asks what the rate of diffusion is for pastebins among software
developers using mailing lists to communicate. The graph in Figure 2 shows the number
of times popular pastebin tools were mentioned in messages to the 8800 mailing lists on
MarkMail. The graph shows the classic DoI adoption S-curve: a slow ramp up, followed
by a steeper period of increasing usage, which eventually levels out.

Our second question asks whether the diffusion curve differs between different va-
riants of the innovation. Figure 3 shows different shapes to each of the top four paste-
bin tools. The "first mover" tools either took a long time to ramp up (Pastebin.com) or
never quite took off (Pastie). The later-to-market tools were adopted quite quickly and
enthusiastically by either a general audience (as with Github Gists) or even in a com-
paratively narrow niche market (as with jsFiddle).

Our third question is about the stated reasons for and against using this tool to en-
hance communication on mailing lists. In reading the emails in which developers try
to convince their colleagues to adopt the pastebin innovation, they rely on a number
of persuasive techniques. First, some developers issue simple entreaties to make eve-
ryone's reading experience better. These arguments center on the anti-social aspects of
asking for help while simultaneously pasting in thousands of lines of code into a mes-
sage. We also found pro-pastebin arguments that address the technical downsides to
mailing lists, namely that they are overrun with spam and therefore may have been
configured to have length limits or rules disallowing attachments.

But we find the most interesting group of arguments are those which claim that a pas-
tebin or online IDE will actually make the programming process more social and there-
fore more effective. This is especially true in the case of Github Gists (which can be
forked, and pull requests issued) and in the case of jsFiddle (which can be edited and the
new URL re-sent). In this case, a pastebin is more than a simple link-to-text scheme; it
actually adds a layer of social enhancement that did not exist with simple mailing lists.

We also found some anti-pastebin sentiment. A number of developers point out the
negative side effects of linking to code rather than archiving it inside the message. Some
point out the inconvenience of having to click a link, and many more mention the risk
that the link may be broken over time and is therefore unreliable as a record of what has
been done in the code and why. However, based on the diffusion curves, this argument
does not seem to have much "won" on developer mailing lists as a whole.

6 Limitations

Definition of Diffusion. Our method of calculating the diffusion rate may differ from
the traditional interpretation of "diffusion" because of our use of message counts and
not sender counts in our calculation of the adoption rate. In the traditional DoI litera-
ture, diffusion is usually defined as "number of people who adopt an invention". In
the realm of email, adoption can be described as the number of senders who mention
the tool, or it could be the number of times (emails) a sender mentions the tool. Table
3 outlines the differences in calculating diffusion using these two different methods.

 The Diffusion of Pastebin Tools to Enhance Communication in FLOSS Mailing Lists 55

Table 3. Two different methods of counting diffusion of pastebins on mailing lists

Method 1 Method 2

pm = count of messages mentioning a tool
m = count of all messages
diffusion=pm/m

ps = count of senders mentioning a tool
s = count of all senders
diffusion=ps/s

In this paper we choose to measure pm/m (method 1) rather than ps/s (method 2).

We determined that it is actually more accurate to count messages rather than senders
because for example, a single sender (e.g. "bugzilla@redhat.com") may actually
represent an unknown number of other developers on the project. For example, sup-
pose five different developers submit their bugs to a Bugzilla bug-tracking system,
and they all used a pastebin for the error log or code sample that they are attaching to
the bug tracking email. These five bug reports will all be forwarded to the mailing list
as a single sender: bugzilla@company.com. Our method recognizes these messages as
representing five instances of pastebin use, rather than just one. We also acknowledge
that it is considerably easier to measure messages than to disambiguate senders (who
may have multiple email addresses or different aliases).

Pre-Pastebin Code-via-URL Sharing. One other limitation of our study is that we
do not have a good way for finding out how widespread the practice was of sharing
code-via-URL prior to Pastebin.com. The [15] message shows that in November of
2003 there is at least some acknowledgement that it is possible (and may also be de-
sirable) to create a web space for code snippet or log message rather than posting it in
the email message. However, in this paper we do not examine how prevalent that
practice was. It would be quite challenging to gather this count, since any URL would
be a potential code location.

MarkMail Limitations. As a source for keyword searching through very high vo-
lumes of emails, MarkMail is a good (but not perfect) source. We recognize that
MarkMail does not collect every FLOSS mailing list to begin with, and we acknowl-
edge that some of its lists are not about FLOSS. More important for this project, we
noticed that MarkMail may occasionally stop collecting from a mailing list abruptly,
even though the list is still being used. We had some issues with MarkMail stopping
the collection of one small mailing list in June of 2013. This abrupt stoppage affected
our graph for jsFiddle since that one, small mailing list did include a very high num-
ber of jsFiddle users. (We turned in a support ticket to MarkMail about why they
dropped the "jsknockout" mailing list from its collection, but it has so far gone un-
answered.) Still, for searching a large number of lists over a long period of time,
MarkMail is useful.

7 Future Work

We are excited about some avenues of future work, particularly in studying pastebin
tools and the innovation curve on two additional sources of FLOSS social program-
mer communication: IRC and Stack Overflow. These two tools are heavily used by

56 M. Squire and A.K. Smith

active social programmers, especially in developing FLOSS and in distributed pro-
gramming teams of all kinds. They are each very different ways of communicating,
and have their own traditions, expectations, and culture. We suspect that the diffusion
curves of the pastebin tool will look very different on each of these. Early evidence
shows that pastebin tools caught on very quickly on IRC, in some cases producing an
even sharper diffusion curve than on mailing lists. In contrast, we have encountered
evidence of much more resistance to usage of pastebin tools in certain Stack Overflow
postings but not in others. We suspect that this resistance is grounded in fear of link
rot, as dead links are considered substantially more serious on a long-term reference
site (which Stack Overflow aims to be) than on IRC and mailing lists. We also notice
that some sub-communities within Stack Overflow are more accepting of pastebins
(and online IDEs in particular) than other sub-communities. We are in the process of
analyzing the IRC and Stack Overflow data and comparing it to mailing lists in order
to provide evidence for how pastebins diffused on these other communication chan-
nels, and why.

8 Conclusion

Studying pastebin adoption on developer communication channels, mailing lists in
this case, can further our understanding of how innovations diffuse in general, and in
particular we can learn about how social media are impacting the traditional commu-
nication tools used by software developers. Will developers adopt a "social program-
ming" innovation in order to enhance a tool that has already been in use for nearly
forty years? In this paper we were able to confirm that the overall pastebin adoption
does follow the S-curve of traditional DoI theory. Within particular tools, we find
some differences in rates of diffusion depending on whether the tool being adopted
was one of the earlier ones or one of the later ones. Most interestingly, we find that
the reasons given for adopting the innovation include both very practical enhance-
ments to the email communication medium, as well as attempts to improve the social
aspects of collaborative coding.

References

1. Apache Software Foundation. Mailing Lists. http://www.apache.org/foundation/mailing-
lists.html

2. Apache Software Foundation. Project Management Committee Guide. https://www.apache.org/
dev/pmc.html#mailing-list-naming-policy

3. Storey, M.A., Singer, L., Cleary, B., Filho, F.F., Zagalsky, A.: The (R)Evolution of social
media in software engineering. In: Proceedings of the on Future of Software Engineering,
FOSE 2014, pp. 100–116. ACM (2014)

4. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social net-
works. In: Proceedings of the 2006 International Workshop on Mining Software Reposito-
ries, pp. 137–143. ACM (2006)

5. Pastebin.com. Frequently Asked Questions. http://pastebin.com/faq#1
6. Brian, M.: Pastebin: How a popular code-sharing site became the ultimate hacker hangout.

The Next Web, June 5, 2011. http://tnw.to/1CUpN

 The Diffusion of Pastebin Tools to Enhance Communication in FLOSS Mailing Lists 57

7. Kelion, L.: Pastebin to hire staff to tackle hackers’ ‘sensitive’ posts. BBC News – Tech-
nology, April 1, 2012. http://www.bbc.com/news/technology-17544311

8. Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press (2003)
9. Lyytinen, K., Damsgard, J.: What’s wrong with diffusion of innovation theory? the case of

a complex and networked theory. In: Proceedings of the IFIP TC8 WG8.1 Fourth Working
Conference on Diffusing Software Products and Process Innovations, pp. 173–190. Kluwer
(2001)

10. Chapman, W.B.: PEAR DB_DataObject. On Pear-general list (2003). http://markmail.org/
message/elidvojuxpb74kps

11. https://github.com/amberksmith/pastebin_data
12. Rasmussen, K.: Re: RFC: associations with :accessible => true should allow updating. On

Rubyonrails-core mailing list, July 23, 2008. http://markmail.org/message/hhnac-
ladvbfmn2ac

13. Internet Archive Wayback Machine Browse History for http://pastebin.com,
http://web.archive.org/web/20020901000000*/, http://pastebin.com

14. Internet Archive Wayback Machine. http://web.archive.org
15. Khalid, B.: Re: BTML 2.0 released!!! On PHP-general list, November 6, 2003

http://markmail.org/message/7o7agkvsxwa4khsy
16. Unknown. [Newbie Guide] For the benefit of new members. On PHP-general mailing list,

November 5, 2003. http://markmail.org/message/bvg6bqpthu6nhorf
17. Kumar, M.S.: [Newbie Guide] For the benefit of new members. On PHP-general mailing

list, April 11, 2004. http://markmail.org/message/xmzgihotajd5ycar (last accessed April
29, 2014)

18. Wells, C.: Overload() problem. On PHP-general list, December 22, 2003.
http://markmail.org/message/67vqonuzqf46qfje

19. Stepniewski, L.: Twisted Weekly News #11. On Twisted-Python mailing list, Feburary 17,
2004. http://markmail.org/message/tuqdi3ngd6jbngxi

20. Brown, N.: Re: 2 drives failed. On Linux-Raid-Vger list, January 29, 2010.
http://markmail.org/message/lg6ohoycbiadu6j4

21. Rice, K.: Jira and the PasteBin…[Please READ ME]. On Freeswitch-users list.
http://markmail.org/message/76gjydtvymg34sfc

22. Brown, G.: Re: Where to upload a ruby script to share it? On Ruby-lang Ruby-talk list,
August 4, 2008. http://markmail.org/message/vaai47hafrjl3jgn

23. Stejerean, C.: Re: [Chicago] DVCS Workflows? On Python Chicago list, November 20,
2008. http://markmail.org/message/trj3b2r6e5726bdv

24. Kaiser, F.J.: [BP #4342] Announcement: BP-Testcase Page (html). On Blueprintcss list,
January 25, 2011. http://markmail.org/message/d45yagbaj6d7vwmv

25. Leeming, C.: How to use the django-users mailing list properly and doing your homework.
On Django-Users list, June 30, 2011. http://mark.mail.org/message/jl5lkq6sp6juw5vh

26. Ryaboy, D.: Re: java.lang.OutOfMemoryError when using TOP udf. On Apache Hadoop
Pig User list, November 21, 2011. http://markmail.org/message/4jmb54whfvbenyqy

27. Rowe, S.: Re: Implement price range filter: DataImportHandler started. Not Initialized. No
commands can be run. On Lucene Solr-User list, Feburary 14, 2013.
http://markmail.org/message/3jguuhkgqdztynht

28. Demeshchuk, D.: Re: riak on one node. On Riak-Users list, October 1, 2012.
http://markmail.org/message/mid5slijhzyp7xt3

29. Gomez, C., Cleary, B., Singer, L.: A study of innovation diffusion through link sharing on
stack overflow. In: Proceedings of 10th Working Conference on Mining Software Reposi-
tories, pp. 81–84. ACM (2013)

30. Rpn. Re: Noob Question: Trouble binding computed value to table header. On Knockoutjs
List, September 27, 2012. http://markmail.org/message/m43utkaz4eo5xffa

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 58–67, 2015.
DOI: 10.1007/978-3-319-17837-0_6

Examining Usability Work and Culture in OSS

Mikko Rajanen() and Netta Iivari

Department of Information Processing Science, University of Oulu, Oulu, Finland
{mikko.rajanen,netta.iivari}@oulu.fi

Abstract. Organizational culture has been recognized as an influential factor af-
fecting the successes and failures of usability work in organizations; however,
there is a lack of research on organizational culture in open source software
(OSS) development. This paper shows that there are different kinds of cultures
in OSS development projects and builds propositions on the relationship be-
tween culture and usability work in OSS development projects. Partly those are
derived from the literature, partly from an exploratory empirical inquiry. We
speculate whether there is an ideal culture type for usability work in OSS de-
velopment or whether usability work should be modified to fit the different cul-
tures of OSS development projects.

Keywords: Open source software · Usability · Culture · Empirical study

1 Introduction

This paper examines usability work and organizational culture in the context of open
source software (OSS) development. Usability work includes usability activities
relating to analysis, design and evaluation that aim at making systems and products
usable (e.g. [1,2,3,4]). The introduction of usability work into software development
in general (e.g. [1,2]) and OSS development in particular [3,5,6,7,8,9] is challenging.
In OSS projects usability has traditionally been neglected, as OSS developers have
traditionally “scratched their own itch” and usability in the sense of ease of use has
not been a major concern. Yet, nowadays many OSS solutions have attracted a large
amount of users who do not want to participate in OSS development, but only to use
the OSS. Thus, usability of OSS and usability work in OSS development have
become crucial.

This paper argues that there are different kinds of cultures in OSS development
projects as well as stipulates the role culture may play in the introduction of usability
work into OSS development. The influence of organizational culture on usability
work has been brought up in the literature (e.g. [1,2,11,12,13]). It has been argued that
usability work should be compatible with the organizational culture in order to
succeed [1,2,9,10,13]. As to OSS development, however, literature on the matter is
very scarce. It has been brought up that OSS development projects have different
kinds of cultures [6], OSS development culture may be in conflict with usability work
[6,7,8] and usability activities should be tailored to fit the OSS development
philosophy and culture [7,8,10]. Yet, no empirical research has been reported.

 Examining Usability Work and Culture in OSS 59

This paper initially inquires the cultural context of OSS development projects and
speculates on the relationship between usability work and culture in OSS
development. Culture (as defined in section 2) is approached here through the lens of
the competing values model that is a widely used model for culture studies (e.g.
[1,14]). Although the model has originally been developed for explaining differences
in the organizational effectiveness literature [15], the value orientations in the model
seem relevant also in OSS development. Moreover, the model has already been
applied in related research on usability work in commercial software development [1].
The paper reports some exploratory research findings gained during a research
program where attempts for introducing usability work into OSS development have
been organized. Four OSS case projects are discussed in this paper.

This paper is structured as follows. The next section addresses the concept of
culture and reviews related research addressing the relationship between usability
work and culture. The third section presents the research method used in the empirical
studies and the empirical results. The last section discusses the implications of the
findings as well as their limitations and paths for future work.

2 Literature Review

Culture has been the topic of study within numerous disciplines, while in cultural
anthropology it has been the main focus. The discipline studies humans as cultural
beings, assuming that ‘man is a symbolizing, conceptualizing, meaning-seeking
animal’ [16]. Although there are several hundred definitions of culture within the
discipline, some are more prominent than others. A famous definition by Geertz is the
following: “Man is an animal suspended in webs of significance he himself has spun,
I take culture to be those webs, and the analysis of it to be therefore not an experimen-
tal science in search of law but an interpretive one in search of meaning” [16]. Later
on, the study of culture has spread to different disciplines; including also Information
Technology (IT) related disciplines. Some studies have even addressed the relation-
ship between usability work and organizational culture.

In such studies, one can identify two strands: studies discussing the relationship be-
tween ‘usability work and engineering culture’ and studies discussing the relationship
between ‘usability work and a particular organizational culture’. The first strand ar-
gues that there are discrepancies between the cultures of engineers and usability pro-
fessionals, and cultural change is needed for solving these discrepancies. Engineers
need to cultivate their work practices [17], but also usability experts should try to
think and work like engineers to minimize the problem of cultural differences [10,13].
The latter strand, on the other hand, discussing the relationship between usability
work and particular organizational cultures, maintains that the introduction of usabili-
ty work likely succeeds if it is customized to the existing culture as for usability work
there is no ‘one size fits all’ [1,2,10]. One should understand the particular usability
myths and values that define the usability culture of the organizations [11]. Obstacles
for usability include prevalent myths, attitudes, beliefs and incentives [13]. Usability
myths and values should be presented and openly discussed to succeed [11].

On the other hand, some studies do not recommend understanding the existing
usability culture of the organization, but instead present ‘usability culture’ as an ideal

60 M. Rajanen and N. Iivari

state where to aim at [12]. ‘Strategic usability’ is presented as an ideal state that
means embedding usability in the organizational processes, culture and roadmaps
[18]. ‘Full scale usability’ involves a major cultural transformation for an organiza-
tion and a paradigm shift for practitioners. There is a need for a cultural change from
technology and engineering centric views, but such change may cause resistance [19].

There are also studies that have shown that there are different cultures in develop-
ment organizations that may have implications on usability work [1,20]. Certain cul-
tural characteristics have been associated with certain usability work characteristics in
organizations. Four ‘usability cultures’ have been identified that do not describe ideal
situations, but current states of affairs in studied cases. The characteristics of usability
work identified seemed to be compatible with the cultural characteristics [1]. Hence,
the study recommends modifying usability work to fit the existing culture, proposing
a cultural compatibility hypothesis (see [1,2]).

Based on the literature, it seems that there may be a cultural clash or conflict be-
tween usability work and engineering culture as well as between usability work and
culture of some particular development organizations. To solve the problem of cultur-
al clash or conflict, researchers suggest that: 1) Usability work should be modified to
fit the engineering culture; 2) Usability work should be modified to fit some particular
organizational culture; 3) Engineering culture should be modified so that usability is
appreciated and ‘usability culture’ as an ideal state can be achieved; or 4) The organi-
zational culture in question should be modified so that usability is appreciated and
‘usability culture’ as an ideal state can be achieved. There is variety in the culture
conceptions in these studies as well as in the assumptions concerning the relationship
between culture and usability work. Equipped with these tools, we examine studies
addressing usability work and culture in OSS development.

Although during the past decade a huge amount of research on OSS development
has been produced, there is a lack of research addressing the cultural context of OSS
development. Nevertheless, it has been pointed out that there is variety in the OSS
development community cultures, depending on the software under development, the
size of the development community and the underlying business model [6]. However,
empirical research on culture is lacking. On the other hand, researchers have already
described the general characteristics of OSS development culture, bearing some re-
semblance with the description of engineering culture discussed earlier. OSS devel-
opment culture has been characterized by passion and technical rationality: there are
people passionate about the OSS they are developing and for them it might be diffi-
cult to empathize with users who do not have the similar level of technical knowledge
and skills [6]. In OSS development culture, the interest is in scratching one’s own itch
and in finding technical solutions; there is no particular interest in understanding ‘the
user’, but to show one’s worth in practice [7]. The culture is described as developer-
centric and merit-based that values technical skills and knowledge above all. In this
kind of a cultural context it might be difficult for usability experts to gain merit [8].

Incorporating usability into this kind of a cultural context is a challenge [5]. How-
ever, the cultural clash is not only between usability and OSS development, but be-
tween corporate usability processes and OSS development [8]: decentralized and
engineering-driven OSS development does not fit very well with corporate usability
processes. It is argued that usability methods should better fit this culture [8]. Usabili-
ty people should understand the cultural context they are entering into. Trust building

 Examining Usability Work and Culture in OSS 61

and showing merits are key concerns. Different strategies may be utilized. One may
try to establish authority and trust by showing ones competence (in usability) with
facts and data, or by trying to slowly integrate into the community [6].

This paper characterizes particular OSS development projects from the viewpoint of
usability work and the cultural context and offers some initial propositions on the rela-
tionship between usability work and the cultural context. The cultural context will be
addressed by using a competing values model as a sensitizing device. The model has
been widely used in exploring organizational culture in IT research (e.g. [1,14,15,21].
It categorizes cultures based on value orientations in organizations. The model includes
two axes that reflect the different value orientations: change vs. stability, and internal
focus vs. external focus. Change emphasizes flexibility and spontaneity, while stability
emphasizes control, continuity and order. Internal focus highlights integration and
maintenance of the existing system, while external focus highlights competition and
interaction with the organizational environment [21]. From these two dimensions one
can identify four primary types of culture: group, adhocratic, hierarchical and rational.
Usually organizations have features of all of them, while one usually dominates. With-
in the group culture type the emphasis is on flexibility and internal focus. The values
are the sense of belonging, trust, participation, openness, teamwork, and the sense of
family. Within the adhocracy culture type the emphasis is also on flexibility, but with
focus on external environment. The values are innovation, adaptation, creativity,
growth, resource acquisition, and dynamism. Within the hierarchical culture type the
emphasis is on control and internal focus. Coordination, stability, measurement, docu-
mentation, order and smooth operation are valued. Finally, within the rational culture
type the emphasis is on control and external orientation. Planning, goal setting, effi-
ciency, productivity, competitiveness and market superiority are valued. The compet-
ing values model was utilized to make sense of the cultural contexts of the involved
case OSS projects. The model provided us a concrete typology to be used in the ven-
ture related to which no existing research was found.

3 Research Design and Empirical Insights

This research is part of a larger research program, started in 2007, in which suitable
methods and models for introducing usability work into OSS development have been
developed and experimented with. This research program follows the design science
approach, which is about building artefacts for specific purposes and about evaluating
how well they perform for their intended purposes [22]. The artefacts have been me-
thods for introducing usability work into OSS development. They have been iterative-
ly improved through experimenting with them in real-life OSS development projects.
During such experimentation, material also for this paper has been collected. The
research program comprises 13 usability case projects in the OSS development con-
text between years 2007 and 2014. Four cases were selected for this paper: they cha-
racterize clearly the differences between OSS project cultures among the 13 OSS case
projects.

In this paper, OSS development cultures and usability work are studied in four
different OSS development cases. In each case, a different student team introduced
usability activities into one selected OSS development project under the close

62 M. Rajanen and N. Iivari

supervision and guidance of the researchers, and collected data related to these usabil-
ity activities and the OSS development project. These cases are reported in more de-
tail from different theoretical viewpoints in [3,4,9]. All students had a background of
multiple theoretical and practical usability courses. They acted as usability specialists
in the OSS cases. Each student team consisted of three to ten students working be-
tween 200 and 300 hours each during four to six calendar months in planning and
carrying out the usability activities, communicating with the OSS project, following
up the impact of usability activities, collecting data, and writing project reports. The
collected research material includes, e.g., community website content, version
changelogs, emails, internet relay chat (IRC) logs, forum messages and reports of the
usability activities. In this paper this research material is analyzed from the viewpoint
of the OSS development culture and usability work. The competing values model
offered a sensitizing device, focusing attention to the divergent value orientations in
OSS development projects.

3.1 Case 1

In case 1, the usability intervention was done by a usability team of five students act-
ing as external usability consultants (cf. [23]). The usability team kept its distance
from developers and community as planned and therefore did not try to get to know
this OSS project in detail before the usability activities. The usability team conducted
heuristic evaluation, cognitive walkthrough and usability testing for the OSS and
reported the findings in a report that was sent to the core developers and mentioned in
a forum post at the main discussion forum of the community. The developers ac-
knowledged receiving the report and said that they would respond when they had
discussed it internally. After three years, no contact by the developers has been made,
the identified usability problems have not been fixed and there has not been discus-
sion about any usability related user interface changes in the forums.

In general, this OSS development community did not have a rigid hierarchical
structure. The core developers were easily accessible by the usability team, which was
indicated by the discussion forums and the IRC channel logs. Moreover, based on the
discussions in the communication channels such as email lists, discussion forums and
IRC channels of the project, the community and the developers seemed to be quite
open to new ideas, new features, and improvements, but only as long as they were
suggested by someone who was already recognized as merited by the community.
Neither the community nor the core developers were really interested in an external
group of usability contributors even though they were open to new ideas from within
their own community. This was again indicated by the emails and IRC messages be-
tween the developers and the usability team. Altogether, the general mindset among
the developers was not very encouraging for usability: the suggested usability im-
provements in the forums by users had been frequently shot down by the developers
as being either irrelevant or a subjective matter of taste. Altogether, based on this
evidence, we suggest that this OSS development project shares similar features espe-
cially with the group culture type in the competing values model, with emphasis on
flexibility and internal focus [21].

 Examining Usability Work and Culture in OSS 63

3.2 Case 2

Given the failure of introducing usability activities into an OSS project by following a
traditional external usability consultant approach in case 1, in case 2, the researchers
tried a new approach by getting the student team into a position of an internal usabili-
ty team. In case 2, the usability team consisted of three students who followed the
OSS project’s IRC channels and discussion forums for some time and tried to get to
know the ways of the project (e.g. how to communicate appropriately in the project’s
IRC channel and discussion forums, what were the development practices of this OSS
project, who would be the best developer to contact regarding usability issues etc.)
before letting themselves and their intentions known. According to initial observa-
tions collected by the team, the OSS case 2 project had no prior knowledge or training
about usability. The usability team contacted the core developers and established
contact with the lead developer. The usability team tutored the lead developer about
the concept of usability and offered their assistance to all things related to usability,
trying to get a legitimate position within the OSS project. The lead developer got
interested in the possible benefits of better usability and identified several possible
areas for usability evaluation. The usability team performed heuristic evaluation and
usability testing for the OSS and was in close contact with the lead developer regard-
ing their findings and possible redesign solutions, and also participated in discussions
in the project’s IRC channel. After the evaluations, the usability team wrote a report
of the usability issues, which included also their suggestions for changes to fix the
usability problems. This time the work of the usability team had an impact. The core
developers included the suggestions of the usability team as part of the changes to be
made to the next version of the OSS and also fixed them in the next version. The core
developers also contacted the usability team later, asking for a new usability evalua-
tion for the next version.

The OSS community seemed to have a loose hierarchical structure, which was in-
dicated by discussion forum and IRC channel messages. The core developers were
easy to contact. They were interested in usability contributions and gave a warm wel-
come to the usability team even though they were not at first certain what usability
was, which was indicated by the IRC and email messages between the developers and
the usability contributors. In general, the community and the developers welcomed
everybody willing to contribute towards the common goal of the community in any
way, which was indicated by the welcoming attitude in the discussion forum and the
IRC messages. Therefore, based on the evidence collected, we suggest that this OSS
development project shares similar features especially with the adhocratic culture type
in the competing values model, with emphasis on flexibility and external focus [21].

3.3 Case 3

In case 3, a usability team of ten students started by searching and following multiple
communication channels of an OSS project for a couple of weeks, in order to get to
know the proper ways of communicating in these channels, the use of community
specific terminology, the development practices, and the already raised and discussed
usability issues. The usability team tried to gain a legitimate position by contacting
the core developers and offering their usability expertise for a particular area of the

64 M. Rajanen and N. Iivari

software, which had already raised some discussion as regards the complicated user
interface and the difficulties in use. Extensive usability testing and heuristic analysis
were performed. The usability team wrote several reports about usability problems
and their suggestions for changes to the user interface to fix these issues. These re-
ports were put available on the usability team’s blog and advertised in the project’s
IRC channels and discussion forums. The usability team informed the core developers
and the community through IRC and discussion forums about the future usability
activities, the usability reports and the redesign mock-ups. The reactions within the
core developers and the community were varied; one core developer was very suppor-
tive for the usability activities while the other core developers and the community
ignored the usability team and the usability discussion it tried to raise. The suggested
changes to the user interface have not been made.

This OSS development community had a rigid, multilayered hierarchical structure
and the leading core developer acted as the benevolent dictator, who communicated
mainly with his trusted core developers, which was indicated by the community web-
site and the lack of direct communication channels to the leading core developer.
Hence, the leading core developer was inaccessible to the usability team. In this kind
of OSS development community it may take a lot of time and effort to gain merit and
access to the inner onion layers of the project. This likely applies to usability special-
ists, too. The evidence also indicates that this OSS development community was not
very open to new ideas, especially to those proposed by outsiders: the discussions
within this community showed that the core developers and the community in general
had rejected many usability and user interface improvements and had firm ideas on
those matters by themselves. Thus, based on the evidence collected, we suggest that
this OSS development project shares similar features especially with the hierarchical
culture type in the competing values model, with emphasis on control and internal
focus [21].

3.4 Case 4

In case 4, similarly with cases 2 and 3, a usability team of five students followed the case
OSS project’s IRC channels and discussion forums for some time and tried to get to
know the practices of the project before introducing themselves and their intentions. The
usability team conducted heuristic evaluation and usability testing. The usability team
wrote a preliminary and final usability reports about the usability issues and their sugges-
tions for changes to fix them. The preliminary usability report, delivered to the project’s
mailing list, resulted in active discussion and lots of interest. The final usability report
was delivered to the wiki of the OSS project, where the developers commented it active-
ly. In addition, the usability team also submitted code patches and level design work,
including new user interface menus and a new tutorial for the OSS. These were also re-
ceived positively and they were accepted into the code repository. Moreover, the work of
the usability team was referenced in several commit messages and one commit message
asked explicitly for input from the usability team. Furthermore, one of the members of
the usability team was invited to the development team and given commit rights as a
result of his work in the usability team, his contributions to the code and discussions, and
his recognized skills as a user of the OSS.

 Examining Usability Work and Culture in OSS 65

This OSS community had the traditional onion style hierarchical structure, but the
culture of the community was open for new ideas and innovations. The development
team of this OSS project was a tight group, who promoted into their team only those
contributors who had contributed high level code, bug fixes or designs for a long
period of time and whose ideas were in line with the design philosophy of the devel-
opers and the community. The development team made all decisions after lengthy
discussions, trying to achieve a consensus. The core developers were easy to contact
and the team was actually quite open to new members, as was indicated by the invita-
tion of the usability team member into the development team. The core developers
were also interested in the contributions of the usability team, which was indicated by
the discussion forum and developer IRC channel messages. The development team
encouraged the usability team to reduce all unnecessary tedious actions in the OSS to
make the use better. In general, the community and the developers welcomed every-
body willing to contribute towards the common goal of the community, which was
again indicated by the discussion forum and the IRC channel messages of this project.
Therefore, based on the evidence collected, we suggest that this OSS development
project shares similar features especially with the adhocratic culture type in the com-
peting values model, with emphasis on flexibility and external focus [21].

4 Concluding Discussion

There is a lack of research on culture in the OSS development context; thus, this pa-
per contributes by offering initial insights on the matter. The literature review showed
interesting distinctions in the literature. ‘Usability culture’ in an ideal sense as well as
in a sense of current state of affairs was brought up. Some studies recommended
changing the culture to fit usability work, while others emphasized that usability work
should be modified to fit the culture in question. Initial results of our inquiry into
culture and usability work in OSS development projects were presented. The compet-
ing values model was used as a sensitizing device and the four OSS case projects
were classified to represent adhocratic, group or hierarchical types of culture [21].
Our usability intervention succeeded only in the OSS projects showing resemblance
with the adhocratic type of culture, while in the unsuccessful cases the culture types
identified were hierarchical and group culture type. However, our results on the rela-
tionship between usability work and different culture types in OSS development
projects are clearly inconclusive as there are numerous issues that may be affecting
the results. Quantitative research is required for testing these initial findings.

However, one can still speculate on the relationship between usability work and
culture in OSS development projects. Our findings could imply that the adhocratic
culture type is the most suitable culture type for usability work in the OSS de-
velopment context. Thus, the description of the adhocratic culture type (e.g. [21])
could offer guidelines for identifying an ideal culture type for usability work in OSS
development. Then one could either target only OSS projects representing this ideal
state of affairs or try to change the culture of OSS projects representing other culture
types. However, criticism against this kind of conception of culture has been ex-
pressed: cultures should not be viewed as something that can be intentionally changed

66 M. Rajanen and N. Iivari

[1,2], probably even more so in OSS development projects than in commercial devel-
opment organizations, as OSS communities usually operate on voluntary basis.

On the other hand, an alternative interpretation of the findings could be that: when
aiming at introducing usability work into OSS development; it needs to be mod-
ified to fit the culture type. This proposition assumes that in the adhocratic culture
type our approach was suitable, while for other culture types more fitting approaches
need to be figured out. Along these lines, we next propose what this cultural fitting
could entail for different culture types, relying on the work of Iivari [1], who has of-
fered recommendations on how usability work could be modified to fit the different
culture types. We adapt this work to suit the OSS development context and suggest
that in an OSS development project: 1) With the group culture orientation, the empha-
sis as regards usability work should be on communal decision-making, informal in-
formation sharing, training and teamwork; 2) With the adhocracy culture orientation,
the emphasis as regards usability work should be on innovation, experimentation, risk
taking, supporting teamwork, brainstorming and iteration; 3) With the hierarchical
culture orientation, the emphasis as regards usability work should be on careful plan-
ning and rules, procedures, control and documentation; and 4) With the rational cul-
ture orientation, the emphasis as regards usability work should be on measurement
and cost benefit considerations that reveal the rationale for usability (cf. [3,4]).

In this paper, we utilized the competing values model for making sense of the cul-
tural context of OSS development projects. Although the model has been widely used
in culture studies, other models exist in the literature (e.g., Hofstede’s model of cul-
ture and organizations) and other methods can be used (e.g., ethnography). As regards
these four cases, it might also be considered as a limitation that the usability special-
ists in these cases were students. On the other hand, students from the IT field actually
act as fully fledged developers in many OSS projects - students may have both devel-
opment skills and time at their disposal. OSS projects usually do not prioritize formal
education, but instead value the ability to contribute something useful to the project.
In the described cases, the OSS developers did not see their status as students as being
any kind of problem. In addition, the chosen OSS projects may affect the results of
this experiment and more research is needed.

References

1. Iivari, N.: Representing the User in Software Development - A Cultural Analysis of Usa-
bility Work in the Product Development Context. Interacting with Computers 18(4) (2006)

2. Iivari, N.: Culturally Compatible Usability Work - An Interpretive Case Study on the Rela-
tionship between Usability Work and Its Cultural Context in Software Product Develop-
ment Organization. J. of Organizational and End User Computing 22(3), 40–65 (2010)

3. Rajanen, M., Iivari, N., Anttila, K.: Introducing Usability Activities into Open Source
Software Development Projects – Searching for a Suitable Approach. Journal of Informa-
tion Technology Theory and Application 12(4), 5–26 (2011)

4. Rajanen, M., Iivari, N., Keskitalo, E.: Introducing usability activities into open source
software development projects: a participative approach. In: NordiCHI 2012 (2012)

5. Bach, P., DeLine, R., Carroll, J.: Designers wanted: participation and the user experience
in open source software development. In: Proc. CHI 2009, pp. 985–994 (2009)

 Examining Usability Work and Culture in OSS 67

6. Bach, P., Twidale, M.: Social Participation in Open Source: What It Means for Designers.
Interactions 17(3) (2010)

7. Bødker, S., Nielsen, L., Orngreen, R.: Enabling user-centered design processes in open
source communities. In: Proc. Human Computer Interaction International, pp. 10–18
(2007)

8. Terry, M., Kay, M., Lafreniere, B.: Perceptions and practices of usability in the free/open
source software (foss) community. In: Proc. CHI, pp. 999–1008 (2010)

9. Rajanen, M., Iivari, N.: Power, empowerment and open source usability. In: CHI (2015)
10. Rajanen, M., Iivari, N.: Open source and human computer interaction philosophies in open

source projects – incompatible or co-existent. In: Proc. Academic Mindtrek (2013)
11. Bloomer, S., Croft, R.: Pitching Usability to Your Organization, Interactions (1997)
12. Catarci, T., Matarazzo, G., Raiss, G.: Driving Usability into the Public Administration:

The Italian Experience. Int’l J. of Human-Computer Studies 57 (2002)
13. Mayhew, D.: Strategic Development of Usability Engineering Function. Interactions 6(5),

27–34 (1999)
14. Leidner, D., Kayworth, T.: Review: A Review of Culture in Information Systems Re-

search: Toward a Theory of Information Technology Culture Conflict. MIS Quarterly
30(2) (2006)

15. Quinn, R., Rohrbaugh, J.: A Spatial Model of Effectiveness Criteria. Management Science
29(3), 363–377 (1983)

16. Geertz, C.: The Interpretation of Cultures: Selected Essays, New York (1973)
17. Anderson, W.L., Crocca, W.T.: Engineering Practice and Codevelopment of Product Pro-

totypes. Comm. of the ACM 36(4), 49–56 (1993)
18. Rosenbaum, S., Rohn, J.A., Humburg, J.: A toolkit for strategic usability: results from

workshops, panels, and surveys. In: Proc. CHI 2000, pp. 337–344 (2000)
19. Hutchings, A.F., Knox, S.T.: Creating Products - Customer Demand. Comm. of the ACM

38(5), 72–80 (1995)
20. Mirel, B.: Product, Process and Profit: The Politics of Usability in a Software Venture.

ACM Journal of Computer Documentation 24(4), 185–203 (2000)
21. Denison, D.R., Spreitzer, G.M.: Organizational Culture and Organizational Development:

A Competitive Values Approach. Research in Org. Change and Devel. 5, 1–21 (1991)
22. Hevner, A.R., March, S.T., Park, J.: Design Research in Information Systems Research.

MIS Quarterly 28(1), 75–105 (2004)
23. Schaffer, E.: Institutionalization of Usability: A Step-by-Step Guide. A-W, Boston (2004)

Examples and Case Studies

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 71–80, 2015.
DOI: 10.1007/978-3-319-17837-0_7

On the Availability and Effectiveness of Open Source
Software for Digital Signing of PDF Documents

Jonas Gamalielsson1(), Fredrik Jakobsson1, Björn Lundell1,
Jonas Feist2, Tomas Gustavsson3, and Fredric Landqvist4

1 University of Skövde, Skövde, Sweden
{jonas.gamalielsson,bjorn.lundell}@his.se,

fredrik-jakobsson@live.se
2 RedBridge AB, Kista, Sweden
jfeist@redbridge.se

3 PrimeKey Solutions AB, Solna, Sweden
tomas@primekey.se

4 Findwise AB, Göteborg, Sweden
fredric.landqvist@findwise.com

Abstract. Digital signatures are important in order to ensure the integrity and
authenticity of information communicated over the Internet involving different
stakeholders within and beyond the borders of different nations. The topic has
gained increased interest in the European context and there is legislation and
project initiatives aiming to facilitate use and standardisation of digital signa-
tures. Open standards and open source implementations of open standards are
important means for the interoperability and long-term maintenance of software
systems implementing digital signatures. In this paper we report from a study
aiming to establish the availability and effectiveness of software provided under
an open source license for digital signing and validation of PDF documents.
Specifically, we characterise the use of digital signatures in Swedish Govern-
mental agencies, report on the interoperability of open source and proprietary
licensed software for digital signatures in PDF documents, and establish the ef-
fectiveness of software provided under an open source license for validation of
digital signatures in PDF documents.

1 Introduction

With increased communication over the Internet involving information exchanged
between different stakeholders within and beyond the borders of different nations,
there is an increasing need to ensure the integrity and authenticity of such information
(Kaur and Kaur, 2012; Roy and Karforma, 2012). Digital signatures (also known as
cryptographic signatures) are important means to ensure that information received is
authentic and that it has not been altered in transit. Application areas are for example
E-commerce, E-governance, and E-learning. In the European context the EU has is-
sued a directive for the establishment of a community framework that forms the basis
for legal recognition of electronic signatures1 (EC, 1999). This directive has been

1 Electronic signature in this context is a broader term that includes digital (cryptographic)

signatures.

72 J. Gamalielsson et al.

adopted in legislation in order to facilitate the use of digital signatures in a number of
EU countries including Sweden (SFS, 2000). There is also a Commission decision on
the publication of generally recognised standards for electronic signatures (EC, 2003),
which impacts on the standardisation in this field in Europe. More recently, the eIDAs
regulation on electronic identification and trust services for electronic transactions
was adopted by co-legislators to increase the support for cross-border interactions
between businesses, citizens and public authorities (EC, 2014).

Challenges related to digital signatures include interoperability between software sys-
tems for digital signing of documents and validation of digital signatures in documents. It
is of vital importance that different (both open source and proprietary licensed) software
systems can interoperate effectively utilising open standards, protocols, and algorithms
(Bird, 1998; Ghosh, 2005; UK, 2012). In fact, interoperability supports systems hetero-
geneity, thereby increasing options for organisations (Ghosh, 2005). Another challenge
concerns long-term maintainable systems with effective support for digital signatures,
since it is of fundamental importance that old digitally signed documents can be validated
in contemporary software. Further, any software system needs to be maintained beyond
the life-cycle of any specific provider through use of open standards and open source
licensed software (Lundell, 2012; Lundell et al. 2011). Especially, there is increased risk
for lack of long-term availability of both software and digital assets (e.g. documents) “if
the commercial vendor of adopted proprietary software leaves the market” (Lundell et
al., 2011).

The overarching goal of the study is to establish the availability and effectiveness
of software provided under an open source license for digital signing and validation of
PDF documents. We make three principal contributions. First, we establish a charac-
terisation of the use of digital signatures in Swedish Governmental agencies. Second,
we report on interoperability of open source and proprietary licensed software for
digital signatures in PDF documents. Third, we establish the effectiveness of software
provided under an open source license for validation of digital signatures in PDF
documents.

We focus on documents in PDF format since it is one of the most commonly used
document formats and is widely deployed in both open source and proprietary li-
censed software. There is limited knowledge on the state of practice concerning use of
digital signatures in Swedish public sector organisations. Further, knowledge is li-
mited concerning details regarding availability, interoperability and effectiveness of
open source licensed tools for digital signing and validation of PDF documents. To
the best of our knowledge, this study is the first to report on such details.

For the first contribution, an investigation in Swedish Governmental agencies is of
particular relevance given that Sweden is amongst the most IT-intensive countries in
the EU (WEF, 2014). For the second and third contribution, the open source licensed
tools iText (Itextpdf.com, 2015) and PDFBox (Apache.org, 2015) were used. Both
software tools were used in combination with the Bouncy Castle Crypto API
(Bouncycastle.org, 2015), which is also provided under an open source license. Those
tools were selected since they have been identified as mature and are amongst the
most widely adopted (in organisations in practice) and deployed open source libraries
for creation, signing and validation of PDF files. Adobe Acrobat Professional XI Pro
(Adobe.com, 2015) was selected and used since it is one of the most adopted and

 On the Availability and Effectiveness of Open Source Software 73

deployed proprietary tools for PDF processing, and is provided by the company that
initially developed the PDF format. Further, for the second contribution LibreOffice
Writer and Microsoft Word were chosen for generation of test documents with the
motivation that they are both representative examples of software tools that are
widely adopted, deployed, and provided under an open source and proprietary license,
respectively.

The rest of this paper is organised as follows. We present a background on digital
signatures and software support for digital signatures (section 2). Thereafter we pre-
sent research approach (section 3), results (section 4), analysis (section 5), followed
by discussion and conclusion (section 6).

2 On Digital Signatures and Software Support

A digital signature is an implementation of an asymmetric cryptography to ensure the
integrity and authenticity of a document. A digital signature has the same purpose as
the traditional physical signature, which is to prove the origin of the document, so that
the recipient does not have any doubt that it was actually created by the person who
sent it, and has not been tampered (with meaning or accidentally) along the way. The
scheme for creation of a digital signature generally consists of three algorithms: 1) a
key generation algorithm, which selects and outputs a private key and a corresponding
public key; 2) a signature algorithm, which produces a signature given a private key
and a message; and 3) verification algorithm, which accepts or rejects the authenticity
claim of a message given a message, public key and a signature (Kaur and Kaur,
2012; Lowagie, 2013; Roy and Karforma, 2012). Central parameter choices for the
signature algorithm include: encryption algorithm, e.g. RSA and DSA; standard for
cryptographically protected messages, e.g. CMS (Cryptographic Message Syntax) and
CAdES (CMS Advanced Electronic Signatures); and cryptographic hash (or “message
digest”) function, e.g. the SHA (Secure Hash Algorithm) function family, MD5, and
the RIPEMD (RACE Integrity Primitives Evaluation Message Digest) function
family.

There are European project initiatives aiming to facilitate use and standardisation
of digital signatures in the European context. One such example is the SD-DSS pro-
ject (Joinup.eu, 2011) in which the European Commission has commissioned devel-
opment of open source software for use by Member States and associated service
providers to be able to complete the procedures and formalities that are necessary for
conduction of activities with Member States' administrations within and across bor-
ders. Another example is the E-signatures standards initiative whose mission is to
create a rationalised framework for electronic signature standardisation in the Euro-
pean context (E-signatures-standards.eu, 2013). Specific standards addressed include
CAdES, XAdES (XML Advanced Electronic Signatures), and PAdES (PDF Ad-
vanced Electronic Signature Profiles). This effort will support the realisation of one of
the items of the EC Action Plan related to eSignatures, and is a collaboration between
CEN (European Committee for Standardisation), EC (European Commission), ETSI
(European Telecommunications Standards Institute), and the AFNOR Group (the
French representative within CEN and ISO).

74 J. Gamalielsson et al.

PDF is a document format that initially was maintained by Adobe. The PDF speci-
fication is available free of charge since 1993. PDF version 7 was released in Novem-
ber 2006 (Adobe.com, 2006), and in July 2008 this PDF version became available as
an ISO standard (ISO, 2008). In the ISO standard for the PDF format there are details
concerning support for digital signatures (ISO, 2008; Lowagie, 2013). Since the pub-
lication of the PDF standard (ISO, 2008), specific versions for specific purposes have
been developed and standardised by ISO, for example the PDF/A standard for archiv-
ing purposes (ISO, 2005).

PDF is implemented in a number of software applications. iText is a library for
PDF generation written mainly in Java (Itextpdf.com, 2015), and was initially pro-
vided under the MPLv1 and LGPLv2 licenses. However, the license was changed to
the AGPLv3 license on 5 Dec. 2009 with the release of version 5.0.0. The latest stable
version is 5.5.3, which was released on 17 Sep. 2014. The library is widely adopted in
applications that include functionality for creation of PDF documents and digital sig-
natures (using the Bouncy Castle Crypto API). PDFBox is a library that provides an
API in Java to handle PDF documents (Apache.org, 2015), including signing and
validation of digital signatures (using the Bouncy Castle Crypto API). The latest sta-
ble version is 1.8.7, which was released on 19 Sep. 2014, and is provided under the
Apache License v2. It is used by eID-DSS, which is Belgium's solution for digital
signatures for the eID solution for handling PDF documents. Bouncy Castle is a
lightweight cryptography API for Java and C# (Bouncycastle.org, 2015). The latest
stable version is 1.53, which was released on 28 Sep. 2014, and it is provided under
the MIT license. It is a popular library that is utilised by various other open source
projects and tools (apart from iText and PDFBox), including the SignServer applica-
tion framework (Signserver.org, 2015). Adobe Acrobat XI Pro (Adobe.com, 2015)
is software that can be used to view, create, manipulate, print and manage PDF docu-
ments. The latest stable version is 11.0.09 (released on 16 Sep. 2014), and it is pro-
vided under a proprietary license.

3 Research Approach

As the first part of our approach we establish a characterisation of the use of digital
signatures in Swedish Governmental agencies. The data collection is made easier to
answer in Sweden, which has a very strict policy on governmental responses to
requests for public documents. In Sep. 2014 we sent an email in plain text to 71 Go-
vernmental agencies (the 16 IT intensive Governmental agencies in the Swedish
e-Delegation, a selection of 35 other Swedish Governmental agencies, and all 20
Swedish Provincial offices). The email contained six requests: 1) Examples of one (or
several) digitally signed PDF documents created within the organisation and sent to
another public organisation; 2) Examples of one (or several) digitally signed PDF
documents created within the organisation and sent to a corporation (or other private
organisation) or to a private individual; 3) Examples of one (or several) digitally
signed PDF documents submitted to the organisation from another public organisa-
tion; 4) Examples of one (or several) digitally signed PDF documents

 On the Availability and Effectiveness of Open Source Software 75

submitted to the organisation from a company (or other private organisation) or from
a private individual; 5) The documents (i.e. documentation from identification of
needs, evaluations, decisions, contracts, procurement documents and other related
documents, etc.) that relate to that (or those) contract(s) and (or) development projects
related to the software and the systems used for creating and managing digitally
signed PDF documents in the organisation; and 6) The documents (i.e. agreements,
regulations, policy, strategy, instructions and other documents) that regulate and de-
scribe how digital signatures (and software for digital signatures) are to be used in the
organisation.

Second, we analyse the interoperability of open source and proprietary licensed
software for digital signatures in PDF documents. This was done by generating and
signing test documents using different software and signature settings that were sub-
sequently validated using different software. Specifically, the test documents were
created by enumerating all 42 combinations of a specific software for generation (Li-
breOffice Writer 4.2.6.3 or Microsoft Word 13), a specific software for signing
(Adobe Acrobat XI Pro or iText 5.5.3 or PDFBox 1.8.7), a specific signature format
setting for signing (CMS or CAdES for Adobe Acrobat XI Pro, CMS or CAdES for
iText 5.5.3, CMS for PDFBox 1.8.7), and a specific hash algorithm setting for signing
(SHA256 for Adobe Acrobat XI Pro, SHA1 or SHA256 or SHA384 or SHA512 or
RIPEMD160 for iText 5.5.3, SHA1 or SHA224 or SHA256 or SHA384 or SHA512
or MD5 or RIPEMD128 or RIPEMD160 or RIPEMD256 for PDFBox 1.8.7). Soft-
ware tools used for validation of each of the 42 test documents were Adobe Acrobat
XI Pro, iText 5.5.3, and PDFBox 1.8.7.

Third, we analyse the effectiveness of software provided under an open source
license for validation of digital signatures in PDF documents. This was done by vali-
dating different PDF documents using different software. Specifically, the PDF
documents provided by the Swedish Governmental agencies and Provincial offices
according to requests 1-4 were used. In addition, all digitally signed PDF documents
from a large corpus of one million US governmental documents of mixed file formats
randomly selected from the “.gov” domain (http://digitalcorpora.org/corpora/
govdocs) were used (approximately 20% of those files were PDF documents, of
which 156 were digitally signed PDF documents). Software tools used for validation
of these documents were Adobe Acrobat XI Pro (primarily for validation of the
documents provided by the Swedish Governmental agencies), three versions of iText
(v1.1.0: the first version with support for digital signatures, v2.1.7: the last LGPL
licensed version, and v5.5.3: the latest version), and two versions of PDFBox (v1.6.0:
the first version with support for digital signatures, and v1.8.7: the latest version).
iText v1.1.0 and v2.1.7 was used in combination with Bouncy Castle Crypto API
v1.38, whereas iText v5.5.3 was used in combination with Bouncy Castle Crypto API
v1.53 (the latest version). PDFBox 1.6.0 was used in combination with Bouncy Castle
Crypto API v1.38, whereas PDFBox 1.8.7 was used in combination with Bouncy
Castle Crypto API v1.53.

For the second and third part, custom made shell scripts were used to integrate and
utilise the iText and PDFBox libraries for signing and validation of the PDF docu-
ments, and for extracting meta data (e.g. date for signing) from the documents.

76 J. Gamalielsson et al.

4 Results

4.1 On Use of Digital Signatures in Swedish Governmental Agencies

After sending the email that contained the 6 requests for information to each of the 71
Swedish Governmental agencies and Provincial offices including reminders we re-
ceived totally 39 responses with answers. However, only a few of these contained any
of the requested documents. In total, 15 examples of PDF documents according to
requests 1 through 4 (see section 3) were provided by 10 of the Governmental agen-
cies (of which four were provided by Provincial offices). In total, eight documents
were provided by the Governmental agencies (excluding Provincial offices) of which
two were according to request 1, two according to request 2, one according to request
3, and three according to request 4. All seven documents provided by the Provincial
offices were according to request 3, but all of these documents were physically signed
documents that had been scanned rather than documents with digital (cryptographic)
signatures.

Concerning requests 5 and 6 to Governmental agencies (excluding Provincial of-
fices), one agency has provided documents, 33 agencies have stated that there are no
such documents. Concerning requests 5 and 6 to Provincial offices, two have stated
that there are no such documents, one has stated that there are no documents for re-
quest 5 but that documents for request 6 will be provided (at time of writing not yet
received).

4.2 Interoperability of Software for Digital Signatures

All 42 generated and digitally signed PDF files could be validated successfully by
iText 5.5.3 and PDFBox 1.87. Adobe Acrobat XI Pro failed to validate four of the 42
files that were signed using PDFBox 1.8.7 and the hash algorithms RIPEMD128 and
RIPEMDF256. The reason for this is that those hash algorithms are not supported in
Adobe Acrobat XI Pro.

4.3 Open Source Software Support for Validation of Digital Signatures

For the eight PDF documents provided by Swedish Governmental agencies, two
documents were successfully validated by all the tested tools (in all versions). Three
additional documents were successfully validated by all the tested tools (except iText
v1.1.0, since the hash algorithm used for signing the document is not supported in this
version). The remaining three documents could not be validated by any of the tested
tools (in any version). One of these could not be validated since no digital signature
could be found according to all tested tools, and the other two documents had a pro-
prietary signature format that was not supported in any of the tested tools. Four of the
five documents that could be validated were signed in 2014 and the fifth document
was signed in 2013.

For the 156 signed PDF documents from the “.gov” domain, six documents could
not be successfully validated using any of the tested tools (in any version). By at-
tempting to validate the signatures in these six documents in Adobe Acrobat XI Pro it

 On the Availability and Effectiveness of Open Source Software 77

was found that the signatures contained either “incorrect”, “unrecognized”, “corrupt”,
or “suspicious” data. The remaining 150 documents could be successfully validated
by all the tested tools (except iText v1.1.0, for which 20 additional documents could
not be validated since the hash algorithms used for signing the documents are not
supported in this version). The 150 documents that could be validated were signed in
the interval 2000-2009 and the majority of documents were signed during 2008-2009,
see Table 1.

Table 1. Number of signed documents per year for the 150 validated “.gov” PDF-documents

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

doc 5 13 4 7 6 8 9 19 50 29

5 Analysis

First, from the results (section 4.1) it is clear that the use of digital signatures in Swe-
dish Governmental agencies (including Provincial offices) is very limited. Very few
Governmental agencies have provided any documents on how digital signatures for
documents are created, managed, and used within the organisation. Few digitally
signed documents have been provided (only eight in total, of which five actually con-
tained valid signatures). Hence, in general there seems to be a lack of policy for and
deployment of digital signatures and their use in Swedish Governmental agencies.
Except from the Swedish law concerning qualified electronic signatures and require-
ments on qualified certificates and the issuing of such certificates (SFS, 2000), there
are no nationwide regulations or recommendations concerning when and in what con-
texts digital signatures shall be used.

Second, from the results (section 4.2) it is evident that the open source licensed
tools are at least as effective as the proprietary licensed tool Adobe Acrobat XI Pro
for signing PDF documents and validating signatures in PDF documents, and that the
tested tools to a very large extent are interoperable. The lack of support for two spe-
cific hash algorithms (RIPEMD128 and RIPEMD256) in Adobe Acrobat XI Pro in
the interoperability test may not be surprising, since support for these is not required
according to the ISO specification for PDF (ISO, 2008, p. 476).

Third, from the results (section 4.3) it is clear that an overwhelming majority of the
156 digitally signed PDF documents from the “.gov” domain could be successfully
validated in all the tested tools. It can also be noted that documents as old as 15 years
could be validated. This shows, from a long-term maintenance perspective, that it is
possible to validate older digitally signed documents using contemporary software. It
also shows that software older than the digitally signed documents can be used for
validation, since the digital signatures in the five files provided by Swedish Govern-
mental agencies are from 2013-14 and could be validated with iText v2.1.7 (released
7 Jul. 2009) in combination with Bouncy Castle Crypto API v1.38 (released 7 Nov.
2007) and with PDFBox v1.6.0 (released 1 Jul. 2011) in combination with Bouncy
Castle Crypto API v1.38 (released 7 Nov. 2007).

78 J. Gamalielsson et al.

We acknowledge that software solutions for digital signing of PDF documents may
be combined with hardware modules for enhanced security. However, as the over-
arching goal of our study is to establish the availability and effectiveness of open
source software for digital signing of PDF documents, the analysis of such solutions
is beyond the scope of our study. For future research it is relevant to also consider
other file formats and associated open source software, in other usage contexts.

One openness aspect to consider is the licensing conditions for the standards for
cryptographically protected message formats and hash functions used by the tested
software tools, since it impacts on the possibility to (legally) provide implementations
of the standards under an open source license. A patent search shows that there are no
disclosed patents in the IETF patents database2 for the most recent version of CMS
(IETF RFC 5652, issued in 2009). However, there are two disclosed patents for an
earlier version of CMS (IETF RFC 2630, issued in 1999) concerning technology used
by S/MIME, a standard for public key encryption and signing of MIME (Multipur-
pose Internet Mail Extensions) data. For CAdES (RFC 5126) there have been no pa-
tent disclosures. For the ETSI version of CAdES (TS 101 733 V.1.7.4) there are no
disclosed patents in the ETSI patents database3. Hence, the latest versions of CMS
and CAdES do not seem to be encumbered by patents, and are therefore possible to
implement in open source software. However, there may still be undisclosed patents
that have not been reported to IETF or ETSI. A patent search in the ISO patent data-
base4 on a standard (ISO/IEC 10118-3:2004) involving the SHA and RIPEMD hash
function families shows that there are several disclosed patents. Hence, these hash
functions may cause problems when implementing such standards in open source
software from a legal standpoint. There may also be other undisclosed patents that
have not been reported to ISO for this standard.

Concerning certain standards for digital signatures (e.g. CAdES) there are a num-
ber of profiles offering different protection levels for different user groups, including
CAdES-BES (basic form), CAdES-X (extended), and CAdES-LT (long term). This
proliferation into different variants for the same standard may imply increased com-
plexity and effort when developing and testing software that implements the standard.

6 Discussion and Conclusion

Use of readily available and effective open source tools for digital signing and valida-
tion of PDF documents is a strategy that simplifies the implementation of digital sig-
natures for an organisation and that promotes a long-term sustainable software system
with associated communities. In particular, open source licensed solutions offer more
flexibility concerning which software version to use and when to update to a new
version, something which often is critical for the stability of systems implementing
digital signatures. Further, use of open standards for digital signatures is of vital im-
portance since they promote interoperability between (both open source and

2 https://datatracker.ietf.org/ipr/
3 http://ipr.etsi.org/
4 http://www.iso.org/iso/standards_development/patents

 On the Availability and Effectiveness of Open Source Software 79

proprietary licensed) software systems, and also ensure long-term sustainability of the
digital signatures.

Concerning the current limited use of digital signatures in the Swedish context, we
envisage that increased efforts on provision of infrastructure for digital signatures at
national level will promote increased use of digital signatures. Further, complex soft-
ware solutions for digitally signing documents may inhibit adoption of digital signa-
tures and improved system support simplifying this process can promote broader
adoption of digital signatures.

In conclusion, our study shows that there are open source licensed tools available
for digital signing and validation of PDF documents that are at least as effective as the
proprietary licensed tool Adobe Acrobat XI Pro. Further, it is shown that the tested
(open source and proprietary licensed) software tools to a large extent are interopera-
ble. It is also shown that there is very limited use of digital signatures for documents
in the context of Swedish Governmental agencies. The findings from our study there-
fore make an important contribution to practice and policy.

References

Adobe.com: PDF Reference – Adobe Portable Document Format, Version 1.7 (2006).
www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/pdf_reference_1-7.pdf (accessed
January 5, 2015)

Adobe.com: Acrobat XI Pro (2015). http://www.adobe.com/products/acrobatpro.html (accessed
January 5, 2015)

Apache.org: Apache PDFBox – A Java PDF Library (2015). https://pdfbox.apache.org/
(accessed January 5, 2015)

Bird, G.B.: The Business Benefit of Standards. StandardView 6(2), 76–80 (1998)
Bouncycastle.org: The Legion of the Bouncy Castle (2015). https://www.bouncycastle.org/

(accessed January 5, 2015)
EC: DIRECTIVE 1999/93/EC OF THE EUROPEAN PARLIAMENT AND OF THE

COUNCIL on a Community framework for electronic signatures. Official Journal of the
European Union, L13/12, December 13, 1999

EC: Commission decision on the publication of reference numbers of generally recognised
standards for electronic signature products in accordance with Directive 1999/93/EC of the
European Parliament and of the Council. Official Journal of the European Union, L175/45,
July 14, 2003

EC: REGULATION (EU) NO 910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL on electronic identification and trust services for electronic transactions in the
internal market and repealing Directive 1999/93/EC. Official Journal of the European Un-
ion, L257/73, July 23, 2014

E-signatures-standards.eu: e-signatures standards – making e-signatures easy (2013).
http://www.e-signatures-standards.eu/ (accessed January 5, 2015)

Ghosh, R.A.: Open Standards and Interoperability Report: An Economic Basis for Open Stan-
dards. FLOSSPOLS, Deliverable D4, Maastricht, December 12, 2005. www.flosspols.org

ISO: Document management – Electronic document file format for long-term preservation –
Part 1: Use of PDF 1.4 (PDF/A-1). ISO/TC 171/SC 2, ISO 19005-1:2005 (2005)

ISO: Document management – Portable document format – Part 1: PDF 1.7. ISO/TC 171/SC 2,
ISO 32000-1:2008 (2008)

80 J. Gamalielsson et al.

Itextpdf.com: iText – Programmable PDF Software (2015). http://itextpdf.com/ (accessed Janu-
ary 5, 2015)

Joinup.eu: Digital Signature Service (2011). https://joinup.ec.europa.eu/asset/sd-dss/description
(accessed January 5, 2015)

Kaur, R., Kaur, A.: Digital signature. In: Proceedings of the International Conference on Com-
puting Sciences, ICCS 2012, September 14-15, pp. 205–301 (2012). doi: 10.1109/ICCS.
2012.25

Lowagie, B.: Digital Signatures for PDF documents (2013). http://itextpdf.com/book/
digitalsignatures20130304.pdf (accessed January 5, 2015)

Lundell, B.: Why do we need open standards? In: Orviska, M., Jakobs, K. (eds.) Proceedings
17th EURAS Annual Standardisation Conference ‘Standards and Innovation’. The EURAS
Board Series, Aachen, pp. 227–240 (2012) ISBN: 978-3-86130-337-4

Lundell, B., Lings, B., Syberfeldt, A.: Practitioner perceptions of Open Source software in the
embedded systems area. Journal of Systems and Software 84(9), 1540–1549 (2011)

Roy, A., Karforma, S.: A survey on digital signatures and its applications. Journal of Comper
and Information Technology (IJCIT) 3, 45–69 (2012)

SFS: Lag om kvalificerade elektroniska signaturer. Statens författningssamling, SFS 2000:832,
November 2, 2000

Signserver.org: SignServer – PKI by PrimeKey (2015). http://www.signserver.org/ (accessed
January 5, 2015)

UK: Open Standards Principles: For software interoperability, data and document formats in
government IT specifications. Cabinet Office, UK (November 1, 2012)

WEF: The Global Information Technology Report 2014, World Economic Forum, Geneva
(2014) ISBN-13: 978-92-95044-63-0

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 81–90, 2015.
DOI: 10.1007/978-3-319-17837-0_8

A Systematic Approach for Evaluating BPM Systems:
Case Studies on Open Source and Proprietary Tools

Andrea Delgado(), Daniel Calegari, Pablo Milanese,
Renatta Falcon, and Esteban García

Instituto de Computación, Facultad de Ingeniería, Universidad de La República,
Montevideo, Uruguay

{adelgado,dcalegar,pmilanese}@fing.edu.uy,
{renafal,estebangrd}@gmail.com

Abstract. Business Process Management Systems (BPMS) provide support for
modeling, developing, deploying, executing and evaluating business processes
in an organization. Selecting a BPMS is not a trivial task, not only due to the
many existing alternatives, both in the open source and proprietary realms, but
also because it requires a thorough evaluation of its capabilities, contextualizing
them in the organizational environment in which they will be used. In this paper
we present a methodology to guide the systematic evaluation of BPMS that
takes into account the specific needs of each organization. It provides a list of
key characteristics of BPMS which are ranked by the organization and eva-
luated using test cases and quantitative criteria. We also present case studies of
open source and proprietary BPMS evaluations following our proposal.

Keywords: Business Process Management Systems (BPMS) · Open source and
proprietary BPMS · Evaluation methodology · Systematic approach

1 Introduction

Every organization executes daily operations to achieve its goals, applying certain
mechanisms to enable continuous improvement. The business process (BPs) vision is
the identification of the set of activities that are performed in coordination within an
organizational and technical environment to achieve defined business goals [1]. It
provides support for the definition, control and continuous improvement of business
operation. In this context, Business Process Management (BPM) [1,2] offers a
framework to support the business process lifecycle [1] from modeling, through de-
veloping, deploying, executing and to the evaluation of their execution. BPM Systems
(Business Process Management System, BPMS) [1,3] arise as the technology re-
sponse to support the BPs lifecycle. These platforms integrate several components
that allow modeling processes, executing them, controlling business rules, defining
execution measures and monitoring processes, among others.

There are several process modeling and execution languages with different back-
grounds and abilities, such as Business Process Model and Notation (BPMN 2.0) [4],
XML Process Definition (XPDL) [5] and Web Services Business Process Execution
Language (WS-BPEL) [6], among others. Likewise, there is also a wide variety of

82 A. Delgado et al.

BPMS, both open source and proprietary, with different support levels for the defined
solution. In addition, several open source products offers several business models
such as community edition with limited functionality, fees for maintenance and sup-
port, enterprise versions, among others. To be able to compare features within differ-
ent BPMS, it is necessary to provide an objective evaluation regarding the fulfillment
of key technical features that should be provided, as defined in academia [7,8] and
industry [9,10] studies. However, the selection of the most adequate BPMS for an
organization depends not only on the technological support it provides, but also on the
characteristics of the organization itself. The evaluation should also be guided by a
systematic procedure to ensure the quality of the results and its repeatability.

In this paper we present a methodology for evaluating BPMS considering the spe-
cific needs of each organization. Our approach includes the definition of key activities
to guide the evaluation and a list of key features that are relevant to this kind of sys-
tems. This methodology has been developed within our research group and has been
applied for evaluating open source and proprietary BPMS in several projects1. To
illustrate the approach, we present results from these projects which constitute both a
validation and assessment of our proposal and a contribution to knowledge regarding
the capacities of selected BPMS technologies.

The rest of the article is organized as follows. In Section 2 we discuss related work
and in Section 3 we present the methodology for evaluating BPMS. Then, in Section
4 we present case studies regarding the evaluation of open source and proprietary
BPMS. Finally, in Section 5 we present some conclusions and future work.

2 Related Work

There are several approaches for evaluating BPMS, which we have analyzed and
taken into account when defining our methodology and the list of characteristics we
provide. We have taken into account software quality characteristics standards such as
ISO/IEC 9126 (superseded by SQUARE [11]), and others such as [12]. Although the
characteristics defined in these are not specific to BPMS, some can be applied to
software of any kind and are very important for evaluating the quality of software
from different points of view. A key reference from academy for evaluating BPs lan-
guages capacities and BPMS support for modeling and execution is the workflow
patterns [7], used for example in [13] to evaluate the support provided by selected
open source tools. This kind of assessments can identify potential limitations for
modeling and execution of BPs in the selected languages and/or BPMS that is better
knowing in advance. Other works such as [8] evaluate selected open source workflow
engines against their compliant to the WfMC model, defining key characteristics for
them. Other evaluations are contemporary to our work, such as [14] in which WS-
BPEL engines; both open source and proprietary are evaluated. They differ from ours
in many aspects a key one is that ours is more generic and allows many types of en-
gines to be evaluated and compared, since it is not restricted to a single language.
Other proposals are more generic for the selection of any type of COTS software such

1 http://www.fing.edu.uy/inco/investigacion/grupos/COAL

 A Systematic Approach for Evaluating BPM Systems 83

as [15,16] or with focus on specific characteristics of OSS software such as [17].
In [18] the authors present a survey on processes for selecting COTS. Although our
proposal shares some similarities with these works regarding the process and some
general desirable characteristics, our focus is on BPMS for which our list of characte-
ristics provides a unique insight of this type of systems. Moreover, we provide several
test cases and guides to evaluate the characteristics we defined.

Regarding industry reports of evaluation of proprietary BPMS, we have mainly
considered Gartner [9] and TEC [10] reports, and also checked out the Forrester [19]
approach. Gartner evaluations we have analyzed include the Magic Quadrant for
BPMS [20] and Magic Quadrant for iBPMS [21], the latter adding elements of Busi-
ness Intelligence. The criteria used by Gartner include commercial characteristics,
such as: price, customer experience, market understanding and strategy, business
model, among others. TEC provides software features for evaluating different types of
software, in a web application with a list of defined and categorized characteristics,
obtaining a recommendation of selected tools that best suits the indications provided.
Forrester [19] also provides a similar approach with a set of characteristics and a tool
to support the recommendation. However, these approaches are based on information
provided by vendors who answer a questionnaire valuating each characteristic (Forre-
ster also includes laboratory evaluation). In [20,21] the results are not context-
dependent since the importance of the characteristics is given and not selected for
each evaluation. Unlike these works, our approach does not include any view from the
vendors themselves, but from our objective evaluation from carrying out each test
case for each defined characteristic on each selected BPMS. The importance of the
characteristics is also assigned each time by each organization, guaranteeing that the
results are adequate for each organization every time.

3 BPMS Evaluation Approach

The main results of our work are the list of characteristics which can be used as a
basis for evaluating BPMS, and the methodology to carry out the evaluation.

3.1 List of Characteristics

The list is organized according to a defined structure which groups characteristics
allowing an intuitive understanding. The highest level corresponds to the modules,
which in turn are composed of categories grouping cohesive characteristics. We
have analyzed and selected characteristics based on many sources, as presented in
Section 2. Two main modules are defined: (1) Technical, which involves everything
related to software itself, and (2) Non-technical, which encompasses other characte-
ristics such as community support. Table 1 shows the defined structure including both
modules and its categories, the total of characteristics defined within each one (# DC)
and, due to space limitations, an example of characteristics in each category.

84 A. Delgado et al.

Table 1. Structure and example of defined modules, categories and characteristics

Module Category # DC Example of characteristics

Technical

Technology, Architecture and

Interoperability
15

• BPMS Architecture
• Integration with social networks

Process Design and Modeling 12
• Modeler type
• List of versions of process models
• Collaborative work on processes

Form management 9
• Dynamic Forms
• Support for mobile devices

Workflow engine 24
• Support of workflow patterns
• Configurable Schedule of full System
• Linking task and document

Security Management 5
• Permission Mechanism for users
• Role Definition

Management, Monitoring and

Audit
9

• Process Monitoring
• Backups

Document management system 5
• Integrity and document security
• Indexing and search mechanisms

Portal 7
• Customizing the portal
• Searching Mechanisms

Sub-Total 79

Non-

Technical

Installation and support 8
• Installation packages
• Available documentation
• Supported Languages

Maturity 6
• Time in market
• Community activity

Commercial 1 • License costs

Sub-Total 15

Total 94

3.2 Evaluation Methodology

Fig. 1 models the proposed evaluation methodology using BPMN, showing the differ-
ent activities to be carried out within each organization, including the sub-process of
actually evaluating the tools. In the first place the list of characteristics is reviewed
and updated if needed and the tools to be evaluated in the current evaluation are se-
lected, based on initial criteria such as being open source or proprietary, the language
provided, among others defined to help narrow the selection. Then, each characteristic
is weighted by the organization using a scale we provide, both to define how impor-
tant is each characteristic to the organization and to obtain a ranked list to select the
most important characteristics to be evaluated (as evaluating all of them can be ex-
pensive and time consuming). Then the test cases to evaluate the selected characteris-
tics are defined (or adapted if needed, as we provide many test cases) and the case
study to be carried out within each tool is specified (as we also provide many case
studies). Then, the evaluation is performed valuating each characteristic within each
tool in another scale we provide for results (using the test cases for each one and the
case study to assess the tool globally). Finally a total score for each tool is calculated.

 A Systematic Approach for Evaluating BPM Systems 85

Fig. 1. Evaluation methodology process modeled in BPMN

The list of defined characteristics for BPMS tools is reviewed and updated for each
evaluation, when needed. This update could involve the addition of new characteris-
tics, modifying existing ones and/or deleting other, allowing working with a suitable
list of characteristics at the time the evaluation is made. In parallel with this, the tools
to be evaluated are selected (from those lists provided by organizations such as OMG,
OASIS and WfMC), based on initial criteria defined such as open source or proprie-
tary, presence in a specific market, or support for a defined modeling notation.

Each characteristic is then assigned a level of importance by the organization per-
forming the evaluation. The scale defines the following levels: (1) Mandatory; (2)
Medium priority and (3) Low priority. The classification of the characteristics on this
scale depends on the needs of the organization for each evaluation and therefore al-
lows to instantiate the evaluation to the organizational context. Each characteristic is
further valuated in a three level scale of support: (1) Totally supported, the tool has
the characteristic; (2) Partially supported, the tool does not cover the entire specifica-
tion of the characteristic; (3) Not supported, the tool does not provide it. Additionally
three levels of compliance are defined for the support scale: (1) Native, the feature
is part of the tool; (2) Particularization, specific software can be developed to achieve
such compliance; (3) Integration, it is necessary to include a third component to
support it. In order to obtain a quantitative evaluation (score) associated with each
tool, we also calculate a final value regarding the importance defined and the results
level. Moreover, when two tools present different levels with respect to the same sup-
port scale, e.g. third components are needed but with different development costs, we
can assign different values. The list of ranked characteristics regarding their impor-
tance as assigned by the organization is reviewed to select the key ones to be used in
the current evaluation, to help reduce the number of characteristics to be evaluated.
Nevertheless all the characteristics could be selected if the organization wants, taking
into account that it will require more time and effort. Since the list of characteristics
provide a shared criterion for evaluating BPMS, previous results of evaluations can be
used as a basis for carrying out an organization-dependent evaluation process.

Two ways for evaluating the characteristics are defined: theoretical and practical.
The theoretical evaluation does not require executing the tool, but is mainly based

86 A. Delgado et al.

on the tool documentation, e.g. when non full versions are available or when characte-
ristics are not a priority for the organization. The practical evaluation do requires
executing the tool, with a specific test case to evaluate the level of support it provides.
The main purpose of the test cases is to standardize the evaluation with respect to the
same basis. In addition, a case study is defined to be performed within all tools. The
main objective of the case study is to give an overview of the support provided by the
tool regarding the actual execution in a daily basis operation.

Finally a global analysis of each tool is performed, including the score assigned by
the defined formula. This allows performing a comparison between tools based on
each characteristic evaluation result and the overall score assigned to each tool.

4 BPMS Evaluation Case Studies

In this section we present the results of evaluation projects of open source and pro-
prietary BPMS we have carried out between years 2010 and 2013 as a validation and
assessment of our proposal. We have followed the guidelines in [22] for cases studies,
but due to space limitations we present here only the results discussion.

4.1 Open Source BPMS Evaluation

The open source BPMS assessment was carried out in two projects, one focusing on
BPMS based on the XPDL standard and another on the WS-BPEL standard. Two
more tools were also selected which implemented the new BPMN 2.0 standard which
was released in the course of the evaluation projects. The following tools were se-
lected and evaluated mainly based on their availability:

• XPDL: Bonita CE2, Enhydra3, Joget4, OBE5, WfMOpen6
• WS-BPEL: Apache ODE7, jBPM8, Orchestra9, Petals10, Intalio CE11, Riftsaw12
• BPMN 2.0: Activiti13, jBPM58

Fig. 2 shows an example of the results for the evaluation of some selected charac-
teristics for XPDL and BPMN 2.0 (Activiti) and WS-BPEL and BPMN 2.0 (jBPM5)
engines, using the semaphore metaphor: Green for Totally supported, Yellow for
Partially supported and Red to indicate Not supported.

2 BonitaSoft BPMS, http://www.bonitasoft.com/
3 Together Enhydra Shark, http://www.together.at/prod/workflow
4 Joget, http://www.joget.org/
5 OBE, Open Business Engine, http://obe.sourceforge.net/
6 WfmOpen, http://wfmopen.sourceforge.net/
7 Apache ODE, http://ode.apache.org/
8 jBPM, jBPM5, http://www.jboss.org/jbpm/
9 Orchestra, http://orchestra.ow2.org/
10 Petals, http://petals.ow2.org/
11 Intalio BPMS, http://www.intalio.com/bpms
12 Riftsaw, http://www.jboss.org/riftsaw
13 Activiti BPMS, http://www.activiti.org

 A Systematic Approach for Evaluating BPM Systems 87

Fig. 2. Example of evaluation results: (a) XPDL and BPMN 2.0; (b) WS-BPEL and BPMN 2.0

Fig. 3 shows the overall scores obtained by each tool in each evaluation, by means
of the formula defined (c.f. Section 3.2). As mentioned above, to obtain those values
the importance assigned to each characteristic by each organization performing the
evaluation is also taken into account, to weight the most important ones. This final
score serves mainly for the purpose of "eliminating" tools which does not reach cer-
tain level, focusing on the ones presenting the best scores.

Fig. 3. Overall scores for evaluations: a) XPLD and BPMN 2.0; (b) WS-BPEL and BPMN 2.0

As conclusions some interesting observations were found: in the first place the ver-
sion of the XPDL standard of the engine plays an important role in their capabilities,
as it has several versions, 1.0, 2.0 and 2.1 with different features. Four of the six en-
gines implemented version 1.0 which has significant limitations. Versions 2.0 and 2.1
already have elements of the BPMN standard and therefore better capabilities. Some
of the engines had a high complexity of installation at the time, as WfMOpen and
OBE. Bonita presents support for most features, including process simulation, being
one of the most complete engines. Enhydra and Joget for XPDL and Activiti for
BPMN 2.0 also provide support for most of the characteristics evaluated. Being the
Activiti an initial version of the BPMN 2.0 standard implementation, it was expected
to improve considerably, which has already occurred in recent years. As for the

88 A. Delgado et al.

execution language WS-BPEL all evaluated engines implement the WS-BPEL 2.0
standard and some like Intalio CE, include extensions to provide support for humans
such as HumanTask or BPEL4People. Intalio CE is the engine that provides better
support for the evaluated characteristics and better results throughout the evaluation,
with a friendly environment, stable behavior and an active community. Other engines
such as jBPM, jBPM5 and Petals, also provide support for most characteristics.

4.2 Proprietary BPMS Evaluation

The evaluation on proprietary tools also included a reevaluation of the Bonita open
source BPMS since a major update was performed in the newly released 6.0 version.
The selection was mainly based on their presence in the local market, and included:

• Proprietary: IBM BP Manager 14, Oracle BPM15, Apia16, GXFlow17
• Community edition: Aris Platform18, Bizagi19, Bonita1.

Fig. 4 (a) shows an example of the results obtained from evaluating selected charac-
teristics on the tools. As before, the semaphore metaphor is used, and the theoretical
and practical evaluations are shown. Being proprietary tools, for the practical evalua-
tion it was necessary to obtain licenses for the products to evaluate. Due to difficulties
in obtaining the software and/or corresponding licenses, two tools were only evaluated
theoretically, while the rest were also evaluated in practical (cf. Section 3.2), as shown
in Fig 4 (a). The overall score is shown in Fig. 4 (b) which is obtained by applying the
formula as before, taking into account both the importance defined for each characte-
ristic by the organization and the results obtained by the characteristic evaluation. We
do not disclose which value corresponds to which tool for confidentiality reasons re-
garding definitions in the projects carried out with the enterprises involved.

As conclusions of this evaluation we can highlight as a key point the original na-
ture of the tool. Three of the tools have as main objective support for BPM, so their
architecture and feature set are intended for these purposes; while the remaining tools
are extensions of larger tools which were developed with other objectives. Those tools
which focus on BPM have advantages in characteristics such as: installation, usabili-
ty, understanding, documentation, simpler architectures, etc. The other tools must
adapt to certain preset parameters, providing less specific support to BPM, increasing
the learning curve and presenting more installation problems, among others. Howev-
er, the latter proved more powerful, with more features available, management tools
and administrative consoles. As for the language of the process engine both XPDL
and WS-BPEL are provided for process execution, and there is less support for
BPMN 2.0 which is mainly provided within modelers but not for execution. In most
of the tools wizards support is provided for BPs implementation helping reduce the
development time, for example to integrate web services from WSDL definitions.

14 IBM BP Manager, http://www-01.ibm.com/software/ integration/business-process-manager/
15 Oracle 11g, http://www.oracle.com/us/technologies/bpm/suite/overview/
16 Apia, http://www.statum.biz/web/guest/apia
17 GXflow, http://www.genexus.com/gxflow
18 ARIS Platform, http://www.softwareag.com/corporate/products/aris
19 Bizagi BPM Suite, http://www.bizagi.com/

 A Systematic Approach for Evaluating BPM Systems 89

Fig. 4. Sample of (a) characteristics evaluated in Proprietary tools (b) overall scores

5 Conclusions

We have presented a systematic approach for evaluating BPMS tools both open
source and proprietary, which includes a methodology and a list of key characteristics
for this kind of software, as well as a way to instantiate each evaluation to the specific
context of the organization performing it, providing different results for different
needs. We provide a list of relevant key characteristics for BPMS tools, and a way of
evaluating the provided support by means of tests cases and a case study to provide an
overall view of the tool support. We believe that the evaluation methodology we pro-
pose can be also applied to other type of software, by changing the list of characteris-
tics according to the software being evaluated, and following the defined process. We
have also illustrated the use of the approach by means of case studies regarding open
source and proprietary BPMS. We can conclude that all tools have advantages and
disadvantages, and can be suitable for different contexts. As there is an increasing
demand from organizations to incorporate BPMS platforms, we believe that a key
element and contribution of our evaluation approach is to take into account the orga-
nizational context, allowing different organizations to select different tools regarding
their specific needs. We can also conclude that regarding this kind of software some
open source BPMS such as Bonita, Activiti and Intalio CE are, with respect to some
aspects, as complete and competitive as other products from major existing vendors.

As future work, we plan to evaluate again some open source BPMS since they all
have improved significantly in the last few years (we have continued using them in
many projects and courses, mainly Activiti and Bonita), and to add new others. We
also plan to provide tool support for the methodology by generating a benchmark for
the evaluation as well as a tool allowing evaluators and users to assign weights to the
characteristics and generate recommendations and comparisons between tools. Final-
ly, we plan to include other aspects to the evaluation, e.g. non functional aspects.

Acknowledgements. We would like to thank the students who worked in the BPMS evaluation
projects: A. Acosta, N. Beloso, R. Bonini, E. Galindo, A. Hernández, F. Parins and C. Smith.

90 A. Delgado et al.

References

[1] Weske, M.: BPM: Concepts, Languages, Architectures. Springer (2007)
[2] van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process management:

A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003.
LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

[3] Chang, J.F.: BPM Systems: strategy and implementation. Auerbach Publications, Taylor
& Francis Group (2006)

[4] OMG. Business Process Model And Notation (BPMN) v2.0 (2011)
[5] WfMC, XML Process Definition Language (XPDL) (2008)
[6] OASIS, WS Business Process Execution Language (WS-BPEL) (2007)
[7] van der Aalst, W.M.P., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow

patterns. Dist. & Parallel Databases 14(3) (2003)
[8] Garcês, R., Jesus, T., Cardoso, J., Valente, P.: Open source workflow management

systems: A concise survey. In: 2009 BPM & Workflow Handbook, Future Strategies Inc.,
pp. 179-190 (2009)

[9] Gartner Group. http://www.gartner.com/technology
[10] TEC, Technology Eval. http://www.technologyevaluation.com/
[11] ISO/IEC 9126, Software engineering, Product quality, superseded by ISO/IEC 25000

SQuaRE. http://www.iso.org/
[12] Tsalgatidou, A.: Selection criteria for tools supporting business process transformation for

electronic commerce. In: Proceedings of EURO-MED NET (1998)
[13] Wohed, P., Andersson, B., ter Hofstede, A., Russell, N.C., van der Aalst, W.M.P.:

Patterns-based Evaluation of Open Source BPM Systems: The Cases of jBPM,
OpenWFE, and Enhydra Shark. Inf. Softw. Technol. 51(8), 1187–1216 (2009)

[14] Harrer, S., Lenhard, J., Wirtz, G.: Open source versus proprietary software in service-
orientation: The case of BPEL engines. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.)
ICSOC 2013. LNCS, vol. 8274, pp. 99–113. Springer, Heidelberg (2013)

[15] Morera, D: COTS evaluation using desmet methodology & analytic hierarchy
process (AHP). In: Oivo, M., Komi-Sirviö, S. (eds.): PROFES 2002. LNCS vol. 2559,
pp. 485-493. Springer, Heidelberg (2002)

[16] Lawlis, P., Mark, K., Thomas, D., Courtheyn, T.: A Formal Process for Evaluating COTS
Software Products. IEEE Comput. 34(5), 58–63 (2001)

[17] Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: a framework for the assessment of OSS.
In: OSS 2007, pp. 173-186 (2007)

[18] Tarawneh, F., Baharom, F., Yahaya, J., Ahmad, F.: Evaluation and Selection COTS Soft-
ware Process: The State of the Art. International Journal on New Computer Architectures
and Their Applications (IJNCAA), 344-357

[19] Richardson, C., Miers, D., Cullen, A., Keenan, J.: The Forrester Wave: BPM Suites, Q1
2013, How The Top 10 Vendors Stack Up For Next-Generation BPM Suites, March 2013

[20] Sinur, J., Hill, J.: Magic Quadrant for Business Process Management Suites. Gartner Inc.
(2010)

[21] Sinur, J., Schulte, W., Hill, J., Jones, T.: Magic Quadrant for Intelligent Business Process
Management Suites. Gartner Inc. (2012)

[22] Yin, R.: Case Study Research: Design and Methods. Sage Publications, Inc. (2002)

Smart Route Planning Using Open Data
and Participatory Sensing

Vivek Nallur(B), Amal Elgammal, and Siobhán Clarke

FutureCities, Distributed Systems Group, Trinity College, Dublin, Ireland
{vivek.nallur,amal.elgammal,siobhan.clarke}@scss.tcd.ie

Abstract. Smart cities are not merely the infusion of technology into a
city’s infrastructure, but also require citizens interacting with their urban
environment in a smart and informed manner. Transportation is key
aspect of smart cities. In this paper, we present a smart route planning
open-source system; SMART-GH utilizes open data and participatory
sensing, where citizens actively participate in collecting data about the
city in their daily environment, e.g., noise, air pollution, etc. SMART-GH
then augments the routing logic with sensor data to answer queries such
as ‘return the least noisy route’. SMART-GH enables citizens to make
smarter decisions about their daily commute, and subsequently improve
their quality of life.

Keywords: Participatory sensing · Open-data · Open-source · Smart-
city-routing

1 Introduction

Thereareaplethoraof route-planningapplicationsavailable tocitizens today.Web-
based applications (e.g., Google Maps, Live Maps, Yahoo! Maps, etc.), specialized
device-based applications (e.g., TomTom, Garmin, etc.) and smartphone-based
apps (e.g., iOS Maps, Google Maps, etc.), all allow a user to plan a route from one
point to another, calculating the fastest possible route, or shortest route. There are
some that even offer to calculate the fastest route using ‘current’ traffic data. How-
ever, all of these applications rely on a centralized source of data, usually controlled
by a single entity.

As cities get smarter, and more sensors are available in the urban environ-
ment, route planning can be augmented to use this sensor data. For example,
elderly citizens, parents with young children, etc. would like to know which
streets have the least air pollution or least noise, along their route? Currently,
there are two roadblocks to answering such questions: (i) how do we get sensor

A. Elgammal—Assistant Professor, Faculty of Computers and Information, Cairo
University.

c© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 91–100, 2015.
DOI: 10.1007/978-3-319-17837-0 9

92 V. Nallur et al.

data about city-scale locations into the hands of the citizens? and (ii) how can
this aggregated data be utilized by individuals?

As an answer, this paper presents a case-study of an application that combines
participatory sensing [4],open-data fromgovernment sources, and integrates itwith
open-source routing libraries to provide a smarter route. An application that pro-
vides a social good, if created without participatory sensing, would require consid-
erable investment in a sensor network from either the government, or an enterprise.
Even if thiswere feasible, smart-cityapplicationsdueto theirpervasivenature, raise
issuesofprivacy [3] fromgovernmentdatabases.Notonlydoesopen-source software
andopen-datahelp in theprovisionof a social good, but it also alleviates some of the
privacy issues that are inevitable, in a smart-city application. The rest of this paper
is organized as follows: Section 2 introduces concepts of aggregating city-level data,
while Section 3 presents the structure and behaviour of our smart-city application.
Discussion and futurework are addressed in Section 4, followedby concluding notes
in Section 5.

2 Participatory Sensing, Open Data and Smart Cities

2.1 Opportunistic/Human-Centred/Urban/Participatory Sensing

Traditionally, wireless sensor networks have been used by researchers and city
administrators to collect data about specific aspects of, and specific locations,
in a city. This method has the obvious disadvantages of: (i) being expensive to
deploy, (ii) high maintenance cost due to field-damage, and (iii) requiring owner
permission for installation

Given the penetration of smartphones [9], and the possibility of using smart-
phones as sensors, at least two of the three disadvantages above can be eliminated.
Ethically, the thirddisadvantage continues topersist, but canbe alleviated through
education and transparency. Citizens must be motivated to donate data to the city,
and thereby help create a city-level aggregation of the desired data. However, most
citizens are only motivated to participate, if they perceive a benefit to contributing
their time and data [4]. We posit that such sensor data, made available by individ-
uals, can be leveraged easily and harnessed to provide a social good. For example,
individuals with breathing difficulties can use localized pollution data to determine
howtoplan their commute towork. In this paper,wedescribe a case-studyof anovel
application that leverages open-data contributed by individuals, and allows them
to reap the benefits of such contributions by enabling smart route planning, which
incorporates participatory as well as open data sources into the routing algorithm.

2.2 Open Data

Many public institutions and governments release data being generated from
their research and data gathering bodies. The EU releases its data from the EU
Open Data Portal1. Ireland does not yet have a centralized portal that covers
1 https://open-data.europa.eu/en/data/

https://open-data.europa.eu/en/data/

Smart Route Planning Using Open Data and Participatory Sensing 93

all departments, but it has announced a national action plan 2 that lays out a
roadmap for open-data to be released. Most open-data available in Ireland is
through city councils’ websites. Dublin city council releases data available on
Dublin city through its Dublinked initiative3. Use of open-data is expected to
provide macro-level insights into various aspects of a government, and a city’s
life. In particular, from this paper’s perspective, it allows us to leverage existing
environmental data that is available about Dublin City, and incorporate it into
routing decisions. Note: the use of Dublin city in this paper is merely illustrative,
and the system that will be described is in no way tied to any particular city.

2.3 Smart Cities

The term smart city is frequently used to connote the use of information technol-
ogy by city authorities, in various domains ranging from smart-grids to waste-
management to intelligent-transport, etc. to enable a better quality of life for
citizens. The basic idea is that cities could (and should) actively leverage the
latest technologies, to make informed decisions at the macro-level, and enable cit-
izens to make intelligent individual choices about city resources. About 180,000
people move to cities everyday and it is predicted that by 2050, about 70%
of the world’s population will be living in urban agglomerations [8]. This will
result in huge pressure on resources such as energy, water as well as exacerbate
problems of congestion, waste-management, etc. In Dublin alone, the cost of
congestion is estimated at 4.1% of the GDP [6]. In such a scenario, judicious
and smart use of technology to ease problems in transport, healthcare, energy-
usage and waste-management, etc. is of utmost importance. However, current
technical solutions cannot simply be transplanted into a city, typically due to
the following problems:

– Multi-ownership: Different parts of a city’s infrastructure are owned by
different agencies, and hence technical solutions developed by one are not
necessarily interoperable with others. Also, different agencies have different
goals, and it is difficult to create a system that can account for all possible
goals

– Scale: Most decision-making mechanisms do not scale to city-scale entities,
when information and goals are effectively de-centralized

– Availability of fine-grained and yet aggregate data: To be able to
take decisions at a city-scale, fine-grained and up-to-date data needs to be
made available on a continuous basis. This is currently difficult to achieve.
Either data is not available, or decision-makers are flooded with data, but
do not have a macro-level perspective.

In this paper, we focus on a smart-city application that circumvents the data
availability issue. This application assumes that there will be no single data
stream, allows individuals to contribute data, and then uses the aggregated data
to provide a service back to individual citizens.
2 http://www.per.gov.ie/minister-brendan-howlin-td-publishes-irelands-
first-open-government-partnership-national-action-plan/

3 http://www.dublinked.ie/

http://www.per.gov.ie/minister-brendan-howlin-td-publishes-irelands-first-open-government-partnership-national-action-plan/
http://www.per.gov.ie/minister-brendan-howlin-td-publishes-irelands-first-open-government-partnership-national-action-plan/
http://www.dublinked.ie/

94 V. Nallur et al.

2.4 Issues

Smart-City applications tend to use technologies that are pervasive in nature.
That is, sensors and sensor-networks that surround the user throughout the
day. A smartphone is a perfect example of a sensor-based device that is both,
uniquely identifiable as well as pervasively present. A smart-city application
that uses participatory sensing is uniquely positioned to identify individuals and
their habits, in ways that the user did not anticipate. In such a situation, it is
imperative that the application make extra efforts to ensure that user-privacy is
protected.

While governments are sometimes willing to open up data sources, there have
been criticisms [7] about their intent in doing so. A major critique is the utility
of releasing raw data, when the citizen is unable to interpret such data and
make informed decisions. Helbig et al. report that most government websites are
essentially data dumps with little thought given to usability, quality of data, or
consequences of use [5]. In such cases, open-data merely becomes a way for public
authorities to pay lip-service to openness, without actually achieving anything
concrete.

3 Smart GraphHopper

Our smart-city application called Smart GraphHopper4 (Smart-GH for short)
uses GraphHopper5, which is an open-source routing library that uses Open-
StreetMap (OSM). The original GraphHopper can be used to plan either the
fastest, or shortest routes6 in the same way as its commercial counterparts
(GoogleMaps, etc.). GraphHopper uses the length and maxspeed data embedded
inside the OSM to calculate routes. However, Smart-GH extends GraphHopper
to allow citizens to compare routes by evaluating different available sensor data,
e.g., noise data, air pollution data, etc. It also enables better distributed deploy-
ment capabilities.

Participatory Sensing: A smart-city application relies on city-wide data. Partic-
ipatory data could be a key enabler in providing the application with a large set
of data points. For this purpose, we use NoiseTube [2], which is a mobile app,
developed by Vrije Universiteit Brussel. NoiseTube uses sensors on smartphones
and measures the ambient noise in the user’s surroundings.

Open Data: Air quality monitoring data is available from Dublin City Council’s
Dublinked portal7. The city council maintains fixed sensor stations covering the
major areas of Dublin city (centre, north, south, east, west).

In the next sub-sections, the structure, behaviour and technological choices
to build and deploy Smart-GH are discussed in more detail.
4

https://github.com/DIVERSIFY-project/SMART-GH
5

https://github.com/graphhopper/graphhopper/
6

In this paper, we refer to the original GraphHopper as GraphHopper, and to our extensions to
transform it into a smart and distributed GIS system as Smart-GH.

7
http://dublinked.com/datastore/datasets/dataset-279.php

https://github.com/DIVERSIFY-project/SMART-GH
https://github.com/graphhopper/graphhopper/
http://dublinked.com/datastore/datasets/dataset-279.php

Smart Route Planning Using Open Data and Participatory Sensing 95

3.1 Processing Data

Smart-GH supports both volunteer data as well as open data. The three essential
elements required for any sensor data to be integrated into Smart-GH are: (i)
location in the form of GPS coordinates, (ii) value read by the sensor and (iii)
timestamp. Smart-GH requires each city to have a config file, that lists all the
sensor-types that are available. In this case, Dublin city has two sensor types:
(a) Noise (b) Air Pollution.

Noise data is stored on mobile phones as XML files that can be automatically
uploaded to the server. Researchers in Trinity College Dublin (TCD) installed
NoiseTube on their smart phones and started collecting noise data during their
daily commute. Using NoiseTube’s API, Smart-GH periodically pulls data about
noise levels on Dublin’s streets.

Air pollution data from Dublin City Council is available as a set of excel
sheets, which were converted into csv format. Smart-GH currently supports
three file formats: xml, json, and csv. These file reading mechanisms are inserted
via a plugin mechanism, and can be extended to handle any other file-format,
as desired.

Parsing and Filtering: For each sensor-type, the config file lists the name of a
datasource, parser and a filter. The Parser is responsible for connecting to the
datasource (web service returning json, or csv files), and collecting all the relevant
data. The Filter is used to prevent fluctuations in the day-to-day collection of
sensor data, from affecting the final value. The currently used filter is exponential
weighted moving average, however any other filtering mechanism may also be
simply plugged in, via a config file. There is a default no-op filter.

Reverse-Geocoding: Typically, each sensor reading is linked to a GPS location.
To link them to the relevant OSM map ways (e.g. streets, roads, etc.), the Parser
needs to obtain concrete way-ids for each GPS location in the respective files, a
process known as Reverse-Geocoding [1]. For this, the Parser calls a geocoding
web service8, which takes a GPS-coordinate as input and returns concrete OSM
way-ids.

Data Storage: The OSM information is now associated with the sensor value,
and stored as a hash in Redis. This is done for both, the noise as well as the air
pollution sensor. However, collecting the air pollution sensor data is less compu-
tationally intensive, since the sensor locations are fixed and Reverse-Geocoding
becomes a one-off process.

Figure 1 presents a UML sequence diagram capturing the behaviour of the
actors involved and the flow of logic. As shown in the figure, there are six system
actors: ‘Data Retrieval and Processing Daemon’, ‘Air Pollution Sensor’, ‘Parser’,
‘Filter’, ‘Reverse geocoding Web service’ and ‘Redis’, and one human actor:
‘Noisetube Participator’. The scenario is started by the ‘Data Retrieval and
Processing Daemon’ getting the noise and air pollution readings from ‘Noisetube
8

http://services.gisgraphy.com/street/streetsearch

http://services.gisgraphy.com/street/streetsearch

96 V. Nallur et al.

Fig. 1. UML sequence diagram of sensor data reading and parsing

Fig. 2. UML component diagram of Smart-GH sensor data reading and parsing

Participatory Sensing’ and ‘Air Pollution Sensor’, respectively. Figure 2 presents
a finer-grained UML component diagram of this sensing component.

3.2 Marrying the Sensors to Routing

As discussed above, Smart-GH extends the typical usage of GIS applications
by integrating sensor data from various sources, which will then be used as the
basis of routing decisions. Smart-GH utilizes the GraphHopper routing engine
for route planning. GraphHopper is a fast, efficient routing library that

Smart Route Planning Using Open Data and Participatory Sensing 97

Fig. 3. UML component diagram of Smart-GH

implements various routing algorithms, which given two (up to five) GPS loca-
tions, can calculate either the fastest or the shortest route, connecting these
points. The fastest/shortest route is calculated based on speed limits/distance
tags associated with OpenStreetMaps (OSM) ways (streets, roads). The problem
of finding a fastest or shortest route becomes a minimization problem: minimum
total time or minimum distance, respectively.

Enabling routing based on collected sensor readings required extension of the
original GraphHopper library. First, the communication protocol was modified to
allow arbitrary sensor types to be included as the user’s preferred routing mech-
anism. In this case, ‘noise’ and ‘air-pollution’ are two additional values that are
available to the user. Second, we modified the existing algorithms to perform rout-
ing based on stored sensor readings in Redis, instead of OSM tags. Figure 3 shows a
UML component diagram of Smart-GH after augmenting it to enable smart rout-
ing. As shown in the figure, Smart-GH constitutes four components: ‘Sensing’,
‘Database’, ‘Routing’ and ‘Web app’. The ‘Sensing’ and ‘Database’ represent the
data sensing and parsing component and Redis database, as explained previously
in Section 3.1.

Figure 4 presents a screenshot of the Smart-GH web interface, which visual-
izes a Bike route from Smithfield to School street(two places in Dublin), where
the weighting is selected as ‘Least Noisy’, by dynamically visualizing noise data
as a heatmap overlay. GraphHopper has a very simple (and limited) web interface
that allows a user to only query for the fastest driving (car) route between two
GPS locations. An Android App9 has also been developed for SMART-GH. Both
apps have been designed and developed to meet the following functionalities:

– Enable the user to request sensor-based weights on routes. Current options
for Dublin city are: fastest, shortest, least noisy, least air pollution. We main-
tain a city configuration file for each city, capturing, among others, the types
of sensors available for this city. Based on available sensor data for each city,
the web-interface is automatically configured to include the weighting spec-
ified in the relevant city config file. The appropriate config file is parsed

9 https://github.com/DIVERSIFY-project/SMART-GH/blob/master/
SMART-GH-Android/platforms/android/ant-build/CordovaApp-debug.apk

https://github.com/DIVERSIFY-project/SMART-GH/blob/master/SMART-GH-Android/platforms/android/ant-build/CordovaApp-debug.apk
https://github.com/DIVERSIFY-project/SMART-GH/blob/master/SMART-GH-Android/platforms/android/ant-build/CordovaApp-debug.apk

98 V. Nallur et al.

Fig. 4. Screenshot of Smart-GH web interface

based on the loaded map. For example, since dublin.osm map is loaded in
Figure 4, dublin.config is parsed accordingly. Since dublin.config has
two sensors corresponding to noise and air pollution data, the interface is
amended to the drop-down list as shown in Figure 4.

– Support more than one vehicle type on the same running session. As shown
in Figure 4, car, bike and foot are supported. These configuration parameters
are specified in Smart-GH config file.
We modified the interaction model between the components to be asyn-

chronous and stateless, and then wrapped the routing algorithms into Restful
Web Services (WS). This allows the system to be scaled horizontally, to meet
increased (web)traffic.

4 Discussion and Future Work

4.1 Performance

The deployment configuration shown in Figure 5 shows the sensor datastore
on a separate machine, with Redis serving up the data. One of GraphHopper’s
biggest strengths is speed. Due to its unique caching strategy, it is able to provide
routes over long distances (> 100km) very fast. Accessing sensor data, is an out-
of-process procedure, and is therefore much slower than if only OSM tags are
used. However, in a smart-city usage scenario, route demand is rarely greater
than 100km, while access to sensor data provides much more value. Also, due
to data-retention/privacy laws, it might not be possible to always hold sensor

Smart Route Planning Using Open Data and Participatory Sensing 99

Fig. 5. UML deployment diagram of the distributed deployment of Smart-GH via WSs

data on Smart-GH’s servers. We believe that flexibility afforded by an out-of-
process access to a datastore is an acceptable trade-off to the performance-loss
of in-process routing.

4.2 Security/Privacy

Participatory Sensing, in some ways, depends on the kindness of strangers to be
effective. To acquire a critical mass of data and ensure continuous updates, it is
essential to gain the trust of citizens by ensuring data anonymity and security.
Even with an innocuous application like NoiseTube that makes no conscious
effort to uniquely identify its users, it is fairly easy to correlate usernames (from
the data collected) to the routes they have taken, and thus find out where they
work, and reside. In the data-processing performed by Smart-GH, we strip away
all user information, and work only with street locations and noise-levels. For a
smart-city application, privacy is an aspect that must be explicitly and aggres-
sively engineered in, since the default protocol of releasing open-data does not
ensure this. Given that our entire software chain is made of open-source compo-
nents, it is easy to verify that the data is anonymized, as early as possible.

4.3 Sensor-X

Currently, Smart-GH knows all the sensor-types that are present in a city.
Although, for a new sensor-type, a new parser and filter can simply be plugged in
through the config file, the routing algorithm still needs to know which sensor
data it is dealing with. In the ideal case, users must be able to extend Smart-GH
to handle different sensors without having to modify the routing algorithm. This
will allow different subsets of users in a city to add different kinds of sensors (and
corresponding data) without having to contact Smart-GH developers. In other
words, the application should be self-extending.

100 V. Nallur et al.

5 Conclusion

Smart cities use digital technologies to enhance performance, well-being and
improve the quality of living. This will inevitably require the active participation
of citizens. Transport, Energy, Healthcare, Water and Waste are key areas of
smart cities’ concerns. Smart-GH uses raw open-data collected about air quality,
as well as noise measurements collected by individuals, and aggregates them to
produce actionable information in the transport domain. This, we believe, is
in the highest tradition of open-source and open-data where small individual
contributions are combined to produce a social good. Citizens usually invest a
substantial chunk of time in commuting, and enabling citizens to improve the
quality of this time would directly improve their well-being, and their quality of
life. To the best of our knowledge, Smart-GH is the first GIS system that adds
such benefits to the traditional usage of common GIS applications.

Acknowledgments. This work was partially supported by the EU Project Diversify
FP7-ICT-2011-9.

References

1. Cayo, M., Talbot, T.: Positional error in automated geocoding of residential
addresses. International Journal of Health Geographics 2(1) (2003)

2. D’Hondt, E., Stevens, M., Jacobs, A.: Participatory noise mapping works! An eval-
uation of participatory sensing as an alternative to standard techniques for environ-
mental monitoring. Pervasive and Mobile Computing 9(5), 681–694 (2013)

3. Gallagher, R.: Operation Auroragold: How the NSA hacks cellphones world-
wide (December 2014). https://firstlook.org/theintercept/2014/12/04/
nsa-auroragold-hack-cellphones/

4. Goodchild, M.: Citizens as sensors: the world of volunteered geography. GeoJournal
69(4), 211–221 (2007)

5. Helbig, N., Cresswell, A., Burke, G., Luna-Reyes, L.: The dynamics of opening gov-
ernment data: A white paper. Centre for Technology in Government, State Univer-
sity of New York, Albany (2012). http://www.ctg.albany.edu/publications/reports/
opendata/opendata.pdf

6. IBM Institute for Business Value. Smarter cities for smarter growth (2010)
7. Kitchin, R.: Four critiques of open data initiatives: The Programmable City

(November 2013)
8. World Health Organization. Urbanization and health. Bulletin of the World Health

Organisation 88(4) (2010)
9. Zheng, P., Ni, L.M.: Spotlight: The rise of the smart phone. IEEE Distributed

Systems Online 7(3) (2006)

https://firstlook.org/theintercept/2014/12/04/nsa-auroragold-hack-cellphones/
https://firstlook.org/theintercept/2014/12/04/nsa-auroragold-hack-cellphones/
http://www.ctg.albany.edu/publications/reports/opendata/opendata.pdf
http://www.ctg.albany.edu/publications/reports/opendata/opendata.pdf

Adoption, Use, and Impact

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 103–113, 2015.
DOI: 10.1007/978-3-319-17837-0_10

A Qualitative Study on the Adoption
of Open Source Software in Information Technology

Outsourcing Organizations

Lakshmanan Ramanathan1() and Sundaresan Krishnan Iyer2

1 Birla Institute of Technology and Science, Pilani, India
sanlakit@gmail.com

2 Infosys Limited, Mysore, India
sunkashyap@yahoo.com

Abstract. The purpose of this paper is to identify the influence of Outsourcing on
Open source software (OSS) and further investigate the factors that impact the
adoption of OSS in global Information Technology (IT) outsourcing organizations
serviced by Indian IT services providers. This exploratory research adopted positiv-
ism research philosophy and qualitative approach. An in-depth interview was
conducted with ten participants across IT outsourcing organizations, IT service
providers, and OSS service providers. The results show that IT outsourcing was not
found to have an impact on OSS adoption. However, eight factors including man-
agement support and OSS support availability was identified to influence OSS
adoption. IT services providers can utilize this research model to increase their un-
derstanding of why some IT outsourcing organizations choose to adopt OSS, while
seemingly similar ones facing similar market conditions do not.

Keywords: Open source software · OSS adoption · IT outsourcing · TOE ·
Diffusion of innovation · Indian IT

1 Introduction

Over the past two decades, open source software (OSS) has gained significant mo-
mentum and has changed the way software is perceived, developed and deployed. It is
often seen as a disruptive technology that has changed the rules of the industry. In
India, Information Technology (IT) industry is one of the most significant growth
contributors. As a proportion of India's Gross Domestic Product, aggregate IT sector
revenues have grown from 1.2% in 1998 to 8.1% in 2014 [1]. A Gartner report high-
lights that IT outsourcing organizations are compelled to look at OSS alternatives as
concerns around security, performance and technical support are increasingly ad-
dressed and India-based IT services providers must evolve to capitalize on this OSS
trend [2]. In this study, we explore the role of outsourcing in OSS adoption and de-
velop a conceptual model for OSS adoption in Global IT Outsourcing Organizations
(Clients) serviced by Indian IT services providers (Vendors). The scope of this study
included Indian IT services providers that are members of the National Association of
Software and Service Companies (NASSCOM), the industry association for the IT-
BPM sector in India and their clients.

104 L. Ramanathan and S. Krishnan Iyer

2 Related Work

OSS may be defined as a software that is released under the terms of a license that allows
the licensee to use, modify, and redistribute, either gratis or for a fee. Over 75% of IT
organizations leverage nontrivial elements of OSS in their mission-critical IT portfolios,
including cases where they might not be aware of it [3]. Researchers explored various
aspects of OSS over the past decade and a number of special research areas have
emerged. Feller et al. [4] analyzed 155 OSS research artefacts and concluded that the
literature has large gaps, and that commercial organizations are underrepresented. Stol
and Babar [5] reviewed 219 OSS publications and concluded that OSS in organizations
attracted limited attention. Likewise, Hauge et al. [6] have done a systematic literature
review and concluded that the overall rigor of the studies performed on OSS, both within
organizations and in general, is furthermore not good enough. Ven and Verelst [7] inves-
tigated the OSS adoption in Belgian organizations based on TOE framework and identi-
fied five critical factors (i.e., software cost advantage, switching costs, reliability,
presence of boundary spanners, and availability of external support).

2.1 Research Gap

Previous studies conclude that there is a paucity of information in the models, theories,
and frameworks to explain the adoption of OSS in organizations. Studies in the past
have focused primarily on the OSS development model and the unique aspect of OSS.
Having reviewed the previous studies in literature, it is apparent that some major gaps
exist in the OSS research with respect to adoption in corporate sector. Studies lack a
robust framework that helps organizations for adopting OSS. There are very limited
studies on OSS usage in the context of outsourced software engineering process. In
addition, there has been little study on OSS adoption in developing countries [8], like
India. Even though there has been an increasing commercialization of OSS, only less
information is available on adoption of OSS in IT outsourcing and IT services organi-
zations. Raina and Wurster [2] state that Indian IT providers must find ways to coexist
with open source by developing an open source revenue model that complements their
current offerings in order to increase their market share in OSS space.

2.2 Theoretical Framework

OSS adoption is a form of technology adoption that refers to a process in which the
organization associates itself with OSS in one or many forms. This study uses the
adoption model proposed by Hauge et al. [6] that includes a) using OSS development
practices, b) participating in existing OSS development, c) providing OSS products, d)
using OSS tools, or e) deploying OSS products. Much of the technology diffusion
literature focuses on the adoption decisions of individuals [9]. Hammouda [8] proposed
an empirical model for analysing OSS adoption in Tunisian Software Business leve-
raging Strauss and Corbin’s [10] paradigm. However, this study develops the Diffusion
of Innovation theory, which is at organization level, and especially the Technology-
Organization-Environment (TOE) framework developed by Depietro et al. [11]. Since

Qualitative Study on the Adoption of OSS in IT Outsourcing Organizations 105

the aim of this study is to conduct a comprehensive investigation into the factors in-
fluencing the adoption of OSS, the TOE framework allows us to consider the broader
context in which this adoption process takes place. The importance of taking into ac-
count organizational and environmental characteristics has been stressed by several
other studies e.g., [12, 13].

Factors Hypothesized to Influence OSS Adoption
Reliability: Studies [14] indicated that increase in reliability of the OSS would en-
hance the adoption rate among users. The study by Dedrick and West [15] claims that
even in larger organizations, reliability played a significant role. This leads to Hypo-
thesis 1 “IT Outsourcing Organizations that perceive OSS to be reliable will exhibit a
larger extent of OSS adoption.”

License and Legal concerns: Organizations are concerned about the complications that
emerge when various OSS components, governed by different licenses, are used in the
same software system [16]. Previous studies [17, 2] confirmed this line of thought. This
leads to Hypothesis 2 “IT Outsourcing Organizations that perceive less concern related
to OSS licensing and legal issues will exhibit a larger extent of OSS adoption.”

Software cost: Literature states that the less expensive the technology, the more likely
it is that it will be adopted [13]. Previous studies [15, 18, 7] perceived OSS as less
expensive and influence adoption. This leads to Hypothesis 3 “IT Outsourcing Organ-
izations that perceive OSS to be less expensive will exhibit a larger extent of OSS
adoption.”

Management Support: OSS should be part of a strategy where management are in-
volved in the decision making process [19]. Several studies confirmed the importance
of management support in the adoption of the innovation [20, 19]. This leads to Hy-
pothesis 4 “IT Outsourcing Organizations in which management support is high will
exhibit a larger extent of OSS adoption.”

Outsourcing was mainly motivated by cost savings, but has now developed into a rou-
tine strategic management [21]. This leads to Hypothesis 5 “IT Outsourcing Organiza-
tions in which IT outsourcing is high will exhibit a larger extent of OSS adoption.”

Availability of OSS Support: Lack of support is identified as an important barrier for
OSS adoption. Li et al. [22] state that the availability of support did have an influence on
OSS adoption. This leads to Hypothesis 6 “IT Outsourcing Organizations that perceive
support for OSS to be available will exhibit a larger extent of OSS adoption.”

Software Vendor Relationship: Structured vendor support should be in place to com-
plement the existing IT support structures [15]. Organizations have created dependen-
cy on their vendors which influence OSS adoption [7]. This leads to Hypothesis 7 “IT
Outsourcing Organizations that have a relationship with an OSS vendor will exhibit a
larger extent of OSS adoption.”

OSS Support Availability vs Software Cost: Li et al. [23] states that the availability
of the external human capital for OSS support will reduce switching cost. Evaluation
of service providers requires time, effort and financial resources. This leads to Hypo-
thesis 8 “IT Outsourcing Organizations that perceive support for OSS to be available
will perceive the software costs involved in adopting OSS to be lower."

106 L. Ramanathan and S. Krishnan Iyer

3 Research Method

The objective of this research is to study the OSS adoption in IT Outsourcing organiza-
tions serviced by Indian IT services providers. The study attempts to answer the
following research question: What are the enablers/inhibitors of OSS adoption in IT out-
sourcing organizations serviced by Indian IT service providers? Thus, IT Outsourcing
organizations (Clients) are the unit of analysis. The study used an exploratory qualitative
and the multiple case study approach (including vendors and clients), which provides a
rich and in-depth analysis of OSS adoption decisions of Organization. Table 1 below
summarizes the research findings based on the cases sampled using Theoretical sampling
strategy [24]. The variations in type, size of organization, position of respondents allowed
exploring diverse organizational and environmental issues.

Table 1. Overview of the Organizations in the Qualitative Study

Case Designation of Intervie-
wee

Company Profile Company
Location

Size^ Type
OSS

Adoption
level

C1
Senior Vice President &
Chief Technology Officer

Leading financial
processing services pro-
vider in Canada

N.America Medium
IT Outsourcing
Organization

Extensive

C2
Vice President & Head of
IT

Private Life Insurance
company

India Large
IT Outsourcing
Organization

Nil

C3
General Manager - IT
Services

One of Top 15 Indian IT
service providers

India Large
IT Service
Provider

Extensive

C4
Associate Vice President
& Senior Delivery
Manager

One of Top 5 Indian IT
service providers

India Very Large
IT Service
Provider

Sporadic

C5 Chief Executive Officer
Open Source software
Solutions Service Provider

Europe Very Small
OSS Service
Provider

Extensive

C6
Vice President, Sr.
Technology Manager

Multinational banking and
financial services corpora-
tion

N.America Very Large
IT Outsourcing
Organization

Sporadic

C7
Senior Manager, Portfo-
lio Leader

Multinational IT, consult-
ing service provider

India Very Large
IT Service
Provider

Sporadic

C8 Principal Architect
Leading Insurance major
in USA

N.America Large
IT Outsourcing
Organization

Sporadic

C9 Delivery Manager
One of Top 5 Indian IT
service providers

India Very Large
IT Service
Provider

Sporadic

C10
Commercial and IP
Licensing Lawyer

Consulting company in
OSS/embedded systems

India Very Small
OSS Service
Provider

Sporadic

^ No. of Employees Very Small (<100), Small (101-1000), Medium (1001-10,000), Large (10,001-100,000), Very
Large (>100,000)

This study ensured construct validity by reconciling multiple sources of evidence

(triangulation) such as multiple case study and OSS literature and reports related to
OSS [24, 25]. Further the case study process (semi-structured interviews) by selecting

Qualitative Study on the Adoption of OSS in IT Outsourcing Organizations 107

the concepts to be studied for this research from the literature. Additionally self-
selection bias was eliminated by ignoring responses from: a) participants who are not
from the specified NASSCOM member list, and b) participants whose company
names are not available/who did not reveal company names.

3.1 Within-Case Analysis

The initial list of codes was defined based on the factors that were identified during the
literature review. The transcripts were coded to determine factors that influenced the OSS
adoption decision. Data pattern-matching [25] was used to identify relevant text extracts
for each factor. The data analysis process was flexible and opportunistic [24, 25], where-
in new adoption factors were identified iteratively. Data displays were used to summarize
and analyze the qualitative data. For each case, a table was constructed that provided an
overview of the perception of the organization toward the various adoption factors.

3.2 Cross-Case Analysis

Cross-case analysis allows to compare factors across all cases and then to select the most
logically replicated and generalizable factors [24]. 22 codes emanated from the eight
factors identified in the literature review in addition to eight new codes that emanated
from the cases. Table 2 shows all the factors identified in with-in case analysis. Factors
with a minimum frequency count of four cases were identified to determine which fac-
tors had an important influence on the organizational adoption decision.

Table 2. Frequency Analysis of Factors

Context Factors Cases Frequency (* >=
4)

Technological
Context

Reliability C1, C2, C3, C5, C6, C7, C8, C9 8*

License Concern C4, C8, C9, C10 4*

Legal Concern C1, C2, C8, C9, C10 5*

Software Cost
C1, C2, C3, C5, C6, C7, C8, C9,
C10 9*

Organizational
Context

Management Support C1, C2, C3, C4, C6, C7, C8, C9 8*

IT Outsourcing C1, C10 2

Environmental
Context

OSS Support Availabili-
ty

C1, C2, C3, C6, C7, C8, C9, C10 8*

Software Vendor Rela-
tionship

C1, C2, C6, C8 4*

 Enabler to OSS Adoption  Inhibitor to OSS Adoption  No impact/neutral on OSS Adoption

108 L. Ramanathan and S. Krishnan Iyer

4 Discussion of the Findings

Fig 1. below depicts the summary of case study findings.

4.1 Enablers of OSS Adoption

Reliability: Eight organizations indicated that the high reliability of OSS was an im-
portant factor in the adoption decision. Three organizations (C1, C5, C7) stated that
OSS was highly reliable and they used OSS in production, whereas five organizations
(C2, C3, C6, C8, C9) highlighted lack of reliability for not adopting OSS. Reliability
was expressed in terms of the following items: security, stability/scalability/ maturity,
and lack of features. The participant in case C5 mentioned that: “system is afterwards
(of OSS deployment) [...] more efficient to manage, more stable. So, it is really worth
it”. The finding of the study is in line with the previous studies which indicated that
an increase in reliability of OSS would enhance the adoption rate among users [14].
Consequently, the technology context attribute Relative Advantage was seen in terms
of Reliability, and played an important role in OSS adoption.

Fig. 1. OSS Factors in Case Study Findings

Qualitative Study on the Adoption of OSS in IT Outsourcing Organizations 109

Software Cost: Nine organizations indicated that the software cost was an important
factor in the adoption decision. Software cost was expressed in terms of the following
items: business case, business model, support cost, total cost of ownership, and Cost
reduction. While some of the wealthiest banks moved towards OSS to save costs
(C5), couple of organizations (C7, C9) considered cost as a trade-off and not as a
decision making parameter. Cost reduction and lower total ownership cost of the
software including exit costs of proprietary software and ongoing support costs was
mentioned as a critical factor in OSS adoption. Several studies [15, 18, 7] perceived
OSS as less expensive and hence have an influence on OSS adoption. Consequently,
the technology context attribute Relative Advantage was seen in terms of Software
cost, and played an important role in OSS adoption.

Management Support: Eight organizations indicated that management support was
an important factor in the adoption decision. Management support was expressed in
terms of the following items: OSS training, OSS policy, and sponsorship. OSS train-
ing could increase the knowledge quotient of employees and subsequently increase
adoption (C4, C7). Six organizations (C2, C3, C4, C6, C7, C9) discussed about role of
OSS policy while organizations (C1, C2, C3, C6, C9) discussed about role of spon-
sorship in OSS adoption. Management team acted as a Boundary spanner to evangel-
ize OSS initiative across the organization. Consequently, the organization context
attribute Boundary spanners was seen in terms of Management support, and played
an important role in OSS adoption.

Availability of Support: Eight organizations indicated that OSS support availability
was an important factor in the adoption decision. OSS support availability was ex-
pressed in terms of: accountability for support, lack of support model or system, and
skilled staff availability. Three organizations (C1, C2, C7) discussed about accounta-
bility for support of OSS. The participant in case C1 mentioned that: “The auditor
wants to know if a system breaks how you are going to get support”. Four organiza-
tions (C1, C3, C8, C10) emphasized lack of availability of skilled staff for OSS. Con-
sequently, the environment context attribute Support infrastructure was seen in terms
of OSS support availability, and played an important role in OSS adoption.

Software Vendors: Four organizations indicated that the software vendor influences
OSS adoption. Software vendor relationship was expressed in terms of: vendor influ-
ence, and value proposition. Organizations were concerned about smaller vendors
offering OSS support, wherein the net worth of the vendor was many times less than
the indemnification value and hence were perceived to be unstable (C2). This was
highlighted by Ven & Verelst [14], wherein the long-term viability of small organiza-
tions were questioned. Consequently, the environment context attribute Network ef-
fects was seen in terms of Software vendor relationship and played an important role
in OSS adoption. Further, case study provided additional insights into the OSS adop-
tion by identifying other factors that affect OSS adoption (such as OSS community
involvement, organization needs, open standards, and job creation).

110 L. Ramanathan and S. Krishnan Iyer

4.2 Inhibitors of OSS Adoption

Four organizations indicated that the license concerns impacts OSS adoption. License
concern was expressed in terms of: compliance issues, and obligations. The partici-
pant in case C10 mentioned that: “… must be compliant with license attached to that
(OSS) software […] need to check permissive license or restrictive license”. All four
organizations highlighted concerns related to OSS license obligations. Five organiza-
tions indicated that the legal concerns hinder OSS adoption. Legal concerns were
expressed in terms of: intellectual property issues, fear of litigations, and need for
legal experts. Two organization (C1, C2) highlighted fear of litigations. For instance,
the participant in case C1 mentioned that: “The one thing you can’t stop (in OSS) is
(…) litigation”. Case C8, C9, C10 discussed about the needs for legal experts. This
suggests that clients had limited expertise in understanding the OSS legal nuances and
needed legal experts. The need for legal expertise was also highlighted by Hammouda
et al. [16] that stated some of the OSS licenses were fundamentally incompatible with
each other. Consequently, the technology context attribute Compatibility was seen in
terms of License and legal concerns, and played a role in inhibiting OSS adoption.
Organization size was chosen as a moderating variable in this study. However, the
findings from qualitative analysis do not support a relationship between size of organ-
ization and OSS adoption. While this contradicts the study by Fichman [12] that
stated organization size has frequently been found to have a positive impact on the
assimilation of new technologies, a possible explanation could be that smaller organi-
zations have fewer resources and might adopt OSS to reduce costs. Further, case
study provided additional insights into the OSS adoption by identifying other factors
that hinder OSS adoption (vendor lock-in, internal resistance, and lack of support).

4.3 Factors That Do Not Impact OSS Adoption

IT outsourcing: Only two organizations mentioned about the role of IT outsourcing
in OSS adoption. IT service providers were just soliciting advice on OSS. Given that
only two cases reported IT outsourcing, the organization context attribute Formaliza-
tion in terms of IT Outsourcing was not found to have an impact on OSS adoption.
Further, case study provided additional insights into the OSS adoption by identifying
other factors that do not impact OSS adoption (like budget constraints, source code
availability, and trialability).

5 Conclusion

The present research contributes to the organizational adoption literature by exploring
the adoption of OSS in IT outsourcing organizations serviced by Indian IT service
providers. To investigate this research problem, the study proposed a conceptual

Qualitative Study on the Adoption of OSS in IT Outsourcing Organizations 111

model that describes a number of factors which were hypothesized to influence the
adoption of OSS. The perceptions of different organizations differed based on their
needs and their clients’ requirements. The findings summarizes that the OSS products
which were highly reliable and mature were used in production servers in a significant
way. In addition, OSS product must have desired minimum features and a roadmap
for continuous improvement compared to similar proprietary software. Cost savings
was an important factor in enabling OSS adoption. The perceived litigations/IP issues
were hindrance to OSS adoption. Management had to deal with many issues in the
OSS adoption decision process including career path for internal support team, in-
demnification issues, capital expenses vs. operational expenses, higher cost for exter-
nal support etc.,. Lack of defined OSS support model and non-availability of skilled
staff, was a hindrance for OSS adoption. Technology innovation requires organiza-
tions to simultaneously 'change' to fix and improve the past as well as 'transform' to
create a futuristic vision. While factors like Reliability, Software Cost, Management
support etc. can be classified as 'change' category, factors like Software vendor rela-
tionship, Organizational needs, Availability of support, would be classified as
'transformation' category.

5.1 Theoretical Contributions and Implications

There are limited studies on OSS adoption in the context of outsourcing software
development process and many studies were focused on the management aspect of
developing software. In addition, empirical findings obtained from the present study
will contribute to the literature on OSS adoption in Indian outsourcing organization,
an area where empirical studies are scant. The framework can be used by Indian IT
services providers to better frame their strategies to service their clients. IT services
providers can use this research model to increase their understanding of why some IT
outsourcing organizations choose to adopt OSS, while seemingly similar ones facing
similar market conditions do not. IT services providers can offer "OSS as a service"
for its clients and help them address the gaps in support availability and achieve re-
duction in total cost of ownership of software.

5.2 Limitations and Future Research

The main limitation of our research is that it is focused on IT outsourcing organiza-
tions serviced by Indian IT services providers. Hence, we cannot safely generalize our
finding to other regions. We decided to use the TOE framework as theoretical base.
However, the use of a stronger theoretical framework could have provided a richer
insight in our data. Therefore, it would be interesting, if future studies try to build on
the results from this study and study the adoption of OSS using a strong theoretical
foundation. Since this study encompasses OSS in general, future studies could also
determine if our results are also applicable to all types of OSS.

112 L. Ramanathan and S. Krishnan Iyer

Appendix

Themes used in semi-structured interview questions
• How and to what extent is the (client) organization currently facilitating in adopt-

ing OSS?

• OSS usage within the organization (Success stories/Failures in OSS Adoption)

• Experience about the availability of support and maintenance of OSS products

• Impact of factors identified in literature on OSS adoption in the organization

• IT Service providers’ role in OSS adoption strategy (For IT Outsourcing organi-

zations)
• IT Service providers’ strategy with respect to OSS (For IT service provider)

References

1. NASSCOM Research. The IT-BPM sector in India - Strategic Review 2014. NASSCOM
(2014)

2. Raina, A., Wurster, L.F.: Open source software adoption becoming mainstream in India.
Gartner (2013)

3. Driver, M.: Drivers and incentives for the wide adoption of open source software. Gartner
(2012)

4. Feller, J., Finnegan, P., Kelly, D., MacNamara, M.: Developing open source software:
a community-based analysis of research. In: Trauth, E., Howcroft, D., Butler, T.,
Fitzgerald, B., DeGross, J. (eds.) Social Inclusion: Societal and Organizational Implica-
tions for Information Systems. IFIP, vol. 208, pp. 261–278. Springer, Boston (2006)

5. Stol, K.-J., Babar, M.A.: Reporting empirical research in open source software: the state of
practice. In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.) OSS 2009.
IFIP AICT, vol. 299, pp. 156–169. Springer, Heidelberg (2009)

6. Hauge, Ø., Ayala, C., Conradi, R.: Adoption of open source software in software-intensive
organizations - A Systematic literature review. Information and Software Technology
52(11), 1133–1154 (2010)

7. Ven, K., Verelst, J.: A Qualitative study on the organizational adoption of open source
server software. Information Systems Management 29(3), 170–187 (2012)

8. Hammouda, I.: Open source software in tunisian software business: an empirical study. In:
EUROMICRO-SEAA, pp. 451–454 (2010)

9. Oliveira, T., Martins, M.F.: Literature review of information technology adoption models
at firm level. The Electronic Journal Information Systems Evaluation 14(1), 110–121
(2011)

10. Corbin, J., Strauss, A.: Basics of qualitative research: Techniques and procedures for de-
veloping grounded theory. SAGE Publications (2014)

11. Depietro, R., Wiarda, E., Fleischer, M.: The context for change: organization, technology
and environment. In: Tornatzky, L.G., Fleischer, M. (eds.) The Processes of Technological
Innovation, 1st (edn.), pp. 151–175. Lexington Books, Massachusetts (1990)

Qualitative Study on the Adoption of OSS in IT Outsourcing Organizations 113

12. Fichman, R.G.: The diffusion and assimilation of information technology innovations. In:
Markus, M.L., Tanis, C., Zmud, R.W. (eds.) Framing the Domains of IT Management:
Projecting the Future Through the Past, pp. 105–127. Pinnaflex Educational Resources,
Ohio (2000)

13. Rogers, E.M.: Diffusion of Innovations, 4th (edn.), pp. 219–287. Simon and Schuster,
New York (2010)

14. Ven, K., Verelst, J.: An empirical investigation into the assimilation of open source server
software. Communications of the ACM 28(1), 9 (2011)

15. Dedrick, J., West, J.: Why firms adopt open source platforms: a grounded theory of inno-
vation and standards adoption. In: Proceedings of the Workshop on Standard Making:
A Critical Research Frontier for Information Systems, MIS Quarterly Special Issue Work-
shop, Seattle, WA, pp. 236–257 (2003)

16. Hammouda, I., Mikkonen, T., Oksanen, V., Jaaksi, A.: Open source legality patterns:
architectural design decisions motivated by legal concerns. In: Proceedings of the 14th
International Academic MindTrek Conference: Envisioning Future Media Environments,
New York, NY, USA, pp. 207–214. ACM (2010)

17. Fitzgerald, B.F., Bassett, G.: Legal Issues Relating to Free and Open Source Software,
vol. 1, pp. 11–36. Queensland University of Technology, Brisbane (2004)

18. Spinellis, D., Giannikas, V.: Organizational adoption of open source software. Journal of
Systems and Software 85(3), 666–682 (2012)

19. Hauge, Ø., Cruzes, D.S., Conradi, R., Velle, K.S., Skarpenes, T.A.: Risks and risk mitiga-
tion in open source software adoption: bridging the gap between literature and practice. In:
Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J. (eds.) OSS
2010. IFIP AICT, vol. 319, pp. 105–118. Springer, Heidelberg (2010)

20. Glynn, E., Fitzgerald, B., Exton, C.: Commercial adoption of open source software: an
empirical study. In: Proceedings of International Conference on Empirical Software Engi-
neering, Noosa Heads, Australia, pp. 225–234. IEEE (2005)

21. Hoecht, A., Trott, P.: Innovation risks of strategic outsourcing. Technovation 26(5),
672–681 (2006)

22. Li, Y., Tan, C.-H., Xu, H., Teo, H.-H.: Open source software adoption: Motivations of
adopters and amotivations of non-adopters. ACM SIGMIS Database 42(2), 76–94 (2011)

23. Li, Y., Tan, C.-H., Teo, H.-H., Siow, A.: A human capital perspective of organizational in-
tention to adopt open source software. In: Proceeding of the 26th Annual International
Conference on Information Systems (ICIS 2005), Las Vegas, NV, USA, pp. 137–149
(2005)

24. Yin, R.K.: Case study research: Design and methods, 5th (edn.), pp. 67–162. SAGE Publi-
cations, California (2013)

25. Eisenhardt, K.M.: Building theories from case study research. Academy of Management
Review 14(4), 532–550 (1989)

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 114–123, 2015.
DOI: 10.1007/978-3-319-17837-0_11

Surveying the Adoption of FLOSS by Public
Administration Local Organizations

Davide Tosi1(), Luigi Lavazza1, Sandro Morasca1, and Marco Chiappa2

1 Università degli Studi dell’Insubria, DISTA, Via Mazzini, 5, Varese, Italy
{davide.tosi,luigi.lavazza,sandro.morasca}@uninsubria.it

2 Consiglio Regionale della Lombardia, Via F. Filzi, 22, 20124 Milano, Italy
marco.chiappa@gmail.com

Abstract. Background. The introduction of Open Source Software technologies
in the Public Administration plays a key role in the spread of Open Source
Software. The state of the art in the adoption of Open Source Software solutions
in the Public Administration is not very well known even in areas like Lombar-
dy, which is Italy's largest and most developed region.

Goal. The goal of the investigation documented in this paper is to obtain a
clear picture about the introduction of Open Source Software technologies in
the Public Administration, the obstacles to their adoption, and the willingness of
stakeholders to proceed with their introduction.
Method. We carried out a qualitative and quantitative survey that was submitted
to a representative part of the Public Administrations in Lombardy.

Results. The analysis of the qualitative and quantitative information shows
that several Public Administrations are already using Open Source Software
technologies, though not in all application areas. The savings are one frequently
cited incentive to the adoption of Open Source Software. However, one obstacle
is the fact that a comprehensive law on software in the Public Administration
has not yet been approved.

Conclusions. Our analysis provides results that indicate a common
understanding of incentives, obstacles, and opportunities for Open Source
Software technologies in Public Administrations.

Keywords: Public administrations · FLOSS adoption · Survey · Italy

1 Introduction

Transparency, reuse, and participation are the final goals of Open-Government, based
on the four technological cornerstones [1]: Open Source Software, Open Format and
Open Data [2] in a context of infrastructure and hosting that is as Open as the Open
Cloud [7].

In the last few years, there is a slowly increasing interest by Italian public and pri-
vate entities in the world of Free-Libre Open Source Software (FLOSS) [4]. On the
one hand, the increasing level of FLOSS product quality is also increasing the trust
that end users have in FLOSS products. On the other hand, the need for budget cuts to
contain costs and expenditures of public and private entities provides new motivations
for the adoption FLOSS at the expense of commercial proprietary software products.

 Surveying the Adoption of FLOSS by Public Administration Local Organizations 115

The global importance of FLOSS worldwide has also led to the proposal and ap-
proval of a number of laws whose goal is to regulate and possibly favour the use of
FLOSS in the Public Administration Local Organizations (PALO). For instance, at
the Italian national level, Decree No. 267/2000 [5] and directive 19/12/2003 [6] have
been adopted to regulate the use of software in PALO.

The Region of Lombardy, with Law Proposals on "Rules on information technolo-
gy pluralism and adoption of open formats and standards for digital documents in the
information society of Lombardy" and on "Provisions on access, publishing and re-
use of public data and the regional administration in open format using free software
and the Internet" has given a strong signal of openness to FLOSS and Open Data [2,
3]. To obtain concrete outcomes for the effort spent by the Region of Lombardy and
the political Regional Council groups, it is necessary to continuously promote the
activities related to FLOSS and Open Data with large projects, for instance with the
definition of an Observatory on best practices in the use of FLOSS and the publica-
tion of Open Data.

This paper describes the execution of a qualitative and quantitative survey for as-
sessing the state of the art in the introduction of FLOSS in the PALO in Lombardy.
Specifically, the survey addressed a fairly large sample of the PALO of the Region of
Lombardy, as it included municipalities that account for about one-fifth of the popula-
tion of the region. The survey investigates the degree of use of FLOSS technologies in
the region, the obstacles to its introduction, and the willingness of stakeholders to
introduce FLOSS. The analysis of the quantitative data from the survey confirmed the
qualitative data.

Lombardy is by far Italy's largest region in terms of population and arguably the
most economically and technologically advanced region of the country too. So, the
large-scale introduction of FLOSS technologies in Lombardy would amount to a
large-scale introduction of FLOSS technologies in the country and would propel the
introduction of FLOSS in the other parts of Italy.

Several surveys have been carried out worldwide to monitor and understand the
diffusion of FLOSS. A fairly comprehensive systematic literary survey concerning the
adoption of FLOSS in software-intensive organizations (not necessarily PA) can be
found in [11]. The adoption of FLOSS in Venezuela was studied and reported in [12].
The factors that affect the adoption of FLOSS in public organizations was studied in
[13]. Although not addressing PA, the framework provided in [13] can be used to
explain several of our findings, thus showing that the concerns that affect the adoption
of FLOSS in PA are not dissimilar from those affecting industrial contexts.

The remainder of this paper is organized as follows. Section 2 describes the me-
thodology adopted to conduct the quantitative and qualitative survey. Sections 3 and 4
report on the results of the qualitative and quantitative results, respectively. We dis-
cuss the results and conclusions in Section 5.

2 Methodology

The survey about the adoption of FLOSS by PALO in Lombardy was based on a) the
qualitative analysis of a sample of medium-large organizations and b) the quantitative
analysis of all organizations located in Lombardy. Thus, we obtained both qualitative

116 D. Tosi et al.

semantically valuable –though not immediately generalizable– information as well as
objective and statistically representative data, though possibly less detailed and con-
textualized.

Qualitative analysis was performed in PALO already acquainted with FLOSS. A ques-
tionnaire containing semi-structured open questions was used as a basis for collecting
opinions and indications concerning FLOSS from people in charge of IT development
and operation. The interviews carried out by means of the qualitative questionnaire aimed
at understanding and describing the procedures and best practices used to launch devel-
opment or migration projects based on FLOSS and at determining the factors that affect
(either positively or negatively) the adoption of FLOSS. Accordingly, the interviewer
concentrated on understanding the critical factors that characterize the adoption of
FLOSS, how risks are managed, and what guidelines are followed in the adoption of
FLOSS. In any case, the interviewer also explored additional issues that would be raised
during the interviews. The interviews were performed in the municipalities of Bollate,
Brescia, Cinisello Balsamo, Milano, Monza, Vigevano, and the Province of Lecco, which
range from approximately 36,500 to approximately 1,350,000 inhabitants.

The quantitative analysis was carried out via a questionnaire containing 35 closed-
answer questions, defined on the basis of the results obtained by the qualitative analy-
sis. The objective was to exhaustively check the situation of PALO in Lombardy, so,
the questionnaire was sent to all the municipalities in Lombardy. The questionnaire
was implemented via the FLOSS platform LimeSurvey [www.limeservice.com],
which greatly helped users in the filling out the questionnaire and researchers in data
collection and analysis. The questionnaire addressed specific issues concerning
FLOSS, e.g., the pros and cons of adopted FLOSS solutions, the FLOSS tools being
used, the cost of management and the more frequently used open source licenses. The
invitation to answer the questionnaire was sent to all the 1536 municipalities in Lom-
bardy on September 9, 2012. Two reminders were sent on October 17 and November
20. The questionnaire was closed on December 31, 2012. 451 questionnaires were
returned, of which 256 compiled completely. The received answers were checked to
eliminate typos and inconsistencies due to possible misinterpretations.

The received answers account for municipalities with a total of 1,927,189 inhabi-
tants (about 19% of total Lombardy inhabitants), therefore they are a statistically rele-
vant sample. Also the population distribution in the respondent municipalities matches
the population distribution in Lombardy municipalities, which is characterized by
many municipalities with medium-sized population. While data of this survey refer to
2012, we believe it is still a valid picture of the current situation of Lombardy. Due to
the election of a new regional President and Council (mid 2013), the adoption process
of FLOSS was slowed down considerably.

3 Results of the Qualitative Analysis

Seven professionals in charge of IT development and operations were interviewed.
They provided a quite clear and complete view of FLOSS and the pros and cons of
adopting FLOSS in a PALO. They reported a clear propensity to use FLOSS.

 Surveying the Adoption of FLOSS by Public Administration Local Organizations 117

However, they also highlighted the importance of carefully and completely analysing
the requirements of the problem at hand to achieve the best solution, be it open source
or proprietary.

The adoption of FLOSS in the Italian PA began quite recently, and the process of
migrating to FLOSS is still largely unexplored. This situation is probably caused by a
very little knowledge of FLOSS and the implications of adopting FLOSS. Moreover,
most software platforms in use by the PALO are proprietary monolithic applications
that appear difficult to replace or even to integrate with FLOSS. In particular, it ap-
pears difficult to integrate FLOSS-based CRM (Customer Relationship Management),
DMS (Document Management System), ERP (Enterprise Resource Planning) or net-
work and service monitoring. On the contrary, it seems that the adoption from scratch
of completely new platforms and applications can be pursued both via open and pro-
prietary solutions. In the latter cases, the decision to what extent OSS should be
adopted is driven by several factors:

• Personal curiosity of IT people with respect to open solutions that could break the
“de facto standard” created by multinational companies like Microsoft;

• The political orientation of the administrations;
• Technical considerations concerning qualities like usability, reliability, etc.

Interviewees also stressed that the process of adopting FLOSS is very different for
server-side and client-side software. Using FLOSS on the servers is easier –being
transparent to both PA employees and citizens– even though installing, configuring
and managing OSS software (like Linux, or an open source email server, or an open
source Content Management System supporting the municipal Web portal) requires a
bigger effort than the proprietary alternatives.

When client software is concerned, the situation is very different. Although mature
applications that could be used instead of the proprietary counterparts –like Open
office or Gimp– are available, PA employees are not willing to change, and training
people to use the new software is a long and expensive process. Moreover, since pro-
prietary file formats (like .doc document files) are widely used by both the PA and
the citizens, a seamless and correct conversion of a huge amount of documents is also
necessary but difficult to achieve. Finally, the lack of resources makes it difficult to
carry out education and dissemination initiatives to promote the usage of FLOSS,
especially in schools and in public organizations where cultural “digital divide” is
greatest [10].

The advantages of FLOSS for the PA and the factors that are perceived to limit the
adoption of FLOSS, according to the interviewees, are listed in Table 1 (in order of
decreasing importance).

To overcome the problems listed above, several interviewees advocated region-
wide guidelines and rules that drive the adoption of FLOSS in PALO. Such rules and
guidelines should also clarify national laws and dispositions [5,6]. Funding of projects
addressing the adoption of FLOSS is also deemed necessary.

118 D. Tosi et al.

Table 1. Reported Pros and Cons in adopting FLOSS

 Pros Cons.

1 Money savings Need for training

2 Security and stability of applications Resistance to change

3 Open and standard data formats Difficulty to find professionals that can support the

adoption and/or migration process

4 Continuous technological update Difficult integration with proprietary software

5 Support by FLOSS development communitiesNo funding from the regional administration

6 Possibility of customizing and reengineering

FLOSS

Very specific PALO needs are not addressed by

FLOSS

7 - Difficult conversion to/from proprietary formats

4 Results of the Quantitative Analysis

The IT and Data Centre departments of the interviewed PALO are medium-sized
departments, with an average of 46 client machines (with a maximum of 1900 client
machines) and an average of 3 server machines at the infrastructural level (with a
maximum of 70 server machines). The Milan municipality is the one with the highest
weight in this survey. Out of 218 municipalities that responded to question "Do you
already Adopt Free and Open Source Software (FLOSS) in your Organization?" 38%
does not use any type of FLOSS, while 50% (108 respondents) use FLOSS. The re-
maining (13%) does not know or gives no response. Out of 108 PALO that adopt
FLOSS solutions, the majority declares to use FLOSS software only partially on desk-
top computers and servers. Very few PALO use FLOSS on desktop computers and
servers more than proprietary software solutions. Nine PALO declare to have tested
Software FLOSS only on pilot projects.

As clearly shown in the chart of Figure 1, the most common FLOSS solutions are
in the software category: "Browser" (20.13%), with a strong preference for the Mozil-
la Firefox browser, or in the category: "Productivity Software" (17.90%) with a prefe-
rence for the OpenOffice package. Very adopted are also: Data Base Management
Systems (11.63%), with an equal distribution between MySQL and PostgreSQL, Op-
erating System (10.51%) such as Linux, Mail Client (10.29%) such as Zimbra or Mo-
zilla Thunderbird. The qualitative survey shows clearly that solutions for Network
and IT Services Monitoring, CRM systems (Customer Relationship Management),
DMS (Document Management System), ERP (Enterprise Resource Planning) and
Networking Systems are slightly adopted in PALO. This situation is in contrast with
the policy of transparency and dematerialization that PALO should or would like to
pursue. As for Operating Systems on PC Clients and Servers, there is a clear predo-
minance of proprietary solutions (i.e., Microsoft Windows): 198 out of 210 operating
system installations are based on Microsoft solutions from a client point-of-view (4
Linux distributions and 2 MacOS systems); as for server machines, 191 out of 242 are
Microsoft installations (41 Linux distributions and 0 MacOS systems). However,
proprietary solutions adopted on Server are out of date (i.e., Windows Server 2003):
this means that the monolithic infrastructure designed several years ago are not con-
stantly updated and maintained. Proprietary solutions adopted on PC Clients (such as

 Surveying the Adoption o

Windows XP) are often ob
OS is too expensive for the

The considerations listed
nicipal managers to increas
of respondents would like t
terested in adopting FLOSS

Fig. 1. M

A significant proportion
proprietary software to FLO
some specific FLOSS soluti

However, the migration
adopted solutions are not c
department significantly. O
source code of the software
to improve the quality of th
tween the access to the sou
know, and 8% do not answe

To identify the strengths
the Lombardy PALO in par
cific opinions about some q
the results for each quality
Among the different quality
pared with proprietary solu
completely agree (or agree)
ware. Another strategic fac
Software with proprietary
ness of the source code is n
equivalent proprietary solu

of FLOSS by Public Administration Local Organizations

solete as well, since the regular upgrade of the propriet
finances of the municipal administrations.

d above are confirmed by the desire of mayors and IT m
se the use of FLOSS software in their organizations. 5
to adopt new FLOSS solutions, while only 9% are not

S (31% do not know, and 6% do not answer.)

Micro categories of adopted FLOSS Solutions

n of respondents (18%) would like to migrate all of th
OSS systems, while 74% are interested in migrating o
ions (3% do not know, and 5% do not answer.)
processes and the ability to access the source code of

considered by IT managers as a way to improve their
Only 20% of respondents, in fact, think that access to
e used by the municipal organizations may be a mechan
heir IT department, while 32% do not see any relation

urce code and the quality of the IT department (40% do
er.)
s and weaknesses in the adoption of FLOSS solutions
rticular, the interviewed PALO were asked to express s

qualitative factors of FLOSS solutions: Table 2 summari
y factor expressed both as percentage and absolute valu
y factors, the aptitude to customize FLOSS solutions co

utions is considered strategic. Out of 218 respondents, 8
) that FLOSS is easier to customize than proprietary S
ctor for FLOSS is the ease of integration of the FLO
software (44.40% completely agree or agree). The op

not enough to adopt FLOSS products: lower prices than
utions are sought (41.67% completely agree or agr

119

tary

mu-
54%
t in-

heir
only

the
r IT
the

nism
be-
not

for
spe-
izes
ues.
om-
88%
oft-

OSS
pen-

the
ee).

120 D. Tosi et al.

For 36.57% of the respondents, it is difficult to find specialized companies to support
the migration to FLOSS and for 41.2% of the respondents, it would be too expensive
and too long to train their employees to use FLOSS software. In addition, the respon-
dents think that the proprietary software is easier to use, safer and more reliable than
FLOSS [9].

Table 2. Opinions about Qualitative Factors of Software FLOSS

 Fully

agree

Agree Disagree Fully

disagree

No opinion /

No answer

a) FLOSS is easier to use than Proprietary Sw 0.9%

(2)

22.5%

(49)

28.0%

(61)

2.3%

(5)

37.2% (81)

9.2% (20)

b) FLOSS is easier to customize than Proprietary Sw 5.5%

(12)

34.9%

(76)

14.7%

(32)

0.9%

(2)

34.9% (76)

9.2% (20)

c) FLOSS is more reliable than Proprietary Sw 4.1%

(9)

19.7%

(43)

28.0%

(61)

0.9%

(2)

38.1% (83)

9.2% (20)

d) FLOSS is more secure than Proprietary Sw 6.0%

(13)

19.7%

(43)

27.1%

(59)

0.9%

(2)

36.7% (80)

9.6% (21)

e) The overall quality of FLOSS is higher than the

quality of Proprietary Sw

1.4%

(3)

16.1%

(35)

31.2%

(68)

2.3%

(5)

39.4% (86)

9.6% (21)

f) FLOSS can be easily integrated with Proprietary Sw 2.3%

(5)

32.1%

(70)

19.3%

(42)

3.7%

(8)

33.5% (73)

9.2% (20)

g) If FLOSS would provide only the ability to access

the source code without being cheaper than Proprietary

Sw, then my PALO would not use FLOSS

11.1%

(24)

30.6%

(66)

11.6%

(25)

1.4%

(3)

35.2% (76)

10.2% (22)

h) It is quite hard for my PALO to find companies that

provide technical support for FLOSS products

9.3%

(20)

27.3%

(59)

21.3%

(46)

2.8%

(6)

29.2% (63)

10.2% (22)

i) I would like to migrate to FLOSS if and only if other

organizations already migrated to FLOSS

5.6%

(12)

27.3%

(59)

29.2%

(63)

2.8%

(6)

25.5% (55)

9.7% (21)

l) Train the staff of my organization to use FLOSS

would be to expensive in terms of cost and time

6.9%

(15)

34.3%

(74)

24.5%

(53)

4.2%

(9)

20.4% (44)

9.7% (21)

It is interesting to note that, although a significant percentage of IT managers believe
that FLOSS is more secure, (25.68%), more reliable (23.85%) and with a higher overall
quality (17.44%) than equivalent proprietary and closed software solutions, only 11% of
respondents claim to buy new hardware (PC desktop, laptops, etc.) with the Operating
System and the main SW packages already installed and then replace the software over
time with equivalent FLOSS solutions. In alternative, they directly buy the hardware
without pre-installed software to provide the IT staff with the possibility of installing and
configuring FLOSS solutions from scratch. 65% of respondents buy new hardware with
pre-installed proprietary Operating Systems and software packages, then add FLOSS
solutions over-time whenever new specific needs rise in the PALO. In all cases, the pre-
installed software (licensed with the hardware) is not replaced. The Microsoft monopoly
in licensing new hardware with their Operating Systems and Office suite increases the
hesitation in migrating to FLOSS solutions when the software is purchased with the
hardware.

 Surveying the Adoption of FLOSS by Public Administration Local Organizations 121

The choices on the purchase of software are more influenced by IT managers
(17.78%) that decide which Software solutions purchase. In the decision process,
consultants who work with the administration can have an important role (13.78%),
such as end-users who, with their needs, indirectly push the administration to make
certain choices rather than others (14.44%). With an average of almost 4 suppliers and
a total of 664 suppliers, which the Public Administrations rely on to supply Software
solutions, the responding PALO said they were too dependent on their suppliers in
23.59% of cases, while they declare their freedom from their suppliers in 47.18% of
cases. This indicates how the organizations still feel free to act in their own internal
choices regardless of the supplier, while confirming the outsourcing of development
and maintenance of the solutions in use. For example, in 54.88% of cases, respon-
dents say they rely regularly and frequently on external suppliers for maintenance of
their software, while only 34.36% say they do it sporadically.

In 21% of cases, software solutions are released by vendors as "turnkey" products
without requiring ad-hoc customizations and personalization. However, in 46.15% of
cases, sporadic customization activities of the solutions adopted are requested by the
PALO. Frequent tasks of customization are needed by 7.18% PALO. During the cus-
tomization of the software solutions, the contribution of the FLOSS community is
evaluated by 42.56% of the respondents as “good”, in line with the quality perception
PALO IT managers have about the contributions made by developers of proprietary
software solutions (51.28%). It is important to notice that 2.05% of the respondents
declare an insufficient support provided by FLOSS communities. The value increases
to 3.08% in case of the support provided by developers of proprietary software solu-
tions.

In 2011, the total budget spent by the IT departments of the 140 respondents was
equal to €€ 7.7M (million) with an average value of €€ 55k (thousand) and a peak of €€
2M. Analysing the data point with the highest value (i.e., budget > €€ 100k) and com-
paring these data with the responses to question "Does the PALO adopt FLOSS?" and
the number of inhabitants of the related PALO, we can observe that:

• Only 12 municipalities have an expense of the IT department > €€ 100k per year;
• The total expenditure of the 12 municipalities is about €€ 4.5M for their IT

departments with €€ 377k in average, covering 58.45% of the total expenditure;
• The total number of inhabitants of the 12 analysed municipalities is equal to

628,000 inhabitants (the IT expenditure grows linearly with the number of
inhabitants), covering 32.60% of the total number of people reported in Table 1;

• 10 out of 12 municipalities under analysis adopt FLOSS solutions, while only 2
municipalities do not use FLOSS (one of these is the municipality with the highest
IT departmental expenditure).

In 23.16% of cases, IT managers declare that the total expenditure, in 2011, for
their IT department is too high, while 50% of the IT managers claim that the total
expenditure was reasonable. Only 1% of the IT managers say that the total expendi-
ture is too low. In any case, 40% of respondents state that they will focus on a
reduction of their total IT expenditure in the next two years, while for 26.84% of res-
pondents, a contraction in the IT budget is perceived as not necessary.

122 D. Tosi et al.

59.41% of the respondents to question "Do you feel a need for addressing
(directives / laws) at the regional level on the adoption of Open Source Software in
PA?" advocates the adoption of a directive or law on the issues of FLOSS. Only
17.65% of the respondents do not see any legislation as necessary. Very similar is the
distribution of respondents about a regional directive / law related to Open Data.

5 Conclusions

The results yielded by the qualitative analysis were substantially confirmed by the
quantitative analysis performed in the subsequent phase of the investigation. It is
therefore possible to conclude that:

• A relevant fraction of the interviewed PALO is already using FLOSS;
• In general, both FLOSS and proprietary software are used. However, the usage of

FLOSS is dominant with respect to proprietary software only in 10% of the PALO
that participated in survey;

• Sophisticated FLOSS solutions, e.g., for CRM, DMS or ERP, are rarely used in
PALO. On the contrary, OS, CMS, productivity suites and Web browsers are more
widely used;

• Operating Systems are mainly proprietary. 17% of the interviewed PALO uses
Linux on servers, and only 2% on clients;

• Money saving is an important driver for the adoption of FLOSS, which is
generally considered of lesser quality than proprietary software by people in
charge of IT operations;

• 60% of the interviewees are waiting for a Regional law that prescribes how to
adopt FLOSS and how to publish Open Data. To this end, the creation of a
regional board for monitoring FLOSS and supporting its adoption is advocated.

Acknowledgements. The research presented in this paper has been partially funded by the FP7
Collaborative Project S-CASE (Grant Agreement No 610717), funded by the European Com-
mission and by project “Metodi, tecniche e strumenti per l’analisi, l’implementazione e la valu-
tazione di sistemi software,” funded by the Università degli Studi dell’Insubria. We are grateful
to all IT Managers whom participated to the survey and to Fabio Pizzul and Regional Group of
the Democratic Party.

References

1. Open Government Partnership: Action Plan Italiano, April 2011. http://goo.gl/qybte
2. Berners-Lee, T., Shadbolt, N.: There’s gold to be mined from all our data.

http://www.theodi.org/sites/default/files/Times%20OpEd%20TBL-NRS%20Final.pdf
3. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. On Semantic

Web Information System 5(3), 1–22 (2009)
4. Open Source Initiative. The Open Source Definition. http://opensource.org/docs/osd
5. Decreto Legislativo 18 Agosto 2000, n. 267. Testo unico delle leggi sull’ordinamento degli

enti locali. Gazzetta Ufficiale n. 227 del 28 Settembre 2000 – Supplemento n. 162

 Surveying the Adoption of FLOSS by Public Administration Local Organizations 123

6. Direttiva 19 Dicembre 2003. Sviluppo ed utilizzazione dei programmi informatici da parte
delle pubbliche amministrazioni. Gazzetta Ufficiale n. 31 del 7 Febbraio 2004

7. Open Cloud Manifesto. www.opencloudmanifesto.org/
8. del Bianco, V., Lavazza, L., Lenarduzzi, V., Morasca, S., Taibi, D., Tosi, D.: A study on

OSS marketing and communication strategies. In: Hammouda, I., Lundell, B., Mikkonen,
T., Scacchi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 338–343. Springer, Heidelberg
(2012)

9. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: An empirical investigation of perceived re-
liability of open source java programs. In: 27th ACM Symp. on Applied Computing (SAC
2012), Riva del Garda, March 2012

10. Friso, C., Lenarduzzi, V., Taibi, D., Tosi, D.: How open source software products can sup-
port teaching in italian schools. In: 5th European Conf. on Information Management and
Evaluation. Como., September 2011

11. Hauge, Ø., Ayala, C., Conradi, R.: Adoption of open source software in software-intensive
organizations–A systematic literature review. Information and Software Technology
52(11), 1133–1154 (2010)

12. Maldonado, E.: The process of introducing FLOSS in the PA: the case of Venezuela.
Journal of the Association for Information Systems 11(11), 756–783 (2010)

13. Rossi, B., Russo, B., Succi, G.: Adoption of FLOSS in public organizations: factors of
impact. Information Technology & People 25(2), 156–187 (2012)

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 124–133, 2015.
DOI: 10.1007/978-3-319-17837-0_12

The RISCOSS Platform for Risk Management
in Open Source Software Adoption

X. Franch1(), R. Kenett2, F. Mancinelli3, A. Susi4, D. Ameller1,
M.C. Annosi5, R. Ben-Jacob2, Y. Blumenfeld2, O.H. Franco1, D. Gross4,

L. Lopez1, M. Morandini4, M. Oriol1, and A. Siena4

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{franch,dameller,llopez,ohernan,moriol}@essi.upc.edu

2 KPA, Raanana, Israel
{ron,ronb,yehudablu}@kpa-group.com

3 XWiki, Paris, France
fabio.mancinelli@xwiki.com

4 Fondazione Bruno Kessler (FBK), Trento, Italy
{susi,gross,morandini,siena}@fbk.eu

5 TEI - Ericsson, Rome, Italy
mariacarmela.annosi@ericsson.com

Abstract. Managing risks related to OSS adoption is a must for organizations
that need to smoothly integrate OSS-related practices in their development
processes. Adequate tool support may pave the road to effective risk manage-
ment and ensure the sustainability of such activity. In this paper, we present the
RISCOSS platform for managing risks in OSS adoption. RISCOSS builds upon
a highly configurable data model that allows customization to several types of
scopes. It implements two different working modes: exploration, where the im-
pact of decisions may be assessed before making them; and continuous assess-
ment, where risk variables (and their possible consequences on business goals)
are continuously monitored and reported to decision-makers. The blackboard-
oriented architecture of the platform defines several interfaces for the identified
techniques, allowing new techniques to be plugged in.

Keywords: Open source projects · Open source software · OSS · Open source
adoption · Risk management · Software platform

1 Introduction

Risk management is a necessary and challenging task for organisations that adopt
open source software (OSS) in their products and in their software development
process [1][2]. Risk management in OSS adoption can benefit from the huge amounts
of data that are publicly available about the adopted OSS components, as well as data
that describes the behavior of OSS communities. The complexity and heterogeneity of
the involved data sources, the need to integrate this data with contextual information
related to the organisation and its ecosystem, and the convenience of combining dif-
ferent expertise involved in the assessment, call for adequate tools in support of all the

 The RISCOSS Platform for Risk Management in Open Source Software Adoption 125

phases of risk assessment, from data gathering, to data statistical analysis, to the cor-
relation of these data to the organisational strategic and business risks and assets.

In this paper, we present RISCOSS (www.riscoss.eu), a platform and related as-
sessment methodology for managing risks in OSS adoption [3]. It defines several
interfaces to a portfolio of identified measurement and risk management techniques,
allowing new techniques to be plugged in if they implement these interfaces and fol-
low well-documented protocols. RISCOSS builds upon a highly configurable data
model that allows customization to several types of scopes to support different risk
assessment perspectives. It implements two working modes: exploration, where the
impact of decisions may be assessed in advance; and continuous assessment, where
risk variables (and their consequences on business goals) are monitored, analysed and
reported. This allows RISCOSS to support a holistic decision making process inside
the adopter organisation.

2 Related Work

Several long-term projects, corporate programs and research initiatives have similar
aims than the approach supported by RISCOSS. In Table 1 we summarize the charac-
teristics of the most related European projects that propose methodological approach-
es and tool support for measuring several aspects of OSS projects, mainly to evaluate
the quality of the OSS components and the communities behind them. In particular
we refer to the projects with objectives:

• FLOSSMetrics (www.flossmetrics.org): constructing, publishing and analysing a
large scale OSS database with metrics on OSS development;

• QualiPSO (qualipso.icmc.usp.br/OMM/): improving the quality & maturity of
OSS projects;

• QualOSS (www.libresoft.es/research/projects/qualoss): defining a method to
assess the robustness and evolvability of OSS projects;

• ALERT (www.alert-project.eu): improving the quality of the software acting on
the overall bug resolution process in OSS collaborative environments;

• OSSMETER (www.ossmeter.com): supporting the process of discovering, com-
paring, assessing and monitoring the health, quality, and activity of OSS;

• MARKOS (www.markosproject.eu): provides an integrated view on OSS projects,
focusing on software functional, structural and license aspects.

• SQO-OSS (www.sqo-oss.org): proposing methods and a supporting platform for
OSS code quality and community measurement and analysis.

• U-QASAR (www.uqasar.eu): providing a quality assurance methodology to assess
the quality of software development projects for Internet applications.

All these approaches and platforms focus on the gathering and analysis of OSS data
but they are not specifically oriented to inform about the risks derived from these data
nor to suggest possible mitigation strategies at the technical and business level.

126 X. Franch et al.

Table 1. European projects focusing on OSS data analysis

Companies and other organizations may also implement similar programs in their

development cycles. For instance, we can refer to Codeface, an extensible platform
developed by Siemens (http://siemens.github.io/codeface) that aims at gathering data
from different OSS sources, to analyse them and to present them to the analyst in a
configurable dashboard to support decision-making. The Black Duck suite
(https://www.blackducksoftware.com) provides a set of tools for the automated go-
vernance and compliance of OSS across the application development lifecycle. From
the quality assessment point of view, we can mention the Software Quality Assurance
and Trustworthiness (SQuAT) programme at the OW2 consortium aimed at enhanc-
ing the perceived reliability of near 50 mature projects in the OW2 code base
(http://www.ow2.org/view/About/SQuAT). Some approaches target specific aspects
as license assessment, e.g. Palamida (http://www.palamida.com), which provides
tools to verify if there is any intellectual property violation in a project adopting OSS;
White Source (http://www.whitesourcesoftware.com) provides a solution for compa-
nies that need to manage their open source assets to ensure license compliance and
reduce risk.

Several recent works face with mining and analysis of OSS projects mainly to as-
sess or predict their quality. For example, in [4] the GHTorent project is presented
that had the purpose of collecting data related to different aspects of the quality of the
source code for all public projects available on Github. In the area of defect prediction
for quality improvement, Peters et al. [5] introduce guidelines to be used in the build-
ing of software quality predictors in case of scarcity of data while D’Ambros et al.
present a comparison between the different prediction approaches [6]. Zhang et al.

Project Techniques Knowledge Models Tool support
FLOSS
Metrics

Databases and analysis
techniques to produce
OSS project reports

Model of data to describe the
characteristics of the differ-
ent OSS projects

Tools to retrieve data from
OSS repositories and pro-
duce statistics

QualiPSO Integration of data
from OSS repositories
and statistical analysis

A software maturity model
with three levels for projects
categorization

A platform integrating tools
to analyse the source code
and the bug tracking systems

QualOSS Checklist for data
retrieving and
statistical analysis

A quality model including
characteristics, metrics and
indicators

Tools to store checklist data
and perform analysis of data

ALERT Integration of data from
OSS repositories; statis-
tical analysis and recom-
mendation techniques

Ontologies to support extrac-
tion and integration of differ-
ent data sources

Components able to gather
data from OSS sources and
services for report visualiza-
tion and recommendation

OSSMETER Integration of data
from OSS repositories
and statistical analysis

Model for OSS forge descrip-
tion; models for the descrip-
tion of OSS quality attributes

Execution of project metrics;
storage and analysis of the
data and metrics

MARKOS Integration of data
from OSS repositories;
license analysis

Ontologies to support the
representation of concepts
related to code and licenses

Tools to perform code
analysis and license conflict
analysis

SQO-OSS Integration of data
from OSS repositories
and data analysis

Model for OSS quality based
on source code and OSS
community characteristics

Integration of metrics;
analysis of the data through
an array of algorithms

U-QASAR Data gathering on the
progress and quality of
software development

Models describing software
quality and contexts

Platform to obtain an objec-
tive value of the software
development process quality

 The RISCOSS Platform for Risk Management in Open Source Software Adoption 127

present in [7] a study for the specification of a universal defect predictor. Gamaliels-
son et al. [8] define the health of an open source ecosystem as an important decision
factor when considering the adoption of an OSS component. In [9] the trustworthiness
of OSS projects are predicted through the study of the Elementary Code Assessment.
RISCOSS can benefit from these studies since it can integrate such quality models
and techniques in the risk analysis platform. Adhering to the position defended by
Noll et al. [10], RISCOSS calls for human-based qualitative analysis as a necessary
component. Some authors define several risks that are associated with adopting an
OSS component: project health [11], economic loss and adverse effects on the busi-
ness processes of the organizations [12], the lack of effective and timely OSS com-
munity support for dealing with possible integration problems [13]. Hauge et al. [14]
discuss several risks related to OSS adoption and identifies steps for reducing several
of these risks. RISCOSS has a holistic perspective that integrates all of these elements
in a platform to managing risks related to OSS adoption.

3 RISCOSS Main Functionalities

The main objective of the RISCOSS platform is that of facing the problem of manag-
ing risks in a holistic way, supporting the data gathering from the environment of the
adopting organisation and from the organisation itself, the analysis of this data for the
purpose of OSS risks identification and impact analysis, and the presentation of the
data for decision making [3]. Moreover, the RISCOSS platform is designed to support
two main operative modes. On the one side, it supports the analyst in performing an
explorative analysis and assessment of the OSS ecosystem (in terms of communities
and components), for example assessing the convenience of integrating an OSS com-
ponent in the solution. On the other side, the platform implements a continuous as-
sessment cycle that allows detecting the emerging risks related to OSS choices once,
for example, an OSS component has been integrated inside a project.

Based on these basic requirements, some functionalities are proposed which are
linked according to the workflow depicted in Fig. 1:
• Set up of the risk management platform. When an organization decides to adopt

RISCOSS, the platform gathers the needed information to set up a risk manage-
ment plan (in particular, to determine the key risk indicators), in order to confi-
gure the platform infrastructure to the organizational needs. This functionality
allows initialising all the knowledge base of RISCOSS having it tailored for the
particular organisational environment, including the representation of the busi-
ness ecosystem where the organisation lives.

• Identification of the risk assessment level and perspective (Elicit scope). This use
case offers the possibility to define a new scope of risk management (see Section
4). Every time one such scope is modified (remarkably, when it is created, e.g. a
new project starts, a new OSS component is adopted), it is necessary to set up an
organisational view and risk management resources and functionalities for it.

• Risk assessment. At any moment, the user may require explicitly risk assessment
via situation inspection, what-if analysis by means of e.g. exploration of alterna-
tives, deeper analysis of risk indicators [15], etc. Risk assessment may eventually
end up with a change of scope in order to support a holistic risk detection.

128 X. Franch et al.

• Reaction to some key risk indicator violation. As projects evolve and events oc-
cur, key risk indicators may be violated. RISCOSS monitors these violations and
alerts are triggered when this happens. Then, risk analysis is performed to analyse
and eventually solve these situations. Some of the events will be captured by the
platform itself by measuring key risk indicators (e.g., a community may be de-
tected to be inactive), some others must be communicated explicitly by decision
makers, experts or analysts (e.g., some developer gets a relevant certification or
training). Anyhow, this functionality allows for the evolution of the knowledge of
the platform following the changes in the organisation and the related ecosystem.

Fig. 1. Workflow for RISCOSS use cases

4 RISCOSS Scopes

We define scope as any unit of analysis that can be put under RISCOSS’ control.
Some organizations may want to monitor the full business; some others may just want
to assess the risks related to the adoption of a particular OSS component. In the long
term, our platform should be able to cover this entire spectrum. The concept of scope
is important to structure the knowledge (and associated actions) managed in
RISCOSS. If we refer to risks, every scope may have its different set of risks, e.g.
coming from the adoption of some OSS strategy at several levels/scopes. For exam-
ple, we can have risks as: losing current market position at the level of the organiza-
tion; not delivering some release in time at the level of the product; involving more
resources than expected at the level of the process; exceeding the allocated budget at
the level of the project; incorrect selection at the level of the OSS component.

Fig. 2 shows a general view of the concept of scope, its relationships and its
reifications, which are currently five (i.e., we have five types of predefined scopes).
Organizational unit, that wants to supervise a complete portfolio; in a typical organi-
sation, an organisational unit can be seen as a department. Product, a commercial
good commercialized by the company; it does not necessarily have to be a software
product, but of course needs to have some software part that is partially or totally
open source. Process (service) such as, product manufacturing or product delivering.
Project, for example, adding a new feature to the current release of a component, or
making the necessary steps to deploy a bespoke component in an OSS community. An
OSS component that is the finest-grained case, and an organization may be interested
just in monitoring some adopted OSS component, belonging to a community.

 The RISCOSS Platform fo

Fi

Fig. 3. An

The class diagram show
cialization is “incomplete”,
association allows to build
a project may include produ

In Fig. 3, we show an inst
velopment Unit of a Resear
production of research proto
The organization is focusing
environmental monitoring p
a system for monitoring he
organization is currently run
2” and “Fixing bugs in relea
nents, and for OSS compon
ment system developed by t
package, deployed by “R com
2. The Research institution w
tical procedures to the comm
of analysis of projects’ comp
uct, i.e. if an OSS componen
sion control management too

5 Tool Architectu

The section introduces the
central element is a conten

or Risk Management in Open Source Software Adoption

ig. 2. General RISCOSS scope model

n instantiation of the RISCOSS scope model

s how scopes are highly configurable, because: 1) the s
 so that new types of scope may be added; 2) the reflex
arbitrary hierarchies of scopes, so that in one organizati
ucts, whilst in other a product may include projects.
tantiation of the scope structure in which the Research &
rch institution has an OSS business strategy in place for
otypes and pre-competitive products to be tested on the fi
g on two products: “Ambient Aware Assistance” (AAA)
latform, and “AAA for Social Residences” (AAASR) tha

ealth conditions of patients living in social residences. T
nning two projects in parallel for AAASR, “Producing rele
ase 1.6”. The products are mixing different types of com

nents it adopts “XWiki CMS”, an OSS web content mana
the “XWiki community”, and “R stat”, a complex statist
mmunity”. This second component is used only in the rele
would also like to affect “R community” releasing new sta
munity. Moreover, the organisation wants to restrict the sc

mponents to those that are part of some commercialized pr
nt is just used as part of the project management (e.g., a v
ol) the organization is not interested in it.

re

e basic RISCOSS platform architecture (see Fig. 4). T
nt management tool, XWiki, which is the unifying elem

129

spe-
xive
ion,

De-
the

ield.
, an
at is
The
ease

mpo-
age-
tical
ease
atis-
cope
rod-
ver-

The
ment

130 X. Franch et al.

of the platform and covers three basic responsibilities: (i) Offering an interface to the
user for dialoguing with the RISCOSS platform: as such, XWiki offers and organizes
the required forms and dashboards, maintains documents, and supports, as a wiki tool,
collaborative work as needed. (ii) Integrating other tools that perform functionalities
required by the platform: XWiki is the umbrella that coordinates these tools, gathering
the results of their computation to feed internal data structures, accessible from the
tools in a blackboard architecture fashion, and allowing other tools to initialise their
calculations. (iii) Accessing the reusable knowledge of the platform, namely the mod-
el patterns, data, form templates created by experts. The platform defines families of
tools that are integrated into XWiki by means of well-established interfaces:

• Questionnaire tool. The tool gathers from decision-maker and experts of a given
organisation the information related to the characteristics of the organisation and
the initial scopes.

• Goal and risk modelling tools. The questionnaires are used, among other things,
to create models that represent the ecosystem of the organization, with organiza-
tional goals stated using i* [16], and risks models bound to them considering
risks that are related to software quality, community behaviour or OSS licenses.
This allows making explicit the consequences of risks in the OSS ecosystem.

• Risk reasoning engines. In particular:
- Logical reasoning tools. These tools perform model analysis and reasoning in

order to allow for risk identification and management. The reasoning tool cur-
rently implements model label propagation [17] techniques and disjunctive lo-
gic algorithms [18] in order to identify and mitigate the risks that can occur
given specified environmental situations

- Statistical reasoning tools. RISCOSS relies, among others, on the implementa-
tion of Bayesian Network based components that are used to reason about the
correlation between the measures obtained by the analysis of the OSS com-
munities and the strategic and business risks of the OSS adopters. These tools
rely on a strong interaction with experts and analysts to allow for an assess-
ment and revision of the correlations between the identified measures and the
strategic and business risks.

• Measuring and monitoring framework composed of several Risk Data Collectors.
These tools measure risk indicators and feed XWiki with the obtained values, and
also monitor, detect and communicate anomalous situations from the risk man-
agement point of view. To do so, this framework needs to: 1) obtain data from the
selected data sources (such as license or code quality analysis tools or blogs, fo-
rums and mailing lists of the communities); 2) implement basic statistical analy-
sis, for example to compute statistical distributions of data [19], analysis of OSS
communities structure and behaviour [20],

• OSS Risk Dashboard. This element collects the output of the risk assessment
process to visualise it in a single view summarising the main aspects and giving
the possibility to enter in the details of the single information. Here we envisage
means to show the risk exposure of the organisation with respect to, for example,
the adoption of a particular OSS component, or the result of a what-if analysis
process.

 The RISCOSS Platform fo

Fi

In addition to these tools
platform, for instance, estim

It is worth to mention th
platform knowledge base).
for future and continuous as

Fig. 5 shows a compone
nents present in the RISCO

The RISCOSSPlatform-X
by using the APIs provided
for operating the RISCOSS
tools implementing the Too
these tools are the way for
e.g. new risk analysis tools
API interface and requires
the tool to ask, in a standar
its initialization. The RISC
the persistence and retriev
XWiki Platform that will s
for manipulating it. The RI
XWiki Platform via a com
nent will expose the releva
ponent of the XWiki Pla
RISCOSS Platform in orde
interact with it. The user in
of the analysis performed
RISCOSS Knowledge base
ing data persistently in a DB

or Risk Management in Open Source Software Adoption

ig. 4. RISCOSS platform logical view

s we can envision some other types to be added later in
mation cost tools to bind risks to project cost estimation.
at XWiki manages a repository of reusable knowledge (
In this repository, we store the artifacts that can be reu

ssessment, such as patterns for goal and risk models.
ent-oriented view that highlights the main type of com
SS platform and how they are interconnected.
XWiki component implements the RISCOSSPlatform A

d by XWiki. This component provides all the business lo
S Platform on top of the XWiki Platform. It requires so
ol API in order to perform the actual analysis. In particu
r extending the RISCOSSPlatform with new capabilit

s. A Tool component, on the other hand, provides the T
the ToolConfigurationProvider API interface. This allo

rd way, configuration parameters that might be needed
COSSPlatform-XWiki component is responsible to man
val of this information. This will be managed using
tore this information and will also provide a dedicated
ISCOSSPlatform implementation is made available to

mponent implementing the ScriptService API. This com
ant methods of the RISCOSSPlatform API to the UI co
atform that allows invoking the functionalities of

er to provide to the end user a user interface through wh
nterface will be also used to show the status and the res
, and the content of the collected information (i.e.,

e). The Storage component will provide the means for s
BMS that supports the JDBC API.

131

the

(the

used

mpo-

API
ogic
ome
ular
ties,

Tool
ows
for

nage
the

d UI
the

mpo-
om-
the

hich
ults
the
tor-

132 X. Franch et al.

Fig. 5. RISCOSS platform deployment view

6 Discussion

The platform is currently in active evolution. The part already implemented consists
of the set of main components for the different tool orchestration and a set of user
interaction and risk and business analysis tools. The risks currently addressed in the
platform are those related to OSS licenses violatoin and to software quality. The ar-
chitecture is highly modular and allows for the definition of several possible tools that
with the help of the coordination of the XWiki CMS platform can easily implement
other services for the analyst. In particular, a possible direction of evolution is that of
increasing the possibility of the decision-maker to interact with the reasoning engines
via questionnaires and the implementation of new reasoning engines able to exploit
this user knowledge in a more interactive way.

In the line of facilitating the use of the platform in different organizational settings
from OSS communities to small and large companies adopting OSS, several deploy-
ment schemas have been considered, from a web-based installation where the differ-
ent users that can create their own workspace and, at the same time use the common
knowledge collected by the platform from the different users, to an organization spe-
cific installation, that can be also web-based, but that is confined in the premises of
the organization. The first solution implicitly allows for another point of extension
that is the creation of a large and evolving Business and Risk models knowledge base
that can be reused and extended by other analysts, so promoting the creation of a
community around the building of new knowledge about risks.

7 Conclusions

In the paper we presented the RISCOSS platform supporting risk assessment activities
in OSS adoption. The peculiar aspect of the platform is that it aims at supporting the
whole decision making process: from the gathering of the data from heterogeneous
sources, to the risk indicator identification, to the modelling and assessment of the
impact of the risks to the strategic and business goals of the organisation. We are
currently deploying the platform in several contexts (large company with complex
organizational structure, public administration, SME IT provider, and a community
hosting ca. one hundred OSS projects) to improve its functionalities and knowledge.

 The RISCOSS Platform for Risk Management in Open Source Software Adoption 133

Acknowledgement. This work is a result of the RISCOSS project, funded by the EC 7th
Framework Programme FP7/2007-2013, agreement number 318249.

References

1. Li, J., et al.: A State-of-the-Practice Survey of Risk Management in Development with
Off-the-Shelf Software Components. IEEE TSE 34(2) (2008)

2. Hauge, Ø., Cruzes, D.S., Conradi, R., Velle, K.S., Skarpenes, T.A.: Risks and risk mitiga-
tion in open source software adoption: bridging the gap between literature and practice. In:
Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J. (eds.) OSS
2010. IFIP AICT, vol. 319, pp. 105–118. Springer, Heidelberg (2010)

3. Franch, X., et al.: Managing risk in open source software adoption. In: ICSOFT 2013
(2013)

4. Gousios, G.: The GHTorent dataset and tool suite. In: MSR 2013 (2013)
5. Peters, F., Menzies, T., Marcus, A.: Better cross company defect prediction. In: MSR 2013

(2013)
6. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction ap-

proaches. In: MSR 2010 (2010)
7. Zhang, F., Mockus, A., Keivanloo, I., Zou, Y.: Towards building a universal defect predic-

tion model. In: MSR 2014 (2014)
8. Gamalielsson, J., Lundell, B., Lings, B.: The nagios community: an extended quantitative

analysis. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J.
(eds.) OSS 2010. IFIP AICT, vol. 319, pp. 85–96. Springer, Heidelberg (2010)

9. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Predicting OSS trustworthiness on the basis
of elementary code assessment. In: ESEM 2010 (2010)

10. Noll, J., Seichter, D., Beecham, S.: A qualitative method for mining open source software
repositories. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012.
IFIP AICT, vol. 378, pp. 256–261. Springer, Heidelberg (2012)

11. Piggot, J., Amrit, C.: How healthy is my project? open source project attributes as indica-
tors of success. In: Petrinja, E., Succi, G., El Ioini, N., Sillitti, A. (eds.) OSS 2013. IFIP
AICT, vol. 404, pp. 30–44. Springer, Heidelberg (2013)

12. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assessment
models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J.
(eds.) OSS 2010. IFIP AICT, vol. 319, pp. 224–238. Springer, Heidelberg (2010)

13. Ayala, C., Cruzes, D.S., Nguyen, A.D., Conradi, R., Franch, X., Höst, M., Babar, M.A.:
OSS integration issues and community support: an integrator perspective. In: Hammouda,
I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 129–
143. Springer, Heidelberg (2012)

14. Ligaarden, O.S., Refsdal, A., Stolen, K.: ValidKI: a method for designing key indicators to
monitor the fulfillment of business objectives. In: BUSTECH 2011 (2011)

15. Yu, E.S.K.: Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Canada (1995)

16. Nilsson, N.J.: Problem-solving Methods in Artificial Intelligence. McGraw-Hill (1971)
17. Leone, N., et al.: The DLV System for Knowledge Representation and Reasoning. ACM

Transactions on Computer Logic 7(3) (2006)
18. Kenett, R.S., Zacks, S.: Modern Industrial Statistics: with applications in R, MINITAB and

JMP, 2nd (edn.). John Wiley and Sons (2014). With contributions by D. Amberti
19. Salter-Townshend, M., White, A., Gollini, I., Murphy, T.B.: Review of Statistical Network

Analysis: Models, Algorithms, and Software. Stat. Analysis and Data Mining 5(4) (2012)

Intellectual Property and Legal Issues

© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 137–145, 2015.
DOI: 10.1007/978-3-319-17837-0_13

First Results About Motivation and Impact
of License Changes in Open Source Projects

Robert Viseur1,2(), and Gregorio Robles3()

1 CETIC, Rue des Frères Wright, 29/3, B-6041 Charleroi, Belgium
robert.viseur@cetic.be

2 University of Mons (Faculty of Engineering), Rue de Houdain, 9, B-7000
Mons, Belgium

robert.viseur@umons.ac.be
3 Universidad Rey Juan Carlos, 28943 Fuenlabrada, Spain

grex@gsyc.urjc.es

Abstract. Free and open source software is characterized by the freedoms and
criteria that are warranted by specific licenses. These licenses describe the
rights and duties of the licensors and licensees. However, a licensing change
may be necessary in the life of an open source project to meet legal develop-
ments or to allow the implementation of new business models. This paper ex-
amines the motivations and impacts of license changes in open source projects.
After a state of the art on the subject, a set of case studies where projects
changed their license is presented. Then a set of motivations to change licenses,
the ways to legally make this change, the problems caused by this change and a
set of benefits of the license change are discussed.

Keywords: Open source · Intellectual property · License · Contributor
agreement · Business model

1 Introduction

Licenses are thought to be selected at the beginning of the project with no posterior
change (Fogel, 2005). They give the rules of the collaboration which everybody
agrees to if participating in the project. To some extent, they provide a sort of “consti-
tution” or legal agreement of how the project is developed and distributed. A change
in the license is something very complex, not only because the aforementioned rules
are changed, but also because it requires all contributors to agree on the license
change.

One of the first, and most notorious license changes was performed by Mozilla in
the late 90s (www-archive.mozilla.org). Due to incompatibility issues with the GPL
noticed by the FSF, Mozilla decided to change from its dual NPL/MPL license to
MPL/GPL/LGPL. This meant that all developers that had contributed to Mozilla had
to explicitly give their consent to the change. Mozilla's website listed a number of
contributors that could not be contacted or were missing. The license change finished
when only around a dozen of missing confirmations from developers were still

138 R. Viseur and G. Robles

required; their code was identified and rewritten or removed. Another famous reli-
censing project is KDE whose purpose was to solve some compatibility issues with
GPLv3. The projects leaders were obliged to identify and get agreement from several
hundreds of contributors to that major free and open source project.

Despite the importance of the issue for the governance of open source projects,
there are few scientific papers dedicated to the motivations and the impact of licenses
changes in open source projects. Our paper proposes to contribute to thinking on that
issue. It is organized in four sections. The first one includes a brief state of the art
about motivation and impact of the license changes. The second one is dedicated to
the presentation of the methodology and the analysis of several case studies. The third
one consists in a discussion of our first findings. The last one proposes some
conclusions and perspectives.

2 Background

Free and open source projects (also said FOSS or FLOSS) are covered by specific
licenses that warrant the free and open source nature of software as defined by the
Free Software Foundation (fsf.org) and the Open Source Initiative (opensource.org).
Those licenses can be divided in two main families (de Laat, 2005; St. Laurent, 2004;
Viseur, 2013b). The first one includes the academic or permissive licenses; the second
one, the copyleft, reciprocal or restrictive licenses. The permissive licenses allow the
use of the source code in proprietary software. The Apache, BSD and MIT licenses
are famous examples. Contrariwise, copyleft licenses impose limitations on licensees
of any derivative work, such as the conservation of the license or the availability of
the source code. The AGPL, CDDL, CPL/EPL, GPL, LGPL, MPL and OSL licenses
are famous examples of copyleft licenses.

Ten years ago the copyleft licenses represented more or less 80% of all the open
source projects. However the success of permissive licenses has grown over time. For
example, Hofmann et al. (2013) noted that “the combined effect of increased com-
mercial investment with the need for competitively differentiated products built on top
of that shared investment has lead to an increase of permissively licensed projects”.

We identified several authors working on the license changes and their impact on
the open source projects. The studies are not numerous and are often recent.

The main study was processed by Di Penta et al. (2012). The authors identified
several motivations for license changes such as the “changes in the legal landscape,
commercial code licensed as FOSS, or code reused from other FOSS systems” and
the “evolution of a license per se” (i.e. GPL v2 → GPL v3). They draw their conclu-
sions from a set of examples and empirical study analyzing, including ArgoUML,
Eclipse-JDT, FreeBSD and OpenBSD, Mozilla and Samba. They found a wide varie-
ty of licenses, even in source codes that are supposed to be homogeneous, due to a
period of transition after the decision to change from a license to another or a version
to another one.

First Results About Motivation and Impact of License Changes in Open Source Projects 139

Savola and Anttila (2012) published a seminar report dedicated to open source
software license changes. They based their seminar report on examples from scientific
literature including Di Penta et al. (2012). For each example they identified the moti-
vations and the result of the license change. Their selection of license changes in-
cludes Netbeans IDE, MySQL, Mono and Java. The report identifies reasons for the
license changes (including better defendability, more clear license text, gain more
users, better suitability for commercial usage, more paying customers, prevent com-
mercial usage without paying license fee, reduce viral effect, partner’s requirement
and wider distribution) together with the problems (including license incompatibilities
and push-back from the community) and the benefits (including wider distribution,
user concerns about copyright and higher money income) after the license change.

Santos et al. (2011) worked on projects that had changed their type of license over
the years. Their final sample is of 756 free and open source software for a total of
1012 intellectual property policy (IPP) interventions (i.e. changes of license type).
They studied the impact of the IPP intervention on FLOSS attractiveness. The authors
explored the transitions. They calculated their frequency and their positive or negative
impact on the project attractiveness. The results revealed a bias in favor of the confi-
dential Academic Free License. Note that the impact of the license type of open
source software success is always a debated topic (Viseur, 2013a).

Viseur (2013b) studied the evolution of business models of open source editors
facing cloud computing. The study was focused on e-business software including
Enterprise Resource Planning (ERP), Customer Relationship Management (CRM)
and e-commerce software. The author showed evolutions in license choices. A first
pattern is related to companies switching to dual licensing model, often with technical
differentiation between community and commercial release of the software (e.g.,
Compiere). A second pattern is related to companies facing to the rise of business
software in SaaS mode and switching to copyleft licenses with network effect (e.g.,
OpenERP). Broadly speaking, the copyleft licenses with network effect impose the
option to download the source code if users communicate with the software interface.
Famous examples are the GNU Affero General Public License (AGPL) and the Open
Software License (OSL).

3 Methodology and Cases Studies

We list a set of project that encountered at least one license change (see Table 1). The
list was manually fed by the authors. Some information collected in the context of a
study about forks was also used (Viseur, 2012). The list was completed by new ex-
amples that the authors obtained after Twitter requests.

140 R. Viseur and G. Robles

Table 1. Documentation of license changes

Project License (from) License (to)

Alfresco GPL with FLOSS exception LGPL

ath5k BSD BSD + BSD/GPL (fork)

Compiere MPL GPL + proprietary

Dimdim MPL GPL

ExtJS LGPL-style GPL + proprietary

IP Filter IPFilter (BSD-Like) IPFilter (modified)

Java SCSL (hybrid) GPL with classpath exception

Joomla (framework) GPL LGPL

JQuery GPL/MIT MIT

Mongoose MIT GPL + proprietary

Mono GPL MIT/X11

Mozilla NPL
MPL

MPL
MPL/LGPL/GPL

MySQL LGPL GPL

OpenERP GPL
AGPL

AGPL
LGPL

OpenStreetMap CC-BY-SA ODBl

SharpDevelop2 GPL LGPL

Paint.Net MIT Proprietary

Squeak Squeak
Apple Public License
Apache License

Apple Public License
Apache License
MIT/Apache License

SugarCRM SPL (MPL-like)
GPL

GPL + proprietary
AGPL

Talend GPL LGPL

Trolltech QPL
GPL

GPL + proprietary
LGPL

VLC GPL LGPL

WebM WebM WebM (modified)

XFree86 MIT MIT with credit clause

First Results About Motivation and Impact of License Changes in Open Source Projects 141

We analyze each case by focusing on a set of criteria: the application domain, the
original and the new license, the projects leaders’ motivation to change, the way the
license change was conducted and the impact on the open source project. Our work is
mainly based on scientific or professional sources such as Bert-Erboul (2013), de Laat
(2005), Di Penta and German (2010), Hamerly and Paquin (1999), Välimäki (2003),
Viseur (2012), Viseur (2013a), Viseur (2013b) and Willis (2012). The issue of license
change has usually not been the main subject of the scientific papers; however, pro-
fessional sources document some aspects for specific projects. We describe below
four representative cases: Mozilla, OpenERP, Trolltech and VLC.

Mozilla
Domain - The Mozilla Foundation develops several tools for the World Wide Web.
The most famous are the discontinued Mozilla suite and the lighted Firefox Web
browser.
License - The project was published in 1998 under NPL license. A conflict with the
community led to the publication under the first version of MPL license. The LGPL
and the GPL later appeared in the development (triple license scheme), in order to
address problems of incompatibilities with third-party projects. The project also pub-
lished an evolution of the MPL license that solved incompatibility issues with the
GPL license.
Scope - The license changes impacted the whole project.
How - There is no copyright assignment. The license changes needed contributor
agreement. The Mozilla Foundation asked for the agreement of committers by choos-
ing the acceptable licenses.
Impact - Simplifying reuse in some third-party products is assumed.

OpenERP
Domain - OpenERP (now Odoo) is an open source Enterprise Resource Planning
(ERP) software including Customer Relationship Management (CRM) features.
License - The software moved from GPL to AGPL in 2009 in order to avoid the use in
SaaS mode without publishing the modifications. The software editor proposes its
own SaaS offer based on OpenERP. In 2011 the company introduced a new license,
an AGPL with Private Use License (dual licensing) allowing to keep the modifica-
tions private in case of SaaS use. A new license change is planned (from AGPL to
LGPL).
Scope - The license change affects all the software except the OpenERP Web Client
under MPL license.
How - The process of the license change is not clearly documented.
Impact - The OpenERP company evolved its business model and was able to respond
to new market trends. However the second license change was associated with the
emergence of tensions within the community.

Trolltech (Qt)
Domain - The Qt software is a cross-platform application framework.
License - The software was published under QPL license. Then a dual licensing scheme
(QPL + GPL) was applied under the pressure of the KDE community that used Qt inten-
sively. Finally, after Nokia bought Trolltech, the decision to publish the software under

142 R. Viseur and G. Robles

the LGPL license in order to spread the technology was taken. The project is currently
managed by another company, Digia, and “some modules are available under LGPLv2.1,
LGPLv3 or GPL v3 and some other modules under LGPLv3 only” (qt.io).
Scope - The whole library was impacted by the successive license changes. However
the actual release licensing scheme is heterogeneous.
How - The company was copyright owner.
Impact - The publication under GPL satisfied the community and the Harmony fork
was abandoned. The impact of the publication under LGPL has not been quantified.
The current license schema is complex.

VLC
Domain - The VLC project offered a cross-platform media player and a streaming
media server. The project was initiated by students from Ecole Centrale de Paris.
License - The project has been covered by GPL v2 (or higher) since 2001. The license
was changed for LGPL v2.1 (or higher) in 2011.
Scope - The license change was implemented for modules impacting third party ven-
dors.
Motivations - There were several motivations, including “making VLC compatible
with various gadget-vendor application stores (e.g., Apple’s)” (Willis, 2012).
How - Two hundred and thirty contributors had to be contacted. It was difficult to
contact them and get response. With 150 responses, the project owned an agreement
for 99.99% of the code for libvlc and libVLCcore. It was more difficult for other
parts, for which it was necessary to delete, reimplement, refactor into separate files or
drop some code. The code was kept under GPL if there was no impact on third party
vendors.
Impact - Some modules had to be reimplemented (less than 5). The impact on Apple
is unknown (opacity).

4 Discussion

Beyond the four cases that we have presented so far, we identified a set of motiva-
tions for license changes (see Table 2):

1. The license can be changed for compatibility. The open source project can thus

be distributed in new packages (e.g., Java), be integrated in wider source code
(e.g., WebM) or reduce the license impact on third party add-ons development
(e.g., Odoo, VLC or SharpDevelop2).

2. The license can be changed by the editor with the hope that the revenues will
increase. This is the case when an editor organizes a transition to a dual licensing
scheme (e.g., MySQL).

3. The license can be changed from the GPL license to a more permissive one in
order to avoid how “derived work” is defined (e.g., Mono).

4. The license change can be motivated by the simplification of a multiple licensing
scheme (e.g., JQuery).

5. The license change can be motivated by the desire to improve the relationships to
community and limit the risk of fork (e.g., Trolltech).

First Results About Motivation and Impact of License Changes in Open Source Projects 143

6. The license change can be the consequence of an ego-conflict. That reason is
often alleged but not proofed (e.g., IP Filter).

7. The license change can be an adaptation to evolutions in the competitive
environment. For example, a lot of open source projects are preparing themselves
for the cloud computing rise (e.g., OpenERP, now Odoo, or SugarCRM).

8. The license change can be require by a commercial partner (e.g., Mono).
9. The license change can be motivated by legal arguments. It can be to clarify the

original license (e.g., IP Filter) or to adopt a more suitable license (e.g.,
OpenStreetMap).

Table 2. Motivations (the cumulated percentage must be higher than 100% as a license change
can be associated to several motivations)

Expected benefit Case study (#24) Percentage

#1 Compatibility issue Alfresco, Java, Joomla, Mono,
SharpDevelop2, Squeak, Talend,
Trolltech, VLC, WebM

41.7%

#2 Revenue growth Compiere, ExtJS, Mongoose,
MySQL, OpenERP, XFree86

25%

#3 Permissiveness jQuery, Mono 8.3%

#4 Simplification
 of license scheme

jQuery 4.2%

#5 Relationships to
community

Trolltech 4.2%

#6 Ego-conflict ath5k, IP Filter, Paint.Net 12.5%

#7 Adaptation to
 competitive environment

OpenERP, SugarCRM 8.3%

#8 Partner requirement Dimdim, Mono 8.3%

#9 Legal argument IP Filter, OpenStreetMap 8.3%

The GPL license is often in the center of the license changes; either the project
changes to the GPL for financial or compatibility reason, or the project moves away
from GPL to a more permissive one in order to avoid the side effects of the GPL.
Note that a license change can also be the result of several motivations at once.

The license change can be hindered by the shared property (among all contributors)
of the source code. The issues can be managed in two ways:

1. The editor ensures that he owns the copyright on the source code (by

contributors’ agreement or by rewriting of contributions) and can change the
license. This is the case of MySQL or Qt.

2. The responsible must get agreement from all the contributors (if necessary, by
contacting them one by one). This has been the case for Mozilla or VLC.

144 R. Viseur and G. Robles

We identified three problems that the license change can cause:

1. The project license can impact strongly or become incompatible with other
projects (e.g., MySQL with PHP). The incompatibilities are often caused by
copyleft licenses such as the GPL. An exception clause (e.g., classpath exception,
FLOSS or FOSS exception, etc.) allows to reduce the virality effect of the
license.

2. The new license, if it is permissive, can allow the appropriation of the source
code by the editor, and may be undesired for community members (e.g., Mono).

3. The license change can irritate the community and lead to a fork (e.g., ath5k).

We identified three benefits the license change can bring:

1. The updated project can gain a wider distribution due to the license change (e.g.,
Squeak or Java). However, the updated project can contrariwise be affected by a
smaller distribution due to the license change (e.g., IP Filter).

2. The editor who updated the license can gain more revenue (e.g., MySQL).
However there is insufficient data to objectify the effect of license change on the
company profitability (e.g., Mono).

3. The license change can lead to the abandonment of a fork (e.g., Trolltech Qt and
Harmony) if it is part of community claims.

The case studies showed that the issue of license change was not specific to soft-
ware. Indeed OpenStreetMap (openstreetmap.org) shows a similar problem in the
field of databases. The ODBL license (opendatacommons.org/licenses/odbl/) was
adopted because it was considered more suitable compared to CC-BY-SA license
(creativecommons.org).

5 Conclusion and Perspectives

As preliminary results, our paper allowed to identify nine motivations, three negative
impacts and three positive impacts for license changes.

We intend to continue this study with some future research. First, we plan to add new
cases of license changes. For example: KDE (relicensing to be compatible with GPL v3),
Samba (adoption of GPL v3) and Wikipedia (move to CC-BY-SA). The discovery of
new cases might be facilitated by the use of free and open source projects data. For
example, the FLOSSmole datasets (flossmole.org) contain license information (see data-
base schema) that would be useful to automate the search of new interesting cases.
Second, we want to study in detail the identified cases. In particular we found there was
often a lack of documentation about the license change procedure (even for well known
projects such as Qt), and that the impact was rarely objectified. We would like to enrich
the cases with facts and figures allowing to better quantify the impact of license changes.
So we wish to obtain a deeper understanding of the phenomena. Our final goal is to pro-
pose guidelines to open source project managers and entrepreneurs since there is already
for license selection.

First Results About Motivation and Impact of License Changes in Open Source Projects 145

References

1. Bert-Erboul, C.: VideoLan: un cas d’école dans l’industrie informatique. Revue Terminal,
pp. 117-133 (2013)

2. de Laat, P.B.: Copyright or copyleft? An analysis of property regimes for software devel-
opment. Research Policy 34, 1511–1532 (2005)

3. Di Penta, M., et al.: An exploratory study of the evolution of software licensing. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineering,
vol. 1. ACM (2010)

4. Fogel, K.: Producing open source software: How to run a successful free software project.
O’Reilly Media, Inc. (2005)

5. KDE, Projects/KDE Relicensing. https://techbase.kde.org/Projects/KDE_Relicensing
(read: January 17, 2015)

6. Hamerly, J., Paquin, T.: Freeing the source: the story of mozilla. In: Open Sources: Voices
from the Open Source Revolution. O’Reilly, January 1999

7. Hofmann, G., Riehle, D., Kolassa, C., Mauerer, W.: A dual model of open source license
growth. In: Petrinja, E., Succi, G., El Ioini, N., Sillitti, A. (eds.) OSS 2013. IFIP AICT,
vol. 404, pp. 245–256. Springer, Heidelberg (2013)

8. Mozilla, Mozilla Relicensing FAQ - Version 1.1. http://www-archive.mozilla.org/MPL/
relicensing-faq.html (read: January 14, 2015)

9. Santos Jr., C.D., et al.: Intellectual property policy and attractiveness: a longitudinal study
of free and open source software projects. In: Proceedings of the ACM 2011 Conference
on Computer Supported Cooperative Work. ACM (2011)

10. Savola, S., Anttila, O.: Open Source Software License Changes, Open Source Software
Development Seminars (November 22, 2012). https://wiki.oulu.fi/download/attachments/
28092087/ossd_2012_savola_anttila.pdf (read: January 15, 2015)

11. St. Laurent, A.M.: Understanding Open Source and Free Software Licensing. O’Reilly
Media (2004)

12. Välimäki, M.: Dual licensing in open source software industry. Systèmes d’Information et
Management 8(1), 63–75 (2003)

13. Viseur, R.: Fork impacts and motivations in free open source projects. International Jour-
nal of Advanced Computer Science and Applications 3, 117–122 (2012)

14. Viseur, R.: Evolution des stratégies et modèles d’affaires des éditeurs Open Source face au
Cloud computing. Revue Terminal 113-114

15. Viseur, R.: Identifying success factors for the mozilla project. In: Petrinja, E., Succi, G.,
El Ioini, N., Sillitti, A. (eds.) OSS 2013. IFIP AICT, vol. 404, pp. 45–60. Springer, Heidelberg
(2013)

16. Willis, N.: Relicensing VLC from GPL to LGPL, LWN.net (November 21, 2012).
http://lwn.net/Articles/525718/ (read: January 15, 2015)

On the Variability of the BSD and MIT Licenses

Trevor Maryka, Daniel M. German, and Germán Poo-Caamaño(B)

University of Victoria, Victoria, Canada
{tsmaryka,dmg,gpoo}@uvic.ca

Abstract. The MIT/X11 and the BSD are two of the most impor-
tant family of Free and Open Source (FOSS) licenses. Because these
licenses are to be inserted into the files that use it, and because they are
expected to be changed by those who use them, their text has suffered
alterations over time. Some of this variability is the result of licenses
containing template fields which allow the license to be customized to
include information such as the copyright holder name. Other variabil-
ity can be attributed to changes in spelling, punctuation, and adding or
removing conditions. This study empirically evaluated the extent that
the BSD and MIT/X11 family of licenses are varied, and the manner and
frequency in which license texts vary from the original definition. The
study found that the BSD family has little variability, with a significant
proportion fitting the common standard. The MIT/X11 family of licenses
exhibited significantly more variation, with a higher propensity to cus-
tomize the license text. In addition, the MIT/X11 license has spawned
several specialized variants which likely constitute different legal mean-
ings. Based on these findings, recommendations are proposed on what
variability needs to be accommodated by the Software Package Data
Exchange (SPDX) which is in the process of standardizing the allowed
variability of both licenses.

1 Introduction

There exist many open sources licenses. The Open Source Initiate1 (OSI), respon-
sible for the definition of open source, has approved 70 licenses2 The Software
Package Data eXchange3 (SPDX), a consortium of non-profit and profit orga-
nizations that attempt to standardize licensing information across parties lists
306 different licenses4.

Some of the most important open source licenses are the family of BSD
licenses, and the family of MIT licenses. These licenses comprise a very large
portion of open source licensed software; in a study it was found that 9.1% of
Debian applications were licensed under BSD or MIT licenses [2]. Furthermore,

1 http://osi.org
2 http://opensource.org/licenses/alphabetical
3 https://spdx.org
4 https://spdx.org/licenses

c© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 146–156, 2015.
DOI: 10.1007/978-3-319-17837-0 14

http://osi.org
http://opensource.org/licenses/alphabetical
https://spdx.org
https://spdx.org/licenses

On the Variability of the BSD and MIT Licenses 147

these licenses, which are known as Academic [6] are of particular interest because
they allow unlimited use the software with very few restrictions5.

Both the BSD and MIT licenses are template licenses, because they have to
be modified by the licensee to properly use them. The expected way these licenses
are used is, first, by embedding the text of the license into each file; and second,
by modifying the name of the copyright owner and related information in the
file. Unfortunately, users of the license often further modify the text of license. It
is a common practice of users of these licenses to replace some generic references
to the copyright holders with (e.g. “the name of the organization” replaced with
the name of the owner “ACME LTD”). In fact, the modifications made by users
to the original BSD 4-Clauses license resulted into the BSD 3-Clauses and BSD
2-Clauses license (by dropping clauses from the original license).

This paper describes a empirical study of how the BSD and MIT licenses
have been modified by its users. The contributions of this study include:: a) An
empirical study documenting how the MIT and BSD are modified in practice
in source code of Debian software packages; b) Analysis of this variability., and
c) Recommendations for the SPDX Group on how to address the variability of
these licenses in their future templates.. These results are being used by the
SPDX Group to improve the templates of these licenses to match the way they
are used in practice (without altering their legal meaning) and developers of
tools that perform license identification.

2 Background and Related Work

The Software Package Description Group is a consortium of for-profit and non-
for-profit companies created under the auspices of the Linux Foundation. One of
its primary objectives is the creation of the SPDX Standard [5,7]. The intent of
the standard is to help in documenting and exchanging the license and copyright
information of software components. The current version of the standard (v1.2)
describes an easily parsable format to use to document what files are part of a
component, their licenses and copyright owners, and the effective license of the
component [5,7]. The SPDX Standard is expected to facilitate the exchange of
this information and the creation of tools for software license compliance around
it. This requires clear guidelines of how to identify and document licenses, spe-
cially Free and Open Source (FOSS) licenses. While most research has concen-
trated on the licenses documented by the Open Source Initiative (the so called
70 OSI-approved licenses), there exist many more licenses. As mentioned above,
SPDX currently lists 306 licenses and has a mechanism to submit new licenses
for consideration6.

License identification of source code is challenging [2,3]. In FOSS each file
is expected to contain a comment (usually at the top) that documents how it
5 The original BSD 4-clause license is an exception to this rule, unless the copy-

right owner is the University of California; for details, see https://spdx.org/licenses/
BSD-4-Clause-UC

6 http://spdx.org/spdx-license-list/request-new-license

https://spdx.org/licenses/BSD-4-Clause-UC
https://spdx.org/licenses/BSD-4-Clause-UC
http://spdx.org/spdx-license-list/request-new-license

148 T. Maryka et al.

is licensed. We will refer to it as the license statement of the file. The license
statement of a file is expected to include who the copyright owner is and how
the file is licensed. There are two methods in which a file documents its license:
by-inclusion and by-reference. By-inclusion refers to a license that it used by
including its text in the license statement of the file. For example, files that are
licensed using the BSD and MIT licenses usually include the full text of the
license in their license statements.

On the other hand, by-reference corresponds to licenses that are not included
in the license statement of the file; instead, a link to the license is provided. For
example, the Apache-2.07 is expected to be used by-reference; the Appendix How
to apply the Apache License to your work indicates how to add such reference
(e.g. by including the following text: Licensed under the Apache License, Version
2.0 (the “License”); [...] You may obtain a copy of the License at: http://www.
apache.org/ licenses/LICENSE-2.0).

Many licenses that are used by-inclusion are expected to be customized by
their users. For example, the original BSD license (BSD-4-Clause-UC8—which
has the Regents of the University of California as its copyright owner) was con-
verted into a template license where the text of the copyright owner is expected
to be filled by the user (thus becoming the BSD-4-Clause). For example, the fol-
lowing paragraph illustrates the variable text (between {}, bold use for emphasis)
that should be replaced when the license is used9.

IN NO EVENT SHALL {{COPYRIGHT HOLDER}} BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES

By-inclusion template licenses should be modified only in the form indicated.
Unfortunately it is often the case that users of the licenses modify the text
further. As described in [2], it was found that licensors often change the spelling
of licenses (English vs British), change grammar (add or remove punctuation to
clarify intent), and in some cases, add or remove extra clauses of known licenses
to create new licenses.

Some of these changes result in licenses that are so frequently used that they
deserve to receive a name. As mentioned above, the original BSD-4-Clause-UC
was converted to a template license and called BSD-4-Clause (the user must fill
the template with the name of the corresponding copyright owner, replacing the
“Regents of the University of California” found in the original BSD-4-Clause-
UC). The BSD-4-Clause is shown in Figure 1 (as documented by SPDX).

In other cases clauses were removed, resulting into the BSD-3-Clause and the
BSD-2-Clause. In the case of the BSD-2-Clause, when the copyright owner is the
NetBSD Foundation, Inc. the license is known as BSD-2-Clause-NetBSD (this
is no longer a template license). Apache-1.0 is a derivative of the BSD-4-Clause:
it reused its four clauses and the liability and warranty terms; furthermore,
7 In this paper we refer to FOSS licenses by their the SPDX standardized names.
8 For the remaining of this paper, we will refer to licenses by their SPDX name, see

spdx.org/licenses/
9 http://spdx.org/licenses/BSD-4-Clause

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
spdx.org/licenses/
http://spdx.org/licenses/BSD-4-Clause

On the Variability of the BSD and MIT Licenses 149

Fig. 1. SPDX specification of the BSD-4 Clauses. The variable sections are depicted
in bold.

among many other changes, the Apache-1.0 fixed a spelling mistake of the BSD-
4-Clause (“EXPRESSED” instead of “EXPRESS”) and added “ITS” in “OR
ITS CONTRIBUTORS”.

These types of license customizations have created a problem for SPDX. The
goal of SPDX is to document licenses and their use. This includes documenting
the templates and how they are expected to be modified by their users. Unfortu-
nately the original SPDX templates of these licenses have used different ways to
document this variability. For example, SPDX documents the BSD-4-Clause as
a template license, as shown in Figure 1. At it can be seen SPDX uses both <>
and {{}} to document the sections that must be modified (shown in bold). Even
though a template might not allow, a license is frequently modified. For example,
in the BSD licenses it is common to see COPYRIGHT HOLDER replaced with
the actual name of the copyright holder (line 16 in Figure 1.

In SPDX Version 1.2 this variability has been accounted for via a template
language. It documents the variable sections of a license using regular expres-
sions. It indicates where and how a license can be modified and still be considered
the same license. SPDX is now in the stage of updating the templates for these
licenses10. The challenge is not longer how to document the variability, but what
variability should be documented as permitted without changing the meaning
of the license.
10 See https://github.com/dmgerman/spdxTemplates for the current state of these

templates (not yet approved by SPDX); for example the template for the BSD-
4-Clause can be found at https://github.com/dmgerman/spdxTemplates/blob/
master/bsd-4-clause/bsd-4-clause.txt

https://github.com/dmgerman/spdxTemplates
https://github.com/dmgerman/spdxTemplates/blob/master/bsd-4-clause/bsd-4-clause.txt
https://github.com/dmgerman/spdxTemplates/blob/master/bsd-4-clause/bsd-4-clause.txt

150 T. Maryka et al.

3 Research Questions

The two most common template licenses in open source are the family of BSD
licenses (BSD-4-Clause, BSD-3-Clause, and BSD-2-Clause, etc.) and the family
of MIT licenses (MIT, X11, MIT-CMU, MIT-advertising, etc). In Debian 5.0
these licenses account for more than 5% of all the files, and more than 8% of
the applications that in which all their source files were licensed under the same
license [2].

This study attempts to answer two fundamental questions for these two fam-
ilies of licenses. Firstly, what is the degree of variation of a license? In other
words, if we imagine the original license text as the root of a tree, what branches
of variation in the text have been created? Secondly, what is the frequency that
variation occurs at? In particular, can we find the common patterns of variability
used, and separate these from the less commonly used variants?

4 Methodology

The subject of this study is the Debian Linux Distribution, version 6. Ninka
was run on all the files of this distribution, encompassing more than 1.3 million
source files contained in 10,014 projects. Ninka identified 42,653 licenses in the
BSD family, and 28,205 licenses in the MIT/X11 family. The variability analysis
of these licenses worked in a top-down manner, by first identifying the largest,
most commonly used variations, working down to smaller, less commonly used
variations to the point where further analysis of variability would be negligible.

Ninka uses a pipeline architecture, and divides license identification into sev-
eral stages. Two of them were of value to this research: sentence matching, and
license matching. Sentence matching corresponds to the process of matching a
given sentence to a known valid licensing sentence (irrespective of the license it
belongs to). Even though the entire license might not match a known license,
one of more of its sentences might. This allows to identify sentences of BSD
and MIT licenses in cases where the entire license didn’t match a known license.
When Ninka matches a sentence, it outputs the known sentence, and what (if
any) known variability it exhibited.

Enumeration and analysis of variability was done in a top down manner, in
three levels. Initially the exact license that Ninka identified, such as the strict
SPDX BSD2 vs. the less strict BSD2 (as named by Ninka), was enumerated.
This level will be designated “license level variability”. Secondly, the variability
of the construction of sentence tokens that comprise a license was enumerated.
An example of this would be a non-SPDX license, such as BSD2, must have one
or more individual sentences that are not the strict version. Multiple combina-
tions of strict and non-strict sentences are possible. The combination of sentence
tokens can be referred to as the “token signature”, and this level of variability
will be designated “token signature variability”. Finally, the content of each vari-
able section within a sentence token was extracted from the sentence token file
and enumerated. This level or variability will be designate

On the Variability of the BSD and MIT Licenses 151

5 Results

5.1 The BSD Family

We use a top-down approach to describe the variability of the BSD family of
licenses. Figure 2 depicts this variability.

BSD-4. Ninka identified 3,251 licenses in Debian 6 as variants of the BSD-
4-Clauses (8% of all BSDs). Of them, 1,887 licenses were identified as exactly
the SPDX BSD-4-Clause. The rest 1,370 showed mostly small variations. The
most common of these changes (1,179–86%) were due to changes in the non-
endorsement clause statement (Lines 13-15 in Figure 1): 457 licenses replaced
“nor the names of its contributors” with specific names (e.g. “the University nor
of the Laboratory”) or remove it altogether. Another 220 licenses alter alter
the text “contributors” to “co contributors” or “co-contributors”. A further
398 licenses had the “Neither” removed from this clause. A very small number
licenses (75) modified the Clause-3 by replacing the word “by” with “for” (Lines
11-13 in Figure 1). All other variability of the BSD-4 license were negligible.

BSD-3. Ninka identified 22,577 licenses as the SPDX BSD-3-Clauses (this was
the most common). A further 4,822 had small changes that can be considered
still within the spirit of the BSD. As with the BSD-4, most changes were due
to to variations in the Non-Endorsement clause (Clause 3): 4,579 (91%). In
3,702 “Neither” was removed (in 96% of these cases the “contributors” were
removed too). Another 887 licenses had the text “its contributors” changed to
“his contributors”, “other contributors”, or “any contributors”. The remaining
61 licenses indicate specific contributors (as the BSD-4 mentioned above, e.g.
“the University nor of the Laboratory”). The rest of the variants were negligi-
ble. Also, 887 (18%) non-endorsement clause changes are due to a change the
text “nor the names of its contributors”. 826 (93%) of these use some small
variant on the qualifier before “contributors” such as “his contributors”, “other
contributors”, or “any contributors”. The remaining 61 cite specific contribu-
tors (“the University nor of the Laboratory”). All other variability of the BSD-3
license was ignored because its incidence represented less than 2%.

Fig. 2. BSD Variability Tree

152 T. Maryka et al.

Fig. 3. MIT/X11 Variability Tree

BSD-2. Ninka identified 11,690 licenses as SPDX BSD-2. We found very little
variability in licenses that can still be considered BSD-2 (only 458 licenses).
295 had variability in the Redistributions of Source Condition and 260 in the
Redistributions of Binaries Condition. In most cases the changes are minor:
287 added a comma after the word “conditions”, 268 added “above” before
“copyright notice” (in both conditions). The remaining changes were negligible.

5.2 The MIT/X11 Family

The MIT/X11 family of licenses is considerably more fragmented the BSD family.
Ninka divides the MIT/X11 family into eleven separate licenses, compared to
the 3 documented by SPDX.

The most frequent license identified by Ninka is the MIT as documented by
SPDX: 10,219 (36% of all MIT/X11 family). The tree of MIT/X11’s significant
variability, and the frequency of each variant is show in Figure 2.

Of the 17,986 (64%) licenses that are not the strict SPDX version, Ninka
identifies five types of licenses which are closely derived from the SPDX def-
inition: X11, X11mit, MITX11, MITX11noNotice, and MITX11simple. These
non-specialized licenses account for 13,554 (75%) non-strict licenses.

Ninka also identifies five types of licenses which are much more specialized
variants of the MIT/X11 license: MITold, BindMITX11Var, MIToldNoSellN-
oDoc, X11Festival, MITNoSellNoDocBSDvar (these are names that Ninka has
given to each of these variants), and the SPDX MITNFA. 4,432 (25%) of the
non-SPDX licenses are identified in this specialized category, and each license
arguably represents a more significant re-writing of the strict license, rather than
a smaller variation (with MITold likely being the a predecessor rather than a
re-writing).

The non-specialized variant that is most closely derived from the SPDX ver-
sion is the license Ninka identifies as MITX11. This license comprises 8,991 (66%)
of the non-SPDX, non-specialized licenses. These MITX11 licenses are similar
to the SPDX standard, but with at least one sentence changed.

Ninka identifies 1,142 (8%) licenses as X11 (Ninka’s X11 is different from
SPDX X11—the latter is not a template license and can only be used by the X11

On the Variability of the BSD and MIT Licenses 153

Consortium). This X11 license is the SPDX MIT with an additional advertising
material clause:

Except as contained in this notice, the name of the {{author}} shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from {{author}}.

Ninka’s X11mit accounts for 1,564 (12%) licenses and it is a variation of Ninka’s X11
license with an old style, simplified permission statement:

Permission to use, copy, modify, distribute, and sell this software and its doc-
umentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation.

MITX11noNotice accounts for 1,067 (8%) licenses, and corresponds to the SPDX MIT
license with the notice statement removed:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

MITX11simple accounts for 790 (6%) licenses and is a variant of the SPDX MIT with
the liability statement removed:

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE [...]

Variability in Sentences. Within the MIT family of licenses, we found that many
variants shared the same type of variability at the sentence level.

Liability Statement. The most commonly varied statement is the liability dis-
claimer sentence. 10,948 (80%) of the non-strict, non-specialized licenses alter the
text “AUTHORS OR COPYRIGHT HOLDERS” to either cite specific organizations/
authors (67%), or to vary it in some fashion (33%), such as changing it to “THE
ABOVE COPYRIGHT HOLDERS”.

Notice Statement. The second most commonly variant is the notice statement.
3,610 (26%) of the non-strict, non-specialized licenses vary the text of the notice state-
ment:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

These licenses add the text “(including the next paragraph)” after the text “permission
notice”, implying that the warranty statement must also be included.

Permission Statement. The third most common variant is in the permission
statement. 3,294 (24%) of the non-strict, non-specialized licenses vary the permission
statement Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”),... in the following
manner: 2,445 (74%) of licenses split “sublicense” to “sub license”; 655 (20%) licenses
add an “on” before “limitation”; 582 (18%) licenses add a “, distribute without modi-
fications” after “distribute”.

154 T. Maryka et al.

“As Is” Statement. Finally, the fourth most commonly varied statement in the
MIT/X11 family is the “As Is” warranty disclaimer sentence. This variation sim-
ply changes the word “NONINFRINGMENT” to “NON-INFRIGNMENT” (adding
a dash). 2,852 (21%) of non-specialized, non-strict licenses add this dash. A significant
proportion (2,171) of non-strict, non-specialized licenses use the non-strict versions of
the permission, notice, “As Is”, and liability statements at the same time.

6 Analysis

The SPDX version of each BSD license is exactly equivalent to the BSD licenses found
in Debian 6 for the vast majority (85%) of licensing statements. The most commonly
changed sentence is the non-endorsement clause found in BSD-3 and BSD-4. It is likely
that this statement is most commonly varied because it contains a template field. The
requirement to customize the template field likely increases the propensity to make
other changes to the sentence, such as the removal of the word “Neither” and the
customization of the “nor the names of its contributors” phrase.

The MIT/X11 family of license exhibits significantly more variability, with the
majority of licenses not exactly matching the SPDX version of the license. The most
significant and common variation of the license family is for the licensor to treat the
text “AUTHORS OR COPYRIGHT HOLDERS” as a template field, and to customize
it. Licensors also add conditions and grants such as “(including the next paragraph)”,
or “distribute without modifications”, which may or may not alter the legal meaning
of the license. Additionally, licensors adjust the spelling of words such as “sublicense”
and “noninfringment”, by adding dashes or spaces.

7 Recommendations

The BSD family of licenses very closely matches the SPDX standard, so little if any
changes are required to the SPDX license list to accommodate its variability. If the
word “Neither” was considered optional in the non-endorsement clause, an additional
4,100 Debian 6 licenses could directly match the SPDX, but that only represents 1%
of the BSD family so this is likely a negligible variation.

The MIT/X11 family of licenses has significantly more variability, so small changes
to accommodate potentially varied license texts would be beneficial to the SPDX stan-
dard, as it would increase the number of licenses that can accurately be included by
users of the standard.

MIT/X11 Template. The most significant variation that SPDX could accommo-
date within the MIT/X11 family would be the alteration of the text “AUTHORS
OR COPYRIGHT HOLDERS”, in the liability statement, to be the template field
“{{authors or copyright holders}}”. This text has been treated as a de facto customiz-
able field by licensors, despite the fact that this text was not intended to be customized.
Accommodating this customizable field would increase the number of SPDX equivalent
licenses in Debian 6 by at least 4,110, which is a 40% increase.

On the Variability of the BSD and MIT Licenses 155

Equivalent Phrases. Much like the set of equivalent phrases used in the text
normalization phase of Ninka, SPDX has published a small list of spellings which are
considered legally equivalent [7]. The following recommended equivalent sets should be
added to this list to accommodate variability found in BSD and MIT/X11 licenses:

– “contributors”, “co-contributors”, “co contributors”
– “sublicense”, “sub-license”, “sub license”
– “noninfringement”, “non-infringement”

The inclusion of these equivalent phrases would accommodate 5,517 occurrences of
variability found. Note that this figure is greater than the number of individual licenses
that can be accommodated, as the changes to “sublicense” and “noninfringment” may
not be mutually exclusive.

MIT/X11 Additions. Adding the grant “distribute without modifications” to the
list of permissions granted by the license may be legally redundant. If the licensee is
permitted to redistribute a modified copy of software, then theoretically the licensee
could redistribute a modified copy which is functionally equivalent to the original. As
such, distributing the functionally equivalent modified copy may be equivalent to dis-
tributing the software without modifications, so the additional grant may be redundant.
This implies that adding this clause constitute a license error and should be removed.

Derived Licenses. Some MIT/X11 licenses, like the specialized variants Ninka
recognizes, and the variants that add the advertising clause, remove the notice clause,
or replace the permission statement represent different legal meanings from the strict
SPDX MIT license. These licenses need to be individually added to the SPDX license
list to be accommodated by the standard. The process to add a license to the list is
expensive [1], so these should be accommodated in a top down manner, with more
frequently proposed/requested licenses added first. However, this is not currently the
case. Licenses are currently considered for addition in the order in which they are
proposed.

8 Threats to Validity

We identify the following threats to validity of this empirical study. Regarding External
validity. The use of Debian 6 as a data source is likely representative of the BSD and
MIT/X11 license families, as Debian offers a diverse and comprehensive view of FOSS
landscape [4]. Additionally, the accuracy of Ninka would play a significant role in the
external validity of this study, since Ninka has been externally verified to have a high
accuracy of 96.6% [2].

Regarding Reliability validity. This study can be replicated. Ninka, the is freely
available for anyone to use, including the source code files containing the sentence
token expressions and token matching rules. Additionally, the scripts used to extract
sentence token signatures and sentence token variability, and the spreadsheet output
of each sentence token analyzed have been made available for replication at: http://
turingmachine.org/2015/mit-bsd.

http://turingmachine.org/2015/mit-bsd.
http://turingmachine.org/2015/mit-bsd.

156 T. Maryka et al.

9 Conclusion

Licensors change the text of standard open source licenses for many purposes, includ-
ing customizing the license with their specific organization’s name, adding or removing
conditions, and changing spelling or punctuation. Open source licensing standards like
SPDX may be affected by the variability in licenses, as the variability may alter the legal
meaning of licenses, creating legal issues in matching an altered license. In contrast,
requiring an overly strict “perfect match” of open source licenses to the standard may
result in the exclusion of many license texts with negligible variability. This paper pre-
sented an empirical study of the extent that the BSD and MIT/X11 family of licenses
vary from their original definition. The BSD family of licenses closely match the exist-
ing SPDX templates, with little additional variability. The MIT/X11 family of licenses
was found to be much more fragmented and heavily customized, including the creation
of several specialized variants based from the original X11 license, customization of the
text “authors or copyright holders”, spelling alterations, and the adding and removing
of conditions, grants and whole sentences. Small changes to the SPDX template for the
MIT license, and to the SPDX list of equivalent words [7] would accommodate some
the essential variation found within the license at a low cost.

References

1. German, D., Penta, M.D.: A method for open source license compliance of java
applications. IEEE Software 29(3), 58–63 (2012)

2. German, D.M., Manabe, Y., Inoue, K.: A sentence-matching method for automatic
license identification of source code files. In: 25nd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2010) (2010)

3. Gobeille, R.: The FOSSology project. In: MSR 2008: Proceedings of the 2008 Inter-
national Conference on Mining Software Repositories, pp. 47–50. ACM, New York
(2008)

4. Gonzalez-Barahona, J.M., Robles, G., Michlmayr, M., Amor, J.J., German, D.M.:
Macro-level software evolution: a case study of a large software compilation. Empir-
ical Software Engineering 14(3), 262–285 (2009)

5. Lovejoy, J., Odence, P., Lamons, S.: Advancing the Software Package Data
Exchange: An update. International Free and Open Source Software Law Review
2(2), 145–152 (2013)

6. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property Law.
Prentice Hall (2004)

7. Stewart, K., Odence, P., Rockett, E.: Software Package Data Exchange (SPDX)
Specification. International Free and Open Source Software Law Review 2(2), 191–
196 (2010)

The Right to a Contribution: An Exploratory
Survey on How Organizations Address It

Germán Poo-Caamaño(B) and Daniel M. German

University of Victoria, Victoria, Canada
{gpoo,dmg}@uvic.ca

Abstract. Free and Open Source Software (FOSS) projects are
characterized by the opportunity to attract external contributors, where
contributions can be in any form of copyrightable material, such as code
or documentation. In most of them it is understood that contributions
would be licensed in similar or compatible terms than the project’s
license. Some projects require a copyright transfer from the contributor
to an organization for the work contributed to a project, such documents
are known as copyright assignment agreements. In a way, it is similar to
the copyright transfer than some researchers grant to a publisher. In this
work we present an exploratory survey of the multiple visions of copy-
right assignments, and aggregate them in a work that researchers and
practitioners could use to get informed of the alternatives available in
the literature. We expect that our findings help inform practitioners on
legal concerns when receiving external contributions.

1 Introduction

In FOSS projects, contributions can come from anybody. When a project receives
a contribution, how can it guarantee that it has the rights to incorporate such
contribution into the project?

In this paper, we present findings from our exploratory literature survey on
Copyright Assignments and Contribution License Agreements in FOSS projects.
The available literature is scattered, no comprehensive body of research has
been forthcoming to help practitioners and researchers cope with the different
perspectives on the topic of these type of agreements. Reports on proliferation
of such agreements in FOSS projects [2,21] motivated us to better understand
their differences, the rationale behind their decisions, and the relevant literature.
We were also motivated to study the impact of such agreements in the software
development practices, and possible consequences for FOSS projects.

The contributions of this paper are an integrated overview of the available
material; first, by reviewing the relevant literature on copyright assignments;
and, second, by suggesting areas of future research. We expect this document to
help FOSS developers both those who control and those who contribute regarding
the legal concerns of accepting and submitting contribution.

c© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 157–167, 2015.
DOI: 10.1007/978-3-319-17837-0 15

158 G. Poo-Caamaño and D.M. German

2 Methodology

We approached this exploratory study as a literature survey on the current
research and practices. This study is based on the original guidelines for sys-
tematic review in software engineering by Kitchenham [18]. To find the current
practices, we extended our search beyond the scope of journals and conferences.
The steps in the systematic review method used are: formulate research ques-
tions, carry out a search process, define inclusion and exclusion criteria, and
analyze data.

The research questions addressed by this study are:
Q1. How is the term “Copyright Assignment” defined?
Q2. What research topics are addressed in the Copyright Assignments liter-

ature?
Q3. What projects and organizations require an agreement?
The search process was a manual search on conference proceedings, journal

papers, and projects’ websites. We searched peer reviewed papers, essays, copy-
right assignment and contribution license agreement forms, and FOSS projects’
policies on copyright assignments. We searched for ‘copyright assignment’ and
‘contribution license agreement’ in combination with ‘free software’ and ‘open
source software’.

The selected literature body should commit to a set of inclusion criteria:
a) the literature should address the area of contributions agreements, either
main or secondary; b) be either an agreement form with legal implications (in
any format) or have a document body in the form of research paper, essay, or
book; and, c) be written in English.

We classified the agreements according the their clauses, and grouped them
depending on whether they would require transferring the copyright of the con-
tribution or not.

3 Results

In this section, we present the analysis of the literature and discuss the answers
to our research questions.

3.1 How Is the Term “Copyright Assignment” Defined?

The term Copyright Assignment has been used in other contexts than FOSS,
such as the publishing and music industry. Wu [34] defines Copyright Assignment
as “the transfer of the rights of the author to another party [...] For example,
large record labels usually demand that composers assign all of their copyrights
to the label”.

In the context of FOSS, we found that few authors define Copyright
Assignment. In those cases, Copyright Assignment is defined together with Con-
tribution License Agreement, both of them as a subclass of Contributor Agree-
ment. We, therefore, present the definitions of Contributor Agreement, Copyright
Assignment and Contributor License Agreement.

The Right to a Contribution: An Exploratory Survey 159

Guadamuz and Rens [14] define Contributor Agreements as “written con-
tracts in which the contributor either assigns copyright to the project organisers,
or grant them a license”. Depending on how the document is drafted, the result-
ing contract would be either a Copyright Assignment Agreement or Contributor
License Agreement. When the contributor assigns copyright—transfer the copy-
right ownership— to the project owner, it is a Copyright Assignment Agreement.
When the contributor grants and irrevocable license—which may be exclusive
or non–exclusive— to the project owner to use the contribution, then it is a
Contributor License Agreement.

Jakob [15] describes a Contributor Agreement as a way to “regulate the rela-
tionship of the developer with a particular organizational entity”. This agreement
could either be a Copyright Assignment Agreement “whereby the developer trans-
fers and abandons his intellectual property rights in the contribution for the ben-
efit of a project’s administration”, or a Contributor License Agreement “whereby
the developer is only required to grant usage rights”.

Maracke [21] describe a Contributor Agreement as a mechanism to “define and
clarify the terms, under which a contribution (code, translation, artwork, etc.) is
made to an open source or open content project”. Later, she defines altogether
“Assignment [A]greements require the assignment and therefore transfer of copy-
right in all contributions to the project owner, while [L]icense [A]greements grant
an irrevocable license to allow the project owner to use the contribution”.

As seen above, Copyright Assignment is usually done via a Copyright Assign-
ment Agreement (CAA). An alternative to the Assignment is a Copyright License
Agreement (CLA) where the owner does not transfer the copyright and instead
provides a license to the recipient of the contribution.

3.2 What Research Topics Are Addressed in the Copyright
Assignments Literature?

During the analysis of the literature, we could identify five categories or topics
covered by the surveyed literature. Table 1 shows a summary of the literature
according their topic focus. Below we elaborate on the five categories.

Table 1. Papers according to topics covered

Category Literature (research papers, essays, books)

Governance [12,13,24,27,29,30,33]
Community Building [1,2,13,20,24]
Litigation [9,13,29,33]
Business Model [6,13,17,23,29,33]
Proliferation of Agreements [2,4,7,19,21,25]
Other [3,5,8,10,14–16,26,28,31]

Governance. Markus [22] defines governance in FOSS as “the means of achiev-
ing the direction, control, and coordination of wholly or partially autonomous
individuals and organizations on behalf of an OSS development project to which

160 G. Poo-Caamaño and D.M. German

they jointly contribute”. These papers describe the impact that a CAA or CLA
have on the governance of a project.

Wielsch’s [33] addresses the challenges that projects face when there are
several authors or copyright holders. The legal aspects of licenses and copyright
assignment, and the role that some clauses might have in the governance of open
collaborative works, not only FOSS projects.

Sometimes the license chosen for a project produces conflicts, such as incom-
patibilities with other FOSS projects that use other licenses. Such incompatibil-
ities can be an obstacle to reuse code from other projects (either by linking to
them, or by copying their source code) [11]. Either changing or adding a small
exception to a license may require a substantial effort to contact and receive
consent from all authors (the current copyright holders of the project). Such
efforts can be avoided if the copyright is hold by a single entity that can decide
the changes unilaterally [13]. Therefore, a single legal owner is a single point of
contact and can give flexibility to a project [24], because this also yields power
to produce changes to the licensing of the project whenever is needed [13]. The
single owner becomes the steward of the project.

Many FOSS projects have informal structures, sometimes without a legal
entity or sponsor behind them. The lack of a formal entity creates uncertainty
on who has the authority on the project and who takes decisions, particularly,
licensing decisions [29]. The legal entity can be a foundation or a company that
acts as sponsor of the project. Sponsored projects can be perceived as mature,
or at least more than community driven projects. Such maturity can be in the
code base, organizational structure of the project, financial backing or a more
established base of existing developers [32].

In sponsored projects, the ownership is associated with the degree of responsi-
bility in the project [30], and sometimes, outside contributors can not participate
in the design phase that defines the future of the project [32].

Contributors—other than the steward—might consider that this centraliza-
tion creates uncertainty about the future of the project. The steward may not act
predictably according to the interests of the contributors of a project, as organi-
zations depend on the shareholders or management. Although uncommon, there
is evidence of organization switching strategies. Caldera, a company known as a
contributor of Linux, after being acquired by SCO, switched strategies and lit-
igated copyright infringement in the Linux source code against IBM [24]. After
the dissolution of X Consortium, a non-profit organization, the copyright was
transferred to its successor organization, The Open Group. The new organiza-
tion “changed all the MIT/X Consortium rights to a restrictive copyright” [12].
Similar concern were raised when Oracle acquired Sun Microsystems; the later
had acquired MySQL AB, the original steward of the MySQL project [26].

In a project with disparate ownership each contributor has a valuable own-
ership right, with different kind of interests in the future of the project. In other
words, external contributors, either individuals or companies, may react neg-
atively to sponsored projects perceived as tightly controlled by the copyright
holder and not truly participating in collaborative partnerships [24,32].

The Right to a Contribution: An Exploratory Survey 161

Changing a license might have a positive outcome, such as facilitate code
reuse among different projects. However, the code may also be relicensed in a way
that limit its reuse among certain FOSS projects, or even limit the project’s abil-
ity to reuse FOSS projects. For example, even thought LibreOffice and OpenOf-
fice are both derived from the same code base, each has different licenses; as a
consequence LibreOffice can reuse code from OpenOffice, but not the other way
around [10].

Community Building. Some organizations decide to release their source code
to increase adoption of their product(s), or to encourage the creation of standards
around a certain technology, eventually built by them [32]. These papers describe
the impact that a CAA or CLA have on community building.

As a copyright holder can license its work any number of times, the steward
can license the software under multiple licenses, either FOSS, proprietary (non-
FOSS) or both. Having multiple FOSS licenses can help projects interested in
a wide adoption of their code, that is, to be used by other FOSS projects with
different licenses.

To build a community, FOSS projects sponsored by an organization can
create a tension between the organization and external contributors, because of
the sense of control and ownership [32].

For volunteers, it is motivational to have their contributions accepted and
merged into the code base. This motivation might decrease if it takes time for the
contributions to be incorporated. Although this could happen with or without
copyright assignment [1], legal paperwork may undermine the motivation to
contribute [13,24,32].

Copyright assignment introduces asymmetry in the relationship between the
copyright holder and outside contributors. They are legally unequals [6]. For
example, the copyright holder can create a stream of revenue by implementing
a dual license for the project. Although a valid approach for business model, it
might hurt the ability to nurture a community because the revenue stream is
unique to the copyright holder. This inequality creates a barrier to involvement
by other contributors, like companies [10,31].

Submitting a contributor agreement can take significant time because those
agreements have to be reviewed, approved and signed; and when the contributor
is an employee or a company, it is likely to be done by management and legal
departments of such organization [2].

Litigation. These papers describe the impact that a CAA or CLA have on
litigation.

Rosen [29] covered copyright assignments, dual license and litigation in FOSS
projects in his work. He also explains joint work as a way to relicense software
and the practice in some FOSS projects to assign ownership to a steward, and
some of the risks that a developer could face by assigning the copyright, such
as the original authors lose the right to relicense their own work or the perils of
assigning the copyright to an informal entity.

162 G. Poo-Caamaño and D.M. German

License enforcement is often mentioned as the primary reason why organiza-
tion like the FSF require developers to assign copyright. Under US law, only the
owner of a copyright has the right to enforce the license [9,29]. Centralizing the
copyright in a single owner simplifies enforcement for the entire code base and,
at the same time, releases the contributors of this burden [13]. It also helps in
registering copyrights in jurisdictions where it is required [33].

In some cases a copyright assignment is used to circumvent limitations of
a FOSS license. For example, to negotiate indemnification when the license in
use has patent termination clauses, like MPL1.1 (section 8.2), MPL2.0 (section
5.2), CPL (section 7), OSL/AFL (section 10) or GPLv3 (section 11), among
others [29].

License enforcement could be also used to obtain economical advantage. If
someone is infringing a GPL code, then the organization holding the copyright
could negotiate the terms for a proprietary license. Yet, this might be rarely
the desired outcome for developers who are not employees of the organization
holding the copyright [13].

Business Model. Licensing the same product under multiple licenses (FOSS
and proprietary) might be mechanism used by the licensor to sell proprietary
licenses for a fee. These papers describe the impact that a Copyright Assignment
has when it is used as a business model.

A licensor could offer two versions of the same product: a commercial one
and a FOSS one. The former can be offered with additional features, support,
more elaborated warranties or forms of indemnification, or any other negotiation.
The latter can be used to promote the software or get external contributions.
However, a licensor can only license software for which it holds the copyright or
have received permission to license. Therefore, having a single entity holding the
copyright of a product can be attractive as a business model [29].

When a single entity holds the copyright of the product, and the product is
licensed with a copyleft license, then that entity holds an exclusive power that no
one else in the community holds [13]. In this context, the project becomes an asset
for the steward. Only the steward can sell and distribute the community’s work
under creating proprietary licenses (usually adding commercial support, or other
services that allow them to monetize their investment in a FOSS project). This
asset can be sold total or partially, used to negotiate acquisition, or disposed to
the higher bidder in case of bankruptcy” [24]. However, the value might depend
on effective ways of verifying the code does not contain “unexpected FOSS or
other necessary contractual cover” [17].

However, the circumstance previously discussed does not occur in projects
where the license is academic, because in those cases, everyone has equal right to
license proprietary versions. This could explain why copyright assignment makes
more sense when they are used in projects that use a copyleft licenses [23].

Proliferation of Agreements. There had been a proliferation of copyright
and license agreements in FOSS projects. Although these agreements might have

The Right to a Contribution: An Exploratory Survey 163

similar goals they differ in the wording. These papers describe the problem and
challenges of proliferation of agreements.

A consequence of having different agreements is that all of them have to
be analyzed by lawyers who assist developers, projects, companies and non-
profit organizations. Instead, Brock [2] proposed to unify all kind of copyright
and license agreements into one, either by using a single modular document
with extensive options or multiple documents. However, it raised some criti-
cism because with this initiative the transfer of rights could be perceived as an
industry standard [7,19,21].

Metzger [25] studied the duration and territoriality of copyright and license
agreements. Engelhardt [4] compared their legal consequences in different juris-
dictions, and how they differentiate the wording applied in these agreements.
Thus, the enforcement might require adjustments in the agreements to match
different local copyright laws. However, such effort can augment the proliferation
of agreements, and challenge the initiatives that try to standardize them.

3.3 What Projects and Organizations Require Copyright
Assignment?

Because of the proliferation of agreements [2], we searched for organizations that
require that a contribution is accompanied by its corresponding copyright agree-
ment(includingassignments)1 beforesuchcontribution isacceptedandmerged.We
classified themaccording to their intent, either asCAAorCLA.Weexamined every
agreement (wewanted to avoid cases inwhich aCopyrightAssignmentwas labelled
as a Contributor License Agreement, and the other way around). To enable further
research, we included historical agreements that organization does not require any-
more, such asOpenOffice,Evolution,Clutter and cogl.Table 2 comprises the agree-
ments separated by type of organizations (non–profit and for–profit), as it has been
reported to make a difference [19,24,30].

4 Discussion

It is dangerous for a FOSS project to assume that it has the rights to distribute
an external contribution, in particular if such contribution is significant. As
it has been described above, the organizations (and individuals) behind FOSS
projects have taken two different approaches to address this issue: assigning
copyright (copyright assignment agreements–CAA) or requesting a license to
distribute the contribution (copyright licensing agreement–CLA). Each model
has its advantages and disadvantages.

CAA centralize the ownership of the project. The steward (its owner) is
capable of relicensing the code, either by changing its FOSS license, or relicensing
under a proprietary license. This model seems to be preferred by organizations
1 The agreements forms collected can be found at https://github.com/blindr/

contributor-assignments.

https://github.com/blindr/contributor-assignments
https://github.com/blindr/contributor-assignments

164 G. Poo-Caamaño and D.M. German

Table 2. Organizations (and their respective projects) that require either Copyright
Assignment Agreements (CAA) or Contribution. License Agreements (CLA).

Type Projects (Organization)

Non–profit organizations

CLA Apache Software Foundation (HTTPS Server, Tomcat, harmony, ...), Dias-
pora (Diaspora), Django Software Foundation (Django), Eclipse Foundation
(Eclipse), Mozilla Foundation (Firefox, ...), OuterCurve (NuGet, ASP.NET
Ajax Library, ...), Perl Foundation (Perl), The PHP Group (PHP-PDO)

CAA Free Software Foundation (gcc, emacs, glibc, ...), Open Source Matters
(Joomla), The Mambo Foundation (Mambo)

For–profit organizations

CLA Canonical (Unity, Bazaar, Launchpad, Upstart, ...), Google (Android,
Chromium, GWT, V8, Go, ...), Joyen (Node.js), Phrabicator (Phacility), Red
Hat (Fedora), Zend Technologies (Zend)

CAA ArtofCode (Ghostscript, libart, ...), Intel (Clutter, cogl), Nokia/Digia/Qt Com-
pany (Qt, S60/Symbian, ...), Novell/Xamarin (Mono), Openfiler (UK) Ltd
(Openfiler), Oracle (Java, MySQL, OpenOffice.org), Red Hat (Cygwin), Rich
Hickey (Clojure), VMware (Zimbra, Open VM tools), Ximian/Novell (Evolu-
tion)

that use copyleft licenses (such as the GPL). Examples of such organizations
are: the Free Software Foundation, who requests copyright in order to be able
to enforce its copyright (on behalf of its authors); for-profit companies such as
Nokia, Sun Microsystems, Oracle and Red Hat request a CAA as part of their
business model, which allows them to maintain full ownership of their software,
and sell proprietary licenses to it.

On the other hand, projects that use permissive (academic) licenses are more
likely to require CLAs. The argument can be made that, because anybody can
use the software to create other proprietary and FOSS software, the copyright
does not give them any strategic advantage. As shown in Table 2, most non-profit
use CLAs rather than CAAs.

In both models, we can find variations in the wording and the way the agree-
ment must be filled and/or signed. Depending of the jurisdiction, a “technical
signature” (for example, click on a button) is sufficient for most cases. In others,
a paper based signature is required [14]. Chooding a model might depend of the
interests of the project, and the alternatives available in the lost jurisdiction.

It is possible that CAAs reduce the number of potential contributors, since
those not willing to assign copyright would not participate. It is also known
that forks have been created when the copyright of significant contributions
was not assigned (as is the case with xemacs, a fork of emacs). One can argue
that organizations that use CLAs instead of CAAs create a more egalitarian
environment. Further research is required to fully understand the impact of the
choice of agreement.

The Right to a Contribution: An Exploratory Survey 165

Some copyright assignments give back a license to the contribution which
grants the author the same benefits as a copyright holder. This includes rights
not granted by the project’s FOSS licenses, such as permission for proprietary
relicensing, except granting exclusive rights (since it was already transferred, it
is not exclusive anymore [8]). This will allow the author to contribute the code
to another project (under a CLA, but not under another CAA) [29].

Another aspect that is worth considering is, how big a contribution should be
before one should worry about the right to use it? For instance, does it require
permission to redistribute simple bug fixes? The Free Software Foundation does
not require copyright assignment for contributions that involves less than 15
lines of code. If a contributor makes a series of repeated small changes, then it
could become a significant contribution, for which it would be required to sign
a CAA before accepting further contributions [9].

Another aspect corresponds to the legal consequences of copyright as intellec-
tual property. As such, it is inheritable upon death of the owner, the owner might
prefer to assign or transfer the rights to an organization that could manage them
instead of risking an involuntary lost [29]. In addition, a contributor assignment
might last different depending on the territory, according to the expiration of
copyright in each legislation.

5 Limitations of This Study

This study is based on the guidelines for systematic review by Kitchenham [18],
but it deviates from the guidelines in several ways: a) the search was manual,
and b) the search scope was wider than journal and conferences papers, including
books, essays, and legal documents. As a consequence, we may have missed
some relevant studies or overlooked the literature. However, the consolidation of
agreements and the classification of the literature, can help towards an empirical
study of the impact of such agreement requirements in FOSS projects.

The authors are not lawyers and they might have misinterpretations of the
consequences of the agreements analyzed. Whenever possible, we have provided
references to legal expects supporting our assertions. However, this research
would benefit from a review by lawyers expert in FOSS.

6 Conclusions and Future Work

We surveyed and aggregated multiple visions of copyright assignments. We also
collected copyright assignments and contributor license agreements forms from
multiple FOSS projects. We learned that accepting contributions pose legal chal-
lenges to developers, companies and non-profit organizations involved in FOSS
projects. There are several alternatives that require an agreement before accept-
ing contributions, each has its benefits and drawbacks. The expectations of the
steward of the project and external contributors might differ, and the right
solution will depend on the goals of each project and the specifics of each con-
tribution.

166 G. Poo-Caamaño and D.M. German

Future work should aim at investigating projects that have stopped requiring
the copyright assignment for contributions, in particular, the reasons behind
such decision. Also important is to study the rationale of projects that were
forked because of the requirement of a copyright assignment. Another aspect that
requires further study is whether some individuals might decide not to contribute
due to such agreements, and, similarly, what is the impact of such agreements
in the dynamics between contributors and the steward of a project. Overall, we
expect that our findings help inform practitioners about legal concerns when
receiving external contributions, and enable researchers and practitioners to get
informed of the alternatives available in the literature.

References

1. Allyn, M.R., Misra, R.B.: Motivation of Open Source Developers. Intl. Journal of
Open Source Software and Processes 1(4), 65–81 (2009)

2. Brock, A.: Project Harmony: Inbound transfer of rights in FOSS Projects. Intl.
Free and Open Source Software Law. Review 2(2), 139–150 (2010)

3. Brock, A.: Understanding Commercial Agreements with Open Source Compa-
nies. In: Thoughts on Open Innovation: Essays on Open Innovation from Lead-
ing Thinkers in the Field, pp. 119–139. OpenForum Europe LTD for OpenForum
Academy (2013)

4. Engelhardt, T.: Drafting Options for Contributor Agreements for FOSS: Assign-
ment, (Non)Exclusive Licence and Legal Consequences. A Comparative Analysis
of German and US Law. SCRIPTed 10(2), 149–176 (2013)

5. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software
Project. O’Reilly Media, Inc. (2005)

6. Fontana, R.: Contributor Agreements Considered Harmful. Audio of talk given at
OSCON 2011. Online (July 2011). http://faif.us/cast/2011/aug/30/0x17/

7. Fontana, R.: The Trouble With Harmony. Online (July 2011). http://opensource.
com/law/11/7/trouble-harmony-part-1

8. Fontana, R., Kuhn, B.M., Moglen, E., Norwood, M., Ravicher, D.B., Sandler, K.,
Vasile, J., Williamson, A.: A Legal Issues Primer for Open Source and Free Software
Projects. Software Freedom Law Center (2008)

9. Free Software Foundation: Information for maintainers of GNU software. Online
(November 2012). http://www.gnu.org/prep/maintain/ (accessed: December 8,
2012)

10. Gamalielsson, J., Lundell, B.: Sustainability of Open Source software communi-
ties beyond a fork: How and why has the LibreOffice project evolved? Journal of
Systems and Software 89, 128–145 (2014)

11. German, D.M., Hassan, A.E.: License integration patterns: Addressing license mis-
matches in component-based development. In: 31st Int. Conf. on Soft. Eng., ICSE,
pp. 188–198 (2009)

12. Jim, G.: Copyright Assignments. Online (July 2000). https://mail.gnome.org/
archives/foundation-list/2000-July/msg00332.html (accessed: December 9, 2012)

13. GNOME: GNOME Foundation Guidelines on Copyright Assignment. Online (July
2010). https://live.gnome.org/CopyrightAssignment/Guidelines (accessed: Decem-
ber 9, 2012)

http://faif.us/cast/2011/aug/30/0x17/
http://opensource.com/law/11/7/trouble-harmony-part-1
http://opensource.com/law/11/7/trouble-harmony-part-1
http://www.gnu.org/prep/maintain/
https://mail.gnome.org/archives/foundation-list/2000-July/msg00332.html
https://mail.gnome.org/archives/foundation-list/2000-July/msg00332.html
https://live.gnome.org/CopyrightAssignment/Guidelines

The Right to a Contribution: An Exploratory Survey 167

14. Guadamuz, A., Rens, A.: Comparative Analysis of copyright assignment and
licence formalities for Open Source Contributor Agreements. SCRIPTed 10(2),
207–230 (2013)

15. Jakob, S.F.: A Qualitative Study on the Adoption of Copyright Assignment Agree-
ments (CAA) and Copyright License Agreements (CLA) within Selected FOSS
Projects. JIPITEC 5(2), 105–115 (2014)

16. Jensen, C., Scacchi, W.: License update and migration processes in open source
software projects. In: Hissam, S.A., Russo, B., de Mendonça Neto, M.G., Kon, F.
(eds.) OSS 2011. IFIP AICT, vol. 365, pp. 177–195. Springer, Heidelberg (2011)

17. Kemp, R.: Current developments in OSS. Computer Law & Security Review 25(6),
569–582 (2009)

18. Kitchenham, B.: Procedures for performing systematic reviews. Tech. rep., Keele
University (TR/SE-0401) and National ICT Australia Ltd. (0400011T.1) (2004)

19. Kuhn, B.: Project Harmony Considered Harmful. Online (July 2011). http://ebb.
org/bkuhn/blog/2011/07/07/harmony-harmful.html

20. Lerner, J., Tirole, J.: Some Simple Economics of Open Source. The Journal of
Industrial Economics 50(2), 197–234 (2002)

21. Maracke, C.: Copyright Management for Open Collaborative Projects-Inbound
Licensing Models for Open Innovation. SCRIPTed 10(2), 140–148 (2013)

22. Markus, M.L.: The governance of free/open source software projects: monolithic,
multidimensional, or configurational? Journal of Management & Governance 11(2),
151–163 (2007)

23. Mcgowan, D.: Legal aspects of FOSS. In: Perspectives on FOSS, ch. 19, pp. 361–
391. MIT Press (2007)

24. Meeks, M.: Some thoughts on copyright assignment. Online
(December 2009). http://people.gnome.org/∼michael/blog/copyright-assignment.
html (accessed: April 27, 2011)

25. Metzger, A.: Internationalisation of FOSS Contributory Copyright Assignments
and Licenses: Jurisdiction-Specific or “Unported”? SCRIPTed 10(2), 177–206
(2013)

26. Moglen, E.: Software Freedom Law Center Opinion on the Oracle/Sun
Merger (2009). https://softwarefreedom.org/news/2009/dec/04/software-freedom-
law-center-submits-opinion-oracle/

27. O’Mahony, S.: Guarding the commons: how community managed software projects
protect their work. Research Policy 32(7), 1179–1198 (2003)

28. O’Mahony, S.: Nonprofit Foundations and Their Role in Community-Firm Software
Collaboration. In: Perspectives on FOSS, ch. 20, pp. 393–413. MIT Press (2005)

29. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall (2004)

30. Shuttleworth, M.: The responsibilities of ownership. Online (July 2011). http://
www.markshuttleworth.com/archives/687 (accessed: December 9, 2012)

31. Smith, D., Alshaikh, A., Bojan, R., Kak, A., Kohe, J.M.: Overcoming Barriers to
Collaboration in an Open Source Ecosystem. Technology Innovation Management
Review 4, 18–27 (2014)

32. West, J., O’Mahony, S.: Contrasting Community Building in Sponsored and Com-
munity Founded OSS. In: Proc. of the 38th Intl. Conf. on System Sciences, p. 196c.
IEEE (2005)

33. Wielsch, D.: Governance of Massive Multiauthor Collaboration. Journal of Intellec-
tual Property, Information Technology and E-Commerce Law 1(2), 96–108 (2010)

34. Wu, T.: On Copyright’s Authorship Policy. The University of Chicago Legal Forum
2008, 335–354 (2008)

http://ebb.org/bkuhn/blog/2011/07/07/harmony-harmful.html
http://ebb.org/bkuhn/blog/2011/07/07/harmony-harmful.html
http://people.gnome.org/~michael/blog/copyright-assignment.html
http://people.gnome.org/~michael/blog/copyright-assignment.html
https://softwarefreedom.org/news/2009/dec/04/software-freedom-law-center-submits-opinion-oracle/
https://softwarefreedom.org/news/2009/dec/04/software-freedom-law-center-submits-opinion-oracle/
http://www.markshuttleworth.com/archives/687
http://www.markshuttleworth.com/archives/687

OSS 2015 Ph.D. Contest

Open Source Software Ecosystems:
Towards a Modelling Framework

Oscar Franco-Bedoya1,2(B)

1 Group of Software and Service Engineering (GESSI),
Universitat Politècnica de Catalunya, Barcelona, Spain

ohernan@essi.upc.edu

http://www.essi.upc.edu/∼gessi/
2 Universidad de Caldas, Manizales, Colombia

Abstract. Open source software ecosystem modelling has emerged as
an important research area in software engineering. Several models have
been proposed to identify and analyse the complex relationships in OSS-
ecosystems. However, there is a lack of formal models, methodologies,
tool support, and standard notations for OSS-ecosystems. In this paper
we propose a general framework for support the OSS-ecosystems mod-
elling process. This framework will allow the representation, synthesis,
analysis, evaluation, and evolution of OSS-ecosystems. Design science
methodology is proposed to create several artefacts and investigating
the suitability of these artefacts in the OSS-ecosystem context.

Keywords: Modeling · Software ecosystem · Framework · Open source
software

1 Introduction

Software ecosystem modelling (SEM) is one of the most studied areas in the soft-
ware ecosystem domain [1]. However, currently there is no established modelling
standard for software ecosystems. Nonetheless, there exists a need for modelling
software ecosystems because:

– Complexity. Software ecosystems are among the most complex systems ever
created by human [2], and models may help understanding them.

– Traceability. The software industry is constantly evolving and is currently
undergoing rapid changes [3]. Models help in tracing the historic software
ecosystem changes.

– Communication. Models help to represent the complex network of symbi-
otic relationships between entire social actors, open source communities and
commercial software companies, etc. [4].

Ecosystem stakeholders need a common language to communicate their ideas.
In the particular case of OSS Software Ecosystems, to our knowledge, there

c© IFIP International Federation for Information Processing 2015
E. Damiani et al. (Eds.): OSS 2015, IFIP AICT 451, pp. 171–179, 2015.
DOI: 10.1007/978-3-319-17837-0 16

172 O. Franco-Bedoya

are no contributions in the literature regarding how to model OSS-ecosystem
support the representation and analysis of the specific relationships between
OSS-ecosystem actors. The aim of the present work is to make a characteri-
zation of OSS-ecosystems, and to propose a specific framework for modelling
OSS-ecosystems. This framework will be able to: represent, evaluate, evolve and
analyse OSS-ecosystems.

2 Related Work

2.1 Software Ecosystems

The field of biological ecosystems has inspired several ecosystem domains. The
business ecosystem (BECO) term was coined by Moore in 1996 [5]. The term
digital business ecosystems (DBECO) was obtained by adding digital in front of
business ecosystem [6]. the matured concept of DBECO was exposed by Briscoe
that defined DBECO as distributed adaptive open socio-technical systems, with
properties of self-organization, scalability and sustainability, inspired by natu-
ral ecosystems [7]. The term software ecosystem (SECO) has been coined by
Messerschmitt and Szyperski to refer to “a collection of software products that
have some given degree of symbiotic relationships” [8], [2]. However, in contrast
to natural ecosystem, there is no common definition of software ecosystem. It can
be defined and interpreted in different ways, depending on the point of view [2].
Some of the most accepted definitions of SECO are:

– A software ecosystem is “a set of actors functioning as a unit and interacting
with a shared market for software and services, together with the relationships
among them” [1].

– A software ecosystem is “a collection of software projects which are developed
and evolve together in the same environment” [9].

– A software ecosystem is “a set of software solutions that enable, support
and automate the activities and transactions by the actors in the associated
social or business ecosystem and the organizations that provide these solu-
tions” [10].

2.2 Open Source Software Ecosystems

According toourknowledgeof the literature, there are onlya fewdefinitions ofOSS-
ecosystem. These are provided by Wynn [11] and Hoving et al. [12]. Both authors
defineOSS-ecosystembased on the Iansiti and levien concept of business ecosystem
(BECO) [13]. This mean that the shared market, organizations, capital, are the
main actors that support the open source software community. In addition Jansen
highlights the role of the developers in the OSS community and the freely nature
of resources in its definition [12]. These concepts are a weak metaphor of natural
ecosystem terms. However, the transfer of knowledge has essentially limited itself
toareuseof terms [2]. Inorder tosupportourproposal, InTable 1wehave integrated
the different concepts of ecosystems:

Open Source Software Ecosystems: Towards a Modelling Framework 173

Table 1. Open Software Ecosystem Definition

Definition Sources Examples

An OSS-ecosystem is a SECO placed in a
heterogeneous environment

Iansity and
Levin BECO

Other OSS ecosys-
tems, commercial
SECOs,Government,
Market rules, etc.

Its boundary is a set of niche players Jansen SECO Partners, Re-sellers,
Platform provider,
etc.

The keystone player is an OSS community
around a set of projects in a common plat-
form

Lungu SECO Contributors, passive
users, data sources,
etc.

OSS-ecosystems are complex artefacts that require a specific characteriza-
tion in order to model its elements and relationships. The variety of ecosystem
described above have common roles, (e.g. partners, users, developers, resellers,
software products and services, etc.). However, in the OSS-ecosystems there
are several conceptual and structural particularities, e.g., principles, community
join process, goals, governance, legalities, among other concepts. A characteri-
zation conducted to evaluate similarity between commercial SECOs and OSS-
ecosystems is described in detail in sections below.

2.3 Software Ecosystem Models

In the literature several specific models and meta-models have been proposed
to identify and analyse the relationships between software ecosystems members.
The work of Yu and Deng [3] and Lopez et al. [14] use i* models to model
the strategic dependencies between OSS-ecosystem actors. Boucharas et al., [15]
and Jansen et al., [1] present the software ecosystem modelling (SEM) technique,
which includes the product deployment context (PDC) and software supply net-
works (SSN) diagrams. A framework for sustainable software ecosystem man-
agement was discussed by Dhungana et al, [16]. Other authors like [17] and [18]
represents the OSS-ecosystem actors and relationships using conceptual maps.

3 Research Methodology

We structure our research in terms of design science since it involves creating
new artefacts and acquiring new knowledge, using an engineering cycle as main
cycle and internal iterations with engineering activities and the empirical cycle
Wieringa [19]. In our project the engineering cycle and the empirical cycle consist
of five phases:

– Problem investigation. To investigate the nature of the problem we need to
solve and to know which actions can help solve this problem.

174 O. Franco-Bedoya

– Treatment design. To design the solution for the identified problem, in this
phase it is necessary to evaluate several alternatives for each designed solu-
tion.

– Design validation. Before we construct the framework’s components, we val-
idate the designs to assure that the selected designs satisfy the criteria for
the framework components.

– Treatment implementation. To realize the solution specification for the prob-
lem we will develop the framework, some components will be conceptual
components and others software components.

– Implementation evaluation. Wieringa defines evaluation as the use of arte-
facts in context. We will validate the framework use case studies validation.

4 OSS-Ecosystem Modelling Framework

The ecosystem terminology defined by Mens [2] and Lopez [14] show that there
are several differences between commercial SECOs and OSS-ecosystems. Sus-
tainability in an OSS-ecosystem is related to the number of ecosystem com-
munity members [20]. On the other hand, in a commercial SECO it depends
mainly on economic factors. The adoption strategies and the adoption risks
derived by using OSS products in a company affect organizations business mod-
els [14]. In general, the most of the risks for adopting OSS components in an
OSS-ecosystem are related to the licenses heterogeneity. Governance commer-
cial software ecosystems are typically governed by a decision maker that decides
how the ecosystem should evolve, while OSS-ecosystems often have a much more
exible decisional structure [2]. The community is the organizational unit in OSS-
ecosystems. In contrast, hierarchy structures are common in commercial SECO.
An OSS-ecosystem modelling framework has to support: visualization, synthesis,
analysis, evaluation and evolution of OSS-ecosystem models. In this section we
provide a brief overview of the tools that support these activities. Our goal with
this framework is to offer suggestions and ideas to researchers and practition-
ers in the field of OSS-ecosystem modelling. The framework that we propose is
shown in Figure 1.

4.1 OSS-Ecosystem Model Synthesis

The purpose of this activity is to answer the question: How is it possible to
generate a specific OSS-ecosystem model only from OSS-ecosystem data sources?.
Figure 2 shows a layered view of the components for this activity. At the bottom,
there are several types of OSS-ecosystem data sources. Jansen defines three
types [21]: project web sites, ecosystem hubs and aggregation sites. We added
two other kinds of data sources: (1) social media sites such as Twitter, Facebook,
etc. (2) strategic data from people related to the OSS-ecosystem obtain using
specialized surveys. The OSS-ecosystem communities, typically provide open
access to all data sources. The extraction of data is done with dedicated tools
developed by the OSS-ecosystem researchers. Occasionally it is done by the use

Open Source Software Ecosystems: Towards a Modelling Framework 175

OSS-Ecosystem
Evaluation

OSS-Ecosystem
Analysis

OSS-Ecosystem
Synthesis

OSS-Ecosystem
Evolution

QuESoSALMonO
SS

OSS-Ecosystem
“Real world”

1 3

2

Fig. 1. OSS-ecosystem modelling framework

Framework Synthesis Engine

OSS-Ecosystem Data Sources

OSS-Ecosystem projects Site

Code
Version

Repository

Bug
Tracker IRC Mailing

List

Ecosystem hubs

Projects
Index

Social Media

Twitter Wiki

Aggregation Sites

Aggregate
Ecosystem

Information
OSS-Ecosystem

Member

REST API

Expert

Data ExtractorData Postprocessor Natural Language &
Text Mining Processor

Social Netwotk
Analysis

OSS-Ecosystem Case
models

i* Model

Fig. 2. OSS-Ecosystem Model Synthesis

of specialized tools. E.g. Spanish LibreSoft group provides FLOSSMetrics to
extract data from repositories and then they are stored in a set of databases [22].
However, most of these tools are not reusable in other experiments, even in the
same OSS-ecosystem. The availability of the data depends of the OSS-ecosystem.
Because of this, we propose to define an extensible REST API. This is a set of web

176 O. Franco-Bedoya

services to be implemented by each OSS-ecosystem community. This interface
would allow obtain information related to the OSS-ecosystem.

Our aim is to motivate the development of this API by the OSS-communities
providing them with a framework for modelling, analysing and monitoring their
own OSS-ecosystem. The framework synthesis engine has two extraction com-
ponents, similar to Goemmine et al. [22]. Moreover, It uses the OSS ontology
defined by Lòpez et al. [14], social network analysis (SNA), self-modelling tech-
niques and predefined OSS-ecosystem models to identify the OSS-ecosystem
actors and relationships in a specific OSS-ecosystem (e.g. Eclipse, Gnome, etc. .
Finally, the synthesis components will generate an i* OSS-ecosystem model.

4.2 OSS-Ecosystem Model Valuation

This component will enable the monitoring of the OSS-ecosystem health. To
prove the feasibility of the approach we propose develop this component based
on an existing technologies named SALMonOSS [23] and QuESo [20] developed
in our research group.

– SALMonOSS. The general idea is to adopt principles and methods from the
service oriented computing field (SOC). Particularly, we propose to adapt
the concepts of quality service and service level agreement, and propose
to reuse the existing body of knowledge and techniques from SOC mon-
itoring.Figure 3 shows the OSS-ecosystem evaluator. SALMonOSS is an
OSS-ecosystem health monitor component able to: (1) monitor a list of
ecosystem health indicators along time (2) link the gathered values with
client’s needs by operationalization of conditions in software ecosystem agree-
ments (SELAs) and (3) engineer a portfolio of methods and techniques that
supports OSS ecosystems (e.g. OSS selection, proactive adaptation, etc.).

– QuESo. QuESo is a quality model for assessing the quality of OSS ecosys-
tems. QuESo have been organized in three dimensions: (1 those that relate
to the platform around which the ecosystem is built, (2) those that relate to
the community of the OSS-ecosystem and (3) those that are related to the
ecosystem as a network of interrelated elements, such as projects or com-
panies. We are using QuESo to define the key health indicators (KHIs) to
be monitored by SALMonOSS. the SELAs and the software ecosystem level
fulfilment (SELF are composed by KHIs).

4.3 OSS-Ecosystem Model Analysis

If there is a defined OSS-ecosystem model, what type of data or functionality
should be changed in the OSS-ecosystem to satisfy the proposal model? Figure 4
shows the main components for this activity. To answer this question we will use:
an OSS-ecosystem ontology, the expert system engine and the case base reason-
ing (CBR). The rules defined in the ontology allow reasoning about the class
instances and their relationships obtained from the OSS-ecosystem data sources.

Open Source Software Ecosystems: Towards a Modelling Framework 177

SECO-model
evaluator service

client

OSS-ecosystem
model evaluator

service RE
ST

SALMonOSS
Monitoring

ServiceSO
A

P

Software
Ecosystem

Level
Agreement

SELA

i* Software
Ecosystem

Model

Software
Ecosystem

Level
Fulfillment

(SELF)

Software
Ecosystem

Level
Agreement

SELA

Software
Ecosystem

Level
Fulfillment

(SELF)

O
SS

-E
co

sy
te

m

QuESO
Quality
Model

Fig. 3. OSS-Ecosystem Model Evaluation

OSS-Ecosystem Analyser

Expert
System
Engine

Ontology
Reasoning CBR Engine

i* Model

i* Model

Fig. 4. OSS-Ecosystem Model Analysis

The expert system engine will be used to register the knowledge obtained from
the software ecosystem experts about specific OSS-ecosystem models. Finally,
we will use CBR reasoning to select strategies for propose possible changes in
the initial OSS-ecosystem model defined.

4.4 OSS-Ecosystem Model Evolution
The OSS-ecosystem are dynamics and complex artefacts. Similar to the natural
ecosystem the actors, roles, dependencies, resources, relationships, etc., changed

178 O. Franco-Bedoya

frequently over time. The question is: Once a specific OSS-ecosystem model has
been created, how its continuous evolution along time can be done?. The soft-
ware ecosystem evolution is stored in the OSS-ecosystem repositories. Since the
software environment involves human beings (developers and users). This makes
it possible, in principle, to interact with them in order to find out how and why
a software project has evolved over time, and making it easier to alter the way in
which the ecosystem will evolve in the future.[2]. With the tools defined in our
framework and with the information stored in the OSS-ecosystem repositories,
We will be able to visualize the changes in the OSS-ecosystem model structure,
interactions, health, releases, resources, etc., all this from a social technical per-
spective. E.g. OSS-communities, legalities, partners, platform, technologies and
projects.

5 Conclusions and Future Work

In this paper we have presented a general framework for representation, syn-
thesis, analysis, evaluation and evolution of OSS-ecosystems. We believe that
ecosystem modelling is a promising research direction and we plan to continue
working on it. Our focus is would be defining methodologies, languages, formal
syntax and semantic rules for modelling software ecosystem based on the mod-
els and metamodels described in the literature. In a first stage, we are working
in the QuESo quality model validation and its integration with SALMonOSS
framework.

Acknowledgments. This work is a result of the RISCOSS project, funded by the EC
7th Framework Programme FP7/2007-2013 under the agreement number 318249. We
would also like to thank the contribution of EOSSAC project, founded by the Ministry
of Economy and Competitiveness of the Spanish government (TIN2013-44641-P).

References

1. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as a
survival strategy: A tale of two software ecosystems. In: Proceedings of the 1st
Workshop on Software Ecosystems, CEUR-WS, pp. 34–48 (2009)

2. Mens, T., Claes, M., Grosjean, P., Serebrenik, A.: Studying evolving software
ecosystems based on ecological models, pp. 297–326. Springer, Heidelberg (2014)

3. Yu, E., Deng, S.: Understanding software ecosystems: A strategic modeling app-
roach. In: Proceedings of the 3th Workshop on Software Ecosystems, IWSECO,
pp. 65–76 (2011)

4. Yamakami, T.: A three-layer view model of oss: Toward understanding of diversity
of oss. In: Proceedings of the 13th International Conference on Advanced Commu-
nication Technology, ICACT, pp. 1190–1194 (2011)

5. Moore, J.F.: Predators and prey: a new ecology of competition. Harvard Business
Review 71, 75–83 (1993)

6. Stanley, J., Briscoe, G.: The ABC of digital business ecosystems. Computer, Media
and Telecommunications Law 15, 1–24 (2010) P28

Open Source Software Ecosystems: Towards a Modelling Framework 179

7. Briscoe, G.: Digital Ecosystems. PhD thesis, Imperial College London (2009)
8. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indis-

pensable Technology and Industry. MIT Press Books, vol. 1. The MIT Press (2005)
9. Lungu, M., Malnati, J., Lanza, M.: Visualizing gnome with the small project obser-

vatory. In: Proceedings of the 6th IEEE International Working Conference Mining
Software Repositories, MSR, pp. 103–106 (2009)

10. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, SPLC 2009, pp. 111–119.
Carnegie Mellon University, Pittsburgh (2009)

11. Wynn Jr, D., Boudreau, M.C., Watson, R.: Assessing the Health of an Open Source
Ecosystem. GI Publishing, New York (2008)

12. Hoving, R., Slot, G., Jansen, S.: Python: Characteristics identification of a free
open source software ecosystem. In: Proceedings of the 7th IEEE International
Conference on Digital Ecosystems and Technologies, DEST, pp. 13–18 (2013)

13. Iansiti, M., Levien, R.: The keystone advantage: what the new dynamics of business
ecosystems mean for strategy, innovation, and sustainability. Harvard Business
Press (2004)

14. López, L., Costal, D., Ayala, C.P., Franch, X., Glott, R., Haaland, K.: Modelling
and applying OSS adoption strategies. In: Yu, E., Dobbie, G., Jarke, M., Purao,
S. (eds.) ER 2014. LNCS, vol. 8824, pp. 349–362. Springer, Heidelberg (2014)

15. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem mod-
eling. In: Proceedings of the 1st International Workshop on Open Component
Ecosystems, IWOCE, pp. 41–50. ACM, New York (2009)

16. Dhungana, D., Groher, I., Schludermann, E., Biffl, S.: Software ecosystems vs.
natural ecosystems: learning from the ingenious mind of nature. In: Proceedings
of the 4th ECSA, pp. 96–102. ACM (2010) P48

17. Morgan, L., Feller, J., Finnegan, P.: Exploring value networks. Eur J Inf Syst 22,
569–588 (2013)

18. Mattmann, C.A., Downs, R.R., Ramirez, P.M., Goodale, C., Hart, A.F.: Develop-
ing an open source strategy for NASA earth science data systems. In: Proceedings
of the 13th IRI, pp. 687–693. IEEE (2012) P15

19. Wieringa, R.: Design science as nested problem solving. In: Proceedings of the 4th
International Conference on Design Science Research in Information Systems and
Technology, pp. 8:1–8:12. ACM, New York (2009)

20. Franco-Bedoya, O., Ameller, D., Costal, D., Franch, X.: Queso: A quality model for
open source software ecosystems. In: Proceedings of the 9th International Confer-
ence on Software Engineering and Applications, ICSOFT-EA, pp. 209–221 (2014)

21. Jansen, S.: Measuring the health of open source software ecosystems: Beyond the
scope of project health. Information and Software Technology 56, 1508–1519 (2014)
Special issue on Software Ecosystems P68

22. Goeminne, M., Mens, T.: Analyzing ecosystems for open source software devel-
oper communities. In: Software Ecosystems: Analyzing and Managing Business
Networks in the Software Industry, pp. 247–275. Edward Elgar Publishing (2013)
P57

23. Oriol, M., Franco-Bedoya, O., Franch, X., Marco, J.: Assessing open source commu-
nities’ health using service oriented computing concepts. In: Proceedings of the 8th
International Conference on Research Challenges in Information Science (RCIS),
pp. 1–6. IEEE (2014)

Author Index

Ameller, D. 124
Annosi, M.C. 124

Barcomb, Ann 23
Ben-Jacob, R. 124
Blincoe, Kelly 35
Blumenfeld, Y. 124

Calegari, Daniel 81
Chiappa, Marco 114
Clarke, Siobhán 91

Damian, Daniela 35
Delgado, Andrea 81

Elgammal, Amal 91

Falcon, Renatta 81
Feist, Jonas 71
Fellhofer, Stephan 13
Franch, X. 124
Franco, O.H. 124
Franco-Bedoya, Oscar 171

Gamalielsson, Jonas 71
García, Esteban 81
German, Daniel M. 146, 157
Gerosa, Marco Aurélio 3
Gross, D. 124
Grottke, Michael 23
Gustavsson, Tomas 71

Harzl, Annemarie 13

Iivari, Netta 58
Iyer, Sundaresan Krishnan 103

Jahn, Sabrina 23
Jakobsson, Fredrik 71

Kenett, R. 124
Kuroda, Rodrigo Takashi 3

Landqvist, Fredric 71
Lavazza, Luigi 114
Lopez, L. 124
Lundell, Björn 71

Mancinelli, F. 124
Maryka, Trevor 146
Milanese, Pablo 81
Morandini, M. 124
Morasca, Sandro 114

Nallur, Vivek 91

Oliva, Gustavo Ansaldi 3
Oriol, M. 124

Poo-Caamaño, Germán 146, 157

Rajanen, Mikko 58
Ramanathan, Lakshmanan 103
Re, Reginaldo 3
Riehle, Dirk 23
Robles, Gregorio 137

Siena, A. 124
Slany, Wolfgang 13
Smith, Amber K. 45
Squire, Megan 45
Stauffert, Jan-Philipp 23
Susi, A. 124

Tosi, Davide 114

Viseur, Robert 137

Wiese, Igor Scaliante 3

	Preface
	Organization
	Keynote Talks
	Building a Commercial Open Source Software
Company
	How the Eclipse CommunityWorks

	Contents
	Open Source Software Engineering
	An Empirical Study of the Relation Between Strong Change Coupling and Defects Using History and Social Metrics in the Apache Aries Project
	1 Introduction
	2 Methodology
	2.1 Identifying Strong Change Couplings
	2.2 Data Collection
	2.3 Classification Approach

	3 Characterizing Strong and Weak Change Couplings
	3.1 RQ1: Are Strong Change Couplings Related to Defects?
	3.2 RQ 2: Can Historical and Social Metrics Identify if a Change Coupling is Strong?

	4 Application
	4.1 RQ 3. Can we Predict Defects Associated with Strong Change Couplings?

	5 Conclusions
	References

	Scaling and Internationalizing an Agile FOSS Project: Lessons Learned
	1 Introduction
	2 Related Work
	3 Optimizing Services for Distributed Participation
	3.1 User Management
	3.2 Communication
	3.3 Agile Development Management
	3.4 Documentation Management

	4 Lessons Learned
	4.1 Human Related
	4.2 Technology Related

	5 Future Work
	6 Conclusion
	References

	How Developers Acquire FLOSS Skills
	1 Introduction
	2 Related Work
	3 Theory Development and Hypotheses
	4 Data Sources and Research Method
	4.1 Data Sources
	4.2 Survey Reliability
	4.3 Survey Representation
	4.4 Survey Design and Modeling Approach

	5 Results
	6 Discussion and Limitations
	7 Conclusions
	References

	Communication and Collaboration
	Implicit Coordination: A Case Study of the Rails OSS Project
	1 Introduction
	2 Implicit Coordination
	3 Implicit Coordination Enabled by Modern Development Environments
	4 Case Study
	4.1 Methods
	4.2 Results

	5 Discussion
	References

	The Diffusion of Pastebin Tools to Enhance Communication in FLOSS Mailing Lists
	1 Introduction
	2 Background
	2.1 Pastebins
	2.2 Diffusion of Innovations

	3 Methods
	3.1 Data Collection
	3.2 Data Analysis

	4 Discussion
	4.1 Pastebin.com Discussion
	4.2 Github Gists Discussion
	4.3 jsFiddle Discussion

	5 Results
	6 Limitations
	7 Future Work
	8 Conclusion
	References

	Examining Usability Work and Culture in OSS
	1 Introduction
	2 Literature Review
	3 Research Design and Empirical Insights
	3.1 Case 1
	3.2 Case 2
	3.3 Case 3
	3.4 Case 4

	4 Concluding Discussion
	References

	Examples and Case Studies
	On the Availability and Effectiveness of Open Source Software for Digital Signing of PDF Documents
	1 Introduction
	2 On Digital Signatures and Software Support
	3 Research Approach
	4 Results
	4.1 On Use of Digital Signatures in Swedish Governmental Agencies
	4.2 Interoperability of Software for Digital Signatures
	4.3 Open Source Software Support for Validation of Digital Signatures

	5 Analysis
	6 Discussion and Conclusion
	References

	A Systematic Approach for Evaluating BPM Systems: Case Studies on Open Source and Proprietary Tools
	1 Introduction
	2 Related Work
	3 BPMS Evaluation Approach
	3.1 List of Characteristics
	3.2 Evaluation Methodology

	4 BPMS Evaluation Case Studies
	4.1 Open Source BPMS Evaluation
	4.2 Proprietary BPMS Evaluation

	5 Conclusions
	References

	Smart Route Planning Using Open Data and Participatory Sensing
	1 Introduction
	2 Participatory Sensing, Open Data and Smart Cities
	2.1 Opportunistic/Human-Centred/Urban/Participatory Sensing
	2.2 Open Data
	2.3 Smart Cities
	2.4 Issues

	3 Smart GraphHopper
	3.1 Processing Data
	3.2 Marrying the Sensors to Routing

	4 Discussion and Future Work
	4.1 Performance
	4.2 Security/Privacy
	4.3 Sensor-X

	5 Conclusion
	References

	Adoption, Use, and Impact
	A Qualitative Study on the Adoption of Open Source Software in Information Technology Outsourcing Organizations
	1 Introduction
	2 Related Work
	2.1 Research Gap
	2.2 Theoretical Framework

	3 Research Method
	3.1 Within-Case Analysis
	3.2 Cross-Case Analysis

	4 Discussion of the Findings
	4.1 Enablers of OSS Adoption
	4.2 Inhibitors of OSS Adoption
	4.3 Factors That Do Not Impact OSS Adoption

	5 Conclusion
	5.1 Theoretical Contributions and Implications
	5.2 Limitations and Future Research

	Appendix
	References

	Surveying the Adoption of FLOSS by Public Administration Local Organizations
	1 Introduction
	2 Methodology
	3 Results of the Qualitative Analysis
	4 Results of the Quantitative Analysis
	5 Conclusions
	References

	The RISCOSS Platform for Risk Management in Open Source Software Adoption
	1 Introduction
	2 Related Work
	3 RISCOSS Main Functionalities
	4 RISCOSS Scopes
	5 Tool Architectu re
	6 Discussion
	7 Conclusions
	References

	Intellectual Property and Legal Issues
	First Results About Motivation and Impact of License Changes in Open Source Projects
	1 Introduction
	2 Background
	3 Methodology and Cases Studies
	4 Discussion
	5 Conclusion and Perspectives
	References

	On the Variability of the BSD and MIT Licenses
	1 Introduction
	2 Background and Related Work
	3 Research Questions
	4 Methodology
	5 Results
	5.1 The BSD Family
	5.2 The MIT/X11 Family

	6 Analysis
	7 Recommendations
	8 Threats to Validity
	9 Conclusion
	References

	The Right to a Contribution: An Exploratory Survey on How Organizations Address It
	1 Introduction
	2 Methodology
	3 Results
	3.1 How Is the Term ``Copyright Assignment'' Defined?
	3.2 What Research Topics Are Addressed in the Copyright Assignments Literature?
	3.3 What Projects and Organizations Require Copyright Assignment?

	4 Discussion
	5 Limitations of This Study
	6 Conclusions and Future Work
	References

	OSS 2015 Ph.D. Contest
	Open Source Software Ecosystems: Towards a Modelling Framework
	1 Introduction
	2 Related Work
	2.1 Software Ecosystems
	2.2 Open Source Software Ecosystems
	2.3 Software Ecosystem Models

	3 Research Methodology
	4 OSS-Ecosystem Modelling Framework
	4.1 OSS-Ecosystem Model Synthesis
	4.2 OSS-Ecosystem Model Valuation
	4.3 OSS-Ecosystem Model Analysis
	4.4 OSS-Ecosystem Model Evolution

	5 Conclusions and Future Work
	References

	Author Index

