
Declarative Compilation for Constraint
Logic Programming

Emilio Jesús Gallego Arias1, James Lipton2(B), and Julio Mariño3

1 University of Pennsylvania, Philadelphia, USA
emilioga@cis.upenn.edu

2 Wesleyan University, Middletown, USA
jlipton@wesleyan.edu

3 Universidad Politécnica de Madrid, Madrid, Spain
jmarino@fi.upm.es

Abstract. We present a new declarative compilation of logic programs
with constraints into variable-free relational theories which are then exe-
cuted by rewriting. This translation provides an algebraic formulation
of the abstract syntax of logic programs. Management of logic variables,
unification, and renaming apart is completely elided in favor of alge-
braic manipulation of variable-free relation expressions. We prove the
translation is sound, and the rewriting system complete with respect to
traditional SLD semantics.

Keywords: Logic programming · Constraint programming · Relation
algebra · Rewriting · Semantics

1 Introduction

Logic programming is a paradigm based on proof search and directly program-
ming with logical theories. This is done to achieve declarative transparency : guar-
anteeing that execution respects the mathematical meaning of the program. The
power that such a paradigm offers comes at a cost for formal language research
and implementation. Management of logic variables, unification, renaming vari-
ables apart and proof search are cumbersome to handle formally. Consequently,
it is often the case that the formal definition of these aspects is left outside the
semantics of programs, complicating reasoning about them and the introduction
of new declarative features.

We address this problem here by proposing a new compilation framework –
based on ideas of Tarski [21] and Freyd [9] – that encodes logic programming
syntax into a variable-free algebraic formalism: relation algebra. Relation alge-
bras are pure equational theories of structures containing the operations of com-
position, intersection and convolution. An important class of relation algebras
is the so-called distributive relation algebras with quasi-projections, which also
incorporate union and projections.

We present the translation of constraint logic programs to such algebras in
3 steps. First, for a CLP program P with signature Σ, we define its associated
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 299–316, 2015.
DOI: 10.1007/978-3-319-17822-6 17

300 E.J.G. Arias et al.

relation algebra QRAΣ , which provides both the target object language for
program translation and formal axiomatization of constraints and logic variables.
Second, we introduce a constraint compilation procedure that maps constraints
to variable-free relation terms in QRAΣ . Third, a program translation procedure
compiles constraint logic programs to an equational theory over QRAΣ .

The key feature of the semantics and translation is its variable-free nature.
Programs that contain logical variables are represented as ground terms in our
setting, thus all reasoning and execution is reduced to algebraic equality, allowing
the use of rewriting. The resulting system is sound and complete with respect to
SLD resolution. Our compilation provides a solution to the following problems:

– Underspecification of abstract syntax and logic variable management in logic
programs: solved by the the inclusion of metalogical operations directly into
the compilation process.

– Interdependence of compilation and execution strategies: solved by making
target code completely orthogonal to execution.

– Lack of transparency in compilation (for subsequent optimization and abstract
interpretation): solved by making target code a low-level yet fully declarative
translation of the original program.

Variable Elimination and Relation Composition. We illustrate the spirit of trans-
lation, and in particular the variable elimination procedure, by considering a
simple case, namely the transitive closure of a graph:

edge(a,b). connected(X,X).
edge(b,c). connected(X,Y) :- edge(X,Z), connected(Z,Y).
edge(a,e).
edge(e,f).

In this carefully chosen example, the elimination of variables and the translation
to binary relation symbols is immediate:

edge = (a, b) ∪ (b, c) ∪ (a, e) ∪ (a, e) ∪ (e, f)
connected = id ∪ edge; connected

The key feature of the resulting term is the composition edge; connected. The
logical variable Z is eliminated by the composition of relations allowing the
use of variable free object code. A query connected(a,X) is then modeled by
the relation connected ∩ (a, a)1 where 1 is the (maximal) universal relation.
Computation can proceed by rewriting the query using a suitable orientation of
the relation algebra equations and unfolding pertinent recursive definitions.

Handling actual arbitrary constraint logic programs is more involved. First,
we use sequences and projection relations to handle predicates involving an arbi-
trary number of arguments and an unbounded number of logic variables; second,
we formalize constraints in a relational way.

Projections and permutations algebraically encode all the operations of logical
variables – disjunctive and conjunctive clauses are handled with the help of the
standard relational operators ∩, ∪.

Declarative Compilation for Constraint Logic Programming 301

Constraint Logic Programming Conventions. We refer the reader to [16] for basic
definitions of logic programming over Horn clauses, and [12] for background on
the syntax and semantics of constraint logic programming. In this paper we fix
a signature Σ, a set of terms TΣ(X), and a subset C of all first-order formu-
las over Σ closed under conjunction and existential quantification to be the set
of constraint formulas as well as a Σ-structure D, called the constraint domain.
Constraint logic programs are sets of Horn clauses. We use vector notation exten-
sively in the paper, to abbreviate Horn clauses with constraints p ← q1, . . . , qn,
where p is an atomic formula and qi may be an atomic formula or a constraint.
For instance, in our vector notation, a clause is written p(t [x]) ← q(u [x ,y]),
where the boldface symbols indicate vectors of variables x ,y , terms t ,u (depend-
ing on variables x , etc. . .) and predicates q (depending on terms u).

2 Relation Algebras and Signatures

In this section, we define QRAΣ , a relation algebra in the style of [9,21] formal-
izing a CLP signature Σ and a constraint domain D. We define its language, its
equational theory and semantics.

2.1 Relational Language and Theory

The relation language RΣ is built from a set RC of relation constants for constant
symbols a set RF of relation constants for function symbols from Σ, and a set of
relation constants for primitive predicates RCP , as well as a fixed set of relation
constants and operators detailed below. Let us begin with RC . Each constant
symbol a ∈ CΣ defines a constant symbol (a, a) ∈ RC , each function symbol
f ∈ FΣ defines a constant symbol Rf in RF . Each predicate symbol r ∈ CPΣ

defines a constant symbol r in RCP . We write RΣ for the full relation language:

RC = {(a, a) | a ∈ CΣ} RF = {Rf | f ∈ FΣ , } RCP = {r | r ∈ CPΣ}
Ratom ::= RC | RF | RCP | id | di | 1 | 0 | hd | tl
RΣ ::= Ratom | RΣ

◦ | RΣ ∪ RΣ | RΣ ∩ RΣ | RΣRΣ

The constants 1,0, id , di respectively denote the universal relation (whose stan-
dard semantics is the set of all ordered pairs on a certain set), the empty
relation, the identity (diagonal) relation, and identity’s complement. Juxta-
position RR represents relation composition (often written R;R) and R◦ is
the inverse of R. We write hd and tl for the head and tail relations. The
projection of an n-tuple onto its i-th element is written Pi and defined as
P1 = hd, P2 = tl;hd, . . . , Pn = tln−1;hd.

QRAΣ (Fig. 1) is the standard theory of distributive relation algebras, plus
Tarski’s quasiprojections [21], and equations axiomatizing the new relations of
RΣ . Note that products and their projections are axiomatized in a relational,
variable-free manner.

302 E.J.G. Arias et al.

R ∩ R = R R ∩ S = S ∩ R R ∩ (S ∩ T) = (R ∩ S) ∩ T
R ∪ R = R R ∪ S = S ∪ R R ∪ (S ∪ T) = (R ∪ S) ∪ T

R id = R R0 = 0 0 ⊆ R ⊆ 1
R ∪ (S ∩ R) = R = (R ∪ S) ∩ R

R(S ∪ T) = RS ∪ RT (S ∪ T)R = SR ∪ TR
R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T)

(R ∪ S)◦ = R◦ ∪ S◦ (R ∩ S)◦ = S◦ ∩ R◦

R◦◦ = R (RS)◦ = S◦R◦

R(S ∩ T) ⊆ RS ∩ RT RS ∩ T ⊆ (R ∩ TS◦)S
id ∪ di = 1 id ∩ di = 0

hd(hd)◦ ∩ tl(tl)◦ ⊆ id (hd)◦hd ⊆ id, (tl)◦tl ⊆ id (hd)◦tl = 1
1(c, c)1 = 1 (c, c) ⊆ id

Fig. 1. QRAΣ

2.2 Semantics

Let Σ be a constraint signature and D a Σ-structure. Write tD for the interpre-
tation of a term t ∈ TΣ . We define D† to be the union of D0 = {〈〉} (the empty
sequence), D and D-finite products, for example: D2,D2×D,D×D2, . . . We write
〈a1, . . . , an〉 for members of the n-fold product associating to the right, that is
to say, 〈a1, 〈a2, . . . , 〈an−1, an〉 · · ·〉〉. Furthermore, we assume right-association of
products when parentheses are absent. Note that the 1 element sequence does
not exist in the domain, so we write 〈a〉 for a as a convenience.

Let RD = D† ×D†. We make the power set of RD into a model of the relation
calculus by interpreting atomic relation terms in a certain canonical way, and
the operators in their standard set-theoretic interpretation. We interpret hd and
tl as projections in the model.

Definition 1. Given a structure D a relational D-interpretation is a mapping
[[]]D

†
of relational terms into RD satisfying the identities in Fig. 2. The function

α used in this table and elsewhere in this paper refers to the arity of its argument,
whether a relation or function symbol from the underlying signature.

Theorem 1. Equational reasoning in QRAΣ is sound for any interpretation:

QRAΣ � R = S =⇒ [[R]]D
†

= [[S]]D
†

3 Program Translation

We define constraint and program translation to relation terms. To this end, we
define a function K̇ from constraint formulas with – possibly free – logic vari-
ables to a variable-free relational term. K̇ is the core of the variable elimination
mechanism and will appear throughout the rest of the paper.

Declarative Compilation for Constraint Logic Programming 303

Fig. 2. Standard interpretation of binary relations.

The reader should keep in mind that there are two kinds of predicate symbols
in a constraint logic program: constraint predicates r which are translated by the
function K̇ above to relation terms r, and defined or program predicates.

We translate defined predicates – and CLP programs – to equations p � R,
where p will be drawn from a set of definitional variables standing for program
predicate names p, and R is a relation term. The set of definitional equations
can be both seen as an executable specification, by understanding it in terms of
the rewriting rules given in this paper; or as a declarative one, by unfolding the
definitions and using the standard set-theoretic interpretation of binary relations.

3.1 Constraint Translation

We fix a canonical list x1, . . . , xn of variables occurring in all terms, so as to
translate them to variable-free relations in a systematic way. There is no loss of
generality as later, we transform programs into this canonical form.

Definition 2 (TermTranslation). Define a translation function K : TΣ(X)→
RΣ from first-order terms to relation expressions as follows:

K(c) = (c, c)1
K(xi) = P ◦

i

K(f(t1, . . . , tn)) = Rf ;
⋂

i≤n Pi;K(ti)

This translation is extended to vectors of terms as follows K(〈t1, . . . , tn〉) =⋂
i≤n Pi;K(ti).

The semantics of the relational translation of a term is the set of all of the
instances of that term, paired with the corresponding instances of its variables.
For instance, the term x1 + s(s(x2)) is translated to the relation +; (P1;P ◦

1 ∩
P2; s; s;P ◦

2).

Lemma 1. Let t[x] be a term of TΣ(X) whose free variables are among those in
the sequence x = x1, . . . , xm. Then, for any sequences a = a1, . . . , am ∈ D†,u ∈
D† and any b ∈ D we have

(b,au) ∈ [[K(t[x])]]D
† ⇐⇒ b = tD[a/x]

304 E.J.G. Arias et al.

We will translate constraints over m variables to partially coreflexive relations
over the elements that satisfy them. A binary relation R is coreflexive if it is
contained in the identity relation, and it is i-coreflexive if its i-th projection is
contained in the identity relation: P ◦

i ;R;Pi ⊆ id . Thus, for a variable xi free in
a constraint, the translation will be i-coreflexive.

We now formally define two partial identity relation expressions Im, Qi for
the translation of existentially quantified formulas, in such a way that if a con-
straint ϕ[x] over m variables is translated to an m-coreflexive relation, the
formula ∃xi. ϕ[x] corresponds to a coreflexive relation in all the positions but
the i-th one, as xi is no longer free. In this sense Qi may be seen as a hiding
relation.

Definition 3. The partial identity relation expressions Im, Qi for m, i > 0 are
defined as:

Im :=
⋂

1≤i≤m

Pi(Pi)◦ Qi = Ii−1 ∩ Ji+1 Ji = tli; (tl◦)i

Im is the identity on sequences up to the first m elements. Qi is the identity on
all but the i-th element, with the i-th position relating arbitrary pairs of elements.

Definition 4 (Constraint Translation). The K̇ : LD → RΣ translation func-
tion for constraint formulas is:

K̇(p(t1, . . . , tn)) = (
⋂

i≤n K(ti)◦;P ◦
i); p; (

⋂
i≤n Pi;K(ti))

K̇(ϕ ∧ θ) = K̇(ϕ) ∩ K̇(θ)
K̇(∃xi. ϕ) = Qi; K̇(ϕ);Qi

As an example, the translation of the constraint ∃x1, x2.s(x1) ≤ x2 is

Q1;Q2; (P ◦
1 ; s◦;P1 ∩ P ◦

2 ;P2);≤; (P1; s;P ◦
1 ∩ P2;P ◦

2);Q1;Q2

Lemma 2. Let ϕ[x] be a constraint formula with free variables among
x = x1, . . . , xm. Then, for any sequences a = a1, . . . , am, u and u′ of mem-
bers of D

(au,au′) ∈ [[K̇(ϕ[x])]]D
† ⇐⇒ D |= ϕ[a/x]

3.2 Translation of Constraint Logic Programs

To motivate the technical definitions below, we illustrate the program translation
procedure with an example. Assume a language with constant 0, a unary function
symbol s, constraint predicate = and program predicate add . We can write the
traditional Horn clause definition of Peano addition:

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

Declarative Compilation for Constraint Logic Programming 305

This program is first purified: the variables in the head of the clauses defining
each predicate are chosen to be a sequence of fresh variables x1, x2, x3, with all
bindings stated as equations in the tail.

add(x1, x2, x3) ←− x1 = 0, x2 = x3.

add(x1, x2, x3) ←− ∃x4, x5x1 = s(x4), x3 = s(x5), add(x4, x2, x5))

The clauses are combined into a single definition similar to the Clark completion
of a program. We also use the variable permutation π sending x1, x2, x3, x4, x5 �→
x4, x2, x5, x1, x3 to rewrite the occurrence of the predicate add in the tail so that
its arguments coincide with those in the head:

add(x1, x2, x3) ↔ (x1 = 0, x2 = x3)
∨ ∃x4, x5, x1 = s(x4), x3 = s(x5), wπ add(x1, x2, x3).

Now we apply relational translation K̇ defined above to all relation equations,
and eliminate the existential quantifier using the partial identity operator I3
defined above. We represent the permutation π using the relation expression Wπ

that simulates its behavior in a variable-free manner and replace the predicate
add with a corresponding relation variable add. (A formal definition of Wπ and
its connection with function wπ is given below, see Definition 7 and Lemma 4.)

add � K̇(x1 = o ∧ x2 = x3) ∪ I3((K̇(x1 = s(x4) ∧ x3 = s(x5)) ∩ Wπ add W o
π)))

Now we give a description of the general translation procedure. We first process
programs to their complete database form as defined in [6], which given the
executable nature of our semantics reflects the choice to work within the minimal
semantics. The main difference in our processing of a program P to its completed
form P ′ is that a strict policy on variable naming is enforced, so that the resulting
completed form is suitable for translation to relational terms.

Definition 5 (General Purified Form for Clauses). For a clause p(t[y]) ←
q(v[y]), let h = α(p), y = |y|, v = |v|, and m = h + y + v. Assume vectors:

x = xhxt = xhxyxv = x1, . . . , xh,xh+1, . . . , xh+y,xh+y+1, . . . , xm

xh = x1, . . . , xh

xt = xyxv = xh+1, . . . , xh+y,xh+y+1, . . . , xm

xy = xh+1, . . . , xh+y

xv = xh+y+1, . . . , xm

the clause’s GPF form is:

p(xh) ← ∃h↑.((xh = t[xy] ∧ xv = v[xy]), q(xv))

∃n↑ denotes existential closure with respect to all variables whose index is greater
than n. xh and x t stand for head and tail variables. A program is in GPF form
iff every one of its clauses is. After the GPF step, we perform Clark’s completion.

306 E.J.G. Arias et al.

Definition 6 (Completion of a Predicate). We define Clark’s completed
form for a predicate p with clauses cl1, . . . , cln in GPF form:

p(xh) ←cl1 tl1
. . .
p(xh) ←cln tlk

}
Clark’s comp.
========⇒ p(xh) ↔ tl1 ∨ · · · ∨ tlk

The above definition easily extends to programs. Completed forms are translated
to relations by using K̇ for the constraints, mapping conjunction to ∩ and ∨ to
∪. Existential quantification, recursive definitions and parameter passing are
handled in a special way which we proceed to detail next.

Existential Quantification: Binding Local Variables. Variables local to
the tail of a clause are existentially quantified. For technical reasons — simpler
rewrite rules — we use the partial identity relation In, rather than the Qn

relation defined in the previous sections. In acts as an existential quantifier for
all variables of index greater than a given number.

Lemma 3. Let a = a1, . . . , an ∈ D, x = x1, . . . , xn, let ϕ be a constraint over
m free variables, with m > n, y a vector of length k such that n + k = m, and
u, v ∈ D†, then:

(au,av) ∈ [[In; K̇(ϕ[xy]); In]]D
† ⇐⇒ D |= (∃n↑.ϕ[xy])[a/x]

Recursive Predicate Definitions. We shall handle recursive predicate defi-
nitions by extending the relational language with a set of definitional symbols
p, q, r, . . . for predicates. Then, a recursive predicate p is translated to a defin-
itional equation p � R(p1, . . . , pn), spelled out in Definition 8 where the nota-
tion R(p1, . . . , pn) indicates that relation R resulting from the translation may
depend on predicate symbols p1, . . . , pn. Note that R is monotone in p1, . . . , pn.
Consequently, using a straightforward fixed point construction we can extend
the interpretation [[]]D

†
to satisfy [[p]]D

†
= [[R(p1, . . . , pn)]]D

†
, thus preserving

soundness when we adjoin the definitional equations to QRAΣ . The details are
given in Subsect. 3.3, below.

Parameter Passing. The information about the order of parameters in each
pure atomic formula p(xi1 , . . . , xir) is captured using permutations. Given a
permutation π : {1..n} → {1..n}, the function wπ on formulas and terms is
defined in the standard way by its action over variables. We write Wπ for the
corresponding relation:

Definition 7 (Switching Relations). Let π : {1..n} → {1..n} be a permuta-
tion. The switching relation expression Wπ, associated to π is:

Wπ =
n⋂

j=1

Pπ(j)(Pj)◦.

Declarative Compilation for Constraint Logic Programming 307

Fig. 3. Biblical family relations in prolog.

Lemma 4. Fix a permutation π and its corresponding wπ and Wπ. Then:

[[K̇(wπ(p(x1, . . . , xn)))]] = [[WπK̇(p)W ◦
π]]

The Translation Function. Now we may define the translation for defined
predicates.

Definition 8 (Relational Translation of Predicates). Let h, p(xh) be as in
Definition 5. The translation function Tr from completed predicates to relational
equations is defined by:

Tr(p(xh) ↔ cl1 ∨ · · · ∨ clk) = (p � Trcl(cl1) ∪ · · · ∪ Trcl(clk))
Trcl(∃h↑.p) = Ih; (Tr l(p1) ∩ · · · ∩ Tr l(pn)); Ih

Tr l(ϕ) = K̇(ϕ) ϕ a constraint
Tr l(pi(xi)) = Wπ; pi;W ◦

π such that π(x1, . . . , xα(pi)) = xi

where xi is the original sequence of variables in pi in the Clark completion of
the program, and π a permutation that transforms the ordered sequence of length
α(p) starting at x1 to xi.

We will sometimes write In(R) for InRIn and Wπ(R) for WπRW ◦
i .

Example 1. Figure 3 shows a fragment of a constraint logic program to represent
a family relations database [20].

Consider the translation of the program predicates mother, parent, sibling and
brother. We write the program in general purified form:

mother(x1, x2) ⇐⇒ (x1 = sarah) ∧ (x2 = isaac)
parent(x1, x2) ⇐⇒ father(x1, x2) ∨ mother(x1, x2)
sibling(x1, x2) ⇐⇒ ∃x3. x1 �= x2 ∧ parent(x3, x1) ∧ parent(x3, x2)
brother(x1, x2) ⇐⇒ male(x1) ∧ sibling(x1, x2)

308 E.J.G. Arias et al.

Letting σ1 and σ2 be the permutations 〈1, 2, 3〉 −→ 〈2, 3, 1〉 and 〈1, 2, 3〉 −→
〈3, 2, 1〉 respectively we obtain

mother = K̇(x1 = sarah) ∩ K̇(x2 = isaac)
parent = father ∪ mother
sibling = K̇(x1 �= x2) ∩ I2[Wσ1parentW o

σ1
∩ Wσ2parentW o

σ2
]I2

brother = male ∩ sibling

Thequery brother(X,milcah) leads to the rewriting of the term K̇(x2 = milcah)∩
brother to K̇(x2 = milcah) ∩ K̇(x1 = lot).

3.3 The Least Relational Interpretation Satisfying
Definitional Equations

Let P be a program and p1, . . . , pn be a sequence of relation variables, one for
each predicate symbol pi in the language of P . We define the extended relation
calculus RΣ(p1, . . . , pn) to be the set of terms generated by p1, . . . , pn and the
terms of RΣ . More formally

Ratom ::= p1 | · · · | pn | RC | RF | RCP | id | di | 1 | 0 | hd | tl
RΣ(p1, . . . , pn) ::= Ratom | RΣ

◦ | RΣ ∪ RΣ | RΣ ∩ RΣ | RΣRΣ

Observe that the relational translation of Definition 8 maps programs to sets of
definitional equations pi � Ri(p1, . . . , pn) over RΣ(p1, . . . , pn). Let F be the set
of all n such definitional equations.

Given a structure D we now lift the definition of D-interpretation given
in Definition 1 to the extended relation calculus. An extended interpretation
[[]] : RΣ(p1, . . . , pn) −→ RD is a function satisfying the identities in Fig. 2 as well
as mapping each relation variable pi to an arbitrary member [[pi]] of RD. Given a
structure D for the language of a program, its action is completely determined by
its values at the pi. Note that the set I of all such interpretations forms a CPO, a
complete partial order with a least element, under pointwise operations. That is
to say, any directed set {[[]]d : d ∈ Λ} of interpretations has a supremum

∨
d∈Λ[[]]d

given by T �→
⋃

d∈Λ[[T]]d. The directedness assumption is necessary. For example,
to show that a pointwise supremum of interpretations

∨
d∈Λ[[]]d preserves com-

position (one of the 13 identities of Fig. 2), we must show that for any relation
terms R and S we have

⋃
d∈Λ[[RS]]d =

⋃
d∈Λ[[R]]d;

⋃
d∈Λ[[S]]d. However the right

hand side of this identity is equal to
⋃

d,e∈Λ×Λ[[R]]d; [[S]]e. But since the family of
interpretations is directed, for every pair d, e of indices in Λ there is an m ∈ Λ
with [[]]d, [[]]e ≤ [[]]m, hence

⋃
d,e∈Λ×Λ[[R]]d; [[S]]e ≤

⋃
m∈Λ[[R]]m[[S]]m. The reverse

inequality is immediate and we obtain
⋃

d∈Λ[[R]]d;
⋃

d∈Λ[[S]]d =
⋃

d∈Λ[[RS]]d.
The least element of the collection I is the interpretation [[]]0 given by [[pi]]0 =

∅ for all i (1 ≤ i ≤ n).
In the remainder of this section, the word interpretation will refer to an

extended D-interpretation.

Declarative Compilation for Constraint Logic Programming 309

Lemma 5. Let [[]] and [[]]′ be interpretations. If for all i [[pi]] ⊆ [[pi]]′ then
[[]] ≤ [[]]′.

Proof. By induction on the structure of extended relations. For all relational
constants c we have [[c]] = [[c]]′ We will consider one of the inductive cases,
namely that of composition. Suppose [[R]] ⊆ [[R]]′ and [[S]] ⊆ [[S]]′. Then we
must show that [[RS]] ⊆ [[RS]]′. But this follows immediately by a set-theoretic
argument, since (x, u) ∈ [[R]] and (u, y) ∈ [[S]] imply, by inductive hypothesis,
that (x, u) ∈ [[R]]′ and (u, y) ∈ [[S]]′. It can also be proved using the axioms of
QRAΣ by showing that A∪A′ = A′ and B ∪B′ = B′ imply AB ∪A′B′ = A′B′.
We leave the remaining cases to the reader.

We will now define a operator ΦF from interpretations to interpretations, show
it continuous and define the interpretation generated by F as its least fixed
point. This interpretation will be the least extension of a given relational D-
interpretation satisfying the equations in F .

Definition 9. Let P be a program, with predicate symbols {p1, . . . , pn}. Fix a
structure D for the language of P . Let F be the set of definitional equations {pi �
Ri(p1, . . . , pn) : i ∈ N} produced by the translation Tr of P of Definition 8. Let I
be the set of extended D-interpretations, with poset structure induced pointwise.
Then we define the operator ΦF : I −→ I as follows

ΦF ([[]])(pi) = [[Ri(p1, . . . , pn)]].

Theorem 2. ΦF is a continuous operator, that is to say it preserves suprema
of directed sets.

Proof. Let {[[]]d : d ∈ Λ} be a directed set of interpretations. By Lemma 5 it
suffices to show that for all pi

ΦF (
∨

d∈Λ

[[]]d)(pi) = (
∨

d∈Λ

ΦF ([[]]d))(pi).

Let [[]]∗ =
∨

d∈Λ [[]]d. Then ΦF (
∨

d∈Λ [[]]d)(pi) = [[Ri(p1, . . . , pn)]]∗, which in
turn is the union

⋃
d∈Λ[[Ri(p1, . . . , pn)]]d. But this is equal to

⋃
d∈Λ ΦF ([[]]d)(pi).

Therefore ΦF (
∨

d∈Λ [[]]d) =
∨

d∈Λ ΦF ([[]]d).

By Kleene’s fixed point theorem ΦF has a least fixed point [[]]† in I. This fixed
point is, in fact, the union of all Φ

(n)
F ([[]]0), (n ∈ N). By virtue of its being fixed

by ΦF we have [[pi]]
† = [[Ri(p1, . . . , pn)]]†. That is to say, all equations in F

are true in [[]]†, which is the least interpretation with this property under the
pointwise order.

4 A Rewriting System for Resolution

In this section, we develop a rewriting system for proof search based on the
equational theory QRAΣ , which will be proven equivalent to the traditional

310 E.J.G. Arias et al.

Fig. 4. Constraint meta-reductions

operational semantics for CLP. In Sect. 5 we will show that answers obtained by
resolution correspond to answers yielded by our rewriting system and conversely.

The use of ground terms permits the use of rewriting, overcoming the prac-
tical and theoretical difficulties that the existence of logic variables causes in
equational reasoning. Additionally, we may speak of executable semantics: we
use the same function to compile and interpret CLP programs in the relational
denotation.

For practical reasons, we don’t rewrite over the full relational language, but
we will use a more compact representation of the relations resulting from the
translation.1

Formally, the signature of our rewriting system is given by the following term-
forming operations over the sort TR: I : (N × TR) → TR, W : (Perm × TR) →
TR, K : LD → TR, ∪ : (TR × TR) → TR and ∩ : (TR × TR) → TR. Thus, for
instance, the relation In;R; In is formally represented in the rewriting system
as I(n,R), provided R can be represented in it. In practice we make use of the
conventional relational notation In,Wπ when no confusion can arise.

4.1 Meta-Reductions

We formalize the interface between the rewrite system and the constraint solver
as meta-reductions (Fig. 4). Every meta-reduction uses the constraint solver in a
black-box manner to perform constraint manipulation and satisfiability checking.

Lemma 6. All meta-reductions are sound: if mi : l P�−→ r then [[l]]D
†

= [[r]]D
†
.

4.2 A Rewriting System for SLD Resolution

We present a rewriting system for proof search in Fig. 5. We prove local conflu-
ence. Later we will prove that a query rewrites to a term in the canonical form
K̇(ψ) ∪ R iff the leftmost branch of the associated SLD-tree of the program is
finite.
1 There is no problem in defining the rewriting system using the general relational

signature, but we would need considerably more rules for no gain.

Declarative Compilation for Constraint Logic Programming 311

Fig. 5. Rewriting system for SLD.

Lemma 7. P�−→ is sound: if pi : l P�−→ r then [[l]]D
†

= [[r]]D
†
.

Lemma 8. If we give higher priority to p7 over p8,
P�−→ is locally confluent.

A left outermost strategy gives priority to p7 over p8.

5 Operational Equivalence

We prove that our rewriting system over relational terms simulates “traditional”
SLD proof search specified as a transition-based operational semantics (i.e. [7,
12]). For reasons of space, we give a high-level overview of the proof. The full
details can be found in the online technical report.

Recall a resolvent is a sequence of atoms or constraints p. We write � for the
empty resolvent. We assume given a constraint domain D and its satisfaction
relation D |= ϕ. A program state is an ordered pair 〈p |ϕ〉 where p is a resolvent
and ϕ is a constraint (called the constraint store). The notation cl : p(u [y]) ←
q(v [z]) indicates that p(u [y]) ← q(v [z]) is a program clause with label cl.
Then, the standard operational semantics for SLD resolution can be defined as
the following transition system over program states:

Definition 10 (Standard SLD Semantics).

〈ϕ,p |ψ〉 cs−→l 〈p |ψ ∧ ϕ〉 iff D |= ψ ∧ ϕ

〈p(t[x]),p |ϕ〉 rescl−−−→l 〈q(v[σ(z)]),p |ϕ ∧ (u[σ(y)] = t[x])〉
where: cl : p(u[y]) ← q(v[z])

D |= ϕ ∧ (u[σ(y)] = t[x])
σ a renaming apart for y, z,x

Taking the previous system as a reference, the proof proceeds in two steps: we
first define a new transition system that internalizes renaming apart and proof
search, and we prove it equivalent to the standard one.

Second, we show a simulation relation between the fully internalized transi-
tion system and a transition system defined over relations, which is implemented
by the rewriting system of Sect. 4.

With these two equivalences in place, the main theorem is:

312 E.J.G. Arias et al.

Theorem 3. The rewriting system of Fig. 5 implements the transition system
of Definition 10. Formally, for every transition (r1, r2) ∈ (−→l)∗,

∃n.(Tr(r1), T r(r2)) ∈ (P�−→)n

and
∀r3.(Tr(r1), r3) ∈ (P�−→)n ⇒ Tr(r2) = r3

Thus, given a program P , relational rewriting of translation will return an answer
constraint K(ϕ) iff SLD resolution from P reaches a program state 〈� |ϕ′〉, with
ϕ ⇐⇒ ϕ′.

In the next section, we briefly describe the main intermediate system used
in the proof.

5.1 The Resolution Transition System

The crucial part of the SLD-simulation proof is the definition of a new extended
transition system over program states that will internalize both renaming apart
and the proof-search tree. It is an intermediate system between relation rewriting
and traditional proof search.

The first step towards the new system is the definition of an extended notion
of state. In the standard system of Definition 10, a state is a resolvent plus a
constraint store. Our extended notion of state includes:

– A notion of scope, which is captured by a natural number which can be under-
stood as the number of global variables of the state.

– A notion of substate, which includes information about parameter passing in
the form of a permutation.

– A notion of clause selection, and
– a notion of failure and parallel state, which represents failures in the search

tree and alternatives.

Such states are enough to capture all the meta-theory of constraint logic pro-
gramming except recursion, which operates meta-logically by replacing predicate
symbols by their definitions. Formally:

Definition 11. The set PS of resolution states is inductively defined as:

– 〈fail〉.
– 〈p|ϕ〉n, where pi ≡ Pi(xi) is an atom, or a constraint pi ≡ ψ, xi a vector of

variables, ϕ a constraint store and n a natural number.
– 〈πPS ,p|ϕ〉n, where PS is a resolution state, and π a permutation.
– 〈π�PS,p|ϕ〉n, the “select state”. It represents the state just before selecting

a clause to proceed with proof search.
–

(
PS 1 PS2

)
. The bar is parallel composition, capturing choice in the proof

search tree.

Declarative Compilation for Constraint Logic Programming 313

Fig. 6. Resolution transition system

The resolution transition system →P ⊆ (PS × PS) is shown in Fig. 6. The two
first transitions deal with the case where a constraint is first in the resolvent,
failing or adding it to the constraint store in case it is satisfiable.

When the head of the resolvent is a defined predicate, the call transition will
replace it by its definition, properly encapsulated by a select state equipped with
the permutation capturing argument order.

The select transition performs two tasks: first, it modifies the current con-
straint store adding the appropriate permutation and scoping (n, π); second, it
selects the first clause for proof search.

The return transitions will either propagate failure or undo the permutation
and scoping performed at call time.

sub, backtrack, and seq are structural transitions with a straightforward inter-
pretation from a proof search perspective.

Then, we have the following lemma:

Lemma 9. For all queries 〈p|ϕ〉n, the first successful −→l derivation using a
SLD strategy uniquely corresponds to a −→p derivation:

〈p|ϕ〉n −→l . . . −→l 〈� |ϕ′〉n ⇐⇒ 〈p|ϕ〉n −→p . . . −→p

(
〈� |ϕ′〉n PS

)

for some resolution state PS.

Corollary 1. The transition systems of Definition 10 and Fig. 6 are answer-
equivalent: for any query they return the same answer constraint.

With this lemma in place, the proof of Theorem3 is completed by showing a
simulation between the resolution system and a transition system induced by
relation rewriting.

314 E.J.G. Arias et al.

6 Related and Future Work

Previous Work: The paper is the continuation of previous work in [4,10,15]
considerably extended to include constraint logic programming, which requires
a different translation procedure and a different rewriting system.

In particular, the presence of constraints in this paper permits a different
translation of the Clark completion of a program and plays a crucial role in
the proof of completeness, which was missing in earlier work. The operational
semantics is also new.

Related Work: A number of solutions have been proposed to the syntactic specifi-
cation problem. There is an extensive literature treating abstract syntax of logic
programming (and other programming paradigms) using encodings in higher-
order logic and the lambda calculus [18], which has been very successful in for-
malizing the treatment of substitution, unification and renaming of variables,
although it provides no special framework for the management and progressive
instantiation of logic variables, and no treatment of constraints. Our approach
is essentially orthogonal to this, since it relies on the complete elimination of
variables, substitution, renaming and, in particular, existentially quantified vari-
ables. Our reduction of management of logic variables to variable free rewriting
is new, and provides a complete solution to their formal treatment.

An interesting approach to syntax specification is the use of nominal logic
[5,22] in logic programming, another, the formalization of logic programming in
categorical logic [1,2,8,13,19] which provides a mathematical framework for the
treatment of variables, as well as for derivations [14]. None of the cited work
gives a solution that simultaneously includes logic variables, constraints and
proof search strategies however.

Bellia and Occhiuto [3] have defined a new calculus, the C-expression cal-
culus, to eliminate variables in logic programming. We believe our translation
into the well-understood and scalable formalism of relations is more applicable
to extensions of logic programming. Furthermore the authors do not consider
constraints.

Future Work: A complementary approach to this work is the use of category
theory, in particular the Freyd’s theory of tabular allegories [9] which extends the
relation calculus to an abstract category of relations providing native facilities
for generation of fresh variables and a categorical treatment of monads. A first
attempt in this direction has been published by the authors in [11]. It would
be interesting to extend the translation to hereditarily Harrop or higher order
logic [17] by using a stronger relational formalism, such as Division and Power
Allegories. Also, the framework would yield important benefits if it was extended
to include relation and set constraints explicitly.

7 Conclusion

We have developed a declarative relational framework for the compilation of Con-
straint Logic programming that eliminates logic variables and gives an algebraic

Declarative Compilation for Constraint Logic Programming 315

treatment of program syntax. We have proved operational equivalence to the
classical approach. Our framework has several significant advantages.

Programs can be analyzed, transformed and optimized entirely within this
framework. Execution is carried out by rewriting over relational terms. In these
two ways, specification and implementation are brought much closer together
than in the traditional logic programming formalism.

References

1. Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declara-
tive programming languages. Theor. Comput. Sci. 410(46), 4626–4671 (2009),
http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/5475111b9
a9642244a208e9bd1fcd46a (abstract Interpretation and Logic Programming: In
honor of professor Giorgio Levi)

2. Asperti, A., Martini, S.: Projections instead of variables: a category theoretic inter-
pretation of logic programs. In: ICLP, pp. 337–352 (1989)

3. Bellia, M., Occhiuto, M.E.: C-expressions: a variable-free calculus for equational
logic programming. Theor. Comput. Sci. 107(2), 209–252 (1993)

4. Broome, P., Lipton, J.: Combinatory logic programming: computing in relation
calculi. In: ILPS’94: Proceedings of the 1994 International Symposium on Logic
programming, pp. 269–285. MIT Press, Cambridge (1994)

5. Cheney, J., Urban, C.: Alpha-prolog: a logic programming language with names,
binding, and alpha-equivalence (2004)

6. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press (1977)

7. Comini, M., Levi, G., Meo, M.C.: A theory of observables for logic programs. Inf.
Comput. 169(1), 23–80 (2001)

8. Finkelstein, S.E., Freyd, P.J., Lipton, J.: A new framework for declarative pro-
gramming. Theor. Comput. Sci. 300(1–3), 91–160 (2003)

9. Freyd, P., Scedrov, A.: Categories, Allegories. North Holland Publishing Company,
Amsterdam (1991)

10. Gallego Arias, E.J., Lipton, J., Mariño, J., Nogueira, P.: First-order unification
using variable-free relational algebra. Log. J. IGPL 19(6), 790–820 (2011). http://
jigpal.oxfordjournals.org/content/19/6/790.abstract

11. Gallego Arias, E.J., Lipton, J.: Logic programming in tabular allegories. In: Dovier,
A., Costa, V.S. (eds.) Technical Communications of the 28th International Confer-
ence on Logic Programming, ICLP 2012, September 4–8, 2012, Budapest, Hungary.
LIPIcs, vol. 17, pp. 334–347. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik
(2012)

12. Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. Log. Program.
19/20, 503–581 (1994). http://citeseer.ist.psu.edu/jaffar94constraint.html

13. Kinoshita, Y., Power, A.J.: A fibrational semantics for logic programs. In: Dyckhoff,
R., Herre, H., Schroeder-Heister, P. (eds.) ELP. LNCS, vol. 1050, pp. 177–191.
Springer, Heidelberg (1996)

14. Komendantskaya, E., Power, J.: Coalgebraic derivations in logic programming. In:
Bezem, M. (ed.) CSL. LIPIcs, vol. 12, pp. 352–366. Schloss Dagstuhl—Leibniz-
Zentrum fuer Informatik (2011)

http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/5475111b9a9642244a208e9bd1fcd46a
http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/5475111b9a9642244a208e9bd1fcd46a
http://jigpal.oxfordjournals.org/content/19/6/790.abstract
http://jigpal.oxfordjournals.org/content/19/6/790.abstract
http://citeseer.ist.psu.edu/jaffar94constraint.html

316 E.J.G. Arias et al.

15. Lipton, J., Chapman, E.: Some notes on logic programming with a relational
machine. In: Jaoua, A., Kempf, P., Schmidt, G. (eds.) Using Relational Meth-
ods in Computer Science, pp. 1–34. Technical report Nr. 1998-03, Fakultät für
Informatik, Universität der Bundeswehr München, July 1998

16. Lloyd, J.W.: Foundations of Logic Programming. Springer, New York (1984)
17. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation

for logic programming. Ann. Pure Appl. Log. 51(1–2), 125–157 (1991)
18. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI’88: Proceedings

of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation, pp. 199–208. ACM, New York (1988)

19. Rydeheard, D.E., Burstall, R.M.: A categorical unification algorithm. In: Proceed-
ings of a Tutorial and Workshop on Category Theory and Computer Programming,
pp. 493–505. Springer, New York (1986)

20. Sterling, L., Shapiro, E.: The Art of Prolog. The MIT Press, Cambridge (1986)
21. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, Collo-

quium Publications, vol. 41. American Mathematical Society, Providence (1987)
22. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comput. Sci.

323(1–3), 473–497 (2004)

	Declarative Compilation for Constraint Logic Programming
	1 Introduction
	2 Relation Algebras and Signatures
	2.1 Relational Language and Theory
	2.2 Semantics

	3 Program Translation
	3.1 Constraint Translation
	3.2 Translation of Constraint Logic Programs
	3.3 The Least Relational Interpretation Satisfying Definitional Equations

	4 A Rewriting System for Resolution
	4.1 Meta-Reductions
	4.2 A Rewriting System for SLD Resolution

	5 Operational Equivalence
	5.1 The Resolution Transition System

	6 Related and Future Work
	7 Conclusion
	References

