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Abstract. Program correctness (in imperative and functional program-
ming) splits in logic programming into correctness and completeness.
Completeness means that a program produces all the answers required
by its specification. Little work has been devoted to reasoning about
completeness. This paper presents a few sufficient conditions for com-
pleteness of definite programs. We also study preserving completeness
under some cases of pruning of SLD-trees (e.g. due to using the cut).

We treat logic programming as a declarative paradigm, abstracting
from any operational semantics as far as possible. We argue that the
proposed methods are simple enough to be applied, possibly at an infor-
mal level, in practical Prolog programming. We point out importance of
approximate specifications.
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1 Introduction

The notion of partial program correctness splits in logic programming into cor-
rectness and completeness. Correctness means that all answers of the program
are compatible with the specification, completeness – that the program produces
all the answers required by the specification.

In this paper we consider definite clause programs, and present a few sufficient
conditions for their completeness. We also discuss preserving completeness under
pruning of SLD-trees (by e.g. using the cut). We are interested in declarative
reasoning, i.e. abstracting from any operational semantics, and treating program
clauses as logical formulae. Our goal is simple methods, which may be applied –
possibly informally – in actual practical programming.

Related Work. Surprisingly little work was devoted to proving completeness of
programs. Hogger [15] defines the notion of completeness, but does not provide
any sufficient conditions. Completeness is not discussed in the important mono-
graph [1]. Instead, a characterization is studied of the set of computed instances
of an atomic query, in a special case when the set is finite and the answers are
ground. In the paper [18] of Kowalski completeness is discussed, but the exam-
ple proofs concern only correctness. As a sufficient condition for completeness
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of a program P he suggests P � TS , where TS is a specification in a form of
a logical theory. The condition seems impractical as it fails when TS contains
auxiliary predicates, not occurring in P . It also requires that all the models of P
(including the Herbrand base) are models of the specification. But it seems that
such specifications often have a substantially restricted class of models, maybe
a single Herbrand model, cf. [6].

Deville [6] provides an approach where correctness and completeness of pro-
grams should follow from construction. No direct sufficient criteria for com-
pleteness, applicable to arbitrary programs, are given. Also the approach is not
declarative, as it is based on an operational semantics of SLDNF-resolution.

Stärk [22] presents an elegant method of reasoning about a broad class of
properties of programs with negation, executed under LDNF-resolutions. A tool
to verify proofs mechanically was provided. The approach involves a rather com-
plicated induction scheme, so it seems impossible to apply the method informally
by programmers. Also, the approach is not fully declarative, as the order of lit-
erals in clause bodies is important.

A declarative sufficient condition for program completeness was given by
Deransart and Ma�luszyński [5]. The approach presented here stems from [13],
the differences are discussed in [11]. The main contribution since the former
version [9,10] is proving completeness of pruned SLD-trees. The author is not
aware of any other work on this issue.

This paper, except Sect. 4.2, is an abbreviated version of some parts of [11].
A full version of Sect. 4.2 appeared in [12]. The reader is referred to [11,12] for
missing proofs, more examples and further discussion.

Preliminaries. We use the standard notation and definitions [1]. An atom whose
predicate symbol is p will be called a p-atom (or an atom for p). Similarly, a
clause whose head is a p-atom is a clause for p. In a program P , by procedure p
we mean the set of the clauses for p in P .

We assume a fixed alphabet with an infinite set of function symbols. The
Herbrand universe will be denoted by HU , the Herbrand base by HB, and the sets
of all terms, respectively atoms, by T U and T B. For an expression (a program)
E by ground(E) we mean the set of ground instances of E (ground instances of
the clauses of E). MP denotes the least Herbrand model of a program P .

By “declarative” (property, reasoning, . . . ) we mean referring only to log-
ical reading of programs, thus abstracting from any operational semantics. In
particular, properties depending on the order of atoms in clauses will not be
considered declarative (as they treat equivalent conjunctions differently).

By a computed (respectively correct) answer for a program P and a query Q
we mean an instance Qθ of Q where θ is a computed (correct) answer substitution
[1] for Q and P . We often say just answer as each computed answer is a correct
one, and each correct answer (for Q) is a computed answer (for Q or for some
its instance). Thus, by soundness and completeness of SLD-resolution, Qθ is an
answer for P iff P |= Qθ.

Names of variables begin with an upper-case letter. We use the list notation
of Prolog. So [t1, . . . , tn] (n ≥ 0) stands for the list of elements t1, . . . , tn. Only a
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term of this form is considered a list. (Thus terms like [a, a|X], or [a, a|a], where
a is a constant, are not lists). The set of natural numbers will be denoted by N;
f : A ↪→ B states that f is a partial function from A to B.

The next section introduces the basic notions of specifications, correctness
and completeness. Also, advantages of approximate specifications are discussed.
The section is concluded with a brief overview on proving correctness. Section 3
discusses proving program completeness. Section 4 deals with proving that com-
pleteness is preserved under pruning. We finish with a discussion.

2 Correctness and Completeness

2.1 Specifications

The purpose of a logic program is to compute a relation, or a few relations.
A specification should describe these relations. It is convenient to assume that
the relations are over the Herbrand universe. To describe such relations, one
relation corresponding to each procedure of the program (i.e. to a predicate
symbol), it is convenient to use a Herbrand interpretation. Thus a (formal)
specification is a Herbrand interpretation, i.e. a subset of HB.

2.2 Correctness and Completeness

In imperative and functional programming, correctness usually means that the
program results are as specified. In logic programming, due to its non-deterministic
nature, we actually have two issues: correctness (all the results are compatible with
the specification) and completeness (all the results required by the specification
are produced). In other words, correctness means that the relations defined by the
program are subsets of the specified ones, and completeness means inclusion in
the opposite direction. In terms of specifications and the least Herbrand models
we define:

Definition 1. Let P be a program and S ⊆ HB a specification. P is correct
w.r.t. S when MP ⊆ S; it is complete w.r.t. S when MP ⊇ S.

We will sometimes skip the specification when it is clear from the context. We
propose to call a program fully correct when it is both correct and complete.
If a program P is fully correct w.r.t. a specification S then, obviously, MP = S.

A program P is correct w.r.t. a specification S iff Q being an answer of P
implies S |= Q. (Remember that Q is an answer of P iff P |= Q.) The program
is complete w.r.t. S iff S |= Q implies that Q is an answer of P . (Here our
assumption on an infinite set of function symbols is needed [11].)

It is sometimes useful to consider local versions of these notions:

Definition 2. A predicate p in P is correct w.r.t. S when each p-atom of
MP is in S, and complete w.r.t. S when each p-atom of S is in MP .

An answer Q is correct w.r.t. S when S |= Q.
P is complete for a query Q w.r.t. S when S |= Qθ implies that Qθ is an

answer for P , for any ground instance Qθ of Q.
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Informally, P is complete for Q when all the answers for Q required by the
specification S are answers of P . Note that a program is complete w.r.t. S iff it
is complete w.r.t. S for any query iff it is complete w.r.t. S for any query A ∈ S.

2.3 Approximate Specifications

Often it is difficult, and not necessary, to specify the relations defined by a pro-
gram exactly; more formally, to require that MP is equal to a given specification.
Often the relations defined by programs are not exactly those intended by pro-
grammers. For instance this concerns the programs in Chap. 3.2 of the textbook
[23] defining predicates member/2, append/3, sublist/2, and some others. The
defined relations are not those of list membership, concatenation, etc. However
this is not an error, as for all intended queries the answers are as for a pro-
gram defining the intended relations. The exact semantics of the programs is
not explained in the textbook; such explanation is not needed. Let us look more
closely at append/3.

Example 3. 1. The program APPEND

app( [H|K], L, [H|M ] ) ← app(K,L,M ). app( [ ], L, L ).

does not define the relation of list concatenation. For instance, APPEND |=
app([ ], 1, 1). In other words, APPEND is not correct w.r.t.

S0
APPEND = { app(k, l,m) ∈ HB | k, l,m are lists, k ∗ l = m },

where k ∗ l stands for the concatenation of lists k, l. It is however complete
w.r.t. S0

APPEND, and correct w.r.t.

SAPPEND = { app(k, l,m) ∈ HB | if l or m is a list then app(k, l,m) ∈ S0
APPEND }.

Correctness w.r.t. SAPPEND and completeness w.r.t. S0
APPEND are sufficient

to show that APPEND will produce the required results when used to
concatenate or split lists. More precisely, the answers for a query Q =
app(s, t, u), where t is a list or u is a list, are app(sθ, tθ, uθ), where sθ, tθ, uθ
are lists and sθ ∗ tθ = uθ. (The lists may be non-ground.)

2. Similarly, the procedures member/2 and sublist/2 are complete w.r.t spec-
ifications describing the relation of list membership, and the sublist relation.
It is easy to provide specifications, w.r.t. which the procedures are correct.
For instance, member/2 is correct w.r.t. SMEMBER = {member(t, u) ∈ HB |
if u = [t1, . . . , tn] for some n ≥ 0 then t = ti, for some 0 < i ≤ n }.

3. The exact relations defined by programs are often misunderstood. For
instance, in [7, Ex. 15] it is claimed that a program Prog1 defines the relation
of list inclusion. In our terms, this means that predicate included of Prog1
is correct and complete w.r.t.{

included(l1, l2) ∈ HB
∣∣∣∣ l1, l2 are lists,

every element of l1 belongs to l2

}
.

However the correctness does not hold: The program contains a unary clause
included([ ], L), so Prog1 |= included([ ], t) for any term t.
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The examples show that in many cases it is unnecessary to know the seman-
tics of a program exactly. Instead it is sufficient to describe it approximately.
An approximate specification is a pair of specifications Scompl , Scorr, for
completeness and correctness. The intention is that the program is complete
w.r.t. the former, and correct w.r.t. the latter: Scompl ⊆ MP ⊆ Scorr. In other
words, the specifications Scompl , Scorr describe, respectively, which atoms have
to be computed, and which are allowed to be computed. For the atoms from
Scorr\Scompl the semantics of the program is irrelevant. By abuse of terminol-
ogy, Scorr or Scompl will sometimes also be called approximate specifications.

2.4 Proving Correctness

We briefly discuss proving correctness, as it is complementary to the main subject
of this paper. The approach is due to Clark [4].

Theorem 4 (Correctness). A sufficient condition for a program P to be cor-
rect w.r.t. a specification S is

for each ground instance H ← B1, . . . , Bn of a clause of the program,
if B1, . . . , Bn ∈ S then H ∈ S.

Example 5. Consider a program SPLIT and a specification describing how the
sizes of the last two arguments of s are related (|l| denotes the length of a list l):

s([ ], [ ], [ ]). (1)
s([X|Xs], [X|Y s], Zs) ← s(Xs,Zs, Y s). (2)

S = { s(l, l1, l2) | l, l1, l2 are lists, 0 ≤ |l1| − |l2| ≤ 1 }.

SPLIT is correct w.r.t. S, by Theorem 4 (the details are left for the reader, or see
[11]). A stronger specification for which SPLIT is correct is shown in Example 11.

The sufficient condition is equivalent to S |= P , and to TP (S) ⊆ S.
Notice that the proof method is declarative. The method should be well

known, but is often neglected. For instance it is not mentioned in [1], where a
more complicated method, moreover not declarative, is advocated. That method
is not more powerful than the one of Theorem 4 [13]. See [11,13] for further
examples, explanations, references and discussion.

3 Proving Completeness

We first introduce a notion of semi-completeness, and sufficient conditions under
which semi-completeness of a program implies its completeness. Then a sufficient
condition follows for semi-completeness. We conclude the section with a way of
showing completeness directly without employing semi-completeness.
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Definition 6. A level mapping is a function | | : HB → N assigning natural
numbers to atoms.

A program P is recurrent w.r.t. a level mapping | | [1,3] if, in every ground
instance H ← B1, . . . , Bn ∈ ground(P ) of its clause (n ≥ 0), |H| > |Bi| for all
i = 1, . . . , n. A program is recurrent if it is recurrent w.r.t. some level mapping.

A program P is acceptable w.r.t. a specification S and a level mapping
| | if P is correct w.r.t. S, and for every H ← B1, . . . , Bn ∈ ground(P ) we
have |H| > |Bi| whenever S |= B1, . . . , Bi−1. A program is acceptable if it is
acceptable w.r.t. some level mapping and some specification.

The definition of acceptable is more general than that of [1,2] which requires S
to be a model of P . Both definitions make the same programs acceptable [11].

Definition 7. A program P is semi-complete w.r.t. a specification S if P is
complete w.r.t. S for any query Q for which there exists a finite SLD-tree.

Less formally, the existence of a finite SLD-tree means that P with Q terminates
under some selection rule. For a semi-complete program, if a computation for a
query Q terminates then all the required by the specification answers for Q have
been obtained. Note that a complete program is semi-complete. Also:

Proposition 8 (Completeness). Let a program P be semi-complete w.r.t. S.
The program is complete w.r.t S if

1. for each query A ∈ S there exists a finite SLD-tree, or
each A ∈ S is an instance of a query Q for which a finite SLD-tree exists, or

2. the program is recurrent, or
3. the program is acceptable (w.r.t. a specification S′ possibly distinct from S).

Proving Semi-completeness. We need the following notion.

Definition 9. A ground atom H is covered by a clause C w.r.t. a specifica-
tion S [21] if H is the head of a ground instance H ← B1, . . . , Bn (n ≥ 0) of C,
such that all the atoms B1, . . . , Bn are in S. A ground atom H is covered by
a program P w.r.t. S if it is covered w.r.t. S by some clause C ∈ P .

For instance, given a specification S = {p(si(0)) | i ≥ 0}, atom p(s(0)) is covered
both by p(s(X)) ← p(X) and by p(X) ← p(s(X)).

Now we present a sufficient condition for semi-completeness. Together with
Proposition 8 it provides a sufficient condition for completeness.

Theorem 10 (Semi-completeness). If all the atoms from a specification S
are covered w.r.t. S by a program P then P is semi-complete w.r.t. S.

Example 11. We show that program SPLIT from Example 5 is complete w.r.t.

SSPLIT =

{
s([t1, . . . , t2n], [t1, · · · , t2n−1], [t2, · · · , t2n]),
s([t1, . . . , t2n+1], [t1, · · · , t2n+1], [t2, · · · , t2n])

∣∣∣∣ n ≥ 0,
t1, . . . , t2n+1 ∈ HU

}
,
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where [tk, · · · , tl] denotes the list [tk, tk+2, . . . , tl], for k, l both odd or both even.
Atom s([ ], [ ], [ ]) ∈ SSPLIT is covered by clause (1). For n > 0, any atom A =

s([t1, . . . , t2n], [t1, · · · , t2n−1], [t2, · · · , t2n]) is covered by an instance of (2) with
a body B = s([t2, . . . , t2n], [t2, · · · , t2n], [t3, · · · , t2n−1]). Similarly, for n ≥ 0 and
any atom A = s([t1, . . . , t2n+1], [t1, · · · , t2n+1], [t2, · · · , t2n]), the corresponding
body is B = s([t2, . . . , t2n+1], [t2, · · · , t2n], [t3, · · · , t2n+1]). In both cases, B ∈
SSPLIT. (To see this, rename each ti as t′i−1.) So SSPLIT is covered by SPLIT.
Thus SPLIT is semi-complete w.r.t. SSPLIT, by Theorem 10.

Now by Proposition 8 the program is complete, as it is recurrent under the
level mapping |s(t, t1, t2)| = |t|, where | [h|t] | = 1 + |t| and |f(t1, . . . , tn)| =
0 (for any ground terms h, t, t1, . . . , tn, and any function symbol f distinct
from [ | ] ).

By Theorem 4 the program is also correct w.r.t. SSPLIT, as SSPLIT |= SPLIT.
(The details are left to the reader.) Hence SSPLIT = MSPLIT.

Note that the sufficient condition of Theorem10 is equivalent to S ⊆ TP (S),
which implies S ⊆ gfp(TP ). It is also equivalent to S being a model of ONLY-
IF(P ) (see e.g. [8] or [13] for a definition).

The notion of semi-completeness is tailored for finite programs. An SLD-tree
for a query Q and an infinite program P may be infinite, but with all branches
finite. In such case, if the condition of Theorem10 holds then P is complete for
Q [11].

Proving Completeness Directly. Here we present another, declarative, way
of proving completeness; a condition is added to Theorem 10 so that complete-
ness is implied directly. This also works for non-terminating programs. However
when termination has to be shown anyway, applying Theorem10 is usually more
convenient.

In this section we allow that a level mapping is a partial function | | : HB ↪→ N

assigning natural numbers to some atoms.

Definition 12. A ground atom H is recurrently covered by a program P
w.r.t. a specification S and a level mapping | | : HB ↪→ N if H is the head of a
ground instance H ← B1, . . . , Bn (n ≥ 0) of a clause of the program, such that
|H|, |B1|, . . . |Bn| are defined, B1, . . . , Bn ∈ S, and |H| > |Bi| for all i = 1, . . . , n.

For instance, given a specification S = { p(si(0)) | i ≥ 0 }, atom p(s(0)) is
recurrently covered by a program { p(s(X)) ← p(X).} under a level mapping
for which |p(si(0))| = i. No atom is recurrently covered by { p(X) ← p(X).}.
Obviously, if H is recurrently covered by P then it is covered by P . If H is
covered by P w.r.t. S and P is recurrent w.r.t. | | then H is recurrently covered
w.r.t. S, | |. The same holds for P acceptable w.r.t. an S′ ⊇ S.

Theorem 13 (Completeness 2). (A reformulation of Theorem 6.1 of [5]). If,
under some level mapping | | : HB ↪→ N, all the atoms from a specification S are
recurrently covered by a program P w.r.t. S then P is complete w.r.t. S.
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Example 14. Consider a directed graph E. As a specification for a program
describing reachability in E, take S = Sp ∪ Se, where

Sp = { p(t, u) | there is a path from t to u in E },
Se = { e(t, u) | (t, u) is an edge in E }.

Let P consist of a procedure p: { p(X,X). p(X,Z) ← e(X,Y ), p(Y,Z).} and a
procedure e which is a set of unary clauses describing the edges of the graph.
Assume the latter is complete w.r.t. Se. Notice that when E has cycles then
infinite SLD-trees cannot be avoided, and completeness of P cannot be shown
by Proposition 8.

To apply Theorem 13, let us define a level mapping for the elements of S such
that |e(t, u)| = 0 and |p(t, u)| is the length of a shortest path in E from t to u (so
|p(t, t)| = 0). Consider a p(t, u) ∈ S where t �= u. Let t = t0, t1, . . . , tn = u be a
shortest path from t to u. Then e(t, t1), p(t1, u) ∈ S, |p(t, u)| = n, |e(t, t1)| = 0,
and |p(t1, u)| = n − 1. Thus p(t, u) is recurrently covered by P w.r.t. S and | |.
The same trivially holds for the remaining atoms of S. So P is complete w.r.t. S.

4 Pruning SLD-Trees and Completeness

Pruning some parts of SLD-trees is often used to improve efficiency of programs.
It is implemented by using the cut, the if-then-else construct of Prolog, or built-
ins, like once/1. Pruning preserves the correctness of a logic program, it also
preserves termination under a given selection rule, but may violate the program’s
completeness. We now discuss proving that completeness is preserved.

By a pruned SLD-tree for a program P and a query Q we mean a tree
with the root Q which is a connected subgraph of an SLD-tree for P and Q. By
an answer of a pruned SLD-tree we mean the computed answer of a successful
SLD-derivation which is a branch of the tree. We will say that a pruned SLD-
tree T with root Q is complete w.r.t. a specification S if, for any ground Qθ,
S |= Qθ implies that Qθ is an instance of an answer of T . Informally, such a tree
produces all the answers for Q required by S.

We present two approaches for proving completeness of pruned SLD-trees.
The first one is based on viewing pruning as skipping certain clauses while build-
ing the children of a node. The other deals with a restricted usage of the cut.

4.1 Pruning as Clause Selection

To facilitate reasoning about the answers of pruned SLD-trees, we
will now view pruning as applying only certain clauses
while constructing the children of a node. So we intro-
duce subsets Π1, . . . , Πn of P . The intention is that
for each node the clauses of one Πi are used. Programs
Π1, . . . , Πn may be not disjoint.
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Definition 15. Given programs Π1, . . . , Πn (n > 0), a c-selection rule is a
function assigning to a query Q′ an atom A in Q′ and one of the programs
∅,Π1, . . . , Πn.

A csSLD-tree (cs for clause selection) for a query Q and programs
Π1, . . . ,Πn, via a c-selection rule R, is constructed as an SLD-tree, but for each
node its children are constructed using the program selected by the c-selection
rule. An answer of a csSLD-tree is defined in the expected way.

A c-selection rule may choose the empty program, thus making a given node a
leaf. Notice that a csSLD-tree for Q and Π1, . . . , Πn is a pruned SLD-tree for Q
and

⋃
i Πi. Conversely, for each pruned SLD-tree T for Q and a (finite) program

P there exist n > 0, and Π1, . . . , Πn ⊆ P such that T is a csSLD-tree for Q and
Π1, . . . ,Πn.

Describing pruning by a c-selection rule is, in a sense, abstract. It does not
refer directly to the control constructs in the program. The correspondence
between the program and the c-selection rule may be not obvious [11]. A single
cut, or if-then-else, may prune children of many nodes in a tree, modifying the
behaviour of many procedures of the program. However Examples 19, 20, 21
below suggest that in many cases this difficulty is not substantial.

Example 16. We show that completeness of each of Π1, . . . , Πn is not sufficient
for completeness of a csSLD-tree for Π1, . . . , Πn. Consider a program P :

q(X) ← p(Y,X). (3)
p(Y, 0). (4)
p(a, s(X)) ← p(a,X). (5)
p(b, s(X)) ← p(b,X). (6)

and programs Π1 = {(3), (4), (6)}, Π2 = {(3), (4), (5)}, As a specification for
completeness consider S0 = { q(sj(0)) | j ≥ 0 }. Each of the programs Π1,Π2, P
is complete w.r.t. S0. Assume a c-selection rule R choosing alternatively Π1,Π2

along each branch of a tree. Then the csSLD-tree for q(sj(0)) ∈ S0 via R (where
j > 2) has no answers, thus the tree is not complete w.r.t. S0.

Consider programs P,Π1, . . . , Πn and specifications S, S1, . . . , Sn, such that P ⊇⋃n
i=1 Πi and S =

⋃n
i=1 Si. The intention is that each Si describes which answers

are to be produced by using Πi in the first resolution step. We will call
Π1, . . . ,Πn, S1, . . . , Sn a split (of P and S). Note that Π1, . . . , Πn or S1, . . . , Sn

may be not disjoint.

Definition 17. Let S = Π1, . . . , Πn, S1, . . . , Sn be a split, and S =
⋃

Si.
Specification Si is suitable for an atom A w.r.t. S when no instance of A

is in S \ Si. (In other words, when ground(A) ∩ S ⊆ Si.) We also say that a
program Πi is suitable for A w.r.t. S when Si is.

A c-selection rule is compatible with S if for each non-empty query Q it
selects an atom A and a program Π, such that
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– Π ∈ {Π1, . . . , Πn} is suitable for A w.r.t. S, or
– none of Π1, . . . , Πn is suitable for A w.r.t. S and Π = ∅ (so Q is a leaf).

A csSLD-tree for Π1, . . . , Πn via a c-selection rule compatible with S is said
to be weakly compatible with S. The tree is compatible with S iff for each
its nonempty node some Πi is selected.

The intuition is that when Πi is suitable for A then Si is a fragment of S sufficient
to deal with A. It describes all the answers for query A required by S.

The reason of incompleteness of the trees in Example 16 may be understood
as selecting a Πi not suitable for the selected atom. Take S = Π1,Π2, S0 ∪
S′
1, S0 ∪ S′

2, where S′
1 = { p(b, si(0)) | i ≥ 0 } and S′

2 = { p(a, si(0)) | i ≥ 0 }. In
the incomplete trees, Π1 is selected for an atom A = p(a, u), or Π2 is selected
for an atom B = p(b, u) (where u ∈ T U). However Π1 is not suitable for A
whenever A has an instance in S (as then ground(A) ∩ S �⊆ S0 ∪ S′

1); similarly
for Π2 and B.

When Πi is suitable for A then if each atom of Si is covered by Πi (w.r.t. S)
then using for A only the clauses of Πi does not impair completeness w.r.t. S:

Theorem 18. Let P ⊇
⋃n

i=1 Πi (where n > 0) be a program, S =
⋃n

i=1 Si a
specification, and T a csSLD-tree for Π1, . . . , Πn. If

1. for each i = 1, . . . , n, all the atoms from Si are covered by Πi w.r.t. S, and
2. T is compatible with Π1, . . . , Πn, S1, . . . , Sn,
3. (a) T is finite, or

(b) program P is recurrent, or
(c) P is acceptable (possibly w.r.t. a specification distinct from S), and T is

built under the Prolog selection rule

then T is complete w.r.t. S.

We now show three examples of applying this theorem.

Example 19. The following program SAT0 is a simplification of a fragment of
the SAT solver of [16] discussed in [9]. Pruning is crucial for the efficiency and
usability of the original program.

p(P−P, [ ]). (7)
p(V −P, [B|T ]) ← q(V −P, [B|T ]). (8)
p(V −P, [B|T ]) ← q(B, [V −P |T ]). (9)
q(V −P, ) ← V = P. (10)
q( , [A|T ]) ← p(A, T ). (11)
P = P. (12)

The program is complete w.r.t. a specification

S =
{

p(t0−u0, [t1−u1, . . . , tn−un]),
q(t0−u0, [t1−u1, . . . , tn−un])

∣∣∣∣ n ≥ 0, t0, . . . , tn, u0, . . . , un ∈ T,
ti = ui for some i ∈ {0, . . . , n}

}
∪ S=
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where T = {false, true} ⊆ HU , and S= = { t=t | t ∈ HU }. We omit a com-
pleteness proof, mentioning only that SAT0 is recurrent w.r.t. a level mapping
|p(t, u)| = 2|u|+2, |q(t, u)| = 2|u|+1, |=(t, u)| = 0, where |u| is as in Example 11.

The first case of pruning is due to redundancy within (8), (9); both Π1 =
SAT0 \ {(9)} and Π2 = SAT0 \ {(8)} are complete w.r.t. S. For any selected
atom at most one of (8), (9) is to be used, and the choice is dynamic. As the fol-
lowing reasoning is independent from this choice, we omit further explanations.

So in such pruned SLD-trees the children of each node are constructed using
one of programs Π1,Π2. Thus they are csSLD-trees for Π1,Π2. They are com-
patible with S = Π1,Π2, S, S (as Π1,Π2 are trivially suitable for any A, due to
Si = S and S \ Si = ∅ in Definition 17). Each atom of S is covered w.r.t. S both
by Π1 and Π2. As SAT0 is recurrent, by Theorem 18, each such tree is complete
w.r.t. S.

Example 20. We continue with program SAT0 and specification S from the pre-
vious example, and add a second case of pruning. When the selected atom is of
the form A = q(s1, s2) with a ground s1 then only one of clauses (10), (11) is
needed – (10) when s1 is of the form t−t, and (11) otherwise. The other clause
can be abandoned without losing the completeness w.r.t. S.1

Actually, SAT0 is included in a bigger program, say P = SAT0∪Π0. We skip
the details of Π0, let us only state that P is recurrent, Π0 does not contain any
clause for p or for q, and that P is complete w.r.t. a specification S′ = S ∪ S0

where S0 does not contain any p- or q-atom. (Hence each atom of S0 is covered
by Π0 w.r.t. S′.)

To formally describe the trees for P resulting from both cases of pruning,
consider S = Π0, . . . , Π5, S0, . . . , S5, where

Π1 = {(7), (8)}, Π2 = {(7), (9)}, S1 = S2 = S ∩ { p(s, u) | s, u ∈ HU },
Π3 = {(10)}, S3 = S ∩ { q(t−t, s) | t, s ∈ HU },
Π4 = {(11)}, S4 = S ∩ { q(t−u, s) | t, u, s ∈ HU , t �= u },
Π5 = {(12)}, S5 = S=.

Each atom from Si is covered by Πi w.r.t. S′ (for i = 0, . . . , 5). For each q-
atom with its first argument ground, Π3 or Π4 (or both) is suitable. For each
remaining atom from T B, a program from Π0,Π1,Π2,Π5 is suitable.

Consider a pruned SLD-tree T for P (employing the two cases of pruning
described above). Assume that each q-atom selected in T has its first argument
ground. Then T is a csSLD-tree compatible with S. From Theorem 18 it follows
that T is complete w.r.t. S′.

The restriction on the selected q-atoms is implemented by means of Pro-
log delays. This is done in such a way that, for the intended initial queries,
floundering is avoided [16] (i.e. an atom is selected in each query). So the obtained

1 The same holds for A of the form q(s11−s11, s2), or q(s11−s12, s2) with non-
unifiable s11, s12. The pruning is implemented using the if-then-else construct
in Prolog: q(V − P, [A|T]) :− V = P−> true; p(A, T). (And the first case of pruning
by p(V − P, [B|T]) :− nonvar(V) −> q(V − P, [B|T]); q(B, [V − P|T]).)
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pruned trees are as T above, and the pruning preserves completeness of the
program.

Example 21. A Prolog program {nop(adam, 0) ← !. nop(eve, 0) ← !. nop(X, 2).}
is an example of difficulties and dangers of using the cut in Prolog. Due to the cut,
for an atomic query A only the first clause with the head unifiable with A will be
used. The program can be seen as logic program P = Π1∪Π2∪Π3 executed with
pruning, where (for i = 1, 2, 3) Πi is the i-th clause of the program with the cut
removed. The intended meaning is S = S1∪S2∪S3, where S1 = {nop(adam, 0)},
S2 = {nop(eve, 0)}, and S3 = {nop(t, 2) ∈ HB | t �∈ {adam, eve}}. Note that all
the atoms from Si are covered by Πi (for i = 1, 2, 3). (We do not discuss here
the (in)correctness of the program, but see [11].)

Let S be Π1,Π2,Π3, S1, S2, S3. Consider a query A = nop(t, Y ) with a
ground t. If t = adam then ground(A) ∩ S = S1, and only Π1 is suitable for A
w.r.t. S, if t = eve then only Π2 is. For t �∈ {adam, eve} the suitable program is
Π3. So for the query A the pruning due to the cuts results in selecting a suitable
Πi, and the obtained csSLD-tree is compatible with S. By Theorem 18 the tree
is complete w.r.t. S.

For a query nop(X,Y ) or nop(X, 0) only the first clause, i.e. Π1, is used.
However Π1 is not suitable for the query (w.r.t. S), and the csSLD-tree is not
compatible with S. The tree is not complete (w.r.t. S).

4.2 The Cut in the Last Clause

The previous approach is based on a somehow abstract semantics in which prun-
ing is viewed as clause selection. Now we present an approach referring directly to
Prolog with the cut. However the usage of the cut is restricted to the last clause
of a procedure. The author expects that the general case could be conveniently
studied in the context of programs with negation (because if H ← A1, !, A2 is
followed by H ← A3 then the latter clause is used only if A1 fails). We con-
sider LD-resolution, as interaction of the cut with delays introduces additional
complications.

We need to reason about the atoms selected in the derivations. So we employ
a (non-declarative) approach to reason about LD-derivations, presented in [1].
A specification in this approach, let us call it call-success specification, is
a pair pre, post ∈ T B of sets of atoms, closed under substitution. A program
is correct w.r.t. such specification, let us say c-s-correct, when in each LD-
derivation every selected atom is in pre and each corresponding computed answer
is in post, provided that the derivation begins with an atomic query from pre.
The same holds for non-atomic initial queries, provided that they satisfy a certain
condition (are well asserted [1]). See [1] or [13] for further explanations, and for
a sufficient criterion for c-s-correctness (programs satisfying it are called well
asserted).

By vars(E) we denote the set of variables occurring in an expression E.
For a substitution θ = {X1/t1, . . . , Xn/tn}, let dom(θ) = {X1, . . . , Xn}, and
rng(θ) = vars({t1, . . . , tn}). We begin with generalizing the notion of an atom
covered by a clause.
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Definition 22. Let S be a specification, and pre, post a call-success specifica-
tion. A ground atom A is adjustably covered by a clause C w.r.t. S and
pre, post if A is covered by C and the cut does not occur in C, or the following
three conditions hold:

1. C is H ← A1, . . . , Ak−1, !, Ak, . . . , An,
2. A is covered by H ← A1, . . . , Ak−1 w.r.t. S,
3. – for any instance Hρ ∈ pre such that A is an instance of Hρ,

– for any ground instance (A1, . . . , Ak−1)ρη such that A1ρη, . . . , Ak−1ρη ∈
post,

– A is covered by (H ← Ak, . . . , An)ρη w.r.t. S,
where dom(ρ) ⊆ vars(H), rng(ρ)∩ vars(C) ⊆ vars(H), dom(ρ)∩ rng(ρ) = ∅,
and dom(η) = vars((A1, . . . , Ak−1)ρ).

Informally, condition 3 says that A could be produced out of each “related”
answer for A1, . . . , Ak−1, and some answer for Ak, . . . , An specified by S. Note
that if A is adjustably covered by C w.r.t. S, pre, post, where S ⊆ post, then A
is covered by C w.r.t. S.

Now we are ready to present the sufficient condition for completeness.

Theorem 23 ([12]). Let S be a specification, pre, post a call-success specifica-
tion, where S ⊆ post. Let T be a pruned LD-tree for a program P and an atomic
query Q, where pruning is due to the cut occurring in the last clause(s) of some
procedure(s) of P . If

– T is finite, Q ∈ pre, P is c-s-correct w.r.t. pre, post, and
– each A ∈ S is adjustably covered by a clause of P w.r.t. S and pre, post

then T is complete w.r.t. S.

For a non-atomic initial query Q, the condition Q ∈ pre should be replaced by
Q is well asserted w.r.t. pre, post (see [1] for a definition).

We now show two examples of applying this theorem to proving completeness
of pruned trees.

Example 24. Consider a program IN:

in([ ], L).
in([H|T ], L) ← m(H,L), !, in(T,L).

m(E, [E|L]).
m(E, [H|L]) ← m(E,L).

and specifications

S = Sm ∪ Sin, pre = prem ∪ prein, post = postm ∪ postin, where
prem = {m(u, t) ∈ T B | t is a list },
prein = { in(u, t) ∈ HB | u, t are ground lists },
postm = {m(ti, [t1, . . . , tn]) ∈ T B | 1 ≤ i ≤ n },
postin = { in([u1, . . . , um], [t1, . . . , tn]) ∈ HB | {u1, . . . , um} ⊆ {t1, . . . , tn} },
Sm = postm ∩ HB, Sin = postin.
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The program is c-s-correct w.r.t. pre, post (we skip a proof). We show that each
atom A = in(u, t) ∈ Sin, where u = [u1, . . . , um], m > 0, is adjustably covered
by the second clause C of IN. Let C0 be in([H|T ], L) ← m(H,L). Now A is
covered by C0 w.r.t. S (A ← m(u1, t) is a relevant ground instance of C0).

Take an instance in([H|T ], L)ρ ∈ pre of the head of C. The instance is
ground, and the whole Cρ is ground. So in Definition 22, ρη = ρ. If A is an
instance of (thus equal to) in([H|T ], L)ρ then in(T,L)ρ = in([u2, . . . , um], t) ∈ S
(as A ∈ S). Thus A is covered by (in([H|T ], L) ← in(T,L))ρ.

Thus A is adjustably covered by C. It is easy to check that all the remaining
atoms of S are covered by IN w.r.t. S, and that IN is recurrent (for |m(s, t)| = |t|,
|in(s, t)| = |s| + |t|, |t| as in Example 11). Thus each LD-tree for IN and a query
Q ∈ pre is finite. By Theorem 23, each such tree pruned due to the cut is complete
w.r.t. S. Notice that condition 3 does not hold when non ground arguments of
in are allowed in prein, and that for such queries some answers may be pruned.

Before the next example we introduce a property, which simplifies checking that
an atom is adjustably covered by a clause with the cut.

Lemma 25 ([12]). If condition 3 of Definition 22 holds for an atom Hρ ∈ pre
then it holds for any its instance Hρ′ such that A is an instance of Hρ′, and
ρ′ satisfies the requirements of condition 3 (i.e. dom(ρ′) ⊆ vars(H), rng(ρ′) ∩
vars(C) ⊆ vars(H), dom(ρ′) ∩ rng(ρ′) = ∅).

Example 26. Consider a program P :

p(X,Z) ← q(X,Y ), !, r(Y,Z). q(a, a)
q(a, a′)
q(b, b)

r(a, c)
r(a′, c)

and specifications

S = { p(a, c), q(a, a′), q(b, b), r(a, c), r(a′, c) },
post = S ∪ {q(a, a)},
pre = { p(a, t) | t ∈ T U } ∪ { q(a, t) | t ∈ T U } ∪ { r(t, u) | t, u ∈ T U }

The program is c-s-correct w.r.t. pre, post (we skip a proof). To check that atom
p(a, c) ∈ S is adjustably covered by the first clause of P , note first that it is
covered w.r.t. S by p(a, c) ← q(a, a′). By Lemma 25, it is sufficient to check
condition 3 of Definition 22 for ρ = {X/a}, as p(X,Z)ρ = p(a, Z) is a most
general p-atom in pre. If q(X,Y )ρη ∈ post then η = {Y/a} or η = {Y/a′}.
Hence r(Y,Z)ρη is r(a, Z) or r(a′, Z). In both cases, p(a, c) ← r(Y η, c) is a
ground instance of (p(X,Z) ← r(Y,Z))ρη (i.e. of p(a, Z) ← r(Y η, Z)) covering
p(a, c) w.r.t. S.

The remaining atoms of S are trivially covered by the unary clauses of P .
The LD-tree for P and Q = p(a, Z) is finite, hence the LD-tree pruned due to
the cut is complete w.r.t. S by Theorem 23.
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5 Discussion

Declarativeness. Without declarative ways of reasoning about correctness and
completeness of programs, logic programming would not deserve to be called
a declarative programming paradigm. The sufficient condition for proving cor-
rectness (Theorem 4), that for semi-completeness of Theorem 10, and those for
completeness of Proposition 8(2) and Theorem 13 are declarative. Also, the suf-
ficient condition for completeness of pruned trees (Theorem18), based on clause
selection, to a substantial extent abstracts from the operational semantics. On
the other hand, the sufficient conditions for program completeness of Proposi-
tions 8(1) and 8(3) are not declarative, as they refer to program termination, or
depend on the order of atoms in clause bodies.

Declarative completeness proofs employing Proposition 8(2) or Theorem 13
imply termination, or require reasoning similar to that in termination proofs. So
proving completeness by means of semi-completeness and termination may be
a reasonable compromise between declarative and non-declarative reasoning, as
termination has to be shown anyway in most of practical cases.

Granularity of Proofs. Note that the sufficient condition for correctness deals
with single clauses, that for semi-completeness – with procedures, and those for
completeness take into account a whole program.

Incompleteness Diagnosis. There is a close relation between completeness prov-
ing and incompleteness diagnosis [21]. As the reason of incompleteness, a diag-
nosis algorithm finds an atom from S that is not covered by the program. Thus
it finds a reason for violating the sufficient conditions for semi-completeness
and completeness of Theorems 10 and 13. So what is diagnosed is lack of semi-
completeness. (As the algorithm works with a finite SLD-tree for a program P
and a query Q, incompleteness of P for Q implies that P is not semi-complete.)

Approximate Specifications. We found that approximate specifications are cru-
cial in avoiding unnecessary complications in dealing with correctness and com-
pleteness of programs (cf. Sect. 2.3, [9,11,13]). For instance, in the main example
of [9] (and in its simpler version in Examples 19, and 20) finding an exact spec-
ification is not easy, and is unnecessary. The required property of the program
is described more conveniently by an approximate specification. Moreover, as
this example shows, in program development the semantics of (common predi-
cates in) the consecutive versions of a program may differ. What is unchanged
is correctness and completeness w.r.t. an approximate specification.

Approximate Specifications in Program Development. This suggests a generaliza-
tion of the paradigm of program development by semantics preserving program
transformations [19,20]: it is useful and natural to use transformations which
only preserve correctness and completeness w.r.t. an approximate specification.
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Approximate Specifications in Debugging. In declarative diagnosis [21] the pro-
grammer is required to know the exact intended semantics of the program.
This is a substantial obstacle to using declarative diagnosis in practice. Instead,
an approximate specification can be used, with the specification for correctness
(respectively completeness) applied in incorrectness (incompleteness) diagnosis.
See [11] for discussion and references.

Interpretations as Specifications. This work uses specifications which are inter-
pretations. (The same kind of specifications is used, among others, in [1], and in
declarative diagnosis.) There are however properties which cannot be expressed
by such specifications [13]. For instance one cannot express that some instance of
an atomic query A should be an answer; one has to specify the actual instance(s).
Other approach is needed for such properties, possibly with specifications which
are logical theories (where axioms like ∃X.A can be used).

Applications. We want to stress the simplicity and naturalness of the sufficient
conditions for correctness (Theorem 4) and semi-completeness (Theorem 10, the
condition is a part of each discussed sufficient condition for completeness). Infor-
mally, the first one says that the clauses of a program should produce only correct
conclusions, given correct premises. The other says that each ground atom that
should be produced by P can be produced by a clause of P out of atoms pro-
duced by P . The author believes that this is a way a competent programmer
reasons about (the declarative semantics of) a logic program.

Paper [9] illustrates practical applicability of the methods presented here. It
shows a systematic construction of a non-trivial Prolog program (the SAT solver
of [16]). Starting from a formal specification, a definite clause logic program
is constructed hand in hand with proofs of its correctness, completeness, and
termination under any selection rule. The final Prolog program is obtained by
adding control to the logic program (delays and pruning SLD-trees). Adding
control preserves correctness and termination. However completeness may be
violated by pruning, and by floundering related to delays. By Theorem18, the
program with pruning remains complete.2 Proving non-floundering is outside of
the scope of this work. See [14] for a related analysis algorithm, applicable in
this case [17].

The example shows how well “logic” could be separated from “control.” The
whole reasoning related to correctness and completeness can be done declara-
tively, abstracting from any operational semantics.

Future Work. A natural continuation is developing completeness proof meth-
ods for programs with negation (a first step was made in [13]), maybe also
for constraint logic programming and CHR (constraint handling rules). Further
examples of proofs are necessary. An interesting task is formalizing and autom-
atizing the proofs, a first step is formalization of specifications. Another issue is
overcoming the limitation described in Interpretations as specifications above.
2 In [9] a weaker version of Theorem 18 was used, and one case of pruning was discussed

informally. A proof covering both cases of pruning is illustrated here in Example 20.
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Conclusion. Reasoning about completeness of logic program has been, surpris-
ingly, almost neglected. This paper presents a few sufficient conditions for com-
pleteness. As an intermediate step we introduced a notion of semi-completeness.
The presented methods are, to a large extent, declarative. Examples suggest that
the approach is applicable – maybe at informal level – in practice of Prolog pro-
gramming. The approach is augmented by two methods of proving completeness
in presence of pruning.
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