
Maurizio Proietti
Hirohisa Seki (Eds.)

 123

LN
CS

 8
98

1

24th International Symposium, LOPSTR 2014
Canterbury, UK, September 9–11, 2014
Revised Selected Papers

Logic-Based
Program Synthesis
and Transformation

Lecture Notes in Computer Science 8981

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Maurizio Proietti • Hirohisa Seki (Eds.)

Logic-Based
Program Synthesis
and Transformation
24th International Symposium, LOPSTR 2014
Canterbury, UK, September 9–11, 2014
Revised Selected Papers

123

Editors
Maurizio Proietti
IASI-CNR
Rome
Italy

Hirohisa Seki
Nagoya Institute of Technology
Nagoya
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-17821-9 ISBN 978-3-319-17822-6 (eBook)
DOI 10.1007/978-3-319-17822-6

Library of Congress Control Number: 2015937958

LNCS Sublibrary: SL1 – Theorectical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains a selection of the papers presented at LOPSTR 2014, the 24th
International Symposium on Logic-Based Program Synthesis and Transformation held
during September 9–11, 2014 at the University of Kent, Canterbury, UK. It was
colocated with PPDP 2014, the 16th International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming.

Previous LOPSTR symposia were held inMadrid (2013 and 2002), Leuven (2012 and
1997), Odense (2011), Hagenberg (2010), Coimbra (2009), Valencia (2008), Lyngby
(2007), Venice (2006 and 1999), London (2005 and 2000), Verona (2004), Uppsala
(2003), Paphos (2001), Manchester (1998, 1992 and 1991), Stockholm (1996), Arnhem
(1995), Pisa (1994), and Louvain-la- Neuve (1993). More information about the sym-
posium can be found at: http://www.iasi.cnr.it/events/lopstr14/.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration on logic-based program development. LOPSTR is open to contri-
butions in all aspects of logic-based program development, all stages of the software
life cycle, and issues of both programming-in-the-small and programming-in-the-large.
LOPSTR traditionally solicits contributions, in any language paradigm, in the areas of
synthesis, specification, transformation, analysis and verification, specialization, testing
and certification, composition, program/model manipulation, optimization, transfor-
mational techniques in software engineering, inversion, applications, and tools.
LOPSTR has a reputation for being a lively, friendly forum for presenting and dis-
cussing work in progress. Formal proceedings are produced only after the symposium
so that authors can incorporate this feedback in the published papers.

In response to the call for papers, 34 contributions were submitted from 21 different
countries. The Program Committee accepted 7 full papers for immediate inclusion in
the formal proceedings, and 11 more papers presented at the symposium were accepted
after a revision and another round of reviewing. Each submission was reviewed by at
least 2 and on the average 3.0, Program Committee members or external referees. In
addition to the 18 contributed papers, this volume includes the abstracts of the invited
talks by two outstanding speakers: Roberto Giacobazzi (University of Verona, Italy),
shared with PPDP and Viktor Kuncak (EPFL, Switzerland).

We would like to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the LOPSTR 2014
General Co-chairs, Olaf Chitil and Andy King, and the local organizers for the great
job they did in managing the symposium. Many thanks also to Olivier Danvy, the
Program Committee Chair of PPDP, with whom we often interacted for coordinating
the two events. We are grateful to Emanuele De Angelis and Fabrizio Smith, who
helped us in maintaining the LOPSTR web site and editing these proceedings. We
would also like to thank Andrei Voronkov for his excellent EasyChair system that
automates many of the tasks involved in chairing a conference. Special thanks go to all

http://www.iasi.cnr.it/events/lopstr14/

the authors who submitted and presented their papers at LOPSTR 2014, without whom
the symposium would have not been possible. Finally, Maurizio Proietti gratefully
acknowledges financial support from the Italian National Group of Computing Science
(GNCS-INDAM).

February 2015 Maurizio Proietti
Hirohisa Seki

VI Preface

Organization

Program Committee

Slim Abdennadher German University of Cairo, Egypt
Étienne André Université Paris 13, France
Martin Brain University of Oxford, UK
Wei-Ngan Chin National University of Singapore, Singapore
Marco Comini University of Udine, Italy
Włodek Drabent IPI PAN Warszawa, Poland and Linköping

University, Sweden
Fabio Fioravanti University of Chieti-Pescara, Italy
Jürgen Giesl RWTH Aachen, Germany
Miguel Gómez-Zamalloa Complutense University of Madrid, Spain
Arnaud Gotlieb SIMULA Research Laboratory, Norway
Gopal Gupta University of Texas at Dallas, USA
Jacob Howe City University London, UK
Zhenjiang Hu National Institute of Informatics, Japan
Alexei Lisitsa University of Liverpool, UK
Yanhong A. Liu State University of New York at Stony Brook,

USA
Jorge A. Navas NASA Ames Research Center, USA
Naoki Nishida Nagoya University, Japan
Corneliu Popeea Technische Universität München, Germany
Maurizio Proietti IASI-CNR, Rome, Italy (Co-chair)
Tom Schrijvers Ghent University, Belgium
Hirohisa Seki Nagoya Institute of Technology, Japan (Co-chair)
Jon Sneyers Katholieke Universiteit, Leuven, Belgium
Fausto Spoto University of Verona, Italy
Wim Vanhoof University of Namur, Belgium
Germán Vidal Universitat Politécnica de València, Spain

General Co-chairs

Olaf Chitil University of Kent, UK
Andy King University of Kent, UK

Organizing Committee

Emanuele De Angelis IASI-CNR, Rome, Italy
Fabrizio Smith IASI-CNR, Rome, Italy

Bardin, Sebastien
Bucheli, Samuel
Cai, Zhouhong
Choppy, Christine
Cirstea, Horatiu
Di Gianantonio, Pietro
Emoto, Kento
Englebert, Vincent
Faber, Wolfgang
Fuhs, Carsten
Guo, Hai-Feng
Gutiérrez, Raúl
Haemmerlé, Rémy

Ieva, Carlo
Inuzuka, Nobuhiro
Ismail, Haythem
Kawabe, Yoshinobu
King, Andy
Komendantskaya,

Ekaterina
Lenisa, Marina
Li, Jun
Lovato, Alberto
López-Fraguas, Francisco

Javier
Marple, Kyle

Morihata, Akimasa
Narayanaswamy, Ganesh
Nishimura, Susumu
Pettorossi, Alberto
Salazar, Elmer
Ströder, Thomas
Tan, Tian Huat
Titolo, Laura
Yue, Tao
Zaki, Amira

Additional Reviewers

VIII Organization

Obscuring Code

Unveiling and Veiling Information in Programs1

Roberto Giacobazzi

University of Verona, Verona, Italy
roberto.giacobazzi@univr.it

Abstract. We survey the most recent developments in code obfuscation and protection from a
programming languages perspective. Starting from known impossibility results on universal and
general purpose code obfuscation, we show that provably secure obfuscation can be achieved by
constraining the attack model. This corresponds to associate attacks with suitable forms of
interpretation. In this context it is always possible to systematically making code obscure, making
this interpretation failing in extracting (attacking) code. The code transformation can itself be
specified as the specialization of a distorted interpreter.

1 An extended version appears in the proceedings of the 16th International Symposium on Principles
and Practice of Declarative Programming (PPDP 2014), September 8–10 2014, Canterbury, United
Kingdom. ACM Press.

Synthesizing Functions from Relations in Leon

Viktor Kuncak2, Etienne Kneuss, and Emmanouil Koukoutos

École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

viktor.kuncak@epfl.ch

Abstract. We present the synthesis functionality of the Leon system (leon.epfl.ch). Leon accepts
a purely functional subset of Scala extended with a choice construct. We describe automated and
manual synthesis and transformation techniques in Leon, which can eliminate the choice
construct and thus transform input/output relation specifications into executable functions from
inputs to outputs. The techniques employed include functional synthesis procedures for decidable
theories such as term algebras and Presburger arithmetic, synthesis proof rules for decomposing
specifications, as well as search-based techniques, such as counterexample-guided synthesis.

2 Thiswork is supported in part by the EuropeanResearchCouncil (ERC)Project Implicit Programming.

Contents

Program Analysis and Transformation

Analyzing Array Manipulating Programs by Program Transformation 3
J. Robert M. Cornish, Graeme Gange, Jorge A. Navas,
Peter Schachte, Harald Søndergaard, and Peter J. Stuckey

Analysing and Compiling Coroutines with Abstract Conjunctive
Partial Deduction . 21

Danny De Schreye, Vincent Nys, and Colin Nicholson

Constraint Handling Rules

Confluence Modulo Equivalence in Constraint Handling Rules 41
Henning Christiansen and Maja H. Kirkeby

Exhaustive Execution of CHR Through Source-to-Source Transformation . . . 59
Ahmed Elsawy, Amira Zaki, and Slim Abdennadher

A Formal Semantics for the Cognitive Architecture ACT-R 74
Daniel Gall and Thom Frühwirth

CHRAnimation: An Animation Tool for Constraint Handling Rules 92
Nada Sharaf, Slim Abdennadher, and Thom Frühwirth

Termination Analysis

Extending the 2D Dependency Pair Framework for Conditional
Term Rewriting Systems . 113

Salvador Lucas, José Meseguer, and Raúl Gutiérrez

Security

Partial Evaluation for Java Malware Detection . 133
Ranjeet Singh and Andy King

Access Control and Obligations in the Category-Based Metamodel:
A Rewrite-Based Semantics . 148

Sandra Alves, Anatoli Degtyarev, and Maribel Fernández

http://dx.doi.org/10.1007/978-3-319-17822-6_1
http://dx.doi.org/10.1007/978-3-319-17822-6_2
http://dx.doi.org/10.1007/978-3-319-17822-6_2
http://dx.doi.org/10.1007/978-3-319-17822-6_3
http://dx.doi.org/10.1007/978-3-319-17822-6_4
http://dx.doi.org/10.1007/978-3-319-17822-6_5
http://dx.doi.org/10.1007/978-3-319-17822-6_6
http://dx.doi.org/10.1007/978-3-319-17822-6_7
http://dx.doi.org/10.1007/978-3-319-17822-6_7
http://dx.doi.org/10.1007/978-3-319-17822-6_8
http://dx.doi.org/10.1007/978-3-319-17822-6_9
http://dx.doi.org/10.1007/978-3-319-17822-6_9

Program Testing and Verification

Concolic Execution and Test Case Generation in Prolog 167
Germán Vidal

Liveness Properties in CafeOBJ – A Case Study for Meta-Level
Specifications . 182

Norbert Preining, Kazuhiro Ogata, and Kokichi Futatsugi

Program Synthesis

A Hybrid Method for the Verification and Synthesis of Parameterized
Self-Stabilizing Protocols . 201

Amer Tahat and Ali Ebnenasir

Drill and Join: A Method for Exact Inductive Program Synthesis 219
Remis Balaniuk

Program Derivation

Functional Kleene Closures . 241
Nikita Danilenko

Semantic Issues in Logic Programming

On Completeness of Logic Programs. 261
Włodzimierz Drabent

Polynomial Approximation to Well-Founded Semantics for Logic Programs
with Generalized Atoms: Case Studies . 279

Md. Solimul Chowdhury, Fangfang Liu, Wu Chen,
Arash Karimi, and Jia-Huai You

Program Transformation and Optimization

Declarative Compilation for Constraint Logic Programming 299
Emilio Jesús Gallego Arias, James Lipton, and Julio Mariño

Pre-indexed Terms for Prolog . 317
J.F. Morales and M. Hermenegildo

Author Index . 333

XII Contents

http://dx.doi.org/10.1007/978-3-319-17822-6_10
http://dx.doi.org/10.1007/978-3-319-17822-6_11
http://dx.doi.org/10.1007/978-3-319-17822-6_11
http://dx.doi.org/10.1007/978-3-319-17822-6_12
http://dx.doi.org/10.1007/978-3-319-17822-6_12
http://dx.doi.org/10.1007/978-3-319-17822-6_13
http://dx.doi.org/10.1007/978-3-319-17822-6_14
http://dx.doi.org/10.1007/978-3-319-17822-6_15
http://dx.doi.org/10.1007/978-3-319-17822-6_16
http://dx.doi.org/10.1007/978-3-319-17822-6_16
http://dx.doi.org/10.1007/978-3-319-17822-6_17
http://dx.doi.org/10.1007/978-3-319-17822-6_18

Program Analysis and Transformation

Analyzing Array Manipulating Programs
by Program Transformation

J. Robert M. Cornish1, Graeme Gange1, Jorge A. Navas2, Peter Schachte1,
Harald Søndergaard1(B), and Peter J. Stuckey1

1 Department of Computing and Information Systems,
The University of Melbourne, Melbourne, VIC 3010, Australia

j.cornish@student.unimelb.edu.au

{gkgange,schachte,harald,pstuckey}@unimelb.edu.au
2 NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA

jorge.a.navaslaserna@nasa.gov

Abstract. We explore a transformational approach to the problem of
verifying simple array-manipulating programs. Traditionally, verification
of such programs requires intricate analysis machinery to reason with
universally quantified statements about symbolic array segments, such
as “every data item stored in the segment A[i] to A[j] is equal to the
corresponding item stored in the segment B[i] to B[j].” We define a simple
abstract machine which allows for set-valued variables and we show how
to translate programs with array operations to array-free code for this
machine. For the purpose of program analysis, the translated program
remains faithful to the semantics of array manipulation. Based on our
implementation in LLVM, we evaluate the approach with respect to its
ability to extract useful invariants and the cost in terms of code size.

1 Introduction

We revisit the problem of automated discovery of invariant properties in simple
array-manipulating programs. The problem is to extract interesting properties
of the contents of one-dimensional dynamic arrays (by dynamic we mean arrays
whose bounds are fixed at array variable creation time, but not necessarily at
compile time). We follow the array partitioning approach proposed by Gopan,
Reps, and Sagiv [9] and improved by Halbwachs and Péron [11]. This classical
approach uses two phases. In a first phase, a program analysis identifies all
(potential) symbolic segments by analyzing all array accesses in the program.
Each segment corresponds to an interval Ik of the array’s full index domain, but
its bounds are symbolic, that is, bounds are index expressions. For example, the
analysis may identify three relevant segments I1 = [0, . . . , i − 1], I2 = [i], and
I3 = [i + 1, . . . , n − 1]. After this the original array A is considered partitioned
into segments AIk corresponding to the identified segments and each segment is
replaced with a summary variable ak. In the second phase, the analysis aims at
discovering properties ψ(ak) on each summary variable ak such that

∀ � ∈ Ik(ψ(ak) ⇒ ψ(A[�])) (1)
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 3–20, 2015.
DOI: 10.1007/978-3-319-17822-6 1

4 J.R.M. Cornish et al.

By partitioning arrays into segments, the analysis can produce stronger sep-
arate analysis for each segment rather than a single weaker combined result
for the whole array. In particular, we can identify singleton segments (AI2 in
the example) and translate array writes to these as so-called strong updates.
A strong update benefits from the fact that the old content of the segment is
eliminated by the update, so the new content replaces the old. For a segment
that may contain multiple elements, an assignment to an array cell may leave
some content unchanged, so a weak update must be used, that is, we must use a
lattice-theoretic “join” of the new result and the old result associated with �.

Although very accurate, array partitioningmethods have their drawbacks. Par-
titioning can be prohibitively expensive, with a worst-case complexity of O(n!),
where n is the number of program variables. Moreover, partitioning must be done
before the array content analysis phase that aims at inferring invariants for the
form (1), which could be less precise than doing both simultaneously [5]. To mit-
igate this problem, the index analysis, used to infer the relevant symbolic inter-
vals, is run twice: once during the segmentation phase and again during the array
content analysis, which needs it to separate the first fixed point iteration from
the rest. In the more sophisticated approach of Halbwachs and Péron [11,16], the
transfer functions are much more complex and a concept of “shift variables” is
used, representing translation (in the geometric sense) of segments. This is not
easily implemented using existing abstract interpretation libraries.

Contribution. We present a program transformation that allows scalar analy-
ses techniques to be applied to array manipulating programs. As in previously
proposed array analyses [9,11,16], we partition arrays into segments whose con-
tents are treated as sets rather than sequences. To maintain the relationship
among corresponding elements of different arrays, we abstract the state of all
arrays within a segment to a set of vectors, one element per array. Thus we
transform an array manipulating program into one that manipulates scalars and
sets of vectors. A major challenge in this is to encode the disjunctive information
carried by each array segment. We propose a technique that splits basic blocks.
It has been implemented using the LLVM framework.

Importantly, a program transformation approach allows the separation of con-
cerns: existing analyses based on any scalar abstract domains can be used directly
to infer array content properties, even interprocedurally. While other approaches
lift a scalar abstract domain to arrays by lifting each transfer function, our app-
roach uses existing transfer functions unchanged, only requiring the addition of
two simple transfer functions easily defined in terms of operations that already
exist for most domains. The approach is also parametric in the granularity of
array index sets, ranging from array smashing [2] to more precise (and expensive)
instances. When we go beyond array smashing, the transformational approach
inherits the exponential search cost present in the Halbwachs/Péron approach,
as for some programs P , the transformed programs P ′ are exponentially larger
than P . However, for simple array-based sort/search programs [9,11], a transfor-
mational approach is perfectly affordable, in particular as we can capitalize on
code optimization support offered by the LLVM infrastructure.

Analyzing Array Manipulating Programs by Program Transformation 5

Instructions I → v1 = constant | v1 = ◦ v2 | v1 = v2 v3 | A
Array assignments A → v1 = arr[v2] | arr[v1] = v2
Jumps J → If (v1 2) label1 label2 | Jmp label | error | end
Blocks B → label : I* J
Programs P → B+

Fig. 1. A small control-flow language with array expressions

head :
i = 0
x =

Jmp guard

guard :
v = A[i]

If (v = x) body tail

body :
i = i + 1
Jmp guard

tail :
end

head∅ :
i = 0
x =
a0 =

Jmp guard0=i

guard0=i :
v = a0

If (v = x) body0=i tail0=i

body0=i :
i = i + 1

A0 = {a0}
a1 =

Jmp guard0<i

tail0=i :
end

guard0<i :
v = a1

If (v = x) body0<i tail0<i

body0<i :
i = i + 1

A0 = A0 ∪ {a1}
a1 =

Jmp guard0<i

tail0<i :
end

(a) (b)

Fig. 2. (a) An array program fragment and (b) the corresponding set-machine program.

2 Source and Target Language

Our implementation uses LLVM IR as source and target language. However, as
the intricacies of static single-assignment (SSA) form obscure, rather than clarify,
the transformation, we base our presentation on a small traditional control flow
language, whose syntax is given in Fig. 1. We shall usually shorten “basic block”
to “block” and refer to a block’s label as its identifier.

Source. Each block is a (possibly empty) sequence of instructions, followed by
a (conditional) jump. Arithmetic unary and binary operators are denoted by
◦ and � respectively, and logical operators by ��. We assume that there is a
fixed set of arrays {A1, . . . , Ak}, which have global scope (and do not overlap
in memory). The semantics is conventional and not discussed here. Figure 2(a)
shows an example program in diagrammatic form.

Target. The abstract machine we consider operates on variables over two kinds
of domains: standard scalar types, and sets of vectors of length k, where k is
the number of arrays in the source. The scalar variables represent scalars of the
source program, including index variables, as well as singleton array segments;
sets of vectors represent non-singleton segments of all extant arrays. Let V be the

6 J.R.M. Cornish et al.

Instructions I → v1 = constant | v1 = ◦ v2 | v1 = v2 v3 | S
Set operations S → S1 = nondet-subset(S2) | S1 = S2 ∪ S3 | (v1, . . . , vk) = nondet-elt(S1)
Jumps J → If (v1 2) label1 label2 | Jmp label | error | end
Blocks B → label : I* J
Programs P → B+

Fig. 3. Control-flow language for the set machine.

Fig. 4. Semantics for set manipulating operations.

set of scalar variables and S be the set of vector set variables. The runtime state
of the machine is given by a pair 〈σ, ρ〉 consisting of a variable store σ : V → Z,
and a set store ρ : S → P(Zk).

A control flow language for set machine programs is given in Fig. 3. Arith-
metic and logical operations affect only the variable store σ; the semantic rules
for these operations are standard. The set machine also has set operations union
(∪), subset (nondet-subset) and element of (nondet-elt). Figure 4 gives their
semantic rules, distinguishing scalar variables v and (vector) set variables S.

The union update S1 = S2 ∪ S3 maps S1 to the union of values of S2

and S3. The subset and element operations are non-deterministic: executing
S1 = nondet-subset(S2) assigns to S1 some non-empty subset of elements from
S2, but makes no guarantee as to which elements are selected. Similarly, the ele-
ment operation (v1, . . . , vk) = nondet-elt(S1) nondeterministically selects some
element of vector set S1 to load into v1, . . . , vk.

Translation. Figure 2(a)’s program scans an array for the first occurrence of
value x, assumed to occur in A. The constraint A[i] = x ∧ ∀ k ∈ [0, i) (A[k] �=
x) is the desired invariant at tail. A corresponding array-free program is given
in Fig. 2(b). The example illustrates some key features. Each contiguous array
segment is represented by a set variable Ai. Each original block is duplicated
for each feasible ordering of interesting variables. In the initial ordering (0 = i)
the only interesting segment is A[0], represented as the singleton a0; the read
v = A[i] is replaced by an assignment v = a0. At guard0<i, A[i] is represented
by a1 so the read is replaced by v = a1. When i is updated at body0=i, the
previous singleton a0 becomes part of an “aggregate” segment A[0, i−1]. We then
transform singleton a0 to set A0 and introduce a new singleton a1 (representing
A[i] in the updated ordering). Similarly, when we update i in body0<i, segments
A[0, i − 1] and A[i] are merged (yielding A0 = A0 ∪ {a1}), and a new singleton
a1 is introduced. Consider the resulting concrete set-machine states. At tail0=i,
we have a0 = x, corresponding to A[0] = x in the original program. At tail0<i,
we find x /∈ A0 and a1 = x. These correspond, respectively, to array invariants
∀� ∈ [0, i − 1] . A[�] �= x and A[i] = x in the original program.

Analyzing Array Manipulating Programs by Program Transformation 7

3 From Scalar to Set Machine Transfer Functions

We now show how to lift a scalar domain for use by set machines. Essentially, we
use a scalar variable to approximate each component of each set; approximation
of set-machine states can then be obtained by grouping states by values of the
(original) scalar variables. Essentially, we approximate a set-machine state 〈σ, ρ〉
with set variables {S1, . . . , Sm} by a set of scalar states {S�

1 , . . . , S�
m} represent-

ing the possible results of selecting some element from each set:

α�(〈σ, ρ〉) = {σ ∪ {S�
1
→ y1, . . . , S

�
m
→ ym} | y1 ∈ ρ(S1), . . . , ym ∈ ρ(Sm)}

Transfer functions for set operations then operate over the universe of possible
states, rather than apply element-wise to each state.

Example 1. Consider a program with one scalar variable x, and one set variable
S, with initial state 〈{x
→ 0}, {S
→ {1, 2}}〉. If we introduce a scalar variable y
that selects a value from S via a we have two possible states:

〈{x
→ 0, y
→ 1}, {S
→ {1, 2}}〉
〈{x
→ 0, y
→ 2}, {S
→ {1, 2}}〉

If we represent S by scalar variable S�, we have initial states 〈{x
→ 0, S�
→ 1}〉
and 〈{x
→ 0, S�
→ 2}〉. When we wish to select a value for y, it is chosen
nondeterministically from the possible values of S�, resulting in the states:

〈{x
→ 0, y
→ 1, S�
→ 1}〉, 〈{x
→ 0, y
→ 1, S�
→ 2}〉
〈{x
→ 0, y
→ 2, S�
→ 1}〉, 〈{x
→ 0, y
→ 2, S�
→ 2}〉

If we group states with equal values of x and y, we can see that these correspond
to the final states of the original set-machine fragment. �
Note that this is an (over-)approximation. We can only infer the set of values that
may be elements of S—this representation cannot distinguish sets of elements
which may occur together, nor the cardinality of S. For example, assume we
have possible set-machine states 〈∅, {S
→ {1}}〉 and 〈∅, {S
→ {2}}〉. The scalar
approximation is 〈{S�
→ 1}, {S�
→ 2}〉 which covers the feasible set-machine
states, but also includes 〈∅, {S
→ {1, 2}}〉, which is not feasible. More generally,
if the set ϕ of concrete states allows sets S
→ X1, . . . , S
→ Xk, we have:

∀X (X ⊆ X1 ∪ . . . ∪ Xk ⇒ (S
→ X) ∈ γ ◦ α(ϕ))

Consider a (not necessarily numeric) abstract domain A, with meet (�), join (�)
and rename operations, as well as a transfer function F : I → A → A for the
scalar fragment of the language. The rename operation constructs a new state
where each variable xi is replaced with yi (then removes the existing bindings
of xi). Formally, the concrete semantics of rename is given by

rename(σ, [x1, . . . , xk], [y1, . . . , yk]) = σ

[
y1
→ σ(x1), . . . , yk
→ σ(xk),

x1
→ �, . . . , xk
→ �

]

For each set variable S, we introduce k scalar variables [s1, . . . , sk] denoting the
possible values of each vector in S. We then extend F to set operations as shown
in Fig. 5.

8 J.R.M. Cornish et al.

Fig. 5. Extending the transfer function for scalar analysis to set operations

4 Orderings

The transformation relies on maintaining a single ordering of index variables at
each transformed block. We now discuss such total orderings.

Our goal is to partition the array index space (−∞,∞) into contiguous
regions bounded by index variables. For index variables i and j, we need to
be able to distinguish between the cases where i < j, i = j and i > j. However,
this is not enough; if we assign A[i] = x, but only know that i < j, we cannot
distinguish between the cases i = j − 1 (every element between i and j is x) and
i < j −1 (there are additional elements with some other property). So, for index
variables i and j, we choose to distinguish these five cases:

i + 1 < j i + 1 = j i = j i = j + 1 i > j + 1

For convenience in expressing these orderings, we will introduce for each index
variable i a new term i+ denoting the value i+1, and for a set of index variables
I we will denote by I+ the augmented set I∪ {v+ | v ∈ I}. We can then define a
total ordering of a set of index variables I to be a sequence of sets [B1, . . . , Bk],
Bs ⊆ I+, such that the Bs’s cover I+, are pairwise disjoint, and satisfy i ∈ Bs ⇔
i+ ∈ Bs+1.

The meaning of the ordered list π = [B1, B2, . . . , Bk] is parameterised by
the value of program variables involved, that is, it depends on a store σ. The
meaning is: [[π]](σ) ≡

∧
s,t∈[1..k]

(∀e, e′ ∈ Bs (σ(e) = σ(e′)) ∧ ∀e ∈ Bs ∀e′ ∈ Bt (s < t → σ(e) < σ(e′)))

An ordering π (plus virtual bounds {−∞,∞}) partitions the space of possible
array indices into contiguous regions, given by [σ(e), σ(e′)) for e ∈ Bi, e

′ ∈ Bi+1.
For any index variable i, a segment containing i+ in the right bound is necessarily
a singleton segment; all other segments are considered aggregate.

When a new index variable k enters scope, several possible orderings may
result. Figure 6(c) gives a procedure for enumerating them. When an index vari-
able k leaves scope, computing the resulting ordering consists simply of elimi-
nating k and k+ from π, and discarding any now-empty sets. Assignment of an
index variable is handled as a removal followed by an introduction.1

1 If the assigned index variable appears in the expression, we assign the index to a
temporary variable, and replace the index with the temporary in the expression.

Analyzing Array Manipulating Programs by Program Transformation 9

We can discard any ordering that arranges constants in infeasible ways, such
as 4 < 3. If we have performed some scalar analysis on the original program, we
need only generate orderings which are consistent with the analysis results.

5 The Transformation

We now detail the transformation from an array manipulating program to a
set-machine program, with respect to a fixed set of interesting segment bounds.
Section 6 covers the selection of these bounds. Intuitively, the goal of the trans-
formation is to partition the array into a collection of contiguous segments, such
that each array operation uniquely corresponds to a singleton segment. Each
singleton segment is represented by a tuple of scalars; each non-singleton seg-
ment is approximated by a set variable. There are two major obstacles to this.
First, a program point does not typically admit a unique ordering of a given
set of segment bounds; second, as variables are mutated in the program, the
correspondence between concrete indices and symbolic bounds changes.

The transformation resolves this by replicating basic blocks to ensure that, at
any program point, a unique partitioning of the array into segments is identifi-
able. Any time a segment-defining variable is modified, introduced or eliminated,
we emit statements to distinguish the possible resulting partitions, and duplicate
the remainder of the basic block for each case. For each partition, we also emit
set operations to restore the correspondence between set variables and array
segments, using nondet-elt and nondet-subset when a segment is subdivided,
and ∪, when a boundary is removed, causing segments to be merged. This way
every array read/write in the resulting program can be uniquely identified with
a singleton segment. As singleton sets are represented by tuples of scalars, we
can finally eliminate array operations, replacing them with scalar assignments.

In the following, we assume the existence of functions next block, which allo-
cates a fresh block identifier, and push block, which takes an identifier, a sequence
of statements and a branch, and adds the resulting block to the program. We
also assume that there is a mutable global table T mapping block identifier and
index variable ordering pairs 〈id, π〉 to ids, used to store previously computed
partial transformations, and an immutable set I of segment bound variables and
constants. The function get block takes a block identifier, and returns the body of
the corresponding block. The function vars returns the set of variables appearing
lexically in the given expression. The function find avar gives the variable name
to which a given array and index will be translated, given an ordering.

Figure 6 gives the transformation. Procedure transform takes a block and
transforms it, assuming a given total ordering π of the index variables. It is called
once with the initial block of each function and an ordering containing only the
constants in the index set. As there are finitely many 〈id, π〉 combinations, and
each pair is constructed at most once, this process terminates.

The core of the transformation is done by a call to transform body(B, π, id, ss).
Here B is the portion of the current block to be transformed and π the current
ordering. id and ss hold the identifier and body of the partially-transformed

10 J.R.M. Cornish et al.

% Check if the block has already been transformed
% under π. If not, transform it.
transform(id, π)

if ((id, π) ∈ T)
return T [(id, π)]

idt := next block()
T := T [(id, π) idt]
(stmts, br) := get block(id)
transform body((stmts, br), π, id, [])
return idt

% Evaluate a branch.
transform body(([], Jmp b), π, id, ss)

idb := transform(b, π)
push block(id, ss , Jmp idb)

transform body(([], If l then t else f), π, id, ss)
if vars(l) ⊆ I

dest := if eval(l, π) then t else f
iddest := transform(dest, π)
push block(id, ss , Jmp iddest)

else
idt := transform(t, π)
idf := transform(f , π)
push block(id, ss , If l then idt else idf)

% (Potentially) update an index.
transform body(([x = expr|stmts], br), π, id, ss)

if x ∈ I
split transform(x, (stmts , br), π, id, ss : :[x = expr])

else
transform body((stmts , br), π, id, ss : :[x = expr])

% Transform an array read...
transform body(([x = A[i]|stmts], br), π, id, ss)

Ai := find avar(π,A, i)
transform body((stmts, br), π, id, ss : :[x = Ai])

% or an array write.
transform body(([A[i] = x|stmts], br), π, id, ss)

Ai := find avar(π,A, i)
transform body((stmts, br), π, id, ss : :[Ai = x])

(a) The top-level transformation process

split transform(x, (stmts, br), π, id, ss)
Π := feasible orders(π, x)
split rec(x, Π , (stmts, br), π, id, ss)

split rec(x, [π], (stmts , br), π, id, ss)
asts := remap avars(π, π)
transform body((stmts , br), π , id, ss : : asts)

split rec(x, [π |Π], (stmts , br), π, id, ss)
idπ := next block()
idΠ := next block()
cond := ord cond(x, π)
push block(id, ss , If cond then idπ else idΠ)
asts := remap avars(π, π)
transform body((stmts , br), π , idπ , asts)
split rec(x, Π , (stmts, br), π, idΠ , [])

(b) Fan-out of a block when an index variable is changed

feasible orders(k, π) : insert(k, π, [])

insert(k, [], pre) : return {pre : :{k} : :{k+}}
insert(k, [Si|S], pre)

low := insert+(k, [Si | S], pre : :{k})
high := insert(k, S , pre : : Si)
if ∃ x . x+ ∈ Si

return low ∪ high
else

return low ∪ high ∪
insert+(k, S , pre : :(Si ∪ {k}))

insert+(k, [], pre) : return {pre : :{k+}}
insert+(k, [Si | S], pre)

if ∃ x . x+ ∈ Si

return {pre : :(Si ∪ {k+}) : : S}
else

return {pre : :(Si ∪ {k+}) : : S} ∪
{pre : :{k+} : : Si : : S}

(c) Enumerating the possible total orderings upon
introducing a new index variable k

Fig. 6. Pseudo-code for stages of the transformation process.

block. As a block is processed, instructions not involving index or array vari-
ables are copied verbatim into the transformed block. During the process, we
ensure that each (transformed) statement is reachable under exactly one index
ordering π. Singleton segments under π are represented by scalar variables, and
aggregate segments by set variables. Array reads and writes are replaced with
accesses and assignments to the corresponding scalar or set variable, as deter-
mined by find avar. Conditional branches whose conditions are determined by
the current ordering are replaced by direct branches to the then or else part,
as appropriate. Once no instructions remain to be transformed, the block id is
emitted with body ss, together with the appropriate branch instruction.

Whenever an index variable is modified, the rest of the current block must
be split, and the set variables must be updated accordingly. The rest of the
block is then transformed under each possible new ordering π′. This is the job
of split transform shown in Fig. 6(b), while the job of feasible orders in Fig. 6(c)
is to determine the set of possible orders. The function ord cond(x, π′) gener-
ates logical expressions to determine whether the ordering π′ holds, given that

Analyzing Array Manipulating Programs by Program Transformation 11

π = [{0} < {1} < {i} < {i+} < {n}]
transform body : π

x := A[i]
B[i] := x
i := i + 1

x = a2

transform body : π

B[i] := x
i := i + 1

x = a2

b2 := x
transform body : π

i := i + 1

(a) Original (b) After Step 1 (c) After Step 2

Fig. 7. Transformation of array reads and writes under ordering π. As the segment
[i, i+] is a singleton, the array elements are represented as scalars.

π previously held. ord cond checks the position of both x and x+. If x is part
of a larger equivalence class in π, ord cond generates the corresponding equality;
otherwise, it checks that x is greater than its left neighbour; similarly, it checks
that x+ is in its class or less than its right neighbour. Figure 6(b) shows the
process of splitting a block upon introducing an index variable x.

5.1 Reading and Writing

Transformation of array reads and writes is simple, if the array index is in the
set I of index variables. Figure 7(a–c) shows the step-by-step transformation
of a block, under the specified ordering. After Step 1, reference A[i] has been
transformed to scalar a2, since {i} is a singleton. Similarly, Step 2 transforms
B[i] to b2.

If the index of the read/write operation has been omitted, we must instead
emit code to ensure the operation is dispatched to the correct set variable. The
dispatch procedure is similar in nature to split transform, as given in Fig. 6(c);
essentially, we emit a series of branches to determine which (if any) of the current
segments contains the read/write index. Once this has been determined, we
apply the array operation to the appropriate segment. If the selected segment is
a singleton, this is done exactly as in transform body. For writes to an aggregate
segment, we must first read some vector from the segment, substitute the element
to be written, then merge the updated vector back into the segment.2

5.2 Index Manipulation

The updating of index variables is the most involved part of the transformation,
as we must emit code not only to determine the updated ordering π′, but also
to ensure the array segment variables are matched to the corresponding bounds.
Figure 8 illustrates this process, implemented by the procedure remap avars, as it
splits a block into three: one to test an index expression to determine what order-
ing applies, and one for each ordering. In the original code, ordering π applies, but
following the assignment, either ordering π′

0 or π′
1 may apply. The test inserted

by Step 2 distinguishes these cases, leaving only one ordering applicable to each
of the sπ′

0
and split1 blocks.

2 Detailed pseudo-code for this is in Appendix A.

12 J.R.M. Cornish et al.

π = [{0} < {1} < {i} < {i+} < {n}]
π0 = [{0} < {1} < {i} < {i+} < {n}]
π1 = [{0} < {1} < {i} < {i+, n}]

...
transform body : π

i := i + 1
Jmp guard

(a) Original

...
i := i + 1
split rec : π [π0, π1]

Jmp guard

(b) After Step 1

...
i := i + 1
If i + 1 < n then sπ0

else split1

[sπ0
]

remap avars : π i π0

transform body : π0

Jmp guard

[split1]
split rec : π i [π1]

Jmp guard

(c) After Step 2

...
i := i + 1
If i + 1 < n then sπ0

else split1

[sπ0
]

remap avars : π i π0

transform body : π0

Jmp guard

[split1]
remap avars : π i π1

transform body : π1

Jmp guard

(d) After Step 3

Fig. 8. Example of updating an index assignment. We assume an existing scalar analy-
sis which has determined that, after i = i + 1, we have 1 < i < n.

If we normalize index assignments such that for k := E, k /∈ E, we can sepa-
rate the updating of segment variables into two stages; first, computing interme-
diate segment variables A′

i after eliminating k from π, and then computing the
new segment variables after introducing the updated value of k. Pseudo-code for
these steps are given in Figs. 9(a) and 10(a). In practice, we can often eliminate
many of these intermediate assignments, as segments not adjacent to the initial
or updated values of k remain unchanged.

When we eliminate an index variable k from π, we merge segments that were
bounded only by k or k+. If k or k+ appears alone at the very beginning or
end of π, the segments are discarded entirely. If either appears alone between
other variables in π, the segments on either side are merged to form a single
segment. However, if k and k+ are both equal to some other variables, the
original segments are simply copied to the corresponding temporary variables.
This is illustrated in Fig. 9(b).

The pseudo-code in Figs. 9 and 10 ignores the distinction between singleton
and aggregate segments; the transformed operations differ slightly in the two
cases. If we introduce a singleton segment into an aggregate segment, we select a
single vector from the set ((a′, b′, c′) = nondet-elt(A)); if an aggregate segment
is introduced, we emit a subset operation (A′ = nondet-subset(A)).

The procedure for injecting k into π behaves similarly. If k is introduced
at either end of π, we introduce new segments with indeterminate values. If k

Analyzing Array Manipulating Programs by Program Transformation 13

remap avars(k, π, π)
eliminate(k, π) : : introduce(k, π)

eliminate(k, π)
eliminate(k, π, 0, 0, ∅)

eliminate(k, [], , i , E)
if(i = 0) return []
else return [emit merge(Ai −1, E)]

eliminate(k, [{c} | S], i, i , E)
where c ∈ {k, k+}

return eliminate(k, S, i + 1, i , E ∪ {Ai})

eliminate(k, [Sj | S], i, i , E)
suff := eliminate(k, S, i + 1, i + 1, {Ai})
if(i = 0)

% Ignore leading segment.
return suff

else
return emit merge(Ai −1, E) : : suff

emit merge(x, E)
return [x = E]

(a)

a0 a1

π = [{k} < {k+, n} < {n+}]
a0

πr = [{n} < {n+}}]

a0 := a1

a0

π = [{k, n} < {k+, n+}]
a0

πr = [{n} < {n+}}]

a0 := a0

a0 a1 A2 a3

π = [{i} < {i+, k} < {k+} < {n} < {n+}]
a0 A1 a2

πr = [{i} < {i+} < {n} < {n+}]

a0 := a0

A1 := {a1} ∪ A2

a2 := a3

(b)

Fig. 9. (a) Algorithm for generating instructions to keep segment variables updated;
(b) resulting assignments when k is eliminated from various orderings, also showing
the remaining order πr and scalar or set variables corresponding to each segment.

is introduced somewhere within an existing segment, we introduce new child
segments—each of which is a subset of the original segment.

5.3 Control Flow

When transforming control flow, there are three cases we must consider:

1. Unconditional jumps
2. Conditional jumps involving some non-index variables
3. Conditional jumps involving only index variables

In cases (1) and (2), the transformation process operates as normal; we recur-
sively transform the jump targets, and construct the corresponding jump with
the transformed identifiers. However, when we have a conditional jump If i �� j
then t else f where i and j are both index terms, the relationship between i
and j is statically determined by the current ordering π. As a result, we can sim-
ply evaluate the condition i �� j under the ordering π, and use an unconditional
branch to the corresponding block. This is illustrated in Fig. 11.

14 J.R.M. Cornish et al.

introduce(k, π)
introduce(k, π, 0, 0)

introduce(k, [], , i)
return []

introduce(k, [{c} | S], i, i)
where c ∈ {k, k+}

suff := introduce(k, S, i + 1, i)
if(i = 0)

return [Ai =] : : suff
else

return [Ai = nondet-subset(Ai)] : : suff

introduce(k, [Sj | S], i, i)
suff := introduce(k, S, i + 1, i + 1)
if(i = 0)

% Ignore leading segment.
return suff

else
return [Ai = Ai] : : suff

(a)

πp = [{n} < {n+}]
π = [{k} < {k+, n} < {n+}]

a0 :=
a1 := a0

πp = [{n} < {n+}]
π = [{k, n} < {k+, n+}]

a0 := a0

πp = [{i} < {i+} < {n} < {n+}]
π = [{i} < {i+, k} < {k+} < {n} < {n+}]

a0 := a0

(a1) = nondet-elt(A1)
A2 = nondet-subset(A1)
a3 := a2

(b)

Fig. 10. (a) Generating instructions for (re-)introducing a variable k into a given order-
ing, and (b) the resulting assignments when k is introduced into various orderings. Note
the difference between introducing singleton and aggregate segments.

π = [{0} < {1} < {i} < {i+} < n]

...
transform body : π

If i < n
then body
else tail

let bodyπ = transform(body, π) in

...
Jmp bodyπ

Fig. 11. Transforming a jump, conditional on index variables only, under ordering π

6 Selecting segment Bounds

Until now we have assumed a pre-selected set of interesting segment bounds.
The selection of segment boundaries involves a trade-off: we can improve the
precision of the analysis by introducing additional segment bounds, but the
transformed program grows exponentially as the number of segment bounds
increases. As do [11], we can run a data-flow analysis to find the set of variables
that may (possibly indirectly) be used as, or to compute, array indices. Formally,
we collect the set I of variables and constants i occurring in these contexts:

Analyzing Array Manipulating Programs by Program Transformation 15

A[i] where A is an array (2)
i′ = op(i) where i′ ∈ I (3)
i = op(i′) where i′ ∈ I and i′ is not a constant (4)

Any variable which does not satisfy these conditions can safely be discarded as
a possible segment bound. For the experiments in Sect. 7 we used all elements of
I as segment bounds (so I = I), which yields an analysis corresponding roughly
to the approaches of [9,11]. We could, however, discard some subset of I to yield
a smaller, but less precise, approximation of the original program. The cases (3)
and (4) are needed because of possible aliasing; this is particularly critical in
an SSA-based language, as SSA essentially replaces mutation with aliasing. It is
worth noting that these dependencies extend to aliases introduced prior to the
relevant array operation, as in the snippet “i := x; . . .A[i] := k; . . . y := x + 1;”

7 Experimental Evaluation

We have implemented our method using the LLVM framework, in two distinct
transformation phases. In a first pass, transformation is done as described above,
but without great regard for the size of the transformed program. At the same
time, we also use a (polyhedral) scalar analysis of the original program (treating
arrays as unknown value sources) to detect any block whose total ordering is
infeasible. In the second pass, we prune these unreachable blocks away. As can be
gleaned from Table 1, these measures reduce the complexity of the transformed
program significantly.

array copy (int* A, int* B, int n) {
int i;
for (i = 0; i < n; i++)

A[i] = B[i];
}
array init (int* A, int n) {

int i;
for (i = 0; i < n; i++)

A[i] = 5;
}
array max (int* A, int n) {

int i, max = A[0];
for (i = 1; i < n; i++) {

if (max < A[i])
max = A[i] }

}
search (int* A, int key) {

int i = 0;
while (A[i] = key)

i++;
}
first not null (int* A, int n) {

int i, s = n;
for (i = 0; i < n; i++)

if (s == n && A[i] = 0)
s = i;

}
sentinel (int* A, int n, int sent) {

int i;
A[n − 1] = sent;
for (i = 0; A[i] = sent; i++);

}

Fig. 12. Simple test programs

To extract array properties from the cor-
responding invariants discovered in a trans-
formed program, we require users to specify,
at transformation time, the range of array
segments that are of interest. In our imple-
mentation, this is described by a strict index
inequality that must apply to segments in the
range. For example, specifying 0 < n indi-
cates that we are interested in invariants of the
form ∀� (0 ≤ � < n ⇒ ψ(A1[�], . . . , Ak[�])),
where A1, . . . , Ak are the arrays in scope and
ψ is some property. At the end of the trans-
formation we use a newly created block to join
all copies of the original exit block whose total
ordering is consistent with the given range. The
various scalar representations for each array seg-
ment, as well as other variables in scope in each
copy, are merged together in phi nodes inside
this final block. Properties discovered about the
segment phi nodes then translate directly to
properties about the corresponding array seg-
ments in the original program.

16 J.R.M. Cornish et al.

Table 1. Sizes of transformed test programs and analysis time for polka and uva

Program Original Transformed Post-processed Running time (s)

blocks insts. blocks insts. blocks insts. transf. polka uva

array copy 5 12 274 898 33 149 0.80 67.07 0.18

array init 5 11 274 644 33 115 0.94 19.08 0.22

array max 7 19 220 562 51 139 0.95 110.87 0.45

search 5 10 90 167 27 69 0.49 2.05 2.75

first not null 8 17 1057 2217 216 694 3.73 2378.35 4.85

sentinel 5 13 1001 1936 294 765 3.07 1773.01 4.97

We have tested our method by running first the polka polyhedra domain [12]
on the output of our transformation when applied to the programs given in
Fig. 12. The interesting invariants that we infer are as follows (each property
holds at the end of the corresponding function):

array copy : ∀� (0 ≤ � < n ⇒ A[�] = B[�])
array init : ∀� (0 ≤ � < n ⇒ A[�] = 5)
array max : ∀� (0 ≤ � < n ⇒ A[�] ≤ max)
search : ∀� (0 ≤ � < i ⇒ A[�] �= key)
first not null : ∀� (0 ≤ � < s ⇒ A[�] = 0)
sentinel : ∀� (0 ≤ � < i ⇒ A[�] �= sent)

Figure 12 shows test programs from related papers [9,11]. Table 1 lists sizes of the
original, transformed, and post-processed transformed versions (columns Origi-
nal, Transformed, and Post-processed respectively), as well as the time to per-
form the transformation (column transf). Column polka shows the analysis time
in seconds for running the polka polyhedra domain. uva is explained below.

Enhancing an existing analyzer. As a separate experiment we use IKOS [3],
an abstract interpretation-based static analyzer developed at NASA. IKOS has
been used successfully to prove absence of buffer overflows in Unmanned Aircraft
Systems flight control software written in C. The latest (unreleased) version of
IKOS provides an uninitialized variable analysis that aims at proving that no
variable can be used without being previously defined, otherwise the execution
of the program might result in undefined behaviour.

int array init unsafe (void) {
1: int A[6], i;
2: for (i = 0; i < 5; i++)
3: A[i] = 1;
4: return A[5];

}

Fig. 13. Regehr’s example [17]

Currently IKOS is not sufficiently
precise for array analysis. (Figure 13),
IKOS cannot deduce that A[5] is defi-
nitely uninitialized at line 4. However,
using the transformational approach,
IKOS proves that A[5] is definitely unini-
tialized. The problem is far from triv-
ial; as Regehr [17] notes, gcc and clang
(with -Wuninitialized) do not even raise
warnings for this example, but stay com-
pletely silent.

Analyzing Array Manipulating Programs by Program Transformation 17

We ran IKOS on the transformed version of array init unsafe. IKOS suc-
cessfully reported a definite error at line 4 in 0.22 s. Conversely, transformation
enabled IKOS to show that no array element was left undefined in the case of
array init. Finally we ran IKOS on the rest of the programs in Fig. 12. For the
purpose of the uninitialized variable analysis we added loops to force each array
to be treated as initialized, when appropriate. For the transformed version of
array copy, IKOS proved that A is definitely initialized after the execution of
the loop. For the rest of the programs IKOS proved that the initialized array A
is still initialized after the loops. Column uva in Table 1 shows the analysis time
in seconds of the uninitialized variable analysis implemented in IKOS.

Note that the polka analysis does not eliminate out-of-scope variables. Our
program transformation introduces many variables, and since polka incurs a
super-linear per-variable cost, the overall time penalty is considerable. We expect
to be able to greatly reduce the cost by utilising a projection operation and
improving the fixed-point finding algorithm.

8 Related Work

Amongst work on automated reasoning about array-manipulating code, we can
distinguish work on analysis from work that focuses on verification. Our paper
is concerned with the analysis problem, that is, how to use static analysis for
automated generation of (inductive) code invariants. As mentioned in Sect. 1,
we follow the tradition of applying abstract interpretation [4] to the array con-
tent analysis problem [5,9,11,16]. Alternative array analysis methods include
Gulwani, McCloskey and Tiwari’s lifting technique [10] (requiring the user to
specify templates that describe when quantifiers should be introduced), Kovács
and Voronkov’s theorem-prover based method [13], Dillig, Dillig and Aiken’s
fluid updates [7] (supporting points-to and value analysis but excluding rela-
tional analyses), and incomplete approaches based on dynamic analysis [8,15].

Unlike previous work, we apply abstract interpretation to a transformed pro-
gram in which array reads and writes have been translated away; any standard
analysis, relational or not, can be applied to the resulting program, with negli-
gible additional implementation cost.

There is a sizeable body of work that considers the verification problem for
array-processing programs. Here the aim is to establish that given assertions hold
at given program points. While abstract interpretation may serve this purpose
(given a well-chosen abstract domain), more direct approaches are goal-directed,
using assertions actively, to drive reasoning, rather than passively, as checkpoints.
Many alternative techniques have been suggested for the verification of (some-
times restricted) array programs, including lazy abstraction [1], template-based
methods [14], and, more closely related to the present paper, techniques that
employ translation, for example to Horn clauses [6].

18 J.R.M. Cornish et al.

9 Conclusion

We have described a new abstract machine that supports set-valued variables and
shown how array manipulating programs can be translated to array-free code for
this machine. By compiling array programs for this machine, we are able to dis-
cover non-trivial universally quantified loop invariants, simply by analysing the
transformed program using off-the-shelf scalar analysers. As an example of how
this allows an existing analysis to be lifted to array programs in a straightforward
manner, we have extended an uninitialised-variable analysis; Fig. 13 showed the
usefulness of this approach. The indisputable price for the ease of implementa-
tion is a potentially excessive size of the transformed program. However, much
array-processing code tends to make simple array traversals and access, and the
transformational approach is viable for more than just small programs. Future
work includes performing the transformation lazily, to avoid generating unneeded
blocks. This should significantly speed up the analysis.

Acknowledgements. This work was supported through ARC grant DP140102194.

A Array Operations with Non-segment Variables

Figure 6(a) assumes that the index variable of every read or write is included in
the set of segment bounds. Figure 14 gives a revised version of transform body
which handles writes to indices that are not included in the set of segment
bounds. When we transform a write to an index in the set of segment bounds
(determined by the predicate is idx), the transformation is as usual. Otherwise,
we emit code to walk through the current set of segments, and apply the write
operation to the appropriate one. The dispatch process is similar to the operation
of split transform, except that all leaves jump back to the continuation of the
basic block after the write, rather than continuing under the modified ordering.

Analyzing Array Manipulating Programs by Program Transformation 19

transform body(([A[i] = x|stmts], br), π, id, ss)
if is idx(i)

Ai := find avar(π, A, i)
transform body((stmts, br), π, id, ss : :[Ai = x])

else
id := next block()
transform body((stmts, br), π, id , [])
dispatch write(A[i] = x ss, id)

dispatch write(A[i] = x, sv, [], id, ss, id)
push block(id, ss, Jmp id)

dispatch write(A[i] = x, s<, [p, . . .|π], id, ss, id)
id≥ := next block()
id= := next block()
s= := next svar(s<)
s> := next svar(s=)
if s< =

push block(id, If i < p then id else id≥, ss)
else

id< := next block()
push block(id, If i < p then id< else id≥, ss)
push block(id<, Jmp id ,

[(v1, . . . , vA, . . . , vk) ∈ s<,
s< = s< ∪ {(v1, . . . , x, . . . , vk)}])

push block(id≥, If i = p then id= else id>, id=, id>)
(. . . , vA, . . .) := s=
push block(id=, Jmp id , [vA = x])
dispatch write(A[i] = x, s>, π, id>, [], id)

Fig. 14. Revised pseudo-code for transforming array writes, allowing for omitted
indices. Array reads are transformed similarly.

References

1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18
2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt,
D.A., Sudborough, I. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–
108. Springer, Heidelberg (2002)

3. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: a framework for static analysis
based on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 271–277. Springer, Heidelberg (2014)

20 J.R.M. Cornish et al.

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM Press (1977)

5. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL 2011, pp. 105–118. ACM
Press (2011)

6. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying array pro-
grams by transforming verification conditions. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 182–202. Springer, Heidelberg (2014)

7. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

8. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

9. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-
tions. In: POPL 2005, pp. 338–350. ACM Press (2005)

10. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL 2008, pp. 235–246. ACM Press (2008)

11. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI 2008, pp. 339–348. ACM Press (2008)

12. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

13. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009)

14. Larraz, D., Rodŕıguez-Carbonell, E., Rubio, A.: SMT-based array invariant gen-
eration. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 169–188. Springer, Heidelberg (2013)

15. Nguyen, T.V., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to
discover polynomial and array invariants. In: Proceedings of the 34th International
Conference on Software Engineering, pp. 760–770. IEEE (2012)

16. Péron, M.: Contributions à l’analyse statique de programmes manipulant des
tableaux. Ph.D. thesis, Université de Grenoble (2010)

17. Regehr, J.: Uninitialized variables. Web blog, http://blog.regehr.org/archives/519,
Accessed 18 June 2014

http://blog.regehr.org/archives/519,

Analysing and Compiling Coroutines with
Abstract Conjunctive Partial Deduction

Danny De Schreye, Vincent Nys(B), and Colin Nicholson

Department of Computer Science, KU Leuven,
Celestijnenlaan 200A, 3001 Heverlee, Belgium

{danny.deschreye,vincent.nys}@cs.kuleuven.be

Abstract. We provide an approach to formally analyze the computa-
tional behavior of coroutines in Logic Programs and to compile these
computations into new programs, not requiring any support for corou-
tines. The problem was already studied near to 30 years ago, in an analy-
sis and transformation technique called Compiling Control. However, this
technique had a strong ad hoc flavor: the completeness of the analysis
was not well understood and its symbolic evaluation was also very ad
hoc. We show how Abstract Conjunctive Partial Deduction, introduced
by Leuschel in 2004, provides an appropriate setting to redefine Com-
piling Control. Leuschel’s framework is more general than the original
formulation, it is provably correct, and it can easily be applied for simple
examples. We also show that the Abstract Conjunctive Partial Deduc-
tion framework needs some further extension to be able to deal with
more complex examples.

1 Introduction

The work reported on in this paper is an initial step in a new project, in which we
aim to formally analyze and automatically compile certain types of coroutining
computations. Coroutines are a powerful means of supporting complex computa-
tion flows. They can be very useful for improving the efficiency of declaratively
written programs, in particular for generate-and-test based programs. On the
other hand, obtaining a deep understanding of the computation flows underly-
ing the coroutines is notoriously difficult.

In this paper we restrict our attention to pure, definite Logic Programs. In
this context, the problem was already studied nearly 30 years ago. Bruynooghe
et al. (1986) and Bruynooghe et al. (1989) present an analysis and transformation
technique for coroutines, called Compiling Control (CC for short). The purpose
of the CC transformation is the following: transform a given program, P , into a
program P ′, so that computation with P ′ under the standard selection rule mimics
the computation with P under a non-standard selection rule. In particular, given
a coroutining selection rule for a given Logic Program, the transformed program
will execute the coroutining if it is evaluated under the standard selection rule of
Prolog.

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 21–38, 2015.
DOI: 10.1007/978-3-319-17822-6 2

22 D. De Schreye et al.

To achieve this, CC consists of two phases: an analysis phase and a synthesis
phase. The analysis phase analyzes the computations of a program for a given
query pattern and under a (non-standard) selection rule. The query pattern is
expressed in terms of a combination of type, mode and aliasing information.
The selection rule is instantiation-based, meaning that different choices in atom
selection need to be based on different instantiations in these atoms. The analysis
results in what is called a “trace tree”, which is a finite upper part of a symbolic
execution tree that one can construct for the given query pattern, selection rule
and program. In the synthesis phase, a finite number of clauses are generated,
so that each clause synthesizes the computation in some branch of the trace tree
and such that all computations in the trace tree have been synthesized by some
clause. The technique was implemented, formalized and proven correct, under
certain fairly technical conditions.

Unfortunately, the CC transformation has a rather ad hoc flavor. It was very
hard to show that the analysis phase of the transformation was complete, in the
sense that a sufficiently large part of the computation had been analyzed to be
able to capture all concrete computations that could possibly occur at run time.
Even the very idea of a “symbolic execution” had an ad hoc flavor. It seemed
that it should be possible to see this as an instance of a more general framework
for analysis of computations.

Fortunately, since the development of CC a number of important advances
have been achieved in analysis and transformation:

– General frameworks for abstract interpretation (e.g. Bruynooghe 1991) were
developed. It is clear that abstract interpretation has the potential to provide
a better setting for developing the CC analysis.

– Partial deduction of Logic Programs was developed (e.g. Gallagher 1986). Par-
tial deduction seems very similar to CC, but the exact relationship was never
identified. When John Lloyd and John Shepherdson formalized the issues of
correctness and completeness of partial deduction in Lloyd and Shepherdson
(1991), this provided a new framework for thinking about a complete analysis
of a computational behavior and it was clear that some variant of this could
improve the CC analysis.

– Conjunctive partial deduction (see De Schreye et al. 1999) seems even closer
to CC. In an analysis for a CC transformation, one really does not want to
split up the conjunctions of atoms into separate ones and then analyze the
computations for these atoms separately. It is crucial that one can analyze
the computation for certain atoms in conjunction (which is how conjunctive
partial deduction generalizes partial deduction), so that their behavior under
the non-standard selection rule may be observed.

– Finally, abstract (conjunctive) partial deduction (Leuschel 2004) brings all
these features together. It provides an extension of (conjunctive) partial deduc-
tion in which the analysis is based on abstract interpretation, rather than on
concrete evaluation.

In this paper we will demonstrate – mostly on the basis of examples – that
abstract conjunctive partial deduction (ACPD for short) is indeed a suitable

Analysing and Compiling Coroutines 23

framework to redefine CC in such a way that the flaws of the original approach
are overcome. We show that for simple problems in the CC context, ACPD
can, in principle, produce the transformation automatically. We also show that
for more complex CC transformations, ACPD is still not powerful enough. We
suggest an extension to ACPD that allows us to solve the problem and illustrate
with an example that this extension is very promising.

After the preliminaries, in Sect. 3, we introduce a fairly refined abstract
domain, including type, mode and aliasing information, and we show, by means
of an example, how ACPD allows us to analyze a coroutine and compile the
transformed program. In Sect. 4 we propose a more complex example and show
why it is out of scope for ACPD. We introduce an additional abstraction in our
domain and illustrate that this abstraction solves the problem. This abstrac-
tion, however, does not respect the requirements of the formalization of ACPD
in Leuschel (2004). We end with a discussion.

2 Preliminaries

We assume that the reader is familiar with the basics of Logic Programming
(Lloyd 1987). We also assume knowledge of the basics of abstract interpretation
(Bruynooghe 1991) and of partial deduction (Lloyd and Shepherdson 1991).

In this paper, names of variables will start with a capital. Names of constants
will start with a lower case character. Given a logic program P , Conp, V arp,
Funp and Predp respectively denote the sets of all constants, variables, functors
and predicate symbols in the language underlying P . Termp will denote the set
of all terms constructable from Conp, V arp and Funp. Atomp denotes the set of
all atoms which can be constructed from Predp and Termp. We will often need
to refer to conjunctions of atoms of Atomp and we denote the set of all such
conjunctions as ConAtomp.

We will introduce an abstract domain in the following section. The abstract
domain will be based on a set of abstract constant symbols, AConp. Based on
these, there is a corresponding set of abstract terms, ATermp, which consists
of the terms that can be constructed from AConp and Funp. AAtomp will
denote the set of abstract atoms, being the atoms which can be constructed
from ATermp and Predp. Finally, AConAtomp denotes the set of conjunctions
of elements of AAtomp.

3 An Example of a CC Transformation, Using ACPD

In this section, we provide the intuitions behind our approach by means of a
simple example. We use permutation sort as an illustration. The intention is to
transform this program so that calls to perm/2 and ord/1 are interleaved.

Example 1 (Permutation sort).

24 D. De Schreye et al.

sort(X,Y) ←− perm(X,Y), ord(Y).

perm([],[]).

perm([X|Y],[U|V]) ←−
del(U,[X|Y],W),perm(W,V).

del(X,[X|Y],Y).

del(X,[Y|U],[Y|V]) ←− del(X,U,V).

ord([]).

ord([X]).

ord([X,Y|Z]) ←−
X ≤ Y, ord([Y|Z]).

We now introduce the abstract domain. This domain consists of two types of
new constant symbols: g and ai, i ∈ N. The symbol g denotes any ground term
in the concrete language. The basic intuition for the symbols ai is that they are
intended to represent variables of the concrete domain. However, as we want the
abstract domain to be closed under substitution (if an abstract term denotes
some concrete term, then it should also denote all of its instances), an abstract
term ai will actually represent any term of the concrete language.

The subscript i in a term ai is used to represent aliasing. If an abstract term,
abstract atom or abstract conjunction of atoms contains ai several times (with
the same subscript), the denoted concrete terms, atoms or conjunctions of atoms
contain the same term in all positions corresponding to those occupied by ai.
For instance, the abstract conjunction perm(g, a1), ord(a1) denotes the concrete
conjunctions {perm(t1, t2), ord(t2)|t1, t2 ∈ Termp and t1 is ground}.

In addition to g and ai, we will include all concrete constants in the abstract
domain, so Conp ⊆ AConp. This is not essential for the approach: we could
develop a sound and effective ACPD for the CC transformation based on the
abstract constants g and ai, i ∈ N, alone. However, including Conp in AConp

makes the analysis more precise: some redundant paths in the analysis are
avoided.

Definition 1 (Abstract domain). The abstract domain consists of:

– AConp = Conp ∪ {g} ∪ {ai|i ∈ N}.
– ATermp, AAtomp and AConAtomp are defined as the sets of the terms, atoms

and conjunctions of atoms constructable from AConp, Funp and Predp.

Next, we define the semantics of the abstract domain, through a concretiza-
tion function γ. With slight abuse of notation, we use the same symbol γ to
denote the concretization functions on ATermp, AAtomp and AConAtomp.

In order to formalize the semantics of the aliasing, we need two auxiliary
concepts: the subterm selection sequence and the aliasing context.

Definition 2 (Subterm selection sequence). Let t be a term, atom or con-
junction of atoms (either concrete or abstract).

– i ∈ N0 is a subterm selection sequence for t, if t = f(t1, ..., tn) and i ≤ n. The
subterm of t selected by i is ti.

– i1.i2.....in is a subterm selection sequence for t, if t = f(t1, ..., tn), i1 ≤ n,
i1 ∈ N0 and i2.....in is a subterm selection sequence for ti1 . With an induc-
tively defined notation, we denote by ti1.i2.....ik the subterm of ti1....ik−1 selected
by ik, with 1 < k ≤ n. We also refer to ti1.i2.....in as the subterm of t selected
by i1.i2.....in.

Analysing and Compiling Coroutines 25

Note that, in this definition, we assume that a conjunction of atoms A1,
A2,...,An is denoted as ∧(A1, A2, ..., An).

Example 2 (Subterm selection sequence). Let t = f(g(h(X), 5), f(h(a), Y)), then
t1.1.1 = X, t2.1.1 = a.

Definition 3 (Aliasing context). Let t be an abstract term, atom or conjunc-
tion of atoms. The aliasing context of t, denoted AC(t), is the finite set of pairs
(sss1, sss2) of subterm selection sequences of t, such that tsss1 = tsss2 = ai for
some i ∈ N.

Example 3 (Aliasing context). Let t = p(f(a2, g), a1, a2, g(h(a1))), then AC(t) =
{(1.1, 3), (2, 4.1.1)}.
Definition 4 (Concretization function). The concretization function γ :
ATermp ∪AAtomp ∪AConAtomp → 2Termp ∪2Atomp ∪2ConAtomp is defined as:

– γ(c) = {c}, for any c ∈ Conp

– γ(g) = {t ∈ Termp|t is ground}
– γ(ai) = Termp, i ∈ N

– γ(f(at1, ..., atn)) = {f(t1, ..., tn)|ti ∈ γ(ati), i = 1...n, and let t denote
f(t1, ..., tn), then for all (sss1, sss2) ∈ AC(f(at1, ..., atn)) : tsss1 = tsss2}

Example 4 (Concretization function). γ(p(f(a2, g), a1, a2, q(h(a1)))) = {p(f(t1,
t2), t3, t1, q(h(t3)))|t1, t3 ∈ Termp, t2 ground term of Termp}
The abstract domain introduced above is infinitely large. There are two causes for
this. Terms can be nested unboundedly deep, therefore infinitely many different
terms exist. In addition, there are infinitely many ai, i ∈ N, symbols.

If so desired, the abstract domain can be refined, so that it becomes finite.
This is done by using depth-k abstraction and by defining an equivalence relation
on {ai|i ∈ N}. For the purpose of this paper, the infinite size of the abstract
domain is not a problem.

Let us return to the permutation sort example. ACPD requires a top-level
abstract atom (or conjunction) to start the transformation. Let sort(g, a1) be
this atom. In the context of the A-coveredness condition of partial deduction,
our initial set A is {sort(g, a1)}.

Below, we construct a finite number of finite, abstract partial deduction
derivation trees for abstract (conjunctions of) atoms. The construction of these
trees assumes an “abstract unification” and an “abstract unfold” operation.
Their formal definitions can be found in Annex (2014). For now, we only show
their effects in abstract partial derivation trees.

Next, we need an “oracle” that decides on the selection rule applied in the
abstract derivation trees. This oracle mainly has two functions:

– to decide whether an obtained goal should be unfolded further, or whether it
should be kept residual (to be split and added to A),

– to decide which atom of the current goal should be selected for unfolding.

26 D. De Schreye et al.

sort(g, a1)

perm(g, a1), ord(a1)

del(a2, g, a4), perm(a4, a3), ord([a2|a3])

perm(g, a3), ord([g|a3])
a2 = g, a4 = g

ord([])

�

a1 = [] a1 = [a2|a3]

Fig. 1. Abstract tree for sort(g, a1)

perm(g, a3), ord([g|a3])

del(a5, g, a7), perm(a7, a6), ord([g, a5|a6])

perm(g, a6), ord([g, g|a6])
a5 = g, a7 = g

ord([g])

�

a3 = [] a3 = [a5|a6]

Fig. 2. Abstract tree for perm(g, a3),
ord([g|a3])

In fact, we will use a third type of decision that the oracle may make: it
may decide to “fully evaluate” a selected atom. This type of decision is not
commonly supported in partial deduction. What it means is that we decide not
to transform a certain predicate of the original program, but merely keep its
original definition in the transformed program. In partial deduction, this can be
done by never selecting these atoms, including them in A and including their
original definition in the transformed program.

In our setting, however, we want to know the effect that solving the atom
has on the remainder of the goal. Therefore, we will assume that an abstract
interpretation over our abstract domain computes the abstract bindings that
solving the atom results in. These are applied to the remainder of the goal. Note
that this cannot easily be done in standard partial deduction, as fully evaluating
an atom during (concrete) partial deduction may not terminate. In Vidal (2011),
a similar functionality is integrated in a hybrid approach to conjunctive partial
deduction.

For now, we simply assume the existence of the oracle. Figures 1, 2 and 3 show
the abstract partial derivation trees that ACPD may build for permutation sort
and top level A = {sort(g, a1)}.

In these figures, in each goal, the atom selected for abstract unfolding is
underlined. If an atom is underlined twice, this expresses that the atom was
selected for full abstract interpretation.

Both unfolding and full abstract evaluation may create bindings. Our abstract
unification only collects bindings made on the ai terms. Bindings created on g
terms are not relevant.

In the left branch of the tree in Fig. 1 we see the effect of including the
concrete constants in the abstract domain. As a result, the binding for a1 is [],
instead of g. If we had not included Conp in AConp, then ord(g) would have
required a full analysis, using the three clauses for ord/1.

A goal with no underlined atom indicates that the oracle selects no atom and
decides to keep the conjunction residual. After the construction of the tree in
Fig. 1, ACPD adds the abstract conjunction perm(g, a3), ord([g|a3]) to A. ACPD
starts a new tree for this atom. This tree is shown in Fig. 2.

The tree is quite similar to the one in Fig. 1. The main difference is that, in
the residual leaf, the ord atom now has a list argument with two g elements.

Analysing and Compiling Coroutines 27

perm(g, a6), ord([g, g|a6])

perm(g, a6), g ≤ g, ord([g|a6])

perm(g, a6), ord([g|a6])

Fig. 3. Abstract tree for perm(g, a6), ord([g, g|a6])

This pattern does not yet exist in the current A and is therefore added to A.
A third abstract tree is computed for perm(g, a6), ord([g, g|a6]), shown in Fig. 3.

In Fig. 3, the residual leaf perm(g, a6), ord([g|a6]) is a renaming of the con-
junction perm(g, a3), ord([g|a3]), which is already contained in A. Therefore,
ACPD terminates the analysis, concluding A-coveredness for A = {sort(g, a1),
∧(perm(g, a3), ord([g|a3])),∧(perm(g, a6), ord([g, g|a6]))}.

In standard (concrete) conjunctive partial deduction, the analysis phase
would now be completed. In ACPD, however, we need an additional step. In the
abstract partial derivation trees, we have not collected the concrete bindings
that unfolding would produce. These are required to generate the resolvents.
Therefore, we need an additional step, constructing essentially the same three
trees again, but now using concrete terms and concrete unification.

We only show one of these concrete derivation trees in Fig. 4. It corresponds to
the tree in Fig. 2. We define the root of a concrete derivation tree corresponding
to an abstract tree as follows.

Definition 5 (Concrete conjunctions in the root). Let acon ∈ A, then the
conjunction in the root of the corresponding concrete tree, denoted as c(acon),
is obtained by replacing any g or ai symbol in acon by a fresh free variable,
ensuring that multiple occurrences of ai, with the same subscript i, are replaced
by identical variables.

When unfolding the concrete tree, every abstract unfolding of the abstract
tree is mimicked, using the same clauses, over the concrete domain.

The step of full abstract interpretation of the del(a5, g, a7) atom in Fig. 2 has
no counterpart in Fig. 4. The atom del(U, [X1|X2],W) is kept residual and the
del/3 clauses are added to the transformed program.

perm(X,Y), ord([Z|Y])

del(U, [X1|X2],W), perm(W,V), ord([Z,U |V])ord([Z])

�

X = [], Y = [] X = [X1|X2], Y = [U |V]

Fig. 4. Concrete tree corresponding to Fig. 2

28 D. De Schreye et al.

More specifically, using a renaming p1(X,Y,Z) for ∧(perm(X,Y), ord([Z|Y]))
and p2(W,V,Z, U) for ∧(perm(W,V), ord([Z,U |V])), we synthesize the following
resolvents from the tree in Fig. 4:
p1([], [], Z) ←− .
p1([X1|X2], [U |V], Z) ←− del(U, [X1|X2],W), p2(W,V,Z, U).
From the counterparts of the trees in Figs. 1 and 3, we obtain the following
additional resultants:
sort([], []).
sort([X1|X2], [Y1|Y2]) ←− del(Y1, [X1|X2], Z), p1(Z, Y2, Y1).
p2(U, V,W,X)W ≤ X, p1(U, V,X).

This transformation inherits correctness results from ACPD. In particular,
A-closedness and independence guarantee the completeness and correctness of
the analysis. In addition, the transformation preserves all computed answers
(in both directions) and finite failure of the transformed program implies finite
failure of the original.

4 A More Complex Example, Introducing the multi
Abstraction

In Sect. 3 we have shown that ACPD is indeed sufficient to formally revisit CC
for a simple example. However, for more complex examples, ACPD still lacks
expressivity. Consider the following prime number generator.

Example 5 (Prime numbers)

primes(N,P) ← integers(2,I),sift(I,P),len(P,N).

integers(N,[]).

integers(N,[N|I]) ← M is N+1, integers(M,I).

sift([N|Is],[N|Ps]) ← filter(N,Is ,F), sift(F,Ps).

sift ([] ,[]).

divides(N,M) ← X is M mod N, X is 0.

not_divide(N,M) ← X is M mod N, X > 0.

filter(N,[M|I],F) ← divides(N,M), filter(N,I,F).

filter(N,[M|I],[M|F]) ← not_divide(N,M), filter(N,I,F).

filter(N,[] ,[]).

len ([],0).

len([H|T],N) ← M is N - 1, len(T,M).

The program is intended to be called with a goal primes(N,P), with N
a positive integer and P a free variable. The integers/2 predicate generates
growing lists of integer numbers. filter/3 represents the removal of all multiples
of a single integer N from a list. sift/2 recursively filters out multiples of an
initial list element which is prime.

The complete ACPD style analysis is available in Annex (2014). We only
present some relevant parts.

Analysing and Compiling Coroutines 29

The top level goal for the abstract analysis is primes(g, a1), so that the
initial set A is {primes(g, a1)}. A first abstract derivation tree describes the
initialization for the computation. It contains a branch leading to an empty goal
(success branch) and a branch with the leaf: ∧(integers(g, a3), filter(g, a3, a5),
sift(a5, a4), len(a4, g)), which is added to A.

Next, we construct an abstract derivation tree for the latter conjunction. This
gives a successful branch with an empty conjunction in the leaf, a branch ending
in a renamed version of the above conjunction, and a third branch, with the
following leaf, which is added to A: ∧(integers(g, a4), filter(g, a4, a5), filter
(g, a5, a7), sift(a7, a6), len(a6, g)).

At this point it becomes clear that an analysis following only the steps shown
in Sect. 3 will not terminate. The two abstract conjunctions, most recently added
to A, are identical – up to renaming of ai’s – except that the latter conjunc-
tion contains two atoms filter(g, ai, aj), instead of just one. A further analysis,
building additional derivation trees, will result in the construction of continu-
ously growing conjunctions, with continuously increasing numbers of filter/3
atoms.

We could solve this by cutting the goal into two smaller conjunctions and
adding these to A. However, all these atoms are generators or testers in the
coroutine and depend on eachother. By splitting the conjunction, we would no
longer be able to analyze the coroutine.

One of the restrictions imposed by ACPD is that for any abstract con-
junction of atoms, acon ∈ AConAtomp, there exists a concrete conjunction,
con ∈ ConAtomp, such that: for all coni ∈ γ(acon): coni is an instance of con.
In practice, this means that an abstract conjunction is not allowed to represent a
set of concrete conjunctions whose elements have a distinct number of conjuncts.
However, in order to solve the problem observed in our example, we need the
ability to represent a set of conjunctions, with a growing number of atoms, by
an abstract atom. Therefore, we need to extend ACPD.

We extend our abstract domain and introduce a new abstraction, multi/4,
which makes it possible to represent growing conjunctions, with a number of
copies of a single abstract atom.

To define this abstraction is rather difficult. This is because we do not only
want to be able to represent a conjunction of multiple, identically instantiated
atoms, but also their aliasing with the context in which they occur, as well as
the aliasing between consecutive atoms in the conjunction.

We first introduce a parameterized naming scheme for ai constants and apply
this to abstract atoms.

Definition 6 (Parameterized naming and parameterized abstract
atom). Let A ∈ AAtomp. By Id(A), we denote a unique identifier associated
with A.

Let aj ∈ AConp, j ∈ N, such that aj occurs in A, then the parameterized
naming of aj is the symbol aId(A),i,j.

Let A ∈ AAtomp. The parameterized atom for A, p(A), is obtained by replac-
ing every aj occurring in A by its parameterized naming, aId(A),i,j .

30 D. De Schreye et al.

The new abstraction multi/4 will depend on the context (the abstract con-
junction) in which it occurs. This context may contain abstract constants, aj . It
may also contain parameterized namings of abstract constants, aId(A),i,j . This is
due to the fact that a multi/4 abstraction will typically contain parameterized
namings and that an abstract conjunction will be allowed to contain multiple
multi/4 abstractions. Therefore, the context of one multi/4 abstraction may
contain another multi/4 abstraction.

Definition 7 (Context). A context is an abstract conjunction and is denoted
as C. Given a context C, we denote a(C) = {aj ∈ AConp|aj occurs in C}, we
denote pa(C) = {aId(A),i,j |aId(A),i,j occurs in C}.
Definition 8 (multi abstraction). A multi abstraction is a construct of the
form multi(p(A), F irst, Consecutive, Last), where:

– p(A) is the parameterized atom for some A ∈ AAtomp.
– First is a conjunction of equalities aId(A),1,j = bj, where bj ∈ a(C) ∪ pa(C)

and all left-hand sides of the equalities are distinct.
– Consecutive is a conjunction of equalities aId(A),i+1,j = aId(A),i,j′ , where

j, j′ ∈ N and all left-hand sides of the equalities are distinct.
– Last is a conjunction of equalities aId(A),k,j = bj, where bj ∈ a(C) ∪ pa(C)

and all left-hand sides of the equalities are distinct.

Example 6 (multi/4 abstraction). We return to the primes example, with the
two abstract conjunctions already added to A. We can rename the indices of
the aj constants in one of these conjunctions in order to make the contexts
in which the filter(g, ai, aj) atoms occur identical for both conjunctions, e.g.:
∧(integers(g, a3), filter(g, a3, a5), sift(a5, a4), len(a4, g)) and ∧(integers(g, a3),
filter(g, a3, a6), filter(g, a6, a5), sift(a5, a4), len(a4, g)).

Now we can generalize these two abstract conjunctions using the multi/4
abstraction: Let A = filter(g, a3, a6). Then, the abstract conjunction is:∧

(integers(g, a3),multi(filter(g, aId(A),i,3, aId(A),i,6),∧(aId(A),1,3 = a3),
∧ (aId(A),i+1,3 = aId(A),i,6),∧(aId(A),k,6 = a5)), sift(a5, a4), len(a4, g))

Here, expressions such as ∧(aId(A),1,3 = a3) represent conjunctions with only
one conjunct.

Conversely, abstract conjunctions containing multi/4 abstractions, such as the
one above, represent infinitely many abstract conjunctions without the multi/4
abstraction. In the example, these contain either one or multiple filter(g, ai, aj)
atoms.

In what follows, we will omit the Id(A) subscript in the parameterized nam-
ings aId(A),i,j and just refer to ai,j instead. The Id(A) subscript is only relevant
for abstract conjunctions containing multiple multi/4 abstractions, a case which
we will not consider for the moment.

In order to describe the abstract conjunctions represented by an abstract
conjunction containing a multi/4 abstraction, we need the ability to map para-
meterized namings back to ordinary aj constants. This requires the following
concepts.

Analysing and Compiling Coroutines 31

Definition 9 (concrete index assignment mapping). Let n ∈ N. The con-
crete index assignment mapping, R(i, n), is a mapping defined on any syntactic
construct, S, containing parameterized namings ai,j. R(i, n) replaces every occur-
rence of a parameterized naming ai,j in S by the parameterized naming an,j.

Example 7 (concrete index assignment mapping). R(i, 1)(filter(g, ai,3, ai,6)) =
filter(g, a1,3, a1,6). R(i, k)(filter(g, ai,3, ai,6)) = filter(g, ak,3, ak,6).

Definition 10 (double-index mapping). The double-index mapping, ψ, is a
mapping defined on any syntactic construct, S, containing parameterized nam-
ings ai,j. ψ replaces every occurrence of a parameterized naming ai,j in S by aij ,
where ij denotes a fresh element of N, not occurring in any ai yet.

Example 8 (double-index mapping). ψ(filter(g, ai,3, ai,6)) = filter(g, ai3 , ai6),
with i3, i6 fresh elements of N.

Definition 11 (substitution corresponding to equality constraints). Let
Constraint be a conjunction of equality constraints, ai,j = bj, with ai,j parameter-
ized namings, and such that all left-hand sides of equalities are mutually distinct.
The substitution corresponding to Constraint is the substitution ΘConstraint =
{ψ(ai,j)/ψ(bj)|ai,j = bj ∈ Constraint}.

Note that this definition is meant to deal with the conjunctions of equalities
in the First, Consecutive and Last arguments of the multi/4 abstraction.

Example 9 (substitutions corresponding to equality constraints). For the conjunc-
tions of equality constraints in Example 6, the corresponding substitutions are:
ΘFirst = {a13/a3}, ΘConsecutive = {a(i+1)3/ai6}, ΘLast = {ak6/a5}.

With these notions, we can now describe the abstract conjunctions repre-
sented by a multi/4 abstraction.

Definition 12 (Abstract conjunctions represented by multi/4). The
abstract conjunctions represented by multi(p(A), F irst, Consecutive, Last) are:

– ψ(R(i, 1)(p(A)))ΘFirst ◦ ΘR(k,1)(Last), and
– ψ(R(i, 1)(p(A)))ΘFirst ∧ ψ(R(i, 2)(p(A)))ΘR(i,1)(Consecutive)∧

. . .∧ψ(R(i, k)(p(A)))ΘR(i,k−1)(Consecutive) ◦ ΘLast, with k > 1.

Example 10 (Abstract conjunctions represented by multi/4). For the multi/4
abstraction in Example 6,multi(filter(g, ai,3, ai,6),∧(a1,3 = a3),∧(ai+1,3 = ai,6),
∧(ak,6 = a5)), the represented abstract conjunctions are:

– filter(g, a3, a5), and
– filter(g, a3, a16) ∧ filter(g, a16 , a23) ∧ . . . ∧ filter(g, a(k−1)6 , a5), k > 1.

Next, we need to define the abstract unfolding of a multi/4 abstraction.
Unfolding a multi/4 abstraction makes a case split. Either the multi/4 abstrac-
tion represents only one abstract atom, or it represents more than one. In both
cases the bindings with the context and, in the latter case, the bindings between
consecutive atoms, need to be respected.

32 D. De Schreye et al.

Definition 13 (Abstract unfold of multi/4). Abstract unfold of multi pro-
duces a branching in the abstract derivation tree. An abstract atom multi(p(A),
F irst, Consecutive, Last) is replaced in one branch by
ψ(R(i, 1)(p(A)))ΘFirst ◦ ΘR(k,1)(Last) and in a second branch by
ψ(R(i, 1)(p(A)))ΘFirst ∧ multi(p(A), NewFirst, Consecutive, Last), where
NewFirst = ∧{a1,j = a1j′ |a(i+1),j = ai,j′ ∈ Consecutive}.
Example 11 (Abstract unfold of multi/4). Again returning to Example 6, abstract
unfold of multi(filter(g, ai,3, ai,6),∧(a1,3 = a3),∧(ai+1,3 = ai,6),∧(ak,6 = a5))
produces in one branch filter(g, a3, a5) and in the other branch filter(g, a3, a16)∧
multi(filter(g, ai,3, ai6),∧(a1,3 = a1,6),∧(ai+1,3 = ai,6),∧(ak,6 = a5)).

A few comments on this definition are in order. First, the definition of
NewFirst may seem strange, because both sides of the equalities have a “1”
index. However, note that on the left-hand side of the equality, it is in a para-
meterized naming, a1,j , referring to the first atom represented by the multi/4,
while on the right-hand side, it is in an abstract atom a1j′ , referring to an atom
that was just moved outside of the multi/4. Second, it is important to remem-
ber that the abstract constants a1j are produced by a ψ(a1,j) call and that their
index 1j needs to be a fresh index, not yet occurring in the expressions. This is
particularly important in cases where we perform several abstract unfoldings of
multi/4 in sequence. At each unfold, new fresh subscripts need to be introduced.

Finally, we need to define abstract generalization with multi/4, allowing us
to replace conjunctions of identically instantiated and similarly aliased abstract
atoms by a multi construct.

Definition 14 (Abstract generalization with multi/4). Let A ∈ AAtomp.
Let A1, ..., Ak ∈ AAtomp and let

∧
l=1,k Al occur in a context of abstract atoms

C. Let a(C) and pa(C) respectively be the abstract constants and the parame-
terized namings occurring in C. Let rl, l = 1, k, be renamings of A, such that
rl(A) = Al. In particular, for any ai occurring in A, rl(ai) occurs at the same
subterm selection sequence position in Al.

Gen(
∧

l=1,k Al) = multi(p(A), F irst, Consecutive, Last) is the abstract gen-
eralization with multi/4 of

∧
l=1,k Al in C if:

– for any bj ∈ a(C) ∪ pa(C), a1,j = bj ∈ First if and only if r1(aj) = bj
– ai+1,j = ai,j′ ∈ Consecutive if and only if ri+1(aj) = ri(aj′)
– for any bj ∈ a(C) ∪ pa(C), ak,j = bj ∈ Last if and only if rk(aj) = bj

We can extend the above definition to allow generalizations Gen(∧l=1,kAl

∧ multi(p(A), F irst, Consecutive, Last)) = multi(p(A), F irst′, Consecutive,
Last) and generalizations Gen(multi(p(A), F irst, Consecutive, Last),∧∧

l=1,k

Al) = multi(p(A), F irst, Consecutive, Last′). We omit the details for these gen-
eralizations. We illustrate abstract generalization with multi/4 in our running
example below.

Let us return to the prime numbers example. Observing the growing number
of filter/3 atoms in our last conjunction (w.r.t. the conjunction already present

Analysing and Compiling Coroutines 33

in A), we perform the generalization: Gen(∧(filter(g, a4, a5), filter(g, a5, a7)))
= multi(filter(g, a1,i,4, a1,i,5),∧(a1,1,4 = a4),∧(a1,i+1,4 = a1,i,5),∧(a1,k,5 =
a7)). Here, we include the Id(A) again, because we will have multiple multi/4
abstractions. We arbitrarily select Id(A) to be 1.

Then we construct a new abstract derivation tree for this conjunction, includ-
ing – among others – an abstract unfold of multi/4 and abstract generalizations
with multi/4. In Fig. 5, we show this abstract tree.

After abstract unfolding of integers(g, a1), the tree contains an abstract
unfolding of multi(filter(g, a1,i,1, a1,i,2),∧(a1,1,1 = [g|a4]),∧(a1,i+1,1 = a1,i,2),
∧(a1,k,2 = a2)). This unfolding can lead to one instance of filter/3 or several.
If there is only one filter, a full evaluation of divides(g, g) eventually leads to an
empty goal. A full evaluation of does not divide(g, g), on the other hand, leads
to a new generalization which produces a renaming of the root of this tree.

Eventually, the analysis ends up with a final set A:

{ ∧ (primes(g, a1)),
∧ (integers(g, a1),multi(filter(g, a1,i,1, a1,i,2),∧(a1,1,1 = a1),

∧ (a1,i+1,1 = a1,i,2),∧(a1,k,2 = a2)), sift(a2, a3), len(a3, g)),
∧ (multi(filter(g, a1,i,1, a1,i,2),∧(a1,1,1 = []),∧(a1,i+1,1 = a1,i,2),

∧ (a1,k,2 = a2)), sift(a2, a3), len(a3, g)),
∧ (integers(g, a4),multi(filter(g, a2,i,4, a2,i,6),∧(a2,1,4 = a4),

∧ (a2,i+1,4 = a2,i,6),∧(a2,k,6 = a6)),multi(filter(g, a1,i,1, a1,i,2),
∧ (a1,1,1 = [g|a2,k,6]),∧(a1,i+1,1 = a1,i,2),∧(a1,k,2 = a2)), sift(a2, a3),
len(a3, g))}

Fig. 5. Abstract unfolding of integers(g, a1),multi(filter(g, a1,i,1, a1,i,2),∧(a1,1,1 =
a1),∧(a1,i+1,1 = a1,i,2),∧(a1,k,2 = a2)), sift(a2, a3), len(a3, g)

34 D. De Schreye et al.

All non-empty leaves in the abstract derivation trees for these atoms are
(renamings of) elements of A. This shows A-coveredness and the abstract phase
of the analysis terminates.

Similar to what was observed for permutation sort in Sect. 3, we still need
an extra analysis to collect the concrete bindings, so that the resultants can
be generated. Special care is required for the multi/4 abstraction. There are
three issues: how to represent multi/4 in the concrete domain, how to deal with
the concrete counterparts of abstract generalization with multi/4 and abstract
unfolding of multi/4.

Definition 5, in Sect. 3, defined the concrete counterparts of the conjunctions
in A. We extend it to multi(A):

Definition 15 (Concrete conjunction for multi(A,F irst, Consecutive,
Last)). LetA ∈ AAtomp, then c(multi(p(A), F irst, Consecutive, Last)) = multi
([c(A)|T]), with T a fresh variable.

It may seem strange that in the concrete analysis phase we omit the three
arguments First, Consecutive and Last. These arguments are needed in the
abstract analysis to correctly capture the data flow and to correctly model the
unfolding under the coroutining selection rule. In the concrete analysis phase,
as we are completely mimicking the unfolding in the corresponding abstract
trees, we are still performing the correct selection. Moreover, the only point of
the concrete analysis phase is to collect the bindings produced by unfolding the
concrete clauses. The extra arguments are not needed for this purpose.

Example 12 c(multi(filter(g, a1,1,1, a1,1,2),∧(a1,1,1 = a1),∧(a1,i+1,1 = a1,i,2),∧
(a1,k,2 = a2))) = multi([filter(X, I1, F1)|T])

For the abstract generalization with multi/4, we define the concrete coun-
terpart as follows.

Definition 16 (Concrete generalization). Let A ∈ AAtom.

– If the abstract generalization with multi/4 is of the type Gen(
∧

i=1,n A) =
multi(A,F irst, Consecutive, Last), then the corresponding node in the con-
crete derivation contains c(

∧
i=1,n A). The concrete generalization is defined

as ConGen(c(
∧

i=1,n A)) = multi(c([A, . . . , A])), with n members in the list.
– If the abstract generalization with multi/4 is of the type Gen((

∧
i=1,n A) ∧

multi(A,F irst, Consecutive, Last)) = multi(A,F irst′, Consecutive, Last),
then the corresponding node in the concrete derivation contains c(

∧
i=1,n A)∧

multi(List), where List is a list of at least one c(A). The concrete general-
ization is defined as ConGen(c(

∧
i=1,n A) ∧ multi(List)) = multi([c(A), . . . ,

c(A)|List]) with n new members added to List.
– The third case, Gen(multi(A,F irst, Consecutive, Last)∧(

∧
i=1,n A)) = multi

(A,F irst, Consecutive, Last′), is treated similarly to the previous case, but the
concrete atoms are appended to the existing list.

Analysing and Compiling Coroutines 35

Example 13 (Concrete generalization). Let integers(A,B), filter(C,B,D),
filter(E,D,F), sift(F,G), len(G,H) occur in a concrete conjunction in a con-
crete derivation tree, where abstract generalization with multi/4 is performed on
the corresponding abstract conjunction. Then, as a next step in the concrete deriva-
tion tree, this conjunction is replaced by integers(A,B),multi([filter(C,B,D),
filter(E,D,F)]), sift(F,G), len(G,H).

Note that this “generalization” actually does not generalize anything. It only
brings the information in a form that can be generalized.

The actual generalization happens implicitly in the move to the construction
of the next concrete derivation tree. If our conjunction is a leaf of the concrete
derivation tree, then the corresponding abstract conjunction is added to the set A.
Let ∧(integers(g, a4),multi(filter(g, a1,i,4, a1,i,5),∧(a1,1,4 = a4),∧(a1,i+1,4 =
a1,i,5),∧(a1,k,5 = a7)), sift(a7, a6), len(a6, g)), for instance, be the corresponding
abstract conjunction that is added to A. Then, a new concrete tree is built for a
concrete conjunction corresponding to this abstract one.

In this example, the root of that concrete tree is:

∧(integers(A,B),multi([filter(C,B,D)|T]), sift(E,F), len(F,G))

Finally, we still need to define the counterpart of abstract unfold of multi/4
in the concrete tree. To do this, we add the following definition of multi/1 to
the original program P .

multi ([H]) ← H.

multi ([H|T]) ← H, multi(T).

It should be clear that concrete unfolding of concrete multi/1 atoms with
the above definition for multi/1 gives us the desired counterpart of the case split
performed in abstract unfold of multi/1 if we apply the same bindings used in
the abstract unfold.

With the concepts above, we construct a concrete derivation tree, mimicking
the steps in the abstract derivation tree – but over the concrete domain – for
every conjunction in the set A. Collecting all the resultants from these concrete
trees, we get the transformed program. A working Prolog program can be found
in Annex (2014). Transformations of permutation sort, graph coloring and lucky
numbers are available from the same source.

5 Discussion

In this paper, we have presented an approach to formally analyze the compu-
tations, for logic programs, performed under coroutining selection rules, and to
compile such computations into new logic programs. On the basis of an example,
we have shown that simple coroutines, in which the execution of a single, atomic
generator is interleaved with a single, atomic tester, can be successfully analyzed
and compiled within the framework of ACPD (Leuschel 2004). These “simple”
coroutines essentially correspond to the strongly regular logic programs of Vidal
(2011), based on Hruza and Stepanek (2003).

36 D. De Schreye et al.

To achieve this, we defined an expressive abstract domain, capturing modes,
types and aliasing. In the paper, we have focused on the intuitions, more than on
the full formalization, as space restrictions would not allow both. However, we
have developed the formal definitions for the ordering on the abstract domain,
abstract unification, abstract unfold and others. Because the approach – for sim-
ple coroutines – fits fully within the ACDP framework, it inherits the correctness
results from ACPD.

We have proposed an extension to our abstract domain: the multi/4-
abstraction. A multi/4 atom can represent (sets of) conjunctions of one or more
concrete atoms. We have defined abstract unfold and abstract generalisation
operations for this abstraction. We have shown, in an example, that this abstrac-
tion and these operations allow us to extend ACPD, enabling it to perform a
complete analysis, and to compile the more complex coroutines.

On a more general level, our work provides a new, rational reconstruction
of the CC-transformation (Bruynooghe et al. 1986), avoiding ad hoc features of
the CC approach. In addition, the work presents a new application for ACPD.

As a rule, coroutining improves the efficiency of declarative programs by test-
ing partial solutions as quickly as possible. In addition, a program may become
more flexible when the transformation is applied. For instance, a generate-and-
test based program for the graph coloring problem which was transformed in the
course of this research was originally meant to be called with a ground list of
nations and a list of free variables of the correct length. A transformed variant
of this program can be run in the same way, but the top-level predicate can also
be called with a ground list of nations and a free variable. This is because SLD
resolution sends the original program down an infinite branch of the search tree.
The transformed program checks results earlier and, as a result, infers that both
top-level arguments must be lists of the same size. In this scenario, compiling
control transforms an infinite computation into a finite one.

The CC-transformation raised challenges for a number of researchers and a
range of compediting transformation and synthesis techniques. A first reformu-
lation of the CC-transformation was proposed in the context of the “programs-
as-proofs” paradigm, in Wiggins (1990). It was shown that CC-transformations,
to a limited extent, could be formalized in a proof-theoretic program synthesis
context.

In Boulanger et al. (1993), CC-transformation was revisited on the basis of a
combination of abstract interpretation and constraint processing. This improved
the formalization of the technique, but it did not clarify the relation with partial
deduction.

The seminal survey paper on Unfold/Fold transformation, Pettorossi and
Proietti (1994), showed that basic CC-transformations are well in the scope of
Unfold/Fold transformation. In later works (e.g. Pettorossi and Proietti 2002),
the same authors introduced list-introduction into the Unfold/Fold framework,
whose function is very similar to that of the multi/4 abstraction in our approach.
Also related to our work are Puebla et al. (1997), providing alternative transfor-
mations to improve the efficiency of dynamic scheduling, and Vidal (2011) and

Analysing and Compiling Coroutines 37

Vidal (2012), which also provide a hybrid form of partial deduction, combining
abstract and concrete levels.

As an alternative approach to the one proposed in this paper, one could also
apply the first Futamura projection. Given a meta-interpreter implementing a
dynamic selection strategy, one could attempt to transform a program P by par-
tially evaluating P and the meta-interpreter. This would require an appropriate
analysis, for instance abstract partial deduction.

There are a number of issues that are open for future research. First, we aim
to investigate the generality of the multi/4 abstraction. Although it seems to
work well in a number of examples, we will study more complex ones. We also
want to revisit the ACPD framework, in order to extend it to the new abstraction
we aim to support. This will involve a new formalization of ACPD, capable of
supporting analysis and compilation of coroutines in full generality. This will also
formally establish the correctness results for the more general cases, such as the
one presented in Sect. 4. Obviously, we also want to have a full implementation
of these concepts and to show that the analysis and compilation can be fully
automated.

Acknowledgements. We thank the anonymous reviewers for their very useful sug-
gestions.

References

Annex.: Definitions, concepts and elaboration of an example (2014). https://perswww.
kuleuven.be/∼u0055408/tag/lopstr14.html

Boulanger, D., Bruynooghe, M., De Schreye, D.: Compiling control revisited: a new
approach based upon abstract interpretation for constraint logic programs. In: LPE,
pp. 39–51 (1993)

Bruynooghe, M.: A practical framework for the abstract interpretation of logic pro-
grams. J. Logic Program. 10(2), 91–124 (1991)

Bruynooghe, M., De Schreye, D., Krekels, B.: Compiling control. In: Proceedings of
the 1986 Symposium on Logic Programming. IEEE Society Press, Salt Lake City
(1986)

Bruynooghe, M., De Schreye, D., Krekels, B.: Compiling control. J. Logic Program.
6(1), 135–162 (1989)

De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.:
Conjunctive partial deduction: foundations, control, algorithms, and experiments. J.
Logic Program. 41(2), 231–277 (1999)

Gallagher, J.P.: Transforming logic programs by specialising interpreters. In: ECAI,
pp. 313–326 (1986)

Hruza, J., Stepanek, P.: Speedup of logic programs by binarization and partial deduc-
tion. arXiv preprint arXiv:cs/0312026 (2003)

Leuschel, M.: A framework for the integration of partial evaluation and abstract inter-
pretation of logic programs. ACM Trans. Program. Lang. Syst. (TOPLAS) 26(3),
413–463 (2004)

Lloyd, J.: Foundations of Logic Programming. Springer-Verlag, Berlin (1987)

https://perswww.kuleuven.be/~u0055408/tag/lopstr14.html
https://perswww.kuleuven.be/~u0055408/tag/lopstr14.html
http://arxiv.org/abs/cs/0312026

38 D. De Schreye et al.

Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Logic Pro-
gram. 11(3), 217–242 (1991)

Pettorossi, A., Proietti, M.: Transformation of logic programs: foundations and tech-
niques. J. Logic Program. 19, 261–320 (1994)

Pettorossi, A., Proietti, M.: The list introduction strategy for the derivation of logic
programs. Formal Aspects Comput. 13(3–5), 233–251 (2002)

Puebla, G., de la Banda, M.J.G., Marriott, K., Stuckey, P.J.: Optimization of logic
programs with dynamic scheduling.In: ICLP, vol. 97, pp. 93–107 (1997)

Vidal, G.: A hybrid approach to conjunctive partial evaluation of logic programs. In:
Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564, pp. 200–214. Springer, Heidel-
berg (2011)

Vidal, G.: Annotation of logic programs for independent and-parallelism by partial
evaluation. Theor. Pract. Logic Program. 12(4–5), 583–600 (2012)

Wiggins, G.A.: The improvement of prolog program efficiency by compiling control: a
proof-theoretic view. Department of Artificial Intelligence, University of Edinburgh
(1990)

Constraint Handling Rules

Confluence Modulo Equivalence in Constraint
Handling Rules

Henning Christiansen(B) and Maja H. Kirkeby

Research group PLIS: Programming, Logic and Intelligent Systems Department
of Communication, Business and Information Technologies, Roskilde University,

Roskilde, Denmark
{henning,majaht}@ruc.dk

Abstract. Previous results on confluence for Constraint Handling Rules,
CHR, are generalized to take into account user-defined state equivalence
relations. This allows a much larger class of programs to enjoy the advan-
tages of confluence, which include various optimization techniques and
simplified correctness proofs. A new operational semantics for CHR is
introduced that significantly reduces notational overhead and allows to
consider confluence for programs with extra-logical and incomplete built-
in predicates. Proofs of confluence are demonstrated for programs with
redundant data representation, e.g., sets-as-lists, for dynamic program-
ming algorithms with pruning as well as a Union-Find program, which
are not covered by previous confluence notions for CHR.

1 Introduction

A rewrite system is confluent if all derivations from a common initial state end in
the same final state. Confluence, like termination, is often a desirable property,
and proof of confluence is a typical ingredient of a correctness proof. For a
programming language based on rewriting such as Constraint Handling Rules,
CHR [8,9], it ensures correctness of parallel implementations and application
order optimizations.

Previous studies of confluence for CHR programs are based on Newman’s
lemma. This lemma concerns confluence defined in terms of alternative deriva-
tions ending in the exact same state, which excludes a large class of interesting
CHR programs. However, the literature on confluence in general rewriting sys-
tems has, since the early 1970s, offered a more general notion of confluence mod-
ulo an equivalence relation. This means that alternative derivations only need
to end in states that are equivalent with respect to some equivalence relation
(and not necessarily identical). In this paper, we show how confluence modulo
equivalence can be applied in a CHR context, and we demonstrate interesting
programs covered by this notion that are not confluent by any previous defin-
ition of confluence for CHR. The use of redundant data representations is one

M.H. Kirkeby—The second author’s contribution has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no 318337, ENTRA - Whole-Systems Energy Transparency.

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 41–58, 2015.
DOI: 10.1007/978-3-319-17822-6 3

42 H. Christiansen and M.H. Kirkeby

example of what becomes within reach, and programs that search for one best
among multitudes of alternative solutions is another.

Example 1. The following CHR program, consisting of a single rule, collects a
number of separate items into a (multi-) set represented as a list of items.

set(L), item(A) <=> set([A|L]).

This rule will apply repeatedly, replacing constraints matched by the left hand
side by those indicated to the right. The query

?- item(a), item(b), set([]).

may lead to two different final states, {set([a,b])} and {set([b,a])}, both
representing the same set. This can be formalized by a state equivalence relation
≈ that implies {set(L)} ≈ {set(L′)}, whenever L is a permutation of L′. The
program is not confluent in the classical sense as the end states are not identical,
but it will be shown to be confluent modulo ≈.

Our generalization is based on a new operational semantics that permits extra-
logical and incomplete predicates (e.g., Prolog’s var/2 and is/2), which is out
of the scope of previous approaches. It also leads to a noticeable reduction of
notational overhead due to a simpler structure of states.

It is shown that previous results for CHR confluence, based upon critical
pairs, to a large extent can be generalized for confluence modulo equivalence.
We introduce additional mechanisms to handle the extra complexity caused by
the equivalence relation. We do not present any (semi-) automatic approach to
confluence proofs, as this would need a formal language for specifying equiva-
lences, which has not been considered at present.

Section 2 reviews previous work on confluence, in general and for CHR.
Sections 3 and 4 give preliminaries and our operational semantics. Section 5 con-
siders how to prove confluence modulo equivalence for CHR. Section 6 shows
confluence modulo equivalence for a CHR version of the Viterbi algorithm; it
represents a wider class of dynamic programming algorithms with pruning, also
outside the scope of earlier proposals. Section 7 shows confluence modulo equiv-
alence for the Union-Find algorithm, which has become a standard test case for
confluence in CHR; it is not confluent in any previously proposed way (except
with contrived side-conditions). Section 8 comments on related work in more
detail, and the final section provides a summary and a conclusion.

2 Background

A binary relation → on a set A is a subset of A × A, where x → y denotes
membership of →. A rewrite system is a pair 〈A,→〉; it is terminating if there
is no infinite chain a0 → a1 → · · · . The reflexive transitive closure of → is
denoted ∗→. The inverse relation ← is defined by {(y, x) | x → y}. An equivalence
(relation) ≈ is a binary relation on A that is reflexive, transitive and symmetric.

Confluence Modulo Equivalence in Constraint Handling Rules 43

A rewrite system 〈A,→〉 is confluent if and only if y
∗← x

∗→ y′ ⇒ ∃z. y
∗→

z
∗← y′, and is locally confluent if and only if y ← x → y′ ⇒ ∃z. y

∗→ z
∗← z′.

In 1942, Newman showed his fundamental lemma [13]: A terminating rewrite
system is confluent if and only if it is locally confluent. An elegant proof of
Newman’s lemma was provided by Huet [11] in 1980.

The more general notion of confluence modulo equivalence was introduced in
1972 by Aho et al. [3] in the context of the Church-Rosser property.

Definition 1 (Confluence Modulo Equivalence). A relation → is confluent
modulo an equivalence ≈ if and only if

∀x, y, x′, y′. y
∗← x ≈ x′ ∗→ y′ ⇒ ∃ z, z′. y

∗→ z ≈ z′ ∗← y′.

This shown as a diagram in Fig. 1a. In 1974, Sethi [17] showed that confluence
modulo equivalence for a bounded rewrite system is equivalent to the following
properties, α and β, also shown in Fig. 1b.

Definition 2 (α & β). A relation → has the α property and the β property if
and only if it satisfy the α condition and the β condition, respectively:

α : ∀x, y, y′. y ← x → y′ =⇒ ∃z, z′. y
∗→ z ≈ z′ ∗← y′

β : ∀x, x′, y. x ≈ x′ → y =⇒ ∃z, z′. x′ ∗→ z′ ≈ z
∗← y

In 1980, Huet [11] generalized this result to any terminating system.

Definition 3 (Local Confl. Mod. Equivalence). A rewrite system is locally
confluent modulo an equivalence ≈ if and only if it has the α and β properties.

Theorem 1. Let → be a terminating relation. For any equivalence ≈, → is
confluent modulo ≈ if and only if → is locally confluent modulo ≈.

The known results on confluence for CHR are based on Newman’s lemma.
Abdennadher et al. [2] in 1996 seem to be the first to consider this, and they
showed that confluence (without equivalence) for CHR is decidable and can be
checked by examining a finite set of states formed by a combination of heads of
rules. A refinement, called observational confluence was introduced in 2007 by
Duck et al. [6], in which only states that satisfy a given invariant are considered.

Fig. 1. Diagrams for the fundamental notions. A dotted arrow (single wave line) indi-
cates an inferred step (inferred equivalence).

44 H. Christiansen and M.H. Kirkeby

3 Preliminaries

We assume standard notions of first-order logic such as predicates, atoms and
terms. For any expression E, vars(E) refers to the set of variables that occurs
in E. A substitution is a mapping from a finite set of variables to terms, which
also may be viewed as a set of first-order equations. For substitution σ and
expression E, Eσ (or E ·σ) denotes the expression that arises when σ is applied
to E; composition of two substitutions σ, τ is denoted σ◦τ . Special substitutions
failure, error are assumed, the first one representing falsity and the second one
runtime errors.

Two disjoint sets of (user) constraints and built-in predicates are assumed.
For the built-ins, we use a semantics that is more in line with implemented
CHR systems than previous approaches and also allows extra-logical devices
such as Prolog’s var/1 and incomplete ones such as is/2. While [2,5,6] collect
built-ins in a separate store and determine their satisfiability by a magic solver
that mirrors a first-order semantics, we execute a built-in right away. Thereby, it
serves as a test, possibly giving rise to a substitution that is immediately applied
to the state.

An evaluation procedure Exe for built-ins b is assumed, such that Exe(b) is
either a (possibly identity) substitution to a subset of vars(b) or one of failure
and error . It extends to sequences of built-ins as follows.

Exe((b1, b2))=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Exe(b1) when Exe(b1) ∈ {failure, error},

Exe(b2 · Exe(b1)) when otherwise Exe(b2 · Exe(b1))
∈ {failure, error},

Exe(b1) ◦ Exe(b2 · Exe(b1)) otherwise

A subset of built-in predicates are the logical ones, whose meaning is given by
a first-order theory B. For a logical atom b with Exe(b) �= error , the following
conditions must hold.

– Partial correctness: B |= ∀vars(b)(b ↔ ∃vars(Exe(b))\vars(b)Exe(b)).
– Instantiation monotonicity: Exe(b · σ) �= error for all substitutions σ.

A logical predicate p is complete whenever, for any atom b with predicate symbol
p, we have Exe(b) �= error ; later we define completeness with respect to a state
invariant. Any built-in predicate which is not logical is called extra-logical. The
following predicates are examples of built-ins; ε is the empty substitution.

1. Exe(t = t′) = σ where σ is a most general unifier of t and t′; if no such unifier
exists, the result is failure.

2. Exe(true) is ε.
3. Exe(fail) is failure.
4. Exe(t is t′) = Exe(t = v) whenever t′ is a ground term that can be inter-

preted as an arithmetic expression e with the value v; if no such e exists, the
result is error .

5. Exe(var(t)) is ε if t is a variable and failure otherwise.

Confluence Modulo Equivalence in Constraint Handling Rules 45

6. Exe(ground(t)) is ε when t is ground and failure otherwise.
7. Exe(t == t’) is ε when t and t′ are identical and failure otherwise.
8. Exe(t \= t’) is ε when t and t′ are non-unifiable and failure otherwise.

The first three predicates are logical and complete; “is” is logical but not com-
plete without an invariant that grounds its second arguments (considered later).
The remaining ones are extra-logical.

The practice in previous semantics [2,5,6] of conjoining built-ins and testing
them by satisfiability leads to ignorance of runtime errors and incompleteness.

To represent the propagation history, we introduce indices: An indexed set
S is a set of items of the form x:i where i belongs to some index set and each
such i is unique in S. When clear from context, we may identify an indexed set
S with its cleaned version {x | x:i ∈ S}. Similarly, the item x may identify the
indexed version x:i. We extend this to any structure built from indexed items.

4 Constraint Handling Rules

We define an abstract syntax of CHR together with an operational semantics
suitable for considering confluence. We use the generalized simpagation form as
a common representation for the rules of CHR. Guards may unify variables that
occur in rule bodies, but not variables that occur in the matched constraints. In
accordance with the standard behaviour of implemented CHR systems, failure
and runtime errors are treated the same way in the evaluation of a guard, but
distinguished when occurring in a query or rule body, cf. Definitions 4 and 8,
below.

Definition 4. A rule r is of the form

H1 \ H2 <=> g | C,

where H1 and H2 are sequences of constraints, forming the head of r, g is the
guard being a sequence of built-ins, and C is a sequences of constraints and
built-ins called the body of r. Any of H1 and H2, but not both, may be empty.
A program is a finite set of rules.

For any fresh variant of rule r with notation as above, an application instance
r′′ is given as follows.

1. Let r′ be a structure of the form
H1τ \ H2τ <=> Cτσ

where τ is a substitution for the variables of H1,H2, Exe(gτ) = σ,
σ �∈ {failure, error}, and it holds that (H1 \ H2)τ = (H1 \ H2)τσ,

2. r′′ is a copy of r′ in which each atom in its head and body is given a unique
index, where the indices used for the body are new and unused.

The substitution gτ is referred to the as the guard of r′′. The application record
for r′′ is a structure of the form

r @ i1, . . . , in

where i1, . . . , in is the sequence of indices of H1,H2 in the order they occur.

46 H. Christiansen and M.H. Kirkeby

A rule is a simplification when H1 is empty, a propagation when H2 is empty; in
both cases, the backslash is left out, and for a propagation, the arrow symbol is
written ==> instead. Any other rule is a simpagation. In case the guard is the
built-in true, it and the vertical bar may be omitted. A guard (or single built-in
atom) is logical if it contains only logical predicates. Guards are removed from
application instances as they are a priori satisfied. The following definition will
become useful later on when we consider confluence.

Definition 5. Consider two application instances ri = (Ai \ Bi <=> Ci), i =
1, 2. We say that r1 is blocking r2 whenever B1 ∩ (A2 ∪ B2) �= ∅.
For this to be the case, r1 must be a simplification or simpagation. Intuitively,
it means that if r1 has been applied to a state, it is not possible subsequently
to apply r2. In the following definition of execution states for CHR, irrelevant
details of the state representation are abstracted away using principles of [14].
To keep notation consistent with Sect. 2, we use letters such as x, y, etc. for
states.

Definition 6. A state representation is a pair 〈S, T 〉, where
– S is a finite, indexed set of atoms called the constraint store,
– T is a set of application records called the propagation history.

Two state representations S1 and S2 are isomorphic, denoted S1 ≡ S2 whenever
one can be derived from the other by a renaming of variables and a consistent
replacement of indices (i.e., by a 1-1 mapping). When Σ is the set of all state
representations, a state is an element of Σ/≡ ∪ {failure, error}, i.e., an equiva-
lence class in Σ induced by ≡ or one of two special states; applying the failure
(error) substitution to a state yields the failure (error) state. To indicate a given
state, we may for simplicity mention one of its representations.

A query q is a conjunction of constraints, which is also identified with an
initial state 〈q′, ∅〉 where q′ is an indexed version of q.

To make statements about, say, two states x, y and an instance of a rule r, we
may do so mentioning state representatives x′, y′ and application instance r′

having recurring indices. The following notions becomes useful in Sect. 5, when
we go into more detail on how to prove confluence modulo equivalence,

Definition 7. An extension of a state 〈S,R〉 is a state of the form 〈Sσ∪S+, R∪
R+〉 for suitable σ, S+ and R+; an I-extension is one that satisfies I; and a state
is said to be I-extendible if it has one or more extensions that are I-states.

In contrast to [2,5,6], we have excluded global variables, which refer to those
of the original query, as they are easy to simulate: A query q(X) is extended
to global(′X ′,X), q(X), where global/2 is a new constraint predicate; ′X ′ is a
constant that serves as a name of the variable. The value val for X is found
in the final state in the unique constraint global(′X ′, val). References [2,5,6]
use a state component for constraints waiting to be processed, plus a separate

Confluence Modulo Equivalence in Constraint Handling Rules 47

derivation step to introduce them into the constraint store. We avoid this as the
derivations made under either premises are basically the same. Our derivation
relation is defined as follows; here and in the rest of this paper, � denotes union
of disjoint sets.

Definition 8. A derivation step → from one state to another can be of two
types: by rule

r→ or by built-in
b→, defined as follows.

Apply: 〈S � H1 � H2, T 〉 r→ 〈S � H1 � C, T ′〉
whenever there is an application instance r of the form
H1\H2 <=> C with applied(r) �∈ T , and T ′ is derived from T by (1) remov-
ing any application record having an index in H2 and (2) adding applied(r)
in case r is a propagation.

Built-in: 〈{b} � S, T 〉 b→ 〈S, T 〉 · Exe(b).
A state z is final for query q, whenever q

∗→ z and no step is possible from z.

The removal of certain application records in Apply steps means to keep only
those records that are essential for preventing repeated application of the same
rule to the same constraints (identified by their indices).

As noticed by [6], introducing an invariant makes more programs confluent,
as one can ignore unusual states that never appear in practice. An invariant may
also make it easier to characterize an equivalence relation for states.

Definition 9. An invariant is a property I(·) which may or may not hold for a
state, such that for all states x, y, I(x)∧(x → y) ⇒ I(y). A state x for which I(x)
holds is called an I-state, and an I-derivation is one starting from an I-state.
A program is I-terminating whenever all I-derivations are terminating. A set of
allowed queries Q may be specified, giving rise to an invariant reachableQ(x) ⇔
∃q ∈ Q : q

∗→ x.
A (state) equivalence is an equivalence relation ≈ on the set of I-states.

The central Theorem 1 applies specifically for CHR programs equipped with
invariant I and equivalence relation ≈. When ≈ is identity, it coincides with a
theorem of [6] for observable confluence. If, furthermore, I ⇔ true, we obtain
the classical confluence results for CHR [1].

The following definition is useful when considering confluence for programs
that use Prolog built-ins such as “is/2”.

Definition 10. A logical predicate p is complete with respect to invariant I (or,
for short, is I-complete) whenever, for any atom b with predicate symbol p in
some I-state, that Exe(b) �= error.

A logical guard (or a built-in atom) is also called I-complete, whenever all its
predicates are I-complete. We use the term I-incomplete for any such notion
that is not I-complete.

As promised earlier, “is/2” is complete with respect to an invariant that
guarantees groundness of the second argument of any call to “is/2”.

48 H. Christiansen and M.H. Kirkeby

Example 2. Our semantics permits CHR programs that define constraints such
as Prolog’s dif/2 constraint and a safer version of is/2.

dif(X,Y) <=> X==Y | fail.
dif(X,Y) <=> X\=Y | true.
X safer_is Y <=> ground(Y) | X is Y.

5 Proving Confluence Modulo Equivalence for CHR

We consider here ways to prove the local confluence properties α and β from
which confluence modulo equivalence may follow, cf. Theorem 1. The corners in
the following definition generalize the critical pairs of [2]. For ease of usage, we
combine the common ancestor states with the pairs, thus the notion of corners
corresponding to the “given parts” of diagrams for the α and β properties,
cf. Fig. 1a. The definitions below assume a given I-terminating program with
invariant I and state equivalence ≈. Two states x and x′ are joinable modulo ≈
whenever there exist states z and z′ such that x

∗→ z ≈ z′ ∗← x′.

Definition 11. An α-corner consists of I-states x, y and y′ with y �= y′ and
two derivation steps such that y

γ← x
δ→ y′. An α-corner is joinable modulo ≈

whenever y and y′ are joinable modulo ≈.
A β-corner consists of I-states x, x′ and y with x �= x′ and a derivation step

such that x′ ≈ x
γ→ y. A β-corner is joinable modulo ≈ whenever x′ and y are

joinable modulo ≈.

Joinability of α1-corners holds trivially in a number of cases:

– when γ and δ are application instances, none blocking the other,
– when γ and δ are built-ins, both logical and I-complete, or having no common

variables, or
– when, say, γ is an application instance whose guard is logical and I-complete,

and δ is any built-in that has no common variable with the guard of γ.

These cases are easily identified syntactically. All remaining corners are recog-
nized as “critical”, which is defined as follows.

Definition 12. An α-corner y
γ← x

δ→ y′ is critical whenever one of the fol-
lowing properties holds.

α1: γ and δ are application instances where γ blocks δ (Definition 5).
α2: γ is an application instance whose guard is extra-logical or I-incomplete,
and δ is a built-in with vars(g) ∩ vars(δ) �= ∅.
α3: γ and δ are built-ins with γ extra-logical or I-incomplete, and vars(γ) ∩
vars(δ) �= ∅.

A β-corner x′ ≈ x
γ→ y is critical whenever the following property holds.

Confluence Modulo Equivalence in Constraint Handling Rules 49

– x �= x′ and there exists no state y′ and single derivation step δ such that
x′ δ→ y′ ≈ y.

Our definition of critical β-corners are motivated by the experience that often
the δ step can be formed trivially by applying the same rule or built-in of γ
in an analogous way to the state x′. By inspection and Theorem 1, we get the
following.

Lemma 1. Any non-critical corner is joinable modulo ≈.

Theorem 2. A terminating program is confluent modulo ≈ if and only if all its
critical corners are joinable modulo ≈.

5.1 Joinability of α1-Critical Corners

Without invariant, equivalence and extra-logicals, the only critical corners are of
type α1; here [2] has shown that joinability of a finite set of minimal critical pairs
is sufficient to ensure local confluence. In the general case, it is not sufficient to
check such minimal states, but the construction is still useful as a way to group
the cases that need to be considered. We adapt the definition of [2] as follows.

Definition 13. An α1-critical pattern (with evaluated guards) is of the form

〈S1σ1, ∅〉 r1← 〈S, ∅〉 r2→ 〈S2σ2, R〉
whenever there exist, for k = 1, 2, indexed rules rk = (Ak \ Bk <=> gk | Ck),
and

R =

{
{a} whenever r2 is a propagation with application record a,

∅ otherwise.

The remaining entities are given as follows.

– Let Hk = Ak ∪ Bk, k = 1, 2, and split B1 and H2 into disjoint subsets by
B1 = B′

1 � B′′
1 and H2 = H ′

2 � H ′′
2 , where B′

1 and H ′
2 must have the same

number of elements ≥ 1.
– The set of indices used in B′

1 and H ′
2 are assumed to be identical, and any

other index in r1, r2 unique, and σ is a most general unifier of B′
1 and a

permutation of H ′
2.

– S = A1σ ∪ B1σ ∪ A2σ ∪ B2σ, with S being I-extendible,
– Sk = S \ Bkσ ∪ Ckσ, k = 1, 2,
– gk is logical with σk = Exe(gkσ) �∈ {error , failure} for k = 1, 2.

An α1-critical pattern (with delayed guards) is of the form

〈S1, ∅〉 r1← 〈S, ∅〉 r2→ 〈S2, R〉,

where all parts are defined as above, except in the last step, that one of gk is extra-
logical or its evaluation by Exe results in error; the guards gkσ are recognized as
the unevaluated guards.

50 H. Christiansen and M.H. Kirkeby

Definition 14. An α1-critical corner y
r1← x

r2→ y′ is covered by an α1-critical
pattern

〈S1, ∅〉 r1← 〈S, ∅〉 r2→ 〈S2, R〉,

whenever x is an I-extension of 〈S, ∅〉.
Analogously to previous results on confluence of CHR [2], we can state the
following.

Lemma 2. For a given I-terminating program with invariant I and equivalence
≈, the set of critical α1-patterns is finite, and any critical α1-corner is covered
by some critical α1-pattern.

The requirement of definition 13, that a critical α1-corner needs to be I-extendible,
means that there may be fewer patterns to check than if classical confluence is
investigated. Examples of this is used for when showing confluence of the Union-
Find program, Sect. 7 below. We can reuse the developments of [2] and joinability
results derived by their methods, e.g., using automatic checkers for classical con-
fluence [12].

Lemma 3. If a critical α1-pattern π (viewed as an α1-corner) is joinable modulo
the identity equivalence, then any α1-corner covered by π is joinable under any
I and ≈.

This means that we may succeed in showing confluence modulo ≈ under I in
the following way for a program without critical α2, α3 and β corners.

– Run a classical confluence checker (e.g., [12]) to identify which classical, critical
pairs that are not joinable. Those such that do not correspond to I-extendible
α1 patterns can be disregarded.

– Those critical α1-patterns that remain need separate proofs, which may suc-
ceed due to the stronger antecedent given by I and the weakening of the
joinability consequent by an equivalence relation.

Example 3 (Example 1, continued). We consider again the one line program of
Example 1 that collects a items into a set, represented as a list. Suitable invariant
and equivalence are given as follows; the propagation history can be ignored as
there are no propagations.

I: I(x) holds if and only if x = {set(L)}∪Items, where Items is a set of item/1
constraints whose argument is a constant and L a list of constants.

≈: x ≈ x′ if and only if x = {set(L)} ∪ Items and x′ = {set(L′)} ∪ Items
where Items is a set of item/1 constraints and L is a permutation of L′.

There are no built-ins and thus no critical α2- or α3-patterns. There is only one
critical α1-pattern, namely

{set([B|L]), item(A)} ← {set(L), item(A), item(B)} → {set([A|L]), item(B)}.

Confluence Modulo Equivalence in Constraint Handling Rules 51

The participating states are not I-states as A, B and L are variables; the set of all
critical α1-corners can be generated by different instantiations of the variables,
discarding those that lead to non-I-states. We cannot use Lemma 3 to prove
joinability as the equivalence is ≈ essential. Instead, we can apply a general
argument that goes for any I-extension of this pattern. The common ancestor
state in such an I-extension is of the form {set(L), item(A)} ∪ Items, and
joinability is shown by applying the rule to the two “wing” states (not shown)
to form the two states {set([B, A, |L])} ∪ Items ≈ {set([A, B, |L])} ∪ Items. To
show confluence modulo ≈, we still need to consider the β-corners which we
return to in Example 5 below.

5.2 About Critical α2-, α3- and β-Corners

It is not possible to characterize the sets of all critical α2-, α3- and β-corners by
finite sets of patterns of mini-states in the same way as for α1.

The problem for α2 and α3 stems from the presence of extra-logical or incom-
plete built-ins. Here the existence of one derivation step from a given state S does
not imply the existence of another, analogous derivation step from an extension
Sσ ∪ S+. This is demonstrated by the following example.

Example 4. Consider the following program that has extra-logical guards.

r1: p(X) <=> var(X) | q(X).
r2: p(X) <=> nonvar(X) | r(X).
r3: q(X) <=> r(X).

There are no propagation rules, so we can identify states with multisets of con-
straints. The invariant I is given as follows, and the state equivalence is trivial
identity so there are no critical β-corners to consider.

I(S): S is a multiset of p, q and r constraints and built-ins formed by the “=”
predicate. Any argument is either a constant or a variable.

The meaning of equality built-ins is as defined in Sect. 3 above.
It can be argued informally that this program is I-confluent as all user-

defined constraints will eventually become r constraints unless a failure occurs
due to the execution of equality built-ins; the latter can only be introduced in
the initial query, so if one derivation leads to failure, all terminated derivations
do. Termination follows from the inherent stratification of the constraints.

To prove this formally, we consider all critical corners and show them joinable.
One group of critical α2-corners are of the following form, (1)

S1 =
({q(x), x = a} � S

) r1← ({p(x), x = a} � S
) =→ ({p(a)} � S

)
= S2;

x is a variable, a a constant and S an arbitrary set of constraints such that I is
maintained. Any such corner is joinable, which can be shown as follows, (2).

S1
=→ S′

1

r2→ {r(a)} � S
r2← S2;

52 H. Christiansen and M.H. Kirkeby

The remaining critical α2-corners form a similar group.

{q(x), x = y} � S
r1← {p(x), x = y} � S

=→ {p(x)} � S;

x and y variables, r1 and S and S an arbitrary set of constraints such that I is
maintained. Joinability is shown by a similar argument that goes for this entire
group. The only critical corners are those α2 cases that have been considered,
so the program is confluent.

We notice, however, that the derivation steps in (1) and (2) are possible
only due to the assumptions about the permitted instances of x, a and S. The
symbol a, for example, is not a variable in a formal sense, neither is it a constant,
but a meta-variable or placeholder of the sort that mathematicians use all the
time. This means that we cannot reduce the formulas (1) and (2) to refer to
derivations over mini-states, with proper variables as placeholders, as then r2
can never apply.

To see critical α3-corners, we change I into I ′ by allowing also var constraints
in a state. One group of such corners will have the following shape.

{var(a)} � S
=← {var(x), x = a} � S

var→ {x = a} � S

x is a variable, a a constant and S an arbitrary set of constraints such that I ′ is
maintained. For, e.g., S = ∅, this corner is obviously not joinable, so the program
is not confluent (module equivalence) under I ′. As above, we observe that the
set of critical α3 corners cannot be characterized by a finite set of mini-states.

The β property needs to be considered when the state equivalence is non-trivial,
as in the following example

Example 5 (Examples 1 and 3, continued). To check the β property, we notice
that any β-corner is of the form

{set(L′), item(A)} � Items ≈ {set(L),item(A)} � Items → {set([A|L])} � Items

where L and L′ are lists, one being a permutation of the other. Applying the
rule to the “left wing” state leads to {set([A|L′])} ∪ Items which is equiv-
alent (wrt. ≈) to the “right wing” state; there are thus no critical β-corners.
Together with results for critical α-corners above, we have now shown local con-
fluence modulo ≈ for the sets-as-lists program, and as the program is clearly
I-terminating, it follows that it is confluent modulo ≈.

6 Confluence of Viterbi Modulo Equivalence

Dynamic programming algorithms produce solutions to a problem by generating
solutions to a subproblem and iteratively extending the subproblem and its solu-
tions (until the original problem is solved). The Viterbi algorithm [20] finds a
most probable path of state transitions in a Hidden Markov Model (HMM) that
produces a given emission sequence Ls, also called the decoding of Ls; see [7]

Confluence Modulo Equivalence in Constraint Handling Rules 53

for a background on HMMs. There may be exponentially many paths but an
early pruning strategy ensures linear time. The algorithm has been studied in
CHR by [4], starting from the following program; the “@” operator is part of the
implemented CHR syntax used for labelling rules.

:- chr_constraint path/4, trans/3, emit/3.

expand @ trans(Q,Q1,PT), emit(Q,L,PE), path([L|Ls],Q,P,PathRev) ==>

P1 is P*PT*PE | path(Ls,Q1,P1,[Q1|PathRev]).

prune @ path(Ls,Q,P1,_) \ path(Ls,Q,P2,_) <=> P1 >= P2 | true.

The meaning of a constraint path(Ls,q,p,R) is that Ls is a remaining emission
sequence to be processed, q the current state of the HMM, and p the probability
of a path R found for the already processed prefix of the emission sequence.
To simplify the program, a path is represented in reverse order. Constraint
trans(q,q′,pt) indicates a transition from state q to q′ with probability pt , and
emit(q,�,pe) a probability pe for emitting letter � in state q.

Decoding of a sequence Ls is stated by the query “HMM, path(Ls,q0,1,[])”
where HMM is an encoding of a particular HMM in terms of trans and emit
constraints. Assuming HMM and Ls be fixed, the state invariant I is given as
reachability from the indicated query. The program is I-terminating, as any
new path constraint introduced by the expand rule has a first argument shorter
than that of its predecessor. Depending on the application order, it may run in
between linear and exponential time, and [4] proceeds by semantics preserving
program transformations that lead to an optimal execution order.

The program is not confluent in the classical sense, i.e., without an equiva-
lence, as the prune rule may need to select one out of two different and equally
probable paths. A suitable state equivalence may be defined as follows.

Definition 15. Let 〈HMM ∪ PATHS 1, T 〉 ≈ 〈HMM ∪ PATHS 2, T 〉 whenever:
For any indexed constraint (i : path(Ls, q, P,R1)) ∈ PATHS 1 there is a corre-
sponding (i : path(Ls, q, P,R2)) ∈ PATHS 2 and vice versa.

The built-ins used in guards, is/2 and >=/2, are logical and I-complete, so
there are no α2- or α3-critical corners. For simplicity of notation, we ignore the
propagation histories. There are three critical α1 patterns to consider:
(i) y

prune← x
prune→ y′, where x contains two path constraints that may differ only

in their last arguments, and y and y′ differ only in which of these constraints
that are preserved; thus y ≈ y′.
(ii) y

prune← x
expand→ y′ where x = {π1, π2, τ, η}, πi = path(L, q, Pi, Ri) for i = 1, 2,

P1 ≥ P2, and τ, η the trans and emit constraints used for the expansion step.
Thus y = {π1, τ, η} and y′ = {π1, π2, π

′
2, τ, η} where π′

2 is expanded from π2.
To show joinability, we show the stronger property of the existence of a state
z withy

∗→ z
∗← y′. We select z = {π1, π

′
1, τ, η}, where π′

1 is expanded from

54 H. Christiansen and M.H. Kirkeby

π1.1 The probability in π′
1 is greater or equal to that of π′

2, which means that a
pruning of π′

2 is possible when both are present. Joinability is shown as follows.

y
expand→ z

prune← {π1, π
′
1, π2, τ, η} prune← {π1, π

′
1, π2, π

′
2, τ, η} expand← y′

(iii) As case ii but with P2 ≥ P1 and y = {π2, τ, η}; proof similar and omitted.
Thus all α-critical corners are joinable. There are no critical β corners, as

whenever x′ ≈ x
r→ y, the rule r can apply to x′ with an analogous result, i.e.,

there exists a state y′ such that x′ r→ y′ ≈ y. This finishes the proof of confluence
modulo ≈.

7 Confluence of Union-Find Modulo Equivalence

The Union-Find algorithm [19] maintains a collection of disjoint sets under union,
with each set represented as a tree. It has been implemented in CHR by [16]
who proved it nonconfluent using critical pairs [2]. We have adapted a version
from [6], extending it with a new token constraint to be explained; let UF token

refer to our program and UF 0 to the original without token constraints.

union @ token, union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).

findRoot @ root(A) \ find(A,X) <=> A=X.

linkEq @ link(A,A) <=> token.

link @ root(A) \ link(A,B), root(B) <=> B ~> A, token.

The ~> and root constraints, called tree constraints, represent a set of trees.
A finite set T of ground tree constraints is consistent whenever: for any constant
a in T , there is either one and only one root(a) ∈ T , or a is connected via a
unique chain of ~> constraints to some r with root(r) ∈ T . We define sets(T) to
be the set of sets represented by T , formally: the smallest equivalence relation
over constants in T that contains the reflexive, the transitive closure of ~>;
set(a, T) refers to the set in sets(T) containing constant a.

The allowed queries are ground and of the form T ∪ U ∪ {token}, where T
is a consistent set of tree constraints, and U is a set of constraints union(ai,bi),
where ai, bi appear in T . The token constraint is necessary for triggering the
union rule, so it needs to be present in the query to get the process started;
it is consumed when one union operation starts and reintroduced when it has
finished (as marked by the linkEq or link rules), thus ensuring that no two
union operations overlap in time. The invariant I is defined by reachability
from these queries. By induction, we can show the following properties of any
I-state S.

1 It may be the case that π′
1 was produced and pruned at an earlier stage, so the

propagation history prevents the creation of π′
1 anew. A detailed argument can

show, that in this case, there will be another constraints π′′
1 in the store similar to

π′
1 but with a ≥ probability, and π′′

1 can be used for pruning π′
2 and obtain the

desired result in that way.

Confluence Modulo Equivalence in Constraint Handling Rules 55

– Either S = T ∪ U ∪ {token}, where T is a consistent set of tree constraints
and U a set of union constraints whose arguments are in T , or

– S = T ∪ U ∪ {link(A1, A2)} ∪ F1 ∪ F2 where T,U are as in the previous case,
and for i = 1, 2,

• if Ai is a constant, Fi = ∅, otherwise
• Fi = {find(ai, Ai)} or Fi = {(ai = Ai)} for some constant ai.

As shown by [16], UF 0 is not confluent in the classical sense, which can be related
to the following issues.

(i) When the detailed steps of two union operations are intertwined in an unfor-
tunate way, the program may get stuck in a state where it cannot finish the
operation as shown in the following derivation.
root(a), root(b), root(c), union(a,b), union(b,c)

∗→
root(a), root(b), root(c), link(a,b), link(b,c) →
b ~> a, root(a), root(c), link(b,c)

(ii) Different execution orders of the union operations may lead to different data
structures (representing the same sets). This is shown in the following deriva-
tions from a query q0 = {root(a), root(b), root(c), union(a,b), union(b,c)}.
q0

∗→ root(a), root(c), b ~> a, union(b,c)
∗→ root(a), b ~> a, c ~> a

q0
∗→ root(a), root(b), c ~> b, union(a,b)

∗→ root(b), b ~> a, c ~> b

We proceed, now, to show that UF token is confluent modulo an equivalence ≈,
defined as follows; letters U and T refer to sets of union and of tree constraints.

– T ∪ U ∪ {token} ≈ T ′ ∪ U ∪ {token} whenever sets(T) = sets(T ′).
– T ∪U ∪{link(A1, A2)}∪F1∪F2 ≈ T ′∪U ∪{link(A′

1, A
′
2)}∪F ′

1∪F ′
2 whenever

sets(T) = sets(T ′) and for i = 1, 2, that
• if Ai is a constant and (by I) Fi = ∅, then A′

i is a constant, set(Ai, T) =
set(A′

i, T
′) and F ′

i = ∅
• if Ai is a variable and Fi = {find(ai, Ai)} for some constant ai, then

F ′
i = {find(a′

i, A
′
i)} and set(ai, T) = set(a′

i, T
′),

• if Ai is a variable, Fi = {(ai = Ai)} for some constant ai with root(ai) ∈ T
then F ′

i = (a′
i = A′

i)}, root(a′
i) ∈ T ′ and set(ai, T) = set(a′

i, T
′).

There are no critical α2- and α3-patterns. The α1-patterns (critical pairs) of
UF token are those of UF 0 and a new one, formed by an overlap of the union
rule with itself as shown below. We reuse the analysis of [16] who identified all
critical pairs for UF 0; by Lemma 3, we consider only those pairs, they identified
as non-joinable.

In [16], eight non-joinable critical pairs are identified; thefirst one (“theunavoid-
able” pair) concerns issue (ii). Its ancestor state {find(B,A), root(B), root(C),
link(C,B)}, is excluded by I: any corner covered, B and C must be ground, thus
also the link constraint, which according to I excludes a find constraint. This can
be traced to the effect of our token constraint, that forces any union to complete
its detailed steps, before a next union may be entered. However, issue (ii) pops up
in the new α1-pattern for UF token, y ← x → y′ where:

x = {token, union(A,B), union(A′, B′)}
y = {find(A,X), find(B, Y), link(X,Y), union(A′, B′)}
y′ = {find(A′,X ′), find(B′, Y ′), link(X ′, Y ′), union(A,B)}

56 H. Christiansen and M.H. Kirkeby

To show joinability of any corner covered by this pattern means to find z, z′ such
that y

∗→ z ≈ z′ ∗← y′. This can be done by, from y, first executing all remaining
steps related to union(A,B) and then the steps relating to union(A′, B′) to
reach a state z = T ∪ U ∪ {token}. In a similar way, we construct z′ = T ′ ∪ U ∪
{token}, starting with the steps relating to union(A′, B′) followed by those of
union(A,B). It can be proved by induction that sets(T) = sets(T ′), thus z ≈ z′.

Next, [16] identifies three critical pairs, that imply inconsistent tree con-
straints. The authors argue informally that these pairs will never occur for a
query with consistent tree constraints. As noticed by [6], this can be formalized
using an invariant. The last four pairs of [16] relate to issue (i) above; [16] argues
these to be avoidable, referring to procedural properties of implemented CHR
systems (which is a bit unusual in a context concerning confluence). In [6], those
pairs are avoided by restricting allowed queries to include only a single union
constraint; we can allow any number of those, but avoid the problem due to
the control patterns imposed by the token constraints and formalized in our
invariant I.

This finishes the argument that UF token satisfies the α property, and by
inspection of the possible derivation steps one by one (for each rule and for the
“=” constraint), it can be seen that there are no critical β corners. Thus UF token

is locally confluent modulo ≈, and since tree consistency implies termination, it
follows that UF token is confluent modulo ≈.

8 Discussion and Detailed Comments on Related Work

We already commented on the foundational work on confluence for CHR by [2],
who, with reference to Newman’s lemma, devised a method to prove confluence
by inspecting a finite number of critical pairs. This formed also the foundation of
automatic confluence checkers [2,5,12] (with no invariant and no equivalence).

The addition of an invariant I in the specification of confluence problems for
CHR was suggested by [6]. The authors considered a construction similar to our
α1-corners and critical α1-patterns. They noted that critical α1-patterns usually
do not satisfy the invariant, so they based their approach on defining a collec-
tion of corners based on I-states as minimal extensions of such patterns. Local
confluence, then, follows from joinability of this collection of minimally extended
states. However, there are often infinitely many such minimally extended states;
this happens even for a natural invariant such as groundness when infinitely
many terms are possible, as is the case in Prolog based CHR versions. We can
use this construction (in cases where it is finite!) to further cluster the space of
our critical corners, but our examples worked quite well without this.

Of other work concerned with confluence for CHR, we may mention [10,15]
which considered confluence for non-terminating CHR programs. We may also
refer to [18] that gives an overview of CHR related research until 2010, including
confluence.

Confluence Modulo Equivalence in Constraint Handling Rules 57

9 Conclusion and Future Work

We have introduced confluence modulo equivalence for CHR, which allows a
much larger class of programs to be characterized as confluent in a natural way,
thus increasing the practical relevance of confluence for CHR.

We demonstrated the power of the framework by showing confluence modulo
equivalence for programs that use a redundant data representation (the set-as-
lists and Union-Find programs) and a dynamic programming algorithm (the
Viterbi program); all these are out of scope of previous confluence notions for
CHR. With the new operational semantics, we can also handle extra-logical and
incomplete built-in predicates, and the notational improvements obtained by this
semantics may also promote new applications of and research on confluence.

As a first steps towards semi- or fully automatic proof methods, it is impor-
tant to notice that classical joinability of a critical pair – as can be decided
by existing confluence checkers such as [12] – provide a sufficient condition for
joinability modulo any equivalence. Thus only classically non-joinable pairs – in
our terminology α1 patterns – need to be examined in more details involving
the relevant equivalence; however, in some cases there may also be critical α2,
α3 and β patterns that need to be considered.

While the set of critical α1-patterns can be characterized by a finite collection
of patterns consisting of mini-states tied together by derivations, the same things
is not possible for the other sorts of critical patterns. In our examples, we used
semi-formal patterns, whose meta-variables or placeholders are covered by side-
conditions such as “x is a variable” and “a is a constant”. However, this must be
formalized in order to approach automatic or semi-automatic methods. A formal
and machine readable language for specifying invariants and equivalences will
also be an advantage in this respect.

References

1. Abdennadher, S.: Operational semantics and confluence of constraint propaga-
tion rules. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 252–266. Springer,
Heidelberg (1997)

2. Abdennadher, S., Frühwirth, T.W., Meuss, H.: On confluence ofconstraint han-
dling rules. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 1–15. Springer,
Heidelberg (1996)

3. Aho, A.V., Sethi, R., Ullman, J.D.: Code optimization and finite Church-Rosser
systems. In: Rustin, R. (ed.) Design and Optimization of Compilers, pp. 89–106.
Prentice-Hall, Englewood Cliffs (1972)

4. Christiansen, H., Have, C.T., Lassen, O.T., Petit, M.: The Viterbi algorithm
expressed in Constraint Handling Rules. In: Van Weert, P., De Koninck, L. (eds.)
Proceedings of the 7th International Workshop on Constraint Handling Rules.
Report CW 588, pp. 17–24. Katholieke Universiteit Leuven, Belgium (2010)

5. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined oper-
ational semantics of constraint handling rules. In: Bart, D., Vladimir, L. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

58 H. Christiansen and M.H. Kirkeby

6. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for constraint han-
dling rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 224–
239. Springer, Heidelberg (2007)

7. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1999)

8. Frühwirth, T.W.: Theory and practice of Constraint Handling Rules. J. Logic
Progr. 37(1–3), 95–138 (1998)

9. Frühwirth, T.W.: Constraint Handling Rules. Cambridge University Press,
Cambridge (2009)

10. Haemmerlé, R.: Diagrammatic confluence for Constraint Handling Rules. TPLP
12(4–5), 737–753 (2012)

11. Huet, G.P.: Confluent reductions: abstract properties and applications to term
rewriting systems: abstract properties and applications to term rewriting systems.
J. ACM 27(4), 797–821 (1980)

12. Langbein, J., Raiser, F., Frühwirth, T.W.: A state equivalence and confluence
checker for CHRs. In: Weert, P.V., Koninck, L.D. (eds.) Proceedings of the 7th
International Workshop on Constraint Handling Rules. Report CW 588, pp. 1–8.
Katholieke Universiteit Leuven, Belgium (2010)

13. Newman, M.: On theories with a combinatorial definition of “equivalence”. Ann.
Math. 43(2), 223–243 (1942)

14. Raiser, F., Betz, H., Frühwirth, T.W.: Equivalence of CHR states revisited. In:
Raiser, F., Sneyers, J. (eds.) Proceedings of the 6th International Workshop on
Constraint Handling Rules, Report CW 555, pp. 33–48. Katholieke Universiteit
Leuven, Belgium (2009)

15. Raiser, F., Tacchella, P.: On confluence of non-terminating CHR programs. In:
Djelloul, K., Duck, G.J., Sulzmann, M. (eds.) CHR 2007, pp. 63–76. Porto, Portugal
(2007)

16. Schrijvers, T., Frühwirth, T.W.: Analysing the CHR implementation of union-find.
In: Wolf, A., Frühwirth, T.W., Meister, M. (eds.) W(C)LP. Ulmer Informatik-
Berichte, vol. 2005-01, pp. 135–146. Universität Ulm, Ulm (2005)

17. Sethi, R.: Testing for the Church-Rosser property. J. ACM 21(4), 671–679 (1974)
18. Sneyers, J., Weert, P.V., Schrijvers, T., Koninck, L.D.: As time goes by: Constraint

Handling Rules. TPLP 10(1), 1–47 (2010)
19. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM

31(2), 245–281 (1984)
20. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Trans. Inform. Theory 13, 260–269 (1967)

Exhaustive Execution of CHR Through
Source-to-Source Transformation

Ahmed Elsawy1(B), Amira Zaki1,2, and Slim Abdennadher1

1 German University in Cairo, Cairo, Egypt
{ahmed.el-sawy,amira.zaki,slim.abdennadher}@guc.edu.eg

2 Ulm University, Ulm, Germany

Abstract. Constraint Handling Rules (CHR) is a committed-choice
rule-based programming language. Rules rewrite a global multi-set of con-
straints to another. Overlapping sets of constraints within the rules and
the order of constraints within rules and queries entail different derivation
paths. In this work, a novel operational strategy is proposed which enables
a high-level form of execution control that empowers a comprehensive and
customizable execution strategy. It allows full space exploration for any
CHR program, thus finding all possible results to a query which is inter-
esting for many non-confluent programs. The proposed transformation is
performed as a source-to-source transformation from any CHR program
to one utilizing disjunction to force an exhaustive explorative execution
strategy. The work is complemented by formal arguments to prove the cor-
rectness and completeness of the transformation.

Keywords: Constraint Handling Rules · Execution flow control ·
Exhaustive execution · Search space exploration · Source-to-source
transformation

1 Introduction

Constraint Handling Rules (CHR) is a rule-based programming language based
on a set of multi-headed guarded rewrite rules [9]. The rules operate on a global
multi-set of constraints to rewrite them from one multi-set of constraints to
another. The rules are applied exhaustively until a final state is attained; where
no more rules are applicable. The execution of a program on an initial query is
known as a derivation. Derivations follow a committed-choice manner, where a
chosen rule cannot be retracted. Rules could operate on overlapping sets of con-
straints. The order of constraints within the rules, the order of constraints within
the input query, and the actual order of program rules chosen for execution are
factors defined by the operational semantics that determine the derivation path.

For a given CHR program and for any initial state, if all derivations from that
state result in the same final state then the program is confluent. On the other
hand, non-confluent programs produce different final states for a given query
depending on the chosen derivation path. Non-confluent programs are common

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 59–73, 2015.
DOI: 10.1007/978-3-319-17822-6 4

60 A. Elsawy et al.

specially with agent-oriented programming. The Blocks World example [8,12]
can be modelled in CHR to describe the behaviour of an agent in a world of
objects.

Example 1. Blocks World

rule-1 @ get(X), empty <=> hold(X).

rule-2 @ get(X), hold(Y) <=> hold(X), clear(Y).

The constraint hold(X) represents that the agent holds an object X. The con-
straint empty represents that the agent holds nothing, the constraint clear(Y)
denotes that the object Y is not held, and the constraint get(X) represents the
agent’s action to get an object X. The program consists of two simplification
rules having overlapping heads, both rules have a get(X) constraint on the left-
hand side. The simplification rules rewrite matched left-hand side constraints
to the right-hand side constraints. With the abstract operational semantics and
an initial query ‘empty, get(box), get(cup)’, two disjoint final states can be
reached:

Fig. 1. Derivation tree for Example 1 with query: empty,get(box),get(cup).

The CHR implementation of the K.U. Leuven system [10], which follows
the refined operational semantics but with additional fixed orders, entails that
only one final state is reached ‘hold(cup), clear(box)’. However, changing
the order of program rules, the order of constraints within an input query or
within the rules, yields different final states for a non-confluent program. For
example, executing the program with the reordered query: ‘empty, get(cup),
get(box)’ entails the final state ‘hold(box), clear(cup)’.

In order to change the program execution flow, source-to-source transforma-
tions are used to facilitate a straightforward implementation on top of existing
CHR implementations whilst exploiting the optimizations of current CHR com-
pilers [14]. For example, such transformations can be used to transform CHR
with user-defined priorities into regular CHR [4,6] and to a tree-based semantics
with a breadth-first search [5].

In this work, we capture the essence of the tree-based semantics [5] by
introducing branching derivations through identifying overlapping rule-heads.

Exhaustive Execution of CHR 61

The tree-based semantics makes use of the disjunctive branching points within
a program to generate CHR constraints to encode nodes and edges.

The presented approach is based on transforming the input program to a pro-
gram that utilizes Constraint Handling Rules with Disjunction (CHR∨); which is
an extension of CHR [3]. CHR∨ facilitates relaxing the committed-choice behav-
iour of CHR by allowing disjunctive bodies and hence backtracking over alter-
natives. Application of a transition rule generates a branching derivation which
can be utilized to overcome the committed-choice execution of CHR.

This work introduces an exhaustive execution strategy as a source-to-source
transformation of the CHR program rules. It finds all possible results to a query
for non-confluent programs. This execution platform is extensible to adopt differ-
ent search strategies on a program’s search space. For implementing constraint
solvers, this could definitely enable optimized search techniques [5]. The angelic
semantics of CHR [13] is a preliminary similar work aimed to explore all possible
execution choices using derivation nets. However, no implementation nor defini-
tion of an operational semantics was provided. The transformation proposed here
aims to reach an angelic semantics however by generating search trees similar to
the tree-based semantics without explicitly encoding edges and nodes.

In this work, we establish a strong correspondence of the proposed trans-
formation to the operational semantics of CHR to prove the soundness and
completeness of the proposed transformation.

Moreover, as a practical application of this work, the exhaustive execution by
transformation is used as a top-level execution strategy required for the inverse
execution of CHR [15]. The inverse execution of CHR presents a simple inversion
transformation, that changes a CHR program to its inverse one by interchanging
rule sides. For the blocks world example mentioned earlier, that would mean a
program which given an output state ‘hold(cup), clear(box)’ generates all
possible input states that lead to it. With a normal CHR execution implementa-
tion only one input is uncovered; thus a different exhaustive execution strategy
is required. A primitive unformalized execution transformation was proposed
in [15]. In this work, we extend the work of [15] by using the proposed transfor-
mation for executing inverse CHR programs.

The paper proceeds by providing some background information in Sect. 2,
followed by the proposed transformation in Sect. 3. The proof of the soundness
and completeness of the transformation is given in Sect. 4. Then an application
of the proposed transformation is given in Sect. 5, followed by some concluding
remarks in Sect. 6.

2 Constraint Handling Rules

2.1 Syntax

Constraint Handling Rules (CHR) [9,10] consist of guarded rewrite rules that
perform conditional transformation of multi-sets of constraints, known as a con-
straint store. There are three types of rules: simplification, propagation and
simpagation rules. All rules have an optional unique identifier rule-id separated

62 A. Elsawy et al.

from the rule body by @. For all rules, Hk and/or Hr form the rule head. Hk and
Hr are sequences of user-defined CHR constraints that are kept and removed
from the constraint store respectively. Guard is the rule guard consisting of a
sequence of built-in constraints, and B is the rule body comprising of CHR and
built-in constraints. The generalized simpagation rules are of the form:

rule-id @ Hk \ Hr ⇔ Guard | B

The two other types of rules are special cases of the generalized simpagation
rule. Simplification rules have no kept head constraints Hk while propagation
rules do not remove any head constraints. These rules are of the form:

Simplification rule: rule-id @ Hr ⇔ Guard | B
Propagation rule: rule-id @ Hk ⇒ Guard | B

Propagation and simpagation rules can be represented as simplification rules
by adding kept constraints to the rule bodies; in its abstract sense this intro-
duces the notion of non-termination. However this issue can be avoided by using
a refined operational semantics which uses a token store as a history for prop-
agated constraints [1]. For simplicity, in this paper the focus will be only with
simplification rules, however the work can be extended in a straightforward man-
ner by adding the notion of a propagation history.

Constraint Handling Rules with Disjunction (CHR∨) [3] is an extension which
allows disjunctive rule bodies and enables a backtrack search over alternatives.
A simplification rule with two possible bodies (B1 ∨ B2) is of the form:

ruleV-id @ Hr ⇔ Guard | B1 ∨ B2

2.2 Operational Semantics

An operational semantics of CHR describes the behaviour of a program in terms
of a state transition system which models the execution of a program.

The abstract operational semantics ωva of CHR is formulated as a state
transition system, where states are goals comprising a conjunction of built-in and
CHR constraints, and a transition defines an execution state and its subsequent
execution state. An initial state is an arbitrary one and a final state is a terminal
one where no further transitions are possible. The abstract operational semantics
includes one transition rule shown below, where P is a CHR program with rules
r and CT is the constraint theory for the built-in constraints.

Apply
(Hk ∧ Hr ∧ C) �→r

apply (Hk ∧ Guard ∧ B ∧ C)
if there is an instance of a rule r in P with new local variables x̄ such that:

r @ Hk \ Hr ⇔ Guard | B and CT |= ∀(C → ∃x̄ Guard)

The extended operational semantics for CHR∨ operates on a disjunction of
CHR states known as a configuration: s1 ∨ s2 ∨ · · · ∨ sn. The semantics includes
two transitions; one containing the original apply transition which is applicable

Exhaustive Execution of CHR 63

to a single state. The second transition is a split transition which is applicable
to any goal containing a disjunction. It leads to a branching derivation entailing
two states, where each state can be processed independently. The second split
transition required by CHR∨ is shown below.

Split
((H1 ∨ H2) ∧ C) ∨ S �→split (H1 ∧ C) ∨ (H2 ∧ C) ∨ S

Such a derivation can be visualized as a tree; consisting of a set of nodes and
a set of directed edges connecting these nodes [11]. The root node corresponds
to the initial state or goal. An intermediate node represents a midway non-final
state within a derivation. A leaf node represents a successful or failed final state.
Edges between nodes denote the applied transitions. Due to the clarity offered
by search trees for such derivations, in this work all examples will be depicted
using trees.

The refined operational semantics ωr is a theoretical operational semantics
that makes execution considerably more deterministic by establishing an order
for goal constraints [7]. It is more closely related to actual implementations of
CHR. Due to the limited space of this paper, we refer to the ωr as defined in [7].

3 Transformation

In this section, we describe how to transform a CHR program P to a CHR
program PT , such that execution of program PT under the refined operational
semantics ωr produces all possible final results. The transformation is divided
into three sets of rules:

Definition 1. Modified Source Rules. For every rule r @ H ⇔ Guard | B
in program P with H = c1(X11, ...,X1n1)..., cl(Xl1, ...,Xlnl

), a modified source
rule rt is added to the transformed program, defined as follows:

Modified Source Rules
rt @ depth(Z), c1T (X11, ...,X1n1 , y1, Z), ..., clT (Xl1, ...,Xlnl

, yl, Z)
⇔ Guard | B, depth(Z + 1)

As a result, every modified source rule rt in PT corresponds to rule r in P .
Every constraint c(X1, ...,Xn) in the head of rule r is transformed to constraint
cT (X1, ...,Xn, y, Z) in rule rt. The argument y represents the yth occurrence of
constraint c/n. Let m be the number of occurrences of c/n in the source program,
in the transformed program the first occurrence of c(X1, ...,Xn) is transformed
to cT (X1, ...,Xn, 1, Z), the second occurrence of c(X1, ...,Xn) is transformed to
cT (X1, ...,Xn, 2, Z), and the last occurrence of c(X1, ...,Xn) is transformed to
cT (X1, ...,Xn,m,Z). The argument Z and constraint depth/1 are explained in
the Assignment Rules.

Definition 2. Assignment Rules. For every constraint c(X1, ...,Xn) that
appears in a rule head in program P , an assignment rule is added to the trans-
formed program, defined as follows:

64 A. Elsawy et al.

Assignment Rules
assignc @ depth(Z) \ c(X1, ...,Xn)

⇔ cT (X1, ...,Xn, 0, Z) ∨ ... ∨ cT (X1, ...,Xn,m,Z)

An assignment rule simplifies constraint c(X1, ...,Xn) to constraint cT (X1, ...,
Xn, Y, Z). The argument Y is used to have at most one possible matching
between the transformed constraint and the constraints that appear in the heads
of the Modified Source Rules. The domain of Y is from 0 to m, in which m
is the number of occurrences of constraint c/n in the rule heads of program P .
The argument 0 is used to prevent an active constraint cT (X1, ...,Xn, 0, Z) from
being matched during its current state in the tree, thus allowing it to be matched
later in the derivation tree. Constraint depth/1 represents the depth of a state in
the derivation tree. The depth is increased when a modified source rule is fired.

Definition 3. Reset Rules. For every constraint c(X1, ...,Xn) that appears in
a rule head in program P , a reset rule is added to the transformed program,
defined as follows:

Reset Rules
resetc @ depth(Z) \ cT (X1, ...,Xn, 0, Z ′)

⇔ Z ′ < Z | c(X1, ...,Xn)

The purpose of reset rules is to reset the unmatched constraints cT (X1, ...,Xn,
0, Z ′) if a newly state in the tree is derived. The constraint cT (X1, ...,Xn, 0, Z ′)
will be reset to constraint c(X1, ...,Xn), thus allowing it to be re-assigned by the
Assignment Rules.

Finally, the rule start ⇔ depth(0) is added to the transformed program to
trigger the constraints needed for execution. Moreover, a constraint start is
added at the end of the initial query.

Example 1 (continued). The transformation of program P :

start <=> depth(0).

%%%%%%%%%%%%%%%%%%%%% Reset Rules %%%%%%%%%%%%%%%%%%%%%

reset_empty @ depth(Z) \ empty_t(0,Z1) <=> Z1 < Z | empty.

reset_get @ depth(Z) \ get_t(X,0,Z1) <=> Z1 < Z | get(X).

reset_hold @ depth(Z) \ hold_t(X,0,Z1) <=> Z1 < Z | hold(X).

%%%%%%%%%%%%%%%%%%%%% Assignment Rules %%%%%%%%%%%%%%%%%%%%%

assign_empty @ depth(Z) \ empty

<=> empty_t(0,Z) ; empty_t(1,Z).

assign_get @ depth(Z) \ get(X)

<=> get_t(X,0,Z) ; get_t(X,1,Z) ; get_t(X,2,Z).

assign_hold @ depth(Z) \ hold(X)

<=> hold_t(X,0,Z) ; hold_t(X,1,Z).

%%%%%%%%%%%%%%%%%%%%% Modified Source Rules %%%%%%%%%%%%%%%%%%%%%

rule-1_t @ depth(Z), get_t(X,1,Z), empty_t(1,Z)

<=> hold(X), Z1 is Z+1, depth(Z1).

rule-2_t @ depth(Z), get_t(X,2,Z), hold_t(Y,1,Z)

<=> hold(X), clear(Y), Z1 is Z + 1, depth(Z1).

Exhaustive Execution of CHR 65

Figure 2 shows the derivation tree of the transformed program when executed
by the query ‘empty,get(box),get(cup),start’. The redundant states in
the tree are represented by grey arrows. States are duplicated in the tree by
the Assignment Rules, because these rules create variants to the same state.
For example, the two states ‘depth(0),empty t(1,0),get t(box,0,0),get t
(cup,0,0)’ and ‘depth(0),empty t(0,0),get t(box,0,0),get t(cup,0,0)’
are variants of the same state.

Fig. 2. Derivation tree for Example 1 after transformation.

Every state in the derivation tree of the source program in Fig. 1, has a corre-
sponding result (final state) in the transformed program. Thus, we extend the
transformation with pruning rules to remove every result in the transformed
program that corresponds to an intermediate (non-final) state in the source pro-
gram. To map a state in the transformed program to a state in the source pro-
gram, every constraint cT (X1, ...,Xn, ,) is mapped to constraint c(X1, ...,Xn)
and constraint depth/1 is removed. This mapping can be done by adding bridge
rules [3] to the transformed program to relate constraints between the source and
transformed programs. These rules are not described here due to their clarity.

Definition 4. Intermediate States in P. Let S be a state in program P , S
is intermediate if there exists a derivation S �→ S′.

Definition 5. Pruning Rules. A result ST in program PT has to be removed
if it corresponds to an intermediate state in P . To remove ST , for every rule r
@ H ⇔ Guard | B in the source program P , a corresponding pruning-r rule is
added to the transformed program PT , defined as follows:

Pruning Rules
pruning-r @ end,HT ⇔ Guard | fail

Every constraint c(X1, ...,Xn) in H is transformed to constraint cT (X1, ...,
Xn, , ,) in HT . Moreover, the rule start ⇔ depth(0) is transformed to
start ⇔ depth(0), end, therefore constraint end/0 will become active only
when all Reset Rules, Assignment Rules, and Modified Source Rules cannot be
triggered anymore. If a Pruning Rule can be fired on state ST and the Guard
holds, this implies that rule r can be applied on state S that corresponds to state
ST ; state ST is removed by having a derivation ST �→ fail.

66 A. Elsawy et al.

Example 1 (transformation with pruning rules)
start <=> depth(0). will be modified to start <=> depth(0), end.
Moreover the following rules will be added to the transformed program:

pruning-rule-1 @ end, get_t(X,_,_), empty_t(_,_) <=> fail.
pruning-rule-2 @ end, get_t(X,_,_), hold_t(Y,_,_) <=> fail.

The derivation tree for the query ‘empty, get(box), get(cup), start’ is
depicted in Fig. 3. As shown in the figure, every result that corresponds to an
intermediate state in Fig. 1 fails after adding the pruning rules to the transformed
program.

Fig. 3. Derivation tree for Example after pruning.

4 Soundness and Completeness of the Transformation

In this section, soundness and completeness of the transformation are proved.
The abstract operational semantics will be used for the derivations throughout
the proofs. However for the completeness proof, derivations of the transformed
program are based on the refined operational semantics ωr, because the current
CHR compiler is based on this semantics. Therefore it proves that the trans-
formed program produces all possible results when executed under the semantics
of the CHR compiler.

Definition 6. Equivalence of two CHR states. Let S be a CHR state derived
from the initial query G�→ ∗S in program P , and W = S1 ∨ ...∨Sn be a configu-
ration derived from the initial query (G ∧ depth(0))�→ ∗W in program PT . CHR
state S is equivalent to CHR state S′ in {S1, ..., Sn} according to the following
inductive definition. S ≡ S′ iff
base case:

- (S = Gbuiltin) ∧ (S′ = (Gbuiltin ∧ depth(Z))), in which Gbuiltin is a con-
junction of built-in constraints.
inductive step:

- (S = (c(X1, ...,Xn) ∧ Sr)) ∧ (S′ = (cT (X1, ...,Xn, Y, Z) ∧ S′
r)) ∧ (Sr ≡ S′

r)
- (S = (c(X1, ...,Xn) ∧ Sr)) ∧ (S′ = (c(X1, ...,Xn) ∧ S′

r)) ∧ (Sr ≡ S′
r)

Exhaustive Execution of CHR 67

Definition 7. Soundness of a CHR∨ configuration. Given an initial query
G and a configuration W = S1 ∨ ... ∨ Sn derived from (G ∧ depth(0)) �→ ∗W in
program PT . W is sound if and only if for every CHR state Si in {S1, ..., Sn}
there exists a derivation in program P , where G�→ ∗S and S ≡ Si.

Theorem 1. Given a CHR Program P , its corresponding transformed program
PT , and an initial query G. PT is sound with respect to P , if and only if every
derived configuration W in program PT from the query (G∧ depth(0)) is sound.

Proof.
Base Case. S = G, W = (G ∧ depth(0)), in which G is the initial query. Since
S ≡ W , then the initial configuration W is sound.

Induction Hypothesis. Let W = S1 ∨ ... ∨ Sk be a configuration derived from
(G ∧ depth(0)) �→ ∗W , assume that W is sound.

Induction Step. We prove that if W �→ W ′, then W ′ is sound.
Without loss of generality, we assume that the fired rule is applied on the first
CHR state S1 in W .

Case 1. A resetc rule is applicable on W and CT |= Gbuiltin → (Z′ < Z)

W = ((depth(Z) ∧ cT (X1, ..., Xn, 0, Z′) ∧
C) ∨ (S2 ∨ ... ∨ Sk))

Because a resetc rule is applicable
on W

W ′ = (depth(Z)∧c(X1, ..., Xn)∧C)∨(S2∨
... ∨ Sk)

Firing a resetc rule on W, W �→
resetc
apply W ′

S ≡ (depth(Z) ∧ cT (X1, ..., Xn, 0, Z′) ∧ C) According to the hypothesis there
exists a derivation G�→ ∗S

S = (c(X1, ..., Xn) ∧ C′) and C′ ≡ (C ∧
depth(Z))

According to the definition of
equivalence

(depth(Z) ∧ c(X1, ..., Xn) ∧ C) is sound Because S ≡ (depth(Z) ∧
c(X1, ..., Xn) ∧ C)

Therefore W ′ is sound

Case 2. An assignc rule is applicable on W
W = ((c(X1, ..., Xn)∧depth(Z)∧C)∨(S2∨
... ∨ Sk))

Because an assignc rule is applica-
ble on W

W ′ = (((cT (X1, ..., Xn, 0, Z) ∨ ... ∨
cT (X1, ..., Xn, l, Z))∧depth(Z)∧C)∨(S2∨
... ∨ Sk))

Firing an assignc rule on W , W �→
assignc
apply W ′

W ′′ = ((cT (X1, ..., Xn, 0, Z) ∧ depth(Z)
∧ C) ∨ ... ∨ (cT (X1, ..., Xn, l, Z) ∧
depth(Z) ∧ C) ∨ (S2 ∨ ... ∨ Sk))

A split is applied on W ′ �→ splitW
′′

S ≡ (depth(Z) ∧ c(X1, ..., Xn) ∧ C) According to the hypothesis there
exists a derivation G�→ ∗S

S = (c(X1, ..., Xn) ∧ C′) and C′ ≡ (C ∧
depth(Z))

According to the definition of
equivalence

Therefore W ′′ is sound Because
∀0≤i≤l((c

T (X1, ..., Xn, i, Z) ∧
depth(Z) ∧ C) ≡ S)

68 A. Elsawy et al.

Case 3. A Modified rule rt is applicable on W and CT |= Gbuiltin → Guard

W = ((depth(Z) ∧ cT1 (X11, ..., X1n1 , Y1, Z)
∧ ... ∧ cTl (Xl1, ..., Xlnl , Yl, Z) ∧ C) ∨ (S2 ∨
... ∨ Sk))

Because a modified rule rt is
applicable on W

S ≡ (depth(Z) ∧ cT1 (X11, ..., X1n1 , Y1, Z)
∧ ... ∧ cTl (Xl1, ..., Xlnl , Yl, Z) ∧ C)

According to the hypothesis there
exists a derivation G�→ ∗S

S = (c1(X11, ..., X1n1) ∧ ... ∧
cl(Xl1, ..., Xlnl) ∧ C′) and C′ ≡ (C ∧
depth(Z))

According to the definition of
equivalence

W ′ = ((B ∧ depth(Z + 1) ∧ Guard ∧ C) ∨
(S2 ∨ ... ∨ Sk))

Firing rule rt on W, W �→ rt
applyW ′

S′ = (Guard ∧ C′ ∧ B) Firing rule r on S, S �→ r
applyS′

Therefore W ′ is sound Because (B∧depth(Z+1)∧Guard∧
C) ≡ S′

��

For simplicity, we define a state in ωr as the tuple 〈A,S,B〉 [7]. The stack A is
a sequence of built-in constraints and CHR constraints. The store S is a set of
CHR constraints. The built-in store B is a conjunction of built-in constraints.

Definition 8. Let S be a CHR state derived from the initial query G�→ ∗S
in program P and ST = 〈A,C,B〉 be a state derived from the initial state
〈G++[depth(0)], φ, true〉 in program PT , in which ++ is the append operator
defined for sequences. Let E be the property defined on S and ST , E(S, ST)
holds iff A = [depth(Z)], depth(Z) ∈ C, (C ∧ B) ≡ S, and Z ′ < Z holds for all
transformed constraints cT (X1, ...,Xn, Y, Z ′) in C.

Theorem 2. Given a CHR Program P , its corresponding transformed program
PT , and an initial query G. PT is complete if and only if for every CHR state
S derived from the initial query G �→ ∗S in program P , there exists a state ST

derived from the initial state 〈G++[depth(0)], φ, true〉 in program PT such that
〈G++[depth(0)], φ, true〉 �→ ∗ST and E(S, ST) holds.

Proof.
Base Case. There exists a derivation to state ST in PT and E(G,ST) holds.
〈G++[depth(0)], φ, true〉 G is the original query, G = Gc ∪ Gb

�→ ∗〈[depth(0)], Gc, Gb〉 All CHR constraints in G will be activated,
added to the CHR store, then dropped
from the stack, and all built-in constraints
will be solved and removed from the stack

�→ activate depth(0) becomes the active constraint
ST = 〈[depth(0)], {depth(0)} ∪ Gc, Gb〉
Since E(G, 〈[depth(0)], {depth(0)} ∪ Gc, Gb〉) holds, then the base case holds.

Induction Hypothesis. Let S be a state in P derived from the initial query G
and ST be a state in PT derived from the initial state 〈G++[depth(0)], φ, true〉,
assume that E(S, ST) holds.

Exhaustive Execution of CHR 69

Induction Step. We prove that for a derivation S �→ S′, there exists a deriva-
tion ST �→ ∗S1

T and E(S′, S1
T) holds. For simplicity of the proof, we define the

following:

– Let r @ H ⇔ Guard | B be a rule in program P that applies on S = H∧Hrest

such that S = (H ∧ Hrest) �→ r
applyS

′ = (Hrest ∧ B ∧ Guard).
– Let map be a function that maps every constraint in H to a partner constraint

in S.
– Let rt @ depth(Z),HT ⇔ Guard | B, depth(Z +1) be a modified source rule

in program PT , that corresponds to rule r in program P .
– Let occurrence be a function that is applied on a transformed constraint cT ,

such that occurrence(cT (X1, ...,Xn, Y, Z)) = Y .
– Let dep be a function that is applied on a transformed constraint cT , such

that dep(cT (X1, ...,Xn, Y, Z)) = Z.
– Let assign be a function that maps a constraint c/n in S to an integer value

according to the following:
• if there exists a constraint d in H such that map(d) = c, then assign(c) =

occurrence(dT (X1, ...,Xm, Y, Z)), in which dT is the transformed con-
straint in HT that corresponds to constraint d

• otherwise, assign(c) = 0

70 A. Elsawy et al.

��
There are two sources of non-determinism in the refined operational semantics
in contrast with the actual implementation of CHR. The first source of non-
determinism is the order of the constraints added to the top of the stack when
the transition Solve+Wake is fired, the completeness proof assumes only that
the constraints are added to the top of the stack, therefore, the order of the
constraints does not matter. The second source of non-determinism is choosing
the partner constraints from the CHR store when the transition Apply is fired,
in the completeness proof Assignment Rules and Reset Rules are applied
on arbitrary constraints c and cT respectively. Moreover, the completeness proof
shows that if a rule r is applicable on CHR state S, then there exists a path
in the derivation tree of the transformed program, such that every constraint in
the head of rule rt has only one matching in the CHR store and the rest of the
constraints in state S are assigned the occurrence 0, which implies that the only
applicable Modified Source Rule is rule rt and that there is only one way
to match the constraints in the CHR store with the constraints in the head of
rule rt. Therefore, it is implied that the transformed program produces all final
results when executed under the semantics of the CHR compiler, although the
proof is based on the refined operational semantics.

Exhaustive Execution of CHR 71

5 Inverse Execution Using Proposed Transformation

The inverse execution of CHR presented in [15] presents a simple inversion trans-
formation, that changes a forward CHR program to an inverse one by interchang-
ing rule sides. Thus for any forward simplification rule (Hr ⇔ Guard | Bc, Bb),
where Bb are the built-in body constraints and Bc are the CHR body constraints
and Bb ∪ Bc = B, an inverse rule would be of the form:

inv − simpf@Bc ⇔ Bb, Guard|Hr

The inverse programs are then transformed using the proposed approach in
order to achieve an exhaustive traversal of the inverse program that reaches all
possible input states. However, since all intermediate states are also possible
input states, thus pruning rules are removed from the transformed program. In
some applications (such as for fault analysis) this step may not be necessary, as
retaining pruning rules results in only uncovering the root output states.

Example 2. Blocks World in Reverse - If one wishes to run the blocks
world (Example 1) in reverse, to retrace an agent’s steps, then we require the
inverse transformation of the program code. The forward run for the query empty,

get(box), get(cup) was previously depicted in Fig. 1. Using the simple inversion
transformation [15], the inverse program becomes:
inv-rule-1 @ hold(X) <=> get(X), empty.

inv-rule-2 @ hold(X), clear(Y) <=> get(X), hold(Y).

A run of the inverse program for the previously generated result of ‘hold(cup),
clear(box)’, would produce a single result of ‘get(cup), empty, clear(box)’,
which is not the actual input that was used during the forward run. The inverse
program is now transformed using the proposed exhaustive execution transfor-
mation (but without the pruning rules) to become as follows:
start <=> depth(0).

%%%%%%%%%%%%%%%%%%%%% Reset Rules %%%%%%%%%%%%%%%%%%%%%

reset_hold @ depth(Z) \ hold_t(X,0,Z1) <=> Z1 < Z | hold(X).

reset_clear @ depth(Z) \ clear_t(X,0,Z1) <=> Z1 < Z | clear(X).

%%%%%%%%%%%%%%%%%%%%% Assignment Rules %%%%%%%%%%%%%%%%%%%%%

assign_hold @ depth(Z) \ hold(X)

<=> hold_t(X,0,Z) ; hold_t(X,1,Z) ; hold_t(X,2,Z).

assign_clear @ depth(Z) \ clear(X) <=> clear_t(X,0,Z) ; clear_t(X,1,Z).

%%%%%%%%%%%%%%%%%%%%% Modified Source Rules %%%%%%%%%%%%%%%%%%%%%

inv-rule-1_t @ depth(Z), hold_t(X,1,Z)

<=> get(X), empty, Z1 is Z + 1, depth(Z1).

inv-rule-2_t @ depth(Z), hold_t(X,2,Z), clear_t(Y,1,Z)

<=> get(X), hold(Y), Z1 is Z + 1, depth(Z1).

Running the inverse and transformed program yields the search tree depicted
in Fig. 4 (note that the start constraint is added to trigger the exhaustive
execution). The resultant states in the figure represent all possible inputs to the
forward program and amongst them is the particular input used in Example 1.
Any final state reached by the transformed program is a valid input to a forward
run that generates the goal ‘hold(cup), clear(box)’.

72 A. Elsawy et al.

Fig. 4. Derivation tree for Example 2 with query: ‘hold(cup), clear(box), start’

6 Conclusion

A source-to-source transformation was proposed, which expresses any CHR pro-
gram as one utilizing disjunction, to force an exhaustive explorative execution
strategy. It enables a high-level form of execution control that empowers a com-
prehensive execution while retaining expressive power. It is particularly useful
for non-confluent programs with overlapping heads, as it enables finding all pos-
sible results to a query. The operational semantics of CHR features a “don’t
care non-determinism” where all choices will lead to a successful derivation, so
we do not care which one is chosen. The proposed transformation changes it to
a “don’t know non-determinism”, where some of the choices will lead to a suc-
cessful search but we do not know which one beforehand. This change enables
exploring the search space generated during any derivation.

The proposed transformation focuses on simplification rules, since propa-
gation and simpagation rules can be represented as simplification rules with a
token store history. Therefore, in the future the transformation can be extended
to transform all CHR rule types.

The execution platform proposed makes extensive use of the disjunctive oper-
ator of CHR∨, and produces a comprehensive search tree for any query. In
the future, this transformation can be easily extended with implementations
of search strategies, such as the breadth-first transformation [5] due to the pres-
ence of disjunction in the rule bodies. The integration and customization of other
search strategies can also be incorporated into the transformation.

Despite the pruning rules, the transformation still produces many redundant
states (or nodes) which have already been visited in the search tree. Optimiza-
tions can be devised to eliminate nodes (or sub-trees) that have already been
visited, this could be implemented by the use of a traversal history mechanism.

Furthermore, it would be interesting to add priorities to the branches of the
search trees generated and hence enable a priority-based execution. For agent-
based programs, this would allow introducing a kind of reasoning whilst per-
forming the various actions.

Exhaustive Execution of CHR 73

References

1. Abdennadher, S.: Operational semantics and confluence of constraint propagation
rules. In: Smolka, Gert (ed.) CP 1997. LNCS, vol. 1330, pp. 252–266. Springer,
Heidelberg (1997)

2. Abdennadher, S., Frühwirth, T.: Integration and optimization of rule-based con-
straint solvers. In: Bruynooghe, M. (ed.) LOPSTR 2004. LNCS, vol. 3018, pp.
198–213. Springer, Heidelberg (2004)

3. Abdennadher, S., Schütz, H.: CHR∨: a flexible query language. In: Andreasen, T.,
Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495, pp.
1–14. Springer, Heidelberg (1998)

4. Betz, H., Raiser, F., Frühwirth, T.: A complete and terminating execution model
for constraint handling rules. In: Proceedings of 26th International Conference on
Logic Programming, pp. 597–610 (2010)

5. Koninck, L. D., Schrijvers, T., Demoen, B.: Search strategies in CHR(Prolog). In:
Leuven, K.U. (ed.) Proceedings of 3rd Workshop on Constraint Handling Rules,
pp. 109–124. Technical report CW 452 (2006)

6. Koninck, L. D., Schrijvers, T., Demoen, B.: User-definable rule priorities for CHR.
In: Proceedings of 9th International Conference on Principles and Practice of
Declarative Programming, PPDP 2007, pp. 25–36. ACM (2007)

7. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined oper-
ational semantics of constraint handling rules. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

8. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for constraint han-
dling rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 224–
239. Springer, Heidelberg (2007)

9. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, New York
(2009)

10. Frühwirth, T., Raiser, F. (eds.): Constraint Handling Rules: Compilation, Execu-
tion, and Analysis. Books on Demand, Norderstedt (2011)

11. De Koninck, L., Schrijvers, T., Demoen, B.: A flexible search framework for CHR.
In: Schrijvers, T., Frühwirth, T. (eds.) Constraint Handling Rules. LNCS, vol.
5388, pp. 16–47. Springer, Heidelberg (2008)

12. Lam, E.S.L., Sulzmann, M.: Towards agent programming in CHR. In: Proceedings
of 3rd CHR Workshop on CHR 2006, pp. 17–31 (2006)

13. Martinez, T.: Angelic CHR. In: Proceedings of the 8th Workshop on Constraint
Handling Rules, CHR 2011, pp. 19–31 (2011)

14. Sneyers, J., Weert, P.V., Schrijvers, Tom., Koninck, L.D.: As time goes by: con-
straint handling rules - a survey of CHR research between 1998 and 2007. In:
Theory and Practice of Logic Programming, pp. 1–47 (2010)

15. Zaki, A., Frühwirth, T., Abdennadher, S.: Towards inverse execution of constraint
handling rules. In: Technical Communications of 29th International Conference on
Logic Programming, vol. 13 (2013)

A Formal Semantics for the Cognitive
Architecture ACT-R

Daniel Gall(B) and Thom Frühwirth

Institute of Software Engineering and Compiler Construction,
University of Ulm, 89069 Ulm, Germany

{daniel.gall,thom.fruehwirth}@uni-ulm.de

Abstract. The cognitive architecture ACT-R is very popular in cogni-
tive sciences. It merges well-investigated results of psychology to a unified
model of cognition. This enables researchers to implement and execute
domain-specific cognitive models. ACT-R is implemented as a produc-
tion rule system. Although its underlying psychological theory has been
investigated in many psychological experiments, ACT-R lacks a formal
definition from a mathematical-computational point of view.

In this paper, we present a formalization of ACT-R’s fundamental con-
cepts including an operational semantics of the core features of its produc-
tion rule system. The semantics abstracts from technical artifacts of the
implementation. Due to its abstract formulation, the semantics is eligible
for analysis. To the best of our knowledge, this operational semantics is
the first of its kind.

Furthermore, we show a formal translation of ACT-R production rules
to Constraint Handling Rules (CHR) and prove soundness and complete-
ness of the translation mechanism according to our operational semantics.

Keywords: Computational psychology · Cognitive systems · ACT-R ·
Production rule systems · Constraint handling rules · Operational
semantics

1 Introduction

Computational psychology is a field at the interface of psychology and computer
science. It explores human cognition by implementing detailed computational
models. The models are executable and hence capable of simulating human behav-
ior. This enables researchers to conduct the same experiments with humans and
a computational model to verify the behavior of the model. By this procedure,
cognitive models are gradually improved. Furthermore, due to their executabil-
ity, computational models have to be defined precisely. Hence, ambiguities which
often appear in verbal-conceptual models can be eliminated.

Cognitive Architectures support the modeling process by bundling well-
investigated research results from several disciplines of psychology to a unified
theory. Domain-specific models are built upon such cognitive architectures. Ide-
ally, cognitive architectures constrain modeling to only plausible domain-specific
models.
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 74–91, 2015.
DOI: 10.1007/978-3-319-17822-6 5

A Formal Semantics for the Cognitive Architecture ACT-R 75

Adaptive Control of Thought – Rational (ACT-R) is one of the most pop-
ular cognitive architectures [4]. It is implemented as a production rule system.
Although its underlying psychological theory is well-investigated and verified in
many psychological experiments, ACT-R lacks a formal definition of its produc-
tion rule system from a mathematical-computational point of view. I.e. the main
data structures and the resulting operational semantics suggested by the psycho-
logical theory are not defined properly. This led to a reference implementation
full of assumptions and technical artifacts beyond the theory making it difficult
to overlook. Furthermore, the lack of a formal operational semantics inhibits
analysis of the models like termination or confluence analysis.

In this paper, we present a formalization of the fundamental concepts of
ACT-R leading to an operational semantics. The semantics abstracts from many
details and artifacts of the implementation. Additionally, aspects like time or
external modules are ignored to concentrate on the basic state transitions of
the ACT-R production rule system. Those abstractions lead to a short and
concise definition of the semantics making it suitable for theoretical analysis of
the main aspects of ACT-R. Nevertheless, the semantics is still closely related
to the general computation process of ACT-R implementations as we exemplify
by a simple model.

The formalization of ACT-R relates to the reference manual of the ACT-R
production rule system [6]. However, due to the power of logic programming
and CHR, an executable CHR version of ACT-R has been developed, which is
very close to the formal description of the system. In this paper, we define the
translation from ACT-R production rules to CHR rules formally. The transla-
tion is closely related to the translation process described informally in [10], but
respects the changes necessary to correspond to the abstract semantics. Addi-
tionally, it is the first formal description of our translation mechanism which is
described formally. Finally, we prove soundness and completeness of our trans-
lation according to our abstract operational semantics.

The paper is structured as follows: Sect. 2, covers the preliminaries. In Sect. 3,
we first recapitulate the formalization of the basic notions of ACT-R and then
present its abstract operational semantics. The formal translation of ACT-R to
Constraint Handling Rules is shown in Sect. 4. Then, the translation is proved
to be sound and complete in relation to our abstract operational semantics in
Sect. 5. We conclude in Sect. 6.

2 Preliminaries

First, we cover some notational aspects and introduce ACT-R and CHR.

2.1 Notation

We assume some basic notions of first-order logic and logic programming like
syntactic equality or unification. Substitution is denoted by t[x/y] where all
occurrences of the variable x in the term t are replaced by the variable y. For
the sake of brevity, we treat logical conjunctions as multi-sets and vice-versa at

76 D. Gall and T. Frühwirth

some points. I.e. we use (multi-)set operators on logical conjunctions or multi-
sets of terms as conjunctions. We use the relational notation for some functions
and for binary relations we use infix notation.

2.2 ACT-R

First of all, we describe ACT-R informally. For a detailed introduction to ACT-
R we refer to [4,12] or [3]. Then we introduce a subset of its syntax and describe
its operational semantics informally. The formalization is presented in Sect. 3.

ACT-R is a production rule system which distinguishes two types of knowl-
edge: declarative knowledge holding static facts and procedural knowledge rep-
resenting processes which control human cognition. For example, in a model of
the game rock, paper, scissors, a declarative fact could be “The opponent played
scissors”, whereas a procedural information could be that a round is won, if we
played rock and the opponent played scissors.

Declarative knowledge is represented as chunks. Each chunk consists of a
symbolic name and labeled slots which hold symbolic values. The values can
refer to other chunk names, i.e. chunks can be connected. Hence, a network
of chunks can build complex constructs. The names of chunks are just symbols
(which are only important for the modeler) but they get a meaning through their
connections. For example, there can be chunks that represent numbers and are
named one, two, . . . In a model, such chunks could be the internal representation
of the concept of numbers 1, 2, . . . However, the names do not give them a
meaning but are just helpful for the modeler. The meaning in such a model could
come from other chunks, that link two number chunks to represent a count fact,
for example. Such a count fact has the slots first and second and e.g. connects
the chunks with name one and two in the first and second slot. This represents
the concept of an ordering between numbers. To compare the concept of chunks
with logic programming or Constraint Handling Rules, the names of chunks can
be seen as constants (since they are just symbolic values) and the connections
between chunks can relate to complex terms. Chunks are typed, i.e. the number
and names of the slots provided by a chunk are determined by a type.

As usual for production rule systems, procedural knowledge is represented
as rules of the form IF conditions THEN actions. Conditions match values of
chunks, actions modify them.

ACT-R has a modular architecture. For instance, there is a declarative mod-
ule holding the declarative knowledge or a visual module perceiving the visual
field and controlling visual attention. Each module has a set of affiliated buffers
which can hold at most one chunk at a time. For example, there is a retrieval
buffer which is associated to the declarative module and which holds the last
retrieved chunk from the declarative memory.

The procedural system consists of a procedural memory with a set of pro-
duction rules. The conditions of a production rule refer to the contents of the
buffers, i.e. they match the values of the chunk’s slots.

There are three types of actions whose arguments are encoded as chunks
as well: First of all, buffer modifications change the content of a buffer, i.e. the

A Formal Semantics for the Cognitive Architecture ACT-R 77

values of some of the slots of a chunk in a buffer. Secondly, the procedural module
can state requests to external modules which then change the contents of buffers
associated with them. Eventually, buffer clearings remove the chunk from a
buffer. For the sake of brevity, we only regard buffer modifications and requests in
this work. Nevertheless, our formalization and translation can be easily extended
by other actions [10]. Additionally, to keep our definitions extensible and as
general as possible, we refer to an arbitrary set of buffers instead of a concrete
instantiation of the theory with defined buffers and modules. In the example
section (Sect. 3.4) we show a concrete instantiation of our theory.

Syntax. We define the syntax of an ACT-R production rule over a set of symbols
S as follows. The set of symbols is possibly infinite and contains all the symbols
that are valid to name objects in ACT-R (e.g. chunks, slot names or values).
ACT-R does not know complex terms like in first order logic or in CHR. Such
terms can rather be constructed by chunks that link the primitive symbols to a
more complex construct. Additionally, there is a set of variable symbols V that
is disjoint from S.

Definition 1 (Production Rule). An ACT-R production rule r has the form
LHS ⇒ RHS) where LHS is a set of terms of the form test(b,SVP) where the b
values are called buffers and SVP is a set of pairs (s, v) where s refers to a slot
and v refers to a value. Such a pair is called slot-value pair. Note that b and s
must be constants from S, whereas v can be a variable or constant, i.e. has the
domain S ∪ V.

RHS is a set of terms of the form action(a, b,SVP), where a ∈ {mod , req}
(denoting either a modification or a request). b again refers to a buffer and SVP
is a set of slot-value pairs.

The function vars takes a set of tests or actions and returns their variables.
Note that the following must hold: vars(RHS) ⊆ vars(LHS), i.e. no new vari-
ables must be introduced on the right hand side of a rule. Buffers appearing in
RHS must also appear in LHS. However, slots on RHS are not required to
appear on LHS. The buffers and slots of the RHS are assumed to be pairwise
distinct and must refer to slots which are available for the chunk in the modified
buffer (i.e. which exist for the chunk)[6].

We can ensure the condition that a modified slot must exist for a chunk by a
typing system. An implementation of such a typing system compliant with the
ACT-R reference [6] can be found in [10,11]. However, for this abstract paper
we assume the rules to be valid. Note that we use a representation of production
rules as sets of first-order terms which differs from the original ACT-R syntax.
This allows for the use of typical set operators in the rest of the paper. It is easy
to derive our syntactic representation from original ACT-R rules and vice-versa.

Informal Operational Semantics. A production rule as defined in Defin-
ition 1 is read as follows: The LHS of the rule are conditions matching the
contents of the buffers. I.e. for a condition test(b, {(s1, v1), (s2, v2)}) the buffer

78 D. Gall and T. Frühwirth

b is checked for a chunk with the value v1 in its s1 slot and the value v2 in its s2
slot. If all conditions on the LHS match, the rule can be applied, i.e. the chunks
in the buffers are modified according to the specification on the RHS. For an
action action(mod , b, {(s1, v′

1)}) the value in the slot s1 of the chunk in buffer b
is overwritten by the value v′

1. This type of action is called a modification. Since
the buffers and slots on the RHS are pairwise distinct, there are no conflicting
modifications.

A request of the form action(req , b, {(arg1, argv1), (arg2, argv2), . . . }) states
a request to the corresponding module of buffer b. The arguments are defined
by slot-value pairs, where the first part of the pair is the name of the argument
and the second part its value. The request returns a pair (c, {(res1, resv1), . . . })
which represents a chunk c with corresponding slot-value pairs. This chunk is
put into buffer b after the request has finished. Since arguments and result are
chunks, the domain of the argument names, values and results is S.

Running Example: Counting. We investigate the first example from the
official ACT-R tutorial [1] using our semantics and translation procedure. The
model implements the cognitive task of counting by retrieving counting facts
from the declarative memory. This method models the way how little children
usually learn counting: They know that after one follows two, after two follows
three, etc.

Example 1 (Production Rule). In the following, we define the production rule
which counts to the next number. This rule has been derived from the ACT-R
tutorial as mentioned above:

{test(goal, {(count,Num1)}),
test(retrieval, {(first,Num1), (second,Num2)})}

⇒
{action(mod, goal, {(count,Num2)}),
action(req, retrieval, {(first,Num2)})}

The goal buffer is tested for slot count and Num1 is bound to the value in this
slot. The second test checks if there is a chunk in the retrieval buffer with Num1

in its first slot and some number Num2 in its second slot. If the conditions hold,
the goal buffer is modified such that the count slot is updated with Num2 . Then
the declarative memory is requested for a chunk which has Num2 in its first slot.

2.3 Constraint Handling Rules

We recap the syntax and semantics of Constraint Handling Rules (CHR) shortly.
For a detailed introduction to the language, we refer to [8].

Syntax. We briefly introduce a subset of the abstract CHR syntax as defined
in [8]. Constraints are first-order logic predicates of the form c(t1, . . . , tn) where

A Formal Semantics for the Cognitive Architecture ACT-R 79

the t values are first-order terms, i.e. function terms or variables. There are two
distinct types of constraints: built-in and user-defined constraints. We constrain
the allowed built-in constraints to true, false and the syntactic equality =.

Definition 2 (CHR Syntax). A CHR program P is a finite set of rules. Sim-
pagation rules have the form

r @Hk\Hr ⇔ G |B.

r is an optional name of the rule, Hk and Hr are conjunctions of user-defined
constraints (at least one of them is non-empty) called head constraints. G is
a conjunction of built-in constraints and is called the guard. Eventually, B a
conjunction of built-in and user-defined constraints and called the body of the
rule.

Operational Semantics. The operational semantics of CHR is defined as a
state transition system. Hence, we first define the notion of a CHR state and
then introduce the so-called very abstract operational semantics of CHR [8,9].

Definition 3 (CHR State). A CHR state is a goal, i.e. either true, false, a
built-in constraint, a user-defined constraint or a conjunction of goals.

Definition 4 (Head Normal Form). A CHR rule is in head normal form
(HNF) if each argument of a head constraint is a unique variable.

A CHR rule can be put into HNF by replacing its head arguments ti with a new
variable Vi and adding the equations Vi = ti to its guard.

The operational semantics of CHR is defined upon a constraint theory CT
which is nonempty, consistent and complete and contains at least an axiomati-
zation of the syntactic equality = together with the built-in constraints true and
false.

Definition 5 (CHR Operational Semantics). For CHR constraints Hk and
Hr, built-in constraints G and constraints of both types R the following transition
relation is defined:

(Hk ∧ Hr ∧ G ∧ R) �→r (Hk ∧ C ∧ B ∧ G ∧ R)

if there is an instance with new variables x̄ of a rule r in HNF,

r @H ′
k \H ′

r ⇔ C |B.

and CT |= ∀ (G → ∃x̄ (C ∧ (Hk = H ′
k) ∧ (Hr = H ′

r))).

I.e., there is a state transition using the rule r, if (a part of) the built-in con-
straints G of the state imply that the guard holds and the heads the match.

For the successor state, the constraints in Hk are kept, the constraints in Hr

are removed and the body constraints are added. Additionally, the state contains
the constraints C from the guard. Since the rule is in HNF, the state contains
equality constraints from the variable bindings of the matching Hk = H ′

k and
Hr = H ′

r.

80 D. Gall and T. Frühwirth

3 Formalization of the ACT-R Production System

In this section, we formalize the core data structures of ACT-R formally. We
follow the definitions from [10].

3.1 Chunk Stores

Intuitively, a chunk store represents a network of chunks. I.e., it contains a
set of chunks. Each chunk has a set of slots. In the slots, there are symbols
referring either to a name of another chunk (denoting a connection between the
two chunks) or primitive elements (i.e. symbols which do not refer to another
chunk).

Definition 6 (Chunk Store). A chunk-store over a set of symbols S is a tuple
(C,HasSlot), where C is a finite set of chunk identifiers. HasSlot : C × S → S
is a partial function which receives a chunk identifier and a symbol referring to
a slot. It returns the value of a chunk’s slot. If a slot does not have a value,
HasSlot is undefined (or in relational notation, if chunk c does not have a value
in its slot s, then there is no v such that (c, s, v) ∈ HasSlot).

3.2 Buffer Systems

Buffer systems extend the definition of chunk stores by buffers. Each buffer can
hold at most one chunk from its chunk store. This is modeled by the relation
Holds in the following definition:

Definition 7 (Buffer System). A buffer system with buffers B is a tuple
(C; HasSlot; Holds), where B ⊆ S is a finite set of buffer names, (C,HasSlot) is
a chunk-store and Holds : B → C a partial function that assigns every buffer at
most one chunk that it holds. Buffers that do not appear in the Holds relation
are called empty.

3.3 The Operational Semantics of ACT-R

A main contribution of this work is the formal definition of an abstract opera-
tional semantics of ACT-R which is suitable for analysis. The semantics abstracts
from details like timings, latencies and conflict resolution but introduces non-
determinism to cover those aspects. This has the advantage that analysis is
simplified since the details like timings are difficult to analyze and secondly to
let those details exchangeable. For instance, there are different conflict resolution
mechanisms for ACT-R which are interchangeable at least in our implementation
of ACT-R as we have shown in [10]. However, for confluence analysis for exam-
ple, the used conflict resolution mechanism does not matter since conflicts are
resolved by some method. At some points though, we do not want to introduce
rule conflicts and they are regarded as a serious error. An operational seman-
tics making analysis possible to detect such conflicts in advance is capable of

A Formal Semantics for the Cognitive Architecture ACT-R 81

improving and simplifying the modeling process which is one of the goals of a
cognitive architecture like ACT-R.

We define the operational semantics of ACT-R as a state transition system
(S,�). The state space S consists of states defined as follows:

Definition 8 (ACT-R States). S := 〈C; HasSlot; Holds;R〉V is called an ACT-
R State. Thereby, (C,HasSlot,Holds) form a buffer system of buffers B, V is a
set of variable bindings and R (the set of pending requests) is a subset of tuples
B × 2S×S, i.e. tuples of the form (b,SVP) where b ∈ B and SVP is a set of
slot-value pairs. Initial states are states where R = ∅.
Before we define the transitions �, we introduce the notion of a holding buffer
test and consequently a matching l.h.s. of a production rule in a state.

Definition 9 (Buffer Test). A buffer test t of the form test(b,SVP) holds
in state S := 〈C; HasSlot; Holds;R〉V , written t =̂ S, if ∃bS ∈ B, cS ∈ C such
that the variable bindings V of the state imply that bS = b, Holds(bS) = cS and
∀(s, v) ∈ SVP ∃sS , vS : (cS , sS , vS) ∈ HasSlot with sS = s and vS = v.

Definition 10 (Matching). A set T of buffer tests matches a state S, written
T =̂ S, if all buffer tests in T hold in S.

We define the following functions which simplify notations in the definition of
the operational semantics. Since the behavior of a rule depends on the fact if
a certain slot is modified or requested on r.h.s. of the rule, we introduce two
functions to test this:

Definition 11 (Modified and Requested Slots). For an ACT-R rule r the
following functions are defined as follows:

–

modifiedr(b, s) =

⎧⎨
⎩

true if ∃action(mod , b, SV P) ∈ RHS(r)
∧∃v : (s, v) ∈ SV P

false otherwise
–

requestedr(b) =
{

true if ∃action(req , b, SV P) ∈ RHS(r)
false otherwise

With the two functions from Definition 11, it can be tested, if a certain buffer
is modified (in a certain slot) or requested. As a next step, we regard the actions
of a production rule. An action adds or deletes information from the state. The
following definition covers these aspects:

Definition 12 (Add and Delete Lists). For an ACT-R rule r and a state S,
we define the following sets:

CS(r) ={(c, s, v) ∈ HasSlot | (b, c) ∈ Holds
∧ action(mod , b, SV P) ∈ RHS (r) ∧ (s, v) ∈ SV P}

mod delS(r) ={(c, s, v) ∈ HasSlot | (b, c) ∈ Holds ∧ modifiedr(b)}
req delS(r) ={(b, c) ∈ Holds | requestedr(b), c ∈ S}

82 D. Gall and T. Frühwirth

The functions mod add and mod del will overwrite modified slots by new values
in the operational semantics, whereas the function req del simply clears a buffer.
As mentioned before, this happens when a request is stated and the buffer waits
for its answer. The result of a request is module-dependent and is defined by
a buffer-specific function requestb : 2S×S → S × 2S×S which receives a finite
set of slot-value pairs as input and produces a tuple with a symbol denoting a
chunk name and a set of slot-value pairs. Hence, a request is stated by specifying
a (partial) chunk derived from the slot-value pairs in the request action of a rule.
Its result is again a chunk description (but also containing a name).

We now can define the transition relation � of our state transition system:

Definition 13 (Operational Semantics of ACT-R). For a production rule
r = (LHS ⇒ RHS) the transition �r is defined as follows.

Rule Application: If there is a fresh variant r′ := r[x̄/ȳ] of rule r with vari-
ables x̄ substituted by fresh variables ȳ and ∀(V → ∃ȳ(LHS=̂S)) then

S := 〈C; HasSlot; Holds;R〉V �r 〈C; HasSlot′; Holds′;R′〉V∪(LHS(r′)=̂S)

where
– Holds′ := Holds − req delS(r′)
– HasSlot′ := HasSlot − mod delS(r′) ∪ mod addS(r′)
– R

′ = R ∪ {(b, SV P) | action(req, b, SV P) ∈ RHS(r′)}
We write S �r S′ if the rule application transition is used by application of
rule r.

request If the result of the request requestb(SVP in) = (c,SVP) then
〈C; HasSlot; Holds;R ∪ (b,SVP in)〉V

�r 〈C ∪ {c}; HasSlot ∪ ⋃
(s,v)∈SVP (c, s, v); Holds ∪ {(b, c)};R〉V .

We write S �request S′ if the request transition is used.

Informally spoken: If the buffer tests on the l.h.s. match a state, the actions
are applied. This means that chunks are modified by replacing parts of the
HasSlot relation or chunks are requested by extending R. If a request occurs as
action of a rule, the requested buffer is cleared (i.e. the Holds relation is adapted)
and a pending request is added to R memorizing the requested buffer and the
arguments of the request in form of slot-value pairs. The variable bindings of
the matching are added to the state, i.e. that the fresh variables from the rules
are bound to the values from the state. The set of variable binding contains the
equality predicates from the matching.

The request transition is possible as soon as a request has been stated, i.e. the
last argument of the state is not empty. Then the arguments are passed to the
corresponding requestb function and the output chunk is put into the requested
buffer.

Note that after a request has been stated the rule application transition
might be used since other rules (testing other buffers) might be applicable. This
non-deterministic formulation simulates the background execution of requests in
the ACT-R reference implementation where a request can take some time until
its results are present. During this time, other rules might fire.

A Formal Semantics for the Cognitive Architecture ACT-R 83

3.4 Running Example: Operational Semantics of ACT-R

We exemplify the operational semantics of ACT-R by continuing with our run-
ning example – the counting model (Sect. 2.2). The actual instantiation of ACT-
R is kept open in the formal semantics (Sect. 3.3): For instance, the semantics
talks about an arbitrary set of buffers and corresponding request handling func-
tions. In the following section, we describe the actual instantiation of ACT-R
used in our running example. It is the default instantiation of ACT-R models
which only use the declarative memory and the goal buffer without interaction
with the environment.

ACT-R Instantiation. For our cognitive model, we need two buffers:

– the goal buffer taking track of the current goal and serving as memory for
intermediate steps, and

– the retrieval buffer giving access to the declarative memory which holds all
declarative knowledge of our model, i.e. all known numbers and number
sequences.

This means, that the set of buffers is defined as follows: B = {goal , retrieval}.
In ACT-R, declarative memory can be seen as an (independent) chunk store

DM = (CDM ,HasSlotDM). In the following example, we show the initial content
of the declarative memory for our counting model:

Example 2 (Ontent of Declarative Memory).

CDM = {a, b, c, d, . . . }
HasSlotDM = {(a, first, 1), (a, second, 2),

(b, first, 2), (b, second, 3),
. . . }

A request to the retrieval buffer (and hence to the declarative memory) is defined
as follows:

requestretrieval(SVP) = (c,SVPout) if c ∈ CDM

∀(s, v) ∈ SVP : ∃(c, s′, v′) ∈ HasSlotDM

such that s′ = s and v′ = v.

SVPout := {(c′, s′, v′) ∈ HasSlotDM |c′ = c}
This means that a chunk from declarative memory is returned which has all slots
and values (matches all conditions) in SVP .

Example Derivation. For our counting model, we use the previously defined
ACT-R instantiation with a goal and a retrieval buffer. As described before,
requests to the declarative memory return a matching chunk based on the argu-
ments given in the request. The next step to an example derivation of the count-
ing model is to define an initial state.

84 D. Gall and T. Frühwirth

Example 3 (Initial State). The initial state is S1 := 〈C,HasSlot,Holds, ∅〉∅ with
the following values:

C = {a, goalch}
HasSlot = {(a,first , 1), (a, second , 2),

(goalch, count , 1)}
Holds = {(goal , goalch), (retrieval , a)}

This state has two chunks in its store: The chunk a which encodes the fact that
2 is successor of 1 and a goalch which has one slot count which is set to 1. This
denotes that the current subgoal is to count from 1 to the next number.

We start the derivation from our initial state S1. For better readability, we
apply variable bindings directly in the state representation:

Example 4 (Derivation).

〈{a, goalch}, {(a,first , 1), (a, second , 2), (goalch, count , 1)},

{(goal , goalch), (retrieval , a)}, ∅〉
�count {a, goalch}, {(a,first , 1), (a, second , 2), (goalch, count , 2)},

{(goal , goalch))}, {(retrieval , {(first, 2)})}〉
�request {a, b, goalch},

{(a,first , 1), (a, second , 2), (b,first , 2), (b, second , 3), (goalch, count , 2)},

{(goal , goalch))}, ∅}〉
. . .

It can be seen that as a first derivation step only the application of rule count is
possible. After the application, only a request derivation step is possible, since
the retrieval buffer is empty and hence the condition of rule count does not hold.

4 Translation of ACT-R Rules to CHR

In this section, we define a translation function chr(·) which translates ACT-R
production rules and states to corresponding CHR rules and states. We show
later on that the transition is sound and complete w.r.t. the abstract operational
semantics of ACT-R. This enables the use of CHR analysis tools like the con-
fluence test to analyze ACT-R models. The translation procedure is very close
to the technical implementation given in [10]. Nevertheless, it is the first formal
description of the translation process.

Definition 14 (Translation of Production Rules). An ACT-R production
rule r can be translated to a CHR rule Hk\Hr ⇔ G|B as follows. The translation
is denoted as chr(r).

We introduce a set Θ which takes track of buffer-chunk mappings. We define
Hk, Hr, B and Θ as follows:

A Formal Semantics for the Cognitive Architecture ACT-R 85

– For each test(b,SVP) ∈ LHS (r) introduce a fresh variable c and set (b, c) ∈ Θ.
There are two cases:

case 1: If requestedr(b), then constraint buffer(b, c) ∈ Hr.
case 2: If ¬requestedr(b), then constraint buffer(b, c) ∈ Hk.

For each (s, v) ∈ SVP:
case 1: If modifiedr(b, s), then constraint chunk has slot(c, s, v) ∈ Hr.
case 2: If ¬modifiedr(b, s), then constraint chunk has slot(c, s, v) ∈ Hk.

– For each action(a, b,SVP) ∈ RHS(r):
case 1: If a = mod, then for each (s, v) ∈ SVP there is a constraint
chunk has slot(c, s, v) ∈ B where (b, c) ∈ Θ. Additionally, if there is
no test(b,SVP ′) ∈ LHS(r) with (s, v) ∈ SVP ′, then introduce fresh
variables c and v′ and set chunk has slot(c, s, v′) ∈ Hr and (b, c) ∈ Θ.
case 2: If a = req, then constraint request(b,SVP) ∈ B

We assume a generic rule request(b,SVP) ⇔ . . . in the program which imple-
ments the request handling function requestb for every buffer b. The generation
of such rules is given in Definition 16.

Note that the removed heads Hr are constructed by regarding the actions of the
rule. If slots are modified that are not tested on the left hand side as mentioned in
Definition 1, constraints with fresh, singleton variables as values are introduced.
Those and are not involved in the matching process of ACT-R rules (see Def-
inition 13). Nevertheless, the corresponding constraints must be removed from
the store whis is why they appear in Hr. When writing an ACT-R rule it must
be ensured that only slots are modified which are part of the modified chunk as
required by Definition 1. In the CHR translation, such rules would never be able
to fire, since the respective constraint appearing in Hk can never be in the store.

Informally, Hk contains all buffer and chunk constraints as well as all
chunk has slot constraints of the slots which are not modified on the r.h.s. In
contrast, Hr contains all chunk has slot constraints of the slots which appear
on the r.h.s., i.e. which are modified.

We now have defined how our subset of ACT-R production rules can be
translated to CHR. In the following definition, we present the translation of
ACT-R states to CHR states.

Definition 15 (Translation of States). An ACT-R state

S := 〈C; HasSlot; Holds〉V

can be translated to the corresponding CHR state (denoted by chr(S)):
∧

(b,c)∈Holds buffer(b, c) ∧∧
(c,s,v)∈HasSlot chunk has slot(c, s, v) ∧∧

(b,SV P)∈R
request(b, SV P) ∧ V

86 D. Gall and T. Frühwirth

The Holds and the HasSlot relations are translated to buffer and chunk has slot
constraints respectively. Pending requests appear as request constraints in the
CHR state. The variable bindings V are represented by built-in equality con-
straints. The next definition shows how request functions are represented in the
CHR program.

Definition 16 (Request Functions). A request function requestb can be trans-
lated to a CHR rule as follows:

request(b,SVP in) ⇔
(c,SVPout) = requestb(SVP in) ∧
buffer(b, c) ∧
∀(s, v) ∈ SVPout : chunk has slot(c, s, v)

To continue our running example of the counting model, we show the trans-
lation of the production rule in Example 1 to CHR:

Example 5 (Translation of Rules). The rule count can be translated to the fol-
lowing CHR rule:

buffer(goal , C1) ∧
chunk has slot(C2,first ,Num1) ∧
chunk has slot(C2, second ,Num2) \
chunk has slot(C1, count ,Num1) ∧
buffer(retrieval , C2)

⇒
chunk has slot(C1, count ,Num2) ∧
request(retrieval , {(first ,Num2)})

It can be seen that two new variables are introduced: C1 which represents the
chunk in the goal buffer and C2 which represents the chunk in the retrieval
buffer. The derivation of the program is equivalent to the ACT-R derivation in
Sect. 3.4.

To analyze the program for confluence, the notion of observable confluence [7]
is needed, since the definition of confluence is too strict: Intuitively, the program
is (observably) confluent since there are no overlaps between the rule and the
implicit request rule. However, there seems to be an overlap of the rule with itself.
This overlap does not play a role, since both buffer and chunk has slot represent
relations with functional dependency. Hence there is only one possibility to assign
values to the variables and finding matching constraints if we only consider CHR
representations of valid ACT-R states. However, the confluence test detects those
states as non-joinable critical pairs, although they represent states that are not
allowed in ACT-R. Hence, those states should not be considered in the confluence
analysis, since they can never appear in a valid derivation. To formalize this
intuitive observation, the invariants of the ACT-R formalization (like functional

A Formal Semantics for the Cognitive Architecture ACT-R 87

dependency of some of the relations) have to be formulated mathematically to
allow for observable confluence analysis.

It can be seen that requests potentially produce non-determinism, since either
another rule might fire or a request could be performed. Usually, in ACT-R
programs, the goal buffer keeps track of the current state of the program and
encodes if a request should be awaited or if another rule can fire. However, this
leads to a more imperative thinking in the conditions of the rules, since the
application sequence of rules is defined in advance.

5 Soundness and Completeness

In this section, we prove soundness and completeness of our translation scheme
from Definition 14 and 15. I.e., we show that each transition of an ACT-R model
in a certain state is also possible in the corresponding CHR program with the
corresponding CHR state leading to the same results and vice versa. This is
illustrated in Fig. 1. At first, we show that applicability is preserved by the
translation and then extend this property to the soundness and completeness
Theorem 1.

S S′

chr(S) chr(S′)

chr(·) chr(·)

Fig. 1. The proposition of Theorem1. We show that applicability and actions are
preserved by our translation.

Lemma 1 (Applicability). If the production rule r is applicable in ACT-R
state S, then the corresponding CHR rule chr(r) is applicable in state chr(S)
and vice-versa.

Proof. “⇒”:
Let S := 〈C; HasSlot; Holds;R〉V . Since r is applicable in S, the following

holds:
∀ (V → ∃x̄ (LHS (r) =̂ s))

This implies that for every test(b, SV P) ∈ LHS (r) ∃bS ∈ B, cS ∈ C : b =
bS and ∀(s, v) ∈ SVP ∃sS , vS : (cS , sS , vS) ∈ HasSlot with sS = s and vS = v
according to Definitions 9 and 10.

By Definition 15, the state chr(S) has the following constraints: For each
(bS , cS) ∈ Holds there is a constraint buffer(bS , cS) ∈ chr(S) and for every
(cS , sS , vS) ∈ HasSlot there is a constraint chunk has slot(cS , sS , vS) ∈ chr(S).
Additionally, V ∈ chr(S).

88 D. Gall and T. Frühwirth

This means that the following conditions hold. We refer to them by (�):

∀test(b, SV P) ∈ LHS (r) ∃buffer(bS , cS) ∈ chr(S) with bS = b and cS = c

and

∀(s, v) ∈ SVP ∃chunk has slot(cS , sS , vS) ∈ chr(S) with sS = s and vS = v

Let chr(r) = Hk\Hr ⇔ B with H := Hk ∪ Hr be the translated CHR rule.
For every test(b, SV P) there is a constraint buffer(b, c) ∈ H with a fresh variable
c and for every (s, v) ∈ SVP there is a constraint chunk has slot(c, s, v) ∈ H.
Additionally, there are constraints chunk has slot(c, s, v∗) ∈ H with a fresh
variable v∗ for slots which are modified on r.h.s but which do not appear on l.h.s.
chr(r) is applicable in chr(S), if ∃(G → ȳ(H = H ′)) where H ′ are constraints
in the state. Due to (�), this condition holds if we set G = V plus the bindings
of the fresh v∗ variables. Since for every test in the original ACT-R rule there
are corresponding constraints in the state chr(S) and in the rule chr(r) the
condition holds for all chunk has slot constraints who have a correspondent test
in LHS (r). The other constraints have a matching partner in chr(S) since a
well-formed ACT-R rule only modifies slots which exist for the chunk according
to Definition 1.

“⇐”:
chr(r) of form Hk\Hr ⇔ B with H := Hk∪Hr is applicable in state chr(S) =

〈H ′ ∧ G ∧ R〉. I.e. that ∀(G → (∃x̄(H = H ′)). Since chr(r) is a translated ACT-
R rule, it only consists of buffer and chunk has slot constraints. Since H = H ′

there are matching constraints H ′ ∈ chr(S), i.e. there is a matching M of the
constraints in the state with the constraints in the rule. Set unifier(LHS (r), S) =
M and it follows that r is applicable in S.

Lemma 2 (Request Transitions). For two ACT-R states S and S′ and a
CHR state S′′, the two transitions S �request S′ and chr(S) �→request S′′.

Proof. “⇒”:
S �request S′, i.e. R �= ∅ and there is some (b∗, SV P in) ∈ R. This means

that in chr(S) there is a constraint request(b∗, SV P in) due to Definition 15.
There is a rule with head request(SVP) for every function requestb(b,SVP) =

(c,SVPout)which implements this function (i.e. which adds chunk has slot(c, s, v)
constraints according to (SV P)out and a buffer(b, c) constraint for a new chunk c).
The request(b∗, SV P in) constraint is removed from the store like (b∗, SV P in) is
removed from R according to Definition 13.

Hence, if the request transition is possible in S, the corresponding request
rule is possible in chr(S) and the resulting states chr(S′) and S′′ are equivalent.

“⇐”:
The argument is analogous to the other direction.

Lemma 3 (Soundness and Completeness of Rule Application). For an
ACT-R production rule r and two ACT-R states S and S′ the transitions S �r

S′ and chr(S) �→r S′′ correspond to each other, i.e. chr(S′) = S′′.

A Formal Semantics for the Cognitive Architecture ACT-R 89

Proof. Let chr(r) = r@H ′
k\H ′

r ⇔ G|B.
“⇒”: According to Lemma 1, r is applicable in S iff chr(r) is applicable

in chr(S). Let chr(S) �→r S′′ = (Hk ∧ C ∧ Hk = H ′
k ∧ Hr = H ′

r ∧ B ∧ G)
(Definition 5). It remains to show that the resulting state S′′ = chr(S′). Let S =
〈C; HasSlot,Holds,R〉V and S′ = 〈C; HasSlot′,Holds′,R′〉V′

be ACT-R states.
Then

Holds′ = Holds − req dels(r)
HasSlot′ = HasSlot − mod delS(r) ∪ mod addS(r)

R
′ = R ∪ {(b, SV P)|action(req, b, SV P) ∈ RHS(r′)}

The corresponding CHR state chr(S′) contains the following constraints
according to Definition 15:

∧
(b,c)∈Holds′ buffer(b, c) ∧ ∧

(c,s,v)∈HasSlot′ chunk has slot(c, s, v) ∧ V ′

Since Holds′, HasSlot′ and R
′ are derived from Holds, HasSlot and R, we

have to check whether the corresponding buffer and chunk has slot constraints
are removed and added to chr(S) by chr(r). For the CHR rule, the body
B contains for every action(mod , b,SVP) ∈ RHS (r), there is a constraint
chunk has slot(c, s, v) ∈ B according to Definition 14 which is therefore also
added to s′′ according to Definition 5. This corresponds to mod adds(r). Accord-
ing to Definition 14, a constraint chunk has slot(c, s, v) appears in Hr if it is
modified on RHS (r) (independent of appearing in a test or not, see case 1.a). This
corresponds to mod delS(r). A constraint buffer(b, c) is in Hr, if requestedr(b)
is true. This corresponds to req dels(r). For each action(req , b,SVP) ∈ RHS (r)
there appears a constraint request(b, SV P) ∈ B of the rule. This corresponds to
the adaptation of R in S.

Hence, the state S′′ is equivalent to chr(S′).
“⇐”: Let chr(S) �→r chr(S′) and S �r S′′. According to Lemma 1, chr(r) is

applicable in chr(S) iff r is applicable in S. It remains to show that the resulting
state S′′ = chr(S′).

The removed constraints Hr in the CHR rule chr(r) are either

(a) chunk has slot or
(b) buffer constraints.

In case (a) the constraints correspond to a modification action in RHS (r). I.e.,
modifiedr(b, s) is true for a constraint chunk has slot(c, s, v) ∈ chr(S) with
buffer(b, c) ∈ chr(S) iff it appears in Hr. This corresponds to mod dels(r).
In case (b), requested(b) is true for a constraint buffer(b, c) if it appears in Hr

according to Definition 14. This corresponds to req dels(r).
The added chunk has slot constraints of B in the CHR rule correspond

directly to mod addS(r) by Definitions 14 and 12. The request constraints in
B correspond directly to the adaptation in R

′.
Hence, S′′ = chr(S′).

90 D. Gall and T. Frühwirth

Theorem 1 (Soundness and Completeness). Every ACT-R transition s �
s′ corresponds to a CHR transition chr(S) �→r chr(S′) and vice versa. I.e., every
transition (not only rule applications) possible in S is also possible in chr(S) and
leads to equivalent states.

Proof. By Lemmas 3 and 2 the theorem follows directly.

6 Conclusion

In this paper, we have presented a formalization of the core of the production
rule system ACT-R including an abstract operational semantics. Furthermore,
we have shown a formal translation of ACT-R production rules to CHR. The
translation is sound and complete.

The formalization of ACT-R is based on prior work. In [10] we have pre-
sented an informal description of the translation of ACT-R production rules
to CHR rules. This informal translation has been implemented in a compiler
transforming ACT-R models to CHR programs. Our implementation is modular
and exchangeable in its core features as we have shown in [11] by exchanging
the central part of the conflict resolution with four different methods. Although
the implementation is very practical and covers a lot of practical details of the
ACT-R implementations, it is not directly usable for analysis.

Our formalization of the translation process in this paper is very near to
the practical implementation as it uses the same translation schemes for chunk
stores, buffer systems and consequently states. Even the rules are a simplified
version of our practical translation from [11]. However, it abstracts from practical
aspects like time or conflict resolution. This is justifiable, since for confluence
analysis, this kind of non-determinism in the operational semantics is useful.
Additionally, as shown in our running example, the general computation process
is reproduced closely by our semantics. Furthermore, due to the soundness and
completeness of our translation, confluence analysis tools from CHR can be used
on our models.

Hence, the contributions of this paper are

– an abstract operational semantics of ACT-R which is – to the best of our
knowledge – the first formal representation of ACT-R’s behavior,

– a formal description of our translation process (since in [10] a more technical
description has been chosen),

– a soundness and completeness result of the abstract translation.

For the future, we want to extend our semantics such that it covers the more
technical aspects of the ACT-R production rule system like time and conflict
resolution. We then want to investigate how this refined semantics is related to
our abstract operational semantics from this paper.

To overcome non-determinism, ACT-R uses a conflict resolution strategy.
In [11] we have analyzed several conflict resolution strategies. A confluence test
might be useful to reveal rules where the use of conflict resolution is undesired.

A Formal Semantics for the Cognitive Architecture ACT-R 91

For the future, we want to investigate how the CHR analysis tools perform for our
ACT-R semantics and how they might support modelers in testing their models
for undesired behavior, since the informal application of the confluence test on
our example is promising. We plan to lift the results for observable confluence
of CHR to ACT-R models. Additionally, it could be interesting to use the CHR
completion algorithm [2] to repair ACT-R models that are not confluent. We
also want to investigate if the activation levels of ACT-R fit the soft constraints
framework [5].

References

1. The ACT-R 6.0 tutorial. http://act-r.psy.cmu.edu/actr6/units.zip, http://act-r.
psy.cmu.edu/actr6/units.zip (2012)

2. Abdennadher, S., Frühwirth, T.: On Completion of Constraint Handling Rules. In:
Maher, Michael J., Puget, Jean-François (eds.) CP 1998. LNCS, vol. 1520, p. 25.
Springer, Heidelberg (1998)

3. Anderson, J.R.: How can the human mind occur in the physical universe?. Oxford
University Press, Oxford (2007)

4. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)

5. Bistarelli, S., Frühwirth, T., Marte, M.: Soft constraint propagation and solving in
CHRs. In: Proceedings of the 2002 ACM symposium on Applied computing. pp.
1–5. ACM (2002)

6. Bothell, D.: ACT-R 6.0 Reference Manual - Working Draft. Department of Psy-
chology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

7. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable Confluence for Constraint
Handling Rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp.
224–239. Springer, Heidelberg (2007)

8. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

9. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer,
Berlin (2003)

10. Gall, D.: A rule-based implementation of ACT-R using Constraint Handling Rules.
Master Thesis, Ulm University (2013)

11. Gall, D., Frühwirth, T.: Exchanging conflict resolution in an adaptable implemen-
tation of ACT-R. Theor. Pract. Logic Program. 14(4–5), 525–538 (2014)

12. Taatgen, N.A., Lebiere, C., Anderson, J.: Modeling paradigms in ACT-R. Cogni-
tion and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation.
Cambridge University Press, Cambridge (2006)

http://act-r.psy.cmu.edu/actr6/units.zip
http://act-r.psy.cmu.edu/actr6/units.zip
http://act-r.psy.cmu.edu/actr6/units.zip

CHRAnimation: An Animation Tool
for Constraint Handling Rules

Nada Sharaf1(B), Slim Abdennadher1, and Thom Frühwirth2

1 The German University in Cairo, Cairo, Egypt
2 Ulm University, Ulm, Germany

{nada.hamed,slim.abdennadher}@guc.edu.eg,
thom.fruehwirth@uni-ulm.de

Abstract. Visualization tools of different languages offer its users with
a needed set of features allowing them to animate how programs of such
languages work. Constraint Handling Rules (CHR) is currently used as a
general purpose language. This results in having complex programs with
CHR. Nevertheless, CHR is still lacking on visualization tools. With Con-
straint Handling Rules (CHR) being a high-level rule-based language, ani-
mating CHR programs through animation tools demonstrates the power
of the language. Such tools are useful for beginners to the language as
well as programmers of sophisticated algorithms. This paper continues
upon the efforts made to have a generic visualization platform for CHR
using source-to-source transformation. It also provides a new visualiza-
tion feature that enables viewing all the possible solutions of a CHR
program instead of the don’t care nondeterminism used in most CHR
implementations.

Keywords: Constraint Handling Rules · Algorithm visualization ·
Algorithm animation · Source-to-source transformation

1 Introduction

Constraint Handling Rules (CHR) [1] is a committed-choice rule-based language
with multi-headed rules. It rewrites constraints until they are solved. CHR has
developed from a language for writing constraint solvers into a general purpose
language. Different types of algorithms are currently implemented using CHR.

So far, visually tracing the different algorithms implemented in CHR was not
possible. Such visual tools are important for any programming language. The
lack of such tools makes it harder for programmers to trace complex algorithms
that could be implemented with CHR. Although the tool provided through [2] was
able to add some visualization features to CHR, it lacked generality. It was only
able to visualize the execution of the different rules in a step-by-step manner. In
addition to that, it was able to visualize CHR constraints as objects. However,
the choice of the objects was limited and the specification of the parameters of
the different objects was very rigid.

Thus the tool presented through this paper aims at providing a more general
CHR visualization platform. In order to have a flexible tracer, it was decided
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 92–110, 2015.
DOI: 10.1007/978-3-319-17822-6 6

CHRAnimation: An Animation Tool for Constraint Handling Rules 93

to use an already existing visualization tool. Such tools usually provide a wide
range of objects and sometimes actions as well. As a proof of concept, we used
Jawaa [3] throughout the paper. The annotation tool is available through: http://
sourceforge.net/projects/chrvisualizationtool. A web version is also under devel-
opment and should be available through http://met.guc.edu.eg/chranimation.

In addition to introducing a generic CHR algorithm visualization system, the
tool has a module that allows the user to visualize the exhaustive execution
of any CHR program forcing the program to produce all the possible solutions.
This allows the user to trace the flow of a CHR program using some different
semantics than the refined operational semantics [4] embedded in SWI-Prolog.
The output of the visualization is a tree showing the different paths of the
algorithm’s solutions. The tree is the search tree for a specific goal. It is also
linked to the visualization tool as shown in Sect. 8.

The paper is organized as follows: Sect. 2 introduces CHR. Section 3 shows
some of the related work and why the tool the paper presents is different and
needed. Section 4 shows the general architecture of the system. Section 5 intro-
duces the details of the annotation module. The details of the transformation
approach are presented in Sect. 6. Section 7 shows an example of the visualization
of algorithms implemented through CHR. Section 8 shows how it was possible to
transform CHR programs to produce all the possible solutions instead of only
one. Finally, we conclude with a summary and directions for future work.

2 Constraint Handling Rules

A CHR program distinguishes between two types of constraints: CHR constraints
introduced by the user and built-in constraints [5]. Any CHR program consists
of a set of simpagation rules. Each rule has a head, a body and an optional
guard. The head of any CHR rule consists of a conjunction of CHR constraints.
The guard of a rule is used to set a condition for applying the rule. The guard
can thus only contain built-in constraints. The body, on the other hand, can
contain both CHR and built-in constraints [5]. A simpagation rule has the form:

optional rule name @ HK \ HR ⇔ G | B.
There are two types of head constraints. HK is the conjunction of CHR con-
straint(s) that are kept on executing the rule. On the other hand, HR are the
CHR constraint(s) that are removed once the rule is executed. G is the optional
guard that has to be satisfied to execute the rule. B is the body of the rule. The
constraints in B are added to the constraint store once the rule is executed.

Using simpagation rules, we can distinguish between two types of rules.
A simplification rule is a simpagation rule with empty HK . Consequently, the
head constraint(s) are removed on executing the rule. It has the following form:

optional rule name @ HR ⇔ G | B.
On the other hand, a propagation rule is a simpagation rule with empty HR.
Thus, on executing a propagation rule, its body constraints are added to the
constraint store without removing any constraint from the store. Its format is:

optional rule name @ HK ⇒ G | B.

http://sourceforge.net/projects/chrvisualizationtool
http://sourceforge.net/projects/chrvisualizationtool
http://met.guc.edu.eg/chranimation

94 N. Sharaf et al.

The following program extracts the minimum number out of a set of numbers.
It consists of one rule: extract_min @ min(X) \ min(Y) <=> Y>=X | true.

As seen from the rule, the numbers are inserted through the constraint
min/1. The rule extract min is executed on two numbers X and Y if Y has
a value that is greater than or equal to X. extract min removes from the store
the constraint min(Y) and keeps min(X) because it is a simpagation rule. Thus
on consecutive executions of the rule, the only number remaining in the con-
straint store is the minimum one. For example, for the query min(9), min(7),
min(3), the rule is applied on min(9) and min(7) removing min(9). It is then
applied on min(7) and min(3) removing min(7) and reaching a fixed point
where the rule is no longer applicable. At that point, the only constraint in the
store is min(3) which is the minimum number.

3 Why “CHRAnimation”?

This section shows the need for the tool and its contribution. As introduced
previously, despite of the fact that CHR has developed into a general purpose
language, it lacked algorithm visualization and animation tools. Programmers
of CHR used SWI-Prolog’s “trace” option which produces a textual trace of the
executed rules. Attempts focused on visualizing the execution of the rules. The
tool provided through [2] is able to visualize the execution of the rules showing
which constraints are being added and removed from the store. However, the
algorithm the program implements did not affect the visualization in any means.
Visual CHR [6] is another tool that is also able to visualize the execution of CHR
programs. However, it was directed towards the Java implementation of CHR;
JCHR [7]. To use the tool, the compiler of JCHR had to be modified to add
the required features. Although [2] could be extended to animate the execution
of different algorithms, the need of having static inputs remained due to the
inflexibility of the provided tracer. The attempts provided through [8] and [9]
also suffered from the problem of being tailored to some specific algorithms.

Thus compared to existing tools for CHR, the strength of the tool the paper
presents comes from its ability to adapt to different algorithm classes. It is able
to provide a generic algorithm animation platform for CHR programs. The tool
eliminates the need to use any driver or compiler directives as opposed to [6,10]
since it uses source-to-source transformation. Although the system adopts the
concept of interesting events used in Balsa [11] and Zeus [12], the new system
is much simpler to use. With the previous systems, algorithm animators had to
spend a lot of time writing the views and specifying how the animation should
take place. With CHRAnimation, it is easy for a user to add or change the
animation. In addition, the animator could be the developer of the program or
any CHR programmer. Thus this eliminates the need of having an animator with
whom the developer should develop an animation plan ahead. Consequently, the
tool could be easily used by instructors to animate existing algorithms to teach
to students. The system provides an interactive tool. In other words, every time
a new query is entered, the animation automatically changes. The animations

CHRAnimation: An Animation Tool for Constraint Handling Rules 95

thus do not have to be prepared in advance to show in a class room for example
and are not just movie-based animations that are not influenced by the inputs
of users similar to [13].

Unlike the available systems, the user does not need to know about the
syntax and details of the visualization system in use. Using source-to-source
transformation eliminates this since the programs are automatically modified
without the need of manually instructing the code to produce visualizations. The
only need is to specify, through the provided user interface, how the constraints
should be mapped to visual objects. In Constraint Logic Programming (CLP),
the available visualization tools (such as the tools provided through [14] and
[15]) focused on the search space and how domains are pruned. Thus to the best
of our knowledge, this is the first tool that provides algorithm animation and
not algorithm execution visualization for logic programming.

4 System Architecture

The aim of CHRAnimation is to have a generic algorithm animation system. The
system however should be able to achieve this goal without the need to manually
instrument the program to produce the needed visualizations. CHRAnimation
consists of modules separating the steps needed to produce the animations and
keeping the original programs unchanged.

As seen from Fig. 1, the system has two inputs: the original CHR program P
in addition to AnnotCons, the output of the so-called “Annotation Module”.

Fig. 1. Interactions between the modules in the system.

As a first step, the CHR program is parsed to extract the needed information.
The transformation approach is similar to the one presented in [16] and [2]. Both
approaches represent the CHR program using a set of constraints that encode
the constituents of the CHR rule. For example head(extract min, min(Y),
remove) encodes the information that min(Y) is one of the head constraints of
the rule named extract min and that this constraint is removed on executing
the rule. The CHR program is thus first parsed to automatically extract and

96 N. Sharaf et al.

represent the constituents of the rules in the needed “relational normal” form
[16]. The transformer then uses this representation in addition to AnnotCons to
convert the original CHR program (P) to another CHR program (PTran) with
embedded visualization features as explained in more details in Sect. 6.

The annotation module is the component that allows the system to animate
different algorithms while having a generic visual tracer. It allows users to define
the visual states of the algorithm without having to go into any of the actual
visualization details. The users are presented with a black-box module which
allows them to define the needed visual output through the interesting events
of the program. The module is explained in more details in Sect. 5. The output
of the module (AnnotCons) is used by different components of the system to be
able to produce the corresponding animation.

PTrans is a normal CHR program that users can run. Whenever the user
enters any query to the system, PTrans automatically communicates with an
external module that uses AnnotCons to spontaneously produce an animation
for the algorithm.

5 Annotation to Visualize CHR Algorithms

Algorithm animation represents the different states of the algorithm as pictures.
The animation differs according to the interaction between such states [17]. As
discussed before, the tool uses an existing tracer to overcome the problems faced
in [2] in order to have a dynamic system that could be used with any algorithm
type. The annotation module is built to achieve this goal while keeping a generic
platform that is not tailored according to the algorithm type. Such module is
needed to link between the different CHR constraints and the Jawaa objects/-
commands. The idea is similar to the “interesting events” that Balsa [11] and
Zeus [12] uses. This section introduces the basic functionalities of the annotation
module which were first presented in [18] in addition to the new features that
were added to accommodate for a wider set of algorithms. In the system, an
interesting event is basically defined as the addition of CHR constraint(s) that
leads to a change in the state of the algorithm and thus a change in the visual-
ized data structure. For example, in sorting algorithms, every time an element
in the list is moved to a new position, the list changes and thus the visualized
list should change as well.

5.1 Basic Constraint Annotation

Constraint annotation is the basic building block of the annotation module. Users
first identify the interesting events of a program. They could then determine
the graphical objects that should be linked to them. For example, the program
introduced in Sect. 2 represents a number through the constraint min/1 with its
corresponding value. Adding or changing the min constraint is the interesting
event in this algorithm. The annotation module provides its users with an inter-
face through which they can choose to link constraint(s) with object(s) and/or
action(s) as shown in Fig. 2.

CHRAnimation: An Animation Tool for Constraint Handling Rules 97

Fig. 2. Annotating the min constraint.

In order to have a dynamic system, the tool is automatically populated
through a file that contains the available objects and actions and their corre-
sponding parameters in the form object name#parameter1# . . .#parameterN .
For example, the line circle#name#x#y#width#color#bkgrd, adds the object
circle as one of the available objects to the user. The circle object requires
the parameters name, x, y, width, color and bkgrd. Users can then enter the
name of the constraint and the corresponding annotation as shown in Fig. 2. The
current system provides more annotation options than the prototype introduced
in [18]. Users enter the constraint: cons(Arg1, . . . , Argn) representing the inter-
esting event. With the current system, annotations can be activated according
to defined conditions. Thus users provide some (Prolog) condition that should
hold to trigger the annotation to produce the corresponding visualization. Users
can then choose an object/action for annotation. This dynamically fills up the
panel with the needed parameters so that users can enter their values. Parameter
values can contain one or more of the following values (V al):

1. A constant c. The value can differ according to the type of the parameter. It
could be a number, some text, . . . etc.

2. The built-in function valueOf(Argi) to return the value of an argument
(Argi).

98 N. Sharaf et al.

3. The built-in function prologV alue(Expr) where Expr is a Prolog expression
that binds a variable named X to some value. The function returns the bind-
ing value for X.

The output of the constraints’ annotations is a list where each element ConsAnnot

has the form cons(Arg1, . . . , Argn) ==> condition#parameter1 = V al1# . . .#
parameterm = V alm. In Fig. 2, the user associates the min/1 constraint with
the Jawaa object “Node”. In the given example, the name of the Jawaa node
is “node” concatenated with the value of the first argument. Thus for the con-
straint min(9), the corresponding node has the name node9. The y-coordinate
is random value calculated through Prolog. The text inside the node also uses
the value of the argument of the constraint. The annotation is able to produce
an animation for this algorithm as shown later in Sect. 7.

5.2 Multi-constraint Annotation

In addition to the basic constraint annotation, users can also link one constraint
to multiple visual objects and/or actions. Thus each constraint (cons), can add
to the output annotations’ list multiple elements ConsAnnot1 , . . . , ConsAnnotn if
it has n associations.

In addition, users can combine multiple constraints cons1, . . . , consN in one
annotation. This signifies that the interesting event is not associated with hav-
ing only one constraint in the store. It is rather having all of the constraints
cons1, . . . , consN simultaneously in the constraint store. Such annotations could
thus produce and animate a color-mixing program for example. This kind of
annotations adds to the annotations’ list elements of the form:
cons1, . . . , consn ==> annotation constraintcons1,...,consn .

5.3 Rule Annotations

In addition, users can choose to annotate CHR rules instead of only having anno-
tations for constraints. In this case, the interesting event is the execution of the
rule as opposed to adding a constraint to the store. This results in adding Jawaa
objects and/or actions whenever a specific rule is executed. Thus, whenever a
rule is annotated this way, a new step in the visual trace is added on executing
the rule. Such annotation adds to the annotations’ list an element of the form:
rulei ==> annotation constraintrulei . Rule annotations ignore the individual
annotations for the constraints since the interesting event is associated with the
rule instead. Therefore, it is assumed that the only annotation the user should
visualize is the rule annotation since it accounts for all the constraints in the
body. An example of this annotation is shown in Sect. 7.

6 Transformation Approach

The transformation mainly aims at interfacing the CHR programs with the
entered annotations to produce the needed visual states. Thus the original pro-
gram P is parsed and transformed into another program PTrans. PTrans performs

CHRAnimation: An Animation Tool for Constraint Handling Rules 99

the same functionality as P . However, it is able to produce an animation for the
executed algorithm for any input query. As a first step, the transformation adds
for every constraint constraint/N a rule of the form:
comm cons constraint @ constraint(X1,X2, ...,Xn) ⇒ check(status, false) |

communicate constraint(constraint(X1,X2, ...,Xn)).
This extra rule makes sure that every time a new constraint is added to the

constraint store, it is communicated to the external module. Thus, in the case
where the user had specified this constraint to be an interesting event (i.e.
entered an annotation for it), the corresponding object(s)/action(s) is automat-
ically produced. With such new rules, any new constraint added to the store is
automatically communicated. Thus once the body constraints are added to the
store, they are automatically communicated to the tracer.

The rules of the original program P can affect the visualization through the
head constraints. To be more specific, head constraints removed from the store
can affect the resulting visualization since their corresponding object(s) might
need to be removed as well from the visual trace. Thus the transformer can
instruct the new rules to communicate the head constraints1.

The transformer also makes use of the output of the annotation module
output (Annotcons). Thus as a second step, the transformer adds for every com-
pound constraint-annotation of the form:
cons1, . . . , consn ==> annotation constraintcons1,...,consn , a new rule of the
form: compoundcons1,...,consn @
cons1(Argcons11 , . . . , Argcons11x), . . . , consn(Argconsn1

, . . . , Argconsnny
)

⇒ check(status, false) | annotation constraintcons1,...,consn(Arg1, . . . , Argm).
The default case is to keep the constraints producing a propagation rule but
the transformer can be instructed to produce a simplification rule instead. The
annotation should be triggered whenever the constraints cons1, . . . , consn exist
in the store producing annotation constraintcons1,...,consn . This is exactly what
the new rules (compoundcons1,...,consn) do. They add to the store the anno-
tation constraint whenever the store contains cons1, . . . , consn. The annota-
tion constraint is automatically communicated to the tracer through the new
comm cons constraint name rules.

As a third step, the rules annotated by the user have to be transformed. The
problem with rule annotations is that the CHR constraints in the body should be
neglected since the whole rule is being annotated. Thus, even if the constraints
were determined by the user to be interesting events, they have to be ignored
since the execution of the rule includes them and the rule itself was annotated as
an interesting event. Hence, to avoid having problems with this case, a generic
status is used throughout PTrans. In the transformed program, any rule anno-
tated by the user changes the status to true at execution. All the new rules
added by the transformer to PTrans check that the status is set to false before
communicating the corresponding constraint to the tracer. Consequently, such
1 The tracer is able to handle the problem of having multiple Jawaa objects with the

same name by removing the old object having the same name before adding the new
one. This is possible even if the removed head constraint was not communicated.

100 N. Sharaf et al.

rules are not triggered on executing an annotated rule since the guard check
is always false in this case. Any rule rulei@HK , HK ⇔ G | B with the
corresponding annotation rulei ==> annotation constraintrulei is transformed
to: rulei@HK , HK ⇔ G | set(status, true), B, annotation constraintrulei ,
set(status, false). In addition, the transformer adds the following rule to PTrans:

comm consannotation constraintrulei
@ annotation constraintrulei ⇔

communicate constraint(annotation constraintrulei).

The new rule thus ensures that the events associated with the rule annotation
are considered and that all annotations associated with the constraints in the
body of the rule are ignored.

7 Examples

This section shows different examples of how the tool can be used to animate
different types of algorithms.

Finding the Minimum Number in a Set is a CHR program consisting of
one rule that is able to extract the smallest number out of a set of numbers as
shown in Sect. 2. The interesting event in this program is adding and removing
the constraint min. It was annotated using the basic constraint annotation pro-
ducing the association: min(A)==>node##name=nodevalueOf(A)#x=30#
y=prologValue(R is random(30), X is R*15)#width=30#height=30#n=1#

data=valueOf(A)#color=black#bkgrd=green#textcolor=black#type=CIRCLE. The
annotation links every min constraint to a Jawaa “Node” whose y-coordinate
is randomly chosen through the function prologV alue. The x-coordinate is fixed
to a constant (30 in our case). As seen in Fig. 3, once a number is added to the
store, the corresponding node is visualized. Once a number is removed from the
store, its node object is removed. Thus by applying the rule, extract min, the
user gets to see in a step-by-step manner an animation for the program.

Bubble Sort is another algorithm that could be animated with the tool.
start @ totalNum(T)<=> startBubbling, loop(1,1,T).

(a)
adding
min(9)
to the
store

(b)
adding
min(7)
to the
store

(c)
remov-
ing
min(9)

(d)
adding
min(3)
to the
store

(e)
remov-
ing
min(7)

Fig. 3. Finding the minimum element of a set.

CHRAnimation: An Animation Tool for Constraint Handling Rules 101

(a) all
ele-
ments
in-
serted
to the
list

(b)
high-
light-
ing
10

(c)
mov-
ing 10
to the
right

(d)
mov-
ing 6
to the
left

(e)
mov-
ing 10
to the
right

(f)
mov-
ing 4
to the
left

(g)
high-
light-
ing 6
and
mov-
ing it
to the
right

(h)
mov-
ing 4
to the
left

Fig. 4. Sorting a list of numbers using rule annotations.

(a) all
ele-
ments
in-
serted
to the
list

(b) 10,
6 re-
moved

(c)
10, 6
swapped

(d) 10,
4 re-
moved

(e)
10, 4
swapped

(f) 6,
4 re-
moved

(g) 6, 4
swapped

Fig. 5. Sorting a list of numbers using constraint annotations only.

bubble @ startBubbling, loop(I,_,_) \ a(I,V), a(J,W) <=> I+1=:=J, V>W |

a(I,W), a(J,V).

loop1 @ startBubbling\ loop(A,B,C) <=> A<C, B<C | A1 is A+1, loop(A1,B,C).

loop2 @ startBubbling \ loop(C,B,C) <=> B<C | B1 is B+1, loop(1,B1,C).

As seen from the program, the different elements of the list are entered using the
constraint a/2. The rule bubble swaps two consecutive elements that are not
sorted with respect to each other. Consequently, through multiple executions
of this rule, the largest element is bubbled to the end. The constraint loop/3
represents a pointer to the elements being compared. loop1 advances the pointer
one step through the list. loop2 resets the pointer to the beginning of the list
whenever one complete round of checks is done. The bubbling step is repeated
T times where T is the number of elements in the list. There are thus two
interesting events in this program. The first one is the insertion of an element to
the list which is represented by the constraint a/2. The second interesting event
is swapping two consecutive elements together through the rule bubble. The
program has three annotations. The first one is a basic constraint annotation
for a/2 constraint. The second annotation is a rule annotation for bubble. The

102 N. Sharaf et al.

rule is annotated with swap/4 which has as arguments I,V,J and W consecutively.
swap/4 has a multi-constraint annotation that does the following:

1. highlights the element at index I through a “changeParam” action,
2. moves the element at index I to the right through a moveRelative action,
3. moves the element at index J to the left through a moveRelative action.

The annotations are shown in AppendixA. The output animation for the query
(a(1,10),a(2,6),a(3,4),totalNum(3)) is given in Fig. 4. Figure 5 shows the
result if no rule annotation was used. In this case, the different nodes represent-
ing the elements in the list are added and removed.

Nqueens is a well-known problem in which N queens have to be placed on an
N by N grid such that they do not attack each other. Two queens can attack
each other if they are placed on the same row, column or diagonal. The following
CHR program can solve this problem:
initial @ solve(N) <=> generate(1,N,List), queens(N,List), labelq.

add1 @ queens(N,Dom) <=> N>0 | N1 is N-1, in(N , Dom), queens(N1,Dom).

add2 @ queens(0,Dom) <=> true.

reduce @ in(N1 , [P]) \ in(N2 , Dom) <=> P1 is P-(N1-N2),

P2 is P+(N1-N2), delete(Dom,P,D1), delete(D1,P1,D2),

delete(D2,P2,D3),Dom\==D3 | D3\==[], in(N2 , D3).

label @ labelq \ in(N , Dom) <=> Dom=[_,_|_] | member(P,Dom), in(N , [P]).

The model of the problem uses N variables each represented using the queens/2
constraint. The value of every variable determines the row number. The index,
on the other hand, determines the column number. For example if the value of
the second queen is three, this means that the queen in the second column is
placed in the third row. The domain of any queen is initialized to be from 1 to
N using the predicate generate/3. As seen from the program the rule initial
is used to initialize the solving process by adding the two constraints queens/2
and labelq which enable finding a solution. As seen from the rule, the second
argument of the queens constraint is set to be a list containing all the numbers
from 1 till N. The two rules add1 and add2 are used to initialize the domains of
all of the queens of the board using the previously computed list. The domain
of every queen is represented using the in/2 constraint. The rule reduce is used
to prune the domains of the different queens. In order to execute the rule, the
location of a specific queen has to be determined. This is represented by having a
domain list with one element only. The rule removes from the domain of another
queen any value that could lead to an attack. This ensures that whenever a
location is chosen for this queen, it does not threaten the already labeled queen.
Finally the rule label is used to search through the domains whenever domain
pruning is not enough.

The visual board is initialized through specifying that the solve constraint is
an interesting event. It should generate 16 rectangles in a board-like structure. To
eliminate the need of entering 16 constraint annotations, users can now use the
object board to annotate constraints and enter the number of squares it contains
and their widths, heights, . . . etc. Thus whenever the solve constraint is added

CHRAnimation: An Animation Tool for Constraint Handling Rules 103

(a) Initial Domains and
Board

(b) Q1 is placed in row 1 (c) Pruning the domain of
Q2

(d) Q2 placed in row 3 (e) Q3 placed in row 1 (f) Q2 moved to row 4

(g) pruning the domain of
Q3

(h) Q3 moved to row 2 (i) Q4 placed in
row 4

(j) Q1 moved to
row 2

(k) Q2 moved to
row 4

(l) Domain of Q3 changed (m) Q3 placed in
row 1

(n) Domain of Q4 changed (o) Q4 placed in
row 3

Fig. 6. Visualizing the execution of the nqueens algorithm for 4 queens.

104 N. Sharaf et al.

to the store the 4-by-4 grid is visualized. The board, in the 4-queens problem,
consists of 16 adjacent rectangles each with the same width and height (30 was
chosen in this example). The in/2 constraint has two different annotations. The
first one is activated whenever the length of the domain list is equal to one. This
is the case where the queen is labeled to be placed in a specific position on the
board. In this case, the x-coordinate of the Jawaa node is calculated as the index
multiplied by the width of the cell which is 30. The y-coordinate is calculated
through the only value in the domain i.e. the assigned value. It is also multiplied
by 30. This way the circular node is placed in the a location corresponding to
the chosen value. The second annotation is activated whenever the length of
the domain list is greater than one. In this case the queen is not placed in any
position in the board since there are multiple possibilities. It is visualized as
a “Node” outside the board and the domain is written on it. Figure 6 shows
the visual steps produced for the query solve(4) until a solution is found. The
annotations are shown in AppendixA.

8 Visualizing Different Semantics

Although SWI-Prolog implements the refined operational semantics [4] for CHR,
there are different proposed and defined CHR operational semantics. Based on
the conflict resolution approach presented in [5], it is possible to convert a pro-
gram running with a different operational semantics into the refined operational
semantics used in SWI-Prolog. The abstract operational semantics of CHR [5]
is nondeterministic. At any point, if several rules are applicable, one of them is
randomly chosen. The application of a rule, however, cannot be undone since it
is committed choice. In addition, the goal constituents are randomly chosen for
processing. The refined operational semantics [4], on the other hand, chooses a
top-bottom approach for deciding on the applicable rule i.e. the first applica-
ble rule is always chosen. In addition, the constraints are processed from left to
right. Nondeterminism is especially interesting when the CHR program is non-
confluent. Confluence [19] is a property of CHR which ensures the same final
result no matter which applicable rule was chosen at any point of the execution.
The tool includes a module that is able to embed some of the nondetermin-
ism properties into any CHR solver. The newly generated solvers are able to
choose, at any point of the execution, any of the applicable rules producing all
the possible solutions.

8.1 Transformation Approach

This section discusses how any CHR program is transformed into a new one that
is able to generate all the possible solutions instead of using the refined opera-
tional semantics that generates only one solution. The transformation approach
is based on the approaches presented in [5,20–22]. The main difference is that
the new solver communicates some of the information to the visual tracer to be
able to produce the needed visualization.

CHRAnimation: An Animation Tool for Constraint Handling Rules 105

The transformed program starts each step by collecting the set of applicable rules
with its corresponding head constraints. After the candidate list is built, the
solver chooses one of the rules randomly using the built-in predicate select/3.
The newly transformed program is thus a CHŘ [23] solver. For example a rule
of the form:
r1 @ Hk \ Hr <=> Guard | Body.

generates two rules in the transformed program. The first generated rule is used
to populate the candidate list. It is a propagation rule of the form:
Hk, Hr ==> Guard | cand([(r1,[Hk,Hr])]). The second rule is fired whenever
this rule is chosen from the candidate list. It has the following form:
Hk\fire((r1,[Hk,Hr])),Hr <=> Guard | communicate_heads_kept(Hk),

communicate_heads_removed(Hr),communicate_body(Body),Body.

In addition, the new program contains the following two rules:
cand(L1),cand(L2) <=> append(L1,L2,L3) | cand(L3).

cand([H|T]),fire <=> select(Mem,[H|T],Nlist), fire(Mem),cand(NList),fire.

The first rule ensures that the candidate list is correctly populated and incre-
mented. The second rule, on the other hand, selects one of the elements of the
candidate list at each step.
For example the program:
:-chr_constraint sphere/2.

r1 @ sphere(X,red) <=> sphere(X,blue).

r2 @ sphere(X,red) <=> sphere(X,green).

is transformed into
:-chr_constraint sphere/2, fire/1, cand/1, fire/0.

r1_cand @ sphere(X,red) ==>cand([(r1,[sphere(X,red)])]).

r2_cand @ sphere(X,red) ==> cand([(r2,[sphere(X,red)])]).

cand(L1),cand(L2) <=> append(L1,L2,L3), cand(L3).

cand([H|T]),fire <=> select(Mem,[H|T] , NList), fire(Mem), cand(NList),fire.

r1 @ fire((r1,[sphere(X,red)])),sphere(X,red) <=>

communicate_head_removed([sphere(X,red)]),

communicate_body([sphere(X,blue)]), sphere(X,blue).

r2 @ fire((r2,[sphere(X,red)])),sphere(X,red) <=>

communicate_head_removed([sphere(X,red)]),

communicate_body([sphere(X,green)]), sphere(X,green).

8.2 Visualization

With the refined operational semantics, the query sphere(a,red) results in
executing r1 adding to the store the new constraint sphere(a,blue). Figure 7a
shows the result of visualizing the execution of the solver with this query, using
the tool presented in [2]. The CHR constraints remaining in the constraint store
are shown in white and those removed are shown in red. The transformed pro-
gram is able to generate the visual tree shown in Fig. 7b. Since there were two
applicable rules, the output tree accounts for both cases by the different paths.
Through SWI-Prolog the user can trigger this behavior using the “;” sign to
search for more solutions.

106 N. Sharaf et al.

Given the solver:
rule1 @ sphere(X,red) <=> sphere(X,blue).

rule2 @ sphere(X,blue) <=> sphere(X,green). The steps taken to execute the
query sphere(b,blue), sphere(a,red) with the solver are:

– First Solution
1. rule2 is fired replacing the constraint sphere(b,blue) by sphere

(b,green).
2. rule1 is then fired removing the constraint sphere(a,red) and adding

the constraint sphere(a,blue).
3. Finally, sphere(a,blue) triggers rule2 replacing it by sphere(a,green).

– Second Solution
1. Backtracking is triggered through the semicolon(;). We thus go back to

the root and choose to apply rule1 for sphere(a,red) producing the
sphere(a,blue).

2. Afterwards, rule2 is executed to replace sphere(a,blue) by sphere
(a,green).

3. Finally, rule2 is fired replacing sphere(b,blue) by sphere(b,green).
– Third Solution

1. This time when the user backtracks, execution goes back to the second
level, applying rule2 to replace sphere(b,blue) by sphere(b,green).

2. Afterwards, rule2 replaces sphere(a,blue) by sphere(a,green).

(a) Visualizing the execution of
the solver.

(b) Showing all possible
paths.

(c) Two ran-
dom circles.

Fig. 7. Different options for visualizing the execution.

As seen from the tree in Fig. 8, the constraint store in the final states con-
tains sphere(a,green), sphere(b,green). However, the paths taken are dif-
ferent. Once the user enters a query, the visual trees are automatically shown.
In addition, whenever the user clicks on any node in the tree, the corresponding
visual annotations are triggered. In this case the sphere can be mapped to a

CHRAnimation: An Animation Tool for Constraint Handling Rules 107

Fig. 8. Output tree.

Jawaa “circle” with a constant x-coordinate and a random y-coordinate and a
background color that is equal to the value of the second argument of the con-
straint. If the user clicks on the node with the constraints (sphere(b,blue),
sphere(a,green)), the system automatically connects the constraints to the
previously introduced visual tracer that checks if any of the current constraints
have annotations. This produces a visual state with two circles placed randomly
as shown in Fig. 7c.

9 Conclusion

The paper introduced a new tool that is able to visualize different CHR programs
by dynamically linking CHR constraints to visual objects. To have a generic
tracing technique, the new system outsources the visualization process to exist-
ing tools. Intelligence is shifted to the transformation and annotation modules.
Through the provided set of visual objects and actions, different algorithms
could be animated. Such visualization features have proven to be useful in many
situations including code debugging for programmers and educational purposes
[24]. In addition, the paper explores the possibility of visualizing the execution
of different operational semantics of CHR. It provides a module that is able to
visualize the exhaustive execution of CHR and more importantly it links it to the
annotated constraints. Thus, unlike the previously provided tools [15] for visu-
alizing constraint programs, the focus is not just on the search space and the

108 N. Sharaf et al.

domains. The provided tool enables its users to focus on the algorithms executed
to visualize their states.

In the future, more dynamic annotation options could be provided to the user.
The visualization of the execution of different CHR operational semantics should
be investigated. The tool could also be extended to be a visual confluence checker
for CHR programs. In addition, we also plan to investigate the visualization of
soft constraints [25].

Appendix

A Annotations

The bubble sort program’s annotations use node as a basic object. The x-
coordinate is calculated through the index and the height uses the value.
a(Index,Value)==>node##name=nodevalueOf(Index)#x=valueOf(Index)*14+2#y=100#

width=12#height=valueOf(Value)*5#n=1#data=valueOf(Value)#color=black#

bkgrd=green#textcolor=black#type=RECT

swap(I1,V1,I2,V2)==>changeParam##name=nodevalueOf(I1)#paramter=bkgrd #newvalue=red

swap(I1,V1,I2,V2)==>moveRelative##name=nodevalueOf(I1)#x=14#y=0

swap(I1,V1,I2,V2)==>moveRelative##name=nodevalueOf(I2)#x=-14#y=0

swap(I1,V1,I2,V2)==>changeParam##name=nodevalueOf(I1)#paramter=bkgrd #newvalue=green

For the nqueens problem, the first set of annotations are the rectangles produced
by the object “board” which users can choose through the interface. The number
of vertical and horizontal squares (4 in our case), the initial x and y-coordinates
(30 and 30 in our case), the squares’ widths (30 in this case) in addition to the
color chosen by the user automatically produces 16 associations for the solve
constraint. The below constraints represent the rectangles that form the first
two rows of the board and the two annotations for the in constraint.
solve(N)==>rectangle##name=rect1#x=30#y=30#width=30#height=30#color=black#bkgrd=white

solve(N)==>rectangle##name=rect2#x=60#y=30#width=30#height=30#color=black#bkgrd=white

solve(N)==>rectangle##name=rect3#x=90#y=30#width=30#height=30#color=black#bkgrd=white

solve(N)==>rectangle##name=rect4#x=120#y=30#width=30#height=30#color=black#bkgrd=white

in(N,List)==>node#length(valueOf(List),Len),Len is 1#name=nodevalueOf(N)#x=valueOf(N)*30

#y=prologValue(nth0(0,valueOf(List),El),X is El*30)#width=30#height=30#n=1#

data=queenvalueOf(N):valueOf(List)#color=black#bkgrd=green#textcolor=black#type=CIRCLE

in(N,List)==>node#length(valueOf(List),Len),Len > 1#name=nodevalueOf(arg0)#x=160#

y=valueOf(N)*30#width=90#height=30#n=1#data=qvalueOf(N):valueOf(List)#color=black#

bkgrd=green#textcolor=black#type=RECT

References

1. Frühwirth, T.: Theory and practice of constraint handling rules, special issue on
constraint logic programming. J. Logic Program. 37, 95–138 (1998)

2. Abdennadher, S., Sharaf, N.: Visualization of CHR through source-to-source trans-
formation. In: Dovier, A., Costa, V.S. (eds.) ICLP (Technical Communications).
LIPIcs, vol. 17, pp. 109–118. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2012)

CHRAnimation: An Animation Tool for Constraint Handling Rules 109

3. Rodger, S.H.: Introducing computer science through animation and virtual worlds.
In: Gersting, J.L., Walker, H.M., Grissom, S. (eds.) SIGCSE, pp. 186–190. ACM
(2002)

4. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined oper-
ational semantics of constraint handling rules. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

5. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

6. Abdennadher, S., Saft, M.: A visualization tool for constraint handling rules. In:
Kusalik, A.J. (ed.) WLPE (2001)

7. Schmauss, M.: An Implementation of CHR in Java, Master Thesis, Institute of
Computer Science, LMU, Munich, Germany (1999)

8. Ismail, A.: Visualization of Grid-based and Fundamental CHR Algorithms, bach-
elor thesis, the Institute of Software Engineering and Compiler Construction, Ulm
University, Germany (2012)

9. Said, M.A.: Animation of Mathematical and Graph-based Algorithms expressed
in CHR, bachelor thesis, the Institute of Software Engineering and Compiler Con-
struction, Ulm University, Germany (2012)

10. Stasko, J.: Animating algorithms with xtango. SIGACT News 23, 67–71 (1992)
11. Brown, M.H., Sedgewick, R.: A system for algorithm animation. In: Proceedings

of the 11th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1984, pp. 177–186. ACM, New York (1984)

12. Brown, M.: Zeus: a system for algorithm animation and multi-view editing. In:
Proceedings of the 1991 IEEE Workshop on Visual Languages, pp. 4–9 (1991)

13. Baecker, R.M.: Sorting Out Sorting: A Case Study of Software Visualization for
Teaching Computer Science, chap. 24, pp. 369–381. MIT Press, Cambridge (1998)

14. Smolka, G.: The definition of kernel oz. In: Podelski, A. (ed.) Constraint Program-
ming: Basics and Trends. LNCS, vol. 910. Springer, Heidelberg (1995)

15. Meier, M.: Debugging constraint programs. In: Montanari, U., Rossi, F. (eds.) CP
1995. LNCS, vol. 976. Springer, Heidelberg (1995)

16. Frühwirth, T., Holzbaur, C.: Source-to-source transformation for a class of expres-
sive rules. In: Buccafurri, F. (ed.) APPIA-GULP-PRODE, pp. 386–397 (2003)

17. Kerren, A., Stasko, J.T.: Algorithm animation. In: Diehl, S. (ed.) Dagstuhl Seminar
2001. LNCS, vol. 2269, pp. 1–17. Springer, Heidelberg (2002)

18. Sharaf, N., Abdennadher, S., Frühwirth, T. W.: Visualization of Constraint Han-
dling Rules, CoRR, vol. abs/1405.3793 (2014)

19. Abdennadher, S., Frühwirth, T., Meuss, H.: On confluence of constraint handling
rules. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118. Springer, Heidelberg
(1996)

20. Zaki, A., Frühwirth, T.W., Abdennadher, S.: Towards inverse execution of con-
straint handling rules. TPLP 13(4-5) (2013) Online-Supplement

21. Abdennadher, S., Fakhry, G., Sharaf, N.: Implementation of the operational seman-
tics for CHR with user-defined rule priorities. In: Christiansen, H., Sneyers, J.
(eds.) Proceedings of the 10th Workshop on Constraint Handling Rules, pp. 1–12,
Technical report CW 641, (2013)

22. Fakhry, G., Sharaf, N., Abdennadher, S.: Towards the implementation of a source-
to-source transformation tool for CHR operational semantics. In: Gupta, G., Peña,
R. (eds.) LOPSTR 2013, LNCS 8901. LNCS, vol. 8901, pp. 145–163. Springer,
Heidelberg (2014)

110 N. Sharaf et al.

23. Abdennadher, S., Schütz, H.: CHRv: a flexible query language. In: Andreasen, T.,
Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495, pp.
1–14. Springer, Heidelberg (1998)

24. Hundhausen, C., Douglas, S., Stasko, J.: A meta-study of algorithm visualization
effectiveness. J. Vis. Lang. Comput. 13(3), 259–290 (2002)

25. Bistarelli, S., Frühwirth, T., Marte, M.: Soft constraint propagation and solving
in chrs. In: Proceedings of the 2002 ACM Symposium on Applied Computing, pp.
1–5. ACM (2002)

Termination Analysis

Extending the 2D Dependency Pair Framework
for Conditional Term Rewriting Systems

Salvador Lucas1,2(B), José Meseguer1, and Raúl Gutiérrez2

1 CS Department, University of Illinois at Urbana-Champaign,
Champaign, Illinois, USA

2 DSIC, Universitat Politècnica de València, Valencia, Spain
slucas@dsic.upv.es

Abstract. Recently, a new dependency pair framework for proving oper-
ational termination of Conditional Term Rewriting Systems (CTRSs) has
been introduced. We call it 2D Dependency Pair (DP) Framework for
CTRSs because it makes explicit and exploits the bidimensional nature
of the termination behavior of conditional rewriting, where rewriting steps
s → t and rewritings s →∗ t (in zero or more steps) are defined for spe-
cific terms s and t by using an inference system where appropriate proof
trees should be exhibited for such particular goals. In this setting, the hor-
izontal component of the termination behavior concerns the existence of
infinite sequences of rewriting steps, and the vertical component captures
infinitely many climbs during the development of a proof tree for a single
rewriting step. In this paper we extend the 2D DP Framework for CTRSs
with several powerful processors for proving and disproving operational
termination that specifically exploit the structure of conditional rules. We
provide the first implementation of the 2D DP Framework as part of the
termination tool mu-term. Our benchmarks suggest that, with our new
processors, the 2D DP Framework is currently the most powerful tech-
nique for proving operational termination of CTRSs.

Keywords: Conditional rewriting ·Dependency pairs ·Operational ter-
mination · Program analysis

1 Introduction

In [7], the Dependency Pair Framework for Term Rewriting Systems [3] has been
extended to prove operational termination [8] of Conditional Term Rewriting
Systems (CTRSs). We faithfully capture the bidimensional nature of infinite
computations with CTRSs: there can be infinite sequences of rewriting steps
(a horizontal dimension), but there can also be infinitely many failing attempts

Partially supported by NSF grant CNS 13-19109, EU (FEDER), Spanish MINECO
projects TIN2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and GV project
PROMETEO/2011/052. Salvador Lucas’ research was developed during a sabbati-
cal year at the UIUC and was also supported by GV grant BEST/2014/026. Raúl
Gutiérrez is also supported by Juan de la Cierva Fellowship JCI-2012-13528.

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 113–130, 2015.
DOI: 10.1007/978-3-319-17822-6 7

114 S. Lucas et al.

to satisfy the conditions of the rules when a single rewriting step is attempted
(a vertical dimension). This twofold origin of infinite computations is captured
by two sets of 2D Dependency Pairs (2D DPs), see Sect. 3. Besides characterizing
operational termination of CTRSs in terms of 2D DPs, a 2D DP Framework for
mechanizing proofs of operational termination of CTRSs is introduced. A central
notion is that of processor, which transforms our termination problems into sets
of simpler termination problems which can then be handled independently. This
divide and conquer approach is paramount in the (2D) DP Framework.

In [7], only four processors were introduced, and three of them were close to
well-known processors in the DP Framework: the SCC processor (which permits
the use of graph techniques to decompose termination problems), the Reduction
Triple Processor (which uses orderings to simplify termination problems) and a
shifting processor which just calls the DP Framework for TRSs from the 2D DP
Framework when TRSs, rather than CTRSs, are involved. As the benchmarks
in this paper show, with those processors we are unable to outperform existing
tools, like AProVE [5] and VMTL [11], that prove operational termination of
CTRSs by using transformations into TRSs.

Example 1. The operational termination of the CTRS R [10, Example 17]:

a → h(b) (1)
a → h(c) (2)

f(x) → y ⇐ a → h(y) (3)
g(x, b) → g(f(c), x) ⇐ f(b) → x, x → c (4)

cannot be proved with the processors in [7]. We define new processors to trans-
form and analyze the (satisfaction of the) conditional part of the rules. They
detect that x in (4) is bound only to f(b) or c in any rewriting step with (4).
This yields a more precise assessment of the role of the rule in the termination
behavior and finally leads to a proof of operational termination of R.

Our contributions in this paper are the following: (1) we refine the calculus of
the graph that we use to represent termination problems (Sect. 4); (2) we adapt
Hirokawa and Middeldorp’s subterm criterion for TRSs [6] (Sect. 5); (3) we define
new processors that exploit the simplification of the conditional part of the rules
that participate in a given CTRS problem by either removing conditions that unify
or by refining other conditions by narrowing (Sect. 6); (4) we extend and generalize
the narrowing processor for TRSs in [3] (Sect. 7); (5) we introduce a new processor
to specifically disprove operational termination of CTRSs (Sect. 8); then,
(6) we describe the implementation of the 2D-DP framework as part of mu-term
[2] and (7) provide some benchmarks showing that the 2D DP Framework with the
new processors outperforms all existing tools for proving operational termination
of CTRSs (Sect. 9).

2 Preliminaries

We use the standard notations in term rewriting (see, e.g., [9]). In this paper,
X denotes a countable set of variables and F denotes a signature, i.e., a set of

Extending the 2D Dependency Pair Framework 115

(Refl) t →∗ t (Cong)

si → ti
f(s1, . . . , si, . . . , sk) → f(s1, . . . , ti, . . . , sk)

for all f ∈ F and 1 ≤ i ≤ k = ar(f)

(Tran)

s → u u →∗ t

s →∗ t (Repl)

σ(s1) →∗ σ(t1) . . . σ(sn) →∗ σ(tn)

σ(�) → σ(r)
for � → r ⇐ s1 → t1 · · · sn → tn ∈ R

and substitutions σ.

Fig. 1. Inference rules for conditional rewriting

function symbols {f, g, . . .}, each with a fixed arity given by a mapping ar : F →
N. The set of terms built from F and X is T (F ,X). The symbol labeling the
root of t is denoted as root(t). The set of variables occurring in t is Var(t). Terms
are viewed as labelled trees in the usual way. Positions p, q, . . . are represented
by chains of positive natural numbers used to address subterms t|p of t. The set
of positions of a term t is Pos(t). Given Δ ⊆ F , PosΔ(t) denotes the set of
positions p ∈ Pos(t) of subterms t|p of t that are rooted by a symbol in Δ (i.e.,
root(t|p) ∈ Δ). A substitution is a mapping from variables into terms which is
homomorphically extended to a mapping from terms to terms. A conditional rule
is written � → r ⇐ s1 → t1, · · · , sn → tn, where �, r, s1, t1, . . . , sn, tn ∈ T (F ,X)
and � /∈ X . As usual, � and r are called the left- and right-hand sides of the
rule, and the sequence s1 → t1, · · · , sn → tn (often abbreviated to c) is the
conditional part of the rule. We often write si → ti ∈ c to refer to the i-th
atomic condition in c or s → t ∈ c if the position of the atomic condition in c
does not matter. Rules � → r ⇐ c are classified according to the distribution
of variables as follows: type 1 (or 1-rules), if Var(r) ∪ Var(c) ⊆ Var(�); type
2, if Var(r) ⊆ Var(�); type 3, if Var(r) ⊆ Var(�) ∪ Var(c); and type 4, if no
restriction is given. A CTRS R is a set of conditional rules; R is called an
n-CTRS if it contains only n-rules; A 3-CTRS R is called deterministic if for
each rule � → r ⇐ s1 → t1, . . . , sn → tn in R and each 1 ≤ i ≤ n, we have
Var(si) ⊆ Var(�) ∪ ⋃i−1

j=1 Var(tj). Given R = (F , R), we consider F as the
disjoint union F = C � D of symbols c ∈ C (called constructors) and symbols
f ∈ D (called defined functions), where D = {root(l) | (l → r ⇐ c) ∈ R} and
C = F − D. Terms t ∈ T (F ,X) such that root(t) ∈ D are called defined terms.
We write s →R t (resp. s →∗

R t) iff there is a closed proof tree for s → t (resp.
s →∗ t) using the inference system in Fig. 1. A proof tree T (for a CTRS R,
using the inference system in Fig. 1) is closed whenever it is finite and contains
no open goals; it is well-formed if it is either an open goal, or a closed proof
tree, or a derivation tree of the form T1 ··· Tn

G where there is i, 1 ≤ i ≤ n such
that T1, . . . , Ti−1 are closed, Ti is well-formed but not closed, and Ti+1, . . . , Tn

are open goals. A proof tree T for R is a proper prefix of a proof tree T ′ if there
are one or more open goals G1, . . . , Gn in T such that T ′ is obtained from T
by replacing each Gi by a derivation tree Ti with root Gi. We denote this as
T ⊂ T ′. An infinite proof tree for R is an infinite increasing chain of finite trees,
that is, a sequence {Ti}i∈N such that for all i, Ti ⊂ Ti+1. An infinite proof tree is

116 S. Lucas et al.

well-formed if it is an ascending chain of well-formed finite proof trees. Intu-
itively, well-formed trees are the trees that an interpreter would incrementally
build when trying to solve one condition at a time from left to right. A CTRS
R is operationally terminating if no infinite well-formed tree for a goal s →∗ t
exists.

3 2D Dependency Pairs for CTRSs

The definition of 2D dependency pairs makes explicit the two dimensions of the
(non)terminating behavior of CTRSs. We provide an intuition of the main ingre-
dients in Definition 1 below. Complete technical details and further motivation
can be found in [7]. In the following, given a signature F and f ∈ F , we let f �

be a new fresh symbol (often called tuple symbol or DP-symbol) associated to
a symbol f [1]. Let F � be the set of DP-symbols associated to symbols in F .
As usual, for t = f(t1, . . . , tk) ∈ T (F ,X), we write t� to denote the marked term
f �(t1, . . . , tk).

1. The component DPH (R) of our 2D DPs given below captures a horizontal
dimension corresponding to the existence of infinite sequences of rewrite steps.
Let DRules(R, t) be the set of (possibly conditional) rules in R defining
root(t) which depend on other defined symbols in R:

DRules(R, t) = {� → r ⇐ c ∈ R | root(�) = root(t), r /∈ T (C,X)}
This leads to our first component DPH (R) of 2D DPs:

DPH (R) = {�� → v� ⇐ c | � → r ⇐ c ∈ R, r � v, � � v,DRules(R, v)
= ∅}
2. The vertical dimension corresponds to (possibly empty) rewrite sequences

infinitely often interrupted in steps with rules � → r ⇐ ∧n
i=1 si → ti by failed

attempts to evaluate some of the conditions. Given a term t, RulesC (R, t) is
the set of ‘proper’ conditional rules in R defining the root symbol of t:

RulesC (R, t) = {� → r ⇐
n∧

i=1

si → ti ∈ R | root(�) = root(t),n > 0}

This set collects the rules that are primarily involved in such kind of transitions
of the computations to upper levels. We let URules(R, t) = DRules(R, t) ∪
RulesC (R, t). This leads to our second group of 2D DPs:

DPV (R) = {�� → v� ⇐
k−1∧
j=1

sj → tj | � → r ⇐
n∧

i=1

si → ti ∈ R,

∃k, 1 ≤ k ≤ n, sk � v, � � v,URules(R, v)
= ∅}
The defined subterms in the conditional part of the rules that originate the
pairs in DPV (R) are collected in the following set, which we use below:

VC(R) = {v | � → r ⇐
n∧

i=1

si → ti ∈ R,

∃k, 1 ≤ k ≤ n, sk � v, � � v,URules(R, v)
= ∅}

Extending the 2D Dependency Pair Framework 117

The vertical transitions in computations can be separated by finite sequences
of rewriting steps that correspond to the evaluation of the (instances of the)
conditions si → ti as reachability conditions σ(si) →∗ σ(ti). Since the (finite)
rewrite sequences connecting vertical transitions must include proper condi-
tional rules that promote a new vertical transition, we define:

MU(R, t) = URules(R, t) ∪
⋃

(l→r⇐c)∈DRules(R,t)

⋃
v∈DSubterm(R,r)

MU(R, v)

and give our third (and last) group of dependency pairs, that are aimed to
provide appropriate connections between pairs in DPV (R) as follows:

DPVH (R) =
⋃

w∈VC(R)

{�� → v� ⇐ c | � → r ⇐ c ∈ MU(R, w),

r � v, � � v,URules(R, v)
= ∅}
where MU(R, w) = ∅ if MU(R, w) is a TRS (i.e., no rule has a conditional
part) and MU(R, w) = MU(R, w) otherwise.

We can provide now the definition of 2D-Dependency pairs for CTRSs.

Definition 1 (2D-Dependency Pairs for CTRSs). Let R be a CTRS. The
2D-dependency pairs (2D-DPs) of R are given by the triple DP2D(R) = (DPH (R),
DPV (R),DPVH (R)).

Example 2. For R in Example 1,

DPH (R) : G(x, b) → G(f(c), x) ⇐ f(b) → x, x → c (5)
DPV (R) : G(x, b) → F(b) (6)

and DPVH (R) = ∅. DPH (R) is obtained by marking (here just capitalizing the
root symbols of) the left- and right-hand sides g(x, b) and g(f(c), x) of (4) and
keeping the conditional part. DPV (R) is obtained from the left-hand side g(x, b)
of (4) and the first condition f(b) of (4) which are marked and combined as a
new rule whose conditional part is empty in this case.

Now, operational termination of CTRSs is characterized as the absence of infinite
chains of the following kind [7, Definition 5].

Definition 2. Let P,Q,R be CTRSs. A (P,Q,R)-chain is a sequence (αi)i≥1

where αi : ui → vi ⇐ ci ∈ P, together with a substitution σ satisfying that, for all
i ≥ 1, (1) σ(s) →∗

R σ(t) for all s → t ∈ ci and (2) σ(vi)(→∗
R ◦ Λ−→=

Q)∗σ(ui+1),

where s
Λ−→=

Q t if s = t or there is � → r ⇐ c ∈ Q and a substitution θ
such that s = θ(�), t = θ(r) and θ(u) →∗

R θ(v) for all u → v ∈ c. We assume
Var(αi)∩Var(αj) = ∅, if i
= j (rename the variables if necessary). A (P,Q,R)-
chain is called minimal if for all i ≥ 1, σ(vi) is R-operationally terminating.

Rules Q in (P,Q,R) may contribute connections between σ(vi) and σ(ui+1)
using root steps only. We often speak of (P,Q,R, a)-chains (or (P,Q,R,m)-
chains), if arbitrary (minimal) chains are considered.

118 S. Lucas et al.

3.1 2D Dependency Pair Framework for CTRSs

In the 2D DP Framework, a CTRS problem is a tuple τ = (P,Q,R, e), where
P, Q and R are CTRSs, and e ∈ {a,m} is a flag. We call τ finite if there is no
infinite (P,Q,R, e)-chain; τ is infinite if R is operationally nonterminating or
there is an infinite (P,Q,R, e)-chain. A deterministic 3-CTRS R is operationally
terminating iff the two (initial) CTRS problems τH = (DPH (R), ∅,R,m) and
τV = (DPV (R),DPVH (R),R,m) are finite [7, Theorem 2]. A CTRS processor
P maps CTRS problems into sets of CTRS problems. Alternatively, it can also
return “no”. P is sound if for all CTRS problems τ , if P(τ) = {τ1, . . . , τn} for
some n ≥ 0 and for all i, 1 ≤ i ≤ n, τi is finite, then τ is finite. P is complete
if for all CTRS problems τ , if P(τ) = no or there is τ ′ ∈ P(τ) such that τ ′ is
infinite, then τ is infinite.

Example 3. According to Example 2, for R in Example 1, τH= ({(5)}, ∅,R,m)
and τV = ({(6)}, ∅,R,m). Some processors apply if e = m only (e.g., Theorems
2 and 7). With m in τH and τV more processors can be potentially used.

In order to prove a deterministic 3-CTRS operationally terminating, we con-
struct two trees whose inner nodes are labeled with CTRS problems, the leaves
with “yes” or “no”, and the roots with τH and τV , respectively. For every inner
node n with label τ , there is a processor P satisfying one of the following con-
ditions: (1) If P(τ) = no, then n has just one child n′ with label “no”; (2) If
P(τ) = ∅ then n has just one child n′ with label “yes”; (3) If P(τ) = {τ1, . . . , τk}
with k > 0, then n has exactly k children n1, . . . nk with labels τ1, . . . , τk, respec-
tively. If all leaves of both trees are labeled with “yes” and all used processors
are sound, then R is operationally terminating. If there is a leaf labeled with
“no” in one of the trees, and all processors used on the path from the root to
this leaf are complete, then R is operationally nonterminating.

Remark 1. In the following, when defining a processor P on a CTRS problem τ ,
we describe its specific action under the specified conditions. If such conditions
do not hold, then we assume P(τ) = {τ} (it does nothing). Furthermore, we
tacitly assume P, Q and R to be deterministic 3-CTRSs.

4 Removing Useless Connection Pairs

Connections between rules in P become arcs in the graph G(τ) associated to τ ,
whose set of nodes is P; there is an arc from α to α′ iff (α, α′) is a (P,Q,R, e)-
chain [7, Definition 9]. We estimate them using abstraction and unification
[7, Section 6.1], thus obtaining the estimated graph EG(τ) [7, Definition 11].
Terms s and t unify (written s =? t) if there is a substitution σ (called a unifier)
such that σ(s) = σ(t); when this happens, there is a most general unifier (mgu)
θ of s and t which is unique for s and t up to renaming of variables. In the
following, if terms s and t unify with mgu θ, we often write s =?

θ t to make it
explicit.

Extending the 2D Dependency Pair Framework 119

Example 4. Consider the following deterministic 3-CTRS R [7]:

g(a) → c(b) b → f(a) f(x) → y ⇐ g(x) → c(y)

where

DPH (R) : G(a) → B (7)
DPV (R) : F(x) → G(x) (8)

DPVH (R) : G(a) → B (9)
B → F(a) (10)

For τV = ({(8)},{(9),(10)}, R,m), the estimated graph EG(τV) is

8

The ‘component Q’ of τV is essential: the arc is settled because the right-hand
side G(a) of (8) ‘root-rewrites’ into F(a) using DPVH (R): G(a) Λ→(9) B

Λ→(10) F(a).
No rewriting with R is possible. Now, F(a) unifies with the left-hand side F(x).

In some cases, no pair in Q can be used for this purpose and we can safely remove
Q from the CTRS problem. This is the focus of our first processor (Theorem 1).
The following definitions are necessary. Following [4] (also [7], where we used it
to estimate the graph), we let tcapR be tcapR(x) = y, if x is a variable, and

tcapR(f(t1, . . . , tk)) =

⎧⎨
⎩

f(tcapR(t1), . . . ,tcapR(tk)) if ∀� → r ⇐ c ∈ R,
� and f(tcapR(t1), . . . ,tcapR(tk)) do not unify
y otherwise

where y is a fresh variable. We assume that � shares no variable with f(tcapR(t1),
. . . ,tcapR(tk)). As discussed in [4,7], with tcapR we approximate reachability
problems by means of unification.

Theorem 1 (Removing Connection Pairs). Let P, Q and R be CTRSs. Let
Qc = {u′ → v′ ⇐ c′ ∈ Q | ∃u → v ⇐ c ∈ P,tcapR(v′) =? u}. If Qc = ∅, then

PRQ(P,Q,R, e) = {(P, ∅,R, e)}
is a sound and complete processor.

Example 5. For the CTRS R (from the Termination Problem Data Base, TPDB,
file TRS Conditional/Mixed CTRS/fib.xml):

plus(x, y) → y′ ⇐ x → 0, y → y′

plus(x, y) → s(plus(x′, y′)) ⇐ x → s(x′), y → y′

fib(0) → pair(0, s(0))
fib(s(x)) → pair(z, plus(y, z)) ⇐ fib(x) → pair(y, z)

we have:

DPH (R) : PLUS(x, y) → PLUS(x′, y′) ⇐ x → s(x′), y → y′ (11)
FIB(s(x)) → PLUS(y, z) ⇐ fib(x) → pair(y, z) (12)

DPV (R) : FIB(s(x)) → FIB(x) (13)

120 S. Lucas et al.

DPVH (R) = DPH (R), and τH=({(11),(12)}, ∅,R,m). For the rhs PLUS(x′, y′)
of (11), we have that tcapR(PLUS(x′, y′)) = PLUS(x′′, y′′) and FIB(s(x)) do
not unify. A similar observation holds for the rhs PLUS(y, z) of (12). Thus, for
τV =({(13)},{(11),(12)},R,m), PRQ(τV) = {τV 1}, where τV 1=({(13)}, ∅,R,m).

PRQ can be seen as a refinement of PSCC [7], which uses a similar approach.

Remark 2 (Notation). Given (possibly empty) sets of rules R,S and a rule α :
� → r ⇐ c, we denote the (possible) replacement of α in R by the rules S as:

R[S]α =
{

(R − {α}) ∪ S if α ∈ R
R otherwise

We let c[c′]i be the condition obtained by replacing in c the i-th atomic condition
si → ti ∈ c by the sequence of conditions c′. If c′ is empty, we write c[�]i.

5 Subterm Processor

In this section, we generalize the subterm processor for TRSs [6]. In the following,
we write s � t iff t is a subterm of s, and s � t iff s � t and s
= t.

Definition 3 (Root Symbols of a CTRS). Let R be a CTRS. The set of
root symbols in the left- and right-hand sides of the rules in R is:

Root(R) = {root(�) | � → r ⇐ c ∈ R} ∪ {root(r) | � → r ⇐ c ∈ R}
Definition 4 (Simple Projection). Let R be a CTRS. A simple projection
for R is a (partial) function π : Root(R) → N such that π(f) ∈ {1, . . . , ar(f)}
(π is undefined for constant symbols in Root(R)).

We also use π to denote the mapping on terms given by π(f(t1, . . . , tk)) =
tπ(f) if f ∈ Root(R) and k > 0, and π(t) = t for any other term t.

Given a simple projection π for a CTRS R, we let π(R) = {π(�) → π(r) |
� → r ⇐ c ∈ R}. Note that the conditions are just dismissed. Given a CTRS
problem (P,Q,R, e), the subterm processor removes from P and Q those rules
u → v ⇐ c whose left-hand side u contains an immediate subterm π(u) which
is a strict superterm of an immediate subterm π(v) of v (i.e., π(u) � π(v)).
In the following result we say that a CTRS R is collapsing if there is a rule
� → r ⇐ c ∈ R such that r is a variable. We also write DR to denote the set of
symbols which are defined by rules in R, i.e., DR = {root(�) | � → r ⇐ c ∈ R}.

Theorem 2 (Subterm Processor). Let P, Q, and R be CTRSs such that P
and Q are not collapsing, and (Root(P)∪Root(Q))∩DR = ∅. Let π be a simple
projection for P ∪ Q, and α : u → v ⇐ c ∈ P ∪ Q be such that π(P) ∪ π(Q) ⊆ �
and π(u) � π(v). Then,

P�(P,Q,R,m) = {(P[∅]α,Q[∅]α,R,m)}
is a sound and complete processor.

Extending the 2D Dependency Pair Framework 121

Example 6. For τV 1=({(13)}, ∅,R,m) in Example 5, with π(FIB) = 1, P�(τV 1) =
{(∅, ∅,R,m)} because π(FIB(s(x))) = s(x) � x = π(FIB(x)). Since (∅, ∅,R,m) is
trivially finite, τV is also finite.

P� does not apply to τH in Example 5 to remove (12). This is because no variable
in the right-hand side PLUS(y, z) is in the corresponding left-hand side FIB(s(x)).
Thus s(x) cannot be seen as a superterm of any subterm of PLUS(y, z).

6 Simplifying the Conditions of the Rules

The condition c of a rule � → r ⇐ c controls its applicability to specific redexes
σ(�) depending on the satisfaction of the instantiated condition σ(c). However,
dealing with the conditional part of the rules often requires specialized techniques
(for instance, for solving conditional constraints as in the removal triple processor
of [7, Theorem 10]) which can make proofs difficult. In other cases, the rules are
just useless, because they cannot be applied at all, but establishing uselessness
to take advantage of it in the analysis of termination is often difficult.

Example 7. Consider the CTRS R [9, Example 7.2.45]:

a → a ⇐ b → x, c → x (14)
b → d ⇐ d → x, e → x (15)

c → d ⇐ d → x, e → x (16)

where a, . . . , e are constants and x is a variable. Powerful tools like AProVE do
not find a proof of operational termination of R by using transformations. Our
implementation of the processors in [7] cannot prove it either. Clearly, (15) and
(16) cannot be used in any rewriting step (in any (P,Q,R)-chain) because d and
e are irreducible and the only way to get the condition d → x, e → x satisfied is
the instantiation of x to both d and e, which is not possible. The only processor
in [7] which specifically addresses the use of the information in the conditions of
the rules is PUR which removes unsatisfiable rules [7, Theorems 11 and 12], i.e.,
those that cannot be used in any chain because the conditional part is unsatisfi-
able. PUR uses a well-founded ordering � which, under appropriate conditions,
removes � → r ⇐ c, if σ(t) � σ(s) holds for some s → t ∈ c and all substitutions
σ. In our example, we should have x � d or x � e (for all instances of x). This
is clearly impossible because, in particular, it would require d � d or e � e,
which contradicts well-foundedness of �. Some preprocessing on the conditions
is required before achieving a proof (see Examples 9 and 10 below).

The common feature of the new processors in this section is the simplification
of the conditional part c of the rules in the CTRSs of a given CTRS problem.

6.1 Simplification by Unification

Some conditions s → t in the conditional part c of a rule � → r ⇐ c cannot start
any (specific) rewriting computation before reaching the corresponding instance

122 S. Lucas et al.

of t. They can then be viewed as unification problems s =? t. Therefore, s → t
can be removed from c if we instantiate the rule with the most general unifier θ
of s and t. In the following, given a CTRS R, we say that a non-variable term
t is a narrowing redex (or a narrex, for short) if there is a rule � → r ⇐ c ∈ R
such that Var(t) ∩ Var(�) = ∅ and t and � unify. We say that NarrR(t) holds if
t contains a narrex, i.e., there is a non-variable position p ∈ PosF (t) such that
t|p is an R-narrex. In the following results, given a rule α : � → r ⇐ c with
n conditions, some i, 1 ≤ i ≤ n, and a substitution θ, we let αθ,i be the rule
αθ,i : θ(�) → θ(r) ⇐ θ(c[�]i).

Theorem 3 (Simplifying Unifiable Conditions). Let P, Q, and R be CTRSs.
Let α : � → r ⇐ c ∈ P ∪ Q ∪ R and si → ti ∈ c such that: (1) si is linear, (2)
NarrR(si) does not hold, (3) si =?

θ ti, (4) for all s → t ∈ c[�]i, Var(si)∩Var(s) =
∅, (5) for all s → t ∈ c, Var(si)∩Var(t) = ∅, and (6) Var(si)∩Var(r) = ∅. Then,

PSUC (P,Q,R, e) = {(P[{αθ,i}]α,Q[{αθ,i}]α,R[{αθ,i}]α, e)}

is a sound and complete processor.

Remark 3. Requirement (5) in Theorem 3 (plus determinism of P, Q, and R)
implies that Var(si) ⊆ Var(�). Indeed, every variable in s which is not in � must
occur in some of the (previous) t, which is forbidden by (5).

Example 8. For τH in Example 5, the estimated graph EG(τH) is

11 12

With PSCC , which decomposes a CTRS problem τ into as many CTRS prob-
lems as Strongly Connected Components (i.e., maximal cycles) are in EG(τ) [7,
Theorem 9], PSCC (τH) = {τH1}, where τH1=({(11)}, ∅,R,m). We use PSUC to
transform τH1 into {τH2}, where τH2=({(17)}, ∅,R,m) for the rule

PLUS(s(x′), y) → PLUS(x′, y′) ⇐ y → y′ (17)

Now, PSUC (τH2) = {τH3}, for τH3=({(18)}, ∅,R,m) with

PLUS(s(x′), y′) → PLUS(x′, y′) (18)

P� removes (18) from τH3 (with π(PLUS) = 1), to yield a singleton containing a
trivially finite CTRS problem τH4 = (∅, ∅,R,m) which (after an ‘administrative’
application of PSCC to yield an empty set that becomes a leaf with label yes
in the tree of the 2D DP Framework) proves τH in Example 5 finite. With the
proof of finiteness of τV in Example 6, we conclude that R in Example 5 is
operationally terminating (see Fig. 2).

Extending the 2D Dependency Pair Framework 123

τH

PSCC

τH1

PSUC

τH2

PSUC

τH3

P�

τH4

yes

PSCC

τV

PRQ

τV 1

P�

τV 2

PSCC

yes

Fig. 2. Operational termination of R in example 5 in the 2D DP framework

Example 9. For R in Example 7, we have:

DPH (R) : A → A ⇐ b → x, c → x (19) DPV (R) : A → B (20)
A → C ⇐ b → x (21)

and DPVH (R) = ∅. Therefore, τH = (DPH (R), ∅,R,m), and τV = (DPV (R),
DPVH (R),R,m). We use PSUC (twice) to simplify (15) and (16), thus trans-
forming τH into {τH1}, where τH1=({(19)}, ∅, {(14),(22),(23)}, m) with

b → d ⇐ e → d (22) c → d ⇐ e → d (23)

Now, in contrast to PUR in [7], our following processor uses a syntactic criterion
to remove those rules that cannot be used due to the unsatisfiability of the
conditional part of the rule.

Theorem 4 (Irreducible Conditions). Let P, Q, and R be CTRSs. Let α :
� → r ⇐ c ∈ P ∪Q∪R and s → t ∈ c be such that: (1) s is linear, (2) NarrR(s)
does not hold, and (3) s and t do not unify. Then,

PIC (P,Q,R, e) = {(P[∅]α,Q[∅]α,R[∅]α, e)}
is a sound and (if α /∈ R or e = a) complete processor.

Example 10. For τH1 inEx. 9,PIC (τH1) = {τH2},with τH2=({(19)},∅,{(16)},m).
With PSUC , we obtain τH3=({(19)}, ∅,{(16)}, m), where

A → A ⇐ c → b (24)

124 S. Lucas et al.

Note that this could not be done directly on τH because NarrR(b) is true.
In contrast, Narr{(14)}(b) is not. Now, PIC (τH3) = {(∅, ∅,{(14)},m)}, which is
finite, thus proving τH in Example 9 finite as well. We prove τV finite by using
PSCC in [7] and then conclude operational termination of R in Example 7.

6.2 Narrowing the Conditions of the Rules

Reachability problems σ(s) →∗ σ(t) are often investigated using narrowing and
unification conditions directly over terms s and t, thus avoiding the ‘generation’
of the required substitution σ. In the following we define the notion of narrowing
that we use for CTRSs as a suitable extension of the usual definition for TRSs.

Definition 5 (Narrowing with CTRSs). Let R be a CTRS. A term s nar-
rows to a term t (written s �R,θ t or just s � t), iff there is a nonvariable
position p ∈ PosF (s) and a rule � → r ⇐ ∧n

i=1 si → ti in R (sharing no
variable with s) such that:

1. s|p =?
θ0

�,
2. for all i, 1 ≤ i ≤ n, ϑi−1(si) �∗

R,θi
t′i and t′i =?

τi θi(ϑi−1(ti)), where ϑ0 = θ0
and for all i > 0, ϑi = τi ◦ θi ◦ ϑi−1, and

3. t = θ(s[r]p), where θ = ϑn.

The reflexive and transitive closure �∗ of � is �∗ =
⋃

i≥0 �i, where s �0
R,ε s,

and s �n
R,θn

t if s �R,θ u, u �n−1
R,θn−1

t, and θn = θn−1 ◦ θ. In all narrowing
steps we assume that a renamed rewrite rule � → r ⇐ c has been used in such a
way that no variable in the rule occurs in any previous term in the sequence.

A CTRS R has no strict overlaps if for all α : � → r ⇐ c ∈ R and p ∈
PosF (�) − {Λ}, there is no rule α′ : �′ → r′ ⇐ c′ such that Var(�) ∩ Var(�′)
= ∅
(rename the variables if necessary; α and α′ can be the same rule) and �|p and �′

unify. In the following results, given a CTRS R, we use the following notation:

– Rules(R, f) = {l → r ⇐ c ∈ R | root(l) = f } is the set of rules in R defining
a symbol f and Rules(R, t) = ∪f ∈F(t)Rules(R, f) is the set of rules in R
defining the symbols in term t.

– Given a term s, N1(R, s) represents the set of one-step R-narrowings issued
from s: N1(R, s) = {(t, c, θ) | s �
→r⇐c,θ t, � → r ⇐ c ∈ R}.

– Given a rule α : � → r ⇐ c with n conditions and i, 1 ≤ i ≤ n, we let

N (R, α, i) = {θ(�) → θ(r) ⇐ θ(c)[θ(c′), w → θ(ti)]i | si → ti ∈ c, (w, c′, θ) ∈ N1(R, si)}

Theorem 5 (Narrowing the Conditions of Rules). Let P, Q, and R be
CTRSs. Let α : u → v ⇐ c ∈ P ∪ Q and si → ti ∈ c be such that: (1) si is
linear, (2) Rules(R, si) have no strict overlap, (3) Var(si) ∩ Var(ti) = ∅, and
(4) si and ti do not unify. Then,

PNC (P,Q,R, e) = {(P[N (R, α, i)]α,Q[N (R, α, i)]α,R, e)}
is a sound and complete processor.

Extending the 2D Dependency Pair Framework 125

The unification requirement is essential for the correctness of PNC .

Example 11. Consider the CTRS {a → b, c → d ⇐ a → a}. The left-hand side
a of the condition in the second rule narrows into b. But c → d ⇐ b → a (as
obtained by PNC), now forbids the rewriting step c → d.

In order to avoid the problem illustrated by the previous example, our next
processor is able to remove the requirement of unification by combining the
transformations in Theorems 3 and 5 into a single processor.

Theorem 6 (Simplification and Narrowing). Let P, Q, and R be CTRSs.
Let α : u → v ⇐ c ∈ P ∪ Q and si → ti ∈ c be such that: (1) si is linear,
(2) Rules(R, si) have no strict overlap, (3) Var(si) ∩ Var(ti) = ∅, (4) si =?

θ ti,
(5) for all sj → tj ∈ c, i
= j, Var(si) ∩ Var(sj) = ∅, (6) for all sj → tj ∈ c,
Var(si) ∩ Var(tj) = ∅, and (7) Var(si) ∩ Var(v) = ∅. Then,

PSUNC (P,Q,R, e) = {(P[N (R, α, i) ∪ {αθ,i}]α,Q[N (R, α, i) ∪ {αθ,i}]α,R, e)}

is a sound and complete processor.

Example 12. For τH in Example 3, rule (5) is transformed by PSUNC (τH) =
{τH1}, with τH1=({(25),(26),(27)},∅,R,m) where

G(x, b) → G(f(c), x) ⇐ a → h(b), b → x, x → c (25)
G(x, b) → G(f(c), x) ⇐ a → h(c), c → x, x → c (26)

G(f(b), b) → G(f(c), f(b)) ⇐ f(b) → c (27)

Using now PSUC twice we obtain τH2=({(28),(29),(27)},∅,R,m), where

G(b, b) → G(f(c), b) ⇐ a → h(b), b → c (28)
G(c, b) → G(f(c), c) ⇐ a → h(c), c → c (29)

We use PIC to remove (28) from τH2 due to its condition’s unsatisfiability. The
graph for the obtained problem τH3=({(27),(29)},∅,R,m) is

27 29

With PSCC we obtain τH4 = PSCC (τH3)=({(27)},∅,R,m). The proof contin-
ues by proving τH4 finite using the sequence PNC , PIC , PSUC , and PNR (see The-
orem 7 below), with intermediate applications of PSCC . The complete proof can
be found in the benchmarks page (see below) under the label jlap09-ex17.trs.

7 Narrowing the Right-Hand Sides of Rules

As mentioned in Sect. 6.2, reachability problems are often approximated or
advanced by narrowing. The connection between two rules α : u → v ⇐ c and

126 S. Lucas et al.

α′ : u′ → v′ ⇐ c′ ∈ P within a (P,Q,R)-chain is a kind of reachability prob-
lem σ(v)(→∗

R ◦ Λ−→=
Q)∗σ(u′), which can also be investigated using narrowing.

If there is a (nontrivial, i.e., involving some rewriting with R or Q) connection
between α and α′ as above, then after narrowing v into all its possible narrowings
v1, . . . , vn, the connection will be exhibited by some of the vi. The good point
is that connections between v and u that are obtained by the approximations,
but which are unfeasible, may be removed by other processors (typically PSCC),
thus leading to a more precise analysis. In the following, given a CTRS R, a rule
α : u → v ⇐ c and a narrowing step v �
→r⇐d,θ w on the right-hand side v of
α, we say that θ(u) → w ⇐ θ(c), θ(d) is a narrowing of α. Thus, we let

N (R, α) = {θ(u) → w ⇐ θ(c), θ(d) | v ��→r⇐d,θ w, α = u → v ⇐ c, � → r ⇐ d ∈ R}

Theorem 7 (Narrowing with R). Let P, Q, and R be CTRSs. Let u → v ⇐
c ∈ P be such that v is linear, and for all u′ → v′ ⇐ c′ ∈ P ∪ Q (with possibly
renamed variables), v and u′ do not unify. Then,

PNR(P,Q,R,m) = {(P[N (R, α)]α,Q,R,m)}

is a sound and complete processor.

In the following processor, we use the rules in Q to narrow the right-hand sides
of pairs u → v ⇐ c ∈ P at the root only. We now let

NΛ(R, α) = {θ(u) → w ⇐ θ(c), θ(d) | v
Λ��→r⇐d,θw, α = u → v ⇐ c, � → r ⇐ d ∈ R}

Theorem 8 (Narrowing with Q). Let P, Q, and R be CTRSs.Let u → v ⇐
c ∈ P be such that v is linear, NarrR(v) does not hold, and for all u′ → v′ ⇐
c′ ∈ P (with possibly renamed variables), v and u′ do not unify. Then,

PNQ(P,Q,R, e) = {(P[NΛ(Q, α)]α,Q,R, a)}

is a sound and complete processor.

Example 13. We apply PNQ to τV in Example 4 to obtain PNQ(τV) = {τV 1}
where τV 1=({(30)},{(9),(10)},R,m) with

F(a) → B (30)

And yet PNQ(τV 1) = {τV 2} where τV 2=({(31)},{(9),(10)},R, a) with

F(a) → F(a) (31)

This is an infinite CTRS problem, which we will handle with our last processor,
introduced in the following section.

Extending the 2D Dependency Pair Framework 127

8 Detection of Infinite CTRS Problems

The following processor detects a simple kind of infinite CTRS problems.

Theorem 9 (Infinite Problem). Let P, Q, and R be CTRSs. Let u → v ⇐
c ∈ P and θ, ϑ be substitutions such that for all s → t ∈ c, ϑ(s) →∗

R ϑ(t) and
ϑ(v) = θ(ϑ(u)). Then,

PInf (P,Q,R, e) = no

is a sound and complete processor.

Note that ensuring the existence of a substitution ϑ that guarantees that the
reachability conditions ϑ(s) →∗

R ϑ(t) hold is essential.

Example 14. With τV 2 in Example 13 we have PInf (τV 2) = no, witnessing that
R in Example 4 is not operationally terminating.

In Example 14 we easily proved τV 2 in Example 4 infinite because rule (31) has
no conditional part. Thus, we do not need to check the condition ϑ(s) →∗

R ϑ(t)
prescribed in Theorem 9, and we actually let ϑ be the identity substitution. For
pairs u → v ⇐ c ∈ P where c is not empty, we can use the processor only if we
find a substitution ϑ such that ϑ(s) →∗

R ϑ(t) holds for all s → t ∈ c. In general,
this is not computable. In our current implementation, we apply PInf using a
rule u → v ⇐ c only if there is a substitution ϑ such that ϑ(s) = ϑ(t) for all
s → t ∈ c and then we check whether ϑ(v) = θ(ϑ(u)) for some substitution θ.

9 Experimental Evaluation

This is the first implementation of the 2D DP framework presented in [7]. It has
been developed as part of the tool mu-term [2]. In order to assess the practical
contributions of the results in this paper, we implemented two versions:

– mu-term 5.11 (WRLA’14), which includes the framework and processors
defined in [7].

– mu-term 5.12 (LOPSTR’14), which extends the previous version with the
processors defined in this paper.

Note that our processor PInf is the first technique for proving operational
nontermination of CTRSs implemented in any termination tool1. We compared
the mu-term implementations and the last version of the existing tools that
handle conditional rewriting problems: VMTL 1.3 (http://www.logic.at/vmtl/)
and AProVE 2014 (http://aprove.informatik.rwth-aachen.de/). The experiments

1 With regard to the negative proofs reported here for VMTL, the VMTL web site
says that “non-termination means non-termination of the transformed TRS obtained
by the conditional TRS through a transformation”. Since the transformation used
by VMTL is not complete (see [11]), such negative results do not imply operational
nontermination of the original CTRS.

http://www.logic.at/vmtl/
http://aprove.informatik.rwth-aachen.de/

128 S. Lucas et al.

have been performed on an Intel Core 2 Duo at 2.4 GHz with 8 GB of RAM,
running OS X 10.9.1 using a 60 s timeout. We considered examples from different
sources: the CTRSs in the termination problem database2, TPDB 8.0.7; the
CTRSs in the VMTL webpage3; and the new CTRSs presented in [7] and in this
paper. Results are summarized as follows4

Tool Version Proved (YES/NO) Av. YES Av. NO

mu-term 5.11 (WRLA’14) 15/33 (15/0) 0.35s 0s

mu-term 5.12 (LOPSTR’14) 26/33 (21/5) 1.95s 1.02s

AProVE 2014 18/33 (18/0) 9.20s 0s

VMTL 1.3 18/33 (14/4)3 6.94s 1.05s3

The practical improvements revealed by the experimental evaluation are
promising. We can prove (now) termination of 26 of the 33 examples, 11 more
examples than our previous version, including 3 examples that cannot be proved
by any other automatic tool. Furthermore, if we consider the 15 problems that
can be proved by both mu-term versions, the new processors yield a faster tool,
witnessed by a speedup of 1.26 with respect to the WRLA version. The new
processors are very useful to simplify conditions on rules and are also very help-
ful to detect non-terminating chains. But there is still room for improvement, as
we can see in the results obtained by AProVE and VMTL, where other processors
based on transformations (Instantiation, Forward Instantiation, Rewriting, . . .)
and polynomial interpretations using negative numbers can be useful to improve
the results obtained in this paper.

10 Related Work and Conclusions

In [7], the generalization of the DP Framework to CTRSs is accomplished, includ-
ing the definition of sets of dependency pairs which can be used to provide an
independent description of infinite computations in the two (horizontal and ver-
tical) dimensions. In particular, the 2D DP Framework was defined, but only a
few processors were presented. Furthermore, such processors barely exploit the
peculiarities of the 2D DP framework (e.g., the use of an additional set of pairs
Q for connecting pairs in P, or considering the conditional part of the rules to
remove and transform them in P, Q, and R). Finally, no implementation or
experimental analysis of the 2D DP framework was available.

In this paper we have defined 8 new processors: PRQ , which removes pairs
from Q which are unable to establish any connection within a (P,Q,R)-chain,

2 See http://www.termination-portal.org/wiki/TPDB/.
3 See http://www.logic.at/vmtl/benchmarks-cond.html.
4 detailed benchmarks can be found in http://zenon.dsic.upv.es/muterm/benchmarks/
lopstr14/benchmarks.html.

http://www.termination-portal.org/wiki/TPDB/
http://www.logic.at/vmtl/benchmarks-cond.html
http://zenon.dsic.upv.es/muterm/benchmarks/lopstr14/benchmarks.html
http://zenon.dsic.upv.es/muterm/benchmarks/lopstr14/benchmarks.html

Extending the 2D Dependency Pair Framework 129

P�, which removes pairs from P and Q without paying attention to the structure
of rules in R, PSUC , which faithfully removes unifiable conditions, PIC , which
removes rules containing conditions that cannot be used in any computation,
PNC , which transforms the conditional part of the rules by narrowing, PNR,
which transforms the right-hand sides of the rules in P by using narrowing
with R, PNQ , which narrows with Q instead, and PInf , which provides a simple
way to detect infinite CTRS problems. We have implemented all our processors
(including the ones introduced in [7]). Among these processors, only P�, PNR

and PInf have some analogue processor in the DP Framework for TRSs. All
other processors work on the conditional part of the rules or (as PNQ) use active
components (e.g., the rules in Q) which are missing in the DP Framework.

Remark 4. Although CTRSs can be transformed into TRSs by means of opera-
tional-nontermination-preserving transformations (likeU in [9,Definition 7.2.48]),
and then existing (narrowing, instantiation) processors of the DP Framework
for TRSs (see [3]) could be applied to hopefully obtain similar effects in proofs
of operational termination via termination of TRSs, it is unclear (but certainly
interesting subject of further research) whether some of our more specific proces-
sors PSUC , PIC , PSIC , and PNC could be simulated by some of those processors
after the transformation. Our present view is that this is unlikely in most cases.
First, it depends on the considered transformation. But even using (a variant of)
U as done by AProVE and VMTL, if this connection were easy, our benchmarks
would be closer to those of tools like AProVE which implements most processors
and techniques of the DP Framework of TRSs. In contrast, the 2014 edition of the
International Termination Competition5 confirms our benchmarks, even with a
time-out of five minutes, instead of the one minute time-out used in previous
competitions and adopted in our benchmarks, see http://nfa.imn.htwk-leipzig.
de/termcomp/show job results/5382 for the results of the TRS Conditional sub-
category. This suggests that the use of native processors in the 2D DP Framework
is better than transforming CTRS problems into TRS problems and then using
the DP Framework for TRSs.

This paper gives strong evidence suggesting that the 2D DP Framework is
currently the most powerful technique for proving operational termination of
CTRSs. For instance, the CTRSs R in Examples 1 and 7 cannot be proved opera-
tionally terminating by AProVE or VMTL. And R in Example 4 cannot be proved
operationally nonterminating because the transformation used by AProVE and
VMTL is not complete and does not capture operational nontermination. Fur-
thermore, neither these three examples nor R in Example 5 can be proved
operationally (non)terminating with the processors in [7]. It is true, however,
that some of the examples are proved operationally terminating by AProVE or
VMTL whereas we are not currently able to provide a proof. And there are exam-
ples that cannot be handled by any tool. There is, therefore, room for further

5 See http://www.termination-portal.org/wiki/Termination Competition/ for the
main web site, and http://www.termination-portal.org/wiki/Termination
Competition 2014/ for the 2014 edition, which run from July 19 to 21, 2014.

http://nfa.imn.htwk-leipzig.de/termcomp/show_job_results/5382
http://nfa.imn.htwk-leipzig.de/termcomp/show_job_results/5382
http://www.termination-portal.org/wiki/Termination_Competition/
http://www.termination-portal.org/wiki/Termination_Competition_2014/
http://www.termination-portal.org/wiki/Termination_Competition_2014/

130 S. Lucas et al.

improvement. In the near future we plan to add more processors to our current
implementation. As remarked above, other processors based on transformations
or on reducing the proof obligations in the CTRS problems (for instance, by
developing a suitable notion of usable rule or exploiting innermost rewriting [1])
can be added to obtain a more powerful implementation.

Acknoledgements. We thank the referees for their comments and suggestions.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.
Comput. Sci. 236(1–2), 133–178 (2000)

2. Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination
properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010.
LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)

3. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)

4. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol.
3717, pp. 216–231. Springer, Heidelberg (2005)

5. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

6. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V.
(ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)

7. Lucas, S., Meseguer, J.: 2D Dependency pairs for proving operational termina-
tion of CTRSs. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 195–212.
Springer, Heidelberg (2014)

8. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)

9. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
10. Schernhammer, F., Gramlich, B.: Characterizing and proving operational termina-

tion of deterministic conditional term rewriting systems. J. Logic Algebraic Pro-
gram. 79, 659–688 (2010)

11. Schernhammer, F., Gramlich, B.: VMTL–a modular termination laboratory. In:
Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 285–294. Springer, Heidelberg
(2009)

Security

Partial Evaluation for Java Malware Detection

Ranjeet Singh and Andy King(B)

School of Computing, University of Kent, Kent CT2 7NF, UK
a.m.king@kent.ac.uk

Abstract. The fact that Java is platform independent gives hackers
the opportunity to write exploits that can target users on any platform,
which has a JVM implementation. To circumvent detection by anti-virus
(AV) software, obfuscation techniques are routinely applied to make an
exploit more difficult to recognise. Popular obfuscation techniques for
Java include string obfuscation and applying reflection to hide method
calls; two techniques that can either be used together or independently.
This paper shows how to apply partial evaluation to remove these obfus-
cations and thereby improve AV matching. The paper presents a par-
tial evaluator for Jimple, which is a typed three-address code suitable
for optimisation and program analysis, and also demonstrates how the
residual Jimple code, when transformed back into Java, improves the
detection rates of a number of commercial AV products.

1 Introduction

Java is both portable and architecture-neutral. It is portable because Java code is
compiled to JVM byte code for which interpreters exist, not only for the popular
desktop operating systems, but for phones and tablets, and as browser plug-ins.
It is architecture-neutral because the JVM code runs the same regardless of
environment. This presents a huge advantage over languages, such as C/C++,
but also poses a major security threat. If an exploit levers a vulnerability in a
JVM implementation, it will affect all versions of a JVM that have not closed
off that loophole, and well as those users who have not updated their JVM.

JVM vulnerabilities have been used increasingly by criminals in so-called
client side attacks, often in conjunction with social engineering tactics. For
example, a client-side attack might involve sending a pdf document [14] that
is designed to trigger a vulnerability when it is opened by the user in a pdf
reader. Alternatively a user might be sent a link to a website which contains a
Java applet which exploits a JVM vulnerability [1] to access the user’s machine.
Client-side attacks provide a way of bypassing a firewall that block ports to
users’ machines and, are proving to be increasingly popular: last year many
JVM exploits were added to the Metasploit package, which is a well-known and
widely-used penetration testing platform. This, itself, exacerbates the problem.
As well as serving penetration testers and security engineers, a script kiddie
and or a skilled blackhat can reuse a JVM vulnerability reported in Metasploit,
applying obfuscation so that it is not recognised by even up-to-date AV detection
software.
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 133–147, 2015.
DOI: 10.1007/978-3-319-17822-6 8

134 R. Singh and A. King

Experimental evidence suggests that commercial AV software use Metas-
ploit as source of popular attack vectors, since exploits from Metasploit are
typically detected if they come in an unadulterated form. One can only specu-
late what techniques an AV vendor actually uses, but detection methods range
from entirely static techniques, such as signature matching, to entirely dynamic
techniques, in which the execution of the program or script is monitored for sus-
picious activity. In signature matching, a signature (a hash) is derived, often by
decompiling a sample, which is compared against a database of signatures con-
structed from known malware. Signatures are manually designed to not trigger
a false positive which would otherwise quarantine an innocuous file. Dynamic
techniques might analyse for common viral activities such as file overwrites and
attempts to hide the existence of suspicious files, though it must be said, there
are very few academic works that address the classification of Java applets [17].

The essential difference between running a program in an interpreter and par-
tially evaluating it within a partial evaluator is that the latter operates over a
partial store in which not all variables have known values; the store determines
which parts of the program are executed and which parts are retained in the
so-called residual. Partial evaluation warrants consideration in malware detec-
tion because it offers a continuum between the entirely static and the entirely
dynamic approaches. In particular, one can selectatively execute parts of the
program, namely those parts that mask suspicious activity, and then use the
residual in AV scanning. This avoids the overhead of full execution while finess-
ing the problem of incomplete data that arises when a program is evaluated
without complete knowledge of its environment. On the theoretical side, partial
evaluation provides nomenclature (e.g. polyvariance) and techniques (e.g. gen-
eralisation) for controlling evaluation and specialisation. On the practical side,
partial evaluation seems to be partially appropriate for AV matching because
Java exploits are often obfuscated by string obfuscation and by using advanced
language features such as reflection. Although reflection is designed for such
applications as development environments, debuggers and test harnesses, it can
also be applied to hide a method call that is characteristic of the exploit. This
paper will investigates how partial evaluation can be used to deobfuscate mali-
cious Java software; it argues that AV scanning can be improved by matching
on the residual JVM code, rather than original JVM code itself.

1.1 Contributions

This paper describes how partial evaluation can deobfuscate malicious Java
exploits; it revisits partial evaluation from the perspective of Java malware detec-
tion which, to our knowledge, is novel. The main contributions are as follows:

– The paper describes the semantics of a partial evaluator for Jimple [20]. Jim-
ple is a typed three-address intermediate representation that is designed to
support program analysis and, conveniently, can be decompiled back into Java
for AV matching.

Partial Evaluation for Java Malware Detection 135

java . s e c u r i t y . Permiss ions o = new java . s e c u r i t y . Permiss ions () ;
o . add (new Al lPermis s ion ()) ;

Class<?> c = Class . forName (” java . s e c u r i t y . Permiss ions ”) ;

Object o = c . newInstance () ;

Method m = c . getMethod (”add” , Permiss ion . c l a s s) ;
m. invoke (o , new Al lPermis s ion ()) ;

Listing 1.1. Method call and its obfuscation taken from CVE-2012-4681

– The paper shows how partial evaluation can be used to remove reflection
from Jimple code, as well as superfluous string operations, that can be used
to obfuscate malicious Java code.

– The paper describes how partial evaluation can be used in tandem with an
abstract domain so as to avoid raising an error when a branch condition cannot
be statically resolved [18, Sect. 3.3]. In such a situation, one branch might lead
to an environment whose bindings are inconsistent with that generated along
another. Rather than abort when inconsistent environments are detected at a
point of confluence, we merge the environments into an abstract environment
that preserves information from both, so that partial evaluation can continue.

2 Primer on Java Obfuscation

This section will describe techniques that are commonly used to obfuscate Java
code to avoid AV detection. The obfuscations detailed below are typically used
in combination; it is not as if one obfuscation is more important than another.

2.1 Reflection Obfuscation

An AV filter might check for the invocation of a known vulnerable library func-
tion, and to thwart this, malicious applets frequently use reflection to invoke
vulnerable methods. This is illustrated by the code in Listing 1.1 which uses
the Class.forName static method to generate an object c of type Class. The
c object allows the programmer to access information pertaining to the Java
class java.security.Permissions, and in particular create an object o of type
java.security.Permissions. Furthermore, c can be used to create an object
m that encapsulates the details of a method call on object o. The invocation
is finally realised by applying the invoke on m using o as a parameter. This
sequence of reflective operation serves to disguise what would otherwise be a
direct call to the method add on an object of type Permissions.

2.2 String Obfuscation

Malicious applets will often assemble a string at run-time from a series of compo-
nent strings. Alternatively a string can be encoded and then decoded at run-time.

136 R. Singh and A. King

pub l i c s t a t i c S t r ing ge tS t r (S t r ing input) {
St r i ngBu i l d e r sb = new St r i ngBu i l d e r () ;

f o r (i n t i = 0 ; i < input . l ength () ; i++) {
i f (! (input . charAt (i) >= ’ 0 ’ && input . charAt (i) <= ’ 9 ’)) {

sb . append (input . charAt (i)) ;
}

}
r e turn sb . t oS t r i ng () ;

}

St r ing s t r = ”1 j2a34v5a . s7e8cu9r00 i1 ty . P3er4m5i6s7s8 io9n0s ” ;

Class<?> c = Class . forName (ge tS t r (s t r)) ;

Listing 1.2. String Obfuscation with numeric characters

Either tactic will conceal a string, making it more difficult to recognise class and
method names, and thereby improving the chances of outwitting a signature-
based AV system. Listing 1.2 gives an example of a string reconstruction method
that we found in the wild, in which the string java.lang.SecurityManager
is packed with numeric characters which are subsequently removed at runtime.
Listing 1.3 illustrates an encoder which replaces a letter with the letter 13 letters
after it in the alphabet. The encoded strings are then decoded at run-time before
they are used to create a handle of type Class that can, in turn, be used to
instantiate java.lang.SecurityManager objects.

pub l i c s t a t i c S t r ing rot13 (S t r ing s) {
St r i ngBu f f e r sb = new St r i ngBu f f e r () ;

f o r (i n t i = 0 ; i < s . l ength () ; i++) {
char c = s . charAt (i) ;
i f (c >= ’ a ’ && c <= ’m’) c += 13 ;
e l s e i f (c >= ’A ’ && c <= ’M’) c += 13 ;
e l s e i f (c >= ’n ’ && c <= ’ z ’) c −= 13 ;
e l s e i f (c >= ’N ’ && c <= ’Z ’) c −= 13 ;
sb . append (c) ;

}
re turn sb . t oS t r i ng () ;

}

St r ing s t r = ”wnin . f rphevg l . Crezv f fvba f ” ;

Class<?> c = Class . forName (rot13 (s t r)) ;

Listing 1.3. String obfuscation using the rot13 substitution cipher

Partial Evaluation for Java Malware Detection 137

2.3 Other Obfuscations

There is also no reason why other obfuscations [6] cannot be used in combination
with reflection and string obfuscation. Of these, one of the most prevalent is name
obfuscation in which the names of the user-defined class and method names
are substituted with fresh names. For example, the name getStr in Listing 1.2
might be replaced with a fresh identifier, so as to mask the invocation of a known
decipher method.

3 Partial Evaluation

In this section we outline a partial evaluator for removing string obfuscation and
reflection from Jimple code, which is a three address intermediate representation
(IR) for the Java programming language and byte code. Jimple is supported by
the Soot static analysis framework and, quite apart from its simplicity, Soot
provides support for translating between Jimple and Java.

There are two approaches to partial evaluation: online and offline. In the
online approach specialisation decisions are made on-the-fly, based on the values
of expressions that can be determined at that point in the specialisation process.
In the offline approach, the partial evaluator performs binding time analysis,
prior to specialisation, so as to classify expressions as static or dynamic, accord-
ing to whether their values will be fully determined at specialisation time. This
classification is then used to control unfolding, so that the specialisation phase is
conceptually simple. The online approach, however, mirrors the structure of the
interpreter in the partial evaluator, and hence is easier to present (and ultimately
justify by abstract interpretation). We therefore follow the online school.

Figures 1 and 2 present some highlights of the partial evaluator, which spe-
cialises sequences of Jimple instructions, that are tagged with labels for con-
ditional jumping. The sequel provides a commentary on some representative
instructions. In what follows, l denotes a location in memory, x a variable, and
v a value. A value is either a primitive value, such as an integer or a boolean, or
an object, or � which is used to indicate the absence of information. An object
is considered to be a class name, C, paired with an environment ρ, together
denoted C : ρ; C is the name of the class from which the object is instantiated
and ρ specifies the memory locations where the fields (internal variables) of the
object are stored.

The partial evaluator uses an environment ρ and a store σ to record what is
known concerning the values of variables. The environment ρ is a mapping from
the set of variables to the memory locations, and the store σ is a mapping from
locations to values. The partial evaluator is presented as a function P�S�〈ρ, σ, o〉,
which executes the sequence of instructions S in the context of an environment
ρ, store σ and current object o.

3.1 Type Declarations

A statement var t x declares that x is a of type t, where t is either primitive
or a user-defined class. Such a declaration is handled by allocating a memory

138 R. Singh and A. King

Fig. 1. Outline of partial evaluator: declarations and assignments

location l using the auxiliary allocate and then updating the environment ρ′ to
reflect this change. The store is also mutated to map location l to the default
value for the type t, which is given by the auxiliary function default. The default
values for the primitives types are 0 for int and 0 for boolean. The default values
for object types is null.

Partial Evaluation for Java Malware Detection 139

Fig. 2. Outline of partial evaluator: control-flow

140 R. Singh and A. King

3.2 new

A statement x = new C instantiates the class C to create an object that is
represented by a pair C : ρ where the environment ρ maps the fields of C to
memory locations that store their values. Different objects C : ρ1 and C : ρ2
from the same class C map the same field variables to different locations. The
auxiliary method getFields retrieves the types and the names of the fields of the
class C. The function defaults takes a vector of types t and returns a vector of
default values that is used to populate the fields, following the conventions of
default.

3.3 Arithmetical Operations

An assignment statement x := y ⊕ z can only be statically evaluated if both the
variables y and z are bound to known values. In this circumstance the assignment
x := y⊕z is specialised to x := v where v is the value of the expression y⊕z. The
store σ′ is updated to reflect the new value of x, as the value of x is statically
known. Note that the residual includes x := v, even though information on x is
duplicated in the store σ′, so as to permit subsequent statements, with reference
x, to be placed in the residual without substituting x with its value v. If there
are no statements that reference x then the assignment x := v will be removed
by dead variable elimination, which is applied as a post-processing step.

3.4 this and Parameters

In Jimple there is a distinguished variable this which stores the current object
reference which, in the partial evaluator, is modelled with the current object o,
that is passed with the environment and the store. An assignment statement
x := @this thus merely updates the location ρ(x) with o.

Also in Jimple, a special variable parameteri is used to store the location
of the ith formal argument of a method call, where the first argument has an
index of 0. This is modelled more directly in the partial evaluator, so that an
assignment statement x := @parameteri updates the location ρ(x) with the
value of this parameter.

3.5 return and virtualinvoke

The statement return x writes the value of x to a special variable return, which
is subsequently read by virtualinvoke.

The handling of virtualinvoke(obj,m(t),y) is worthy of special note, both in
the way reflective and non-reflective calls are handled. A reflective call arises
when the method m coincides with invoke and the object obj is of type Method.
The reflective method call is a proxy for the so-called reflected method call.
The reflected method call is not applied to the object obj but an object that is
prescribed by the first parameter of y. Moreover, the method that is applied to
this object is given by obj in a distinguished field that, for our purposes, is called

Partial Evaluation for Java Malware Detection 141

method. This field either contains null, indicating that it has been initialised but
not been reset, or a string that represents the name of a method that is to be
invoked. If the method field is null then an error is issued, otherwise the string
stored in the field method is used to generate the residual. Note that the reflected
method call is not invoked; merely placed in the residual. Note too that the first
argument of virtualinvoke in the residual is y0 whereas the last is the vector
y′ which coincides with y with the exception that the first element has been
removed. The first argument is the variable name (rather than the object itself)
to which the residuated method will ultimately be applied; the third argument is
the list of actual arguments that will be passed to the method on its invocation.

In the case of a non-reflected call, the values of the parameters are looked
up, and then an auxiliary function findMethod is applied to find a block B
which is the entry point into the method of the class C whose signature matches
m(t). The function allocates is then called to generate fresh memory locations,
one for each actual argument y0, . . . , yn. The environment is then extended to
map the distinguished variables parameter0, . . . , parametern to fresh memory
locations, so as to store the actual arguments. The partial evaluator is then
recursively involved on the block B using C : ρ′ as the object. The net effect
of the method call is to update the store σ′ which is used when evaluating the
remaining statements S.

Note that this formulation assumes that method calls are side-effect free.
Although this is true for string obfuscation methods that we have seen, for full
generality the partial evaluator should be augmented with an alias analysis,
in the spirit of side-effect analysis [9], that identifies those variables that are
possibly modified by a method call, hence must be reset to �.

3.6 goto

Specialising a conditional jump in Jimple is not conceptually difficult, but is
complicated by the way if x goto l;S will drop through to execute the first
instruction of the sequence S if the boolean variable x is false. This makes the
control-flow more difficult to recover when the value of x is unknown. When x is
known to be true, however, the partial evaluator is merely redirected at a block
B that is obtained by looking up the sequence whose first instruction is labelled
by l. Conversely, if x is known to be false, then partial evaluation immediately
proceeds with S.

In the case when x has an undetermined value, the partial evaluator explores
both branches until the point of confluence when both branches merge. Then
the partial evaluator continues at the merge point, relaxing the store to σ′ so
that it is consistent with the stores that are derived on both branches. Note that
partial evaluation does not halt if the stores are inconsistent; instead it will unify
the two stores by replacing any inconsistent assignment for any location with an
assignment to �. Note that it is only necessary to unify those locations that are
reachable from the variables that are currently in scope.

To realise this approach, an auxiliary function lookup is used to find the posi-
tion n of the first statement of S in the list P which constitutes the statements

142 R. Singh and A. King

//BEFORE
pub l i c s t a t i c void main (S t r ing [] a rgs) {

Main m = new Main () ;
S t r ing encrypted = ”qbFbzrguvat” ;

Method method = m. c l a s s . getMethod (rot13 (encrypted)) ;

method . invoke (m, nu l l) ;
}

//AFTER

pub l i c s t a t i c void main (S t r ing [] a rgs) {
Main m = new Main () ;

S t r ing encrypted = ”qbFbzrguvat” ;
Method method = m. c l a s s . getMethod (rot13 (encrypted)) ;
m. doSomething () ;

}

//AFTER DEAD VARIABLE ELIMINATION
pub l i c s t a t i c void main (S t r ing [] a rgs) {

Main m = new Main () ;

m. doSomething () ;

}

Listing 1.4. Before and after partial evaluation

for the currently executing method. This is the position of the first statement
immediately after the conditional branch. Then a function confluence examines
the control-flow graph of the method so as to locate the confluence point, of
the true and false branches, identified by the index c of S. Both branches are
evaluated separately with two copies of the environment, until the confluence
point where the two environments are merged. Partial evaluation then resumes
at the confluence point, which corresponds to the instruction sequence P drop c,
namely, execution is continued at the cth instruction of the sequence P .

3.7 Example

Listing 1.4 gives the before and after for a method call that is obfuscated by
reflection and string obfuscation, using the ROT13 simple letter substitution
cipher given in Listing 1.3. The residual Jimple code is presented as Java for
readability. Completely unfolding the rot13 method call decrypts the string
qbFbzrguvat as the string doSomething. This string statically defines the value
of the object method, allowing method.invoke(m, null) to be specialised to
m.doSomething(), thereby removing the reflective call. Note that the variables
encrypted and method cannot be removed without dead variable elimination.

4 Experiments

To assess how partial evaluation can aid in AV matching, a number of known
applet malware samples from the Metasploit exploit package [2] were obfuscated

Partial Evaluation for Java Malware Detection 143

using the techniques outlined in Sect. 2. Details of the samples are given in
Fig. 3; the samples were chosen entirely at random. So as to assess the effect of
partial evaluation against a representative AV tool, we compared the detection
rates, with and without partial evaluation, on eight commercial AV products.
Together these products cover the majority of the global market, as reported in
2013 [15] and is illustrated in the chart given in Fig. 3. Conveniently, VirusTotal
[19] provides a prepackaged interface for submitting malware samples to all of
these products, with the exception of Avira, which is why this tool does not
appear in our experiments.

Unfortunately, developing a complete partial evaluator for Jimple is a major
undertaking, since it is necessary to support the entire Java API and runtime
environment, which itself is huge. To side-step this engineering effort, we imple-
mented a partial evaluator in Scala, following the description in Sect. 3, only
providing functionality for String, StringBuffer and StringBuilder classes. This
was achievable since Java String objects are accessible to Scala. (Scala’s parser
combinator library also make it is straightforward to engineer a parser for Jim-
ple.) Although other objects could be handled in the same way, we simply took
each of these obfuscated CVEs and extracted the Jimple code and methods that
manipulated strings. This code was then partially evaluated so as to deobfuscate
the string handling. The CVEs were then hand-edited to reflect the residual,
and then ran through VirusTotal to check that the effects of obfuscation had
been truly annulled. Future implementation work will be to automate the entire
process, namely translate the Jimple residual into Java using Soot [8] and then
invoke VirusTotal automatically through its public web API.

Table 1 details the detection rates for the AVs given in Fig. 3, without obfus-
cation, with just string obfuscate, with just reflection obfuscation, and with
both obfuscations applied. This gives four experiments in all. It is important to
appreciate that the obfuscations used in the fourth experiment include all those
obfuscations introduced in the second and third experiments and no more.

The results show that in most cases the AVs detect most of the exploits
in their unadulterated form. Exploits CVE-2012-5088 and CVE-2013-2460 go
the most undetected, which is possibly because both exploits make extensive
use of reflection. It is interesting to see that the product with the highest

CVE Java Applet Exploit

2012-4681 Remote Code Execution
2012-5076 JAX WS Remote Code Execution
2013-0422 JMX Remote Code Execution
2012-5088 Method Handle Remote Code Execution
2013-2460 Provider Skeleton Insecure Invoke Method

Fig. 3. CVEs and AVs

144 R. Singh and A. King

market share (Microsoft) was unable to detect any of the exploits after string
obfuscation, which suggests the removing this obfuscation alone is truly worth-
while. Moreover, after introducing reflection the AV detection count for each
exploit drops significantly. Furthermore, applying reflection with string obfus-
cation is strictly stronger than applying string obfuscation and reflection alone.
CVE-2012-4681 represents an anomaly under McAfee since reflection obfusca-
tion impedes detection whereas, bizarrely, using reflection with string obfus-
cation does not. Interestingly, McAfee classifies this CVE with the message
Heuristic.BehavesLike.Java.Suspicious-Dldr.C which suggests that it is using a
heuristic behavioural approach which might explain its unpredictability.

Most importantly, applying partial evaluation to the CVEs used in the fourth
experiment restores the detection rates to those of the first experiment. Thus
detection is improved, without having to redistribute the signature database.

5 Related Work

Although there has been much work in Java security, partial evaluation and
reflection, there are few works that concern all three topics. This section provides
pointers to the reader for the main works in each of these three separate areas.

One of the very few techniques that has addressed the problem of detecting
malicious Java Applets is Jarhead [17]. This recent work uses machine learning
to detect malicious Applets based on 42 features which include such things as
the number of instructions, the number of functions per class and cyclomatic
complexity [13]. Jarhead also uses special features that relate to string obfus-
cation, such as the number and average length of the strings, and the fraction
of strings that contain non-ASCII printable characters. Other features that it
applies determine the degree of active code obfuscation, such as the number of
times that reflection is used within the code to instantiate objects and invoke
methods. Out of a range of classifiers, decision trees are shown to be the most
reliable. Our work likewise aspires to be static, though partial evaluation takes
this notion to the limit, so as to improve detection rates. Moreover, machine
learning introduces the possibility of false negatives and, possibly worse, false
positives. Our approach is to scaffold off existing AV products that have been
carefully crafted to not trigger false positives, and improve their matching rates
by applying program specialisation as a preprocessing step.

The objective of partial evaluation is to remove interpretive overheads from
programs. Reflection can be considered to be one such overhead and therefore
it is perhaps not surprising that it has attracted interest in the static analysis
community; indeed the performance benefit from removing reflection can be sig-
nificant [16] . Civet [18] represents state-of-the-art in removing Java reflection; it
does not apply binding-time analysis (BTA) [3] but relies on programmer inter-
vention, using annotation to delineate static from dynamic data, the correctness
of which is checked at specialisation time. Advanced BTAs have been defined for
specialising Java reflection [4], though to our knowledge, none have been imple-
mented. We know of no partial evaluator for Jimple, though Soot represents

http://Heuristic.BehavesLike.Java.Suspicious-Dldr.C

Partial Evaluation for Java Malware Detection 145

Table 1. Experimental results

Exploit name Microsoft Avast AVG Symantec ESET Kaspersky McAfee Bitdefender

CVE No obfuscation

2012-4681 � � � ✗ � � � �
2012-5076 � ✗ � � � � � ✗

2013-0422 � � ✗ � � � � ✗

2012-5088 ✗ ✗ ✗ ✗ � ✗ � ✗

2013-2460 ✗ � � ✗ � ✗ � ✗

CVE String obfuscation

2012-4681 ✗ � � ✗ � � � �
2012-5076 ✗ ✗ � � ✗ ✗ � ✗

2013-0422 ✗ ✗ ✗ � ✗ ✗ � ✗

2012-5088 ✗ ✗ ✗ ✗ � ✗ � ✗

2013-2460 ✗ ✗ � ✗ ✗ ✗ � ✗

CVE Reflection obfuscation

2012-4681 � � � ✗ � ✗ ✗ ✗

2012-5076 ✗ ✗ ✗ � ✗ � � ✗

2013-0422 � � � � � � � ✗

2012-5088 ✗ ✗ ✗ ✗ � ✗ � ✗

2013-2460 ✗ ✗ � ✗ � ✗ � ✗

CVE String and reflection obfuscation

2012-4681 ✗ � � ✗ ✗ ✗ � ✗

2012-5076 ✗ ✗ ✗ � ✗ ✗ � ✗

2013-0422 ✗ ✗ ✗ � ✗ ✗ � ✗

2012-5088 ✗ ✗ ✗ ✗ � ✗ � ✗

2013-2460 ✗ ✗ � ✗ ✗ ✗ � ✗

the ideal environment for developing one [8]. Quite apart from its role in deob-
fuscation, partial evaluation can also be applied in obfuscation [10]: a modified
interpreter, that encapsulates an obfuscation technique, is partially evaluated
with respect to the source program to automatically obfuscate the source. Pro-
gram transformation has been proposed for deobfuscating binary programs [5],
by unpacking and removing superfluous jumps and junk, again with the aim of
improving AV scanning. This suggest that partial evaluation also has a role in
binary analysis, where the aim is to make malware detection more semantic [7].

Reflection presents a challenge for program analysis: quite apart from writes
to object fields, reflection can hide calls, and hence mask parts of the call-graph
so that an analysis is unsound. Points-to analysis has been suggested [12] as a
way of determining the targets of reflective calls which, in effect, traces the flow
of strings through the program. This is sufficient for resolving many, but not all
calls, hence points-to information is augmented with user-specified annotation
so as to statically determine the complete call graph. The use of points-to infor-
mation represents an advance over using dynamic instrumentation to harvest
reflective calls [11] since instrumentation cannot guarantee complete coverage.
Partial evaluation likewise traces the flow of strings through the program, though

146 R. Singh and A. King

without refining points-to analysis, it is not clear that it has the precision to
recover the targets of reflective calls that have been willfully obfuscated with
such techniques as a substitution cipher (rot13).

6 Future Work

Termination analysis is a subfield of static analysis within itself and thus far
we have not explored how termination can improve unfolding. We simply unfold
loops where the loop bound is known at specialisation time. We also deliberately
do not unfold recursive methods, though this is a somewhat draconian limitation.
Future work will aim to quantify how termination analysis can be applied in an
online setting to improve the quality of malware detection.

Although we have not observed this in the wild, there is no reason why
reflection cannot be applied to a method that obfuscates a string, such as a
decryptor. This would thwart our approach to deobfuscation since the reflected
call would be deobfuscated in the residual, but would not actually be evaluated
on a given string. Thus we will explore how partial evaluation can be repeatedly
applied to handle these multi-layered forms of obfuscation.

We will also examine how partial evaluation can remove less common forms
of Java obfuscation such as control flow obfuscation and serialization and deseri-
alization obfusation, the latter appearing to be as amenable to partial evaluation
as string obfuscation. In the long term we will combine partial evaluationi with
code similarity matching, drawing on techniques from information retrieval.

7 Conclusion

We have presented a partial evaluator for removing string and reflection obfusca-
tion from Java programs, with the aim of improving the detection of malicious
Java code. Our work puts partial evaluation in a new light: previous studies
have majored on optimisation whereas we argue that partial evaluation has a
role in anti-virus matching. To this end, a partial evaluator has been designed for
Jimple, which was strength tested on five malware samples from the Metasploit
exploit framework, obfuscated using string and reflection obfuscation.

References

1. Rapid 7. Java Applet JMX Remote Code Execution (2013)
2. Rapid 7. Metasploit (2014)
3. Andersen, L.: Binding-time analysis and the taming of C pointers. In: PEPM, pp.

47–58. ACM (1993)
4. Braux, M., Noyé, J.: Towards partially evaluating reflection in Java. In: PEPM,

pp. 2–11. ACM (2000)
5. Christodorescu, M., Jha, S., Kinder, J., Katzenbeisser, S., Veith, H.: Software trans-

formations to improve malware detection. J. Comput. Virol. 3(4), 253–265 (2007)

Partial Evaluation for Java Malware Detection 147

6. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley, Boston (2009)

7. Dalla Preda, M., Christodorescu, M., Jha, S., Debray, S.: A Semantics-based App-
roach to Malware Detection. ACM TOPLAS, 30 (2008)

8. Einarsson, A., Nielsen, J.D.: A Survivor’s Guide to Java Program Analysis with
Soot. Technical report (2008)

9. Flexeder, A., Petter, M., Seidl, H.: Side-effect analysis of assembly code. In: Yahav,
E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 77–94. Springer, Heidelberg (2011)

10. Giacobazzi, R., Jones, N.D., Mastroeni, I.: Obfuscation by partial evaluation of
distorted interpreters. In: PEPM, pp. 63–72. ACM (2012)

11. Hirzel, M., Diwan, A., Hind, M.: Pointer analysis in the presence of dynamic class
loading. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 96–122. Springer,
Heidelberg (2004)

12. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)

13. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320
(1976)

14. National Institute of Standards and Technology. Vulnerability Summary for CVE-
2013-3346 (2013)

15. OWASP. Metasploit Java Exploit Code Obfuscation and Antivirus Bypass/Evasion
(CVE-2012-4681) (2013)

16. Park, J.-G., Lee, A.H.: Removing reflection from Java Programs using partial
evaluation. In: Matsuoka, S. (ed.) Reflection 2001. LNCS, vol. 2192, pp. 274–275.
Springer, Heidelberg (2001)

17. Schlumberger, J., Kruegel, C., Vigna, G.: Jarhead: analysis and detection of mali-
cious Java applets. In: ACSAC, pp. 249–257. ACM (2012)

18. Shali, A., Cook, W.R.: Hybrid partial evaluation. In: OOPSLA, pp. 375–390. ACM
(2011)

19. Sistemas, H.: VirusTotal Analyses Suspicious Files and URLs (2014). https://www.
virustotal.com/

20. Valleé Rai, R., Hendren, L.J.: Jimple: Simplifying Java Bytecode for Analyses and
Transformations. Technical report TR-1998-4. McGill University (1998)

https://www.virustotal.com/
https://www.virustotal.com/

Access Control and Obligations
in the Category-Based Metamodel:

A Rewrite-Based Semantics

Sandra Alves1, Anatoli Degtyarev2, and Maribel Fernández2(B)

1 Department of Computer Science, University of Porto, Porto, Portugal
2 Department of Informatics, King’s College London, London WC2R 2LS, UK

Maribel.Fernandez@kcl.ac.uk

Abstract. We define an extension of the category-based access con-
trol (CBAC) metamodel to accommodate a general notion of obligation.
Since most of the well-known access control models are instances of the
CBAC metamodel, we obtain a framework for the study of the interac-
tion between authorisation and obligation, such that properties may be
proven of the metamodel that apply to all instances of it. In particular,
the extended CBAC metamodel allows security administrators to check
whether a policy combining authorisations and obligations is consistent.

Keywords: Security policies · Access control · Obligations · Rewriting

1 Introduction

Access control policies specify which actions users are authorised to perform
on protected resources. An authorisation may entail an obligation to perform
another action on the same or another resource. Standard languages for the spec-
ification of access control policies include also a number of primitives to specify
obligations associated with authorisations. For example, within XACML [19],
an obligation is a directive from the Policy Decision Point (PDP) to the Policy
Enforcement Point (PEP) specifying an action that must be carried out before
or after an access is approved.

The notion of obligation helps bridge a gap between requirements and policy
enforcement. For example, consider a hospital scenario in which any doctor may
be authorised to read the medical record of a patient in an emergency situation,
but in that case there is a requirement to inform the patient afterwards. Although
access control models deal mainly with authorisations, incorporating obligations
facilitates the analysis of compatibility between obligations and authorisations.

A metamodel of access control, which can be specialised for domain-specific
applications, has been proposed in [3]. It identifies a core set of principles of
access control, abstracting away many of the complexities that are found in

This work was partially funded by the European Office of Aerospace Research and
Development (EOARD-AFOSR).

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 148–163, 2015.
DOI: 10.1007/978-3-319-17822-6 9

Access Control and Obligations in the Category-Based Metamodel 149

specific access control models, in order to simplify the tasks of policy writing
and policy analysis. The metamodel focuses on the notion of a category, which
is a class of entities that share some property. Classic types of groupings used in
access control, like a role, a security clearance, a discrete measure of trust, etc.,
are particular instances of the more general notion of category. In category-based
access control (CBAC), permissions are assigned to categories of users, rather
than to individual users. Categories can be defined on the basis of user attributes,
geographical constraints, resource attributes, etc. In this way, permissions can
change in an autonomous way (e.g., when a user attribute changes), unlike, e.g.,
role-based models [1], which require the intervention of a security administrator.

In this paper, we define an extension of the CBAC metamodel to accom-
modate a general notion of an obligation, obtaining a formal framework for
modelling and enforcing access control policies that involve authorisations and
obligations. We show examples of application in the context of emergency man-
agement. We do not make any specific assumptions on the components of the
system. Instead, we aim at defining an abstract model of access control and
obligations that can be instantiated in various ways to satisfy specific require-
ments. To specify dynamic policies involving authorisations and obligations in
the metamodel, we adjust the notion of event given in [15] and describe a set of
core axioms for defining obligations.

Summarising, we provide: an axiomatic definition of a generic framework for
the specification of access control and obligation models, obtained by extend-
ing the CBAC metamodel with notions of obligation and duty; a rewrite-based
operational semantics for the extended metamodel, dealing with authorisation
and obligation assessment, including mechanisms for the resolution of conflicts
between authorisations and obligations; and a rewrite-based technique to prove
properties of access control policies involving obligations.

Overview: In Sect. 2, we recall the CBAC metamodel. Section 3 discusses oblig-
ations, Sect. 4 presents the extended CBAC metamodel, and Sect. 5 the opera-
tional semantics for obligations. In Sect. 6, we discuss related work, and in Sect. 7,
conclusions are drawn and further work is suggested.

2 Preliminaries

We assume familiarity with basic notions on first-order logic and term-rewriting
systems [2]. We briefly describe below the key concepts underlying the category-
based metamodel of access control; see [3] for a detailed description.

Informally, a category is any of several distinct classes or groups to which
entities may be assigned. Entities are denoted by constants in a many sorted
domain of discourse, including: a countable set C of categories, denoted c0, c1, . . . ,
a countable set P of principals, denoted p0, p1, . . . (we assume that principals
that request access to resources are pre-authenticated), a countable set A of
actions, denoted a0, a1, . . . , a countable set R of resources, denoted r0, r1, . . . , a
finite set Auth of possible answers to access requests (e.g., {grant, deny, undeter-
mined}) and a countable set S of situational identifiers to denote environmental

150 S. Alves et al.

information. More generally, entities can be represented by a data structure (e.g.,
a principal could be represented by a term principal(pi, attributeList)), but con-
stants will be sufficient for most examples in this paper. A permission is a pair
(a, r) of an action and a resource, and an authorisation is a triple (p, a, r) that
associates a permission with a principal. The metamodel includes the following
relations to formalise these notions:

– Principal-category assignment: PCA ⊆ P × C, such that (p, c) ∈ PCA iff a
principal p ∈ P is assigned to the category c ∈ C.

– Permission-category assignment: ARCA ⊆ A × R × C, such that (a, r, c) ∈
ARCA iff action a ∈ A on resource r ∈ R can be performed by the principals
assigned to the category c ∈ C.

– Authorisations: PAR ⊆ P × A × R, such that (p, a, r) ∈ PAR iff a principal
p ∈ P can perform the action a ∈ A on the resource r ∈ R.

Definition 1 (Axioms). The relation PAR satisfies the following core axiom,
where we assume that there exists a relationship ⊆ between categories; this can
simply be equality, set inclusion (the set of principals assigned to c ∈ C is a subset
of the set of principals assigned to c′ ∈ C), or an application specific relation.

(a1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,

(∃c, c′ ∈ C, ((p, c) ∈ PCA ∧ c ⊆ c′ ∧ (a, r, c′) ∈ ARCA) ⇔ (p, a, r) ∈ PAR)

Operationally, axiom (a1) can be realised through a set of functions, as shown
in [5]. We recall the definition of the function par(P,A,R) below; it relies on
functions pca, which returns the list of categories assigned to a principal, and
arca, which returns a list of permissions assigned to a category.

(a2) par(P,A,R) → if (A,R) ∈ arca∗(below(pca(P))) then grant else deny

The function below computes the set of categories that are subordinate to any
of the categories in the list pca(P). The function ∈ is a membership operator on
lists, grant and deny are answers, and arca∗ generalises the function arca to take
into account lists of categories.

The axiom (a1), and its algebraic version (a2), state that a request by a
principal p to perform the action a on a resource r is authorised if p belongs to
a category c such that for some category below c (e.g., c itself) the action a is
authorised on r, otherwise the request is denied. There are other alternatives,
e.g., considering undeterminate as answer if there is not enough information to
grant the request. More generally, the relations BARCA and BAR were intro-
duced in [6] to explicitly represent prohibitions, that is, to specify that an action
is forbidden on a resource; UNDET was introduced to specify undeterminate
answers. These relations obey the following axioms:

(c1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,
((∃c ∈ C,∃c′ ∈ C, (p, c) ∈ PCA ∧ c′ ⊆ c ∧ (a, r, c′) ∈ BARCA) ⇔

(p, a, r) ∈ BAR)
(d1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,

((p, a, r) 	∈ PAR ∧ (p, a, r) 	∈ BAR) ⇔ (p, a, r) ∈ UNDET
(e1) PAR ∩ BAR = ∅

Access Control and Obligations in the Category-Based Metamodel 151

3 Obligations and Events

Obligations differ from permissions in the sense that, although permissions can
be issued but not used, an obligation usually is associated with some mandatory
action, which must be performed at a time defined by some temporal constraints
or by the occurrence of an event. Fulfilling the obligations may require certain
permissions, which can lead to undesirable interactions between permissions and
obligations, where the obligations in a policy cannot be fulfilled given the set of
assigned permissions in the system at a certain state. If obligations go unfulfilled
(that is, become violated), this raises the question of accountability, that is,
to whom shall be imputed responsibility for unfulfilled obligations. To address
these issues, we will extend the CBAC metamodel in order to be able to specify
the assignment of obligations to principals and study the interaction between
obligations and permissions. We will define obligations consisting of an action
(an atomic or a composed action) on a resource to be performed during an
interval specified by an initial event and a terminal event.

Following [16], we consider events as action occurrences, or action happen-
ings, that is, an event represents an action that happened in the system. This
notion has been used in previous works [7,12,15]; here we distinguish between
event types, denoted by gei (e.g., registration for a course, a fire alarm, etc.) and
specific events, denoted by ei (e.g., the student Max M. registered for the Logic
course in September 2012, the fire alarm went off in the Strand Building at 5pm
on the 30 June 2012). A typing function will be used to classify events.

Definition 2 (Event History and Interval). An event history, denoted by h ∈
H, is a sequence of events that may happen in a run of the system being modelled.
A subsequence i of h is called an event interval; the first event in i opens the interval
and the last one closes it.

We assume that an event history contains all the relevant events in order to
determine, at each point, the set of authorisations and obligations of each prin-
cipal (i.e., to determine the system state). Events and event types will be speci-
fied using a special-purpose language described in Sect. 4.2. We assume that the
typing relation associating event types with events is decidable.

Definition 3 (Obligation). A generic obligation is a tuple (a, r, ge1, ge2), where
a is an action, r a resource, and ge1, ge2 two event types (ge1 triggers the oblig-
ation, and ge2 ends it). If there is no starting event (resp., no ending event) we
write (a, r,⊥, ge) (resp., (a, r, ge,⊥)), meaning that the action on the resource
must be performed at any point before an event of type ge (resp. at any point
after an event of type ge).

Example 1. Assume that in an organisation, the members of the security team
must call the fire-department if a fire alarm is activated, and this must be done
before they de-activate the alarm. This obligation could be represented by the
tuple (call, firedept, alarmON, alarmOFF);

152 S. Alves et al.

Models of access control specify authorisations by defining the way permissions
are assigned to principals. Similarly, an obligation model should specify the way
obligations are assigned to principals, and it should be possible to determine,
at each point in the history, which obligations assigned to principals have to be
enforced. For the latter, we introduce the notion of a duty.

Definition 4 (Duty). A duty is a tuple (p, a, r, e1, e2, h), where p is a principal,
a an action, r a resource, e1, e2 are two events and h is an event history that
includes an interval opened by e1 and closed by e2. We replace e1 (resp. e2) with
⊥ if there is no starting (resp. closing) event.

Unlike access control models, which do not need to check whether the autho-
rised actions are performed or not by the principals, obligation models need to
include mechanisms to check whether duties were discharged or not. Specifically,
obligation models distinguish four possible states for duties: invalid (when at the
point a duty is issued the completion point has already passed); fulfilled (when
the obligation is carried out within the associated interval); violated (when it is
not carried out within the associated interval) and pending (when the obligation
has not yet been carried, but the interval is still valid). In some cases, p’s duty
can be fulfilled by another principal. This is the case in Example 1 above, where
all members of the security team have the obligation to call the fire department
before deactivating the alarm, but the obligation is fulfilled as soon as one of
them makes the call. In order to distinguish both kinds of obligations, we will
call individual obligations those that have to be fulfilled necessarily by the prin-
cipal to whom the obligation is assigned, and collective obligations those where
the obligation is assigned to several principals and can be fulfilled by any of the
principals in the group.

4 Obligations in the Category-Based Metamodel

The notion of a category will be used to specify obligations that apply to groups
of principals. However, the groupings of principals for authorisations and for
obligations are not necessarily the same (for instance, the category UG student is
assigned a certain set of permissions, which all UG students enjoy, whereas some
UG students belong to the home student category and others to the international
student category, with different obligations). We call permission categories those
used to specify authorisations, and obligation categories those used to specify
duties. To model obligations and duties we extend the metamodel to include the
following sets of entities and relations in addition to the ones defined in Sect. 2:

– Countable sets E and GE of events and event types, denoted by e, e0, e1, . . .
and ge, ge0, ge1, . . ., respectively.

– A countable set H of event histories, denoted by h, h0, h1,
– Obligation-category assignment: OARCA ⊆ A × R × GE × GE × C, such that

(a, r, ge1, ge2, c) ∈ OARCA iff the action a ∈ A on resource r ∈ R must

Access Control and Obligations in the Category-Based Metamodel 153

be performed in the interval defined by two events of type ge1, ge2 by prin-
cipals assigned to the category c ∈ C. To accommodate individual and col-
lective obligation assignments, this relation is partitioned into two relations:
OARCAI and OARCAC . Thus, (a, r, ge1, ge2, c) ∈ OARCAI if every mem-
ber of the category c must perform the action a ∈ A on resource r ∈ R in the
interval defined by ge1, ge2, and (a, r, ge1, ge2, c) ∈ OARCAC if any member
of c must perform the action a ∈ A on resource r ∈ R in the interval defined
by ge1, ge2 and it is sufficient that one of them does it.

– Obligation-principal assignment: OPAR ⊆ P × A × R × GE × GE , such that
(p, a, r, ge1, ge2) ∈ OPAR iff a principal p ∈ P must perform the action
a ∈ A on the resource r ∈ R in the interval defined by two events of type
ge1, ge2. If individual and collective obligations are modelled, then this relation
is replaced by two relations: OPARI ⊆ P × A × R × GE × GE , defining
individual obligations, and OPARC ⊆ P ×A×R×GE ×GE ×C for collective
obligations, such that (p, a, r, ge1, ge2) ∈ OPARI iff principal p ∈ P must
perform the action a ∈ A on the resource r ∈ R in the interval defined by two
events of type ge1, ge2, and (p, a, r, ge1, ge2, c) ∈ OPARC if principal p ∈ P or
any other member of c must perform the action a ∈ A on the resource r ∈ R
in the interval defined by two events of type ge1, ge2.

– Duty: DPAR ⊆ P ×A×R×E ×E ×H, such that (p, a, r, e1, e2, h) ∈ DPAR
iff a principal p ∈ P must perform the action a ∈ A on the resource r ∈ R in
the interval between the events e1 and e2 in the event history h.

To accommodate individual and collective obligations, this relation is par-
titioned into DPARI and DPARC , similarly to OPAR.

– Event Typing : ET ⊆ E × GE × H, such that (e, ge, h) ∈ ET if the event e is
an instance of ge in h. This will be abbreviated as h
 e : ge.

– Event Interval : EI ⊆ E × E × H, such that (e1, e2, h) ∈ EI if the event e2
closes the interval started by the event e1 in h.

4.1 Obligation Axioms

In the metamodel, the relations OPAR and DPAR are derivable from the
others. They satisfy the following core axioms, where we assume that there exists
a relationship ⊆o between obligation categories; this can simply be equality, set
inclusion (the set of principals assigned to c ∈ C is a subset of the set of principals
assigned to c′ ∈ C), or an application specific relation may be used.

(o1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,∀ge1, ge2 ∈ GE ,((∃c, c′ ∈ C, (p, c) ∈ PCA ∧ c ⊆o c′ ∧ (a, r, ge1, ge2, c
′) ∈ OARCA)

⇔ (p, a, r, ge1, ge2) ∈ OPAR)
(o2) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,∀e1, e2 ∈ E ,∀h ∈ H((∃ge1, ge2 ∈ GE , (p, a, r, ge1, ge2) ∈ OPAR,

h
 e1 : ge1, h
 e2 : ge2, (e1, e2, h) ∈ EI)
⇔ (p, a, r, e1, e2, h) ∈ DPAR)

154 S. Alves et al.

The axiom o1 is the essence of the category-based metamodel: it specifies
that the principals that are members of a category to which the obligation
(a, r, ge1, ge2) has been assigned have this obligation. The axiom o2 shows how
to derive duties. The relation ⊆o specifies a hierarchy between obligation cate-
gories, which does not necessarily correspond to the way permissions are inher-
ited (specified by the relation ⊆ in axiom (a1)).

To accommodate collective and individual obligations, the following variants
of the axioms should be included.

(o1I) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,∀ge1, ge2 ∈ GE ,((∃c, c′ ∈ C, (p, c) ∈ PCA ∧ c ⊆o c′ ∧ (a, r, ge1, ge2, c
′) ∈ OARCAI

)
⇔ (p, a, r, ge1, ge2) ∈ OPARI

)
(o1C) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,∀ge1, ge2 ∈ GE ,∀c′ ∈ C,((∃c ∈ C, (p, c) ∈ PCA ∧ c ⊆o c′ ∧ (a, r, ge1, ge2, c

′) ∈ OARCAC
)

⇔ (p, a, r, ge1, ge2, c
′) ∈ OPARC

)
(o1′) OPARI ∩ OPARC = ∅

where OPARC represents the projection of the relation which discards the last
column (the category). Variants of the axiom o2 are defined similarly. Axiom
(o1′) indicates that the same obligation cannot be both collectivelly and indi-
vidually fulfilled. Additionally, the relation OARCAC should not assign the same
obligation to two categories in the ⊆o relation, to avoid redundancy.

4.2 Event and Event Type Representation

To consider examples of obligation policies we will describe a possible represen-
tation for events and event types.

Actions can be either elementary or compound, i.e. consisting of sets of (simul-
taneously happened) elementary actions [12]. We use letters a and e, possibly
with indexes, to identify actions and events, respectively. We will use a binary
representation for events, introduced in [4] and partly motivated by Davidson’s
work on event semantics [10]. This choice provides a most flexible representa-
tion with negligible computational overheads. In our case, the set of arguments
depends not only on the action involved but also on the context where the event
description is used.

Definition 5 (Event). An event description is a finite set of ground 2-place
facts (atoms) that describe an event, uniquely identified by ei, i ∈ N, and which
includes two necessary facts, written happens(ei, tj) and act(ei, al), and n non-
necessary facts (n ≥ 0).

In [4] an event description includes three necessary facts, and n non-necessary
facts (n ≥ 0). Unlike [4], we use only two types of necessary facts. Their intended
meanings may be described as follows: happens(ei, tj) means the event ei hap-
pens at time tj ; act(ei, al) means the event ei involves an action al

1. The events
should be positioned in the history in the order in which they happened.
1 We restrict attention to events without a duration.

Access Control and Obligations in the Category-Based Metamodel 155

Sometimes we will consider only the predicate act, omitting happens. In
this case, the history would include both events with specified time and events
without time, but whether we use the happens predicate or not, the history
should reflect the order in which the events happened in the system.

If the event ei involves the subject sm, then the corresponding non-necessary
fact subject(ei, sm) can be added to the event description when we need this fact.
In [4], subject(ei, sm), would be the third necessary fact. Similarly, if the event ei
involves the resource rl, then the fact object(ei, rl) can be added to the descrip-
tion. And so on. Thus, the event description given by the set {happens(ei, tj),
act(ei, al), subject(ei, sm), object(ei, rl)} represents a happening ei at a time tj
of an action al performed by a subject sm on a resource rl.

To define obligations associated with events, here we also consider event
types, denoted by gei. As it was noted earlier, in real modelling the set of non-
necessary predicates involved in a description of an event is determined not
only by the action assigned to this event but also by current context. We define
an event type, or generic event, to consist of the necessary fact indicating an
action and a set of predicates over expressions with variables including another
necessary predicate happens/2.

Definition 6 (Event type and Instance). A set ge of binary atoms repre-
sents an event type, also called generic event, if there exists a substitution σ
such that the instantiation of ge with σ, written, geσ is an event description
(see Definition 5).

An event e is an instance of a generic event ge, denoted as e : ge, if there is
a substitution σ such that geσ ⊆ e. In other words, if ge subsumes e.

The action of a substitution σ on a generic event ge may simply be a syntactic
operation (replacing variables by terms), or, depending on the application and the
kind of data used to define events, instantiation may require some computation;
we call it a semantic instantiation in the latter case. We give examples below.

Example 2. The events

e1 = {happens(e1, 12.25), act(e1, activate), object(e1, alarm)}
e2 = {happens(e2, 12.45), act(e2, deactivate), object(e2, alarm), subject(e2, tom)}

are instances, with respective substitutions σ1 = {E �→ e1, T �→ 12.25} and
σ2 = {E �→ e2, T �→ 12.25,X �→ tom}, of the generic events

alarmON = {happens(E, T), act(E, activate), object(E, alarm)}
alarmOFF = {happens(E, T + 20), act(E, deactivate), object(E, alarm),

subject(E,X)}
In the case of e2 we are using a semantic instantiation function.

Example 3. Assume that in a given university, every international student must
have a valid visa before registration day (when documents are checked). We can
define a generic event:

registration-day = {happens(E, T), act(E, open), subject(E, secretary)}

156 S. Alves et al.

and define categories “home-student” and “international-student”, such that
(obtain, visa,⊥, registration-day, international-student) ∈ OARCA2. Here the
event type that initiates the obligation is not specified (⊥), but the final one is
(registration-day). If attendance is required for all students, then OARCA should
contain the tuples: (attend, reg-office, reg-day-start, reg-day-end, home-student)
and (attend, reg-office, reg-day-start, reg-day-end, international-student).

Example 4. Consider a hospital, where doctors are allowed to read and write the
medical records of the patients in their department. Assume that the policy in
place also states that any doctor is allowed to read the medical record of a patient
who is in an emergency situation (even if the patient is not in their department)
but in that case they or any doctor in their department must declare this access
(by creating an entry in the hospital log). Let patient be a category consisting of
all patients (of a given hospital), and doctor be a category consisting of all doctors
(of the given hospital). Let patient(X) be a (parameterised) category consisting
of all patients in the department X, and doctor(X) be a (parameterised) category
consisting of all doctors in the department X, such that for all X, doctor(X) ⊆
doctor, i.e., the category doctor(X) inherits all permissions from the category
doctor and similarly patient(X) ⊆ patient. Assume that these categories and
hierarchical relation are used both for permissions and for obligations.

To model this scenario, we assume the relations PCA and ARCA satisfy
the following axioms, where emerg(bcrd, P) is true if an event brcd initiating a
cardiac emergency for P has been detected, and no event ending the emergency
has been recorded:

∀P,∀D, (P, patient(D)) ∈ PCA ⇒ (read, record(P), doctor(D)) ∈ ARCA
∀P,∀D, (P, patient(D)) ∈ PCA ∧ emerg(bcrd, P) ⇒

(read, record(P), doctor) ∈ ARCA

Moreover, we include the following axiom for OARCAC , where gen-read(X,P)
is a generic event representing the act of doctor(X) reading the medical record
of patient(P):

∀P, ∀X, ∀D,∀D′,
(
((P, patient(D)) ∈ PCA ∧ (X, doctor(D′)) ∈ PCA ∧

(X, doctor(D)) /∈ PCA) ⇒
(declare, admin-log, gen-read(X,P),⊥, doctor(D′)) ∈ OARCAC

)

5 A Rewrite Semantics for Obligations

Operationally, the axioms o1 and o2 given in Sect. 4 can be realised through
a set of function definitions. In this section we assume all the obligations are
individual; the extension to accommodate individual and collective obligations
is straightforward. The information contained in the relations PCA and OARCA
is modelled by the functions pca and oarca, respectively, where pca returns the
2 Or OARCAI if we need to distinguish between individual and collective obligations.

Access Control and Obligations in the Category-Based Metamodel 157

list of all the categories assigned to a principal and oarca returns the list of
obligations assigned to a category, e.g., defined by the rule:

oarca(c) → [(a1, r1, ge1, ge′
1), . . . , (an, rn, gen, ge

′
n)].

We assume that the function oarca∗ takes as input a list of obligation categories
and computes the list of obligations for all the categories in the list (similar
to arca∗, see Sect. 2). The function pca was already mentioned in Sect. 2 for
authorisations; for efficiency reasons, a separate function opca could be defined
to compute obligation categories.

In addition, we assume that the functions type and interval, specific to the par-
ticular system modelled, are also available. The function type implements the typ-
ing relation ET for events, that is, it computes the event type for a given event
e in h (taking into account the semantic instantiation relation associated with the
events of interest). The function interval implements the relation EI, which links
an event e1 with the event e2 that closes the interval started by e1 in h.

Definition 7. The rewrite-based specification of the axiom (o1) in Sect. 4.1 is
given by the rewrite rule:

(r1) opar(p, a, r, ge1, ge2) → (a, r, ge1, ge2) ∈ oarca∗(obelow(opca(p)))

where the function ∈ is a membership operator on lists, and, as the function name
suggests, obelow computes the set of categories that are below (w.r.t. the hierarchy
defined by the ⊆o relation) any of the categories given in the list opca(p). For
example, for a given category c, this could be achieved by using a rewrite rule
obelow([c]) → [c, c1, . . . , cn]. Intuitively, this means that if c′ is below c, then c
inherits all the obligations of c′.

The rewrite-based specification of the axiom (o2) is given by:

(r2) duty(p, a, r, e1, e2, h) → opar(p, a, r, type(e1, h), type(e2, h)) and
interval(e1, e2, h)

where the functions type and interval are specific to the system modelled, as
mentioned above. Additionally, we consider the following function to check the
status of obligations for a principal p with respect to a history of events:

(r3) eval-obligation(p, a, r, ge1, ge2, h) → if opar(p, a, r, ge1, ge2) then

append(chk-closed∗(closed(ge1, ge2, h), p, a, r), chk-open∗(open(ge1, ge2, h), p, a, r))

else [not-applicable]

where the function append is a standard function that concatenates two lists,
closed computes the sublists of h that start with an event e1 of type ge1 and
finish with an event e2 of type ge2 that closes the interval for this obligation,
and similarly open returns the subhistories of h that start with the event e1 of
type ge1 and for which there is no event e2 of type ge2 in h that closes the interval
for this obligation.

158 S. Alves et al.

The function chk-closed with inputs h′, p, a, r checks whether in the subhistory
h′ there is an event where the principal p has performed the action a on the
resource r, returning a result fulfilled if that is the case, and violated otherwise.

The function chk-open with inputs h′, p, a, r checks whether in the subhistory
h′ there is an event where the principal p has performed the action a on the
resource r, returning a result fulfilled if that is the case, and pending otherwise.

The functions chk-closed∗ and chk-open∗ do the same but for each element
of a list of subhistories, returning a list of results.

According to the previous specification, if the obligation (a, r, ge1, ge2) does not
concern p then eval-obligation(p, a, r, ge1, ge2, h) returns not-applicable, other-
wise, the function eval-obligation returns a list of results containing the status
of p in relation to this obligation according to h. Usually, h will be the event
history that is relevant to the scenario being modelled. For instance, it could
be the full history of events in the system, or we could restrict ourselves to the
events in the last year, or the events that happened during a specific interval. In
our model, it is not possible for a duty to be invalid (thanks to axiom (o2)). If
h is sufficiently long and depending on the events it contains, it is possible that
at different points the obligation was fulfilled, violated or pending. This is why
the function eval-obligation(p, a, r, ge1, ge2, h) returns a list of results.

If the system modelled includes collective and individual obligations, then
the functions chk-closed and chk-open should take into account this in order to
check if the obligation has been fulfilled.

Example 5. Consider again the hospital scenariomentioned inExample 4.Assume
an investigation is taking place to establish if Doctor Tom Smith, who treated
patient J. Lewis in an emergency situation occurring in November 2012, but
is not J. Lewis’s doctor, has fulfilled his obligation with respect to declaring
the access to this patient’s records. This is a collective obligation which can be
discharged by any of the doctors in his department. Accordingly, we assume the
functions chk-closed and chk-open perform collective checks.

In this case, we simply evaluate the term

eval-obligation(TomSmith, declare, admin-log, gen-read,⊥, h)

where gen-read = {act(E, read-pr(JLewis), sub(E, TomSmith)} and h is the
event history that starts on the 1st November 2012 and ends today.

5.1 Analysis of Policies

In previous work, rewriting techniques were used to derive properties of authori-
sation policies in the metamodel (see, e.g., [5]). Here we apply similar techniques
to prove properties of policies that include obligations.

Unicity of Evaluation. The term eval-obligation(p, a, r, ge1, ge2, h) should pro-
duce a unique answer, either indicating that the obligation (a, r, ge1, ge2) does
not apply to p, or providing the status of the corresponding duty in each of the

Access Control and Obligations in the Category-Based Metamodel 159

relevant intervals in h (i.e., compute a list indicating whether it was fulfilled,
violated or is still pending in each relevant interval). To prove this property,
it is sufficient to prove confluence (which implies the unicity of normal forms)
and termination (which implies the existence of normal forms for all terms) of
the rewrite system specifying opar, duty and eval-obligation, together with suf-
ficient completeness (which characterises the normal forms). These properties
will depend on the specific functions defined for the policy modelled (that is,
the specific rules used to compute pca, opca, arca, oarca, etc.), and unfortunately
they are generally undecidable. However, sufficient conditions exist and tools
such as CiME [9] could be used to help checking properties of the first-order
rewrite rules that provide the operational semantics of the policy.

Compatibility. The metamodel is sufficiently expressive to permit the definition
of policies where authorisations and obligations co-exist and may depend on
each other. In this case, security administrators need to check that obligations
and authorisations are compatible: the policy should ensure that every princi-
pal has the required permissions in order to fulfill all of its duties. This is not
trivial because both the authorisation relation PAR and the obligations rela-
tion OPAR may be defined using categories whose definition takes into account
dynamic conditions (e.g., h). In practice, in order to ensure that only duties that
are consistent with authorisations are issued, the semantics could be modified,
by adding, as a condition for the assignment of an obligation to a principal in
axiom (o1), the existence of a corresponding authorisation in PAR. More pre-
cisely, consider the relation OPAR+ defined by adding (a, r, c) ∈ PAR to the
left-hand side in the axiom (o1), i.e. (o1) is replaced with (o1+)

(o1+) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,∀ge1, ge2 ∈ GE ,(∃c, c′ ∈ C,
(
(p, c) ∈ PCA ∧ c ⊆o c′ ∧ (a, r, ge1, ge2, c

′) ∈ OARCA
∧(p, a, r) ∈ PAR) ⇔ (p, a, r, ge1, ge2) ∈ OPAR+

)
In the operational semantics, this would boil down to adding in the right-hand
side of the rule r2 the condition par(p, a, r, h, e1, e2), where the function par
computes the authorisation relation within the interval defined by e1 and e2 in
h. We prefer to follow the separation of concerns principle [11]: instead of adding
a condition in (o1) to force the compatibility of obligations and authorisations,
we axiomatise authorisations and obligations separately, and then check that the
authorisations specified are sufficient to enable all the obligations to be fulfilled.
Let us first formalise the notion of compatibility.

Definition 8 (Compatibility). A policy is compatible if

OPAR+ = OPAR (1)

A policy is weakly compatible if

OARCA ∩ BARCA = ∅ (2)

where OARCA is the projection of the relation OARCA on the arguments a, r, c,
i.e. in notations of relational algebra OARCA = πa,r,c(OARCA).

160 S. Alves et al.

A policy is strongly compatible if

OARCA ⊆ ARCA (3)

Below we summarise the entailment relations between compatibility, strong
compatibility and weak compatibility.

Property 1. 1. Strong compatibility implies weak compatibility, (3 ⇒ 2), under
the condition that categories are not empty (i.e., there is at least one prin-
cipal assigned to each category).

2. Compatibility implies strong compatibility, (1 ⇒ 3), under the conditions
that each principal belongs to a unique category and each category is not
empty.

3. Strong compatibility implies compatibility, (3 ⇒ 1), under the condition that
orderings ⊆o and ⊆ are the same, more precisely if ⊆o implies (is included
in) ⊆.

Weak compatibility is, in a sense, minimal among the notions of compatibility
defined above since (2 	⇒ 1) and (2 	⇒ 3). Strong compatibility implies weak
compatibility, i.e., (3 ⇒ 2), due to the fact that axiom (e1) (see Sect. 2) implies
ARCA ∩ BARCA = ∅ if categories are not empty. The proofs of the other
implications are omitted due to space constraints. The condition ⊆o implies ⊆
means that inheritance of obligations between categories implies inheritance of
authorisations. The following sufficient condition for compatibility is a direct
consequence of Property 1.

Corollary 1. A policy is compatible if

∀c ∈ C, subset(proj − listar(oarca(c)), arca(c)) →∗ True

where we assume ⊆o implies ⊆, subset is the function that checks the subset
property for sets represented as lists of elements, and proj − listar is the projection
function that projects each element of a list on the first and second components
(i.e., action, resource).

Using this result, we can devise a method to automatically prove compatibility of
a policy involving authorisations and obligations using a completion tool, such as
CiME, to deal with the universal quantification on categories. First, the rewrite
system R defining the policy should be proved confluent and terminating by the
tool. Then, we add to R the equation subset(proj − listar(oarca(C)), arca(C)) =
True. The completion procedure will instantiate C to unify with the left-hand side
of the rules defining oarca and arca. If the policy is compatible, the completion
procedure terminates successfully without adding any rules to the system. If it
is not compatible, the completion procedure will detect an inconsistency True =
False. A similar technique can be used to prove weak compatibility.

Access Control and Obligations in the Category-Based Metamodel 161

6 Related Work

The CBAC model we consider here is an extension of the model defined in [5]
for authorisations; all the results regarding the rewriting semantics of authori-
sations are also valid here, but are not the focus of this paper. Several models
dealing with the notion of obligations have been proposed in the literature (see,
for example, [8,12–14,17,18,21]), with different features and providing differ-
ent levels of abstraction in the definition and management of obligations. Some
models consider obligations to be fulfilled by the system and therefore never vio-
lated, whereas others consider obligations to be fulfilled by users, in which case
other questions arise such as how can the system guarantee that the user will
be allowed to fulfill the obligations, and the notion of accountability (if a user,
with the necessary permissions, does not fulfill its obligations then he becomes
accountable).

The framework in [17] deals both with system and user obligations and mea-
sures to enforce the fulfillment of obligations. Obligations are triggered by time
or events and violated obligations are treated by the system. Our metamodel
includes an abstract notion of a principal, which can be a user or the system, and
we distinguish between obligations, which are associated with generic events, and
duties, which are triggered by events that happen in the system. Time-triggered
obligations and duties can be accommodated by defining events corresponding
to clock ticks.

The system presented in [14] extends the usage control (UCON) model with
obligations and separates system obligations (which are called trusted obliga-
tions) from user obligations (called non-trusted). Mechanisms are proposed to
deal with the non-trusted obligations. The system does not consider the interac-
tion of obligations with permissions, neither deals with dynamic conditions on
obligations, as our metamodel does. In [20], the ABC core model was defined
for UCON, dealing with authorisations, obligations and conditions. This app-
roach differs from ours, since it describes not a general metamodel, but instead
a family of models depending on the type of authorisations, obligations and con-
ditions that are considered and the necessary components for each model in the
family. Our approach also considers authorisations, obligations and conditions,
but in a uniform way, and provides a rewrite-based operational semantics for
authorisations and obligations.

The approach followed in [8] was to formalise policies (using Horn clauses)
trying to minimise the number of actions that need to be performed before
allowing an access request. Although the initial system only dealt with sys-
tems without violated obligations, this was later extended to handle violation of
obligations. This approach was limited in the type of obligations that could be
modelled, because it lacked mechanisms to deal with temporal constraints.

In [13] a model is presented for authorisation systems dealing with the notion of
accountability; obligations are defined as an action on a resource by a user within
a time interval (defined in clock ticks from a predetermined starting point). The
monitoring and restoring of accountability was further explored in [21], where a
transition relation is defined and conditions to guarantee accountability are

162 S. Alves et al.

established. The notion of obligation defined in these works corresponds to con-
crete obligations (duties) in our model, and although this is not the focus of this
paper, we believe that rewriting can be used to verify the properties of account-
ability studied in these papers.

A more general model dealing with obligations and its relation to access
control and privacy policies was defined in [18]. This model investigates the
interaction of obligations and permissions and its undesirable effects such as
obligation cascading. We do not deal with privacy policies here, but the category-
based model that we present is expressive enough to model the concepts of
obligations defined in this work, and rewriting properties can be used to further
explore the interplay between permissions and obligations.

Closely related to our work is [12], which considers obligations and authori-
sations in dynamic systems using a notion of event defined as a pair of a system
state and an action. Our notion of event also includes actions, and system states
can be included in the event representation. A major difference is that [12]
focuses on compliance of events whereas we focus on compatibility properties
of policies. Also, we use a rewriting semantics instead of the logic programming
approach advocated in [12]. In this sense, our work and [12] are complemen-
tary: an answer set semantics could be defined for our policies, and Prolog used
to check compatibility provided a tool is available to check termination of the
program.

7 Conclusions

We augmented the CBAC metamodel with a general notion of obligation. The
framework is expressive enough to deal with most of the features relevant to
authorisations and obligations and provides means to reason about them.

Our model distinguishes individual and collective obligations by partitioning
the set of obligations into two distinct sets. However, there are some situations
where it can be difficult to distinguish between one or the other type. An alter-
native approach to be investigated in the future is to base this distinction on the
definition of the obligation-category assignment relation. That is, although at a
certain moment all the principals belonging to a particular category are obliged
to perform some action, the definition of the category can depend on the fact of
the action not having been performed at the time. In future work we will further
develop the notion of event type, and give an operational definition of the typing
relation for events. We also wish to explore appropriate mechanisms to deal with
compliance and accountability.

References

1. ANSI. RBAC, 2004. INCITS 359–2004
2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,

Cambridge (1998)
3. Barker, S.: The next 700 access control models or a unifying meta-model? In:

Proceedings of SACMAT 2009, pp. 187–196. ACM Press (2009)

Access Control and Obligations in the Category-Based Metamodel 163

4. Barker, S., Sergot, M.J., Wijesekera, D.: Status-based access control. ACM Trans.
Inf. Syst. Secur. 12(1), 1–47 (2008)

5. Bertolissi, C., Fernández, M.: Category-based authorisation models: operational
semantics and expressive power. In: Massacci, F., Wallach, D., Zannone, N. (eds.)
ESSoS 2010. LNCS, vol. 5965, pp. 140–156. Springer, Heidelberg (2010)

6. Bertolissi, C., Fernández, M.: Rewrite specifications of access control policies in
distributed environments. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A.
(eds.) STM 2010. LNCS, vol. 6710, pp. 51–67. Springer, Heidelberg (2011)

7. Bertolissi, C., Fernández, M., Barker, S.: Dynamic event-based access control as
term rewriting. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security
2007. LNCS, vol. 4602, pp. 195–210. Springer, Heidelberg (2007)

8. Bettini, C., Jajodia, S., Wang, X., Wijesekera, D.: Provisions and obligations in
policy rule management. J. Netw. Syst. Manag. 11(3), 351–372 (2003)

9. Contejean, E., Paskevich, A., Urbain, X., Courtieu, P., Pons, O., Forest, J.: A3pat,
an approach for certified automated termination proofs. In: Proceedings of PEPM
2010, pp. 63–72. ACM, New York (2010)

10. Davidson, D.: Essays on Actions and Events. Oxford University Press, Oxford
(2001)

11. Dijkstra, E.W.: Selected Writings on Computing - A Personal Perspective. Texts
and Monographs in Computer Science. Springer, New York (1982)

12. Gelfond, M., Lobo, J.: Authorization and obligation policies in dynamic systems.
In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
22–36. Springer, Heidelberg (2008)

13. Irwin, K., Yu, T., Winsborough, W.H.: On the modeling and analysis of obligations.
In: Proceedings of CCS 2006, pp. 134–143. ACM, New York (2006)

14. Katt, B., Zhang, X., Breu, R., Hafner, M., Seifert, J.-P.: A general obligation
model and continuity: enhanced policy enforcement engine for usage control. In:
Proceedings of SACMAT 2008, pp. 123–132. ACM, New York (2008)

15. Kowalski, R., Sergot, M.: A logic-based calculus of events. New. Gener. Comput.
4(1), 67–95 (1986)

16. Miller, R., Shanahan, M.: The event calculus in classical logic - alternative axioma-
tisations. Electron. Trans. Artif. Intell. 3(A), 77–105 (1999)

17. Mont, M.C., Beato, F.: On parametric obligation policies: enabling privacy-aware
information lifecycle management in enterprises. In: POLICY, pp. 51–55 (2007)

18. Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control policies
and privacy policies. In: Proceedings of SACMAT 2008, pp. 133–142. ACM, New
York (2008)

19. OASIS. eXtensible Access Control Markup language (XACML) (2003). http://
www.oasis-open.org/xacml/docs/

20. Park, J., Sandhu, R.: The ucon abc usage control model. ACM Trans. Inf. Syst.
Secur. 7(1), 128–174 (2004)

21. Pontual, M., Chowdhury, O., Winsborough, W.H., Yu, T., Irwin, K.: On the man-
agement of user obligations. In: Proceedings of SACMAT 2011, pp. 175–184. ACM,
New York (2011)

http://www.oasis-open.org/xacml/docs/
http://www.oasis-open.org/xacml/docs/

Program Testing and Verification

Concolic Execution and Test Case
Generation in Prolog

Germán Vidal(B)

MiST, DSIC, Universitat Politècnica de València,
Camino de Vera, s/n, 46022 Valencia, Spain

gvidal@dsic.upv.es

Abstract. Symbolic execution extends concrete execution by allowing
symbolic input data and then exploring all feasible execution paths. It
has been defined and used in the context of many different program-
ming languages and paradigms. A symbolic execution engine is at the
heart of many program analysis and transformation techniques, like par-
tial evaluation, test case generation or model checking, to name a few.
Despite its relevance, traditional symbolic execution also suffers from
several drawbacks. For instance, the search space is usually huge (often
infinite) even for the simplest programs. Also, symbolic execution gen-
erally computes an overapproximation of the concrete execution space,
so that false positives may occur. In this paper, we propose the use of
a variant of symbolic execution, called concolic execution, for test case
generation in Prolog. Our technique aims at full statement coverage. We
argue that this technique computes an underapproximation of the con-
crete execution space (thus avoiding false positives) and scales up better
to medium and large Prolog applications.

1 Introduction

There is a renewed interest in symbolic execution [3,9], a well-known technique
for program verification, testing, debugging, etc. In contrast to concrete exe-
cution, symbolic execution considers that the values of some input data are
unknown, i.e., some input parameters x, y, . . . take symbolic values X,Y, . . .
Because of this, symbolic execution is often non-deterministic: at some con-
trol statements, we need to follow more than one execution path because the
available information does not suffice to determine the validity of a control
expression, e.g., symbolic execution may follow both branches of the conditional
“if (x > 0) then exp1 else exp2” when the symbolic value X of variable x is
not constrained enough to imply neither x > 0 nor ¬(x > 0). Symbolic states
include a path condition that stores the current constraints on symbolic val-
ues, i.e., the conditions that must hold to reach a particular execution state.

This work has been partially supported by the EU (FEDER) and the Spanish
Ministerio de Economı́a y Competitividad (Secretaŕıa de Estado de Investigación,
Desarrollo e Innovación) under grant TIN2013-44742-C4-1-R and by the Generali-
tat Valenciana under grant PROMETEO/2011/052.

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 167–181, 2015.
DOI: 10.1007/978-3-319-17822-6 10

168 G. Vidal

E.g., after symbolically executing the above conditional, the derived states for
exp1 and exp2 would add the conditions X > 0 and X ≤ 0, respectively, to their
path conditions.

Traditionally, formal techniques based on symbolic execution have enforced
soundness: if a symbolic state is reached and its path condition is satisfiable,
there must be a concrete execution path that reaches the corresponding con-
crete state. In contrast, we say that symbolic execution is complete when every
reachable state in a concrete execution is “covered” by some symbolic state. For
the general case of infinite state systems, completeness usually requires some
kind of abstraction (as in infinite state model checking).

In the context of logic programming, we can find many techniques that use
some form of complete symbolic execution, like partial evaluation [4,12,13]. How-
ever, these overapproximations of the concrete semantics may have a number of
drawbacks in the context of testing and debugging. On the one hand, one should
define complex subsumption and abstraction operators since the symbolic search
space is usually infinite. These abstraction operators, may introduce false posi-
tives, which is often not acceptable when debugging large applications. On the
other hand, because of the complexity of these operators, the associated methods
usually do not scale to medium and large applications.

In imperative programming, an alternative approach, called concolic execu-
tion [6,16], has become popular in the last years. Basically, concolic execution
proceeds as follows: first, a concrete execution using random input data is per-
formed. In parallel to the concrete execution, a symbolic execution is also per-
formed, but restricted to the same conditional choices of the concrete execution.
Then, by negating one of the constraints in the symbolic execution, new input
data are obtained, and the process starts again. Here, only concrete executions
are considered and, thus, no false positives are produced. This approach has given
rise to a number of powerful and scalable tools in the context of imperative and
concurrent programming, like Java Pathfinder [14] and SAGE [7].

In this paper, we present a novel scheme for testing pure Prolog (without
negation) based on a notion of concolic execution. To the best of our knowledge,
this is the first approach to concolic execution in the context of a declarative
programming paradigm.

2 Preliminaries

We assume some familiarity with the standard definitions and notations for
logic programs [11]. Nevertheless, in order to make the paper as self-contained
as possible, we present in this section the main concepts which are needed to
understand our development.

In this work, we consider a first-order language with a fixed vocabulary of
predicate symbols, function symbols, and variables denoted by Π, Σ and V,
respectively. In the following, we let on denote the sequence of syntactic objects
o1, . . . , on, and we let on,m denote the sequence on, on+1, . . . , om. Also, we often
use o when the number of elements in the sequence is irrelevant. We let T (Σ,V)

Concolic Execution and Test Case Generation in Prolog 169

denote the set of terms constructed using symbols from Σ and variables from
V. An atom has the form p(tn) with p/n ∈ Π and ti ∈ T (Σ,V) for i = 1, . . . , n.
A goal is a finite sequence of atoms A1, . . . , An, where the empty goal is denoted
by true. A clause has the form H → B where H is an atom and B is a goal (note
that we only consider definite programs). A logic program is a finite sequence
of clauses. Var(s) denotes the set of variables in the syntactic object s (i.e., s
can be a term, an atom, a query, or a clause). A syntactic object s is ground if
Var(s) = ∅. In this work, we only consider finite ground terms.

Substitutions and their operations are defined as usual. In particular, the set
Dom(σ) = {x ∈ V | σ(x) �= x} is called the domain of a substitution σ. We
let id denote the empty substitution. The application of a substitution θ to a
syntactic object s is usually denoted by juxtaposition, i.e., we write sθ rather
than θ(s). A syntactic object s1 is more general than a syntactic object s2,
denoted s1 � s2, if there exists a substitution θ such that s2 = s1θ. A variable
renaming is a substitution that is a bijection on V. Two syntactic objects t1 and
t2 are variants (or equal up to variable renaming), denoted t1 ≈ t2, if t1 = t2ρ for
some variable renaming ρ. A substitution θ is a unifier of two syntactic objects
t1 and t2 iff t1θ = t2θ; furthermore, θ is the most general unifier of t1 and t2,
denoted by mgu(t1, t2) if, for every other unifier σ of t1 and t2, we have that
θ � σ.

The notion of computation rule R is used to select an atom within a goal
for its evaluation. Given a program P , a goal G ≡ A1, . . . , An, and a compu-
tation rule R, we say that G �P,R,σ G′′ is an SLD resolution step for G with
P and R if

– R(G) = Ai, 1 � i � n, is the selected atom,
– H → B is a renamed apart clause of P (in symbols H → B << P),
– σ = mgu(A,H), and
– G′ ≡ (A1, . . . , Ai−1,B, Ai+1, . . . , An)σ.

We often omit P , R and/or σ in the notation of an SLD resolution step when they
are clear from the context. An SLD derivation is a (finite or infinite) sequence
of SLD resolution steps. We often use G0 �∗

θ Gn as a shorthand for G0 �θ1

G1 �θ2 . . . �θn
Gn with θ = θn ◦ · · · ◦ θ1 (where θ = {} if n = 0). An SLD

derivation G �∗
θ G′ is successful when G′ = true; in this case, we say that θ is

the computed answer substitution. SLD derivations are represented by a (possibly
infinite) finitely branching tree.

3 A Deterministic Semantics

In this section, we introduce a deterministic small-step semantics for pure Prolog
(without negation). Basically, as we will see in the next section, we need to
keep some information through the complete Prolog computation, and the usual
semantics based on non-determinism and backtracking is not adequate for this
purpose. Therefore, we propose the use of a stack to store alternative execution
paths that are tried when a failure is reached. The resulting small-step semantics

170 G. Vidal

Fig. 1. Deterministic small-step semantics

is clearly equivalent to the original one when a depth-first search is considered.
Actually, our deterministic semantics is essentially equivalent to (a subset of)
the linear semantics presented in [17].

In the following, we assume that the program clauses are labeled. In particu-
lar, given a program P , we use the notation H

�← B << P to refer to a (renamed
apart) labeled clause H ← B in P . Labels must be unique. Moreover, we only
consider Prolog’s left-to-right computation rule, and assume that only the com-
putation of the first answer for the initial goal is relevant (as it is common in
practical Prolog applications).

Our semantics deals with states, which are defined as follows:

Definition 1 (State). A state is a tuple 〈G;σ;S〉, where G is a goal, σ is a
substitution—the (partial) answer computed so far—and S, the stack, is a (pos-
sibly empty) list of tuples (�;G′;σ′) with � a clause label, G′ a goal and σ′ a
substitution.

The small-step deterministic semantics is defined as the smallest relation that
obeys the labeled transition rules shown in Fig. 1, where [H|R] denotes a list
with head H and tail R, and “++” denotes list concatenation.

Given a goal G0, the initial state has the form 〈G0; id ; []〉. The transition
relation is labeled with u(�n), denoting an unfolding step with the clauses labeled
with �n, b(�), denoting a backtracking step that tries a clause labeled with �, or
f, denoting a failing derivation.

Let us briefly explain the rules of the small-step semantics:

– The unfolding rule proceeds as in standard SLD resolution, but considers all
matching clauses, so that all SLD resolution steps are performed in one go.
The first unfolding step is used to replace the goal component of the state,

Concolic Execution and Test Case Generation in Prolog 171

while the remaining ones (if any) are added on top of the stack (thus we mimic
the usual depth-first search of Prolog). Here, the labels of the clauses and the
partial computed answers are also stored in the stack in order to recover this
information when a backtracking step is performed.

– The backtracking rule applies when no further unfolding is possible and the
goal component is not true (the empty goal). In this case, we discard the
current goal and consider the first goal in the stack, extracting the clause
label and the partial answer that are needed for the transition step.

– Finally, the failure rule is used to terminate a computation that reaches a goal
in which the selected atom does not match any rule and, moreover, there are
no alternatives in the stack.

A successful computation has the form 〈G0; id ; []〉 s1→ 〈G1;σ1;S1〉 s2→ . . .
sn→

〈true;σn;Sn〉, where σn (restricted to the variables of G0) is the computed answer
substitution. A failing computation has the form 〈G0; id ; []〉 s1→ 〈G1;σ1;S1〉 s2→
. . .

sn→ 〈Gn;σn;Sn〉 f→id 〈fail;σn; []〉; we keep σn in the last state since it might
be useful for analyzing finite failure derivations.

Now, we introduce the following notion of execution trace, that will be used
in the next section to steer the symbolic execution.

Definition 2 (Trace). Let 〈G0; id ;S0〉 s1→ 〈G1;σ1;S1〉 s2→ . . .
sn→ 〈Gn;σn;Sn〉 be

a computation. The associated trace is the list [s1, s2, . . . , sn], where each si is
either of the form u(�m), b(�) or f.

Example 1. Consider the rev acc type program to reverse a list using an accumu-
lator and also checking the type of the input parameter (from the DPPD library
[10]), extended with predicates main, length, and foo:

(1) main(L,N,R) :- (5) is_list([]).
length(L,N), (6) is_list([_H|T]) :-
rev(L,[],R), is_list(T).
foo(a).

(2) main(_L,_N,error).
(7) length([],0).

(3) rev([],A,A). (8) length([_H|R],s(N)) :-
(4) rev([H|T],Acc,Res) :- length(R,N).

is_list(Acc),
rev(T,[H|Acc],Res). (9) foo(b).

Here, we use natural numbers as clause labels. Predicate main considers two
cases: if the input list L has length N (the length is represented using natural
numbers built from 0 and s() to avoid the use of built-ins), the reverse of L
is computed; otherwise, we assume that an error occurs. The computation for
the initial goal main([a, b], s(s(0)), R) is shown in Fig. 2, where only the relevant
computed substitutions are shown. The trace associated to the computation is

[u(1, 2), u(8), u(8), u(7), u(4), u(5), u(4), u(6), u(5), u(3), b(2)]

172 G. Vidal

〈main([a, b], s(s(0)), R); id ; []〉
u(1,2)→ 〈length([a, b], s(s(0))), rev([a, b], [], R), foo(a); id ; [(2; {R/error}; true)]〉
u(8)→ 〈length([b], s(0)), rev([a, b], [], R), foo(a); id ; [(2; {R/error}; true)]〉
u(8)→ 〈length([], 0), rev([a, b], [], R), foo(a); id ; [(2; {R/error}; true)]〉
u(7)→ 〈rev([a, b], [], R), foo(a); id ; [2; ({R/error}; true)]〉
u(4)→ 〈is list([]), rev([b], [a], R), foo(a); id ; [(2; {R/error}; true)]〉
u(5)→ 〈rev([b], [a], R), foo(a); id ; [(2; {R/error}; true)]〉
u(4)→ 〈is list([a]), rev([], [b, a], R), foo(a); id ; [(2; {R/error}; true)]〉
u(6)→ 〈is list([]), rev([], [b, a], R), foo(a); id ; [(2; {R/error}; true)]〉
u(5)→ 〈rev([], [b, a], R), foo(a); id ; [(2; {R/error}; true)]〉
u(3)→ 〈foo(a); {R/[b, a]}; [(2; {R/error}; true)]〉
b(2)→ 〈true; {R/error}; []〉

Fig. 2. Successful computation for main([a, b], s(s(0)), R).

4 Concolic Execution

In this section, we introduce the semantics of concolic execution. Essentially, it
deals with symbolic input data (free variables in our context), as in standard
symbolic execution, but is driven by a concrete execution. Often, a single algo-
rithm mixing both concrete and symbolic execution is introduced. In contrast,
for clarity, we prefer to keep both calculi independent: the concrete semantics
produces a trace, which is then used to steer the symbolic execution.1

The symbolic states for concolic execution are defined as follows:

Definition 3 (Symbolic State). A symbolic state is a tuple 〈τ ;L;G;σ;S;T 〉,
where

– τ is a computation trace,
– L is a list of clause labels (namely, a stack that keeps track of the current

clause environment),2
– G is a goal,
– σ is the partial answer computed so far (a substitution),
– S is a (possibly empty) list of tuples, (�;L′;σ;G′), where L′ is also a list of

clause labels, and
– T is a set of clause labels (the labels of those clauses not yet completely eval-

uated).

1 Nevertheless, an implementation of this technique may as well combine both calculi
into a single algorithm to improve efficiency.

2 The usefulness of keeping the clause stack will become clear in the next section.
Basically, it is needed to know which other clauses can be completely evaluated
when a given clause—the one that is on top of the stack—is completely evaluated.

Concolic Execution and Test Case Generation in Prolog 173

Fig. 3. Concolic execution semantics

The concolic execution semantics is defined as the smallest relation that obeys
the labeled transition rules shown in Fig. 3. Given a trace τ , the initial symbolic
state has the form 〈τ ; [];G0; id ; [];T 〉, where G0 is a goal with the same predicates
as in the concrete execution, but with fresh variables as arguments, and T is a
set with the labels of all program clauses. The transition relation is labeled with
a (possibly empty) list of terms of the form c(�, θ), which denote possible alterna-
tives for unfolding that concrete execution did not consider. Missing alternatives
will be used to generate new input data that explore different execution paths.

Let us briefly explain the rules of concolic execution semantics:

– The unfolding rule follows the trace of the concrete execution and applies the
same unfolding step. Here, a call of the form e(�) is added to the end of
the clause bodies to mark when the clauses are completely evaluated. This is
required in our context since we only consider that a clause is covered when
all body atoms are successfully executed.3 This will be a useful information

3 Observe that other, more relaxed, notions of clause covering are possible; e.g., con-
sider that a clause is covered as soon as the clause is used in an unfolding step. Also,
see [2] for a more declarative notion of test coverage.

174 G. Vidal

for test case generation, as we will see in the next section. Moreover, in this
rule, we label the step with the information regarding the remaining clauses
whose head unifies with the selected atom (and did not match with it in
the concrete execution). Finally, we add �1 to the stack of clause labels (the
current environment).

– The exit rule applies when the selected atom has the form e(�). In this case,
we remove � from the top of the environment stack, and also delete � from the
set of clause labels T (i.e., clause � has been completely evaluated).

– The backtracking and failure rules proceed analogously to the unfolding rule by
labeling the step with the information regarding the additional clauses whose
head unify with the selected atom (if any).

When the set labeling rules unfolding, backtracking and failure is not empty, we
have identified situations in which the symbolic state can follow an execution
path that is not possible with the concrete goal. Therefore, they allow us to
construct new input data for the initial goal so that a different execution path
is followed.

Let us now show a simple computation with the concolic execution semantics.
We postpone to the next section the algorithm for test case generation.

Example 2. Consider the following simple program:

(1) p(X) :- q(X),r(X).
(2) q(X) :- s(X).
(3) s(a).
(4) s(b).
(5) r(b).

where we again consider natural numbers as clause labels. The concrete execution
for the initial goal p(a) is as follows:4

〈p(a);id ; []〉u(1)→ 〈q(a), r(a);id ; []〉u(2)→ 〈s(a), r(a);id ; []〉u(3)→ 〈r(a);id ; []〉 f→〈fail; id ; []〉
Therefore, its associated trace is τ = [u(1), u(2), u(3), f]. Now, for concolic execu-
tion, we consider the trace τ and the initial goal p(X). The concolic execution is
shown in Fig. 4. As can be seen, the execution of clauses 1, 4 and 5 has not been
completed. Moreover, we can observe that there was only one missing alternative
when unfolding s(X). In the next section, we show how this information can be
used for test case generation.

5 Test Case Generation

In this section, we present an algorithm for test case generation using concolic
execution. In contrast to previous approaches for Prolog testing, our technique
4 In the examples, we restrict the (partial) computed answers to the variables of the

initial goal.

Concolic Execution and Test Case Generation in Prolog 175

Fig. 4. Concolic execution for [u(1), u(2), u(3), f] and p(X)

considers an underapproximation, i.e., only actual executions are considered
(since there is no abstraction involved). Therefore, no false positives may occur.
If a test case shows an error, this is an actual error in the considered program.

5.1 The Algorithm

In this section, we assume that the program contains a single predicate that starts
the execution, which we denote with main. This is not unusual for real applica-
tions. Moreover, we consider a particular mode for main,5 where in(main/n) =
{i1, . . . , im} denotes the set of input parameters of main.

The algorithm for test case generation proceeds as follows:

1. First, a random goal of the form main(tn) is produced, where at least the
input arguments (according to in(main/n)) must be ground.

2. Now, we use the concrete semantics to execute the goal main(tn), thus obtain-
ing an associated trace τ . We assume that this execution terminates, which
is reasonable since the input arguments are ground. In practice, one can use
a timeout and report a warning when the execution takes more time.

3. Then, we use concolic execution to run an initial symbolic state of the form

〈τ ; [];main(Xn); id ; [];T 〉

where T is a set with the labels of all program clauses. Since the concrete
execution was finite, so is the concolic execution (since it performs exactly
the same steps). Let us consider that it has the following form:

〈τ0;L0;G0;σ0;S0;T0〉 c1
� . . .

cm
� 〈τm;Lm;Gm;σm;Sm;Tm〉

where τ0 = τ , L0 = [], G0 = main(Xn), σ0 = id , S0 = [], T0 = T , and Gm is
either true or fail.

5 Extending our approach to multiple modes would not be difficult, but would intro-
duce another source of nondeterminism when grounding an input goal.

176 G. Vidal

4. Now, we check the value of Tm. If Tm = {}, the algorithm terminates since all
clauses have been completely executed. Otherwise, we identify the last state
〈τi;Li;Gi;σi;Si;Ti〉 in the above concolic execution such that
– the previous transition ci

� is labeled with ci = {c(�k, θk)}, k > 0, and
– there exists j ∈ {1, . . . , k} such that either �j ∈ Tm or Li contains (not

necessarily in a top position) some labels from Tm; the reason to also
consider the labels from Li is that considering an alternative clause may
help to complete the execution of all the clauses in the current clause
stack. Either way, we choose a clause j in a non-deterministic way.

Therefore, we have a prefix of the complete concolic execution of the form:

〈τ0;L0;G0;σ0;S0;T0〉 c1
� . . .

ci−1
� 〈τi−1;Li−1;Gi−1;σi−1;Si−1;Ti−1〉
ci
� 〈τi;Li;Gi;σi;Si;Ti〉

and we are interested in the (possibly) partial computed answer σi−1θj , since
it will allow us to explore a different execution path, possibly covering some
more program clauses.
Hence, we have a second test case: G′

0 = main(Xn)σi−1θjγ, where γ is a sub-
stitution that is only aimed at grounding the input parameters in(main/n)
of main using arbitrary values (of the right type, preferably minimal ones).

5. Finally, we consider the initial state 〈G′
0; id ; []〉 and obtain a new trace using

the concrete execution semantics τ ′, so that a new initial symbolic state is
defined as follows: 〈τ ′; [];main(Xn); id ; [];Tm〉 and the process starts again
(i.e., we jump again to step 3). Observe that the initial state includes the
set of clause labels Tm obtained in the last state of the previous concolic
execution, in order to avoid producing new tests for clauses that are already
covered by some previous test case.

Let us now illustrate the complete test case generation process with an example.

5.2 Test Case Generation in Practice

In this section, we illustrate the generation of test cases using a slight modifica-
tion of the program in Example 1:

(1) main(L,N,R) :- (5) is_list([]).
length(L,N), (6) is_list([_H|T]) :-
rev(L,[],R). is_list(T).

(2) main(_L,_N,error).
(7) length([],0).

(3) rev([],A,A). (8) length([_H|R],s(N)) :-
(4) rev([H|T],Acc,Res) :- length(R,N).

is_list(Acc),
rev(T,[H|Acc],Res).

Observe that, in this example, using a random generation of test cases would
be useless since the length of the generated list and the second argument would

Concolic Execution and Test Case Generation in Prolog 177

Fig. 5. Concolic execution for 〈[u(1, 2), u(8), b(2)]; []; main(L, N, R); id ; []; {1, 2, . . . , 8}〉

hardly coincide. Also, using standard symbolic execution might be difficult too
since the search space is infinite and, moreover, due to the use of predicate rev
that includes an accumulating parameter, there are goals that are not instances
of any previous goal, thus requiring some powerful abstraction operators.

Using concolic execution, though, we can easily generate appropriate test
cases.

First Iteration. We start with a random initial goal, e.g., main([a, b], s(0), R),
where the input arguments [1, 2] are assumed ground. The associated concrete
execution is the following:

〈main([a, b], s(0), R); id ; []〉
u(1,2)→ 〈length([a, b], s(0)), rev([a, b], [], R); id ; [(2; {R/error}; true)]〉
u(8)→ 〈length([b], 0), rev([a, b], [], R); id ; [(2; {R/error}; true)]〉
b(2)→ 〈true; {R/error}; []〉

and its associated trace is thus τ = [u(1, 2), u(8), b(2)].
Now, we use concolic execution and produce the computation shown in Fig. 5.

Therefore, by executing main([a, b], s(0), R) only clause (2) is completely eval-
uated. According to the previous algorithm for test case generation, we now
consider the following prefix of the concolic execution:

〈[u(1, 2), u(8), b(2)]; []; main(L, N, R); id ; []; {1, . . . , 8}〉 {}→ . . .
{c(7,{L′/[],N′/0})}→ 〈. . .〉

and the associated substitution {L/[X], N/s(0)}.

Second Iteration. Now, we consider the goal main([X], s(0), R). Since the first
two arguments must be ground, as mentioned before, we apply a minimal ground-
ing substitution and get, e.g., main([a], s(0), R). The concrete execution, which
is shown in Fig. 6, computes the following trace:

τ ′′ = [u(1, 2), u(8), u(7), u(4), u(5), u(3)]

178 G. Vidal

〈main([a], s(0), R); id ; []〉
u(1,2)→ 〈length([a], s(0)), rev([a], [], R); id ; [(2; {R/error}; true)]〉
u(8)→ 〈length([], 0), rev([a], [], R); id ; [(2; {R/error}; true)]〉
u(7)→ 〈rev([a], [], R); id ; [2; ({R/error}; true)]〉
u(4)→ 〈is list([]), rev([], [a], R); id ; [(2; {R/error}; true)]〉
u(5)→ 〈rev([], [a], R); id ; [(2; {R/error}; true)]〉
u(3)→ 〈true; {R/[a]}; [(2; {R/error}; true)]〉

Fig. 6. Concrete execution for main([a], s(0)), R).

Then, we use concolic execution again as shown in Fig. 7. Therefore, according
to the algorithm, we consider the following prefix of the concolic execution:

〈[u(1, 2), u(8), . . .]; []; main(L, N, R); []; {4, 5, 6, 8}〉 {}→ 〈. . .〉 {c(7,θ1)}→ 〈. . .〉 {c(8,θ2)}→ 〈. . .〉

with the associated substitution σ1θ2 = {L/[X, Y|L′′], N/s(s(N′′))}.

Third (and Last) Iteration. As in the previous case, the instantiated goal,
main([X, Y|L′′], s(s(N′′), R), is not ground enough according to its input mode
and, thus, we apply a minimal grounding substitution. In this case, we get
the initial goal main([a, b], s(s(0)), R). Here, the concrete execution is basically
the same shown in Fig. 2, except for the last (backtracking) step. Therefore, the
associated trace is

τ ′′′ = [u(1, 2), u(8), u(8), u(7), u(4), u(5), u(4), u(6), u(5), u(3)]

Now, concolic execution from the initial state

〈[u(1, 2), u(8), u(8), u(7), u(4), u(5), u(4), u(6), u(5), u(3)]; []; main(L, N, R); id ; []; {6}〉

proceeds similarly to the derivation shown in Fig. 7, but now clause (6) is also
completely evaluated, which means that the algorithm terminates successfully.

To summarize, concolic testing generated four test cases:

main([a, b], s(0), R) main([a], s(0), R)
main([], 0, R) main([a, b], s(s(0)), R)

which suffice to cover the complete evaluation of all program clauses.
In general, when the test case generation algorithm terminates, concolic

testing is sound (i.e., there are no false positives since only concrete execu-
tions are considered) and complete (in the sense that all clauses are completely

Concolic Execution and Test Case Generation in Prolog 179

Fig. 7. Concolic execution for 〈[u(1, 2), u(8), . . .]; id ; []; main(L, N, R); []; {4, 5, 6, 8}〉

evaluated when using the computed test cases, i.e., we get a 100% coverage).
When the process is stopped (e.g., because it does not terminate or takes too
much time), our test case generation is only sound. Note that this contrasts
with other approaches to test case generation in Prolog (and CLP), e.g., [8,15],
where full coverage is not considered. In [1], however, the authors consider a
refined notion of coverage criterion: a pair 〈TC, SC〉, where TC is a termination
criterion (e.g., the maximum number of recursive calls to a predicate allowed in
symbolic execution) and SC is the selection criterion, used to determine which
test cases must be produced. In particular, using the SC program-points(P),
where P includes all program points, amounts to the statement coverage that
we consider in this paper. On the other hand, the authors have introduced a
refinement for driving symbolic execution by means of “trace terms” (terms rep-
resenting the shape of a particular subset of the SLD search space). The idea
behind this technique is closer to that of concolic execution, although they do
not have the possibility of using concrete data in symbolic executions (which is
one of the main advantages of concolic execution).

180 G. Vidal

6 Concluding Remarks and Future Work

We have introduced a novel approach to Prolog testing and debugging. The
so called concolic execution that mixes concrete and symbolic execution has
been shown quite successful in other programming paradigms, especially when
dealing with large applications. Therefore, it might have a great potential for
Prolog testing, too.

In this paper, we have only considered a simple form of coverage, statement
coverage, and a limited scenario: pure Prolog without negation. Nevertheless, the
main distinctive features of the Prolog programming language—i.e., unification,
non-determinism and backtracking—are present here, so adapting the standard
concolic execution approach [6,16] to Prolog was not trivial. The challenge, now,
is experimentally verifying the effectiveness and scalability of our approach with
real Prolog programs. For this purpose, though, we first need to extend concolic
execution to deal with negation, built-in’s, extra-logical features, etc. For this
purpose, we will consider the linear operational semantics of [17], and its symbolic
version [5], as a promising starting point.

Acknowledgements. The author gratefully acknowledges the anonymous referees
and the participants of LOPSTR 2014 for many useful comments and suggestions.
I would also like to thank Fred Mesnard and Etienne Payet for their remarks to improve
the paper.

References

1. Albert, E., Arenas, P., Gómez-Zamalloa, M., Rojas, J.M.: Test case generation
by symbolic execution: basic concepts, a CLP-based instance, and actor-based
concurrency. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer,
I. (eds.) SFM 2014. LNCS, vol. 8483, pp. 263–309. Springer, Heidelberg (2014)

2. Belli, F., Jack, O.: Implementation-based analysis and testing of Prolog programs.
In: ISSTA, pp. 70–80. ACM (1993)

3. Clarke, L.A.: A program testing system. In: Proceedings of the 1976 Annual Con-
ference (ACM’76), Houston, pp. 488–491 (1976)

4. De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen,
M.H.: Conjunctive partial deduction: foundations, control, algorithms, and exper-
iments. J. Log. Program. 41(2&3), 231–277 (1999)

5. Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic evalu-
ation graphs and term rewriting: a general methodology for analyzing logic pro-
grams. In: PPDP’12, pp. 1–12. ACM (2012)

6. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of PLDI’05, pp. 213–223. ACM (2005)

7. Godefroid, P., Levin, M.Y., Molnar, D.A.: Sage: whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40–44 (2012)

8. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test case generation for object-
oriented imperative languages in CLP. TPLP 10(4–6), 659–674 (2010)

9. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

Concolic Execution and Test Case Generation in Prolog 181

10. Leuschel, M.: The DPPD (Dozens of Problems for Partial Deduction) Library of
Benchmarks. http://www.ecs.soton.ac.uk/mal/systems/dppd.html (2007)

11. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
12. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log.

Program. 11, 217–242 (1991)
13. Martens, B., Gallagher, J.: Ensuring global termination of partial deduction while

allowing flexible polyvariance. In: Proceedings of ICLP’95, pp. 597–611. MIT Press
(1995)

14. Pasareanu, C.S., Rungta, N.: Symbolic PathFinder: symbolic execution of Java
bytecode. In: Pecheur, C., Andrews, J., Di Nitto, E. (eds.) ASE, pp. 179–180.
ACM (2010)

15. Rojas, J.M., Gómez-Zamalloa, M.: A framework for guided test case generation in
constraint logic programming. In: Albert, E. (ed.) Proceedings of LOPSTR. LNCS,
vol. 7844, pp. 176–193. Springer, Heidelberg (2013)

16. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of ESEC/SIGSOFT FSE 2005, pp. 263–272. ACM (2005)

17. Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., Fuhs, C.: A linear opera-
tional semantics for termination and complexity analysis of ISO Prolog. In: Vidal,
G. (ed.) LOPSTR’11. LNCS, vol. 7225, pp. 237–252. Springer, Heidelberg (2012)

http://www.ecs.soton.ac.uk/mal/systems/dppd.html

Liveness Properties in CafeOBJ – A Case Study
for Meta-Level Specifications

Norbert Preining(B), Kazuhiro Ogata, and Kokichi Futatsugi

Japan Advanced Institute of Science and Technology, Research Center
for Software Verification, Nomi, Ishikawa, Japan
{preining,ogata,futatsugi}@jaist.ac.jp

Abstract. We provide an innovative development of algebraic specifi-
cations and proof scores in CafeOBJ by extending a base specification
to the meta-level that includes infinite transition sequences. The infinite
transition sequences are modeled using behavioral specifications with
hidden sort, and make it possible to prove safety and liveness properties
in a uniform way.

As an example of the development, we present a specification of
Dijkstra’s binary semaphore, a protocol to guarantee exclusive access to
a resource. For this protocol we will give three different properties, one
being the mutual exclusion (or safety) property, and two more regarding
different forms of liveness, which we call progress property and entrance
property. These three properties are verified in a computationally uni-
form way (by term rewriting) based on the new development.

Besides being a case study of modeling meta-properties in CafeOBJ,
we provide an initial characterization of strength of various properties.
Furthermore, this method can serve as a blue-print for other specifica-
tions, in particular those based on Abstract State System (ASSs).

Keywords: Algebraic specification · Liveness · CafeOBJ · Verification

1 Introduction

Qlock, an abstract version of Dijkstra’s binary semaphore, is a protocol to guar-
antee exclusive access to a resource. Besides the initial specification and verifica-
tion in CafeOBJ(see for example [6]), it saw implementations in Coq [12] and
Maude [14]. Most of these specifications only consider safety properties, in the
current case the mutual exclusion property, that no two agents will have access to
the resource at the same time. However, liveness properties are normally left open.
These properties ensure that ‘there is progress’. In our particular case, they ensure
that agents do not block out other agents from acquiring access to the resource.

We are using CafeOBJ as specification and verification language. CafeOBJ
is a many- and order-sorted algebraic specification language from the Obj family,

This work was supported in part by Grant-in-Aid for Scientific Research (S) 23220002
from Japan Society for the Promotion of Science (JSPS).

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 182–198, 2015.
DOI: 10.1007/978-3-319-17822-6 11

Liveness Properties in CafeOBJ 183

related to languages like Casl and Maude. CafeOBJ allows us to have both the
specification and the verification in the same language. It is based on powerful
logical foundations (order-sorted algebra, hidden algebra, and rewriting logic)
with an executable semantics [8,10,11].

The particular interest of the current development is two-fold: Firstly, it
extends base specifications in order-sorted and rewriting logics to a meta-level,
which requires behavioral logic, thus using the three logics together to achieve
the proofs. Secondly, we use a search predicate and covering state patterns that
allow us to prove the validity of a property over all possible one-step transitions,
by which safety and liveness properties in the base and meta-level can be proven.

1.1 Related Work

Our work is closely related in spirit to [1,2], where the authors discuss verification
and model checking of temporal properties over infinite-state transition systems.
Both works discuss variants of a mutual exclusion protocol, but while the main
focus of their work is on model checking, we target theorem proving. Further-
more, they use rewriting logic and narrowing, while we are employing behavioral
logic to represent infinite data structures. On the other hand, Goguen and Lin
[9] use behavioral algebra to specify and verify properties on the Alternating Bit
Protocol, but they do not use rewriting logic.

Many of the works done on Unity bear resemblance and relation with our
work. Our methodology is closely related to concepts of Unity. Theorem proving
over Unity using the Larch prover is the target of [5], while mechanization of
Unity in Isabelle is discussed in [15].

Although the approach taken in [3] is similar to ours, there only the progress
property (in our words) is discussed, while fairness based on or similar to our
concept of fairness of execution sequences allows for stronger properties like the
entrance property.

While all the above (and more) related works often deal with similar concepts,
we believe that it is the first time that behavioral logic, rewriting logic, and order-
sorted logic, are used together for system specification and treatment of liveness
properties. This is also the reason why the entrance property introduced here
has not been discussed hitherto.

1.2 Layout of the Article

In Sect. 2 we introduce the Qlock protocol and various properties for verifica-
tion, give a short introduction to the CafeOBJ language, and provide the base
specification onto which the current work is building. This section also discusses
briefly the proof method by induction and exhaustive search.

In Sect. 3 we extend the base specification to include infinite transition
sequences. Here we also discuss the methodology of meta-modeling.

In Sect. 4 we provide (parts) of the proof score verifying the three properties.
In the final section we provide a discussion of the approach with respect to

applicability to different problems, and conclude with future research directions.

184 N. Preining et al.

2 The QLOCK Protocol

The Qlock protocol regulates access of an arbitrary number of agents to a
resource by providing a queue (first-in-first-out list). Agents start in the remain-
der section, henceforth indicated by rs. The mode of operation is regulated by
the following set of rules:

– If an agent wants to use the resource, it puts a unique identifier into the queue,
and by this it transitions into the waiting section (ws).

– In the waiting section, an agent checks the top of the queue. If it is the
agent’s unique identifier, the agent transitions into the critical section (cs),
during which the agent can use the resource.

– After having finished with the resource usage, the agent removes the head of
the queue and transitions back into the remainder section (rs).

See Fig. 1 for a schematic flow diagram.

Fig. 1. Flow diagram of Qlock protocol

2.1 Verification Properties

The basic safety property of Qlock is the mutual exclusion property (mp):

Property 1 (mutual exclusion property). At any time, at most one agent is in the
critical section.

While this is the most important property for safety concerns, it does not guar-
antee that an agent wanting to use the resource ever gets the chance to use it
(for example, in case of denial-of-service attack to a server). To guarantee this,
we define two liveness properties: The first concerns the transition from ws to cs,
and is called the progress property (pp). This property has already been discussed
in [13] as lockout freedom property.

Liveness Properties in CafeOBJ 185

Property 2 (progress property). An agent that has entered into the waiting
section (ws), i.e., has put his unique identifier into the queue, will eventually
transition into the critical section (cs), i.e., progress to the top of the queue and
gain access to the resource.

The last one concerns the transition from the remainder section rs to the waiting
section ws, called entrance property (ep):

Property 3 (entrance property). An agent will eventually transition into the
queue, i.e., from the remainder section to the waiting section.

Although it might sound counter-intuitive that the entrance property should
hold for each agent at all times, we believe that there are good reasons to con-
sider this property: This is motivated by the fact that given any finite run, i.e.,
finite transition sequence, of the Qlock protocol, we can always extend it to an
infinite and fair transition sequence (see later sections for details). Thus, what
we are actually proving is that for each agent, either the entrance property holds,
or the execution terminates before the agent had a chance. In circumstances of
long-running services (like most client-server interaction where a server is practi-
cally never stopped), this ensures that agents, or clients, will – given long enough
execution time – eventually be served.

As we will see later on, to prove this property we need additional assumptions,
in particular fairness, see Sect. 3.2, which makes it conceptually different from the
first two properties. To continue with the analogy set forth above, the schedulers
used in most operating systems or network hubs try to create a fair execution
sequence by using round-robin or similar techniques [20,21].

2.2 Short Introduction to CafeOBJ

Although we cannot give a full introduction to the CafeOBJ language, to aid
readers unfamiliar with it we give a short introduction. Users acquainted with
Maude can safely skip this section, as syntaxes of the two languages are very
similar.

CafeOBJ is an algebraic specification language, thus the unit of specification
is an algebra, in particular an order-sorted algebra. To specify an algebra, the
following information have to be given:

Signature. Similar to normal algebras, a signature consists of operators and
their arities. In the multi-sorted setting we are working in, this means that
sorts have to be defined, and for each operator (or function) the number and
sorts of the arguments and result have to be specified.

Axioms. They provide an equational theory over the (many-sorted) signature
defined above. These axioms (or equations) make up the core of any algebraic
specification.

We will demonstrate these concepts on a simple definition of natural numbers
with successor and addition, but no comparison or subtraction:

186 N. Preining et al.

1mod! SIMPLE-NAT {

2 signature {

3 [Zero NzNat < Nat]

4 op 0 : -> Zero {constr}

5 op s : Nat -> NzNat {constr}

6 op _+_ : Nat Nat -> Nat

7 }

8 axioms {

9 vars N N’ : Nat

10 eq 0 + N = N .

11 eq s(N) + N’ = s(N + N’) .

12 }

13}

Line 1 begins the specification of the algebra called SIMPLE-NAT with initial
semantics (indicated by the ! after mod, which can be replaced with * to indicate
loose semantics). The body of the specification consists of two blocks. Lines 2-7
define the signature, lines 8-12 the axioms. In line 3 the sorts and their order
are introduced by defining a partial order of sorts between brackets. In case
of hidden sorts (of behavioural algebras) we use *[...]*. In this above case
there are three sorts, Zero, NzZero, and Nat. The order relation expresses that
the former two are a subsort of Nat, but does not specify a relation between
themselves. Lines 4-6 give three operators, the constant 0 of sort Zero, the
successor function s, and the addition, written in infix notation. Two of the
operators are furthermore tagged as constructors of the algebra. Note that in
the specification of operators, the represents the places of arguments.

The second block defines the equations by first declaring two variables of
sort Nat. Axioms are introduced with the eq keyword, and the left- and right-
hand side of the equation are separated by =. Thus, the two axioms provided here
provide the default inductive definition of addition by the successor function.

Not exhibited here, but used later in the code is the syntax protecting(...),
which imports all the sorts and axioms of another module, but does not allow
to alter them.

In the following, the signature and axioms block declaration will be dropped,
as they are not necessary.

2.3 Base Specification

We are building upon a previously obtained specification and verification of
Qlock [6]. Although we are providing the complete source of the specification
part, we cannot, due to space limits, include the full verification part. The reader
is referred to the full code at [17].

The basic idea of the following specification is to use the natural abstraction
of Qlock and its transitions as an Abstract State System (Ass). The usual steps
in providing an algebraic specification in this setting are:

– Define proper abstraction as modules/algebras of the players (e.g., agent,
queue) in the protocol.

Liveness Properties in CafeOBJ 187

– Model the complete state as a module/algebra.
– Use transitions between terms of the state algebra to describe transitions in

the protocol.
– Specify (and later verify) properties on states (and transitions) to ensure safety

and liveness.

Let us start with the most basic item, namely modeling the sections an agent
can be in. For literals, i.e., elements of the sort LabelLt, which is a sub-sort
of the sort Label, we define identity via the syntactical identity. The second
module specification defines an agent, or more specifically, the algebra of agent
identifiers AID, without any further axioms, which implies that identifiers are
considered different if they are syntactically different.

mod! LABEL { [LabelLt < Label]

vars L1 L2 : LabelLt .

ops rs ws cs : -> LabelLt {constr} .

eq (L1 = L2) = (L1 == L2) . }

mod* AID { [Aid] }

In the next step we model a queue, a first-in-first-out storage. Note in the
following code, that CafeOBJ allows for parametrized modules. In the present
case the parameter X has no further requirements, which is expressed by the fact
that it only needs to belong to the trivial algebra. Another important point to
note is that we are using associative constructors, which allows us to freely use
any way of parenthesizing. Similarly, we introduce a module for parametrized
sets, where we use an associative and commutative constructor.

mod! QUEUE (X :: TRIV) { [Elt.X < Qu]

vars Q Q1 Q2 : Qu . vars E E1 E2 : Elt .

op empQ : -> Qu {constr} .

op (_&_) : Qu Qu -> Qu {constr assoc id: empQ} .

eq (empQ = (E & Q)) = false .

eq ((E1 & Q1) = (E2 & Q2)) = ((E1 = E2) and (Q1 = Q2)) . }

mod! SET(X :: TRIV) { [Elt.X < Set]

vars E : Elt .

op empty : -> Set {constr} .

op (_ _) : Set Set -> Set {constr assoc comm id: empty} .

eq E E = E . }

Concerning agents, we model them as terms of an algebra of agent observers
which associates agent identifiers with labels, expressing the fact that the agent
is in the current state. More formally, the meaning of the term lb[A]:S is that
the agent A is in section S:

mod! AOB {protecting(LABEL) protecting(AID) [Aob]

op (lb[_]:_) : Aid Label -> Aob {constr} . }

In the final step we instantiate the parametrized queue with agent ids, and
define the state algebra as a pair of one queue and an arbitrary set of agent
observers. Note that the pairing is done by the syntax l $ r, CafeOBJ allows
nearly arbitrary syntax:

188 N. Preining et al.

mod! AID-QUEUE { protecting(QUEUE(AID{sort Elt -> Aid})) }

mod! STATE{ protecting(AID-QUEUE)

protecting(SET(AOB{sort Elt -> Aob})*{sort Set -> Aobs})

[State] op _$_ : Qu Aobs -> State {constr} . }

With this we have given a complete definition of the state algebra, but the
dynamic aspect of the protocol has been left out till now. We are now provid-
ing transition rules over states to express this dynamic aspect. In the following
code segments, the two states of the transition are aligned, and changing parts
are indicated with a bold font. The three transitions are WaitTrans, where an
agent transitions from rs to ws, TryTrans, where an agent tries to enter cs, and
ExitTrans, where an agent leaves the critical state:

Based on the above specification, it is possible to provide a proof score, i.e.,
a program in CafeOBJ, that verifies the mutual exclusion property mp. As
usual with proofs by induction over the reachable states (see below), the target
property by itself does not suffice to work as inductive property, making the
introduction of further properties on states necessary. Example properties that
have to be used are uniqueness properties (e.g., the same agent identifier cannot
appear several times in the queue) or initial state properties (e.g., the queue
is empty at the beginning). Obtaining an inductive property (set of properties)
is one of the challenging aspects of verifications, and requires an iterative and
interactive approach. Readers interested in the details are referred to the code
at [17].

We conclude this section with a short discussion on the verification method-
ology applied here. Details concerning this verification technique and a more
generalized methodology will be presented at [18] and the upcoming proceeding.

2.4 Verification by Induction and Exhaustive Search

Verification of properties of an Ass is often done by induction on reachable
states, more specifically by induction over the length of transition sequences
from initial states to reachable states. That is, we show that a certain property
(invprop) holds in the set of initial states, characterized by init. Furthermore,
as we proceed through transitions (state changes), the invprop is preserved.

Liveness Properties in CafeOBJ 189

But to show liveness properties, considering only invariant properties on
states is not enough. We thus use an extended method that does inductive proofs
on the reachable state space, and in parallel proves properties (transprop) on
all transitions between reachable states. To be a bit more specific, assume that
S ⇒ S′ is a transition from one state (state term, state pattern) S to a state S′.
We show that if invprop(S) holds, then also invprop(S′) (the induction on
reachable states), but also that for this transition transprop(S, S′) holds.

Both of these are done with CafeOBJ’s built-in search predicate (see
Sect. 4.2), which exhaustively searches and tests all possible transitions from
a given state (pattern). The concepts introduced here are an extension and gen-
eralization of transition invariants [16], details can be found in [7].

In the CafeOBJ setting, which means rewrite-based, we have to ensure that
both of the following implications reduce to True:

init(S) → invprop(S)
invprop(S) → invprop(S′) where S → S′ is a transition

where S and S′ are states (state terms) describing the pre- and post-transition
states, respectively. This has to be checked for all possible transitions available
in the specification.

If this can be achieved, we can be sure that in all reachable states, i.e., those
that can actually occur when starting from an initial state, the required property
invpropholds.

3 Extended Specification

The starting point of the following discussion is the question of how to verify
liveness properties. Initial work by the first author led to a specification which
kept track of the waiting time in the queue. Combined with the assumption
that there are only finitely (but arbitrary) many agents, we could give a proof
score not only for the mutual exclusion property mp, but also for the progress
property pp. This work was extended by the third author to the currently used
base specification.

To verify the last property, ep, operational considerations alone do not suffice.
On the level of observers, we cannot guarantee that an agent will ever enter
the queue, since we have no control over which transitions are executed by the
system. To discuss (verify) this property, we have to assume a certain meta-level
property, in this case the fairness of the transition sequence. A similar approach
has been taken in [9] for the Alternating Bit Protocol, where fair event mark
streams are considered.

3.1 Fairness

The concept of fairness we are employing here is based on the mathematically
most general concept:

190 N. Preining et al.

Definition 1 (Fairness). A sequence of transitions S is called fair, if every
finite sequence of transitions appears as sub-sequence of S.

A necessary consequence of this definition is that every fair sequence is
infinite.

Relation to Other Concepts of Fairness. The methodology of using Ass
in CafeOBJ has been strongly influenced by UNITY [4], which builds upon
a semantics similar to Ass of sequences of states and temporal operators. It
provides an operator ensures, which can be used to model fairness via a measure
function.

Another approach to the concept of fairness is taken by LTL logic [19], where
two types of fairness, strong and weak, are considered, referring to enabled and
applied state of transitions.

weak ♦� enabled(t) → �♦applied(t)
strong �♦ enabled(t) → �♦ applied(t)

where enabled and applied are properties on transition instances. In the par-
ticular case we are considering, enabled is always true, as we can execute every
instance of a transition at any time, due to the fact that the wait-state transition
can be applied even if the agent is not at the top of the queue. Fairness in this
case means that, at some point every transition will be applied.

Both concepts can be represented in suitable way by the definition of fairness,
or in other words, the definition used in this setting (every finite sequence is sub-
sequence) subsumes these two concepts.

3.2 Transition Sequence

As mentioned above, modeling fairness requires recurring to a meta-assumption,
namely that the sequence of transitions is fair, i.e., every instance of a transi-
tion appears infinitely often in the sequence. In our case we wanted to have a
formalization of this meta-assumption that can be expressed with the rewriting
logic of CafeOBJ.

The approach we took models transition sequences using behavioral specifi-
cation with hidden algebra [9], often used to express infinite entities. Note that
we are modeling the transition sequence by an infinite stream of agent identifiers,
since the agent uniquely defines the instance of transition to be used, depending
on the current state of the agent. This is a fortunate consequence of the modeling
scheme at the base level, where, if we pick an agent, we can always apply the
transition that is uniquely defined by that agent. Translated into the language
of the above mentioned LTL logic it means that all transitions are permanently
enabled.

mod* TRANSSEQ { protecting(AID)

[TransSeq]

op (_&_) : Aid TransSeq -> TransSeq . }

Liveness Properties in CafeOBJ 191

The transition sequence is then used to model a meta-state, i.e., the combi-
nation of the original state of the system as specified in the base case, together
with the list of upcoming transitions:

mod! METASTATE { protecting(STATE + ...) [MetaState]

op _^_ : State TransSeq -> MetaState }

The dots at the end of the definition refer to a long list of functions on
meta-states, we will return to this later on.

In the same way, transitions from the base case are lifted to the meta-level.
Here we have to ensure that the semantics of transition sequences and the tran-
sition in the original (non-meta level) system do not digress. That means first
and foremost, that only the agent at the top of the transition sequence can be
involved in a transition.

Let us consider the first transition WaitTrans:

Due to the structural definition of the meta-transition, we see that it can
only be applied under the following conditions that

– the agent is at the top of the transition sequence, and
– the agent is in remainder section rs.

The next transition is TryTrans, where an agent checks whether it is at the
top of the queue, and if yes, enters into the critical section. Adding the meta-
level requires only that the agent is also at the head of the transition sequence.
This transition uses the built-in operator if then else fi, because we want to
destructively use up the top element of the transition sequence to ensure that
no empty transitions appear.

The final transition is ExitTrans, where an agent returns into the remainder
section:

192 N. Preining et al.

Relation between meta-transition and transition. Comparing the transition of the
base system (see listing on p. 7), we see that in the meta-transition the part to
the left of ̂ , the state of the base system, behaves exactly like the corresponding
part in the base transition. The only difference is that an additional guard is
added, namely that the active agent has to be also at the top of the transition
sequence to the right of thêmarker. This can be considered a general procedure
of meta-level reflection.

Combining all these algebras provides the specification of the meta system:

mod! METAQLOCKsys{ pr(MWT + MTY + MEX) }

As mentioned above, to express the fairness condition, we recur to an equiv-
alent definition, namely that every finite sequence of agent identifiers can be
found as a sub-sequence of the transition sequence, rephrased here in an indirect
way in the sense that it cannot happen that we cannot find a (finite) sequence
of agent identifiers in a transition sequence:

eq (find (Q, T) = empQ) = false .

3.3 Waiting Times

The axiom shown above uses the function find, which has been defined in the
algebra METASTATE. We mentioned that several additional functions are defined,
too. These functions are necessary to compute the waiting time for each agent.

Waiting time here refers to the number of meta-transitions until a particular
agent is actually changing its section. Here complications arise due to the trial
transition from ws to cs (by means of the if then else fi usage), where an
agent might find itself still in ws due to not being at the head of the queue. This
has to be considered while computing waiting times for each agent.

Closer inspection of the transition system provides the following values for
waiting times:

For agents in rs and cs. The waiting time is determined by the next occurrence
of its agent id in the transition sequence, since there are no further requirements.
In CafeOBJ notation, the length of the following sequence:

find(A, T)

Liveness Properties in CafeOBJ 193

Fig. 2. Computing of waiting time from ws to cs

For agents in ws. Here we have to ensure that the agent advances to the top of
the queue. Thus, each agent higher up in the queue has to appear two times in
the transition sequence, once for entering the critical section, and once for leaving
it. Let QA be the part of the queue that is above (higher up) the agent id a.
Then the waiting time for a would be determined by doubling QA, then searching
the transition sequence first for the doubled QA, and finally searching for the next
appearance of a. Consider for example the state represented in Fig. 2. Assume
that initially the queue contains the three agent identifiers b, c, and a (in this
order), and all of them are initially in rs. To see when the a at the bottom of
the queue can transition into cs, we first have to bring b into cs, which happens
at position 2. After that there is a series of trial transitions without success
(a, c, a) until another b appears, which makes the agent b transition back into rs.
At this point the queue contains two elements, c and a. The same repeats for c,
until finally a can enter into cs. Summing up, what has to be searched within
the transition sequence is the sub-sequence , which amounts to
(in CafeOBJ notation):

find(double(droplast(find(A, Q))) & A, T)

(The actual code is slightly different, but semantically the same.)
Here the doubling of the QA is achieved by first finding the sub-sequence

within the queue up to A (which includes A), and then dropping the last element,
which is A.

The functions mentioned above are exactly those needed to compute this
waittime function. Due to the necessity of error handling, the definition becomes
a bit lengthy.

4 Verification of Properties

Our aim is to verify the progress property and the entrance property. These
properties are now expressed in the following ways:

– At any transition, the waiting time of agents not changing section decreases.
– If the waiting time of an agent reaches 0, then a section change happens.

Combining these two properties, and assuming fairness, we can show both, that
every agent will eventually enter into the queue, and every agent in the queue
will eventually gain access to the resource, i.e., enter into the critical section.

In the following let us assume that the following variable definitions are in
effect:

vars S SS : MetaState . var Q : Queue . var AS : Aobs .

var A : Aid . var C : Label . var QQ : TransSeq .

194 N. Preining et al.

Then the CafeOBJ implementation of the first property is as follows:

pred wtd-allaid : Aobs MetaState MetaState .

eq[:m-and wtd-allaid]:

wtd-allaid(((lb[A]: C) AS) , S, SS) =

((sec((lb[A]: C) ,S) == sec((lb[A]: C) , SS)) implies

(waittime(A, S) > waittime (A, SS))) .

And the one of the second property:

pred wtzerochange-allaid : Aobs MetaState MetaState .

eq[:m-and wtzerochange-allaid]:

wtzerochange-allaid(((lb[A]: C) AS) , S , SS) =

((waittime(A, S) == 0) implies

(sec((lb[A]: C) , S) =/= sec((lb[A]: C) , SS))) .

Here we have to note that the sec operator computes the actual section SS and
not the one given by C.

These two properties alone do not function as inductive invariant, so several
more have to be included. In addition, we are lifting also the properties used in
the original specification to the meta level by making the new operators simply
operate on the projections. Again, the interested reader is referred to [17] for the
full source.

4.1 Proof Score with Patterns

The method described in Sect. 2.4 is used here in combination with a covering
set of patterns. We mention only the definition of cover set here, but details on
this methodology will be presented at [18] and a forthcoming article:

Definition 2 (cover set). Assume a set S ⊆ State of states (ground terms of
sort State) is given. A finite set of state patterns C = {C1, . . . , Cn} is called
cover set for S if for every s ∈ S there is a substitution δ from the variables X
occurring in C to the set of all ground terms, and a state pattern C ∈ C such
that δ(C) = s.

Practically this means, that we give a set of state terms that need to cover all
possible ground instances of state terms. For the base case, a set of 13 state
patterns has been given. We list only the cases for rs, the cases for the other
sections are parallel.

eq s1 = (q $ empty) .

eq s2 = (empQ $ ((lb[b1]: rs) as))

eq s8 = ((b1 & q) $ ((lb[b1]: rs) as))

eq s11 = ((b1 & q) $ ((lb[b2]: rs) as))

For the meta-level we combine these patterns with patterns for the transition
sequence, where once b1 is at the head of the transition sequence, and once
another identifier b2, amounting to 26 different meta state patterns:

eq n1 = (s1 ^ (b1 & t)) . eq n2 = (s2 ^ (b1 & t))

eq l1 = (s1 ^ (b2 & t)) . eq l2 = (s2 ^ (b2 & t))

Liveness Properties in CafeOBJ 195

We conclude this section with a discussion of the search predicate, actually
family of search predicates, in CafeOBJ.

4.2 The CafeOBJ Search Predicate

During a proof over reachable states by induction on the transitions, we need a
method that provides all possible successors of a certain state. The CafeOBJ
search predicate we use is S =(*,1)=>+ S′ suchThat prop(S, S′), where S and S′

are states, and prop(S, S′) is a Boolean value. This is a tricky predicate and full
discussion is available in an upcoming reference manual for CafeOBJ, but in
this case it does the following:

– It searches all successor states S′ that are reachable in exactly one step from
the left side state S (here 1 stands for maximal one step, and + for at least
one step). Call the set of successors Succ(S).

– It checks all those states determined by the first step whether the property
given in Bool holds. If there is at least one successor state where it holds,
the whole predicate returns true, i.e., what is returned is ∃S′ ∈ Succ(S) :
prop(S, S′).

This can be used with a double negation to implement an exhaustive search in
all successor states by using the equality:

∀S′ ∈ Succ(S) : prop(S, S′) ⇔ ¬∃S′ ∈ Succ(S) : ¬prop(S, S′)

This leads to the following, admittedly not very beautiful, definition of the induc-
tive invariant condition, where we use SS for the S′ in the above equality:

pred inv-condition : MetaState MetaState .

eq inv-condition(S:MetaState,SS:MetaState) =

(not (S =(*,1)=>+ SS suchThat

(not (inv-prop(S, SS) == true)))) .

Here inv-prop is the set of inductive invariant properties we have mentioned
above.

Note that the operator used here has access not only to the original or the
successor state, but to both states. This peculiar feature allows us to prove
properties like decrease of waiting time, which is impossible if there is no access
to both values in the same predicate. As pointed out above, CafeOBJ actually
includes a whole set of search predicates which allows searching for arbitrary, but
given depth, but verifications making use of these predicates are still to come.

The final step in the proof score is to verify that both the initial condition
and the inductive invariant condition do actually hold on all the state patterns
by reducing the expressions to true:

red init -condition(n1) . red init -condition(n2)

red inv -condition(n1 ,SS:MetaState) .

red inv -condition(n2 ,SS:MetaState)

This concludes the discussion of the specification methodology and proof
score code.

196 N. Preining et al.

5 Discussion and Conclusion

Using the method laid out above, we have formally verified the three properties
given in the beginning, mutual exclusion property (only at most one agent at
a time is in the critical section), progress property (an agent in the queue will
eventually gain access to the resource), and entrance property (every agent will
eventually enter into the queue). While the original base specification and proof
score verified the first two properties, it also required the assumption that the
number of agents is finite. In our case, this assumption is superseded by the
assumption of fairness of the transition sequence, which is by itself necessary to
verify the third property.

This methodology also opens up further options in the specification. By
requiring acquisition of the resource within a reasonable time, and providing
requirements on the transition sequence that the reasonable-time condition is
fulfilled, we believe it is possible to specify and verify time-critical systems.

We have to note that what we call here progress property has already been
shown in different settings [1–3,5,13]. The key contribution is the change of focus
onto behaviour algebras as specification methodology, and as a consequence the
extension to the entrance property, meaning that an agent always gets a chance
to enter the queue. In addition, we extended the proof of the progress property
to infinitely many agents. Of course, every actual instance of the protocol will
encompass only finitely many agents, but the proof provided here is uniform for
any number of agents. The current work also serves as an example of reflecting
meta-properties into specifications, allowing for the verification of additional
properties.

Assuming a meta-level fairness property to prove liveness properties of the
specification might be considered a circular argument, but without regress to
meta-level fairness, no proof of the entrance property can be achieved. Keeping
this in mind, our goal is to provide a reasonably simple and intuitive definition
of fairness on the meta-level, that can be used for verification of the necessary
properties, similar to any axiomatic approach where trust is based on simple
axioms.

Future work we are foreseeing centers around the following points:

– Adaption of the methodology to other protocols: One probable candidate is the
already mentioned Alternating Bit Protocol, where proofs for liveness proper-
ties are hard to obtain in other systems. We believe that a meta-specification
similar to the one given here can be employed for this protocol, as well as
others.

– Automatization of the method: Most of the steps done during lifting the spec-
ification to the meta-level are semi-automatic. It might be interesting to pro-
vide built-in functionality to extend a given specification based on states with
transition sequences.

– Relation to other methods in the field: As mentioned in the section on related
work, targeting liveness properties is an active research area. While our app-
roach seems to be unique in using behavioral algebras, we will compare the
methodologies taken by other researchers.

Liveness Properties in CafeOBJ 197

– Characterization of strength of properties: We have seen that the mutual
exclusion property can be proven by only looking at states, that the progress
property only needs access to a state and its successor, but the entrance prop-
erty needs access to all future states. We are working on a formal description
of this concept called n-visibility.

We conclude with recapitulating the major contributions of this work: First
of all, it provides an example for the inclusion of meta-concepts in a formal speci-
fication. Reflecting these meta-properties allows for the verification of additional
properties, in particular liveness properties.

Furthermore, it is an example of a specification that spans all the corners of
the CafeOBJ cube, in particular mixing co-algebraic methods, infinite stream
representation via hidden sorts, with transition sequence style modeling.

References

1. Bae, K., Meseguer, J.: Predicate abstraction of rewrite theories. In: Dowek, G.
(ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 61–76. Springer, Heidelberg (2014)

2. Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas unsing nar-
rowing. In: WRLA 2014, 10th International Workshop on Rewriting Logic and its
Applications, to appear

3. Bjørner, N., Browne, A., Colón, M., Finkbeiner, B., Manna, Z., Sipma, H., Uribe,
T.E.: Verifying temporal properties of reactive systems: a step tutorial. Form.
Methods Syst. Des. 16(3), 227–270 (2000)

4. Chandy, K.M., Misra, J.: Parallel Program Design—A Foundation. Addison-
Wesley, Boston (1989)

5. Chetali, B.: Formal verification of concurrent programs using the Larch prover.
IEEE Trans. Softw. Eng. 24(1), 46–62 (1998)

6. Futatsugi, K.: Generate and check methods for invariant verification in CafeOBJ.
In: JAIST Research Report IS-RR-2013-006, http://hdl.handle.net/10119/11536
(2013)

7. Futatsugi, K.: Generate and check method for verifying transition systems in
CafeOBJ. Submitted for publication (2014)

8. Futatsugi, K., Gâinâ, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theor.
Comput. Sci. 464, 90–112 (2012)

9. Goguen, J.A., Lin., K.: Behavioral verification of distributed concurrent systems
with BOBJ. In: QSIC, pp. 216–235. IEEE Computer Society (2003)

10. Iida, S., Meseguer, J., Ogata, K. (eds.): Specification, Algebra, and Software.
LNCS, vol. 8373, pp. 520–540. Springer, Heidelberg (2014)

11. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8),
721–781 (2012)

12. Ogata, K., Futatsugi, K.: State machines as inductive types. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E90–A(12), 2985–2988 (2007)

13. Ogata, K., Futatsugi, K.: Proof score approach to verification of liveness properties.
IEICE Trans. 91–D(12), 2804–2817 (2008)

14. Ogata, K., Futatsugi, K.: A combination of forward and backward reachability
analysis methods. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447,
pp. 501–517. Springer, Heidelberg (2010)

http://hdl.handle.net/10119/11536

198 N. Preining et al.

15. Paulson, L.C.: Mechanizing UNITY in Isabelle. ACM Trans. Comput. Log. 1(1),
3–32 (2000)

16. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE
Computer Society (2004)

17. Preining, N.: Specifications in CafeOBJ http://www.preining.info/blog/cafeobj/
18. Preining, N., Futatsugi, K., Ogata, K.: Proving liveness properties using abstract

state machines and n-visibility. In: Talk at the 22nd International Workshop on
Algebraic Development Techniques WADT 2014, Sinaia, Romania, September 2014

19. Rybakov, V.: Linear temporal logic with until and next, logical consecutions. Ann.
Pure Appl. Log. 155(1), 32–45 (2008)

20. Stiliadis, D., Varma, A.: Latency-rate servers: a general model for analysis of traffic
scheduling algorithms. IEEE/ACM Netw. 6(5), 611–624 (1998)

21. Wierman, A.: Fairness and scheduling in single server queues. Surv. Oper. Res.
Manag. Sci. 16(1), 39–48 (2011)

http://www.preining.info/blog/cafeobj/

Program Synthesis

A Hybrid Method for the Verification
and Synthesis of Parameterized

Self-Stabilizing Protocols

Amer Tahat and Ali Ebnenasir(B)

Department of Computer Science, Michigan Technological University,
Houghton, MI 49931, USA

{atahat,aebnenas}@mtu.edu

Abstract. This paper presents a hybrid method for verification and
synthesis of parameterized self-stabilizing protocols where algorithmic
design and mechanical verification techniques/tools are used hand-in-
hand. The core idea behind the proposed method includes the auto-
mated synthesis of self-stabilizing protocols in a limited scope (i.e., fixed
number of processes) and the use of theorem proving methods for the
generalization of the solutions produced by the synthesizer. Specifically,
we use the Prototype Verification System (PVS) to mechanically verify
an algorithm for the synthesis of weakly self-stabilizing protocols. Then,
we reuse the proof of correctness of the synthesis algorithm to establish
the correctness of the generalized versions of synthesized protocols for
an arbitrary number of processes. We demonstrate the proposed app-
roach in the context of an agreement and a coloring protocol on the ring
topology.

Keywords: Mechanical verification · Program synthesis · Self-
stabilization · Parameterized systems

1 Introduction

Self-stabilization is an important property of dependable distributed systems as
it guarantees convergence in the presence of transient faults. That is, from any
state/configuration, a Self-Stabilizing (SS) system recovers to a set of legitimate
states (a.k.a. invariant) in a finite number of steps. Moreover, from its invari-
ant, the executions of an SS system satisfy its specifications and remain in the
invariant; i.e., closure. Nonetheless, design and verification of convergence are
difficult tasks [10,19] in part due to the requirements of (i) recovery from arbi-
trary states; (ii) recovery under distribution constraints, where processes can
read/write only the state of their neighboring processes (a.k.a. their locality),
and (iii) the non-interference of convergence with closure. Methods for algo-
rithmic design of convergence [3,4,13,16] can generate only the protocols that

This work was partially supported by the NSF grant CCF-1116546.

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 201–218, 2015.
DOI: 10.1007/978-3-319-17822-6 12

202 A. Tahat and A. Ebnenasir

are correct up to a limited number of processes and small domains for vari-
ables. Thus, it is desirable to devise methods that enable automated design of
parameterized SS systems, where a parameterized system includes several sets
of symmetric processes that have a similar code up to variable re-naming. The
proposed method in this paper has important applications in both hardware
[11] and software [12] networked systems, be it a network-on-chip system or the
Internet.

Numerous approaches exist for mechanical verification of self-stabilizing sys-
tems most of which focus on synthesis and verification of specific protocols.
For example, Qadeer and Shankar [32] present a mechanical proof of Dijk-
stra’s token ring protocol [10] in the Prototype Verification System (PVS) [34].
Kulkarni et al. [29] use PVS to mechanically prove the correctness of Dijkstra’s
token ring protocol in a component-based fashion. Prasetya [31] mechanically
proves the correctness of a self-stabilizing routing protocol in the HOL theorem
prover [18]. Tsuchiya et al. [36] use symbolic model checking to verify several
protocols such as mutual exclusion and leader election. Kulkarni et al. [8,28]
mechanically prove (in PVS) the correctness of algorithms for automated addi-
tion of fault tolerance; nonetheless, such algorithms are not tuned for the design
of convergence. Most existing automated techniques [6,14,16,27] for the design
of fault tolerance enable the synthesis of non-parametric fault-tolerant systems.
For example, Kulkarni and Arora [27] present a family of algorithms for auto-
mated design of fault tolerance in non-parametric systems, but they do not
explicitly address self-stabilization. Abujarad and Kulkarni [4] present a method
for algorithmic design of self-stabilization in locally-correctable protocols, where
the local recovery of all processes ensures the global recovery of the entire distrib-
uted system. Farahat and Ebnenasir [13,16] present algorithms for the design
of self-stabilization in non-locally correctable systems. Jacobs and Bloem [22]
show that, in general, synthesis of parameterized systems from temporal logic
specifications is undecidable. They also present a semi-decision procedure for the
synthesis of a specific class of parameterized systems in the absence of faults.

The contributions of this paper are two-fold: a hybrid method (Fig. 1)
for the synthesis of parameterized self-stabilizing systems and a reusable PVS
theory for mechanical verification of self-stabilization. The proposed method
includes a synthesis step and a theorem proving step. Our previous work [13,16]
enables the synthesis step where we take a non-stabilizing protocol and generate
a self-stabilizing version thereof that is correct by construction up to a certain
number of processes. This paper investigates the second step where we use the
theorem prover PVS to prove (or disprove) the correctness of the synthesized
protocol for an arbitrary number of processes; i.e., generalize the synthesized
protocol. The synthesis algorithms in [13,16] incorporate weak and strong con-
vergence in existing network protocols; i.e., adding convergence. Weak (respec-
tively, Strong) convergence requires that from every state there exists an exe-
cution that (respectively, every execution) reaches an invariant state in finite
number of steps. To enable the second step, we first mechanically prove the cor-
rectness of the Add Weak algorithm from [16] that adds weak convergence. As
a result, any protocol generated by Add Weak will be correct by construction.

Verification and Synthesis of Parameterized Self-Stabilizing Protocols 203

Fig. 1. A Hybrid method for the synthesis of parameterized self-stabilizing protocols.

Moreover, the mechanical verification of Add Weak provides a reusable theory in
PVS that enables us to verify the generalizability of small instances of different
protocols generated by an implementation of Add Weak. If the mechanical veri-
fication succeeds, then it follows that the synthesized protocol is in fact correct
for an arbitrary number of processes. Otherwise, we use the feedback of PVS to
determine why the synthesized protocol cannot be generalized and re-generate
a protocol that addresses the concerns reported by PVS. We continue this cycle
of synthesize and generalize until we have a parameterized protocol. Notice that
the theory developed in mechanical proof of Add Weak can also be reused for
the mechanical verification of self-stabilizing protocols designed by means other
than our synthesis algorithms. We demonstrate this reusability in the context of
a coloring protocol (Sect. 6) and a binary agreement protocol (in [35]).

Organization. Section 2 introduces basic concepts and presents their formal
specifications in PVS. Then, Sect. 3 formally presents the problem of adding
convergence to protocols. Sections 4 and 5 respectively present the specification
and verification of Add Weak in PVS. Section 6 demonstrates the reusability and
generalizability properties in the context of a graph coloring protocol. Section 7
discusses related work and Sect. 8 makes concluding remarks and presents future
extensions of this work.

2 Formal Specifications of Basic Concepts

In this section, we define protocols, state predicates, computations and conver-
gence, and present their formal specifications in PVS. The definitions of protocols
and convergence are adapted respectively from [28] and [10].

2.1 Protocols

A protocol includes a set of processes, a set of variables and a set of transitions.
Since we would like the specification of a protocol to be as general as possible,
we impose little constraints on the notions of state, transitions, etc. Thus, the

204 A. Tahat and A. Ebnenasir

notations state, variable, and domain are all abstract and nonempty. Formally,
we specify them by uninterpreted types state: Type+, Variable: Type+, Dom: Type+,
where ‘+’ denotes the non-emptiness of the declared type. (In PVS, “definedType
: TYPE+ = []”declares the type definedType.) A state predicate is a set of states
specified as StatePred: TYPE = set[state]. The concept of transition is modeled as
a tuple type of a pair of states, Transition: Type = [state,state] [28]. Likewise, an
action is defined as a set of transitions, Action:Type =set[Transition]. An action
can be considered as an atomic guarded command “grd → stmt”, where grd
denotes a Boolean expression in terms of protocol variables and stmt is a set of
statements that atomically update program variables when grd holds. An action
is enabled iff (if and only if) its guard grd evaluates to true. We assume that
Dom, Variable, and Action are finite types in our PVS specifications. A process is
a tuple of a subset of variables that are readable by that process, a subset of
variables that are writable by that process, and its set of transitions. A protocol
prt is a tuple of a finite set of processes, variables, and finite set of transitions.

p process : TYPE+ = [set[Variable], set[Variable], set[Transition]]

nd Protocol : TYPE+ = [set[p process], set[Variable], set[Transition]]

The projection of a protocol prt on a state predicate I, denoted PrjOnS(prt, I),
includes the set of transitions of prt that start in I and end in I. One can think
of the projection of prt as a protocol that has the same set of processes and
variables as those of prt, but its transition set is a subset of prt’s transitions
confined in I. We model this concept by defining the following function, where
Z is instantiated by transitions of prt. (proj k is a built-in function in PVS that
returns the k-th element of a tuple.)

PrjOnS(Z: Action, I: StatePred): Action =

{t:Transition | t ∈ Z
∧

proj 1(t) ∈ I
∧

proj 2(t) ∈ I}
Example: Coloring on a ring of n processes with m > 2 colors. The
coloring protocol, denoted TR(m,n), includes n > 3 processes located along
a bidirectional ring. Each process Pj has a local variable cj with a domain of
m > 2 values representing m colors. Thus, the set of variables of TR(m,n)
is VTR(m,n) = {c0, c1, ..., cn−1}. As an example of a state predicate, consider
the states where no two neighboring processes have the same color. Formally,
Icoloring = ∀j : 0 ≤ j < n : cj �= cj⊕1. Each process Pj (0 ≤ j < n) has the
following action:

Aj : (cj = cj�1) ∨ (cj = cj⊕1) → cj := other(cj�1, cj⊕1) (1)

If Pj has the same color as that of one of its neighbors, then Pj uses the func-
tion “other(cj�1, cj⊕1)” to non-deterministically set cj to a color different from
cj�1 and cj⊕1. The projection of the actions Aj (for 0 ≤ j < n) on the predicate
Icoloring is empty because no action is enabled in Icoloring. The coloring protocol
has applications in several domains such as scheduling, bandwidth allocation,
register allocation, etc. It is known that if m > d, where d is the max degree in

Verification and Synthesis of Parameterized Self-Stabilizing Protocols 205

the topology graph of the protocol, then the coloring problem is solvable. For
this reason, we have m > 2 for the ring.

2.2 Distribution and Atomicity Models

We model the impact of distribution in a shared memory model by consid-
ering read and write restrictions for processes with respect to variables. Due
to inability of a process Pj in reading some variables, each transition of Pj

belongs to a group of transitions. For example, consider two processes P0 and
P1 each having a Boolean variable that is not readable for the other process.
That is, P0 (respectively, P1) can read and write x0 (respectively, x1), but can-
not read x1 (respectively, x0). Let 〈x0, x1〉 denote a state of this program. Now,
if P0 writes x0 in a transition (〈0, 0〉, 〈1, 0〉), then P0 has to consider the pos-
sibility of x1 being 1 when it updates x0 from 0 to 1. As such, executing an
action in which the value of x0 is changed from 0 to 1 is captured by the fact
that a group of two transitions (〈0, 0〉, 〈1, 0〉) and (〈0, 1〉, 〈1, 1〉) is included in
P0. In general, a transition is included in the set of transitions of a process
iff its associated group of transitions is included. Formally, any two transitions
(s0, s1) and (s′

0, s
′
1) in a group of transitions formed due to the read restric-

tions of a process Pj meet the following constraints, where rj denotes the set
of variables Pj can read: ∀v : v ∈ rj : (v(s0) = v(s′

0)) ∧ (v(s1) = v(s′
1)) and

∀v : v /∈ rj : (v(s0) = v(s1)) ∧ (v(s′
0) = v(s′

1)), where v(s) denotes the value
of a variable v in a state s that we represent by the Val(v, s) function in PVS.
To enable the reusability of our PVS specifications, we specify our distribution
model as a set of axioms so one can mechanically prove convergence under dif-
ferent distribution and atomicity models.

In the following formal specifications, v is of type Variable, p is of type
p process, t and t′ are of type Transition, and non read and transition group are func-
tions that respectively return the set of unreadable variables of the process p and
the set of transitions that meet ∀v : v ∈ rj : (v(s0) = v(s′

0)) ∧ (v(s1) = v(s′
1))

for a transition t = (s0, s1) and its groupmate t′ = (s′
0, s

′
1).

AXIOM subset?(proj 2(p),proj 1(p)) // Writable variables are a subset of
readable variables.

AXIOM member(t′,transition group(p, t, prt)) AND member(v,Non read(p, prt))

IMPLIES Val(v,proj 1(t)) = Val(v,proj 2(t)) AND Val(v,proj 1(t′)) = Val(v,proj 2(t′))

member(x,X) and subset?(X,Y) respectively represent the membership and sub-
set predicates in a set-theoretic context.

Example: Read/Write restrictions in TR(3, n). In the coloring protocol,
each process Pj can read {cj�1, cj , cj⊕1}, and is allowed to write only cj , where
⊕ and � denote addition and subtraction modulo n respectively. For a process
Pj , each transition group includes 3n−3 transitions because Pj can read only the
state of itself and its left and right neighbors; there is one transition in the group
corresponding to each valuation of unreadable variables.

206 A. Tahat and A. Ebnenasir

2.3 Computation

A computation of a protocol prt is a sequence A of states, where (A(i), A(i+1))
represents a transition of prt executed by some action of prt. In a more general
term, a computation of any set of transitions Z, is a sequence of states in which
every state can be reached from its predecessor by a transition in Z. Thus, we
define the following function to return the set of computations generated by the
set of transitions Z.

COMPUTATION(Z: Action): set[sequence[state]]={ A: sequence[state]

|∀(n : nat) : ((A(n), A(n + 1)) ∈ Z)}

A computation prefix of a protocol prt is a finite sequence of states where each
state is reached from its predecessor by a transition of prt. Kulkarni et al. [28]
specify a prefix as an infinite sequence in which only a finite number of states are
used. By contrast, we specify a computation prefix as a finite sequence type. We
believe that it is more natural and more accurate to model the concept of prefix
by finite sequences. Our experience also shows that modeling computation pre-
fixes as finite sequences simplifies formal specification and verification of reach-
ability and convergence while saving us several definitions that were required
in [28] to capture the length of the prefix. We first define a type for finite
sequences of states; i.e., Pos F S. Then, we use the predicate Condi prefix?(A,Z)

that holds when all transitions (A(i), A(i + 1)) of a sequence A belong to a set
of transitions Z. The notation A‘length denotes the length of the sequence A,
A‘seq(i) returns the i-th element of sequence A and below[k] represents natural
values less than k. The function PREFIX returns the set of computation prefixes
generated by transitions of Z.

Pos F S: TYPE = {c:finite sequence[state] | c‘length > 0}

Condi Prefix?(A:Pos F S,Z:Action):bool= FORALL(i: below[A‘length-1]):

member((A‘seq(i), A‘seq(i+1)), Z)

PREFIX(Z: Action): set[Pos F S]= {A:Pos F S | Condi Prefix?(A,Z) }

Example: A computation of TR(3, 5). Consider an instance of TR(m,n)
where n = 5 and m = 3. Thus, cj ∈ {0, 1, 2} for 0 ≤ j < 5. Let 〈c0, c1, c2, c3, c4〉
denote a state of the protocol. Starting from a state 〈0, 1, 2, 2, 0〉, the following
sequence of transitions could be taken: P2 executes (〈0, 1, 2, 2, 0〉, 〈0, 1, 0, 2, 0〉)
and P0 executes (〈0, 1, 0, 2, 0〉, 〈2, 1, 0, 2, 0〉).

2.4 Closure and Convergence

A state predicate I is closed in a protocol prt iff every transition of prt that
starts in I also terminates in I [5,19]. The closed predicate checks whether a set
of transitions Z is actually closed in a state predicate I.

Verification and Synthesis of Parameterized Self-Stabilizing Protocols 207

closed?(I: StatePred, Z: Action): bool = FORALL (t:Transition | (member(t,Z)) AND

member(proj 1(t), I)) : member(proj 2(t), I)

A protocol prt weakly converges to a non-empty state predicate I iff from
every state s, there exists at least one computation prefix that reaches some state
in I [5,19]. A strongly converging protocol guarantees that every computation
from s will reach some state in I. Notice that any strongly converging protocol
is also weakly converging, but the reverse is not true in general. A protocol prt
is weakly (respectively, strongly) self-stabilizing to a state predicate I iff (1) I is
closed in prt, and (2) prt weakly (respectively, strongly) converges to I.

Example: Closure and convergence of TR(3, 5). Notice that the actions Aj ,
where 0 ≤ j < 5, are closed in Icoloring since no action is enabled in Icoloring.
Moreover, starting from any state (in the 35 states of the state space of TR(3, 5)),
every computation will reach a state in Icoloring. The computation of TR(3, 5)
presented in this section is an example of a converging computation.

3 Problem Statement

The problem of adding convergence (from [16]) is a transformation problem that
takes as its input a protocol prt and a state predicate I that is closed in prt. The
output of Problem 1 is a revised version of prt, denoted prtss, that converges to I
from any state. Starting from a state in I, prtss generates the same computations
as those of prt; i.e., prtss behaves similar to prt in I.

Problem 1. Add Convergence

– Input: (1) A protocol prt; (2) A state predicate I such that I is closed in prt;
and (3) A property of Ls converging, where Ls ∈ {weakly, strongly}.

– Output: A protocol prtss such that : (1) I is unchanged; (2) the projection of
prtss on I is equal to the projection of prt on I, and (3) prtss is Ls converging
to I. Since I is closed in prtss, it follows that prtss is Ls self-stabilizing to I.

Previous work [16,19] shows that weak convergence can be added in poly-
nomial time (in the size of the state space), whereas adding strong convergence
is known to be an NP-complete problem [26]. Farahat and Ebnenasir [13,16]
present a sound and complete algorithm for the addition of weak convergence
and a set of heuristics for efficient addition of strong convergence. While one of
our objectives is to develop a reusable proof library (in PVS) for mechanical ver-
ification of both weak and strong convergence, the focus of this paper is mainly
on enabling the mechanical verification of weak convergence for parameterized
systems. Algorithm 1 provides an informal and self-explanatory representation
of the Add Weak algorithm presented in [16].

Mechanical verification of the soundness of Add Weak ensures that any pro-
tocol synthesized by Add Weak is correct by construction. Moreover, the lem-
mas and theorems developed in mechanical verification of Add Weak provide a

208 A. Tahat and A. Ebnenasir

Algorithm 1. Add Weak
Input: prt:nd Protocol, I: statePred;
Output: set[Transition]; // Set of transitions of a weakly self-stabilizing version of prt.
1: Let Δprt be the set of transition groups of prt.
2: Let Δconverge be the set of transition groups that adhere to read/write restrictions

of processes of prt, but exclude any transition starting in I;
3: Δws = Δprt ∪ Δconverge;
4: no Prefix := {s : state | (s /∈ I) ∧ (there is no computation prefix using transitions

of Δws that can reach a state in I)}
5: If (no Prefix �= ∅) then weak convergence cannot be added to prt; return;
6: return Δws;

reusable framework for mechanical verification of different protocols that we gen-
erate using our synthesis tools [16,25]. The verification of synthesized protocols
increases our confidence in the correctness of the implementation of Add Weak

and helps us to generalize small instances of weakly converging protocols to their
parameterized versions.

4 Specification of Add Weak

This section presents the highlights of the formal specification of Add Weak in
PVS. (The complete PVS specifications are available at http://asd.cs.mtu.edu/
projects/mechVerif/ss.html.) We start by specifying the basic components used
in the Add Weak algorithm, namely the transition predicates Δprt,Δconverge and
Δws, and the state predicate no Prefix.

Notation. In the subsequent formal specifications, we use the identifiers Delta prt,

Delta Converge and Delta ws corresponding to the variables Δprt,Δconverge and
Δws in Add Weak. The function transition groups proc(p,prt) returns the set of tran-
sition groups of a process p of a protocol prt.

Delta Converge(prt:nd Protocol,I:StatePred):set[set[Transition]]= {gg:set[Transition] |
Exists (p:p process | member(p,proj 1(prt))):member(gg,transition groups proc(p,prt))

AND FORALL (t:Transition | member(t,gg)): NOT member(proj 1(t),I) }

We find it useful to define a dependent type of all prefixes A of a set of
transitions Z and we call it PREFIX(Z). Furthermore, we formally specify the
concept of reachability as follows:

Reach from?(Z:Action,A:PREFIX(Z),s0:state,

I: StatePred):bool = Exists (j:below[A‘length]): A‘seq(0)= s0 AND member(A‘seq(j),I)

The predicate Reach from returns true iff a state predicate I is reachable from
a state s0 using computation prefixes of Z. To specify the set of states no Prefix,
we first specify a predicate noPrefixExists that determines if for a protocol prt,
a state predicate I and a state s0, no state in I can be reached from s0 by
computation prefixes of prt.

http://asd.cs.mtu.edu/projects/mechVerif/ss.html
http://asd.cs.mtu.edu/projects/mechVerif/ss.html

Verification and Synthesis of Parameterized Self-Stabilizing Protocols 209

noPrefixExists?(prt:nd Protocol,I:StatePred,s0:state):bool= FORALL (g:Action,

A:PREFIX(g)| member(g,Delta ws(prt,I))AND member(A,PREFIX(g)) AND A‘seq(0)=

s0):NOT (Reach from?(g,A,s0,I))

We then specify the state predicate no Prefix in Add Weak as follows:

no Prefix(prt:nd Protocol,I:StatePred):set[state]= {s0:state | NOT(member(s0,I)) AND
noPrefixExists?(prt,I,s0)}

We also specify Add Weak as a function that returns a set of transitions.

Add weak(prt:nd Protocol,

I:{X:StatePred | closed?(X,proj 3(prt))}):set[Transition] = COND

empty?(no Prefix(prt,I)) − > Delta ws(prt,I), ELSE − > proj 3(prt) ENDCOND

5 Verification of Add Weak

In order to prove the soundness of Add Weak, we check if (1) I is unchanged;
(2) the projection of Δws on I is equal to the projection of Δprt on I, and (3)
Δws is weakly converging to I. The first constraint holds trivially since no step
of Add Weak adds/removes a state to/from I. Next, we present a set of lemmas
and theorems that prove the other two constraints of Problem 1.

5.1 Verifying the Equality of Projections on Invariant

In this section, we prove that Constraint 2 of Problem 1 holds for the output of
Add Weak, denoted by a protocol whose set of transitions is Δws. Our proof oblig-
ation is to show that the projection of Δws on I is equal to the projection of Δprt

on I. We decompose this into two set inclusion obligations of PrjOnS(Delta prt,I)

⊆ PrjOnS(Delta ws,I) and PrjOnS(Delta ws,I) ⊆ PrjOnS(Delta prt,I). Notice that, by
assumption, closed?(I,Delta prt) is true.

Lemma 1. PrjOnS(Delta prt,I) is a subset of PrjOnS(Delta ws,I).

Proof. The proof is straightforward since by construction we have Δws = Δprt ∪
Δconverge.

Lemma 2. PrjOnS(Delta ws,I) is a subset of PrjOnS(Delta prt,I).

Proof. If a transition t = (s0, s1) is in PrjOnS(Delta ws,I) then s0 ∈ I. Since
Δws = Δprt ∪ Δconverge, either t ∈ Δprt or t ∈ Δconverge. By construction,
Δconverge excludes any transition starting in I including t. Thus, t must be in
Δprt. Since s0 ∈ I, it follows that t ∈ PrjOnS(Delta prt,I).

Theorem 1. PrjOnS(Delta ws,I) = PrjOnS(Delta prt,I).

210 A. Tahat and A. Ebnenasir

5.2 Verifying Weak Convergence

In this section, we prove the weak convergence property (i.e., Constraint 3 of
Problem 1) of the output of Add Weak. Specifically, we show that from any state
s0 ∈ ¬I, there is a prefix A in PREFIX(Delta ws) such that A reaches some state
in I. Again, we observe that, an underlying assumption in this section is that
closed?(I,Delta prt) holds. For a protocol prt and a predicate I that is closed in
prt and a state s /∈ I, we have:

Lemma 3. If empty?(no Prefix(prt,I)) holds then noPrefixExists?(prt,I,s) returns false
for any s /∈ I.

Lemma 4. If from every state there is a prefix reaching I (i.e., noPrefixEx-

ists?(prt,I,s) returns false for any s /∈ I), then there exists a sequence of states A
and a set of transitions Z such that Z ∈ Delta ws, A ∈ PREFIX(Z), A(0)=s holds,
and Reach from?(Z,A,s,I) returns true for any s /∈ I.

Lemma 4 implies that when Add Weak returns, the revised version of prt guaran-
tees that there exists a computation prefix to I from any state outside I; hence
weak convergence. This is due to the fact that A is a prefix of Δws.

Theorem 2. If empty?(no Prefix(prt,I)) holds and s /∈ I then there exists a sequence
of states A that starts from s and A ∈ PREFIX(Delta ws) and Reach from?

(Delta ws(prt,I),A,s,I) returns true.

6 Reusability and Generalizability

In this section, we demonstrate how the lemmas and theorems proved for the
soundness of Add Weak can be reused in proving the correctness of a graph col-
oring protocol and in generalizing it. Reusability enables us to instantiate the
abstract concepts/types (e.g., state predicate I and actions of a protocol) for
a concrete protocol and reuse the mechanical proof of Add Weak to prove the
weak convergence of that protocol. Generalizability determines whether a small
instance of a protocol synthesized by our implementation of Add Weak [16] can
be proven to be correct for an arbitrary number of processes. For instance, we
have used the Stabilization Synthesizer (STSyn) [16] tool to automatically gen-
erate the 3-coloring protocol presented in Sect. 2 for rings of up to 40 processes
(i.e., n < 41). Nonetheless, due to scalability issues, STSyn cannot synthesize a
self-stabilizing 3-coloring protocol for n > 40. In this section, we apply the pro-
posed approach of synthesize in small scale and generalize to prove (or disprove)
that the synthesized 3-coloring protocol is correct for rings of size greater than
40 and with more than 2 colors (i.e., m > 2).

6.1 PVS Specification of Coloring

This section presents the PVS specification of TR(m,n). First, we instantiate
the basic types in the PVS specification of Add Weak for the coloring protocol.

Verification and Synthesis of Parameterized Self-Stabilizing Protocols 211

Then, we present the specifications of some functions that we use to simplify the
mechanical verification. Finally, we specify the processes and the protocol itself.

Defining a State of TR(m,n). We first define the parameterized type COL-

ORS: below[m] to capture the colors and the size of variable domains. Then, we
define a state of the ring as a finite sequence of colors of length n; i.e., STC:

NONEMPTY TYPE {s:finseq | s‘length=n}.

Position of Each Process in the Ring. Since each variable cj holds two pieces
of information namely the process position in the ring and its color, we declare
the tuple type color pos:TYPE+=[COLORS,below[n]] to represent a pair (colorj ,
positionj) for each process Pj .

Detecting Good/Bad Neighbors. The predicate is nbr?(K:color pos,L:color pos)

returns true iff K and L are two neighboring processes; i.e., mod(abs(K‘2-L‘2),n) ≤
1, where K‘2 denotes the second element of the pair K (which is the position of K
in the ring). Likewise, we define the predicate is bad nbr?(K:color pos,L:color pos)

that holds iff is nbr?(K,L) holds and K‘1 = L‘1. To capture the locality of process
Pj , we define the non-empty dependent type set of nbrs(K:color pos):TYPE+ =

{L:color pos | is nbr?(K,L) }. Likewise, we define the type set of bad nbrs(K:color pos):

TYPE ={L:color pos | is bad nbr?(K,L)} to capture the set of neighbors of a process
that have the same color as that process. The function nbr colors(K:color pos):set

[COLORS] returns the set of colors of the immediate neighbors of a process.

Functions. In order to simplify the verification of convergence (in Sect. 6.2), we
associate the subsequent functions with a global state. The association of a global
state to functions and types enables us to import the PVS theory of Add Weak

with the following types [STC,below[m], color pos, [color pos, STC → below[m]]] to
reuse its already defined types and functions in specifying TR(m,n) as follows.
We define the following functions to simplify the verification process:

– The function ValPos(s:STC,j:below[n]):color pos=(s‘seq(j),j) that returns the color
and the position of process j in a global state s as a tuple of type color pos.
An example use of this function is Val(s:STC,L:color pos)= ValPos(s,L‘2)‘1.

– The predicate nbr is bad?(s:STC,j:below[n]):bool = nonempty?(set of bad nbrs

(ValPos(s,j))) returns true iff for an arbitrary state s and a process j the set of
bad neighbors of process j is nonempty; we refer to such a case by saying s is
corrupted at process j. Notice that an illegitimate state can be corrupted at
more than one position.

– The predicate nbr is good?(s:STC,j:below[n]):bool returns the negation of the
predicate nbr is bad?(s:STC,j:below[n]):bool.

– The predicate is LEGT?(s:STC):bool= Forall (j:below[n]): nbr is good?(s,j) returns
true iff s is a legitimate state. Thus, the set of illegitimate states is specified
as S ill:TYPE= { s:STC | not is LEGT?(s)}.

212 A. Tahat and A. Ebnenasir

Specification of a Process of TR(m,n). For an arbitrary global state s and
a process j, we define the function READ p which returns all readable variables
of process j.

- READ p(s:STC, j:below[n]): set[color pos]= {L:set of nbrs(ValPos(s,j)) | TRUE } .

Similarly, we define the function WRITE p which returns the variables that
process j can write.

- WRITE p(s:STC,j:below[n]): set[color pos]= {L:color pos | L = ValPos(s,j)}

We now define the function DELTA p that returns the set of transitions belong-
ing to process j if process j is corrupted in the global state s; i.e., j has a bad
neighbor.

- DELTA p(s:STC,j:below[n]):set[Transition] ={tr: Transition | Exists

(c:set of bad nbrs(ValPos(s,j))): tr = (s,action(s,j,ValPos(s,j),c)) }

The function action(s,j,ValPos(s,j),c) returns the state reached when process j
acts to correct its corrupted state. Formally, we define action(s,j,ValPos(s,j),c) as
follows:

- action(s:STC,j:below[n],K:color pos, C:set of bad nbrs(K)): STC = (# length := n, seq

:= (LAMBDA (i:below[n]):IF i= j THEN other(ValPos(s,j)) ELSE s(i) ENDIF) #)

(The LAMBDA abstractions in PVS enable us to specify binding expressions
similar to quantified statements in predicate logic.) We specify the function other
to randomly choose a new color other than the corrupted one. To this end, we
use the epsilon function over the full set of colors minus the set of colors of the
neighbors of the corrupted process. Formally, we have

- other(K:color pos):COLORS = epsilon(difference(fullset colors,nbr colors(K))), where
fullset colors:set[COLORS]= {cl:COLORS | TRUE}.

Thus, the specification of a process of the protocol TR(m,n) is as follows:

- Process j(s:STC,j:below[n]): p process = (READ p(s,j), WRITE p(s,j),DELTA p(s,j))

The Parameterized Specification of the TR(m,n) Protocol. We define
the TR(m,n) protocol as the type TR m n(s:STC):nd Protocol =(PROC prt(s),

VARB prt(s),DELTA prt(s)), where the parameters are defined as follows:

– PROC prt(s:STC): set[p process]={p:p process | Exists (j:below[n]):p = Process j(s,j)}
– VARB prt(s:STC): set[color pos]= {v:color pos | Exists (j:below[n]):member(v,

WRITE p(s,j))}
– Delta prt(s:STC): set[Transition]= {tr:Transition | Exists (j:below[n]):member(tr,

DELTA p(s,j))} .

Verification and Synthesis of Parameterized Self-Stabilizing Protocols 213

6.2 Mechanical Verification of Parameterized Coloring

We now prove the weak convergence of TR(m,n) for m > 2 and n > 40. To
this end, we show that the set no Prefix of TR(m,n) is actually empty. The
proof of emptiness of no Prefix is based on a prefix constructor function that
demonstrates the existence of a computation prefix σ of TR(m,n) from any
arbitrary illegitimate state s such that σ includes a state in I. Subsequently, we
instantiate Theorem 2 for TR(m,n).

Theorem 3. IF (1) TR(m,n) is closed in the state predicate Icoloring (i.e.,
closed?(Icoloring,(TR(m,n))‘3)); (2) from every state there is a computation pre-
fix to Icoloring (i.e., empty?(no Prefix(TR(m,n),Icoloring) holds), and (3) s /∈
Icoloring,

THEN there exists a sequence of states σ built from the transitions of TR(m,n)
(i.e., σ ∈ PREFIX(Delta ws(TR(m,n),Icoloring))) such that σ starts in s and reaches
a state in Icoloring (i.e., Reach from?(σ,s,Icoloring)).

Proof. We show that Add Weak will generate a weakly stabilizing version of
protocol TR(m,n) for any n > 3 and m > 2. To this end, we show that TR(m,n)
has an empty no Prefix set and instantiate Theorem 2 for TR(m,n). Let s be an
arbitrary illegitimate state. We define a sequence of states σ that starts in s and
terminates in I such that all transitions of σ belong to transitions of TR(m,n)
(i.e., proj 3(TR(m,n))). Before building a prefix from a particular illegitimate state
s, we would like to identify a segment of the ring that is correct in the sense that
the local predicate ((ci �= ci−1) ∧ (ci �= ci+1)) is correct for processes from 1 to
j; i.e., ∀i : 1 ≤ i ≤ j : ((ci �= ci−1) ∧ (ci �= ci+1)). For this purpose, we define
three auxiliary functions.

– Local corrector. The first one is a corrector function that applies the other
function on ValPos(s,j) if process j is corrupted; otherwise, it leaves cj as is.
- localCorrector(s:S ill, j:below[n]):COLORS = COND nbr is good?(s,j) → s‘seq(j),

nbr is bad?(s,j) → other(ValPos(s,j)) ENDCOND

– Segment corrector. The function segCorrector(s,j) takes an illegitimate state s
and an index j of the ring, and returns a global state where all processes from
1 to j have good neighbors. The rest of the processes have the same local state
as in s. Since we model a global state of a ring of n processes as a sequence of n
colors, we can represent the application of the segCorrector function on the j-th
process in a global state s as 〈 localCorrector(s,0),...,localCorrector(s,j),s(j+1),...,s(n-

1)) 〉, where the colors of processes from j + 1 to n − 1 remain unchanged by
segCorrector.
- segCorrector(s:S ill,j:below[n]):STC= (# length := n, seq := (LAMBDA (i:below[n]):IF

i ≤ j THEN localCorrector(s,i) ELSE s‘seq(i) ENDIF) #)

– Global corrector. The function globalCorrector below is especially useful because
constructing the appropriate computation prefix from s to some invariant
state in Icoloring directly is not straightforward. Since for all j < n we do
not know whether applying the local corrector function on a state s:S ill at
a process j will result in a legitimate state, we use globalCorrector to build

214 A. Tahat and A. Ebnenasir

a sequence of states of length n formed by applying the segment corrector
function consecutively at all processes regardless of being corrupted or not.
globalCorrector(s:S ill): Pos F S = (# length := n, seq := (LAMBDA (i:below[n]):

segCorrector(s,i)) #)

Each element j in the sequence that globalCorrector(s) returns is the image of
the function segCorrector(s,j), which is a state that is correct up to process j. We
define the function min legit(globalCorrector(s)) over the sequence globalCorrector(s)

to return the minimum index for which the corresponding state is legitimate.

min legit(A:Pos F S):{i:integer | i≥-1} = COND not empty?(legitStatesIndices(A)) − >

min(legitStatesIndices(A)), else − > -1 ENDCOND

The min legit function first uses the function legitStatesIndices to compute the
indices of the legitimate states in a sequence of global states A.

legitStatesIndices(A:Pos F S):set[below[A‘length]]={i:below[A‘length] | is LEGT?

(A‘seq(i)) }

The Prefix-Constructor Function. Now, we are ready to define the construc-
tor function of the required prefix from any illegitimate s:S ill to I as follows:

constPrefix(s:S ill):Pos F S = (# length:= min legit(globalCorrector(s))+2, seq:=

(LAMBDA (i:below[min legit(globalCorrector(s))+2]): if i=0 then s else segCorrector(s,i-1)

endif) #)

The last element of constPrefix(s) is the first legitimate state of globalCor-

rector(s). Thus, all states before the last state in constPrefix(s) are illegitimate.
Moreover, each application of the corrector function corresponds to a transition
that starts in an illegitimate state. This is true until reaching a legitimate state.
Thus, all involved transitions in the sequence globalCorrector(s) are in TR(m,n),
thereby making constPrefix(s) a computation prefix of TR(m,n). To show the
correctness of this argument, it is sufficient to show the existence of at least one
index that is equal to min legit(globalCorrector(s)). Thus, the sequence constPre-

fix(s) is well-defined for any state s outside I and reaches I as required. Thus,
it is sufficient for weak convergence to show the correctness of the following two
properties of the function segCorrector.

1. If a process j is corrupted then the color of process j in the state segCorrector

(s,n-1) is the same as what the local corrector function selects for it; i.e.,
ValPos(segCorrector(s,n-1), j)‘1= other(ValPos(s,j)).

2. If a process j is corrupted then in the state segCorrector(s,n-1) the process j is
not corrupted (i.e., does not have a corrupted neighbor as well).

Notice that by the above two properties we show that the state generated by
segCorrector(s,n-1) is legitimate. We prove these properties as two lemmas.

Lemma 5. If nonempty?(set of bad nbrs(ValPos(s,j))) holds then ValPos(segCorrector

(s,n-1), j)‘1 = other(ValPos(s,j)).

Verification and Synthesis of Parameterized Self-Stabilizing Protocols 215

Lemma 6. If nonempty?(set of bad nbrs(ValPos(s,j))) holds then empty?(set of

bad nbrs((other(ValPos(s,j)), j))).

The mechanical proofs of these lemmas follow directly by expanding the required
definitions and using the following axiom of choice.

AXIOM nonempty?(set of bad nbrs(ValPos(sl,j))) IMPLIES empty?(C: color pos| is

bad nbr?((other(ValPos(sl, j)), j), C))

We need the axiom of choice because we use the epsilon function in the defi-
nition of the other() function. This way we show that there is always a different
color that can correct the locality of a corrupted process.

7 Discussion and Related Work

This section discusses the impact of the proposed approach and the related
work. Self-stabilization is an important property for networked systems, be it a
network-on-chip system or the Internet. There are both hardware [11] and soft-
ware systems [12] that benefit from the resilience provided by self-stabilization.
Thus, it is important to have an abstract specification of self-stabilization that is
independent from hardware or software. While several researchers [29,32] have
utilized theorem proving to formally specify and verify the self-stabilization
of specific protocols, this paper presents a problem-independent specification
of weak convergence that enables potential reuse of efforts in the verification of
convergence of different protocols.

One of the fundamental impediments before automated synthesis of self-
stabilizing protocols from their non-stabilizing versions is the scalability problem.
While there are techniques for parameterized synthesis [22,24] of concurrent sys-
tems, such methods are not directly useful for the synthesis of self-stabilization
due to several factors. First, such methods are mostly geared towards synthe-
sizing concurrent systems from formal specifications in some variant of tempo-
ral logic. Second, in the existing parameterized synthesis methods the formal
specifications are often parameterized in terms of local liveness properties of
individual components (e.g., progress for each process), whereas convergence is
a global liveness property. Third, existing methods often consider the synthesis
from a set of initial states that is a proper subset of the state space rather than
the entire state space itself (which is the case for self-stabilization). With this
motivation, our contributions in this paper enable a hybrid method based on
synthesis and theorem proving that enables the generalization of small instances
of self-stabilizing protocols generated by our tools [25].

Related Work. Kulkarni and Bonakdarpour’s work [8,28] is the closest to the
proposed approach in this paper. As such, we would like to highlight some dif-
ferences between their contributions and ours. First, in [28], the authors focus
on mechanical verification of algorithms for the addition of fault tolerance to
concurrent systems in a high atomicity model where each process can read and
write all system variables in one atomic step. One of the fault tolerance require-
ments they consider is nonmasking fault-tolerance, where a nonmasking system

216 A. Tahat and A. Ebnenasir

guarantees recovery to a set of legitimate states from states reachable by faults
and not necessarily from the entire state space. Moreover, in [8], Kulkarni and
Bonakdarpour investigate the mechanical verification of algorithms for the addi-
tion of multiple levels of fault tolerance in the high atomicity model. In this
paper, our focus is on self-stabilization in distributed systems where recovery
should be provided from any state and high atomicity actions are not feasible.

Methods for the verification of parameterized systems can be classified into
the following major approaches, which do not directly address SS systems.
Abstraction techniques [15,21,30] generate a finite-state model of a parame-
terized system and then reduce the verification of the parameterized system to
the verification of its finite model. Network invariant approaches [20,23,37] find
a process that satisfies the property of interest and is invariant to parallel compo-
sition. Logic program transformations and inductive verification methods [17,33]
encode the verification of a parameterized system as a constraint logic program
and reduce the verification of the parameterized system to the equivalence of
goals in the logic program. In regular model checking [2,9], system states are
represented by grammars over strings of arbitrary length, and a protocol is rep-
resented by a transducer. Abdulla et al. [1] also investigate reachability of unsafe
states in symmetric timed networks and prove that it is undecidable to detect
livelocks in such networks. Bertrand and Fournier [7] also focus on the verifi-
cation of safety properties for parameterized systems with probabilistic timed
processes.

8 Conclusion and Future Work

This paper focuses on exploiting theorem proving for the generalization of syn-
thesized self-stabilizing protocols that are correct in a finite scope (i.e., up to a
small number of processes). We are particularly interested in weak stabilization
where reachability to legitimate states is guaranteed from any state. The contri-
butions of this paper comprise a component of a hybrid method for verification
and synthesis of parameterized self-stabilizing network protocols (see Fig. 1).
This paper specifically presents a mechanical proof for the correctness of the
Add Weak algorithm from [16] that synthesizes weak convergence. This mechan-
ical proof provides a reusable theory in PVS for the proof of weakly stabilizing
systems in general (irrespective of how they have been designed). The success
of mechanical proof for a small synthesized protocol shows the generality of the
synthesized solution for arbitrary number of processes. We have demonstrated
the proposed approach in the context of a binary agreement protocol (in [35])
and a graph coloring protocol (Sect. 6).

We will extend this work by reusing the existing PVS theory for mechanical
proof of algorithms (in [16]) that design strong convergence. Moreover, we are
currently investigating the generalization of more complicated protocols (e.g.,
leader election, maximal matching, consensus) using the proposed approach.

Verification and Synthesis of Parameterized Self-Stabilizing Protocols 217

References

1. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed
processes. Theor. Comput. Sci. 290(1), 241–264 (2003)

2. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004)

3. Abujarad, F., Kulkarni, S.S.: Multicore constraint-based automated stabilization.
In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 47–61. Springer,
Heidelberg (2009)

4. Abujarad, F., Kulkarni, S.S.: Automated constraint-based addition of nonmasking
and stabilizing fault-tolerance. Theor. Comput. Sci. 412(33), 4228–4246 (2011)

5. Arora, A., Gouda, M.G.: Closure and convergence: a foundation of fault-tolerant
computing. IEEE Trans. Softw. Eng. 19(11), 1015–1027 (1993)

6. Attie, P.C., Arora, A., Emerson, E.A.: Synthesis of fault-tolerant concurrent pro-
grams. ACM Trans. Program. Lang. Syst (TOPLAS) 26(1), 125–185 (2004)

7. Bertrand, N., Fournier, P.: Parameterized verification of many identical probabilis-
tic timed processes. In: LIPIcs-Leibniz International Proceedings in Informatics,
vol. 24 (2013)

8. Bonakdarpour, B., Kulkarni, S.S.: Towards reusing formal proofs for verification
of fault-tolerance. In Workshop in Automated Formal Methods (2006)

9. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

11. Dolev, S., Haviv, Y.A.: Self-stabilizing microprocessor: analyzing and overcoming
soft errors. IEEE Trans. Comput. 55(4), 385–399 (2006)

12. Dolev, S., Yagel, R.: Self-stabilizing operating systems. In: Proceedings of the twen-
tieth ACM symposium on Operating systems principles, pages 1–2. ACM (2005)

13. Ebnenasir, A., Farahat, A.: Swarm synthesis of convergence for symmetric proto-
cols. In: European Dependable Computing Conference, pp. 13–24 (2012)

14. Ebnenasir, A., Kulkarni, S.S., Arora, A.: FTSyn: a framework for automatic syn-
thesis of fault-tolerance. Int. J. Softw. Tools Technol. Transf. 10(5), 455–471 (2008)

15. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

16. Farahat, A., Ebnenasir, A.: A lightweight method for automated design of con-
vergence in network protocols. ACM Trans. Auton. Adapt. Syst. (TAAS) 7(4),
38:1–38:36 (2012)

17. Fioravanti, F., Pettorossi, A., Proietti, M., Senni, V.: Generalization strategies for
the verification of infinite state systems. TPLP 13(2), 175–199 (2013)

18. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem proving Envi-
ronment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

19. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.)
WSS 2001. LNCS, vol. 2194, p. 114. Springer, Heidelberg (2001)

20. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 483–497. Springer, Heidelberg (2006)

21. Ip, C.N., Dill, D.L.: Verifying systems with replicated components in murphi. Form.
Methods Syst. Design 14(3), 273–310 (1999)

218 A. Tahat and A. Ebnenasir

22. Jacobs, S., Bloem, R.: Parameterized synthesis. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 362–376. Springer, Heidelberg (2012)

23. Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network invariants in action. In:
Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol.
2421, pp. 101–115. Springer, Heidelberg (2002)

24. Khalimov, A., Jacobs, S., Bloem, R.: PARTY Parameterized Synthesis of Token
Rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933.
Springer, Heidelberg (2013)

25. Klinkhamer, A., Ebnenasir, A.: A parallel tool for automated synthesis of self-
stabilization. http://asd.cs.mtu.edu/projects/protocon/

26. Klinkhamer, A., Ebnenasir, A.: On the complexity of adding convergence. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 17–33. Springer,
Heidelberg (2013)

27. Kulkarni, S.S., Arora, A.: Large automating the addition of fault-tolerance. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, p. 82. Springer, Heidelberg
(2000)

28. Kulkarni, S.S., Bonakdarpour, B., Ebnenasir, A.: Mechanical verification of auto-
matic synthesis of fault-tolerance. Int. Symp. Log.-based Program Synth. Trans-
form. 3573, 36–52 (2004)

29. Kulkarni, S.S., Rushby, J., Shankar, N.: A case-study in component-based mechan-
ical verification of fault-tolerant programs. In: 19th IEEE International Conference
on Distributed Computing Systems - Workshop on Self-Stabilizing Systems, pp.
33–40 (1999)

30. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, ∞)-Counter Abstraction. In:
Brinksma, Ed, Larsen, Kim Guldstrand (eds.) CAV 2002. LNCS, vol. 2404, pp.
107–. Springer, Heidelberg (2002)

31. Prasetya, I.S.W.B.: Mechanically verified self-stabilizing hierarchical algorithms.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’97),
volume 1217 of Lecture Notes in Computer Science, pages 399–415 (1997)

32. Qadeer, S., Shankar, N.: Verifying a self-stabilizing mutual exclusion algorithm.
In: Gries, D., de Roever, W.-P. (eds.) IFIP International Conference on Program-
ming Concepts and Methods (PROCOMET 1998), pp. 424–443. Chapman & Hall,
Shelter Island, NY (1998)

33. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V.,
Smolka, S.A.: Verification of Parameterized Systems Using Logic Program Trans-
formations. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, p. 172. Springer,
Heidelberg (2000)

34. Shankar, N., Owre, S., Rushby, J.M.: The PVS Proof Checker: A Reference Manual.
Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.
A new edition for PVS Version 2 is released in 1998

35. Tahat, A., Ebnenasir, A.: A hybrid method for the verification and synthe-
sis of parameterized self-stabilizing protocols. Technical Report CS-TR-14-02,
Michigan Technological University, May 2014. http://www.mtu.edu/cs/research/
papers/pdfs/Technical%20Report%2014-02.pdf

36. Tsuchiya, T., Nagano, S., Paidi, R.B., Kikuno, T.: Symbolic model checking for
self-stabilizing algorithms. IEEE Trans. Parallel Distrib. Syst. 12(1), 81–95 (2001)

37. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with
network invariants. In: International Workshop on Automatic Verification Methods
for Finite State Systems, pp. 68–80 (1989)

http://asd.cs.mtu.edu/projects/protocon/
http://www.mtu.edu/cs/research/papers/pdfs/Technical%20Report%2014-02.pdf
http://www.mtu.edu/cs/research/papers/pdfs/Technical%20Report%2014-02.pdf

Drill and Join: A Method for Exact Inductive
Program Synthesis

Remis Balaniuk(B)

Universidade Católica de Braśılia, Braśılia, Brazil
remis@robotics.stanford.edu

Abstract. In this paper we propose a novel semi-supervised active
machine-learning method, based on two recursive higher-order functions
that can inductively synthesize a functional computer program. Based on
properties formulated using abstract algebra terms, the method uses two
combined strategies: to reduce the dimensionality of the Boolean algebra
where a target function lies and to combine known operations belonging
to the algebra, using them as a basis to build a program that emulates
the target function. The method queries for data on specific points of
the problem input space and build a program that exactly fits the data.
Applications of this method include all sorts of systems based on bitwise
operations. Any functional computer program can be emulated using
this approach. Combinatorial circuit design, model acquisition from sen-
sor data, reverse engineering of existing computer programs are all fields
where the proposed method can be useful.

1 Introduction

Induction means reasoning from specific to general. In the case of inductive
learning from examples, the general rules are derived from input/output (I/O)
examples or answers from questions. Inductive machine learning has been suc-
cessfully applied to a variety of classification and prediction problems [1,3].

Inductive program synthesis (IPS) builds from examples the computation
required to solve a problem. The problem must be formulated as a task of learn-
ing a concept from examples, referred to as inductive concept learning. A com-
puter program is automatically created from an incomplete specification of the
concept to be implemented, also referred as the target function [3].

Research on inductive program synthesis started in the seventies. Since then
it has been studied in several different research fields and communities such as
artificial intelligence (AI), machine learning, inductive logic programming (ILP),
genetic programming, and functional programming [3,8].

One basic approach to IPS is to simply enumerate programs of a defined set
until one is found which is consistent with the examples. Due to combinatorial
explosion, this general enumerative approach is too expensive for practical use.
Summers [9] proposed an analytical approach to induce functional Lisp programs
without search. However, due to strong constraints imposed on the forms of I/O-
examples and inducible programs in order to avoid search, only relatively simple
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 219–237, 2015.
DOI: 10.1007/978-3-319-17822-6 13

220 R. Balaniuk

functions can be induced. Several variants and extensions of Summers’ method
have been proposed, like in [7]. An overview is given in [10]. Kitzelmann [6]
proposed a combined analytical and search-based approach. Albarghouthi [5]
proposed ESCHER, a generic algorithm that interacts with the user via I/O
examples, and synthesizes recursive programs implementing intended behavior.

Hybrid methods propose the integration of inductive inference and deduc-
tive reasoning. Deductive reasoning usually requires high-level specifications as
a formula in a suitable logic, a background theory for semantic correctness spec-
ification, constraints or a set of existing components as candidate implementa-
tions. Some examples of hybrid methods are the syntax-guided synthesis [12], the
sciduction methodology [17], the component-based synthesis [2] and the oracle-
guided component-based program synthesis approach [16].

Inductive program synthesis is usually associated to functional programming
[8]. In functional code the output value of a function depends only on the argu-
ments that are input to the function. It is a declarative programming para-
digm. Side effects that cause change in state that do not depend on the function
inputs are not allowed. Programming in a functional style can usually be accom-
plished in languages that aren’t specifically designed for functional programming.
In early debates around programming paradigms, conventional imperative pro-
gramming and functional programming were compared and discussed. J. Backus
[14], in his work on programs as mathematical objects, supported the functional
style of programming as an alternative to the “ever growing, fat and weak”
conventional programming languages. Backus identified as inherent defects of
imperative programming languages their inability to effectively use powerful
combining forms for building new programs from existing ones, and their lack of
useful mathematical properties for reasoning about programs. Functional pro-
gramming, and more particularly function-level programming, is founded on the
use of combining forms for creating programs that allow an algebra of programs.1

Our work is distinguishable from previous works on IPS in a number of ways:

– Our method is based on function-level programming.
– Our method is based on active learning. Active learning is a special case of

machine learning in which the learning algorithm can control the selection of
examples that it generalizes from and can query one or more oracles to obtain
examples. The oracles could be implemented by evaluation/execution of a
model on a concrete input or they could be human users. Most existing IPS
methods supply the set of examples at the beginning of the learning process,
without reference to the learning algorithm. Some hybrid synthesis methods
use active learning, as in [12,16,17], to generate examples to a deductive
procedure. Our method defines a learning protocol that queries the oracle to
obtain the desired outputs at new data points.

1 Function-level programming, as proposed by Backus [14], is a particular, constrained
type of functional programming where a program is built directly from programs
that are given at the outset, by combining them with program-forming operations
or functionals.

Drill and Join: A Method for Exact Inductive Program Synthesis 221

– Our method generates programs on a very low-level declarative language, com-
patible with most high-level programming languages. Most existing methods
are conceived considering and restricted to specific high-level source languages.
Our whole method is based on Boolean algebra. Inputs and outputs are bit
vectors and the generated programs are Boolean expressions. The synthe-
sized program can also be used for a combinatorial circuit design describ-
ing the sequences of gates required to emulate the target function. Research
on reconfigurable supercomputing is very interested in providing compilers
that translate algorithms directly into circuit design expressed in an hard-
ware description language. They want to avoid the high cost of having to
hand-code custom circuit designs [13].

– The use of Boolean algebra and abstract algebra concepts at the basis of the
method defines a rich formalism. The space where a program is to be searched,
or synthesized, corresponds to a well-defined finite family of operations that
can be reused, combined and ordered.

– Our method can be applied to general purpose computing. A program gen-
erated using our method, computing an output bit vector from an input bit
vector, is equivalent to a system of Boolean equations or a set of truth tables.
However, bit vectors can also be used to represent any kind of complex data
types, like floating point numbers and text strings. A functionally complete
set of operations performed on arbitrary bits is enough to compute any com-
putable value. In principle, any Boolean function can be built-up from a func-
tionally complete set of logic operators. In logic, a functionally complete set of
logical connectives or Boolean operators is one which can be used to express
all possible truth tables by combining members of the set into a Boolean
expression. Our method synthesizes Boolean expressions based on the logic
operators set {XOR,AND} which is functionally complete.

– If the problem has a total functional behavior and enough data is supplied
during the learning process our method can synthesize the exact solution.

This paper is organized as follows. Sections 2 and 3 review some relevant math-
ematical concepts. Sections 4 and 5 describe the mathematics of the method.
Section 6 presents the method itself and how the programs are synthesized.
Section 7 presents the main algorithms. Section 8 shows a Common Lisp imple-
mentation of the simplest version of the method. Sections 9, 10 and 11 close the
document discussing the method, possible applications and future work.

2 Boolean Ring, F2 Field, Boolean Polynomials
and Boolean Functions

A Boolean ring is essentially equivalent to a Boolean algebra, with ring multipli-
cation corresponding to conjunction (∧) and ring addition to exclusive disjunc-
tion or symmetric difference (⊕ or XOR). In Logic, the combination of opera-
tors ⊕ (XOR or exclusive OR) and ∧ (AND) over elements true, false produce
the Galois field F2 which is extensively used in digital logic and circuitry [11].

222 R. Balaniuk

This field is functionally complete and can represent any boolean function obtain-
able with the system (∧∨) and can also be used as a standard algebra over the
set of the integers modulo 2 (binary numbers 0 and 1)2. Addition has an identity
element (false) and an inverse for every element. Multiplication has an identity
element (true) and an inverse for every element but false.

Let B be a Boolean algebra and consider the associated Boolean ring.
A Boolean polynomial in B is a string that results from a finite number of
Boolean operations on a finite number of elements in B. A multivariate polyno-
mial over a ring has a unique representation as a xor-sum of monomials. This
gives a normal form for Boolean polynomials:

⊕
J⊂{1,2,...,n}

aJ

∏
j∈J

xj (1)

where aJ ∈ B are uniquely determined. This representation is called algebraic
normal form, Zhegalkin polynomials or Reed–Muller expansion [18]. A Boolean
function of n variables f : ZZn2 → ZZ2 can be associated with a Boolean polynomial
by deriving an algebraic normal form.

3 Abstract Algebra and Higher Order Functions

Let us consider a generic functional setting having as domain the set of bit
strings of a finite, defined, length and as range the set {true, false} or the
binary numbers 0 and 1 represented by one bit. This setting can represent the
inputs and output of a logic proposition, a Boolean function, a truth table or a
fraction of a functional program corresponding to one of its output bits3.

In abstract algebra terms, this setting will define a finitary Boolean algebra
consisting of a finite family of operations on {0, 1} having the input bit string as
their arguments. The length of the bit string will be the arity of the operations
in the family. An n-ary operation can be applied to any of 2n possible values of
its n arguments. For each choice of arguments an operation may return 0 or 1,
whence there are 22

n

n-ary possible operations in the family. In this functional
setting, IPS could be seen as the synthesis of an operation that fits a set of I/O
examples inside its family. The Boolean algebra defines our program space.

Let V n be the set of all binary words of length n, |V n| = 2n. The Boolean
algebra B on V n is a vector space over ZZ2. Because it has 22

n

elements, it is of
dimension 2n over ZZ2. This correspondence between an algebra and our program
space defines some useful properties. The operations in a family need not be
all explicitly stated. A basis is any set of operators from which the remaining
operations can be obtained by composition. A Boolean algebra may be defined
from any of several different bases. To be a basis is to yield all other operations
by composition, whence any two bases must be intertranslatable.
2 Throughout this paper we will use indistinctively 0, F or false for the binary number

0 and 1, T or true for the binary number 1.
3 Bit strings can represent any complex data type. Consequently, our functional setting

includes any functional computer program having fixed length input and output.

Drill and Join: A Method for Exact Inductive Program Synthesis 223

A basis is a linearly independent spanning set. Let v1, . . . , vm ∈ B be a
basis of B. Span(v1, . . . , vm) = {λ1 ∧ v1 ⊕ ⊕ λm ∧ vm | λ1, . . . , λm ∈ ZZ2}.
The dimension dim(B) of the Boolean algebra is the minimum m such that
B = span(v1, . . . , vm)4.

The method proposed in this paper consists of two combined strategies:
reducing the dimensionality of the Boolean algebra where a target function lies
and combining known operations in the algebra, using them as a basis to syn-
thesize a program that emulates the target function.

Both strategies are implemented using two recursive higher order functions
that we created and that we named the drill and the join.

In computer science higher-order functions are functions that take one or
more functions as input and output a function. They correspond to linear map-
pings in mathematics.

4 The Drill Function

We define the set Fm of functions f : ZZp2×ZZq2 → ZZ2 containing Boolean functions
belonging to a Boolean algebra of dimension m, described in polynomial form:

f(X,Y) =
m⊕
i=1

gi(X) ∧ hi(Y) (2)

where gi : ZZp2 → ZZ2 and hi : ZZq2 → ZZ2 are also Boolean functions. Note that the
polynomial representations used in 1 and 2 are equivalent and interchangeable.
Equation 2 simply splits its input space in two disjoint subsets: p + q = n. In 1
lower case is used to indicate atomic Boolean variables while in 2 upper case is
used to indicate Boolean vectors.

Considering a function f ∈ Fm, a chosen X0 ∈ ZZp2 and a chosen Y0 ∈ ZZq2 such
that f(X0, Y0) �= 0, we define the drill higher-order function:

IFX0Y0 = IF(f(X,Y),X0, Y0) = f(X,Y) ⊕ (f(X0, Y) ∧ f(X,Y0)) (3)

Note that the function IF outputs a new function and has as inputs the function
f and instances of X and Y , defining a position on f input space.
Theorem: If f ∈ Fm and f(X0, Y0) �= 0 then f = IFX0Y0 ∈ Fr and
r ≤ m − 15,6.

4 The dimension of the Boolean algebra will also determine the minimum number of
monomials required to define each of its Boolean polynomials in algebraic normal
form.

5 We will use the overline notation to distinguish between modules (Boolean functions
and Boolean spaces) belonging to the target function subspace (without overline)
and modules belonging to a lower dimension linear subspace generated by the drill
linear mapping (with overline).

6 Fr is a set containing Boolean functions belonging to a Boolean algebra of
dimension r.

224 R. Balaniuk

Proof: Consider W = span(h1, . . . , hm). Consequently dim(W) ≤ m. The linear
operator h ∈ W → h(Y0) is not the zero map because the hypothesis forbids
hi(Y0) = 0 for all i = 1, ..., n. Consequently, the vector subspace W = {h ∈
W |h(Y0) = 0} has dim(W) ≤ m − 1. Notice that for all X ∈ ZZp2 we have
f(X, ·) ∈ W . In fact:

f(X,Y0) = f(X,Y0) ⊕ (f(X0, Y0) ∧ f(X,Y0)) = 0 (4)

Let r = dim(W) and hi, i = 1, . . . , r be a spanning set such that W =
span(h1, . . . , hr). For all X ∈ ZZp2, f(X, ·) can be represented as a linear com-
bination of the hi, the coefficients depending on X. In other words, there exist
coefficients gi(X) such that:

f(X, ·) =
r⊕

i=1

gi(X) ∧ hi (5)

or written differently and remaining that r = dim(W) and consequently r ≤
m − 1:

f(X,Y) =
r⊕

i=1

gi(X) ∧ hi(Y) (6)

	

As an illustration let us consider a Boolean function f : ZZ2 × ZZ2 → ZZ2 whose
behavior can be described by Table 1.

Table 1. Truth table for f(x, y)

x y f(x, y)

F F T

T F F

F T T

T T T

One possible representation for this function would be f(x, y) = y ∨ (¬x ∧
¬y). f is of dimension 2 (no shorter representation is possible). Note that this
representation is given here for the illustration’s sake. The method does not
require high-level definitions, only I/O examples.

Respecting the stated hypothesis we can pick x0 = F and y0 = F once
f(F, F) = T . The partial functions obtained will be: f(x0, y) = y ∨ (T ∧¬y) and
f(x, y0) = F ∨ (¬x ∧ T). Applying the drill function we obtain:

f(x, y) = IF(f(x, y), x0, y0) = (y∨(¬x∧¬y))⊕((y∨(T ∧¬y))∧(F ∨(¬x∧T))) = (x∧y)
(7)

We can see that f(x, y) is of dimension 1, confirming the stated theorem.

Drill and Join: A Method for Exact Inductive Program Synthesis 225

5 The Join Function

Consider now the set Fm of Boolean functions f : ZZn2 → ZZ2 and v1, . . . , vm ∈ Fm

a basis. The functions in this set can be described in polynomial form as:

f(X) =
m⊕
i=1

λi ∧ vi(X) (8)

where λi ∈ ZZ2 are the coefficients7.
Considering a function f ∈ Fm, a chosen Xj ∈ ZZn2 such that f(Xj) �= 0 and

a chosen function vj belonging to the basis such that vj(Xj) �= 0, we define the
join function:

IHXjvj
= IH(f(X),Xj , vj) = f(X) ⊕ vj(X) (9)

Theorem: If f ∈ Fm, f(Xj) �= 0 and vj(Xj) �= 0, then f = IHXjvj
∈ Fr and

r ≤ m − 18.

Proof: Consider W = span(v1, . . . , vm). Consequently dim(W) ≤ m. The linear
operator v ∈ W → v(Xj) is not the zero map otherwise vj(Xj) = 0. Conse-
quently, the vector subspace W = {f ∈ W |f(Xj) = 0} has dim(W) ≤ m − 1.
We can see that f ∈ W . In fact:

f(Xj) = f(Xj) ⊕ vj(Xj) = 0 (10)

Let r = dim(W) and vi, i = 1, . . . , r be a spanning set such that W = span
(vi, . . . , vr). The function f can be represented as a linear combination of the
vi. In other words, and remaining that r = dim(W) so r ≤ m − 1, there exist
coefficients λi such that:

f(X) =
r⊕

i=1

λi ∧ vi(X) (11)

	

We can use the same function f : ZZ2 × ZZ2 → ZZ2 described by Table 1 to illus-
trate the behavior of the join higher-order function. f belongs to a Boolean
7 Note that in Eq. 8 we are considering the target function as having one single vector

input X while in 2 the same target function has two vector inputs X and Y . These
different notations for the same target function can be understood as X in Eq. 8
being the concatenation of X and Y from Eq. 2 or X and Y in Eq. 2 being a split
of X from Eq. 8 in two vector subspaces. It follows that drill can be applied only
to target Boolean functions having at least two input variables while join can be
applied to target Boolean functions of any arity.

8 We will use the double overline notation to distinguish between modules (Boolean
functions and Boolean spaces) belonging to the target function subspace (without
overline) and modules belonging to a lower dimension linear subspace generated by
the join linear mapping (with double overline).

226 R. Balaniuk

algebra of dimension 22 which can be defined, for instance, by the following span-
ning set: v1(x, y) = x, v2(x, y) = y, v3(x, y) = x ∧ y, v4(x, y) = T . Respecting the
stated hypothesis we can pick Xj = (T, T) and vj = v1 once f(T, T) = T and
v1(T, T) = T . Applying the join function we obtain:

f(x, y) = IH(f(X),Xj , vj) = (y ∨ (¬x ∧ ¬y)) ⊕ x = (x ∧ y) (12)

We can see that f(x, y) is of dimension 1, confirming the stated theorem.

6 The Drill & Join Program Synthesis Method

Drill and join are used to define a program synthesis method. Considering an
active learning framework, the input function f(X,Y) on IF, defined in Eq. 3, and
the input function f(X) on IH, defined in Eq. 9, represent an external unknown
concept from which it is possible to obtain data by means of queries (input-
output examples).

This unknown concept could be, for instance, some physical phenomenon that
a machine with sensors and actuators can actively experiment, an algorithm to
be translated in a hardware description language, a computer program that one
would like to emulate or optimize or a decision process to be implemented on a
computer for which one or more experts are able to answer required questions.

In order to understand the method it is important to notice two important
properties of both higher-order functions:

– IF and IH can be applied recursively: if f(X,Y) ∈ Fm then f1(X,Y) =
IF(f(X,Y),X0, Y0) ∈ Fm−1 and f2(X,Y) = IF(f1(X,Y),X1, Y1) ∈ Fm−2

9.
Similarly, if f(X) ∈ Fm then f1(X) = IH(f(X),X0, v0) ∈ Fm−1 and f2(X) =
IH(f1(X),X1, v1) ∈ Fm−2

10. Each recursion generates a new function belong-
ing to an algebra of a lower dimension.

– The recursion ends when the higher-order functions become the zero map:
IF(f(X,Y),Xi, Yi) = 0 ⇔ f(X,Y) = (f(Xi, Y) ∧ f(X,Yi)) and similarly,
IH(f(X),Xi, vi) = 0 ⇔ f(X) = vi(X).

The first property enables us to apply the same higher order function recur-
sively in order to gradually reduce the dimensionality of the initial problem. The
second defines a stop condition. As a result, the output program is obtained.

∀X,Y ∈ ZZp2 × ZZq2 : fm+1(X,Y) = IF(fm(X,Y),Xm, Ym) = 0 ⇔
fm(X,Y) = (fm(Xm, Y) ∧ fm(X,Ym))

Replacing fm(X,Y) = IF(fm−1(X,Y),Xm−1, Ym−1) gives us:

fm−1(X,Y) ⊕ (fm−1(Xm−1, Y) ∧ fm−1(X,Ym−1)) = (fm(Xm, Y) ∧ fm(X,Ym))
(13)

9 The notation fi indicates a function resulting from the i-th recursive drill linear map-
ping.

10 The notation fi indicates a function resulting from the i-th recursive join linear map-
ping.

Drill and Join: A Method for Exact Inductive Program Synthesis 227

and consequently:

fm−1(X,Y) = (fm−1(Xm−1, Y) ∧ fm−1((X,Ym−1)) ⊕ (fm(Xm, Y) ∧ fm(X,Ym))
(14)

Tracking the recursion back to the beginning we obtain:

f(X,Y) =
m⊕
i=1

fi(Xi, Y) ∧ fi(X,Yi) (15)

Equation 15 tells us that the original target function f can be recreated using
the partial functions f obtained using the drill function. The partial functions
f are simpler problems, defined on subspaces of the original target function.

Similarly:

∀X ∈ ZZn2 : fm+1(X) = IH(fm(X),Xm, vm) = 0 ⇔ fm(X) = vm(X) (16)

Replacing fm(X) = IH(fm−1(X),Xm−1, vm−1) gives us:

fm−1(X) ⊕ vm−1(X) = vm(X) (17)

and:
fm−1(X) = vm−1(X) ⊕ vm(X) (18)

Tracking the recursion back to the beginning we obtain:

f(X) =
m⊕
i=1

vi(X) (19)

Equation 19 tells us that the original target function f can be recreated using
the partial functions f obtained using the join function and the basis v.

Note that if the drill initial condition cannot be established, i.e., no (X0, Y0) :
f(X0, Y0) �= 0 can be found, the target function is necessary f(X,Y) = F . On the
same way if no X0 : f(X0) �= 0 can be found to initiate join the target function
is the zero map f(X) = F . If it exists a Xj : f(Xj) �= 0 but no vj : vj(Xj) �= 0
the basis was not chosen appropriately.

The IF higher order function defines a double recursion. For each step of the
dimensionality reduction recursion two subspace synthesis problems are defined:
fi(Xi, Y) and fi(X,Yi). Each of these problems can be treated as a new target
function in a Boolean algebra of reduced arity once part of the arguments is
fixed. They can be recursively solved using IF or IH again.

The combination of IF and IH defines a very powerful inductive method. The
IF higher-order function alone requires the solution of an exponential number of
subspace synthesis problems in order to inductively synthesize a target function.
The IH higher-order function requires a basis of the Boolean algebra. Considering
the 2n cardinality of a basis, it can be impractical to require its prior existence
in large arity algebras. Nevertheless, both functions combined can drastically
reduce the number of queries and the prior bases definition.

The method, detailed on the next sections, uses the following strategies:

228 R. Balaniuk

Table 2. Truth table for the drill steps

x y f(x, y) f(x0, y) f(x, y0) f1(x, y) f1(x1, y) f1(x, y1) f2(x, y)

F F T T T F F F F

T F F T F F F T F

F T T T T F T F F

T T T T F T T T F

– Bases are predefined for low arity input spaces, enabling the join function.
– Synthesis on large arity input spaces begin using the IF function.
– Previously synthesized programs on a subspace can be memorized in order to

compose a basis on that subspace.
– At each new synthesis, if a basis exists use IH, otherwise use IF.

To illustrate the functioning of the whole method let us use again the same
function f : ZZ2 × ZZ2 → ZZ2 described by Table 1.

Table 2 shows the same target function and the transformation steps per-
formed using the drill function. We apply the drill function one first time
f1(X,Y) = IF(f(X,Y),X0, Y0) with x0 = F , y0 = F , defining two subspace
problems: f(x0, y) and f(x, y0). Both problems can be solved using the join
function and the basis v0(x) = x, v1(x) = T . f1 is not the zero map, requiring
a second recursion of drill: f2 = IF(f1(X,Y),X1, Y1) with x1 = T , y1 = T .
Two new subspace problems are defined: f1(x1, y) and f1(x, y1) and they can
be solved using join and the same basis again. f2(X,Y) = F is finally the zero
map, stopping the recursion.

To illustrate the use of the join function let us consider the reconstruction
of f(X) = f(x, y0) detailed in the fifth column of Table 2. One first application
f1(X) = IH(f(X),X0, v0) with x0 = F and v0(x) = x will not result in the zero
map, as shown on the fifth column of Table 3, requiring a recursive call f2(X) =
IH(f1(X),X1, v1) with x1 = T and v1(x) = T which will result the zero map.

Using Eq. 19 we can find a representation for the partial target function:
f(X) = f(x, y0) = v0(x) ⊕ v1(x) = x ⊕ T . The same process can be used to find
representations for all one-dimensional problems: f(x0, y) = T , f1(x1, y) = y
and f1(x, y1) = x.

Having solved the partial problems we can use Eq. 15 to build the full target
function: f(x, y) = (f(x0, y)∧f(x, y0))⊕ (f1(x1, y)∧f1(x, y1)) = (T ∧ (x⊕T))⊕
(y ∧ x) which is equivalent to our initial representation.

Table 3. Truth table for the join steps

x f(x) v0(x) v1(x) f1(x) f2(x)

F T F T T F

T F T T T F

Drill and Join: A Method for Exact Inductive Program Synthesis 229

Each higher order function underlies a query protocol. At each recursion of
IF one or more queries for data are made in order to find Xi, Yi ∈ ZZp2 × ZZq2 :
fi(Xi, Yi) �= 0. At each recursion of IH a position Xi ∈ ZZp2 : f(Xj) �= 0 and
a function vi : vi(Xi) �= 0 from the basis are chose. The queries require data
from the target function and must be correctly answered by some kind of oracle,
expert, database or system. Wrong answers make the algorithms diverge. Data is
also necessary to verify the recursion stop condition. A full test of fi(X,Y) = 0 or
fi(X) = 0, scanning the whole input space, can generate proof that the induced
result exactly meets the target function. Partial tests can be enough to define
candidate solutions subject to further inspection.

7 The Main Algorithms of the Drill & Join method

To explain how the drill and join higher-order functions can be used as program-
forming functionals we propose the following two algorithms.

Drill takes as initial inputs the target function: fn and the dimension of its
input space: inputs. Deeper inside the recursion fn corresponds to fm(X,Y),
inputs defines the dimension of its subspace and initial indicates its first free
dimension. Drill returns a synthesized functional program that emulates fn.

1: procedure Drill(fn, inputs,optional: initial = 0)

2: if have a basis for this subspace then
3: return JOIN(fn,inputs,initial);

4: end if

5: pos ←find a position inside this subspace where fn is not null; � Use a protocol to
query fn (active learning)

6: if pos = null then
7: return FALSE; � Stop condition: fn is the zero map.

8: end if

9: fa(args) = fn(concatenate(args, secondhalf(pos))); � f(X, Y0)

10: fb(args) = fn(concatenate(firsthalf(pos), args)); � f(X0, Y)
11: fc(args) = fn(args) ⊕ (fa(firsthalf(args)) ∧ fb(secondhalf(args))) ;
12: � fm+1(X, Y)

13: pa = DRILLl(fa, inputs/2, initial); � Recursive call to synthesize f(X, Y0)

14: pb = DRILL(fb, inputs/2, initial + inputs/2); � Recurs. call forf(X0, Y)
15: pc = DRILL(fc, inputs, initial); � Recursive call for fm+1(X, Y)

16: return ’((’ pa ’AND’ pb ’)’ XOR pc ’)’; � Returns the program
17: end procedure

Note that fa, fb and fc are new target functions based on fn and pa, pb and
pc are programs obtained by recursively calling drill. firsthalf and secondhalf
split a vector in two halves.

Join takes as input a function fn, belonging to a Boolean algebra. The algo-
rithm requires a basis for this Boolean algebra, materialized as an array of
functions: basis[] and an array of programs emulating the basis: basisp[]. The
algorithm creates a program to emulate fn combining the program basis.

1: procedure Join()fn,optional: initial = 0
2: pos ←find a position inside this subspace where fn is not null; � Use a protocol to

query fn (active learning)

230 R. Balaniuk

3: if pos = null then
4: return FALSE; � Stop condition: fn is the zero map.

5: end if
6: v ←select a function v from basis[] such that v(pos) is not 0;
7: vp ←get the program from basisp[] that emulates v;

8: fa(args) = fn(args) ⊕ v(args);

9: pa = JOIN(fa, initial); � Recursive call for fm+1(X)

10: return ’(’ pa ’XOR’ vp ’)’ ; � Returns the program.

11: end procedure

8 A Common Lisp Version of the Drill & Join Method

Common Lisp is a natural choice of programming language to implement the
drill & join method. Lisp functions can take other functions as arguments to
build and return new functions. Lisp lists can be interpreted and executed as
programs.

The following code implements the simplest version of the method. It synthe-
sizes a Lisp program that emulates a function fn by just querying it. The function
fn must accept bit strings as inputs and must return one bit as the answer. In
this simple illustration fn is another Lisp function but in real use it would be an
external source of data queried throughout an adequate experimental protocol.

Drill takes the unknown function fn and its number of binary arguments
nargs as input. It returns a list composed of logical operators, logical symbols
nil and true and references to an input list of arguments. The output list can be
executed as a Lisp program that emulates fn.

(defun drill (fn nargs &optional (ipos 0) (slice 0))
(let ((base (list nil #’(lambda(x) (first x)) #’(lambda(x) t)))

(basep (list nil #’(lambda(x) (list ’nth x ’args)) #’(lambda(x) t))))
(if (= nargs 1)
(join fn base basep ipos)
(let ((pos (findpos fn nargs slice)))
(if (null pos)
nil
(labels ((fa (args) (funcall fn (append args (cdr pos))))

(fb (args) (funcall fn (append (list (car pos)) args)))
(fc (args) (xor (funcall fn args)

(and (fa (list (car args))) (fb (cdr args))))))
(let ((sa (drill #’(lambda(args) (fa args)) 1 ipos))

(sb (drill #’(lambda(args) (fb args)) (1- nargs) (1+ ipos)))
(sc (drill #’(lambda(args) (fc args)) nargs ipos (1+ slice))))

(if (and (atom sa) sa)
(setq r1 sb)
(setq r1 (list ’and sa sb)))

(if (null sc)
r1
(list ’xor r1 sc)))))))))

In this implementation the split of the input space is done by choosing the
first argument to be X and the rest to be Y . Drill will call Join when the

Drill and Join: A Method for Exact Inductive Program Synthesis 231

recursion is down to just one input function (nargs= 1). A basis for one input
bit functions {f(x) = x, f(x) = T} is defined directly inside drill as the functions
list base and the programs list basep which are passed as arguments to the join
function.

(defun join (fn base basep &optional (ipos 0))
(let ((pos (findpos fn 1)))

(if (null pos)
nil
(let ((fb (findbase base basep pos)))
(labels ((fa (args) (xor (funcall fn args) (funcall (nth 0 fb) args))))
(let ((r (join #’(lambda(args) (fa args)) base basep ipos)))

(return-from join (list ’xor (funcall (nth 1 fb) ipos) r))))))))

The findpos function is used to test if fn is the zero map performing a full
search on the fn input space if necessary. It stops when a non-zero answer is
found and returns its position. The full search means that no inductive bias
was used.

(defun findpos (fn nargs)
(loop for i from 0 to (1- (expt 2 nargs)) do
(let ((l (make-list nargs)) (j i) (k 0))
(loop do (if (= (mod j 2) 1) (setf (nth k l) t))

(incf k) (setq j (floor j 2))
while (> j 0))
(if (funcall fn l) (return-from findpos l)))))

The findbase function is used inside join to find a function from the basis
respecting the constraint vj(Xj) �= 0.

(defun findbase (base basep pos)
(loop for i from 1 to (1- (list-length base)) do

(if (funcall (nth i base)pos)
(let ((ba (nth i base)) (bp (nth i basep)))

(setq fb (list ba bp))
(delete (nth 0 fb) base) (delete (nth 1 fb) basep)

(return-from findbase fb)))))

The method queries the target function (funcall fn) only inside findpos, in
order to find a non-zero position.

Using the Lisp code provided above it is possible to check the consistency
of the method. Applied to our illustration described by Table 1 the generated
program would be:

(XOR (AND (XOR T (NTH 0 ARGS)) T) (AND (NTH 0 ARGS) (NTH 1 ARGS)))

As a more advanced illustration, let us consider the “unknown” target func-
tion to be the Fibonacci sequence. To avoid bulky outputs we will limit the illus-
tration to have as input an unsigned integer between 0 and 63. Consequently, the
input of the fn function can be a six bit long bit string. The range of the output
(between 1 and 6557470319842) requires a 64 bits unsigned integer. The tar-
get function fibonacci(n) computes a long integer corresponding to the n − th

232 R. Balaniuk

position of the Fibonacci sequence. To translate integers to lists of {NIL, T}
handled by the drill and join lisp code we use their binary representation. The
translation is done by the routines longint2bitlist, bitlist2longint, 6bitlist2int
and 6int2bitlist, included in the appendices, which are called from the function
myfibonacci(n)

(defun myfibonacci(n)(let ((r (6bitlist2int n)))(longint2bitlist(fibonacci r))))

In order to synthesize a program able to emulate the whole target function we
need to call Drill for each output bit and generate a list of boolean expressions.

(defun synthesis (fn nargs nouts filename)

(with-open-file (outfile filename :direction :output)

(let ((l (make-list nouts)))

(loop for i from 0 to (1- nouts) do

(labels ((fa (args) (nth i (funcall fn args))))

(let ((x (drill #’(lambda(args) (fa args)) nargs))) (setf (nth i l) x))))

(print l outfile))))

To run the generated program we need to compute each output bit and
translate the bit string into an integer:

(defun runprogram(filename v)
(with-open-file (infile filename)

(setq s (read infile)) (setq args (6int2bitlist v))
(let ((r (make-list (list-length s))))

(loop for i from 0 to (1- (list-length s)) do
(setf (nth i r) (eval (nth i s))))

(print (bitlist2longint r)))))

A full check on the whole target function input space shows that the syn-
thesized program exactly emulates the target function. To illustrate how the
generated programs looks like we show below the expression that computes the
first output bit of the Fibonacci sequence:

(XOR (AND (XOR (AND (XOR (AND (NTH 0 ARGS) (XOR T (NTH 1 ARGS))) (AND (XOR T

(NTH 0 ARGS)) (NTH 1 ARGS))) T) (AND (XOR (AND (XOR T (NTH 0 ARGS)) T) (AND

(NTH 0 ARGS) (NTH 1 ARGS))) (NTH 2 ARGS))) (XOR (AND (XOR (AND (XOR T (NTH 3 ARGS))

T) (AND (NTH 3 ARGS) (NTH 4 ARGS))) (XOR T (NTH 5 ARGS))) (AND (XOR (AND (NTH 3 ARGS)

(XOR T (NTH 4 ARGS))) (AND (XOR T (NTH 3 ARGS)) (NTH 4 ARGS))) (NTH 5 ARGS)))) (AND

(XOR (AND (XOR (AND (XOR T (NTH 0 ARGS)) T) (AND (NTH 0 ARGS) (NTH 1 ARGS))) (XOR T

(NTH 2 ARGS))) (AND (XOR (AND (NTH 0 ARGS) (XOR T (NTH 1 ARGS))) (AND (XOR T

(NTH 0 ARGS)) (NTH 1 ARGS))) (NTH 2 ARGS))) (XOR (AND (XOR (AND (NTH 3 ARGS)

(XOR T (NTH 4 ARGS))) (AND (XOR T (NTH 3 ARGS)) (NTH 4 ARGS))) T) (AND (XOR (AND

(XOR T (NTH 3 ARGS)) T) (AND (NTH 3 ARGS) (NTH 4 ARGS))) (NTH 5 ARGS)))))

The generated program is basically a single Boolean expression that explicitly
references an input list called args. The full program consists of a list of those
Boolean expressions.

Drill and Join: A Method for Exact Inductive Program Synthesis 233

9 Discussion

The implementation presented on Sect. 8 has didactic purposes only. A num-
ber of enhancements are possible. Bases can be dynamically built on subspaces
by memorizing programs previously created avoiding drilling down to smaller
subspaces and reducing the number of queries to the target function.

An interesting aspect of the generated programs is the fact that the com-
putation of each output bit is completely independent of the others. There is a
specific program for each output bit, enabling parallel processing.

Empirical comparisons between the proposed method and existing ones are
difficult because of the conceptual differences between them. Existing bench-
mark frameworks, as CHStone [15] and SyGuS [12] tend to be specific to a cer-
tain synthesis approach. CHStone was conceived for C-based high-level synthesis
and SyGuS for syntax-guided hybrid synthesis (inductive and deductive). Con-
ceptual comparisons can be done but without objective results. The proposed
method can handle target functions that others probably cannot, but because
it works at the bit level of inputs and output, the number of examples required
for learning and testing tend to be larger than in other methods. Most exist-
ing inductive methods use static example databases while our method is based
on active learning and requires an experimental protocol in order to query the
target concept during the learning process. Our method requires a predefined
input space, with fixed length, and does not handle dynamic input lists like in
Lisp programs generated by most variants and extensions of Summers [9] ana-
lytical approach. But on the other side, the simplicity of the code generated
by our method, based on only two logical operators, enables its compilation in
almost any conventional programming language, even on hardware description
languages. The loop-free declarative nature of the generated programs brings pre-
dictability at runtime in terms of execution time and use of machine resources.
The example proposed in Sect. 8 showed how to synthesize a declarative program
to emulate the Fibonacci sequence. The generated program requires, for any six
bits input, exactly 1804 low-level, bitwise logic operations to compute the cor-
responding Fibonacci number. An equivalent imperative program will require
local variables, loop or recursion controls and a number of variable assignments
and arithmetic operations proportional to the input value. The method does not
require any prior knowledge about the target function, as a background theory,
types of variables or operation on types, like in hybrid methods [12].

Nevertheless, the goal of this paper is not to prove that we created a better
method but to present a new concept on inductive program synthesis. Future
work will be necessary in order to assess the advantages and disadvantages of
the proposed method in each possible field of application when other methods
are also available.

For practical use of our method it is important to be able to estimate the effort
required to synthesize a program. In typical active learning, there is usually a cost
element associated with every query. This cost depends on the characteristics of
the target concept and the associated experimental protocol used to query it.
The synthesis effort will depend on the number of queries to be required and

234 R. Balaniuk

the cost of each query. If the implementation of the method is based on a full
verification of the zero map, like in our illustration presented on Sect. 8, a full
scan of the target function input space will be necessary and the number of
queries will depend only on the size of the input space in bits. As a future work
an inductive bias can be proposed in order to avoid the full scan and then reduce
the number of queries.

10 Applications

Applications of this method include all sorts of systems based on bitwise opera-
tions, given that the learning problem can be described in functional form. We
successfully applied the method to target functions handling different complex
data types, as floating-point numbers and texts.

Any functional computer program can be emulated using our approach.
There can be a number of reasons to perform reverse engineering of existing
computer programs: the lack of a source code, the need to translate an exe-
cutable program to run on a different computational platform, the intent to
optimize an inefficient implementation.

The method can also be used to translate algorithms from a high-level lan-
guage directly into combinational circuit design expressed in an hardware descrip-
tion language. The code generated by the proposed method can be easily mapped
into a netlist (sequence of circuit gates).

Machine learning is another field of application. Machines having sensors and
actuators, like robots, can acquire direct models using the method. The machine
can actively experiment a physical phenomena and synthesize a program to
predict the result of possible actions.

11 Conclusion

We have presented Drill & Join, a generic method that actively interacts with an
external concept (system, function, oracle or database) via I/O examples, and
synthesizes programs. Generated programs are based on Boolean expressions.
The method is not restricted to any specific form of functional learning problem
or target function and does not require any background knowledge to be applied.
The only requirement is that the external source of data is consistent. Our
work presents a number of interesting questions for future consideration. The
combination of the drill and the join higher-order functions and the dynamic
construction of bases on subspaces via memorization of generated programs can
drastically reduce the number of recursive calls and queries. Further investigation
is necessary on how to explore these dynamic bases on large input spaces. The
stop condition of the algorithms, based on a full verification of the zero map,
requires a complete scan of the learning input space. Partial verifications can
compromise the convergence of the algorithms. Investigations on inductive biases
adequate to the method are necessary.

Drill and Join: A Method for Exact Inductive Program Synthesis 235

Acknowledgments. The author would like to thank Pierre-Jean Laurent from the
Laboratoire de Modelisation et Calcul- LMC-IMAG at the Universite Joseph Fourier,
Grenoble, France for his contributions concerning the mathematical proofs of the pro-
posed method and Emmanuel Mazer from the Institut National De Recherche en Infor-
matique et en Automatique- INRIA- Rhne Alpes, France for his assistance and helpful
contributions to this research.

12 Appendices

12.1 Details of the Fibonacci Sequence Program Synthesis

The translation between bit lists and integers is made using the following rou-
tines:

(defun 6bitlist2int(l)
(let ((r 0))
(loop for i from 0 to 5 do

(let ((x (nth i l)))
(if x (setq r (+ r (expt 2 (- 5 i)))))))

(return-from 6bitlist2int r)))

(defun 6int2bitlist(n)
(let ((l (make-list 6)))

(loop for j from 5 downto 0 do
(if (= (mod n 2) 1) (setf (nth j l) t))
(setq n (floor n 2)))

(return-from 6int2bitlist l)))

(defun longint2bitlist(n)
(let ((l (make-list 64)))

(loop for j from 63 downto 0 do
(if (= (mod n 2) 1) (setf (nth j l) t)) (setq n (floor n 2)))

(return-from longint2bitlist l)))

(defun bitlist2longint(l)
(let ((r 0))
(loop for i from 0 to 63 do

(let ((x (nth i l)))
(if x (setq r (+ r (expt 2 (- 63 i)))))))

(return-from bitlist2longint r)))

The Fibonacci sequence can be implemented in Lisp as:

(defun fibonacci (n)
(let ((a 0) (b 1))

(loop do
(setq b (+ a b)) (setq a (- b a)) (setq n (1- n))

while (> n 1))
(return-from fibonacci b)))

Calling the synthesis procedure and then testing the generated program:

236 R. Balaniuk

(synthesis (function myfibonacci) 6 64 "fibo6bits.txt")
(defun verificaInt664(fn filename)

(print "Input a number between 0 e 63 (6 bits):")
(with-open-file (infile filename)

(setq s (read infile))
(loop do

(setf v (read))
(if (< v 0) (return-from verificaInt664))
(print "Function result:") (print (funcall fn v))
(setq args (6int2bitlist v))
(let ((r (make-list (list-length s))))

(loop for i from 0 to (1- (list-length s)) do
(setf (nth i r) (eval (nth i s))))

(print "Synthesized program result:") (print (bitlist2longint r)))
while (> v 0))))

(verificaInt664 (function fibonacci) "fibo6bits.txt")

References

1. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques.
Informatica 31, 249–268 (2007)

2. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of Loop-free Programs.
SIGPLAN Not. 46(6), 62–73 (2011). doi:10.1145/1993316.1993506

3. Kitzelmann, E.: Inductive programming: a survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812,
pp. 50–73. Springer, Heidelberg (2010)

4. Stone, M.H.: The theory of representations of Boolean Algebras. Trans. Am. Math.
Soc. 40, 37–111 (1936)

5. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 934–950. Springer,
Heidelberg (2013)

6. Kitzelmann, E.: A combined analytical and search-based approach for the inductive
synthesis of functional programs. Kunstliche Intelligenz 25(2), 179–182 (2011)

7. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: an expla-
nation based generalization approach. J. Mach. Learn. Res. 7, 429–454 (2006)

8. Kitzelmann, E.: Analytical inductive functional programming. In: Hanus, M. (ed.)
LOPSTR 2008. LNCS, vol. 5438, pp. 87–102. Springer, Heidelberg (2009)

9. Summers, P.D.: A methodology for LISP program construction from examples. J.
ACM 24(1), 162–175 (1977)

10. Smith, D.R.: The synthesis of LISP programs from examples. A survey. In:
Biermann, A.W., Guiho, G., Kodratoff, Y. (eds.) Automatic Program Construction
Techniques, pp. 307–324. Macmillan, New York (1984)

11. Sasao, T.: Switching Theory for Logic Synthesis. Springer, Boston (1999). ISBN:
0-7923-8456-3

12. Alur, R., Bodik, R., Juniwal G. et al.: Syntax-guided synthesis, FMCAD, pp. 1–17.
IEEE (2013)

13. Tripp, J.L., Gokhal, M.B., Peterson, K.D.: Trident: from high-level language to
hardware circuitry. IEEE - Comput. 40(3), 28–37 (2007). 0018–9162/07

14. Backus, J.: Can programming be liberated from the von Neumann style? a func-
tional style and Its algebra of programs. Commun. ACM 21(8), 613–641 (1978)

http://dx.doi.org/10.1145/1993316.1993506

Drill and Join: A Method for Exact Inductive Program Synthesis 237

15. Hara, Y., Tomiyama, H.I., Honda, S., Takada, H.: Proposal and quantitative analy-
sis of the CHStone Benchmark program suite for practical C-based High-level syn-
thesis. J. Inf. Process. 17, 242–254 (2009)

16. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided Component-based
Program Synthesis. In: ICSE (2010)

17. Seshia, S.A.: Sciduction: combining induction, deduction, and structure for verifi-
cation and synthesis. In: DAC, pp. 356–365 (2012)

18. McCluskey, E.J.: Introduction to the Theory of Switching Circuits. McGrawHill
Book Company, New York (1965). Library of Congress Catalog Card Number 65–
17394

Program Derivation

Functional Kleene Closures

Nikita Danilenko(B)

Institut Für Informatik, Christian-Albrechts-Universität Kiel,
Olshausenstraße 40, 24098 Kiel, Germany

nda@informatik.uni-kiel.de

Abstract. We present a derivation of a purely functional version of
Kleene’s closure algorithm for Kleene algebras (with tests) that contain
a subset where the closure is already known. In particular, our result is
applicable to the Kleene algebra of square matrices over a given Kleene
algebra. Our approach is based solely on laws imposed on Kleene algebras
and Boolean algebras. We implement our results in the functional pro-
gramming language Haskell for the case of square matrices and discuss a
general implementation. In this process we incorporate purely algebraic
improvements like the use of commutativity to obtain a concise and opti-
mised functional program. Our overall focus is on a functional program
and the computational structures from which it is composed. Finally, we
discuss our result particularly in light of alternative approaches.

1 Introduction

The Kleene closure is a well established computational paradigm with numerous
applications, e.g. in regular expressions. Also, it is possible to define the Kleene
closure for matrices of Kleene algebras, which provides a unified approach to
additional problems like the all-pair-shortest-path problem in graph theory or
matrix multiplication or even inversion of matrices. Matrix algebras come with
the additional benefit of being able to represent problems from other branches
like reachability in graphs (Boolean matrices), the Dijkstra algorithm (matrices
over the so-called tropical Kleene algebra, cf. Sect. 6) or the CYK algorithm
(matrices over rules). This is to say that using matrices is not a restriction, but
simply a general view for many different problems, while allowing all of the usual
algebraic means associated with matrices.

The vast amount of problems captured by the computational scheme of this
closure has led to a lot of research in this area, which includes several implemen-
tations in different programming languages. These are usually given as impera-
tive (pseudo-)code, but there has been little development of a functional program.
While there are several more or less canonical implementations in a functional
programming language, they are usually based upon a translation of a given
algorithm, but not on a purely functional approach. Clearly, there is a difference
between a program in a functional language and a functional program, which
is particularly important when dealing with algorithms. By definition an algo-
rithm has a sequential look-and-feel that allows following a set of instructions
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 241–258, 2015.
DOI: 10.1007/978-3-319-17822-6 14

242 N. Danilenko

step by step. Such a construct fits well in the context of imperative languages,
but may not be suited for a functional definition, since functional programs are
usually inherently compositional and not necessarily computed in sequence.

In this paper we generalise an approach taken to compute a specific instance
of the Kleene closure in [1] to the general case and present a purely functional
program that can be used to compute the said closure. Our functions are proto-
typic by design, but the modularity of their components can be easily used to
improve upon the implementation. This article is structured as follows.

– We recall the necessary preliminaries of a Kleene algebra and provide a defi-
nition of the Kleene closure that employs an auxiliary function.

– Using the algebraic reasoning we derive a recursive variant of this function.
– We implement the obtained recursion in Haskell, where we additionally employ

Kleene algebra laws to improve performance.
– For comparison we implement the Kleene algorithm in three additional ways

and perform tests.

To the best of our knowledge such a derivation has not been done so far. All
of the presented code is given in Haskell [9]. In the course of the text we will
refer to certain Haskell functions and modules all of which can be found using
Hoogle (http://haskell.org/hoogle). A polished version of the code presented in
this article is available at https://github.com/nikitaDanilenko/functionalKleene.

2 Algebraic Preliminaries

In the following we will deal with Kleene algebras according to the definition
given in [7]. All definitions and consequences in this section are mentioned in
the above source and the non-elementary results are proved as well; we include
all of these for the sake of completeness only. We begin by the definition of a
Kleene algebra, which can be split into two parts – the notion of an idempotent
semiring and the concept of the star closure.

Definition 1 (Idempotent Semiring and its Order). A structure (S,+, ·,
0, 1) where +, · are binary functions is called an idempotent semiring iff all
of the following conditions hold:

(ISR1) + is associative and commutative with 0 as its neutral element
(ISR2) · is associative with 1 as its neutral element and distributes over +
(ISR3) 0 is annihilating (i.e. ∀ s ∈ S : 0 · s = 0 = s · 0)
(ISR4) + is idempotent (i.e. ∀ s ∈ S : s + s = s)

The axioms (ISR1) and the first part of (ISR2) can be read as: (S,+, 0) is a
commutative monoid and (S, ·, 1) is a monoid. The explicit multiplication sym-
bol · is omitted when there is no risk of ambiguity. We assume that multiplication
binds tighter than addition. In an idempotent semiring we define for all s, t ∈ S:

s ≤ t :⇐⇒ s + t = t .

Then ≤ is an order and +, · are monotonic (w.r.t. ≤) in both components.

http://haskell.org/hoogle
https://github.com/nikitaDanilenko/functionalKleene

Functional Kleene Closures 243

With these preliminaries we are ready to define a Kleene algebra.

Definition 2 (Kleene Algebra). A structure (K,+, ·, ∗, 0, 1), where +, · are
binary functions and ∗ is a unary function, is called Kleene algebra (KA for
short) iff all of the following hold:

(KA1) (K,+, ·, 0, 1) is an idempotent semiring.
(KA2) ∀ a ∈ K : 1 + a · a∗ ≤ a∗ ∧ 1 + a∗ · a ≤ a∗.
(KA3) ∀ a, b ∈ K : (b · a ≤ b → b · a∗ ≤ b) ∧ (a · b ≤ b → a∗ · b ≤ b).

Of the very numerous known properties of Kleene algebras we will use those that
we summarise in the following lemma. All of these properties are proved in [7].

Theorem 1 (Properties of ∗ and the Kleene Closure). Let (K,+, ·, ∗, 0, 1)
be a Kleene algebra. We define + : K → K, a 	→ a · a∗, called Kleene closure.
Then the following hold:

(1) ∀ a ∈ K : 1 + a · a∗ = a∗. (fixpoint)
(2) ∀ a, b ∈ K : 1 + a · b = b → a∗ ≤ b. (least fixpoint)
(3) ∀ a, b ∈ K : (a + b)∗ = a∗(b · a∗)∗. (decomposition)
(4) ∀ a, b, x ∈ K : a · x = x · b → a∗ · x = x · b∗. (star commutativity)
(5) ∀ a ∈ K : 1 + a+ = a∗ = (1 + a)+.

For the remainder of this section we assume that (K,+, ·, ∗, 0, 1) is a Kleene
algebra and n ∈ N>0. Additionally, we will use the convention that ∗ and + bind
tighter than multiplication. For many algebraic structures it is possible to lift
the structure to the level of square matrices over the structure, which we denote
by Kn×n. Kleene algebras are such a structure due to the following result. We
write 0n and 1n to denote the zero and identity n × n-matrices respectively.
In the context of matrices we use “+” and “·” to denote matrix addition and
multiplication, respectively.

Theorem 2 (Kn×n as a Kleene Algebra). (Kn×n,+, ·, 0n, 1n) is an idem-
potent semiring. Additionally, there is a function � : Kn×n → Kn×n such that
(Kn×n,+, ·, �, 0n, 1n) is a Kleene algebra.

The first statement of this theorem is simple, but tedious to prove. The second
is usually proved by defining an actual mapping � : Kn×n → Kn×n. Throughout
the literature one usually finds two particular definitions, which we mention here
for the purpose of comparison. Let a ∈ Kn×n. For simplicity of notation we will
index matrices starting from 0 instead of 1.

The first definition states that it is possible to compute matrices a(0), . . . , a(n)

such that a(0) := a and a(n) = a+, where for all i, j, k ∈ N<n one has

a
(k+1)
i,j := a

(k)
i,j + a

(k)
i,k ·

(
a
(k)
k,k

)∗
· a

(k)
k,j . (i)

This definition provides two ways of computing a� – either as a� = 1n + a+ or
as a� = (1n + a)+, by Theorem 1.(5).

244 N. Danilenko

The second approach is based upon choosing l,m ∈ N>0 such that n = l +m
and splitting A into submatrices a =

(
p q
r s

)
where p ∈ Kl×l, s ∈ Km×m, and q, r

have corresponding dimensions. Then one computes x := (p+ q · s� · r)� and sets

a� :=
(

x x · q · s�

s� · r · x s� + s� · r · x · q · s�

)
. (ii)

Since all of the matrices used in this definition have strictly smaller dimensions
than a these computations can be used recursively for the computation of a�.

Both definitions are elegant in different ways – the first one is easy to translate
in graph-theoretic terms and easy to implement in an imperative language, while
the second one has a foundation in automata theory. Still, both definitions are
rather algorithms (the second one can be even considered a non-deterministic
one, since the actual decomposition does not matter), since they describe a
sequence of steps that lead to a�. From a complexity point of view the second
definition provides an additional challenge, since it contains matrix multiplica-
tion. It is not apparent at the first glance, what the exact complexity is, while
the first one is clearly cubic in n.

3 A Functional Approach

In this section we will develop a functional definition of the Kleene closure. Our
approach is a direct generalisation of the methods used in [1]. For the sake of
simplicity, but also for that of generality we need a slightly more sophisticated
structure than a Kleene algebra, namely a so-called Kleene algebra with tests.
Tests are elements of the Kleene algebra that “behave” like elements of a Boolean
algebra. We use a similar notation and definition as in [8].

Definition 3 (Kleene algebra with tests). A Kleene algebra with tests (KAT
for short) is a structure (K,B,+, ·, ∗, 0, 1) such that all of the following condi-
tions hold:

(KAT1) (K,+, ·, ∗, 0, 1) is a Kleene algebra.
(KAT2) B ⊆ K.
(KAT3) (B,+B , ·B , 0, 1) is a Boolean algebra (i.e. a distributive and comple-

mentary lattice), where +B , ·B are the operations of K restricted to B.

We suppress the explicit negation operation for simplicity, since it is easily
recovered from the complementarity that provides complements and distribu-
tivity, which can be used to show that complements are unique. Note that for
any Kleene algebra there is a trivial set of tests namely B0 = {0, 1}. Abstract
tests provide an elegant means to express Boolean conditions without leaving
the Kleene algebra. This allows logic reasoning about Kleene algebra elements
in terms of Kleene algebra elements themselves. For example, an if-then-else
assignment can be written as

ite(b, x, y) := b · x + b · y ,

Functional Kleene Closures 245

where b ∈ {0, 1}, x, y ∈ K and b denotes the negation of b. This construct is
similar to the Shannon decomposition of Boolean functions, but is more general
since the values x, y can be arbitrary Kleene algebra elements.

All tests b ∈ B satisfy b ≤ 1, because in Boolean algebras 1 is the largest
element and thus b + 1 = 1, which yields b ≤ 1 in K.

From now on we assume that (K,B,+, ·, ∗, 0, 1) is a Kleene algebra with
tests. We then consider the following function.

τ : K × B → K, (a, b) 	→ a · (b · a)∗.

This function is a translation of the function in relational terms from [1]. Just
as its relational version, τ has the following properties for all a ∈ K:

τ(a, 0) = a · (0 · a)∗ = a · (0∗) = a · 1 = a ,
τ(a, 1) = a · (1 · a)∗ = aa∗ = a+ .

(iii)

To deal with tests between 0 and 1 we take a similar approach as in [1] and study
the recursion properties of τ . We observe that for all a ∈ K and all b1, b2 ∈ B
we get the following chain of equations:

τ(a, b1 + b2) = a · ((b1 + b2) · a)∗ definition of τ

= a (b1a + b2a)∗ distributivity

= a
(
(b1a)∗ (

(b2a) (b1a)∗)∗) by Theorem 1.(3)

=
(
a (b1a)∗) (

b2
(
a (b1a)∗))∗ associativity

= τ(a, b1) · (b2 · τ(a, b1))
∗ definition of τ

= τ(τ(a, b1), b2) definition of τ .

In summary we get for all a ∈ K and all b1, b2 ∈ B

τ(a, b1 + b2) = τ(a, b1) (b2τ(a, b1))
∗ = τ(τ(a, b1), b2) . (iv)

This property is a generalisation of the one derived in [1], both in terms of
the decomposition of the underlying set as well as the algebraic structure at
hand, but the steps on the way are exactly those used in the above source.

Now consider the application of the above recursion to a finite subset B′ ⊆ B,
such that1 B′ = {b0, . . . , bm−1} for some m ∈ N and

∑m−1
i=0 bi = 1. Then we can

use the above formula and compute a0 := a and ai+1 := τ(ai, bi) for all i ∈
{1, . . . , m} to obtain am = a+. Note that this is very similar to the construction
given in the introduction only that it does not depend on matrices.

This computational paradigm is captured by a left-fold. Note that it does not
depend on a particular order of traversal of the partition elements, but is intrinsic
to the actual computation. In the above example we split the sum into its first
summand and the rest, while we could have taken the last element and the
1 Such a set where bi < 1 for all i ∈ N<m does not necessarily exist. However, if B is

finite, we can simply choose the atoms of B (i.e. the upper neighbours of 0) as B′.

246 N. Danilenko

corresponding rest as well without changing the result. Left-folds are favoured
over right-folds in strict languages since they are usually more efficient (tail-call).
In a lazy setting tail-calls can become more complex, because the accumulation
parameter is not evaluated until needed, while its construction grows increasingly
more complex. Since we are looking for a solution in a lazy functional language,
we may need to transform the above recursion into a (non-generic) right-fold.

Our aim is to use the function τ for the computation of the Kleene closure of
a given algebra K. To do that we will determine the Kleene closure for a specific
subset of K, namely {ba|b ∈ B, a ∈ K} and then apply τ in a recursive fashion
as described above, assuming that there is a decomposition of 1 as a sum of
finitely many tests. By Eq. (iv) the knowledge of ∗ on the above set is enough to
compute the Kleene closure of any element of the Kleene algebra.

Let us summarise the result of this section in the following theorem.

Theorem 3 (Recursive Computation of τ). Let (K,B,+, ·, ∗, 0, 1) be a KAT
and τ : K × B → K, (a, b) 	→ a(ba)∗. Then the following hold:

(1) For all a ∈ K and b, c ∈ B we get τ(a, b + c) = τ(a, b)(cτ(a, b))∗.
(2) For all m ∈ N and b ∈ Bm such that

∑m−1
i=0 bi = 1, all a ∈ K, all i ∈ N<m

setting ni :=
∑m−1

j=0,j �=i bj we find that a+ = τ(a, 1) = τ (a, ni) (biτ (a, ni))
∗.

Proof. The first claim is just a rephrasal of Eq. (iv). For the second let m ∈ N,
b ∈ Bm, a ∈ K, i ∈ N<m and ni as required. Then 1 = ni + bi and thus

a+ Eq. (iii)
= τ(a, 1) = τ(a, ni + bi)

(1)
= τ (a, ni) (biτ (a, ni))

∗
. ��

In statement (2) of the previous theorem the bi is removed from the sum for
clarity, but the theorem obviously holds without this removal as well, because
in idempotent semirings (e.g. the Boolean algebra B) addition is idempotent.
As for applications of the last equality, the motivation is that a good choice of b
allows a simple computation of (biτ(a, ni))

∗, which can then in turn be applied
to compute a+ or a∗ by iteration.

4 Application to Square Matrices

In this section we apply the technique from the previous section to the Kleene
algebra of square matrices with entries from a Kleene algebra. We use the
Boolean algebra of partial identities as test, which we elaborate shortly. For
the remainder of this section let K be a Kleene algebra and n ∈ N. Additionally,
we do not differentiate between K1×1 and K, just as we consider the sets Kn

and K1×n to be the same. To be perfectly accurate we should use isomorphisms
between these sets, but we omit these to avoid unnecessary clutter.

To avoid confusion, we will index constants by their algebra throughout this
section and make ample use of brackets to avoid indexing the star operation.
Recall that 1n is simply the identity matrix and 0n is the zero matrix. For

Functional Kleene Closures 247

every a ∈ Kn×n we use aj to address the j-th row of a and aj,k to address the
component at the j-th row in the k-th column.

We define partial identities by using standard unit vectors.

Definition 4 (Standard Unit Vectors and Matrices, Partial Identity).
We define for all i ∈ N<n the i-th standard unit row vector ei ∈ Kn as

ei : N<n → K, p 	→ δi,p ,

where δ is the Kronecker-delta. Clearly, ei · e�
j = δi,j for all i, j ∈ N<n. Addi-

tionally for all i, j ∈ N<n we define the (i, j)-th standard unit matrix as
e(i, j) := e�

i · ej. For every S ⊆ N<n the partial identity on S is defined as

IS :=
∑
i∈S

e(i, i)

and PI(K,n) := {IT |T ⊆ N<n}.
As mentioned above, we use the set of all partial identities PI(K,n) as tests,
which requires this set with the restricted operations of Kn×n to be a Boolean
algebra. This is indeed true.

Lemma 1 (Partial Identities are a Boolean Algebra). Let B := PI(K,n).
Then the structure (B,+B , ·B , 0n, 1n) is a Boolean algebra, where +B, ·B are the
operations of Kn×n restricted to B.

Proof. We provide only an outline of the proof. Consider the function

f : (2N<n ,∪,∩, ∅,N<n) → (B,+B , ·B , 0n, 1n), S 	→ IS .

Clearly, f is bijective, f(∅) = 0n and f(N<n) = 1n. A simple, but slightly
lengthy, computation yields that f distributes over addition and multiplication
as well. Thus f is a constant preserving lattice isomorphism. Since its domain is
a Boolean algebra, so is its image, which is its range, because f is bijective. ��
To apply the function τ from the previous section, we need a finite decomposition
of 1n into tests. We choose a decomposition in standard unit matrices by setting
bi := e(i, i) for all i ∈ N<n. As stated just after Theorem 3 this choice should
provide a simple means to compute (bia)∗ for all i ∈ N<n and all a ∈ Kn×n. To
see that this is the case, we need two auxiliary lemmas.

Lemma 2 (Homothetic Injection). Let ϕ : K → Kn×n, c 	→ c • 1n, where
• : K × Kn×n → Kn×n is the scalar multiplication of a matrix. Then ϕ is a
Kleene algebra homomorphism.

Proof. Clearly, ϕ(0K) = 0n and ϕ(1K) = 1n by the very definition of scalar mul-
tiplication. The additivity and multiplicativity of ϕ are immediate consequences
of this definition as well. The only difficulty is the star operation. Let a ∈ K.
Then we have 1n + ϕ(a) · ϕ(a∗) = ϕ(1K) + ϕ(a · a∗) = ϕ(1K + aa∗) = ϕ(a∗) by

248 N. Danilenko

Theorem 1.(1). By Theorem 1.(2) this provides ϕ(a)∗ ≤ ϕ(a∗). Thus ϕ(a)∗ has
non-zero entries at most along its diagonal. Let i ∈ N<n. Then we have:

(ϕ(a)∗)i,i = (1n + ϕ(a)ϕ(a)∗)i,i = 1K + ((a • 1n) ϕ(a)∗)i,i

= 1K + (a • ϕ(a)∗)i,i = 1K + a (ϕ(a)∗)i,i ,

which again by Theorem 1.(2) yields ϕ(a∗)i,i = a∗ ≤ (ϕ(a)∗)i,i. This results in
ϕ(a∗) ≤ ϕ(a)∗ and since ≤ is an order, we finally conclude ϕ(a∗) = ϕ(a)∗. ��
Lemma 3. Let c, v ∈ K such that v2 = cv. Then v∗ = 1 + c∗v.

Proof. Set a := c, b := v and x := v. Then ax = cv = vv = xb, hence by Theorem
1.(4) we get c∗v = a∗x = xb∗ = vv∗, which yields v∗ = 1 + vv∗ = 1 + c∗v. ��
With this lemma we can compute (e(i, i)a)∗ without using the star in Kn×n.

Theorem 4 (Kleene Closure of Matrices). Let a ∈ Kn×n, b ∈ PI(K,n) and
i ∈ N<n. Then we have:

(1) For all x ∈ Kn×n and k ∈ N<n we have (e(k, k)x)∗ = 1n+((xk,k)∗)•e(k, k)x.
(2) τ(a, b + e(i, i)) = τ(a, b) + τ(a, b)

((
(τ(a, b)i,i)

∗) • e(i, i)
)
τ(a, b).

(3) For every j ∈ N<n we additionally get

τ(a, b + e(i, i))j = τ(a, b)j +′ (
τ(a, b)j,i · (τ(a, b)i,i)

∗) ∗ τ(a, b)i ,

where +′ is the addition and ∗ is the scalar multiplication of vectors.

Proof. (1) Let x ∈ Kn×n, k ∈ N<n and ϕ as in Lemma 2. Then we get:

e(k, k)x · e(k, k)x = e�
k ekxe�

k ekx = e�
k (xk,k)ekx = xk,k • (

e�
k ekx

)
= ϕ(xk,k) · e(k, k)x .

By Lemmas 3 and 2 this yields that

(e(k, k)x)∗ = 1n + ϕ(xk,k)∗e(k, k)x = 1n + ϕ((xk,k)∗)e(k, k)x
= 1n + (xk,k)∗ • e(k, k)x .

(2) We calculate as follows:

τ(a, b + e(i, i)) = τ(a, b) (e(i, i)τ(a, b))∗ by Theorem 3

= τ(a, b)
(
1n + (τ(a, b)i,i)

∗ • e(i, i)τ(a, b)
)

by (1)

= τ(a, b) + τ(a, b)
(

(τ(a, b)i,i)∗ • e(i, i)
)

τ(a, b) .

(3) First of all for every d ∈ Kn×n, c ∈ K and j ∈ N<n the following holds

(d (c • e(i, i)d))j = ejd
(
c • e�

i eid
)

= ejde�
i (c • eid) = (dj,ic) ∗ di . (!)

Let j ∈ N<n. Then the following holds:

τ(a, b + e(i, i))j = (τ(a, b) + τ(a, b) ((τ(a, b)i,i)∗ • e(i, i)) τ(a, b))j by (2)

= τ(a, b)j +′ (τ(a, b) ((τ(a, b)i,i)∗ • e(i, i)) τ(a, b))j

= τ(a, b)j +′ (τ(a, b)j,i(τ(a, b)i,i)∗) ∗ τ(a, b)i . by (!)

��

Functional Kleene Closures 249

5 A Functional Implementation

In this section we use the approach of the previous sections to obtain a functional
implementation for Kleene closure of a square matrix. We discuss this restriction
in a moment. The first step in the implementation is to encode the required
algebraic structures. One particularly simple way to do that is to use type classes.

class IdempotentSemiring σ where
(⊕), (�) :: σ → σ → σ
zero, one :: σ
isZero, isOne :: σ → Bool

class IdempotentSemiring κ ⇒ KleeneAlgebra κ where
star :: κ → κ

Additionally, we require instances of these type classes to satisfy the correspond-
ing algebraic laws. Such an approach requires a user to check the necessary con-
ditions, which may or may not be neglected in an application2. The predicates
isZero,isOne are not explicit parts of the algebraic definition. In a theoretical
context we can always compare values for equality, while in practice the equality
of two objects may be undecidable. We require equality checks for constants only,
since these are sufficient for a simple optimisation (otherwise one can require
KleeneAlgebra to be a subclass of Eq thus allowing arbitrary equality checks).

For the most general case we define a type class KAT for KATs as follows:

class IdempotentSemiring κ ⇒ KAT κ where
isSimple :: κ → Bool
compute :: κ → κ
sparseTests :: [κ]

The intended semantics are that sparseTests is a list of tests such that their sum
is one and isSimple is a predicate such that the Kleene closure of those a :: κ
with isSimple a ≡ True can be computed with the function compute. Assuming
isSimple (t�a) ≡ True for all t in sparseTests we can use Theorem 3 as follows:

katStar :: KAT κ ⇒ κ → κ
katStar a | isSimple a = compute a

| otherwise = one ⊕ katPlus a
katPlus :: KAT κ ⇒ κ → κ
katPlus a = tau a sparseTests
tau :: KAT κ ⇒ κ → [κ] → κ
tau a [] = a
tau a (t : ts) = x � katStar (t � x) where x = tau a ts

2 To ensure that the requirements are met, one can use tools like Coq (cf. [2]) to make
certain functions applicable only once the preconditions are checked (i.e. proved).
However, in Haskell one usually requires certain laws implicitly (e.g. for Monad or
Functor), which is why we do not explore the mentioned approach further.

250 N. Danilenko

However, this approach comes with proper restrictions. Most importantly, a
condition is required that guarantees that after a finite numer of multiplications
with tests any Kleene algebra element is “simple” in the sense that isSimple
applied to this element yields True. Without such a condition, the above com-
putation may not terminate.

Also, to use the above implementation for square matrices one has to provide
a semiring instance for said matrices, which requires taking the matrix sizes into
account, causing additional overhead (e.g. checking sizes by hand or encoding the
sizes in the matrix type). Without this restriction, matrices can have different
sizes and it is non-trivial to define a multiplication � on the set of all square
matrices

⋃{Kn×n|n ∈ N>0} and a corresponding unit 1. For instance, there is
no multiplication satisfying both of the following conditions for all n ∈ N>0:

(1) The restriction �|(Kn×n)2 is the usual matrix multiplication.
(2) Every a ∈ Kn×n that is invertible with respect to the usual matrix multipli-

cation, is invertible with respect to �.

This is simply due to the fact that for all n,m ∈ N>0 such that n �= m one would
obtain 1n = 1n ·1n = 1n�1n = 1 = 1m�1m = 1m ·1m = 1m, which is false. Since
the set of invertible matrices is non-trivial (for n > 1), the above condition is
not just a corner case. In the implementation in [4] the invertibility condition is
omitted, which allows an elegant implementation in which only certain diagonal
matrices invertible3. This is achieved by another representation of scalar matrices
(i.e. c • 1 for every c ∈ K), which is independent of the matrix size. However,
we choose a simpler representation below to avoid matrices of no fixed size.

For the sake of demonstration we use the specialised Theorem 4 for a pro-
totypical implementation without a semiring instance for matrices, where said
theorem provides us with a possible implementation assuming certain existing
functions. Both equations given in the theorem require access to single values
of a matrix, i.e. Ai,j . Thus if we want to use these equations for an implemen-
tation we need some representation of matrices that allows such queries. Also,
the first equation uses matrix multiplication while the second one does not, but
instead relies on the concept of rows. There are numerous ways for a represen-
tation of a matrix, particularly if it is sparse (i.e. small percentage of non-zero
values) and different representations provide different features and caveats. For
now we choose the adjacency list model as a middle ground between efficiency
and simplicity. To that end we use the following notations.

type Row α = [(Int , α)]
type Mat α = [Row α]
(!) :: IdempotentSemiring σ ⇒ Row σ → Int → σ
[] ! = zero
((i , v) : ivs) ! k | i ≡ k = v

| i < k = ivs ! k
| otherwise = zero

3 (0 1
1 0) is invertible over every semiring, thus omitting the invertibility is a restriction.

Functional Kleene Closures 251

Additionally we assume and maintain the conditions that Rows are sorted
in ascending order of their first components, that the second components are
non-zero and that an n×n-matrix A is represented by a list of rows a such that
Ai = a !! i and Ai,j = (a !! i) ! j for all i, j ∈ N<n, where (!!) is the built-in Haskell
function for accessing indices of a list. This representation is similar to the one
in [1,3] and is provided for the completeness of the implementation.

To apply Theorem 4 we need a scalar multiplication and addition of rows.
A straightforward implementation of the former is obtained by multiplying every
second component of a row with a given scalar and tidying up the result to
remove possible zeroes4. There is room for some canonic improvement, since
scalar multiplication in case of 0, 1 is particularly simple. To that end we can
simply define the actual multiplication as follows.

(∗) :: IdempotentSemiring σ ⇒ σ → Row σ → Row σ
s ∗ row | isZero s = []

| isOne s = row
| otherwise = filter (¬ ◦ isZero ◦ snd) (map (λ(i , v) → (i , s � v)) row)

For all x, y ∈ K with x+y = 0 we get x = x+0 = x+(x+y) = (x+x)+y = x+y =
0 , which results in y = 0 + y = x + y = 0 and thus non-zero values are closed
under addition. That is to say that in an idempotent semiring we don’t need the
tidying step filter (¬◦isZero◦snd) when adding vectors. Our precondition that
the first components of the rows are increasingly sorted allows implementing the
addition of rows in terms of a straightforward merging strategy.

(+′) :: IdempotentSemiring σ ⇒ Row σ → Row σ → Row σ
[] +′ y = y
x +′ [] = x
x@((i , v) : ivs) +′ y@((j ,w) : jws) | i ≡ j = (i , v ⊕ w) : (ivs +′ jws)

| i < j = (i , v) : (ivs +′ y)
| otherwise = (j ,w) : (x +′ jws)

The function τ which we want to use for the computation of the Kleene closure
depends on a finite decomposition of 1 into tests. In our approach in the previous
section we used the tests {e(i, i)|i ∈ N<n}. Every such test and every sum of
such tests is uniquely determined by a subset of N<n, which we have established
in the proof of Lemma 1. Thus instead of successively computing bi and ni as in
Theorem 3 we can use the decomposition of sets in (N<n \ {i}) ∪ {i} instead of
the corresponding test. To gather the indices of a matrix we zip the matrix with
the list of natural numbers and ignoring the matrix values.

spine :: [α] → [Int]
spine = zipWith const [0 . .]

The Kleene closure of a is simply τ(a, f(N<n)) for every a ∈ Kn×n, where f is
the isomorphism between tests and sets from Lemma 1. Disregarding the f and
using lists to represent sets we can implement this in Haskell as follows.
4 In Kleene algebras there can be zero divisors, i.e. elements x, y ∈ K such that x �= 0

and y �= 0, but xy = 0. This is why we need to filter the zero values.

252 N. Danilenko

kleeneClosure :: KleeneAlgebra κ ⇒ Mat κ → Mat κ
kleeneClosure a = tau a (spine a)

The function τ can then be defined in an inductive way. First the base case.

tauMatrices :: KleeneAlgebra κ ⇒ Mat κ → [Int] → Mat κ
tauMatrices a [] = a

This is simply a quotation of a property of τ . Finally, τ(a, f({k}∪S) is a matrix
whose rows are given by Theorem 4.(3). We can then write

tauMatrices a (k : s) = newMat k (tauMatrices a s)

and thus delay the actual computation in the auxiliary function newMat that
captures the computation scheme of the above proposition.

newMat :: KleeneAlgebra κ ⇒ Int → Mat κ → Mat κ
newMat i a = map (λaj → (aj ! i) � star (ai ! i) ∗ ai +′ aj) a where ai = a !! i

In essence this definition is the implementation of the equation from Theorem
4.(3). The only difference is that we swapped the arguments of (+’), which is
a valid transformation, since + is commutative, which makes (+’) commutative
as well. Experiments have shown that this simple algebraic rule improves the
running times by a factor between 1.5 and 2. This concludes the implementation.

We observe that the full definition of tau is

tauMatrices a [] = a
tauMatrices a (k : s) = newMat k (tauMatrices a s)

which yields tauMatrices a ≡ foldr newMat a by the universal property of
foldr (cf. [5]) that in turn can be η-reduced to tauMatrices ≡ foldr newMat.

Note that both versions, the generic and the specialised one, require a list
of tests they traverse (where in the latter case plain integers are interpreted as
tests). In both cases this list is traversed left-to-right and in the specialised case
the resulting recursion is a proper right-fold structure. However, the order of
the tests themselves is actually an implicit parameter. In the specialised case
we used the natural order [e(0, 0), . . . , e(n − 1, n − 1)] for simplicity, but any
other order still yields the same result. The freedom of choice in this parameter
is similar to the order choice for the Gaussian elimination or the computation
of determinants5. In both cases any fixed order may be not the best suited one
for all matrices. For instance it is simpler to eliminate a variable xi if its row
contains more zeroes than the one of x0 and since the variable order does not
matter, one can simply choose an order where xi is eliminated before x0. In case
of reachability-based applications the breadth-first or depth-first order of indices
(when interpreted as vertices of a graph) represent viable alternatives, too.

5 Gaussian elimination is indeed computationally similar to the Kleene closure.

Functional Kleene Closures 253

Also, lists may not be the best suited data structure for storing tests. Instead,
it may be more convenient to compute the necessary tests in a tree-like structure
and then to pass this structure to the algorithm, instead of a list. This tree
can then be either transformed in a list or traversed directly, depending on the
concrete implementation. To allow this structure, type classes can be used to
specify the necessary operations, so that the resulting function has the type
tau :: (KleeneAlgebra κ, Structure σ) ⇒ κ → σ κ → κ where Structure is the
type class abstraction of said data structure that contains the tests.

6 Alternative Implementations and Comparison

In this section we discuss implementations of the Kleene closure function and
test their complexities in terms of running times and space consumptions.

6.1 Using Arrays

As we have stated before, Eq. (i) provides an out-of-the-box algorithm in impera-
tive languages using arrays. Haskell provides a number of different arrays (muta-
ble and immutable) with fast access to their indices. For the sake of simplicity
we used the most basic arrays that allow simple and pure code. The downside of
these arrays is that modification is very costly. Fortunately, in our application we
don’t need to modify arrays but only build new ones. Also, by Eq. (i) we don’t
require n different arrays, but only two different ones, since a(k+1) is constructed
from a(k) alone. This is to say that while we compute n different arrays, only two
are kept in memory at any given time, namely the k-th and 1 + k-th ones. This
is similar to in-situ updates, because a complete array is discarded and replaced
with new one.

newtype ArrayMat α = ArrMat {unArrMat :: Array (Int , Int) α}
kleeneClosureArray :: KleeneAlgebra κ ⇒ ArrayMat κ → ArrayMat κ
kleeneClosureArray (ArrMat a0) = ArrMat (foldl newArray a0 [0 . .n]) where

newArray arr k = listArray bnds (map (newValue arr k) positions)
bnds = bounds a
positions = range bnds
n = snd (snd bnds)
newValue a k (i , j) = ((a ! (i , k)) � star (a ! (k , k)) � (a ! (k , j))) ⊕ a ! (i , j)

Here (!) is the array query function. The local function newValue produces the
value a

(k+1)
i,j , newArray maps this producer over all index pairs (i, j) and foldl

repeats this procedure for all k and basically acts as a for-loop.

6.2 Another List Version

Another version comes to mind by simply observing that Eq. (i) contains the
index j at the same relative position. This allows the following rephrasal:

∀ i, k ∈ N<n : a
(k+1)
i = a

(k)
i +′

(
a
(k)
i,k ·

(
a
(k)
k,k

)∗)
∗ a

(k)
k . (v)

254 N. Danilenko

This is strikingly similar to our recursion for τ . The essential difference is that
the values of k are traversed in another direction and it is not quite obvious why
this is a valid transformation. The specification of Eq. (v) can be used to obtain
a third implementation, where newMat is the function from Sect. 5.

kleeneClosureLeft :: KleeneAlgebra κ ⇒ Mat κ → Mat κ
kleeneClosureLeft a = foldl (flip newMat) a (shape a)

6.3 Blockwise Implementation

The more recent work of Dolan [4] uses (a flipped version of) Eq. (ii) for an
implementation. The complete implementation is presented in the above paper
and we used the code by the author with only very minor variations. Matrices
are represented by the data type

data Matrix a = Matrix [[a]] | Scalar a

and are either a list of rows or, in case the matrix is c • 1n for some c ∈ K
by c alone. Every row contains all values at all positions. Avoiding unnecessary
zeroes is not as simple in this case, because splitting matrices into blocks either
requires reindexing the remaining block or removing the last element instead of
the first as in the implementation in [4]. Both operations come with additional
(constant) complexity, while additional zeroes require more space. The closure
function on Matrix is

kleeneClosureBlockwise :: KleeneAlgebra κ ⇒ Matrix κ → Matrix κ
kleeneClosureBlockwise a = a � closure a

where closure is the function from [4], which for a matrix a computes a� and (�)
is the matrix multiplication function provided by the Kleene algebra instance
for matrices, which is also given in Dolan’s paper.

6.4 A Note on Complexity

Assuming full evaluation, our closure function has a cubic complexity in the
matrix dimension. Suppose that said dimension is n. To compute kleeneClosure
of an n×n matrix, the function tau is called n+1 times. Every call of tau results
in a call of newMat, which is essentially a map function over a list of length n.
The function that is passed to map is linear in the size of the list element – the
query function (!) is linear in the size of the list element, as is (∗). The addition
(+’) is linear in the sum of the sizes of both its arguments, but since both sizes
are at most n, it is also linear in n. Thus newMat is quadratic in n, which results
in the cubic complexity of tau. This estimate is based upon the assumption that
(�),(⊕) and star of the underlying Kleene algebra are constant time functions.
However, the constants for these functions may differ significantly.

Functional Kleene Closures 255

The alternative list implementation kleeneClosureLeft is also cubic, because
it is simply based on another traversal, but all the employed functions are the
same as for kleeneClosure. The array based function kleeneClosureArray is
canonically cubic in the matrix dimension, because n different arrays of size n2

are constructed. Finally, in [4] the author calculates the complexity of his closure
function to be cubic in the dimension as well.

That said, complexity is a more delicate matter in Haskell than a simple
assumption about “complete evaluation”. More precisely, one needs to carefully
consider those parts of the computation, which are necessary for a result. These
parts, however, may depend on further function calls, i.e. f (kleeneClosure a)
may behave differently than kleeneClosure a, depending on the actual f .
A computational model for these considerations is presented in [12]. Still, in
our case the greatly simplified reasoning above is sufficient for an superficial
estimate, which essentially puts all implemented versions in the same complex-
ity class.

6.5 Comparison

We have implemented all closure functions in essentially the presented way.
Additionally, we implemented a random matrix generation based upon shuf-
fling. Given a density d ∈ [0, 1] and a size n we compute the number of non-zero
positions as p = �d · n2�. Then the first p positions in the matrix are filled and
then the matrix is shuffled. This technique is known to be uniformly distributed,
is already implemented in Haskell and it depends only on a single random gen-
erator, which can be created using a single Int. Additionally, random generators
in Haskell generate pseudo-random numbers due to referential transparency, i.e.
taking a random number from a fixed random generator will always produce the
same result. This makes testing of randomly generated data easily repeatable.

Table 1. Evaluation in the tropical Kleene algebraa.

a The tropical KA is (N ∪ {∞}, min, +, ∞, 0, �), where � is the constant 1-function.

We generated three random number generators from the random number
generator generated from the number 42 and ran all functions on different sizes

256 N. Danilenko

n, densities6 d and Kleene algebras. In all cases the generation of the random
matrix counts towards the total time to simulate pre-processed input. The result
of every function is fully evaluated. The values in Tables 1, 2 and 3 show the
average (avg) and the maximum (max) space consumptions in megabyte and
the running time (sec) in seconds and all values are arithmetic means over all
generators7. The letters are abbreviations for a(rray), b(lock), l(eft) and r(ight)
and refer to the respective closure function. The computation b uses the function
kleeneClosureBlockwise mentioned in Sect. 6.3 that requires a closure operation
and a matrix multiplication, while the value denoted by b� is the one for the
star closure operation only. It is known (cf. [11]) that matrix multiplication is in
general as complex as the star closure computation, so that there is no difference
in the asymptotic complexity between the star and the Kleene closure. The value
“−” denotes an out-of-memory exception occurring with the standard settings.

Table 2. Evaluation in the Boolean Kleene algebra.

We observe that the developed right-fold version is almost always better than
all other versions in terms of time consumption and never worse in terms of
space usage. The reason for the early failure in the Boolean semiring is Haskell’s
non-strictness, which in this case needs to be tamed with non-algebraic means.
Still, the right-fold function manages all matrices of size 750 in the Boolean
case, while all other versions do not. One typical improvement of tail-recursive
functions in Haskell is the use of strictness annotations which (partially) evaluate
a parameter before usage. We have experimented with this technique in the above
implementations and found that it yields little to no improvement in case of the
left-fold variant, but considerable (yet constant) improvements in the right-fold
version. This is an indicator that the computational paradigm of a right-fold is
conceptually better suited for the Kleene closure than that of a left-fold.

6 In a matrix with size 1000 a density of 0.1 means 100000 entries, which is likely to
yield a fully filled transitive closure. This is why we use such seemingly small values.

7 The measurements were taken on an machine with an Intel Core i5-2520M CPU
(4 × 2.5 GHz) with 8 GB of DDR3 RAM, running Ubuntu 12.04 and using GHC
7.6.3.

Functional Kleene Closures 257

Table 3. Evaluation in the product Kleene algebra “tropical × Boolean”.

7 Related Work and Discussion

There exist different approaches to a functional version of Kleene’s algorithm. In
[10] an implementation is given that is based upon Eq. (i) and the use of arrays.
We have not compared this implementation to ours because it is very similar
to our array implementation. The special case of transitive closures (closures
over the Boolean KA) is treated in [6] using a monadic abstraction of lazy
arrays that is implemented efficiently internally. The work [1] presents another
efficient implementation of the closure operation over the Boolean KA. The
closure function in [1] is significantly faster and less space consuming than ours,
because it uses only lists of (bounded) integers and not association lists with
arbitrary values. However, this function works only on Boolean matrices and its
generalisation to arbitrary Kleene algebras is essentially our implementation.

While the articles [4,6,10] are very well-written, they do not feature an actual
derivation of the implementation and depend on the chosen data types. We made
an implementation choice, but only to supply the complete code. It is simple to
abstract our implementation to a general one – the only place where we explicitly
use the fact that matrices are lists of rows is the implementation of newMat
that requires a (!!). This implementation can be replaced by a more parametric
one, which is parametrised over the container type for matrices, and then also
over the one for rows. Thus any representation of matrices that supports the
notion of rows and rows that support addition, query and scalar multiplication
is suited for our implementation. We used KATs to derive a general version of
a Kleene closure. While less general than Kleene algebras, the Kleene algebra of
square matrices over a Kleene algebra is a KAT without additional preconditions,
because the set of partial identities is a Boolean algebra (cf. Lemma 1). Thus
our approach for square matrices is applicable in the same settings as mentioned
above and the one we took before the specialisation is applicable to all KATs
where 1 is decomposable into a (finite) set of tests. Note that the right-fold
structure can yield partial values in the infinite case as well, if some information
about x + y can be extracted from x alone. This is a proper improvement of the
other versions from the Sect. 6, because left-folds diverge on infinite lists.

258 N. Danilenko

We have dealt with a single algorithm in this article, but the employed tech-
niques can transferred to more problems, too. For instance, a graph representa-
tion is used in [3] to compute maximum matchings. More generally, it is natural
to take a row-based approach, since the rows of a matrix represent the suc-
cessor lists of a given graph and thus successor-based algorithms usually have
elegant algebraic representations. Many algorithms that are expressed in terms
of a Kleene closure in some specific algebra can be rewritten as a matrix closure.
In fact every such closure can be expressed as a matrix closure by Lemma 2.

We are confident that many more functional implementations can be obtained
from algebraic specifications, especially in the field of graph algorithms. Addi-
tionally, the combination of algebraic reasoning and functional programming can
reveal complexity bottlenecks through parametric abstraction over the struc-
tures. We have shown that it is possible to find a specification that is based
upon modifying a value that will be computed next instead of one using values
that have already been computed. While the latter is tail-recursive and can yield
a performance gain in a strict setting, the former is better suited for a non-strict
approach allowing propagation of partial values before the recursive application.

Acknowledgements. I thank Rudolf Berghammer for encouraging this work, Insa
Stucke for comments and the reviewers for their much appreciated feedback.

References

1. Berghammer, R.: A functional, successor list based version of warshall’s algo-
rithm with applications. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663,
pp. 109–124. Springer, Heidelberg (2011)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, Berlin (2004)

3. Danilenko, N.: Using relations to develop a haskell program for computing maxi-
mum bipartite matchings. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS,
vol. 7560, pp. 130–145. Springer, Heidelberg (2012)

4. Dolan, S.: Fun with semirings: a functional pearl on the abuse of linear algebra.
In: Morrisett G., Uustalu T. (eds.) ICFP, pp. 101–110. ACM (2013)

5. Hutton, G.: A tutorial on the universality and expressiveness of fold. J. Funct.
Program. 9(4), 355–372 (1999)

6. Johnsson, T.: Efficient graph algorithms using lazy monolithic arrays. J. Funct.
Program. 8(4), 323–333 (1998)

7. Kozen, D.: A completeness theorem for kleene algebras and the algebra of regular
events. Inf. Comput. 110, 366–390 (1994)

8. Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability.
In: van Dalen, D., Bezem, Marc (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259.
Springer, Heidelberg (1997)

9. Marlow, S. The Haskell Report (2010). www.haskell.org/onlinereport/haskell2010
10. O’Connor, R. (2011). http://r6.ca/blog/20110808T035622Z.html
11. Pettorossi, A.: Techniques for Searching, Parsing, and Matching. Aracne, Roma

(2013)
12. Sands, D.: A nave time analysis and its theory of cost equivalence. J. Log. Comput.

5, 495–541 (1995)

www.haskell.org/onlinereport/haskell2010
http://r6.ca/blog/20110808T035622Z.html

Semantic Issues in Logic Programming

On Completeness of Logic Programs

W�lodzimierz Drabent(B)

Institute of Computer Science, Polish Academy of Sciences and IDA,
Linköpings Universitet, Linköping, Sweden

drabent@ipipan.waw.pl

Abstract. Program correctness (in imperative and functional program-
ming) splits in logic programming into correctness and completeness.
Completeness means that a program produces all the answers required
by its specification. Little work has been devoted to reasoning about
completeness. This paper presents a few sufficient conditions for com-
pleteness of definite programs. We also study preserving completeness
under some cases of pruning of SLD-trees (e.g. due to using the cut).

We treat logic programming as a declarative paradigm, abstracting
from any operational semantics as far as possible. We argue that the
proposed methods are simple enough to be applied, possibly at an infor-
mal level, in practical Prolog programming. We point out importance of
approximate specifications.

Keywords: Logic programming · Program completeness · Declarative
programming · Approximate specification

1 Introduction

The notion of partial program correctness splits in logic programming into cor-
rectness and completeness. Correctness means that all answers of the program
are compatible with the specification, completeness – that the program produces
all the answers required by the specification.

In this paper we consider definite clause programs, and present a few sufficient
conditions for their completeness. We also discuss preserving completeness under
pruning of SLD-trees (by e.g. using the cut). We are interested in declarative
reasoning, i.e. abstracting from any operational semantics, and treating program
clauses as logical formulae. Our goal is simple methods, which may be applied –
possibly informally – in actual practical programming.

Related Work. Surprisingly little work was devoted to proving completeness of
programs. Hogger [15] defines the notion of completeness, but does not provide
any sufficient conditions. Completeness is not discussed in the important mono-
graph [1]. Instead, a characterization is studied of the set of computed instances
of an atomic query, in a special case when the set is finite and the answers are
ground. In the paper [18] of Kowalski completeness is discussed, but the exam-
ple proofs concern only correctness. As a sufficient condition for completeness
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 261–278, 2015.
DOI: 10.1007/978-3-319-17822-6 15

262 W. Drabent

of a program P he suggests P � TS , where TS is a specification in a form of
a logical theory. The condition seems impractical as it fails when TS contains
auxiliary predicates, not occurring in P . It also requires that all the models of P
(including the Herbrand base) are models of the specification. But it seems that
such specifications often have a substantially restricted class of models, maybe
a single Herbrand model, cf. [6].

Deville [6] provides an approach where correctness and completeness of pro-
grams should follow from construction. No direct sufficient criteria for com-
pleteness, applicable to arbitrary programs, are given. Also the approach is not
declarative, as it is based on an operational semantics of SLDNF-resolution.

Stärk [22] presents an elegant method of reasoning about a broad class of
properties of programs with negation, executed under LDNF-resolutions. A tool
to verify proofs mechanically was provided. The approach involves a rather com-
plicated induction scheme, so it seems impossible to apply the method informally
by programmers. Also, the approach is not fully declarative, as the order of lit-
erals in clause bodies is important.

A declarative sufficient condition for program completeness was given by
Deransart and Ma�luszyński [5]. The approach presented here stems from [13],
the differences are discussed in [11]. The main contribution since the former
version [9,10] is proving completeness of pruned SLD-trees. The author is not
aware of any other work on this issue.

This paper, except Sect. 4.2, is an abbreviated version of some parts of [11].
A full version of Sect. 4.2 appeared in [12]. The reader is referred to [11,12] for
missing proofs, more examples and further discussion.

Preliminaries. We use the standard notation and definitions [1]. An atom whose
predicate symbol is p will be called a p-atom (or an atom for p). Similarly, a
clause whose head is a p-atom is a clause for p. In a program P , by procedure p
we mean the set of the clauses for p in P .

We assume a fixed alphabet with an infinite set of function symbols. The
Herbrand universe will be denoted by HU , the Herbrand base by HB, and the sets
of all terms, respectively atoms, by T U and T B. For an expression (a program)
E by ground(E) we mean the set of ground instances of E (ground instances of
the clauses of E). MP denotes the least Herbrand model of a program P .

By “declarative” (property, reasoning, . . .) we mean referring only to log-
ical reading of programs, thus abstracting from any operational semantics. In
particular, properties depending on the order of atoms in clauses will not be
considered declarative (as they treat equivalent conjunctions differently).

By a computed (respectively correct) answer for a program P and a query Q
we mean an instance Qθ of Q where θ is a computed (correct) answer substitution
[1] for Q and P . We often say just answer as each computed answer is a correct
one, and each correct answer (for Q) is a computed answer (for Q or for some
its instance). Thus, by soundness and completeness of SLD-resolution, Qθ is an
answer for P iff P |= Qθ.

Names of variables begin with an upper-case letter. We use the list notation
of Prolog. So [t1, . . . , tn] (n ≥ 0) stands for the list of elements t1, . . . , tn. Only a

On Completeness of Logic Programs 263

term of this form is considered a list. (Thus terms like [a, a|X], or [a, a|a], where
a is a constant, are not lists). The set of natural numbers will be denoted by N;
f : A ↪→ B states that f is a partial function from A to B.

The next section introduces the basic notions of specifications, correctness
and completeness. Also, advantages of approximate specifications are discussed.
The section is concluded with a brief overview on proving correctness. Section 3
discusses proving program completeness. Section 4 deals with proving that com-
pleteness is preserved under pruning. We finish with a discussion.

2 Correctness and Completeness

2.1 Specifications

The purpose of a logic program is to compute a relation, or a few relations.
A specification should describe these relations. It is convenient to assume that
the relations are over the Herbrand universe. To describe such relations, one
relation corresponding to each procedure of the program (i.e. to a predicate
symbol), it is convenient to use a Herbrand interpretation. Thus a (formal)
specification is a Herbrand interpretation, i.e. a subset of HB.

2.2 Correctness and Completeness

In imperative and functional programming, correctness usually means that the
program results are as specified. In logic programming, due to its non-deterministic
nature, we actually have two issues: correctness (all the results are compatible with
the specification) and completeness (all the results required by the specification
are produced). In other words, correctness means that the relations defined by the
program are subsets of the specified ones, and completeness means inclusion in
the opposite direction. In terms of specifications and the least Herbrand models
we define:

Definition 1. Let P be a program and S ⊆ HB a specification. P is correct
w.r.t. S when MP ⊆ S; it is complete w.r.t. S when MP ⊇ S.

We will sometimes skip the specification when it is clear from the context. We
propose to call a program fully correct when it is both correct and complete.
If a program P is fully correct w.r.t. a specification S then, obviously, MP = S.

A program P is correct w.r.t. a specification S iff Q being an answer of P
implies S |= Q. (Remember that Q is an answer of P iff P |= Q.) The program
is complete w.r.t. S iff S |= Q implies that Q is an answer of P . (Here our
assumption on an infinite set of function symbols is needed [11].)

It is sometimes useful to consider local versions of these notions:

Definition 2. A predicate p in P is correct w.r.t. S when each p-atom of
MP is in S, and complete w.r.t. S when each p-atom of S is in MP .

An answer Q is correct w.r.t. S when S |= Q.
P is complete for a query Q w.r.t. S when S |= Qθ implies that Qθ is an

answer for P , for any ground instance Qθ of Q.

264 W. Drabent

Informally, P is complete for Q when all the answers for Q required by the
specification S are answers of P . Note that a program is complete w.r.t. S iff it
is complete w.r.t. S for any query iff it is complete w.r.t. S for any query A ∈ S.

2.3 Approximate Specifications

Often it is difficult, and not necessary, to specify the relations defined by a pro-
gram exactly; more formally, to require that MP is equal to a given specification.
Often the relations defined by programs are not exactly those intended by pro-
grammers. For instance this concerns the programs in Chap. 3.2 of the textbook
[23] defining predicates member/2, append/3, sublist/2, and some others. The
defined relations are not those of list membership, concatenation, etc. However
this is not an error, as for all intended queries the answers are as for a pro-
gram defining the intended relations. The exact semantics of the programs is
not explained in the textbook; such explanation is not needed. Let us look more
closely at append/3.

Example 3. 1. The program APPEND

app([H|K], L, [H|M]) ← app(K,L,M). app([], L, L).

does not define the relation of list concatenation. For instance, APPEND |=
app([], 1, 1). In other words, APPEND is not correct w.r.t.

S0
APPEND = { app(k, l,m) ∈ HB | k, l,m are lists, k ∗ l = m },

where k ∗ l stands for the concatenation of lists k, l. It is however complete
w.r.t. S0

APPEND, and correct w.r.t.

SAPPEND = { app(k, l,m) ∈ HB | if l or m is a list then app(k, l,m) ∈ S0
APPEND }.

Correctness w.r.t. SAPPEND and completeness w.r.t. S0
APPEND are sufficient

to show that APPEND will produce the required results when used to
concatenate or split lists. More precisely, the answers for a query Q =
app(s, t, u), where t is a list or u is a list, are app(sθ, tθ, uθ), where sθ, tθ, uθ
are lists and sθ ∗ tθ = uθ. (The lists may be non-ground.)

2. Similarly, the procedures member/2 and sublist/2 are complete w.r.t spec-
ifications describing the relation of list membership, and the sublist relation.
It is easy to provide specifications, w.r.t. which the procedures are correct.
For instance, member/2 is correct w.r.t. SMEMBER = {member(t, u) ∈ HB |
if u = [t1, . . . , tn] for some n ≥ 0 then t = ti, for some 0 < i ≤ n }.

3. The exact relations defined by programs are often misunderstood. For
instance, in [7, Ex. 15] it is claimed that a program Prog1 defines the relation
of list inclusion. In our terms, this means that predicate included of Prog1
is correct and complete w.r.t.{

included(l1, l2) ∈ HB
∣∣∣∣ l1, l2 are lists,

every element of l1 belongs to l2

}
.

However the correctness does not hold: The program contains a unary clause
included([], L), so Prog1 |= included([], t) for any term t.

On Completeness of Logic Programs 265

The examples show that in many cases it is unnecessary to know the seman-
tics of a program exactly. Instead it is sufficient to describe it approximately.
An approximate specification is a pair of specifications Scompl , Scorr, for
completeness and correctness. The intention is that the program is complete
w.r.t. the former, and correct w.r.t. the latter: Scompl ⊆ MP ⊆ Scorr. In other
words, the specifications Scompl , Scorr describe, respectively, which atoms have
to be computed, and which are allowed to be computed. For the atoms from
Scorr\Scompl the semantics of the program is irrelevant. By abuse of terminol-
ogy, Scorr or Scompl will sometimes also be called approximate specifications.

2.4 Proving Correctness

We briefly discuss proving correctness, as it is complementary to the main subject
of this paper. The approach is due to Clark [4].

Theorem 4 (Correctness). A sufficient condition for a program P to be cor-
rect w.r.t. a specification S is

for each ground instance H ← B1, . . . , Bn of a clause of the program,
if B1, . . . , Bn ∈ S then H ∈ S.

Example 5. Consider a program SPLIT and a specification describing how the
sizes of the last two arguments of s are related (|l| denotes the length of a list l):

s([], [], []). (1)
s([X|Xs], [X|Y s], Zs) ← s(Xs,Zs, Y s). (2)

S = { s(l, l1, l2) | l, l1, l2 are lists, 0 ≤ |l1| − |l2| ≤ 1 }.

SPLIT is correct w.r.t. S, by Theorem 4 (the details are left for the reader, or see
[11]). A stronger specification for which SPLIT is correct is shown in Example 11.

The sufficient condition is equivalent to S |= P , and to TP (S) ⊆ S.
Notice that the proof method is declarative. The method should be well

known, but is often neglected. For instance it is not mentioned in [1], where a
more complicated method, moreover not declarative, is advocated. That method
is not more powerful than the one of Theorem 4 [13]. See [11,13] for further
examples, explanations, references and discussion.

3 Proving Completeness

We first introduce a notion of semi-completeness, and sufficient conditions under
which semi-completeness of a program implies its completeness. Then a sufficient
condition follows for semi-completeness. We conclude the section with a way of
showing completeness directly without employing semi-completeness.

266 W. Drabent

Definition 6. A level mapping is a function | | : HB → N assigning natural
numbers to atoms.

A program P is recurrent w.r.t. a level mapping | | [1,3] if, in every ground
instance H ← B1, . . . , Bn ∈ ground(P) of its clause (n ≥ 0), |H| > |Bi| for all
i = 1, . . . , n. A program is recurrent if it is recurrent w.r.t. some level mapping.

A program P is acceptable w.r.t. a specification S and a level mapping
| | if P is correct w.r.t. S, and for every H ← B1, . . . , Bn ∈ ground(P) we
have |H| > |Bi| whenever S |= B1, . . . , Bi−1. A program is acceptable if it is
acceptable w.r.t. some level mapping and some specification.

The definition of acceptable is more general than that of [1,2] which requires S
to be a model of P . Both definitions make the same programs acceptable [11].

Definition 7. A program P is semi-complete w.r.t. a specification S if P is
complete w.r.t. S for any query Q for which there exists a finite SLD-tree.

Less formally, the existence of a finite SLD-tree means that P with Q terminates
under some selection rule. For a semi-complete program, if a computation for a
query Q terminates then all the required by the specification answers for Q have
been obtained. Note that a complete program is semi-complete. Also:

Proposition 8 (Completeness). Let a program P be semi-complete w.r.t. S.
The program is complete w.r.t S if

1. for each query A ∈ S there exists a finite SLD-tree, or
each A ∈ S is an instance of a query Q for which a finite SLD-tree exists, or

2. the program is recurrent, or
3. the program is acceptable (w.r.t. a specification S′ possibly distinct from S).

Proving Semi-completeness. We need the following notion.

Definition 9. A ground atom H is covered by a clause C w.r.t. a specifica-
tion S [21] if H is the head of a ground instance H ← B1, . . . , Bn (n ≥ 0) of C,
such that all the atoms B1, . . . , Bn are in S. A ground atom H is covered by
a program P w.r.t. S if it is covered w.r.t. S by some clause C ∈ P .

For instance, given a specification S = {p(si(0)) | i ≥ 0}, atom p(s(0)) is covered
both by p(s(X)) ← p(X) and by p(X) ← p(s(X)).

Now we present a sufficient condition for semi-completeness. Together with
Proposition 8 it provides a sufficient condition for completeness.

Theorem 10 (Semi-completeness). If all the atoms from a specification S
are covered w.r.t. S by a program P then P is semi-complete w.r.t. S.

Example 11. We show that program SPLIT from Example 5 is complete w.r.t.

SSPLIT =

{
s([t1, . . . , t2n], [t1, · · · , t2n−1], [t2, · · · , t2n]),
s([t1, . . . , t2n+1], [t1, · · · , t2n+1], [t2, · · · , t2n])

∣
∣
∣∣
n ≥ 0,
t1, . . . , t2n+1 ∈ HU

}
,

On Completeness of Logic Programs 267

where [tk, · · · , tl] denotes the list [tk, tk+2, . . . , tl], for k, l both odd or both even.
Atom s([], [], []) ∈ SSPLIT is covered by clause (1). For n > 0, any atom A =

s([t1, . . . , t2n], [t1, · · · , t2n−1], [t2, · · · , t2n]) is covered by an instance of (2) with
a body B = s([t2, . . . , t2n], [t2, · · · , t2n], [t3, · · · , t2n−1]). Similarly, for n ≥ 0 and
any atom A = s([t1, . . . , t2n+1], [t1, · · · , t2n+1], [t2, · · · , t2n]), the corresponding
body is B = s([t2, . . . , t2n+1], [t2, · · · , t2n], [t3, · · · , t2n+1]). In both cases, B ∈
SSPLIT. (To see this, rename each ti as t′i−1.) So SSPLIT is covered by SPLIT.
Thus SPLIT is semi-complete w.r.t. SSPLIT, by Theorem 10.

Now by Proposition 8 the program is complete, as it is recurrent under the
level mapping |s(t, t1, t2)| = |t|, where | [h|t] | = 1 + |t| and |f(t1, . . . , tn)| =
0 (for any ground terms h, t, t1, . . . , tn, and any function symbol f distinct
from [|]).

By Theorem 4 the program is also correct w.r.t. SSPLIT, as SSPLIT |= SPLIT.
(The details are left to the reader.) Hence SSPLIT = MSPLIT.

Note that the sufficient condition of Theorem10 is equivalent to S ⊆ TP (S),
which implies S ⊆ gfp(TP). It is also equivalent to S being a model of ONLY-
IF(P) (see e.g. [8] or [13] for a definition).

The notion of semi-completeness is tailored for finite programs. An SLD-tree
for a query Q and an infinite program P may be infinite, but with all branches
finite. In such case, if the condition of Theorem10 holds then P is complete for
Q [11].

Proving Completeness Directly. Here we present another, declarative, way
of proving completeness; a condition is added to Theorem 10 so that complete-
ness is implied directly. This also works for non-terminating programs. However
when termination has to be shown anyway, applying Theorem10 is usually more
convenient.

In this section we allow that a level mapping is a partial function | | : HB ↪→ N

assigning natural numbers to some atoms.

Definition 12. A ground atom H is recurrently covered by a program P
w.r.t. a specification S and a level mapping | | : HB ↪→ N if H is the head of a
ground instance H ← B1, . . . , Bn (n ≥ 0) of a clause of the program, such that
|H|, |B1|, . . . |Bn| are defined, B1, . . . , Bn ∈ S, and |H| > |Bi| for all i = 1, . . . , n.

For instance, given a specification S = { p(si(0)) | i ≥ 0 }, atom p(s(0)) is
recurrently covered by a program { p(s(X)) ← p(X).} under a level mapping
for which |p(si(0))| = i. No atom is recurrently covered by { p(X) ← p(X).}.
Obviously, if H is recurrently covered by P then it is covered by P . If H is
covered by P w.r.t. S and P is recurrent w.r.t. | | then H is recurrently covered
w.r.t. S, | |. The same holds for P acceptable w.r.t. an S′ ⊇ S.

Theorem 13 (Completeness 2). (A reformulation of Theorem 6.1 of [5]). If,
under some level mapping | | : HB ↪→ N, all the atoms from a specification S are
recurrently covered by a program P w.r.t. S then P is complete w.r.t. S.

268 W. Drabent

Example 14. Consider a directed graph E. As a specification for a program
describing reachability in E, take S = Sp ∪ Se, where

Sp = { p(t, u) | there is a path from t to u in E },
Se = { e(t, u) | (t, u) is an edge in E }.

Let P consist of a procedure p: { p(X,X). p(X,Z) ← e(X,Y), p(Y,Z).} and a
procedure e which is a set of unary clauses describing the edges of the graph.
Assume the latter is complete w.r.t. Se. Notice that when E has cycles then
infinite SLD-trees cannot be avoided, and completeness of P cannot be shown
by Proposition 8.

To apply Theorem 13, let us define a level mapping for the elements of S such
that |e(t, u)| = 0 and |p(t, u)| is the length of a shortest path in E from t to u (so
|p(t, t)| = 0). Consider a p(t, u) ∈ S where t �= u. Let t = t0, t1, . . . , tn = u be a
shortest path from t to u. Then e(t, t1), p(t1, u) ∈ S, |p(t, u)| = n, |e(t, t1)| = 0,
and |p(t1, u)| = n − 1. Thus p(t, u) is recurrently covered by P w.r.t. S and | |.
The same trivially holds for the remaining atoms of S. So P is complete w.r.t. S.

4 Pruning SLD-Trees and Completeness

Pruning some parts of SLD-trees is often used to improve efficiency of programs.
It is implemented by using the cut, the if-then-else construct of Prolog, or built-
ins, like once/1. Pruning preserves the correctness of a logic program, it also
preserves termination under a given selection rule, but may violate the program’s
completeness. We now discuss proving that completeness is preserved.

By a pruned SLD-tree for a program P and a query Q we mean a tree
with the root Q which is a connected subgraph of an SLD-tree for P and Q. By
an answer of a pruned SLD-tree we mean the computed answer of a successful
SLD-derivation which is a branch of the tree. We will say that a pruned SLD-
tree T with root Q is complete w.r.t. a specification S if, for any ground Qθ,
S |= Qθ implies that Qθ is an instance of an answer of T . Informally, such a tree
produces all the answers for Q required by S.

We present two approaches for proving completeness of pruned SLD-trees.
The first one is based on viewing pruning as skipping certain clauses while build-
ing the children of a node. The other deals with a restricted usage of the cut.

4.1 Pruning as Clause Selection

To facilitate reasoning about the answers of pruned SLD-trees, we
will now view pruning as applying only certain clauses
while constructing the children of a node. So we intro-
duce subsets Π1, . . . , Πn of P . The intention is that
for each node the clauses of one Πi are used. Programs
Π1, . . . , Πn may be not disjoint.

On Completeness of Logic Programs 269

Definition 15. Given programs Π1, . . . , Πn (n > 0), a c-selection rule is a
function assigning to a query Q′ an atom A in Q′ and one of the programs
∅,Π1, . . . , Πn.

A csSLD-tree (cs for clause selection) for a query Q and programs
Π1, . . . , Πn, via a c-selection rule R, is constructed as an SLD-tree, but for each
node its children are constructed using the program selected by the c-selection
rule. An answer of a csSLD-tree is defined in the expected way.

A c-selection rule may choose the empty program, thus making a given node a
leaf. Notice that a csSLD-tree for Q and Π1, . . . , Πn is a pruned SLD-tree for Q
and

⋃
i Πi. Conversely, for each pruned SLD-tree T for Q and a (finite) program

P there exist n > 0, and Π1, . . . , Πn ⊆ P such that T is a csSLD-tree for Q and
Π1, . . . , Πn.

Describing pruning by a c-selection rule is, in a sense, abstract. It does not
refer directly to the control constructs in the program. The correspondence
between the program and the c-selection rule may be not obvious [11]. A single
cut, or if-then-else, may prune children of many nodes in a tree, modifying the
behaviour of many procedures of the program. However Examples 19, 20, 21
below suggest that in many cases this difficulty is not substantial.

Example 16. We show that completeness of each of Π1, . . . , Πn is not sufficient
for completeness of a csSLD-tree for Π1, . . . , Πn. Consider a program P :

q(X) ← p(Y,X). (3)
p(Y, 0). (4)
p(a, s(X)) ← p(a,X). (5)
p(b, s(X)) ← p(b,X). (6)

and programs Π1 = {(3), (4), (6)}, Π2 = {(3), (4), (5)}, As a specification for
completeness consider S0 = { q(sj(0)) | j ≥ 0 }. Each of the programs Π1,Π2, P
is complete w.r.t. S0. Assume a c-selection rule R choosing alternatively Π1,Π2

along each branch of a tree. Then the csSLD-tree for q(sj(0)) ∈ S0 via R (where
j > 2) has no answers, thus the tree is not complete w.r.t. S0.

Consider programs P,Π1, . . . , Πn and specifications S, S1, . . . , Sn, such that P ⊇⋃n
i=1 Πi and S =

⋃n
i=1 Si. The intention is that each Si describes which answers

are to be produced by using Πi in the first resolution step. We will call
Π1, . . . , Πn, S1, . . . , Sn a split (of P and S). Note that Π1, . . . , Πn or S1, . . . , Sn

may be not disjoint.

Definition 17. Let S = Π1, . . . , Πn, S1, . . . , Sn be a split, and S =
⋃

Si.
Specification Si is suitable for an atom A w.r.t. S when no instance of A

is in S \ Si. (In other words, when ground(A) ∩ S ⊆ Si.) We also say that a
program Πi is suitable for A w.r.t. S when Si is.

A c-selection rule is compatible with S if for each non-empty query Q it
selects an atom A and a program Π, such that

270 W. Drabent

– Π ∈ {Π1, . . . , Πn} is suitable for A w.r.t. S, or
– none of Π1, . . . , Πn is suitable for A w.r.t. S and Π = ∅ (so Q is a leaf).

A csSLD-tree for Π1, . . . , Πn via a c-selection rule compatible with S is said
to be weakly compatible with S. The tree is compatible with S iff for each
its nonempty node some Πi is selected.

The intuition is that when Πi is suitable for A then Si is a fragment of S sufficient
to deal with A. It describes all the answers for query A required by S.

The reason of incompleteness of the trees in Example 16 may be understood
as selecting a Πi not suitable for the selected atom. Take S = Π1,Π2, S0 ∪
S′
1, S0 ∪ S′

2, where S′
1 = { p(b, si(0)) | i ≥ 0 } and S′

2 = { p(a, si(0)) | i ≥ 0 }. In
the incomplete trees, Π1 is selected for an atom A = p(a, u), or Π2 is selected
for an atom B = p(b, u) (where u ∈ T U). However Π1 is not suitable for A
whenever A has an instance in S (as then ground(A) ∩ S �⊆ S0 ∪ S′

1); similarly
for Π2 and B.

When Πi is suitable for A then if each atom of Si is covered by Πi (w.r.t. S)
then using for A only the clauses of Πi does not impair completeness w.r.t. S:

Theorem 18. Let P ⊇ ⋃n
i=1 Πi (where n > 0) be a program, S =

⋃n
i=1 Si a

specification, and T a csSLD-tree for Π1, . . . , Πn. If

1. for each i = 1, . . . , n, all the atoms from Si are covered by Πi w.r.t. S, and
2. T is compatible with Π1, . . . , Πn, S1, . . . , Sn,
3. (a) T is finite, or

(b) program P is recurrent, or
(c) P is acceptable (possibly w.r.t. a specification distinct from S), and T is

built under the Prolog selection rule

then T is complete w.r.t. S.

We now show three examples of applying this theorem.

Example 19. The following program SAT0 is a simplification of a fragment of
the SAT solver of [16] discussed in [9]. Pruning is crucial for the efficiency and
usability of the original program.

p(P−P, []). (7)
p(V −P, [B|T]) ← q(V −P, [B|T]). (8)
p(V −P, [B|T]) ← q(B, [V −P |T]). (9)
q(V −P,) ← V = P. (10)
q(, [A|T]) ← p(A, T). (11)
P = P. (12)

The program is complete w.r.t. a specification

S =
{

p(t0−u0, [t1−u1, . . . , tn−un]),
q(t0−u0, [t1−u1, . . . , tn−un])

∣∣∣∣ n ≥ 0, t0, . . . , tn, u0, . . . , un ∈ T,
ti = ui for some i ∈ {0, . . . , n}

}
∪ S=

On Completeness of Logic Programs 271

where T = {false, true} ⊆ HU , and S= = { t=t | t ∈ HU }. We omit a com-
pleteness proof, mentioning only that SAT0 is recurrent w.r.t. a level mapping
|p(t, u)| = 2|u|+2, |q(t, u)| = 2|u|+1, |=(t, u)| = 0, where |u| is as in Example 11.

The first case of pruning is due to redundancy within (8), (9); both Π1 =
SAT0 \ {(9)} and Π2 = SAT0 \ {(8)} are complete w.r.t. S. For any selected
atom at most one of (8), (9) is to be used, and the choice is dynamic. As the fol-
lowing reasoning is independent from this choice, we omit further explanations.

So in such pruned SLD-trees the children of each node are constructed using
one of programs Π1,Π2. Thus they are csSLD-trees for Π1,Π2. They are com-
patible with S = Π1,Π2, S, S (as Π1,Π2 are trivially suitable for any A, due to
Si = S and S \ Si = ∅ in Definition 17). Each atom of S is covered w.r.t. S both
by Π1 and Π2. As SAT0 is recurrent, by Theorem 18, each such tree is complete
w.r.t. S.

Example 20. We continue with program SAT0 and specification S from the pre-
vious example, and add a second case of pruning. When the selected atom is of
the form A = q(s1, s2) with a ground s1 then only one of clauses (10), (11) is
needed – (10) when s1 is of the form t−t, and (11) otherwise. The other clause
can be abandoned without losing the completeness w.r.t. S.1

Actually, SAT0 is included in a bigger program, say P = SAT0∪Π0. We skip
the details of Π0, let us only state that P is recurrent, Π0 does not contain any
clause for p or for q, and that P is complete w.r.t. a specification S′ = S ∪ S0

where S0 does not contain any p- or q-atom. (Hence each atom of S0 is covered
by Π0 w.r.t. S′.)

To formally describe the trees for P resulting from both cases of pruning,
consider S = Π0, . . . , Π5, S0, . . . , S5, where

Π1 = {(7), (8)}, Π2 = {(7), (9)}, S1 = S2 = S ∩ { p(s, u) | s, u ∈ HU },
Π3 = {(10)}, S3 = S ∩ { q(t−t, s) | t, s ∈ HU },
Π4 = {(11)}, S4 = S ∩ { q(t−u, s) | t, u, s ∈ HU , t �= u },
Π5 = {(12)}, S5 = S=.

Each atom from Si is covered by Πi w.r.t. S′ (for i = 0, . . . , 5). For each q-
atom with its first argument ground, Π3 or Π4 (or both) is suitable. For each
remaining atom from T B, a program from Π0,Π1,Π2,Π5 is suitable.

Consider a pruned SLD-tree T for P (employing the two cases of pruning
described above). Assume that each q-atom selected in T has its first argument
ground. Then T is a csSLD-tree compatible with S. From Theorem 18 it follows
that T is complete w.r.t. S′.

The restriction on the selected q-atoms is implemented by means of Pro-
log delays. This is done in such a way that, for the intended initial queries,
floundering is avoided [16] (i.e. an atom is selected in each query). So the obtained

1 The same holds for A of the form q(s11−s11, s2), or q(s11−s12, s2) with non-
unifiable s11, s12. The pruning is implemented using the if-then-else construct
in Prolog: q(V − P, [A|T]) :− V = P−> true; p(A, T). (And the first case of pruning
by p(V − P, [B|T]) :− nonvar(V) −> q(V − P, [B|T]); q(B, [V − P|T]).)

272 W. Drabent

pruned trees are as T above, and the pruning preserves completeness of the
program.

Example 21. A Prolog program {nop(adam, 0) ← !. nop(eve, 0) ← !. nop(X, 2).}
is an example of difficulties and dangers of using the cut in Prolog. Due to the cut,
for an atomic query A only the first clause with the head unifiable with A will be
used. The program can be seen as logic program P = Π1∪Π2∪Π3 executed with
pruning, where (for i = 1, 2, 3) Πi is the i-th clause of the program with the cut
removed. The intended meaning is S = S1∪S2∪S3, where S1 = {nop(adam, 0)},
S2 = {nop(eve, 0)}, and S3 = {nop(t, 2) ∈ HB | t �∈ {adam, eve}}. Note that all
the atoms from Si are covered by Πi (for i = 1, 2, 3). (We do not discuss here
the (in)correctness of the program, but see [11].)

Let S be Π1,Π2,Π3, S1, S2, S3. Consider a query A = nop(t, Y) with a
ground t. If t = adam then ground(A) ∩ S = S1, and only Π1 is suitable for A
w.r.t. S, if t = eve then only Π2 is. For t �∈ {adam, eve} the suitable program is
Π3. So for the query A the pruning due to the cuts results in selecting a suitable
Πi, and the obtained csSLD-tree is compatible with S. By Theorem 18 the tree
is complete w.r.t. S.

For a query nop(X,Y) or nop(X, 0) only the first clause, i.e. Π1, is used.
However Π1 is not suitable for the query (w.r.t. S), and the csSLD-tree is not
compatible with S. The tree is not complete (w.r.t. S).

4.2 The Cut in the Last Clause

The previous approach is based on a somehow abstract semantics in which prun-
ing is viewed as clause selection. Now we present an approach referring directly to
Prolog with the cut. However the usage of the cut is restricted to the last clause
of a procedure. The author expects that the general case could be conveniently
studied in the context of programs with negation (because if H ← A1, !, A2 is
followed by H ← A3 then the latter clause is used only if A1 fails). We con-
sider LD-resolution, as interaction of the cut with delays introduces additional
complications.

We need to reason about the atoms selected in the derivations. So we employ
a (non-declarative) approach to reason about LD-derivations, presented in [1].
A specification in this approach, let us call it call-success specification, is
a pair pre, post ∈ T B of sets of atoms, closed under substitution. A program
is correct w.r.t. such specification, let us say c-s-correct, when in each LD-
derivation every selected atom is in pre and each corresponding computed answer
is in post, provided that the derivation begins with an atomic query from pre.
The same holds for non-atomic initial queries, provided that they satisfy a certain
condition (are well asserted [1]). See [1] or [13] for further explanations, and for
a sufficient criterion for c-s-correctness (programs satisfying it are called well
asserted).

By vars(E) we denote the set of variables occurring in an expression E.
For a substitution θ = {X1/t1, . . . , Xn/tn}, let dom(θ) = {X1, . . . , Xn}, and
rng(θ) = vars({t1, . . . , tn}). We begin with generalizing the notion of an atom
covered by a clause.

On Completeness of Logic Programs 273

Definition 22. Let S be a specification, and pre, post a call-success specifica-
tion. A ground atom A is adjustably covered by a clause C w.r.t. S and
pre, post if A is covered by C and the cut does not occur in C, or the following
three conditions hold:

1. C is H ← A1, . . . , Ak−1, !, Ak, . . . , An,
2. A is covered by H ← A1, . . . , Ak−1 w.r.t. S,
3. – for any instance Hρ ∈ pre such that A is an instance of Hρ,

– for any ground instance (A1, . . . , Ak−1)ρη such that A1ρη, . . . , Ak−1ρη ∈
post,

– A is covered by (H ← Ak, . . . , An)ρη w.r.t. S,
where dom(ρ) ⊆ vars(H), rng(ρ)∩ vars(C) ⊆ vars(H), dom(ρ)∩ rng(ρ) = ∅,
and dom(η) = vars((A1, . . . , Ak−1)ρ).

Informally, condition 3 says that A could be produced out of each “related”
answer for A1, . . . , Ak−1, and some answer for Ak, . . . , An specified by S. Note
that if A is adjustably covered by C w.r.t. S, pre, post, where S ⊆ post, then A
is covered by C w.r.t. S.

Now we are ready to present the sufficient condition for completeness.

Theorem 23 ([12]). Let S be a specification, pre, post a call-success specifica-
tion, where S ⊆ post. Let T be a pruned LD-tree for a program P and an atomic
query Q, where pruning is due to the cut occurring in the last clause(s) of some
procedure(s) of P . If

– T is finite, Q ∈ pre, P is c-s-correct w.r.t. pre, post, and
– each A ∈ S is adjustably covered by a clause of P w.r.t. S and pre, post

then T is complete w.r.t. S.

For a non-atomic initial query Q, the condition Q ∈ pre should be replaced by
Q is well asserted w.r.t. pre, post (see [1] for a definition).

We now show two examples of applying this theorem to proving completeness
of pruned trees.

Example 24. Consider a program IN:

in([], L).
in([H|T], L) ← m(H,L), !, in(T,L).

m(E, [E|L]).
m(E, [H|L]) ← m(E,L).

and specifications

S = Sm ∪ Sin, pre = prem ∪ prein, post = postm ∪ postin, where
prem = {m(u, t) ∈ T B | t is a list },
prein = { in(u, t) ∈ HB | u, t are ground lists },
postm = {m(ti, [t1, . . . , tn]) ∈ T B | 1 ≤ i ≤ n },
postin = { in([u1, . . . , um], [t1, . . . , tn]) ∈ HB | {u1, . . . , um} ⊆ {t1, . . . , tn} },
Sm = postm ∩ HB, Sin = postin.

274 W. Drabent

The program is c-s-correct w.r.t. pre, post (we skip a proof). We show that each
atom A = in(u, t) ∈ Sin, where u = [u1, . . . , um], m > 0, is adjustably covered
by the second clause C of IN. Let C0 be in([H|T], L) ← m(H,L). Now A is
covered by C0 w.r.t. S (A ← m(u1, t) is a relevant ground instance of C0).

Take an instance in([H|T], L)ρ ∈ pre of the head of C. The instance is
ground, and the whole Cρ is ground. So in Definition 22, ρη = ρ. If A is an
instance of (thus equal to) in([H|T], L)ρ then in(T,L)ρ = in([u2, . . . , um], t) ∈ S
(as A ∈ S). Thus A is covered by (in([H|T], L) ← in(T,L))ρ.

Thus A is adjustably covered by C. It is easy to check that all the remaining
atoms of S are covered by IN w.r.t. S, and that IN is recurrent (for |m(s, t)| = |t|,
|in(s, t)| = |s| + |t|, |t| as in Example 11). Thus each LD-tree for IN and a query
Q ∈ pre is finite. By Theorem 23, each such tree pruned due to the cut is complete
w.r.t. S. Notice that condition 3 does not hold when non ground arguments of
in are allowed in prein, and that for such queries some answers may be pruned.

Before the next example we introduce a property, which simplifies checking that
an atom is adjustably covered by a clause with the cut.

Lemma 25 ([12]). If condition 3 of Definition 22 holds for an atom Hρ ∈ pre
then it holds for any its instance Hρ′ such that A is an instance of Hρ′, and
ρ′ satisfies the requirements of condition 3 (i.e. dom(ρ′) ⊆ vars(H), rng(ρ′) ∩
vars(C) ⊆ vars(H), dom(ρ′) ∩ rng(ρ′) = ∅).

Example 26. Consider a program P :

p(X,Z) ← q(X,Y), !, r(Y,Z). q(a, a)
q(a, a′)
q(b, b)

r(a, c)
r(a′, c)

and specifications

S = { p(a, c), q(a, a′), q(b, b), r(a, c), r(a′, c) },
post = S ∪ {q(a, a)},
pre = { p(a, t) | t ∈ T U } ∪ { q(a, t) | t ∈ T U } ∪ { r(t, u) | t, u ∈ T U }

The program is c-s-correct w.r.t. pre, post (we skip a proof). To check that atom
p(a, c) ∈ S is adjustably covered by the first clause of P , note first that it is
covered w.r.t. S by p(a, c) ← q(a, a′). By Lemma 25, it is sufficient to check
condition 3 of Definition 22 for ρ = {X/a}, as p(X,Z)ρ = p(a, Z) is a most
general p-atom in pre. If q(X,Y)ρη ∈ post then η = {Y/a} or η = {Y/a′}.
Hence r(Y,Z)ρη is r(a, Z) or r(a′, Z). In both cases, p(a, c) ← r(Y η, c) is a
ground instance of (p(X,Z) ← r(Y,Z))ρη (i.e. of p(a, Z) ← r(Y η, Z)) covering
p(a, c) w.r.t. S.

The remaining atoms of S are trivially covered by the unary clauses of P .
The LD-tree for P and Q = p(a, Z) is finite, hence the LD-tree pruned due to
the cut is complete w.r.t. S by Theorem 23.

On Completeness of Logic Programs 275

5 Discussion

Declarativeness. Without declarative ways of reasoning about correctness and
completeness of programs, logic programming would not deserve to be called
a declarative programming paradigm. The sufficient condition for proving cor-
rectness (Theorem 4), that for semi-completeness of Theorem 10, and those for
completeness of Proposition 8(2) and Theorem 13 are declarative. Also, the suf-
ficient condition for completeness of pruned trees (Theorem18), based on clause
selection, to a substantial extent abstracts from the operational semantics. On
the other hand, the sufficient conditions for program completeness of Proposi-
tions 8(1) and 8(3) are not declarative, as they refer to program termination, or
depend on the order of atoms in clause bodies.

Declarative completeness proofs employing Proposition 8(2) or Theorem 13
imply termination, or require reasoning similar to that in termination proofs. So
proving completeness by means of semi-completeness and termination may be
a reasonable compromise between declarative and non-declarative reasoning, as
termination has to be shown anyway in most of practical cases.

Granularity of Proofs. Note that the sufficient condition for correctness deals
with single clauses, that for semi-completeness – with procedures, and those for
completeness take into account a whole program.

Incompleteness Diagnosis. There is a close relation between completeness prov-
ing and incompleteness diagnosis [21]. As the reason of incompleteness, a diag-
nosis algorithm finds an atom from S that is not covered by the program. Thus
it finds a reason for violating the sufficient conditions for semi-completeness
and completeness of Theorems 10 and 13. So what is diagnosed is lack of semi-
completeness. (As the algorithm works with a finite SLD-tree for a program P
and a query Q, incompleteness of P for Q implies that P is not semi-complete.)

Approximate Specifications. We found that approximate specifications are cru-
cial in avoiding unnecessary complications in dealing with correctness and com-
pleteness of programs (cf. Sect. 2.3, [9,11,13]). For instance, in the main example
of [9] (and in its simpler version in Examples 19, and 20) finding an exact spec-
ification is not easy, and is unnecessary. The required property of the program
is described more conveniently by an approximate specification. Moreover, as
this example shows, in program development the semantics of (common predi-
cates in) the consecutive versions of a program may differ. What is unchanged
is correctness and completeness w.r.t. an approximate specification.

Approximate Specifications in Program Development. This suggests a generaliza-
tion of the paradigm of program development by semantics preserving program
transformations [19,20]: it is useful and natural to use transformations which
only preserve correctness and completeness w.r.t. an approximate specification.

276 W. Drabent

Approximate Specifications in Debugging. In declarative diagnosis [21] the pro-
grammer is required to know the exact intended semantics of the program.
This is a substantial obstacle to using declarative diagnosis in practice. Instead,
an approximate specification can be used, with the specification for correctness
(respectively completeness) applied in incorrectness (incompleteness) diagnosis.
See [11] for discussion and references.

Interpretations as Specifications. This work uses specifications which are inter-
pretations. (The same kind of specifications is used, among others, in [1], and in
declarative diagnosis.) There are however properties which cannot be expressed
by such specifications [13]. For instance one cannot express that some instance of
an atomic query A should be an answer; one has to specify the actual instance(s).
Other approach is needed for such properties, possibly with specifications which
are logical theories (where axioms like ∃X.A can be used).

Applications. We want to stress the simplicity and naturalness of the sufficient
conditions for correctness (Theorem 4) and semi-completeness (Theorem 10, the
condition is a part of each discussed sufficient condition for completeness). Infor-
mally, the first one says that the clauses of a program should produce only correct
conclusions, given correct premises. The other says that each ground atom that
should be produced by P can be produced by a clause of P out of atoms pro-
duced by P . The author believes that this is a way a competent programmer
reasons about (the declarative semantics of) a logic program.

Paper [9] illustrates practical applicability of the methods presented here. It
shows a systematic construction of a non-trivial Prolog program (the SAT solver
of [16]). Starting from a formal specification, a definite clause logic program
is constructed hand in hand with proofs of its correctness, completeness, and
termination under any selection rule. The final Prolog program is obtained by
adding control to the logic program (delays and pruning SLD-trees). Adding
control preserves correctness and termination. However completeness may be
violated by pruning, and by floundering related to delays. By Theorem18, the
program with pruning remains complete.2 Proving non-floundering is outside of
the scope of this work. See [14] for a related analysis algorithm, applicable in
this case [17].

The example shows how well “logic” could be separated from “control.” The
whole reasoning related to correctness and completeness can be done declara-
tively, abstracting from any operational semantics.

Future Work. A natural continuation is developing completeness proof meth-
ods for programs with negation (a first step was made in [13]), maybe also
for constraint logic programming and CHR (constraint handling rules). Further
examples of proofs are necessary. An interesting task is formalizing and autom-
atizing the proofs, a first step is formalization of specifications. Another issue is
overcoming the limitation described in Interpretations as specifications above.
2 In [9] a weaker version of Theorem 18 was used, and one case of pruning was discussed

informally. A proof covering both cases of pruning is illustrated here in Example 20.

On Completeness of Logic Programs 277

Conclusion. Reasoning about completeness of logic program has been, surpris-
ingly, almost neglected. This paper presents a few sufficient conditions for com-
pleteness. As an intermediate step we introduced a notion of semi-completeness.
The presented methods are, to a large extent, declarative. Examples suggest that
the approach is applicable – maybe at informal level – in practice of Prolog pro-
gramming. The approach is augmented by two methods of proving completeness
in presence of pruning.

References

1. Apt, K.R.: From Logic Programming to Prolog. International Series in Computer
Science. Prentice-Hall, Upper Saddle River (1997)

2. Apt, K.R., Pedreschi, D.: Reasoning about termination of pure Prolog programs.
Inf. Comput. 106(1), 109–157 (1993)

3. Bezem, M.: Strong termination of logic programs. J. Log. Program. 15(1&2), 79–97
(1993)

4. Clark, K.L.: Predicate logic as computational formalism. Technical report 79/59,
Imperial College, London (1979)

5. Deransart, P., Ma�luszyński, J.: A Grammatical View of Logic Programming. The
MIT Press, Cambridge (1993)

6. Deville, Y.: Logic Programming: Systematic Program Development. Addison-
Wesley, Reading (1990)

7. Deville, Y., Lau, K.-K.: Logic program synthesis. J. Log. Program. 19(20), 321–350
(1994)

8. Doets, K.: From Logic to Logic Programming. The MIT Press, Cambridge (1994)
9. Drabent, W.: Logic + control: an example. In: Dovier, A., Santos Costa, V. (eds.)

Technical Communications of ICLP 2012. LIPIcs, vol. 17, pp. 301–311 (2012).
http://drops.dagstuhl.de/opus/volltexte/2012/3631

10. Drabent, W.: Logic + control: an example of program construction, CoRR.
abs/1110.4978 (2012). http://arxiv.org/abs/1110.4978.

11. Drabent, W.: Correctness and completeness of logic programs, CoRR.
abs/1412.8739 (2014). http://arxiv.org/abs/1412.8739

12. Drabent, W.: On completeness of logic programs, CoRR. abs/1411.3015(2014).
http://arxiv.org/abs/1411.3015

13. Drabent, W., Mi�lkowska, M.: Proving correctness and completeness of normal pro-
grams - a declarative approach. Theory Pract. Log. Program. 5(6), 669–711 (2005)

14. Genaim, S., King, A.: Inferring non-suspension conditions for logic programs with
dynamic scheduling. ACM Trans. Comput. Log. 9(3), 17:1–17:43 (2008)

15. Hogger, C.J.: Introduction to Logic Programming. Academic Press, London (1984)
16. Howe, J.M., King, A.: A pearl on SAT and SMT solving in Prolog. Theor. Comput.

Sci. 435, 43–55 (2012)
17. King, A.: Personal communication, March 2012
18. Kowalski, R.A.: The relation between logic programming and logic specification.

In: Hoare, C., Shepherdson, J. (eds.) Mathematical Logic and Programming Lan-
guages, pp. 11–27. Prentice-Hall, Upper Saddle River (1985). Also in Phil. Trans.
R. Soc. Lond. A, 312, 345–361(1984)

19. Pettorossi, A., Proietti, M.: Transformation of logic programs: foundations and
techniques. J. Log. Program. 19/20, 261–320 (1994)

http://drops.dagstuhl.de/opus/volltexte/2012/3631
http://arxiv.org/abs/1110.4978.
http://arxiv.org/abs/1412.8739
http://arxiv.org/abs/1411.3015

278 W. Drabent

20. Pettorossi, A., Proietti, M., Senni, V.: The transformational approach to program
development. In: Dovier, A., Pontelli, E. (eds.) GULP. LNCS, vol. 6125, pp. 112–
135. Springer, Heidelberg (2010)

21. Shapiro, E.: Algorithmic Program Debugging. The MIT Press, Cambridge (1983)
22. Stärk, R.F.: The theoretical foundations of LPTP (a logic program theorem

prover). J. Log. Program. 36(3), 241–269 (1998)
23. Sterling, L., Shapiro, E.: The Art of Prolog, 2nd edn. The MIT Press, Cambridge

(1994)

Polynomial Approximation to Well-Founded
Semantics for Logic Programs with Generalized

Atoms: Case Studies

Md. Solimul Chowdhury1(B), Fangfang Liu2, Wu Chen3, Arash Karimi1,
and Jia-Huai You1

1 Department of Computing Science, University of Alberta, Edmonton, Canada
{mdsolimu,arash.karimi,you}@cs.ualberta.ca

2 College of Computer and Information Science, Shanghai University,
Baoshan, China

ffliu@shu.edu.cn
3 College of Computer and Information Science, Southwest University,

Chongqing, China
chenwu@swu.edu.cn

Abstract. The well-founded semantics of normal logic programs has
two main utilities, one being an efficiently computable semantics with a
unique intended model, and the other serving as polynomial time con-
straint propagation for the computation of answer sets of the same pro-
gram. When logic programs are generalized to support constraints of
various kinds, the semantics is no longer tractable, which makes the sec-
ond utility doubtful. This paper considers the possibility of tractable but
incomplete methods, which in general may miss information in the com-
puted result, but never generates wrong conclusions. For this goal, we
first formulate a well-founded semantics for logic programs with general-
ized atoms, which generalizes logic programs with arbitrary aggregates/
constraints/dl-atoms. As a case study, we show that the method of
removing non-monotone dl-atoms for the well-founded semantics by Eiter
et al. actually falls into this category. We also present a case study for
logic programs with standard aggregates.

Keywords: Polynomial approximation · Well-founded semantics · Gen-
eralized atoms

1 Introduction

Logic programming with negation is a programming paradigm for declarative
knowledge representation and problem solving [5]. In a logic program, a problem
is represented as a set of rules and the solutions of the problem are determined
under a predefined semantics. In more recent years, logic programs have been
incorporated with various types of predefined atoms, to enable reasoning with
constraints and external knowledge sources. Examples include logic program

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 279–296, 2015.
DOI: 10.1007/978-3-319-17822-6 16

280 M.S. Chowdhury et al.

with aggregates [1,12,15,21], logic programs with abstract constraint atoms
[16,22], dl-programs [8,10], and logic programs with external sources (e.g. HEX-
programs [9]).

For a unifying framework for the study of logic programs, following [2], in
this paper a constraint atom in its generic form is called a generalized atom
and logic programs with these atoms are called logic programs with generalized
atoms. The main interest of this paper lies in the two case studies of polynomial
approximation to the well-founded semantics of these programs.

It is well-known that the well-founded semantics of normal logic programs can
be computed in polynomial time [24]. Besides many applications, the mechanism
of computing the well-founded semantics under a partial truth value assignment
can be employed in the computation of answer sets. This is utilized, for exam-
ple, in smodels [20] by the Expand function (though the term of well-founded
semantics was not used explicitly at that time); it is invoked before and after
every choice point in search. To serve as constraint propagation, it is essen-
tial that this computational process is effective. However, when constraints are
incorporated into logic programs, the resulting well-founded semantics becomes
intractable, since determining the satisfiability of a generalized atom by all con-
sistent extensions of a partial interpretation is co-NP-complete [1,21].1 For the
utility in constraint propagation in answer set computation, this is a problem.

In this paper, we consider tractable but incomplete methods. That is, we
would like to transform a given program P to another one P ′ in polynomial
time, so that

– the well-founded semantics of P ′ is tractable, and
– the well-founded semantics of P ′ specifies a subset of conclusions by the well-

founded semantics of P (when restricted to the language of P).

Of course, such a transformation should be non-trivial, as the empty program
trivially satisfies these properties.

The approach described above is based on a single transformed program P ′.
In general, however, the computation of an approximation of the well-founded
semantics may be carried out by a collection of program components each of
which is employed for some specific computations, as long as the overall process
takes polynomial time. We will call all of such approaches incomplete meth-
ods. But for simplicity, in the following we feel free to describe the effect of an
incomplete method by referring to the approach based on a single transformed
program P ′.

Incomplete methods have practical implications. For example, for computing
the well-founded semantics of a logic program with (arbitrary) generalized atoms,
one can always compute such an approximation first. For the utility in answer set
computation, let us assume that the well-founded semantics of P approximates
the answer sets of P , under a suitable definition of answer set. That is, any atom
true (resp. false) in the well-founded semantics of P , called well-founded (resp.

1 This assumes that the satisfaction of a generalized atom by one interpretation can
be determined in polynomial time.

Polynomial Approximation to Well-Founded Semantics for Logic Programs 281

unfounded), remains to hold in any answer set of P . Then, in the computation
of answer sets of P , constraint propagation can be performed by computing the
well-founded semantics of P ′ that extends a partial truth value assignment, at
any choice point in search for answer sets. The above conditions guarantee that
constraint propagation is correct and effective.

It is well-known that an efficient constraint propagation mechanism is essen-
tial in all popular search engines, e.g., BCP in Boolean Satisfiability (SAT) [6],
the Expand function in Answer Set Programming (ASP) [20], and various con-
sistency techniques in Constraint Programming (CP) [19].

To study incomplete methods, the first question is which well-founded seman-
tics is to be approximated, and how it is defined. In [11], for (disjunctive) logic
programs with arbitrary aggregates, the notion of unfounded set is defined but
the well-founded semantics itself is not spelled out explicitly. In [10], a well-
founded semantics for logic programs with (a certain kind of) monotone dl-atoms
is defined, using a similar notion of unfounded set, followed by a comment (cf.
Sect. 9.2) that the same approach can be generalized to programs with arbitrary
dl-atoms. But the details about this generalization are not provided. In [1], a
well-founded semantics for logic programs with monotone and anti-monotone
aggregates is presented, also based on a similar notion of unfounded set. Despite
these efforts, to our knowledge, there has been no unified approach such that for
all of the above classes of logic programs, the well-founded semantics falls into
the same theoretical framework. Apparently, a unified approach is important
in studying the common properties of logic programs in syntactically different
forms. Thus, our first task is to formally define this well-founded semantics for
logic programs with generalized atoms, which are first introduced in [2] for the
study of answer set semantics for various classes of logic programs. Hence, our
work presented here can be viewed as complementing that of [2] for the study
of well-founded semantics.

The well-founded semantics for logic programs with arbitrary generalized
atoms is not tractable in the general case. We then carry out two case studies on
the possibility of polynomial approximation. In the first, we consider dl-programs
with arbitrary dl-atoms. In fact, the authors of [10] give a simple rewrite scheme
for removing non-monotone dl-atoms from a program, in which every occurrence
of the constraint operator ∩− is replaced. It is shown that the data complexity
for ∩−-free dl-programs is tractable. However, we show that the transformation is
not faithful - the well-founded semantics of the transformed program in general
is not equivalent to the well-founded semantics of the original program. On the
other hand, we show that the rewrite scheme is correct. Namely, though it may
miss some conclusions, it never generates incorrect ones. This thus provides the
first case of polynomial approximation for a practical class of logic programs
with generalized atoms.

We then turn our attention to logic programs with aggregates. We adopt
the disjunctive rewrite scheme of abstract constraint atoms described in [14]
for aggregates with standard aggregate functions [21]. We show that disjunc-
tive rewrite is in general an incomplete method - it may miss conclusions but
never generates wrong ones for logic programs with (standard) aggregates. For

282 M.S. Chowdhury et al.

these programs, we formulate two different methods of disjunctive rewrite to
construct a polynomial process for the computation of an approximation of the
well-founded semantics.

The rest of the paper is organized as follows: Sect. 2 provides syntax and nota-
tions. Section 3 defines the well-founded semantics for logic program with gen-
eralized atoms and studies its basic properties. Then, we carry out case studies
on polynomial approximation for dl-programs in Sect. 4, and for logic programs
with aggregates in Sect. 5, followed by related work and discussion in Sect. 6.

2 Preliminaries

2.1 Language

We assume a language L that includes a countable set of ground atoms Σ (atoms
for short). A literal is either an atom or its negation. An interpretation is a
subset of Σ.

Following the spirit of [2], a generalized atom α on Σ is a mapping from
interpretations to the Boolean truth values t and f .2 There is no particular syn-
tax requirement, except that a generalized atom α is associated with a domain,
denoted Dom(α) ⊆ Σ, and the size of α is |Dom(α)|.3 We assume that a general-
ized atom may only mention atoms in Σ (i.e., it is not nested). An interpretation
I satisfies α, written I |= α, if α maps I to t, I does not satisfy a, written I �|= a,
if a maps I to f .

Intuitively, a generalized atom is a constraint, whose semantics is defined
externally by how it may be satisfied by sets of atoms.

Since an atom in Σ can be viewed as a special case of a generalized atom,
in the sequel, the term generalized atoms also includes all atoms in Σ. At times
of possible confusion, we may use the term ordinary atoms for those in Σ for
distinction. As usual, an interpretation I satisfies an ordinary atom a, written
I |= a, if a ∈ I (a maps I to t), and I does not satisfy a, written I �|= a, if a �∈ I
(a maps I to f).

A generalized atom α is monotone if for every interpretation I such that
I |= α, we have J |= α for all interpretations J such that J ⊇ I; it is anti-
monotone if for every interpretation I such that I |= α, we have J |= α for all
interpretations J such that J ⊆ I; it is non-monotone if it is not monotone.

Aggregate atoms, abstract constraint atoms, HEX-atoms, dl-atoms, weight
constraints, and global constraints in constraint satisfaction can all be modeled
by generalized atoms. Below we sketch some examples.

Example 1.

– An aggregate atom consists of a mapping from multi-sets to numbers, a
comparison operator, and a value. For example, following the notation of

2 Generalized atoms in [2] are essentially conjunctions of generalized atoms defined
here.

3 Domain is needed primarily for complexity measures. It is also indirectly involved
in the notion of satisfaction, which gives the semantics of a generalized atom.

Polynomial Approximation to Well-Founded Semantics for Logic Programs 283

[21], SUM({X|p(X)}) ≥ 1 denotes a (non-ground) aggregate atom: after
grounding one can view the set of ground instances of p(X) as the domain
of the atom. The semantics of the aggregate is defined by interpretations in
which the sum of the arguments in satisfied p(.) is greater than or equal to
1.

– An abstract constraint atom (or a c-atom) is of the form (D,S), where D ⊆ Σ
serves as the domain and S is a set of subsets of D representing admissible
solutions of the c-atom [17]. A c-atom (D,S) is satisfied by an interpretation
I iff I∩D ∈ S. For example, the aggregate atom SUM({X|p(X)}) ≥ 1 above
with domain D = {p(1), p(−1), p(2)} can be represented by a c-atom (D,S)
where S = {{p(1)}, {p(2)}, {p(−1), p(2)}, {p(1), p(2)}, {p(1), p(−1), p(2)}}.
Note that a c-atom contains an internal specification of how it may be satis-
fied by sets of atoms, while the satisfiability of a generalized atom is defined
externally. In both cases, the meaning of such an atom is defined by how it is
satisfied by sets of atoms, in spite of the syntactic differences in appearance.

– Global constraints in Constraint Satisfaction can be represented by gener-
alized atoms, by giving a name and domain of the constraint. Such a con-
straint is considered “built-in”, i.e., its meaning is pre-defined. For example,
a allDiff global constraint modeling the pigeon hole problem, can be spec-
ified by a generalized atom with the domain that consists of atoms each of
which represents a pigeon taking a hole. Suppose there are two pigeons x
and y and two holes {1, 2}. It can be represented by a generalized atom,
say g, such that Dom(g) = {x(1), x(2), y(1), y(2)}, where, for example, x(1)
means pigeon x is in hole 1; g is satisfied by interpretations such that every
pigeon is in a unique hole and no hole can hold up more than one pigeon.

2.2 Logic Programs with Generalized Atoms

A logic program with generalized atoms (or sometimes just called a program) is a
finite set of rules of the form: a ← β1, . . . , βm,¬βm+1, . . . ,¬βn, where m,n ≥ 0,
a is an ordinary atom and βi (1 ≤ i ≤ n) are generalized atoms. A rule is
normal if all βi are ordinary atoms, and a program is normal if all rules in it are
normal. A program is called a logic program with monotone and anti-monotone
generalized atoms, if every generalized atom in P is monotone or anti-monotone.

For a rule r of the above form, the head of the rule is denoted by H(r) = a
and the body of the rule by B(r) = {β1, . . . , βm,¬βm+1, . . . ,¬βn}. Also, we
define Pos(r) = {β1, . . . , βm} and Neg(r) = {βm+1, . . . , βn} to denote positive
atoms and negative atoms of B(r) respectively. We may use sets as conjunctions.
A generalized literal is either a generalized atom α, or its negation, ¬α. Note that,
without confusion, ordinary literals are (special cases of) generalized literals.

Let I be an interpretation, β a generalized atom and r a rule. Recall that if
β maps I to t we say that I satisfies β and write I |= β. We define that I |= ¬β
if β maps I to f , and I |= B(r) if I |= l for all l ∈ B(r). I is a model of a set of
rules P if I satisfies every r ∈ P .

Let I be an interpretation. By Ī = {a | a ∈ Σ\I}, we denote the set of atoms
exclusive of I.

284 M.S. Chowdhury et al.

Well-founded semantics are typically defined by building a partial interpreta-
tion. Let S be a set of literals. We define S+ = {a | a ∈ S}, S− = {a | ¬a ∈ S},
and ¬.S = {¬a | a ∈ S}. S is consistent if S+ ∩ S− = ∅. A partial interpreta-
tion S is a consistent subset of Σ ∪ ¬.Σ. Any atom not appearing in S is said
to be undefined. A consistent extension of S is an interpretation I such that
S ⊆ I ∪ ¬.Ī. Note that a consistent extension here is a (two-valued) interpreta-
tion, i.e., all atoms are assigned a truth value.4 In the sequel, we restrict Σ to
the set of atoms appearing in P . This is typically called the Herbrand base of P
and is denoted by HBP .

2.3 Well-Founded Semantics for Normal Logic Programs

To place our work in perspective, we briefly review the well-founded semantics
for normal logic programs, which can be defined alternatively in several ways,
one of which is based on the notion of unfounded set, which we adopt here.

Let P be a normal logic program and S a partial interpretation. A set U ⊆ Σ
is an unfounded set of P w.r.t. S, if for every a ∈ U and every rule r ∈ P with
H(r) = a, either (i) ¬b ∈ S ∪ ¬.U for some b ∈ Pos(r), or (ii) b ∈ S for some
b ∈ Neg(r). The greatest unfounded set of P w.r.t. S always exists, which is
denoted by UP (S).

Intuitively, unfounded atoms are those that can be safely assumed to be false
without affecting the evaluation of the rules under the given interpretation.

We then define two operators

– TP (S) = {H(r) | r ∈ P, Pos(r) ∪ ¬.Neg(r) ⊆ S}
– WP (S) = TP (S) ∪ ¬.UP (S)

The operator WP is monotone, and thus has a least fixpoint, which defines the
well-founded semantics of P .

3 Well-Founded Semantics for Logic Programs
with Generalized Atoms

In the definition of the well-founded semantics for normal logic programs, when
an atom a is in a partial interpretation S, it is clear that a remains to be satisfied
by all consistent extensions of S. However, this is not the case in general for
a non-monotone generalized atom. We thus extend the notion of truth (resp.
falsity) to the notion of persistent truth (resp. persistent falsity) under a partial
interpretation.

Definition 1. Let α be a generalized atom and S a partial interpretation.

– if α is an ordinary atom, it is persistently true (resp. persistently false) under
S if α ∈ S+ (resp. α ∈ S−);

4 This is to be consistent with the notion of an extension of a partial interpretation
introduced in [11].

Polynomial Approximation to Well-Founded Semantics for Logic Programs 285

– Otherwise, α is persistently true (resp. persistently false) under S if for all
consistent extensions I of S, I |= α (resp. I �|= α).

– ¬α is persistently true under S if α is persistently false under S.
– ¬α is persistently false under S if α is persistently true under S.

Intuitively, a generalized atom α is persistently true (resp. persistently false)
relative to a partial interpretation S, iff α is true (resp. false) relative to all
consistent extensions of S, i.e., the truth or falsity of α remains unaffected when
all undefined atoms w.r.t. S get assigned in any possible way.

The definition above naturally extends to conjunctions of generalized literals.
The following definition can be seen as a paraphrase of the notion of unfounded
set for logic programs with aggregates [11].

Definition 2 (Unfounded Set). Let P be a logic program with generalized
atoms and S a partial interpretation. A set U ⊆ HBP is an unfounded set of P
relative to S if for each r ∈ P with H(r) ∈ U , some generalized literal in B(r)
is persistently false w.r.t. (S \ U) ∪ ¬.U .

The definition says that an atom a is in an unfounded set U , relative to S,
because, for every rule with a in the head, at least one body literal is false in all
consistent extensions of (S \ U) ∪ ¬.U .

Definition 3 (Unfounded-Free Interpretation). Let P be a logic program
with generalized atoms and S a partial interpretation. S is unfounded-free, if
S ∩ U = ∅, for each unfounded set U of P relative to S.

The following lemma has been proved for logic programs with aggregates [11].
The same proof can be adopted for programs with generalized atoms.

Lemma 1. Let P be a logic program with generalized atoms and S an unfounded-
free interpretation. (i) Unfounded sets of P relative to S are closed under union.
(ii) The greatest unfounded set of P relative to S exists, which is the union of
all unfounded sets of P relative to S.

We now define the operators that are needed for the definition of well-founded
semantics.

Definition 4. Let P be a logic program with generalized atoms and S an unfou-
nded free partial interpretation. Define the operators TP , UP , and WP as follows:

(i) TP (S) = {H(r) | r ∈ P,B(r) is persistently true under S}.
(ii) UP (S) is the greatest unfounded set of P relative to S.
(iii) WP (S) = TP (S) ∪ ¬.UP (S).

As a notation, we define W 0
P = ∅, and W i+1

P = WP (W i
P), for all i ≥ 0. Note

that W 0
P is an unfounded-free interpretation and so is every W i

P , for i ≥ 0. Thus
in every step the greatest unfounded set is computed relative to an unfounded-
free set.

286 M.S. Chowdhury et al.

Lemma 2. The operators TP , UP , and WP are all monotone.

Note that the operator WP is well-defined, i.e., it is a mapping on unfounded-
free partial interpretations, which, along with the subset relation, forms a com-
plete lattice. Since WP is monotone, it follows from the Knaster-Tarski fixpoint
theorem [23] that the least fixpoint of WP exists.

Definition 5 (Well-Founded Semantics). Let P be a logic program with gen-
eralized atoms. The well-founded semantics (WFS) of P , denoted WFS(P), is
defined as the least fixpoint of the operator WP , denoted lfp(WP). An atom a ∈ Σ
is well-founded (resp. unfounded) relative to P iff a (resp. ¬a) is in lfp(WP).

Observe that, the only difference in the operators defined here from those defined
for normal logic programs is in the evaluation of body literals - being true (resp.
false) has been replaced by being persistently true (resp. persistently false). It
thus follows that the well-founded semantics for logic programs with generalized
atoms is a generalization of the well-founded semantics for normal logic pro-
grams, and it treats monotone, anti-monotone, and non-monotone generalized
atoms in a uniform manner.

Example 2. Consider program P below, where generalized atoms are aggregates.

r1 : p(−1). r2 : p(−2) ← SUM({X | p(X)}) ≤ 2.
r3 : p(3) ← SUM({X | p(X)}) > −4. r4 : p(−4) ← SUM({X | p(X)}) ≤ 0.

The aggregates under SUM are self-explaining, e.g., SUM({X | p(X)}) ≤ 2
means that the sum of X for satisfied atoms p(X) is less than or equal to 2.
We start with W 0

P = ∅, and then W 1
P = {p(−1)}. Observe that the body of

r2 is persistently true under W 1
P . We then have W 2

P = {p(−1), p(−2)}, and
W 3

P = {p(−1), p(−2), p(−4)}. Now the body of r3 is persistently false under
W 3

P . So, W 4
P = {p(−1), p(−2), p(−4), ¬p(3)} and, WFS(P) = lfp(WP) = W 4

P .

3.1 Complexity

Here, let us assume that for a generalized atom α, Dom(α) is finite and the
relation I |= α (resp. I |= ¬α) can be determined in polynomial time in the
size of Dom(α). This is the case for practical aggregates in logic programming,
reasoning with Horn clauses, and satisfiability testing of the combined complexity
for the DL-Lite family of description logics [3].

In general, the problem of computing the WFS of a program is intractable
since determining whether a generalized atom is persistently true or persistently
false under a partial interpretation is in general intractable.

Proposition 1. Let α be a generalized atom. Checking whether α is persistently
true relevant to a partial interpretation S is Co-NP-complete.

However, the WFS for logic programs with monotone and anti-monotone
generalized atoms is tractable. Let α be a generalized atom and S a partial

Polynomial Approximation to Well-Founded Semantics for Logic Programs 287

interpretation. To check whether α is persistently true under S, if α is monotone
we test S+ |= α, and if α is anti-monotone we test Σ\S− |= α. On the other
hand, if α is monotone, then α is persistently false under S iff Σ\S− �|= α, and
if α is anti-monotone, then α is persistently false under S iff S+ �|= α.

As the number of distinct atoms is at most the size of P , and the greatest
unfounded set can be generated incrementally in polynomial time, the follow-
ing proposition can be proved in a way similar to the claim for polynomial
time computation of WFS of logic programs with monotone and anti-monotone
aggregates.

Proposition 2. Let P be a logic program with monotone and anti-monotone
generalized atoms. Then, lfp(WP) can be computed in polynomial time.

4 Polynomial Approximation for DL-Programs

In this section we will introduce dl-programs [8,10], show how these programs
can be viewed as instances of logic programs with generalized atoms, and present
a polynomial approximation to the well-founded semantics of these programs.

4.1 Description Logic Program

We assume that the reader has some familiarity with description logics (DLs)
[4], which are decidable fragments of first order logic.

A dl-program is a combined knowledge base KB = (L,P), where L is a DL
knowledge base, which is a collection of axioms in the underlying DL, and P is a
rule base, which is a finite set of rules of this form: h ← A1, . . . , Am,¬B1, . . . ,¬Bn,
where h is an atom, and Ai and Bi are atoms or dl-atoms,5 which are of the form

DL[S1op1p1, · · ·, Smopmpm;Q](t) (1)

in which Si is a concept or role from the vocabulary of L, opi ∈ {�,∪−,∩−}, pi

is a predicate symbol only appearing in P whose arity matches that of Si, and
Q(t) is called a dl-query, where t is a list of constants and Q is a concept, a role,
or a concept inclusion axiom, built from the vocabulary of L.

Intuitively, Si � pi extends Si by the extension of pi, and Sipi analogously
extends ¬Si; the expression S∩− pi instead constrains Si to pi. It is clear that the
operator ∩− (which we call the constraint operator) may cause a dl-program to be
non-monotone; a dl-atom which is free of the constraint operator is monotone.

In this paper, we assume that a dl-program is ground, and define the Herbrand
base of P , denoted HBP , to be the set of all ground atoms p(t), where p appears
in P and t is a tuple of constants. Interpretations are subsets of HBP .

Definition 6. Let KB = (L,P) be a dl-program and I ⊆ HBP an interpretation.
We define the satisfaction relation under L, denoted |=L, as follows:

5 For simplicity, we assume that equality does not appear in rules.

288 M.S. Chowdhury et al.

1. I |=L
 and I �|=L ⊥.
2. For any atom a ∈ HBP , I |=L a if a ∈ I.
3. For any (ground) dl-atom A = DL[S1op1p1, · · · , Smopmpm;Q](c) occurring

in P , I |=L A if L ∪ ⋃m
i=1 Ai |= Q(c), where

Ai =

⎧⎨
⎩

{Si(e) | pi(e) ∈ I}, if opi = �;
{¬Si(e) | pi(e) ∈ I}, if opi = ∪−;
{¬Si(e) | pi(e) /∈ I}, if opi = ∩−.

Intuitively, dl-programs can be seen as instances of logic programs with gener-
alized atoms, if each dl-atom is mapped to a generalized atom while preserving
its semantics. To make this precise, let us define a mapping ξ from dl-programs
to programs with generalized atoms.

Definition 7. Let KB = (L,P) be a dl-program, and ξ(KB) denote the set of
rules obtained from KB in the following way: for each r ∈ P , we have r′ ∈ ξ(KB)
such that r′ is r except that each dl-atom g appearing in r is replaced by a
generalized atom αg such that

– Dom(αg) is the set of atoms appearing in P , and
– We identify Σ with HBP , and define the semantics of αg as: for all interpre-

tations I, I |=L g iff I |= αg.

That is, ξ is a transformation that preserves satisfiability under |=L.

Definition 8. Let KB = (L,P) be a dl-program. The well-founded semantics
(WFS) of KB is defined in terms of the well-founded semantics of ξ(KB).

Example 3. Consider a dl-program KB = (∅, P), where P consists of

r1 : p(a) ← ¬DL[S1∩−q, S2 � r;¬S1 � S2](a).
r2 : q(a) ← DL[S � q;S](a).
r3 : r(a) ← DL[S∩−q;¬S](a).

Let P ′ = ξ(KB). We have W 0
P ′ = ∅. Next, consider r1 and the only dl-atom

in it. Let I = {r(a)}, which is a consistent extension of W 0
P ′ . By S1∩−q in

the dl-atom, that q(a) �∈ I leads to ¬S1(a); similarly r(a) ∈ I leads to S2(a).
Thus, the query Q[a] = ¬S1(a) � S2(a) is satisfied by {¬S1(a), S2(a)}. Hence
DL[S1∩−q, S2 � r;¬S1 � S2](a) evaluates to true under I and its negation to
false. As ¬DL[S1∩−q, S2 � r;¬S1 � S2](a) is not persistently true, we do not
derive p(a). But {q(a)} is an unfounded set relative to ∅, since the dl-atom in
the body of rule r2 is persistently false relative to all consistent extensions of
W 0

P ′ ∪{¬q(a)}. The reader can verify that W 1
P ′ = {¬q(a)}, W 2

P ′ = {¬q(a), r(a)},
and W 3

P ′ = {¬q(a),¬p(a), r(a)}, which is the least fixpoint of WP ′ .

Due to the one-to-one correspondence between the satisfaction under |=L and
that under |=, in the following, we may refer to the WFS of a dl-program directly
without applying the mapping ξ explicitly. The WFS of a dl-program KB is

Polynomial Approximation to Well-Founded Semantics for Logic Programs 289

thus denoted by lfp(WKB). We can then apply the notion of persistent truth
and falsity directly to dl-programs. In this way, it can be shown easily that
the well-founded semantics defined in [10] for dl-programs with dl-atoms that
are free of the constraint operator coincides with the well-founded semantics of
the corresponding logic program with generalized atoms.

4.2 Removing Non-monotone Dl-Atoms as a Polynomial
Approximation

Clearly, non-monotone dl-atoms are the result of applying the constraint opera-
tor ∩−, as the satisfiability of such atoms depends on truth value of propositional
atoms exclusive of a given interpretation. In [10], the authors suggest a polyno-
mial time rewrite to remove the constraint operator.

Definition 9 (Transformation π). Let KB = (L,P) be a dl-program. π(KB) is
a dl-program obtained from KB by

1. replacing each occurrence of Si∩−pi with Si∪−p̄i (p̄i is the complement of pi),
and

2. for each atom pi(t) that occurs in the head of some rule in P , add the following
rule

p̄i(t) ← ¬DL[S′
i � pi;S′

i](t)

where S′
i is a fresh concept or role name.

Note that π is a polynomial transformation.
Since the transformation π does not affect DL knowledge base L in KB, we

may write π(P) to denote the set of all transformed rules, and π(r) to denote
the set of transformed rules for r ∈ P . By the transformation π, any dl-program
KB = (L,P) can be rewritten to a dl-program π(KB) free of the constraint
operator, and thus π(KB) only contains monotone dl-atoms (then for such a
dl-atom α, ¬α is anti-monotone). By Proposition 2, we know that, if query
answering with the underlying DL is tractable, then the WFS of π(KB) can be
computed in polynomial time.

The question is whether the transformation π is faithful. That is, whether it is
the case that for all dl-programs KB, the WFS of KB is equivalent to the WFS
of π(KB), barring freshly added concept/role names in π(KB). The following
example shows that the answer to this question is no.

Example 4. Consider a single-rule dl-program KB = (∅, P),6 where P consists
of a single rule

p(a) ← DL[S∪−p, S∩−p;¬S](a).

The WFS of KB is {p(a)}. On the other hand, π(P) consists of two rules

p(a) ← DL[S∪−p, S∪−p̄;¬S](a). p̄(a) ← ¬DL[S′ � p;S′](a).

Clearly, the WFS of π(KB) is ∅, as neither p(a) nor p̄(a) is derivable under ∅,
and neither is unfounded relative to ∅.
6 This example was originally provided by Yisong Wang.

290 M.S. Chowdhury et al.

However, we can show that the transformation π is correct, i.e., given a dl-
program KB, when restricted to the language of KB, all the well-founded (resp.
unfounded) atoms relative to π(KB) are well-founded (resp. unfounded) relative
to KB.

Let KB = (L,P) be a dl-program and τ(KB) its signature. We denote the
WFS of π(KB), restricted to τ(KB), by WFS(π(KB))|τ(KB) (similarly,
lfp(Wπ(KB))|τ(KB)). For simplicity, we just write τ for τ(KB).

We now give the main theorem of this section.

Theorem 1. Let KB = (L,P) be a dl-program. Then WFS(π(KB))|τ ⊆
WFS(KB).

5 Polynomial Approximation for Logic Programs
with Aggregates

Aggregates can be viewed as special cases of generalized atoms. In this case,
logic programs with aggregates are instances of logic programs with generalized
atoms. In this section, we show an incomplete method for approximating the
well-founded semantics for these programs.

5.1 Syntax and Semantics of Logic Programs with Aggregates

Following [21], an aggregate (or aggregate atom) is a constraint on a set of atoms
taking the form

aggr({X | p(X)}) op Result (2)

where aggr is an aggregate function. The standard aggregate functions are those
in {SUM, COUNT, AVG, MAX, MIN}. The set {X|p(X)} is called an inten-
sional set, where p is a predicate, and X is a variable which takes value from a
set D(X) = {a1, . . . , an}, called the variable domain. The relational operator op
is from {=, �=, <,>,≤,≥} and Result is a numeric constant.

The domain of an aggregate A, denoted Dom(A), is the set of atoms {p(a) | a ∈
D(X)}. The size of an aggregate is |Dom(A)|.

For an aggregate A, the intensional set {X|p(X)}, the variable domain D(X),
and the domain of an aggregate Dom(A) can also be a multiset which may
contain duplicate members. Since multiple occurrences of an atom in a multiset
can be represented by distinct symbols whose equivalence can be reinforced by
adding simple normal rules, in the following, we only discuss the case of domain
being a set.

Let I be an interpretation. I is a model of (satisfies) an aggregate A, denoted
I |= A, if aggr({a | p(a) ∈ I ∩ Dom(A)}) op Result holds, otherwise I is not a
model of (does not satisfy) A, denoted I �|= A.

For instance, consider the aggregate A = SUM({X|p(X)}) ≥ 2, where
D(X) = {−1, 1, 1, 2}. For the sets I1 = {p(2)} and I2 = {p(−1), p(1)}, we
have I1 |= A and I2 �|= A.

Polynomial Approximation to Well-Founded Semantics for Logic Programs 291

A logic program with aggregates (or an aggregate logic program) is a finite
set of rules of this form: h ← A1, . . . , Ak,¬B1, . . . ,¬Bm, G1, . . . , Gn,where h, Ai

and Bj are atoms and Gi are aggregates.
We then can define a mapping from from aggregate programs to programs

with generalized atoms, in exactly the same way as in Definition 7. Namely, the
domain of an aggregate A is the domain of the corresponding generalized atom
gA and the satisfiability of gA is identical to that of A.

5.2 Disjunctive Rewrite as a Polynomial Approximation

To optimize programs with constraint atoms, in [14], replacement techniques are
studied, where a complex constraint may be decomposed into simpler ones. In one
replacement scheme, the authors propose to rewrite a program with disjunctive
encoding for c-atoms under the answer set semantics. The idea is to encode
a complex c-atom by a disjunction of simpler c-atoms. We apply this idea to
aggregates.

A disjunctive encoding of an aggregate A is a disjunction of aggregates
Ai (1 ≤ i ≤ m), denoted by d(A1, . . . , Am), such that for any interpretation
I, I |= A iff I |= Ai (1 ≤ i ≤ m). That is, disjunctive encoding preserves
satisfaction.

In [21], the authors show that the determination of persistent truth of an
aggregate atom involving SUM/AV G and �= at the same time is intractable,
while determining the same for all other aggregate atoms is tractable. Now, by
definition, an aggregate atom A is persistently false under S iff the complement
of A is persistently true under S. As a result, determining persistent falsity of
SUM/AV G involving the = operator is also intractable. Thus the goal of dis-
junctive rewrite for aggregate logic programs is to transform away aggregates of
the form f(.) �= c for computing well-founded atoms and f(.) = c for computing
unfounded atoms, where f ∈ {SUM,AV G}.

Definition 10. (Disjunctive Rewrite). Let P be a logic program with aggre-
gates. The disjunctive rewrite of P produces two programs, one for polynomial
time computation of well-founded atoms of P , denoted as Pw and the other for
polynomial time computation of unfounded atoms of P , denoted as Pu. We define
Pw as:

For each occurrence of aggregate atom of the form f(.) �= c in P , where
f ∈ {SUM, AVG}, we replace that atom with a unique symbol α and add
the following two rules: α ← f(.) > c and α ← f(.) < c.

and define Pu as:

For each occurrence of aggregate atom of the form f(.) = c in P , where
f ∈ {SUM, AVG}, we replace that atom with the conjunction of two
aggregates, f(.) ≤ c and f(.) ≥ c.

292 M.S. Chowdhury et al.

By an abuse of notation, let us denote the pair of programs Pw and Pu

by P(w,u). Now, we revise the definition of the operator WP of Definition 4 as
follows:

WP(w,u)(S) = TPw
(S) ∪ ¬.UPu

(S).

It can be shown that the operator WP(w,u) is monotone, thus its least fixpoint
can be computed iteratively. Again, let us denote by WFS(P(w,u)) the least
fixpoint of the operator WP(w,u) .

The following example shows that the disjunctive rewrite is an incomplete
method.

Example 5. Consider the following aggregate logic program P

p(2) ← SUM({X|p(X)}) �= −1. p(−3) ← p(2). p(1) ←.

where HBP = {p(1), p(2), p(−3)}. WFS(P) is computed as follows: W 0
P = ∅,

W 1
P = {p(1)}, W 2

P = {p(1), p(2)}, and W 3
P = {p(1), p(2), p(−3)}, which is the

least fixpoint of WP .
By disjunctive rewrite, we have Pw below

p(2) ← α. p(−3) ← p(2). p(1) ←.
α ← SUM({X : p(X)}) > −1. α ← SUM({X : p(X)}) < −1.

As P contains no aggregate atom of the form f(.) = c, we have Pu = P . Then,
we have TPw

(∅) = {p(1)} and UPu
(∅) = ∅, thus WP(w,u)(∅) = {p(1)}. It can be

verified easily that this is a fixpoint of WP(w,u) , i.e., WFS(P(w,u)) = {p(1)}.

It can be seen that disjunctive rewrite produces stronger constraints. To
show this, let us extend the notion of persistent truth and falsity to disjunction of
literals in a natural way. Then, we can see that, given a disjunction of aggregates,
say (f(.) < c) ∨ (f(.) > c), and a partial interpretation S, the fact that f(.) < c
is persistently true under S or f(.) > c is persistently true under S implies that
(f(.) < c)∨(f(.) > c) is persistently true under S, but the converse does not hold
in general - that (f(.) < c) ∨ (f(.) > c) is satisfied by all consistent extensions
of S does not imply that f(.) < c is persistently true under S or f(.) > c
is persistently true under S, because it may be due to that some consistent
extensions satisfy f(.) < c and others satisfy f(.) > c.

Similarly, for the computation of unfounded set, that f(.) = c is persistently
false iff f(.) �= c is persistently true if either f(.) > c is persistently true or
f(.) < c is persistently true iff either f(.) ≤ c is persistently false or f(.) ≥ c is
persistently false. The converse for the if statement above does not hold because
that f(.) = c is persistently false may be due to the fact that for some consistent
extensions f(.) < c holds and for the others f(.) > c holds.

The above arguments actually give a proof sketch of the following theorem.

Theorem 2. Let P be a logic program with aggregates. Then, WFS(P(w,u))|τ(P) ⊆
WFS(P), where τ(P) denotes the original language of P .

Polynomial Approximation to Well-Founded Semantics for Logic Programs 293

6 Related Work and Discussion

The well-founded semantics defined in this paper for logic programs with gener-
alized atoms is based on essentially the same notion of unfounded set formulated
in [11]. By the work of [18], for logic programs with aggregates, this well-founded
semantics is known to approximate answer sets based on the notion of condi-
tional satisfaction [22]. This well-founded semantics is different from that of [25],
which approximates answer sets by reduct [22]. The WFS of [25] is weaker than
the WFS defined here, but without any reduction on complexity.

In [13], the authors present a well-founded semantics for hybrid Minimal
Knowledge and Negation as Failure (MKNF) knowledge bases, which is a local
closed world extension of the MKNF DL knowledge base. The well-founded
semantics defined in [13] is shown to be tractable, if the chosen DL fragment
is tractable. As shown in Proposition 1 of this paper, even if we assume the
entailment relation I |= φ is tractable, for interpretation I and generalized atom
φ, computing the WFS is still not. This is inevitable since classic formulas under
the scope of negation are anti-monotone while generalized atoms may be neither
monotone nor anti-monotone. The precise relationship between the MKNF WFS
and the WFS defined here requires further study.

If we assume that the domain of a generalized atom is bounded [2] the well-
founded semantics can be computed in polynomial time. This assumption is
reasonable only for generalized atoms with small domains.

For improving propagation efficiency for HEX-programs, a decision criterion
is introduced in [7] to allow to decide if further check is necessary (with the
external sources) to complete the computation of the Unfounded Set (UFS) of
the guessing program Q obtained from a given HEX-program P w.r.t. an inter-
pretation A. The decision criterion is as follows: is there any atom dependency
cycle that exists in P , which contains external edges (e-cycle)? Following this
decision criterion, the authors devise a program decomposition technique which
decomposes a given HEX-program into two types of components - one type of
component is with e-cycles and other type of component does not have e-cycles.
UFS checking is needed only for the components which do have e-cycles. Thus
this technique avoids UFS checking when it is not necessary. This work however
does not prevent complexity jump in constraint propagation. The decision crite-
rion reduces computational cost linearly. In our case studies, we focus on subtle
aspects of computation that cause complexity jump, which may be avoided by
incomplete methods. We establish the links between such incomplete methods
with the well-founded semantics of the underlying logic program.

We wonder whether the idea of incomplete methods can be pursued for HEX-
programs in general. If yes, it will be interesting to study characterizations of the
type of information that may be captured, or lost, by such an approximation.

Many practical logic programs use weight constraints, which are essentially
the SUM aggregates. It would be interesting to see whether the methods pro-
posed in this paper are applicable to some of these programs, and if yes, how the

294 M.S. Chowdhury et al.

propagators for weight constraints of the currently available ASP systems (such
as clasp7) can benefit from disjunctive rewrite presented in this paper.

A Appendix: Proof of Theorem 1

Proof. We prove the claim by induction on the construction of lfp(Wπ(KB)) and
lfp(WKB).

(a) Base: W 0
π(KB)|τ = W 0

KB = ∅.
(b) Step: Assume, for all k ≥ 0, W k

π(KB)|τ ⊆ W k
KB, and prove W k+1

π(KB)|τ ⊆ W k+1
KB .

By definition, we know

W k+1
π(KB)|τ = Tπ(KB)(W k

π(KB))|τ ∪ ¬Uπ(KB)(W k
π(KB))|τ (3)

W k+1
KB = TKB(W k

KB) ∪ ¬.UKB(W k
KB) (4)

To prove W k+1
π(KB)|τ ⊆ W k+1

KB , it is sufficient to prove both of

Tπ(KB)(W k
π(KB))|τ ⊆ TKB(W k

KB) (5)

Uπ(KB)(W k
π(KB))|τ ⊆ UKB(W k

KB) (6)

Below, let us assume that at most one dl-atom may appear in a rule. The proof
can be generalized to arbitrary rules by the same argument, for the transforma-
tion of one dl-atom at a time.

(i) We first prove (5). Let a ∈ Tπ(KB)(W k
π(KB))|τ . By definition, ∃r′ ∈ π(P)

such that B(r′) is persistently true under W k
π(KB). WLOG, assume for some

r ∈ P , π(r) = {r′, r′′}, as illustrated in (7) below, in which a dl-atom appears
positively, which is replaced by rules in (7) of π(r).

r : a ← . . . , DL[. . . , Sj∩−pj , . . . ;Q](e), . . . (7)
r′ : a ← . . . , DL[. . . , Sj∪−p̄j , . . . ;Q](e), . . .
r′′ : p̄j(e) ← ¬DL[S′

j � pj ;S′](e) (8)

Let D denote the dl-atom in (7), and D′ the corresponding dl-atom in (7). If
the operator ∩− does not occur in D, then trivially B(r) is persistently true
under W k

KB, and thus a ∈ TKB(W k
KB).

Otherwise, since B(r′) is persistently true under W k
π(KB), we have D′ is

persistently true under W k
π(KB), and by the fact that D′ is monotone, we have

W k
π(KB) |=L D′. The atom p̄j(e) may or may not play a role in the entailment

L ∪ ⋃m
i=1 D′

i |= Q(e) (cf. Definition (6)). The proof is trivial if it does not.
Otherwise, p̄j(e) is well-founded already w.r.t. W k

π(KB), and by the last rule

in (7), pj(e) is unfounded w.r.t. W k′
π(KB), for some k′ < k. By induction

7 http://www.cs.uni-potsdam.de/clasp/.

http://www.cs.uni-potsdam.de/clasp/

Polynomial Approximation to Well-Founded Semantics for Logic Programs 295

hypothesis, we know W k′
π(KB)|τ ⊆ W k′

KB, thus pj(e) is unfounded w.r.t. W k
KB.

It follows D is persistently true under W k
KB, and by the assumption that D

is the only dl-atom in (7) and that B(r′) is persistently true under W k
π(KB),

we have B(r) is persistently true under W k
KB. Thus, a ∈ TKB(W k

KB).
If D appears negatively in rule body, the proof is similar because, given a
partial interpretation S, ¬D is persistently true under S iff D is persistently
false under S, and we just need to swap well-founded and unfounded in the
argument above.

(ii) To prove (6), assume that a ∈ Uπ(KB)(W k
π(KB))|τ and we show a ∈ UKB(W k

KB).
Consider the case of (7). WLOG, assume that r is the only rule in P with a in
the head. If the fact a ∈ Uπ(KB)(W k

π(KB)) is independent of p̄j(e), the proof
is trivial. Otherwise, that a ∈ Uπ(KB)(W k

π(KB)) is because D′ is persistently
false under ¬.U ′ ∪ W k

π(KB), where U ′ is the greatest unfounded set relative
to W k

π(KB). This implies that p̄j(e) must be unfounded w.r.t. W k
π(KB), and

it follows that pj(e) is well-founded already w.r.t. W k′
π(KB), for some k′ < k.

Then, by induction hypothesis, we have that pj(e) is well-founded w.r.t.
W k

KB, which implies that B(r) is persistently false under ¬.U ∪ W k
KB, where

U is the greatest unfounded set w.r.t. W k
KB. It follows a ∈ UKB(W k

KB). The
proof for the case where a dl-atom appears negatively in rule body is similar.

Hence, the proof is completed. ��

References

1. Alviano, M., Calimeri, F., Faber, W., Leone, N., Perri, S.: Unfounded sets and
well-founded semantics of answer set programs with aggregates. J. Artif. Intell.
Res. 42, 487–527 (2011)

2. Alviano, M., Faber, W.: The complexity boundary of answer set programming
with generalized atoms under the FLP semantics. In: Cabalar, P., Son, T.C. (eds.)
LPNMR 2013. LNCS, vol. 8148, pp. 67–72. Springer, Heidelberg (2013)

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge (2003)

5. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, New York (2003)

6. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint
programming: a comparative survey. ACM Comput. Surv. 38(4), 1–54 (2006)

7. Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: Efficient hex-program
evaluation based on unfounded sets. J. Artif. Intell. Res. (JAIR) 49, 269–321 (2014)

8. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artif. Intell.
172(12–13), 1495–1539 (2008)

9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: IJCAI,
pp. 90–96 (2005)

296 M.S. Chowdhury et al.

10. Eiter, T., Lukasiewicz, T., Ianni, G., Schindlauer, R.: Well-founded semantics for
description logic programs in the semantic web. ACM Trans. Comput. Log. 12(2)
(2011), Article 3

11. Faber, W.: Unfounded sets for disjunctive logic programs with arbitrary aggregates.
In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS
(LNAI), vol. 3662, pp. 40–52. Springer, Heidelberg (2005)

12. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implemen-
tation of aggregate functions in the DLV system. TPLP 8(5–6), 545–580 (2008)

13. Knorr, M., Júlio Alferes, J., Hitzler, P.: Local closed world reasoning with descrip-
tion logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554
(2011)

14. Liu, G., Goebel, R., Janhunen, T., Niemelä, I., You, J.-H.: Strong equivalence
of logic programs with abstract constraint atoms. In: Delgrande, J.P., Faber, W.
(eds.) LPNMR 2011. LNCS, vol. 6645, pp. 161–173. Springer, Heidelberg (2011)

15. Liu, G., You, J.-H.: Lparse programs revisited: semantics and representation of
aggregates. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol.
5366, pp. 347–361. Springer, Heidelberg (2008)

16. Liu, L., Pontelli, E., Cao Son, T., Truszczyński, M.: Logic programs with abstract
constraint atoms. Artif. Intell. 174, 295–315 (2010)

17. Marek, V.W., Truszczynski, M: Logic programs with abstract constraint atoms.
In: Proceedings of AAAI-04, pp. 86–91 (2004)

18. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of
logic programs with aggregates. Theory Pract. Log. Program. 7, 301–353 (2007)

19. Rossi, F., Van Beek, P., Walsh, T. (eds.): Global constraints. Handbook of Con-
straint Programming. Elsevier, New York (2006)

20. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1–2), 181–234 (2002)

21. Cao Son, T., Pontelli, E.: A constructive semantic characterization of aggregates
in answer set programming. TPLP 7(3), 355–375 (2007)

22. Pontelli, E., Huy Tu, P.: Answer sets for logic programs with arbitrary abstract
constraint atoms. J. Artif. Intell. Res. 29, 353–389 (2007)

23. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

24. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

25. Wang, Y., Lin, F., Zhang, M., You, J.-H.: A well-founded semantics for basic logic
programs with arbitrary abstract constraint atoms. In: AAAI (2012)

Program Transformation and
Optimization

Declarative Compilation for Constraint
Logic Programming

Emilio Jesús Gallego Arias1, James Lipton2(B), and Julio Mariño3

1 University of Pennsylvania, Philadelphia, USA
emilioga@cis.upenn.edu

2 Wesleyan University, Middletown, USA
jlipton@wesleyan.edu

3 Universidad Politécnica de Madrid, Madrid, Spain
jmarino@fi.upm.es

Abstract. We present a new declarative compilation of logic programs
with constraints into variable-free relational theories which are then exe-
cuted by rewriting. This translation provides an algebraic formulation
of the abstract syntax of logic programs. Management of logic variables,
unification, and renaming apart is completely elided in favor of alge-
braic manipulation of variable-free relation expressions. We prove the
translation is sound, and the rewriting system complete with respect to
traditional SLD semantics.

Keywords: Logic programming · Constraint programming · Relation
algebra · Rewriting · Semantics

1 Introduction

Logic programming is a paradigm based on proof search and directly program-
ming with logical theories. This is done to achieve declarative transparency : guar-
anteeing that execution respects the mathematical meaning of the program. The
power that such a paradigm offers comes at a cost for formal language research
and implementation. Management of logic variables, unification, renaming vari-
ables apart and proof search are cumbersome to handle formally. Consequently,
it is often the case that the formal definition of these aspects is left outside the
semantics of programs, complicating reasoning about them and the introduction
of new declarative features.

We address this problem here by proposing a new compilation framework –
based on ideas of Tarski [21] and Freyd [9] – that encodes logic programming
syntax into a variable-free algebraic formalism: relation algebra. Relation alge-
bras are pure equational theories of structures containing the operations of com-
position, intersection and convolution. An important class of relation algebras
is the so-called distributive relation algebras with quasi-projections, which also
incorporate union and projections.

We present the translation of constraint logic programs to such algebras in
3 steps. First, for a CLP program P with signature Σ, we define its associated
c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 299–316, 2015.
DOI: 10.1007/978-3-319-17822-6 17

300 E.J.G. Arias et al.

relation algebra QRAΣ , which provides both the target object language for
program translation and formal axiomatization of constraints and logic variables.
Second, we introduce a constraint compilation procedure that maps constraints
to variable-free relation terms in QRAΣ . Third, a program translation procedure
compiles constraint logic programs to an equational theory over QRAΣ .

The key feature of the semantics and translation is its variable-free nature.
Programs that contain logical variables are represented as ground terms in our
setting, thus all reasoning and execution is reduced to algebraic equality, allowing
the use of rewriting. The resulting system is sound and complete with respect to
SLD resolution. Our compilation provides a solution to the following problems:

– Underspecification of abstract syntax and logic variable management in logic
programs: solved by the the inclusion of metalogical operations directly into
the compilation process.

– Interdependence of compilation and execution strategies: solved by making
target code completely orthogonal to execution.

– Lack of transparency in compilation (for subsequent optimization and abstract
interpretation): solved by making target code a low-level yet fully declarative
translation of the original program.

Variable Elimination and Relation Composition. We illustrate the spirit of trans-
lation, and in particular the variable elimination procedure, by considering a
simple case, namely the transitive closure of a graph:

edge(a,b). connected(X,X).
edge(b,c). connected(X,Y) :- edge(X,Z), connected(Z,Y).
edge(a,e).
edge(e,f).

In this carefully chosen example, the elimination of variables and the translation
to binary relation symbols is immediate:

edge = (a, b) ∪ (b, c) ∪ (a, e) ∪ (a, e) ∪ (e, f)
connected = id ∪ edge; connected

The key feature of the resulting term is the composition edge; connected. The
logical variable Z is eliminated by the composition of relations allowing the
use of variable free object code. A query connected(a,X) is then modeled by
the relation connected ∩ (a, a)1 where 1 is the (maximal) universal relation.
Computation can proceed by rewriting the query using a suitable orientation of
the relation algebra equations and unfolding pertinent recursive definitions.

Handling actual arbitrary constraint logic programs is more involved. First,
we use sequences and projection relations to handle predicates involving an arbi-
trary number of arguments and an unbounded number of logic variables; second,
we formalize constraints in a relational way.

Projections and permutations algebraically encode all the operations of logical
variables – disjunctive and conjunctive clauses are handled with the help of the
standard relational operators ∩, ∪.

Declarative Compilation for Constraint Logic Programming 301

Constraint Logic Programming Conventions. We refer the reader to [16] for basic
definitions of logic programming over Horn clauses, and [12] for background on
the syntax and semantics of constraint logic programming. In this paper we fix
a signature Σ, a set of terms TΣ(X), and a subset C of all first-order formu-
las over Σ closed under conjunction and existential quantification to be the set
of constraint formulas as well as a Σ-structure D, called the constraint domain.
Constraint logic programs are sets of Horn clauses. We use vector notation exten-
sively in the paper, to abbreviate Horn clauses with constraints p ← q1, . . . , qn,
where p is an atomic formula and qi may be an atomic formula or a constraint.
For instance, in our vector notation, a clause is written p(t [x]) ← q(u [x ,y]),
where the boldface symbols indicate vectors of variables x ,y , terms t ,u (depend-
ing on variables x , etc. . .) and predicates q (depending on terms u).

2 Relation Algebras and Signatures

In this section, we define QRAΣ , a relation algebra in the style of [9,21] formal-
izing a CLP signature Σ and a constraint domain D. We define its language, its
equational theory and semantics.

2.1 Relational Language and Theory

The relation language RΣ is built from a set RC of relation constants for constant
symbols a set RF of relation constants for function symbols from Σ, and a set of
relation constants for primitive predicates RCP , as well as a fixed set of relation
constants and operators detailed below. Let us begin with RC . Each constant
symbol a ∈ CΣ defines a constant symbol (a, a) ∈ RC , each function symbol
f ∈ FΣ defines a constant symbol Rf in RF . Each predicate symbol r ∈ CPΣ

defines a constant symbol r in RCP . We write RΣ for the full relation language:

RC = {(a, a) | a ∈ CΣ} RF = {Rf | f ∈ FΣ , } RCP = {r | r ∈ CPΣ}
Ratom ::= RC | RF | RCP | id | di | 1 | 0 | hd | tl
RΣ ::= Ratom | RΣ

◦ | RΣ ∪ RΣ | RΣ ∩ RΣ | RΣRΣ

The constants 1,0, id , di respectively denote the universal relation (whose stan-
dard semantics is the set of all ordered pairs on a certain set), the empty
relation, the identity (diagonal) relation, and identity’s complement. Juxta-
position RR represents relation composition (often written R;R) and R◦ is
the inverse of R. We write hd and tl for the head and tail relations. The
projection of an n-tuple onto its i-th element is written Pi and defined as
P1 = hd, P2 = tl;hd, . . . , Pn = tln−1;hd.

QRAΣ (Fig. 1) is the standard theory of distributive relation algebras, plus
Tarski’s quasiprojections [21], and equations axiomatizing the new relations of
RΣ . Note that products and their projections are axiomatized in a relational,
variable-free manner.

302 E.J.G. Arias et al.

R ∩ R = R R ∩ S = S ∩ R R ∩ (S ∩ T) = (R ∩ S) ∩ T
R ∪ R = R R ∪ S = S ∪ R R ∪ (S ∪ T) = (R ∪ S) ∪ T

R id = R R0 = 0 0 ⊆ R ⊆ 1
R ∪ (S ∩ R) = R = (R ∪ S) ∩ R

R(S ∪ T) = RS ∪ RT (S ∪ T)R = SR ∪ TR
R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T)

(R ∪ S)◦ = R◦ ∪ S◦ (R ∩ S)◦ = S◦ ∩ R◦

R◦◦ = R (RS)◦ = S◦R◦

R(S ∩ T) ⊆ RS ∩ RT RS ∩ T ⊆ (R ∩ TS◦)S
id ∪ di = 1 id ∩ di = 0

hd(hd)◦ ∩ tl(tl)◦ ⊆ id (hd)◦hd ⊆ id, (tl)◦tl ⊆ id (hd)◦tl = 1
1(c, c)1 = 1 (c, c) ⊆ id

Fig. 1. QRAΣ

2.2 Semantics

Let Σ be a constraint signature and D a Σ-structure. Write tD for the interpre-
tation of a term t ∈ TΣ . We define D† to be the union of D0 = {〈〉} (the empty
sequence), D and D-finite products, for example: D2,D2×D,D×D2, . . . We write
〈a1, . . . , an〉 for members of the n-fold product associating to the right, that is
to say, 〈a1, 〈a2, . . . , 〈an−1, an〉 · · ·〉〉. Furthermore, we assume right-association of
products when parentheses are absent. Note that the 1 element sequence does
not exist in the domain, so we write 〈a〉 for a as a convenience.

Let RD = D† ×D†. We make the power set of RD into a model of the relation
calculus by interpreting atomic relation terms in a certain canonical way, and
the operators in their standard set-theoretic interpretation. We interpret hd and
tl as projections in the model.

Definition 1. Given a structure D a relational D-interpretation is a mapping
[[]]D

†
of relational terms into RD satisfying the identities in Fig. 2. The function

α used in this table and elsewhere in this paper refers to the arity of its argument,
whether a relation or function symbol from the underlying signature.

Theorem 1. Equational reasoning in QRAΣ is sound for any interpretation:

QRAΣ � R = S =⇒ [[R]]D
†

= [[S]]D
†

3 Program Translation

We define constraint and program translation to relation terms. To this end, we
define a function K̇ from constraint formulas with – possibly free – logic vari-
ables to a variable-free relational term. K̇ is the core of the variable elimination
mechanism and will appear throughout the rest of the paper.

Declarative Compilation for Constraint Logic Programming 303

Fig. 2. Standard interpretation of binary relations.

The reader should keep in mind that there are two kinds of predicate symbols
in a constraint logic program: constraint predicates r which are translated by the
function K̇ above to relation terms r, and defined or program predicates.

We translate defined predicates – and CLP programs – to equations p � R,
where p will be drawn from a set of definitional variables standing for program
predicate names p, and R is a relation term. The set of definitional equations
can be both seen as an executable specification, by understanding it in terms of
the rewriting rules given in this paper; or as a declarative one, by unfolding the
definitions and using the standard set-theoretic interpretation of binary relations.

3.1 Constraint Translation

We fix a canonical list x1, . . . , xn of variables occurring in all terms, so as to
translate them to variable-free relations in a systematic way. There is no loss of
generality as later, we transform programs into this canonical form.

Definition 2 (TermTranslation). Define a translation function K : TΣ(X)→
RΣ from first-order terms to relation expressions as follows:

K(c) = (c, c)1
K(xi) = P ◦

i

K(f(t1, . . . , tn)) = Rf ;
⋂

i≤n Pi;K(ti)

This translation is extended to vectors of terms as follows K(〈t1, . . . , tn〉) =⋂
i≤n Pi;K(ti).

The semantics of the relational translation of a term is the set of all of the
instances of that term, paired with the corresponding instances of its variables.
For instance, the term x1 + s(s(x2)) is translated to the relation +; (P1;P ◦

1 ∩
P2; s; s;P ◦

2).

Lemma 1. Let t[x] be a term of TΣ(X) whose free variables are among those in
the sequence x = x1, . . . , xm. Then, for any sequences a = a1, . . . , am ∈ D†,u ∈
D† and any b ∈ D we have

(b,au) ∈ [[K(t[x])]]D
† ⇐⇒ b = tD[a/x]

304 E.J.G. Arias et al.

We will translate constraints over m variables to partially coreflexive relations
over the elements that satisfy them. A binary relation R is coreflexive if it is
contained in the identity relation, and it is i-coreflexive if its i-th projection is
contained in the identity relation: P ◦

i ;R;Pi ⊆ id . Thus, for a variable xi free in
a constraint, the translation will be i-coreflexive.

We now formally define two partial identity relation expressions Im, Qi for
the translation of existentially quantified formulas, in such a way that if a con-
straint ϕ[x] over m variables is translated to an m-coreflexive relation, the
formula ∃xi. ϕ[x] corresponds to a coreflexive relation in all the positions but
the i-th one, as xi is no longer free. In this sense Qi may be seen as a hiding
relation.

Definition 3. The partial identity relation expressions Im, Qi for m, i > 0 are
defined as:

Im :=
⋂

1≤i≤m

Pi(Pi)◦ Qi = Ii−1 ∩ Ji+1 Ji = tli; (tl◦)i

Im is the identity on sequences up to the first m elements. Qi is the identity on
all but the i-th element, with the i-th position relating arbitrary pairs of elements.

Definition 4 (Constraint Translation). The K̇ : LD → RΣ translation func-
tion for constraint formulas is:

K̇(p(t1, . . . , tn)) = (
⋂

i≤n K(ti)◦;P ◦
i); p; (

⋂
i≤n Pi;K(ti))

K̇(ϕ ∧ θ) = K̇(ϕ) ∩ K̇(θ)
K̇(∃xi. ϕ) = Qi; K̇(ϕ);Qi

As an example, the translation of the constraint ∃x1, x2.s(x1) ≤ x2 is

Q1;Q2; (P ◦
1 ; s◦;P1 ∩ P ◦

2 ;P2);≤; (P1; s;P ◦
1 ∩ P2;P ◦

2);Q1;Q2

Lemma 2. Let ϕ[x] be a constraint formula with free variables among
x = x1, . . . , xm. Then, for any sequences a = a1, . . . , am, u and u′ of mem-
bers of D

(au,au′) ∈ [[K̇(ϕ[x])]]D
† ⇐⇒ D |= ϕ[a/x]

3.2 Translation of Constraint Logic Programs

To motivate the technical definitions below, we illustrate the program translation
procedure with an example. Assume a language with constant 0, a unary function
symbol s, constraint predicate = and program predicate add . We can write the
traditional Horn clause definition of Peano addition:

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

Declarative Compilation for Constraint Logic Programming 305

This program is first purified: the variables in the head of the clauses defining
each predicate are chosen to be a sequence of fresh variables x1, x2, x3, with all
bindings stated as equations in the tail.

add(x1, x2, x3) ←− x1 = 0, x2 = x3.

add(x1, x2, x3) ←− ∃x4, x5x1 = s(x4), x3 = s(x5), add(x4, x2, x5))

The clauses are combined into a single definition similar to the Clark completion
of a program. We also use the variable permutation π sending x1, x2, x3, x4, x5 �→
x4, x2, x5, x1, x3 to rewrite the occurrence of the predicate add in the tail so that
its arguments coincide with those in the head:

add(x1, x2, x3) ↔ (x1 = 0, x2 = x3)
∨ ∃x4, x5, x1 = s(x4), x3 = s(x5), wπ add(x1, x2, x3).

Now we apply relational translation K̇ defined above to all relation equations,
and eliminate the existential quantifier using the partial identity operator I3
defined above. We represent the permutation π using the relation expression Wπ

that simulates its behavior in a variable-free manner and replace the predicate
add with a corresponding relation variable add. (A formal definition of Wπ and
its connection with function wπ is given below, see Definition 7 and Lemma 4.)

add � K̇(x1 = o ∧ x2 = x3) ∪ I3((K̇(x1 = s(x4) ∧ x3 = s(x5)) ∩ Wπ add W o
π)))

Now we give a description of the general translation procedure. We first process
programs to their complete database form as defined in [6], which given the
executable nature of our semantics reflects the choice to work within the minimal
semantics. The main difference in our processing of a program P to its completed
form P ′ is that a strict policy on variable naming is enforced, so that the resulting
completed form is suitable for translation to relational terms.

Definition 5 (General Purified Form for Clauses). For a clause p(t[y]) ←
q(v[y]), let h = α(p), y = |y|, v = |v|, and m = h + y + v. Assume vectors:

x = xhxt = xhxyxv = x1, . . . , xh,xh+1, . . . , xh+y,xh+y+1, . . . , xm

xh = x1, . . . , xh

xt = xyxv = xh+1, . . . , xh+y,xh+y+1, . . . , xm

xy = xh+1, . . . , xh+y

xv = xh+y+1, . . . , xm

the clause’s GPF form is:

p(xh) ← ∃h↑.((xh = t[xy] ∧ xv = v[xy]), q(xv))

∃n↑ denotes existential closure with respect to all variables whose index is greater
than n. xh and x t stand for head and tail variables. A program is in GPF form
iff every one of its clauses is. After the GPF step, we perform Clark’s completion.

306 E.J.G. Arias et al.

Definition 6 (Completion of a Predicate). We define Clark’s completed
form for a predicate p with clauses cl1, . . . , cln in GPF form:

p(xh) ←cl1 tl1
. . .
p(xh) ←cln tlk

}
Clark’s comp.
========⇒ p(xh) ↔ tl1 ∨ · · · ∨ tlk

The above definition easily extends to programs. Completed forms are translated
to relations by using K̇ for the constraints, mapping conjunction to ∩ and ∨ to
∪. Existential quantification, recursive definitions and parameter passing are
handled in a special way which we proceed to detail next.

Existential Quantification: Binding Local Variables. Variables local to
the tail of a clause are existentially quantified. For technical reasons — simpler
rewrite rules — we use the partial identity relation In, rather than the Qn

relation defined in the previous sections. In acts as an existential quantifier for
all variables of index greater than a given number.

Lemma 3. Let a = a1, . . . , an ∈ D, x = x1, . . . , xn, let ϕ be a constraint over
m free variables, with m > n, y a vector of length k such that n + k = m, and
u, v ∈ D†, then:

(au,av) ∈ [[In; K̇(ϕ[xy]); In]]D
† ⇐⇒ D |= (∃n↑.ϕ[xy])[a/x]

Recursive Predicate Definitions. We shall handle recursive predicate defi-
nitions by extending the relational language with a set of definitional symbols
p, q, r, . . . for predicates. Then, a recursive predicate p is translated to a defin-
itional equation p � R(p1, . . . , pn), spelled out in Definition 8 where the nota-
tion R(p1, . . . , pn) indicates that relation R resulting from the translation may
depend on predicate symbols p1, . . . , pn. Note that R is monotone in p1, . . . , pn.
Consequently, using a straightforward fixed point construction we can extend
the interpretation [[]]D

†
to satisfy [[p]]D

†
= [[R(p1, . . . , pn)]]D

†
, thus preserving

soundness when we adjoin the definitional equations to QRAΣ . The details are
given in Subsect. 3.3, below.

Parameter Passing. The information about the order of parameters in each
pure atomic formula p(xi1 , . . . , xir) is captured using permutations. Given a
permutation π : {1..n} → {1..n}, the function wπ on formulas and terms is
defined in the standard way by its action over variables. We write Wπ for the
corresponding relation:

Definition 7 (Switching Relations). Let π : {1..n} → {1..n} be a permuta-
tion. The switching relation expression Wπ, associated to π is:

Wπ =
n⋂

j=1

Pπ(j)(Pj)◦.

Declarative Compilation for Constraint Logic Programming 307

Fig. 3. Biblical family relations in prolog.

Lemma 4. Fix a permutation π and its corresponding wπ and Wπ. Then:

[[K̇(wπ(p(x1, . . . , xn)))]] = [[WπK̇(p)W ◦
π]]

The Translation Function. Now we may define the translation for defined
predicates.

Definition 8 (Relational Translation of Predicates). Let h, p(xh) be as in
Definition 5. The translation function Tr from completed predicates to relational
equations is defined by:

Tr(p(xh) ↔ cl1 ∨ · · · ∨ clk) = (p � Trcl(cl1) ∪ · · · ∪ Trcl(clk))
Trcl(∃h↑.p) = Ih; (Tr l(p1) ∩ · · · ∩ Tr l(pn)); Ih

Tr l(ϕ) = K̇(ϕ) ϕ a constraint
Tr l(pi(xi)) = Wπ; pi;W ◦

π such that π(x1, . . . , xα(pi)) = xi

where xi is the original sequence of variables in pi in the Clark completion of
the program, and π a permutation that transforms the ordered sequence of length
α(p) starting at x1 to xi.

We will sometimes write In(R) for InRIn and Wπ(R) for WπRW ◦
i .

Example 1. Figure 3 shows a fragment of a constraint logic program to represent
a family relations database [20].

Consider the translation of the program predicates mother, parent, sibling and
brother. We write the program in general purified form:

mother(x1, x2) ⇐⇒ (x1 = sarah) ∧ (x2 = isaac)
parent(x1, x2) ⇐⇒ father(x1, x2) ∨ mother(x1, x2)
sibling(x1, x2) ⇐⇒ ∃x3. x1 �= x2 ∧ parent(x3, x1) ∧ parent(x3, x2)
brother(x1, x2) ⇐⇒ male(x1) ∧ sibling(x1, x2)

308 E.J.G. Arias et al.

Letting σ1 and σ2 be the permutations 〈1, 2, 3〉 −→ 〈2, 3, 1〉 and 〈1, 2, 3〉 −→
〈3, 2, 1〉 respectively we obtain

mother = K̇(x1 = sarah) ∩ K̇(x2 = isaac)
parent = father ∪ mother
sibling = K̇(x1 �= x2) ∩ I2[Wσ1parentW o

σ1
∩ Wσ2parentW o

σ2
]I2

brother = male ∩ sibling

Thequery brother(X,milcah) leads to the rewriting of the term K̇(x2 = milcah)∩
brother to K̇(x2 = milcah) ∩ K̇(x1 = lot).

3.3 The Least Relational Interpretation Satisfying
Definitional Equations

Let P be a program and p1, . . . , pn be a sequence of relation variables, one for
each predicate symbol pi in the language of P . We define the extended relation
calculus RΣ(p1, . . . , pn) to be the set of terms generated by p1, . . . , pn and the
terms of RΣ . More formally

Ratom ::= p1 | · · · | pn | RC | RF | RCP | id | di | 1 | 0 | hd | tl
RΣ(p1, . . . , pn) ::= Ratom | RΣ

◦ | RΣ ∪ RΣ | RΣ ∩ RΣ | RΣRΣ

Observe that the relational translation of Definition 8 maps programs to sets of
definitional equations pi � Ri(p1, . . . , pn) over RΣ(p1, . . . , pn). Let F be the set
of all n such definitional equations.

Given a structure D we now lift the definition of D-interpretation given
in Definition 1 to the extended relation calculus. An extended interpretation
[[]] : RΣ(p1, . . . , pn) −→ RD is a function satisfying the identities in Fig. 2 as well
as mapping each relation variable pi to an arbitrary member [[pi]] of RD. Given a
structure D for the language of a program, its action is completely determined by
its values at the pi. Note that the set I of all such interpretations forms a CPO, a
complete partial order with a least element, under pointwise operations. That is
to say, any directed set {[[]]d : d ∈ Λ} of interpretations has a supremum

∨
d∈Λ[[]]d

given by T �→ ⋃
d∈Λ[[T]]d. The directedness assumption is necessary. For example,

to show that a pointwise supremum of interpretations
∨

d∈Λ[[]]d preserves com-
position (one of the 13 identities of Fig. 2), we must show that for any relation
terms R and S we have

⋃
d∈Λ[[RS]]d =

⋃
d∈Λ[[R]]d;

⋃
d∈Λ[[S]]d. However the right

hand side of this identity is equal to
⋃

d,e∈Λ×Λ[[R]]d; [[S]]e. But since the family of
interpretations is directed, for every pair d, e of indices in Λ there is an m ∈ Λ
with [[]]d, [[]]e ≤ [[]]m, hence

⋃
d,e∈Λ×Λ[[R]]d; [[S]]e ≤ ⋃

m∈Λ[[R]]m[[S]]m. The reverse
inequality is immediate and we obtain

⋃
d∈Λ[[R]]d;

⋃
d∈Λ[[S]]d =

⋃
d∈Λ[[RS]]d.

The least element of the collection I is the interpretation [[]]0 given by [[pi]]0 =
∅ for all i (1 ≤ i ≤ n).

In the remainder of this section, the word interpretation will refer to an
extended D-interpretation.

Declarative Compilation for Constraint Logic Programming 309

Lemma 5. Let [[]] and [[]]′ be interpretations. If for all i [[pi]] ⊆ [[pi]]′ then
[[]] ≤ [[]]′.

Proof. By induction on the structure of extended relations. For all relational
constants c we have [[c]] = [[c]]′ We will consider one of the inductive cases,
namely that of composition. Suppose [[R]] ⊆ [[R]]′ and [[S]] ⊆ [[S]]′. Then we
must show that [[RS]] ⊆ [[RS]]′. But this follows immediately by a set-theoretic
argument, since (x, u) ∈ [[R]] and (u, y) ∈ [[S]] imply, by inductive hypothesis,
that (x, u) ∈ [[R]]′ and (u, y) ∈ [[S]]′. It can also be proved using the axioms of
QRAΣ by showing that A∪A′ = A′ and B ∪B′ = B′ imply AB ∪A′B′ = A′B′.
We leave the remaining cases to the reader.

We will now define a operator ΦF from interpretations to interpretations, show
it continuous and define the interpretation generated by F as its least fixed
point. This interpretation will be the least extension of a given relational D-
interpretation satisfying the equations in F .

Definition 9. Let P be a program, with predicate symbols {p1, . . . , pn}. Fix a
structure D for the language of P . Let F be the set of definitional equations {pi �
Ri(p1, . . . , pn) : i ∈ N} produced by the translation Tr of P of Definition 8. Let I
be the set of extended D-interpretations, with poset structure induced pointwise.
Then we define the operator ΦF : I −→ I as follows

ΦF ([[]])(pi) = [[Ri(p1, . . . , pn)]].

Theorem 2. ΦF is a continuous operator, that is to say it preserves suprema
of directed sets.

Proof. Let {[[]]d : d ∈ Λ} be a directed set of interpretations. By Lemma 5 it
suffices to show that for all pi

ΦF (
∨
d∈Λ

[[]]d)(pi) = (
∨
d∈Λ

ΦF ([[]]d))(pi).

Let [[]]∗ =
∨

d∈Λ [[]]d. Then ΦF (
∨

d∈Λ [[]]d)(pi) = [[Ri(p1, . . . , pn)]]∗, which in
turn is the union

⋃
d∈Λ[[Ri(p1, . . . , pn)]]d. But this is equal to

⋃
d∈Λ ΦF ([[]]d)(pi).

Therefore ΦF (
∨

d∈Λ [[]]d) =
∨

d∈Λ ΦF ([[]]d).

By Kleene’s fixed point theorem ΦF has a least fixed point [[]]† in I. This fixed
point is, in fact, the union of all Φ

(n)
F ([[]]0), (n ∈ N). By virtue of its being fixed

by ΦF we have [[pi]]
† = [[Ri(p1, . . . , pn)]]†. That is to say, all equations in F

are true in [[]]†, which is the least interpretation with this property under the
pointwise order.

4 A Rewriting System for Resolution

In this section, we develop a rewriting system for proof search based on the
equational theory QRAΣ , which will be proven equivalent to the traditional

310 E.J.G. Arias et al.

Fig. 4. Constraint meta-reductions

operational semantics for CLP. In Sect. 5 we will show that answers obtained by
resolution correspond to answers yielded by our rewriting system and conversely.

The use of ground terms permits the use of rewriting, overcoming the prac-
tical and theoretical difficulties that the existence of logic variables causes in
equational reasoning. Additionally, we may speak of executable semantics: we
use the same function to compile and interpret CLP programs in the relational
denotation.

For practical reasons, we don’t rewrite over the full relational language, but
we will use a more compact representation of the relations resulting from the
translation.1

Formally, the signature of our rewriting system is given by the following term-
forming operations over the sort TR: I : (N × TR) → TR, W : (Perm × TR) →
TR, K : LD → TR, ∪ : (TR × TR) → TR and ∩ : (TR × TR) → TR. Thus, for
instance, the relation In;R; In is formally represented in the rewriting system
as I(n,R), provided R can be represented in it. In practice we make use of the
conventional relational notation In,Wπ when no confusion can arise.

4.1 Meta-Reductions

We formalize the interface between the rewrite system and the constraint solver
as meta-reductions (Fig. 4). Every meta-reduction uses the constraint solver in a
black-box manner to perform constraint manipulation and satisfiability checking.

Lemma 6. All meta-reductions are sound: if mi : l P�−→ r then [[l]]D
†

= [[r]]D
†
.

4.2 A Rewriting System for SLD Resolution

We present a rewriting system for proof search in Fig. 5. We prove local conflu-
ence. Later we will prove that a query rewrites to a term in the canonical form
K̇(ψ) ∪ R iff the leftmost branch of the associated SLD-tree of the program is
finite.
1 There is no problem in defining the rewriting system using the general relational

signature, but we would need considerably more rules for no gain.

Declarative Compilation for Constraint Logic Programming 311

Fig. 5. Rewriting system for SLD.

Lemma 7. P�−→ is sound: if pi : l P�−→ r then [[l]]D
†

= [[r]]D
†
.

Lemma 8. If we give higher priority to p7 over p8,
P�−→ is locally confluent.

A left outermost strategy gives priority to p7 over p8.

5 Operational Equivalence

We prove that our rewriting system over relational terms simulates “traditional”
SLD proof search specified as a transition-based operational semantics (i.e. [7,
12]). For reasons of space, we give a high-level overview of the proof. The full
details can be found in the online technical report.

Recall a resolvent is a sequence of atoms or constraints p. We write � for the
empty resolvent. We assume given a constraint domain D and its satisfaction
relation D |= ϕ. A program state is an ordered pair 〈p |ϕ〉 where p is a resolvent
and ϕ is a constraint (called the constraint store). The notation cl : p(u [y]) ←
q(v [z]) indicates that p(u [y]) ← q(v [z]) is a program clause with label cl.
Then, the standard operational semantics for SLD resolution can be defined as
the following transition system over program states:

Definition 10 (Standard SLD Semantics).

〈ϕ,p |ψ〉 cs−→l 〈p |ψ ∧ ϕ〉 iff D |= ψ ∧ ϕ

〈p(t[x]),p |ϕ〉 rescl−−−→l 〈q(v[σ(z)]),p |ϕ ∧ (u[σ(y)] = t[x])〉
where: cl : p(u[y]) ← q(v[z])

D |= ϕ ∧ (u[σ(y)] = t[x])
σ a renaming apart for y, z,x

Taking the previous system as a reference, the proof proceeds in two steps: we
first define a new transition system that internalizes renaming apart and proof
search, and we prove it equivalent to the standard one.

Second, we show a simulation relation between the fully internalized transi-
tion system and a transition system defined over relations, which is implemented
by the rewriting system of Sect. 4.

With these two equivalences in place, the main theorem is:

312 E.J.G. Arias et al.

Theorem 3. The rewriting system of Fig. 5 implements the transition system
of Definition 10. Formally, for every transition (r1, r2) ∈ (−→l)∗,

∃n.(Tr(r1), T r(r2)) ∈ (P�−→)n

and
∀r3.(Tr(r1), r3) ∈ (P�−→)n ⇒ Tr(r2) = r3

Thus, given a program P , relational rewriting of translation will return an answer
constraint K(ϕ) iff SLD resolution from P reaches a program state 〈� |ϕ′〉, with
ϕ ⇐⇒ ϕ′.

In the next section, we briefly describe the main intermediate system used
in the proof.

5.1 The Resolution Transition System

The crucial part of the SLD-simulation proof is the definition of a new extended
transition system over program states that will internalize both renaming apart
and the proof-search tree. It is an intermediate system between relation rewriting
and traditional proof search.

The first step towards the new system is the definition of an extended notion
of state. In the standard system of Definition 10, a state is a resolvent plus a
constraint store. Our extended notion of state includes:

– A notion of scope, which is captured by a natural number which can be under-
stood as the number of global variables of the state.

– A notion of substate, which includes information about parameter passing in
the form of a permutation.

– A notion of clause selection, and
– a notion of failure and parallel state, which represents failures in the search

tree and alternatives.

Such states are enough to capture all the meta-theory of constraint logic pro-
gramming except recursion, which operates meta-logically by replacing predicate
symbols by their definitions. Formally:

Definition 11. The set PS of resolution states is inductively defined as:

– 〈fail〉.
– 〈p|ϕ〉n, where pi ≡ Pi(xi) is an atom, or a constraint pi ≡ ψ, xi a vector of

variables, ϕ a constraint store and n a natural number.
– 〈πPS ,p|ϕ〉n, where PS is a resolution state, and π a permutation.
– 〈π�PS,p|ϕ〉n, the “select state”. It represents the state just before selecting

a clause to proceed with proof search.
–

(
PS 1 PS2

)
. The bar is parallel composition, capturing choice in the proof

search tree.

Declarative Compilation for Constraint Logic Programming 313

Fig. 6. Resolution transition system

The resolution transition system →P ⊆ (PS × PS) is shown in Fig. 6. The two
first transitions deal with the case where a constraint is first in the resolvent,
failing or adding it to the constraint store in case it is satisfiable.

When the head of the resolvent is a defined predicate, the call transition will
replace it by its definition, properly encapsulated by a select state equipped with
the permutation capturing argument order.

The select transition performs two tasks: first, it modifies the current con-
straint store adding the appropriate permutation and scoping (n, π); second, it
selects the first clause for proof search.

The return transitions will either propagate failure or undo the permutation
and scoping performed at call time.

sub, backtrack, and seq are structural transitions with a straightforward inter-
pretation from a proof search perspective.

Then, we have the following lemma:

Lemma 9. For all queries 〈p|ϕ〉n, the first successful −→l derivation using a
SLD strategy uniquely corresponds to a −→p derivation:

〈p|ϕ〉n −→l . . . −→l 〈� |ϕ′〉n ⇐⇒ 〈p|ϕ〉n −→p . . . −→p

(〈� |ϕ′〉n PS
)

for some resolution state PS.

Corollary 1. The transition systems of Definition 10 and Fig. 6 are answer-
equivalent: for any query they return the same answer constraint.

With this lemma in place, the proof of Theorem3 is completed by showing a
simulation between the resolution system and a transition system induced by
relation rewriting.

314 E.J.G. Arias et al.

6 Related and Future Work

Previous Work: The paper is the continuation of previous work in [4,10,15]
considerably extended to include constraint logic programming, which requires
a different translation procedure and a different rewriting system.

In particular, the presence of constraints in this paper permits a different
translation of the Clark completion of a program and plays a crucial role in
the proof of completeness, which was missing in earlier work. The operational
semantics is also new.

Related Work: A number of solutions have been proposed to the syntactic specifi-
cation problem. There is an extensive literature treating abstract syntax of logic
programming (and other programming paradigms) using encodings in higher-
order logic and the lambda calculus [18], which has been very successful in for-
malizing the treatment of substitution, unification and renaming of variables,
although it provides no special framework for the management and progressive
instantiation of logic variables, and no treatment of constraints. Our approach
is essentially orthogonal to this, since it relies on the complete elimination of
variables, substitution, renaming and, in particular, existentially quantified vari-
ables. Our reduction of management of logic variables to variable free rewriting
is new, and provides a complete solution to their formal treatment.

An interesting approach to syntax specification is the use of nominal logic
[5,22] in logic programming, another, the formalization of logic programming in
categorical logic [1,2,8,13,19] which provides a mathematical framework for the
treatment of variables, as well as for derivations [14]. None of the cited work
gives a solution that simultaneously includes logic variables, constraints and
proof search strategies however.

Bellia and Occhiuto [3] have defined a new calculus, the C-expression cal-
culus, to eliminate variables in logic programming. We believe our translation
into the well-understood and scalable formalism of relations is more applicable
to extensions of logic programming. Furthermore the authors do not consider
constraints.

Future Work: A complementary approach to this work is the use of category
theory, in particular the Freyd’s theory of tabular allegories [9] which extends the
relation calculus to an abstract category of relations providing native facilities
for generation of fresh variables and a categorical treatment of monads. A first
attempt in this direction has been published by the authors in [11]. It would
be interesting to extend the translation to hereditarily Harrop or higher order
logic [17] by using a stronger relational formalism, such as Division and Power
Allegories. Also, the framework would yield important benefits if it was extended
to include relation and set constraints explicitly.

7 Conclusion

We have developed a declarative relational framework for the compilation of Con-
straint Logic programming that eliminates logic variables and gives an algebraic

Declarative Compilation for Constraint Logic Programming 315

treatment of program syntax. We have proved operational equivalence to the
classical approach. Our framework has several significant advantages.

Programs can be analyzed, transformed and optimized entirely within this
framework. Execution is carried out by rewriting over relational terms. In these
two ways, specification and implementation are brought much closer together
than in the traditional logic programming formalism.

References

1. Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declara-
tive programming languages. Theor. Comput. Sci. 410(46), 4626–4671 (2009),
http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/5475111b9
a9642244a208e9bd1fcd46a (abstract Interpretation and Logic Programming: In
honor of professor Giorgio Levi)

2. Asperti, A., Martini, S.: Projections instead of variables: a category theoretic inter-
pretation of logic programs. In: ICLP, pp. 337–352 (1989)

3. Bellia, M., Occhiuto, M.E.: C-expressions: a variable-free calculus for equational
logic programming. Theor. Comput. Sci. 107(2), 209–252 (1993)

4. Broome, P., Lipton, J.: Combinatory logic programming: computing in relation
calculi. In: ILPS’94: Proceedings of the 1994 International Symposium on Logic
programming, pp. 269–285. MIT Press, Cambridge (1994)

5. Cheney, J., Urban, C.: Alpha-prolog: a logic programming language with names,
binding, and alpha-equivalence (2004)

6. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press (1977)

7. Comini, M., Levi, G., Meo, M.C.: A theory of observables for logic programs. Inf.
Comput. 169(1), 23–80 (2001)

8. Finkelstein, S.E., Freyd, P.J., Lipton, J.: A new framework for declarative pro-
gramming. Theor. Comput. Sci. 300(1–3), 91–160 (2003)

9. Freyd, P., Scedrov, A.: Categories, Allegories. North Holland Publishing Company,
Amsterdam (1991)

10. Gallego Arias, E.J., Lipton, J., Mariño, J., Nogueira, P.: First-order unification
using variable-free relational algebra. Log. J. IGPL 19(6), 790–820 (2011). http://
jigpal.oxfordjournals.org/content/19/6/790.abstract

11. Gallego Arias, E.J., Lipton, J.: Logic programming in tabular allegories. In: Dovier,
A., Costa, V.S. (eds.) Technical Communications of the 28th International Confer-
ence on Logic Programming, ICLP 2012, September 4–8, 2012, Budapest, Hungary.
LIPIcs, vol. 17, pp. 334–347. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik
(2012)

12. Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. Log. Program.
19/20, 503–581 (1994). http://citeseer.ist.psu.edu/jaffar94constraint.html

13. Kinoshita, Y., Power, A.J.: A fibrational semantics for logic programs. In: Dyckhoff,
R., Herre, H., Schroeder-Heister, P. (eds.) ELP. LNCS, vol. 1050, pp. 177–191.
Springer, Heidelberg (1996)

14. Komendantskaya, E., Power, J.: Coalgebraic derivations in logic programming. In:
Bezem, M. (ed.) CSL. LIPIcs, vol. 12, pp. 352–366. Schloss Dagstuhl—Leibniz-
Zentrum fuer Informatik (2011)

http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/5475111b9a9642244a208e9bd1fcd46a
http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/5475111b9a9642244a208e9bd1fcd46a
http://jigpal.oxfordjournals.org/content/19/6/790.abstract
http://jigpal.oxfordjournals.org/content/19/6/790.abstract
http://citeseer.ist.psu.edu/jaffar94constraint.html

316 E.J.G. Arias et al.

15. Lipton, J., Chapman, E.: Some notes on logic programming with a relational
machine. In: Jaoua, A., Kempf, P., Schmidt, G. (eds.) Using Relational Meth-
ods in Computer Science, pp. 1–34. Technical report Nr. 1998-03, Fakultät für
Informatik, Universität der Bundeswehr München, July 1998

16. Lloyd, J.W.: Foundations of Logic Programming. Springer, New York (1984)
17. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation

for logic programming. Ann. Pure Appl. Log. 51(1–2), 125–157 (1991)
18. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI’88: Proceedings

of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation, pp. 199–208. ACM, New York (1988)

19. Rydeheard, D.E., Burstall, R.M.: A categorical unification algorithm. In: Proceed-
ings of a Tutorial and Workshop on Category Theory and Computer Programming,
pp. 493–505. Springer, New York (1986)

20. Sterling, L., Shapiro, E.: The Art of Prolog. The MIT Press, Cambridge (1986)
21. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, Collo-

quium Publications, vol. 41. American Mathematical Society, Providence (1987)
22. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comput. Sci.

323(1–3), 473–497 (2004)

Pre-indexed Terms for Prolog

J.F. Morales1(B) and M. Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
josef.morales@imdea.org

2 School of Computer Science, Technical University
of Madrid, Madrid, Spain

Abstract. Indexing of terms and clauses is a well-known technique used
in Prolog implementations (as well as automated theorem provers) to
speed up search. In this paper we show how the same mechanism can be
used to implement efficient reversible mappings between different term
representations, which we call pre-indexings. Based on user-provided
term descriptions, these mappings allow us to use more efficient data
encodings internally, such as prefix trees. We show that for some classes
of programs, we can drastically improve the efficiency by applying such
mappings at selected program points.

1 Introduction

Terms are the most important data type for languages and systems based on
first-order logic, such as (constraint) logic programming languages or resolution-
based automated theorem provers. Terms are inductively defined as variables,
atoms, numbers, and compound terms (or structures) comprised by a functor
and a sequence of terms1. Two main representations for Prolog terms have been
proposed. Early Prolog systems, such as the Marseille and DEC-10 implemen-
tations, used structure sharing [2], while the WAM [1,15] –and consequently
most modern Prolog implementations– use structure copying. In structure shar-
ing, terms are represented as a pair of pointers, one for the structure skeleton,
which is shared among several instances, and another for the binding environ-
ment, which determines a particular instantiation. In contrast, structure copying
makes a copy of the structure for each newly created term. The encoding of terms
in memory resembles tree-like data structures.

In order to speed up resolution, sophisticated term indexing has been imple-
mented both in Prolog [1,7] and automated theorem provers [6]. By using special-
ized data structures (such as, e.g., tries), indexing achieves sub-linear complexity

Research supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO
TIN2012-39391 StrongSoft and TIN2008-05624 DOVES, and Comunidad de Madrid
ICE-2731 NGREENS Software. We would also like to thank Rémy Haemmerlé and
the anonymous reviewers for providing valuable comments and suggestions.

1 Additionally, many Prolog systems implement an extension mechanism for variable
domains using attributed variables.

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 317–331, 2015.
DOI: 10.1007/978-3-319-17822-6 18

318 J.F. Morales and M. Hermenegildo

in clause selection. Similar techniques are used to efficiently store predicate solu-
tions in tabling [13]. This efficient indexing is typically also supported in dynamic
predicates, i.e., for predicates whose facts or clauses can be changed dynamically
during program execution. This results in a mechanism that is often very attrac-
tive for storing and manipulating program data: indexed dynamic predicates
offer the benefits of efficient key-value data structures while hiding the imple-
mentation details from the user program.

Modulo some issues like variable sharing, there is thus a duality in program-
ming style between explicitly encoding data as terms or encoding data implicitly
as tuples in dynamic predicates, in order to exploit the built-in indexing provided
by this representation. For example, the set {1, 2, 3, . . . , n} is represented natu-
rally as the term [1,2,3,...,n] (equivalent to a linked list). However, depend-
ing on the lifetime and operations to be performed on the data, binary trees,
some other map-like structure, or dynamic predicates may be preferable. Which
representation is most efficient or convenient is very application-dependent and
it would be desirable to be able to explore the relative merits of the alternative
representations with minimal changes in the program. Unfortunately, in practice
such changes in representation typically mean significant modifications, which
propagate throughout the whole program. Even worse, it is also frequent to find
code where, after changes motivated by such performance considerations, the
data is represented in the end in a quite unnatural way.

The goal of this paper is to study the merits of term indexing during term
creation rather than at clause selection time. We exploit the fact that data has
frequently a fixed skeleton structure, and introduce a mapping in order to index
and share that part. This mapping is derived from program declarations spec-
ifying term encoding (called rtypes, for representation types) and annotations
defining the program points where pre-indexing of terms is to be performed.
This is done on top of structure copying, so that no large changes are required
in a typical Prolog runtime system. Moreover, the approach does not require
large changes in program structure, which makes rtypes easily interchangeable.

We have implemented a prototype as a Ciao [4] package that deals with rtype
declarations as well as with some additional syntactic sugar that we provide for
marking pre-indexing points.

2 Background

We follow the definitions and naming conventions for term indexing of [3,6].
Given a set of terms L (the indexed terms), a binary relation R over terms (the
retrieval condition), and a term t (the query term), we want to identify the
subset M ⊆ L consisting of all the terms l such that R(l, t) holds (i.e., such that
l is R-compatible with t). We are interested in the following retrieval conditions
R (where σ is a substitution):

– unif(l, t) ⇔ ∃σ lσ = tσ (unification)
– inst(l, t) ⇔ ∃σ l = tσ (instance check)

Pre-indexed Terms for Prolog 319

– gen(l, t) ⇔ ∃σ lσ = t (generalization check)
– variant(l, t) ⇔ ∃σ lσ = t and σ is a renaming substitution (variant check)

Example 1. Given L = {h(f(A)), h(f(B,C)), h(g(D))}, t = h(f(1)), and R =
unif, then M = {h(f(A))}.

The objective of term indexing is to implement fast retrieval of candidate terms.
This is done by processing the indexed set L into specialized data structures
(index construction) and modifying this index when terms are inserted or deleted
from L (index maintenance).

When the retrieval condition makes use of the function symbols in the query
and indexed terms, it is called function symbol based indexing.

In Prolog, indexing finds the set of program clauses such that their heads
unify with a given literal in the goal. In tabled logic programming, this is also
interesting for detecting if a new goal is a variant or subsumed by a previously
evaluated subgoal [5,12].

Limitations of Indexing. Depending on the part of the terms that is indexed
and the supporting data structure, the worst case cost of indexing is proportional
to the size of the term. When computing hash keys, the whole term needs to be
traversed (e.g., computing the key for h(f(A)) requires walking over h and f).
This may be prohibitively costly, not only in the maintenance of the indices, but
also in the lookup. As a compromise many systems rely only on first argument,
first level indexing (with constant hash table lookup, relying on linear search
for the selected clauses). However, when the application needs stronger, multi-
level indexing, lookup costs are repeated many times for each clause selection
operation.

3 Pre-indexing

The goal of pre-indexing is to move lookup costs to term building time. The
idea that we propose herein is to use a bijective mapping between the stan-
dard and the pre-indexed representations of terms, at selected program points.
The fact that terms can be partially instantiated brings in a practical problem,
since binding a variable may affect many precomputed indices (e.g., precomputed
indices for H=h(X), G=g(X) may need a change after X=1). Our solution to this
problem is to restrict the mapping to terms of a specific form, based on instan-
tiation types, defined as (possibly recursive) unary predicates. For convenience,
the user-defined instantiation types are extended with the native definitions any
(that represents any term or variable) and nv (that represents any nonvar term).

Definition 1 (Instantiation Type Check). We say that t is an instance of
an instantiation type τ (defined as a unary predicate), written as checkτ (t), if
there exists a term l in the answers of τ and gen(l, t) (or inst(t, l)).

For conciseness, we will describe the restricted form of instantiation types used
herein using a specialized syntax “:- rtype Name ---> Cons1 ; . . . ; Consn”,

320 J.F. Morales and M. Hermenegildo

where each Consi is a term constructor. A term constructor is composed of a
functor name and a number of arguments, where each argument is another rtype
name. E.g.,:2

:- rtype lst ---> [] ; [any|lst]

The rule above thus corresponds to the predicate:

lst([]).
lst([_|Xs]) :- lst(Xs).

Example 2. According to the definition above for lst, the terms [1,2,3] and
[,2] belong to lst while [1|] does not. If nv were used instead of any in
the definition above then [,2] would also not belong to lst.

Type-based Pre-indexing. The idea behind pre-indexing is to maintain spe-
cialized indexing structures for each rtype (which in this work is done based on
user annotations). We denote as inhabitants of rtype τ the set of the most general
terms (w.r.t. gen relation) that are instances of τ . The indexing structure will
keep track of the rtype inhabitants constructed during the execution dynamically,
assigning a unique identifier (the pre-index key) to each representant (modulo
variants). E.g., for lst we could assign {[]�→ k0, []�→ k1,[,]�→ k2, . . .}
(that is, ki for each list of length i). Note that special any does not define a con-
crete term constructor and is not pre-indexed, while nv represents all possible
term constructors with any as arguments.

For every term t so that checkτ (t), then exists l in the inhabitants of τ such
that gen(l, t). That is, there exists a substitution σ such that t = lσ. The pre-
indexing of a term replaces t by a simpler term using the inhabitant key k and the
substitution σ. Since k is unique for each inhabitant this translation has inverse.
The translation between pre-indexed and non-pre-indexed forms is defined in
terms of a pre-indexing casting.

Definition 2 (Pre-Indexing Cast). A pre-indexing cast of type τ is a bijec-
tive mapping with the set of terms defined by checkτ as domain, denoted by #τ ,
with the following properties:

1. for every term t so that checkτ (t) (which defines the domain of the mapping),
and substitution σ, then #τ(tσ) = #τ(t)σ (σ-commutative)

2. the main functor of #τ(t) encodes the (indexed) structure of the arguments
(so that it uniquely identifies the rtype inhabitant).

E.g., for [1,2,3] and lst the pre-indexed term would be k1(1, 2, 3).
Informally, the first property ensures that pre-indexing casts can be selec-

tively introduced in a program (whose terms are instantiated enough) without
altering the (substitution) semantics. Moreover, the meaning of many built-ins
is also preserved after pre-indexing, as expressed in the following theorem.
2 Despite the syntax being similar to that described in [10], note that the semantics

is not equivalent.

Pre-indexed Terms for Prolog 321

Theorem 1 (Built-inHomomorphism).Given checkτ (x) and checkτ (y), then
unif(x, y) ⇔ unif(#τ(x),#τ(y)) (equivalently for gen, inst, variant, and other
built-ins like ==/2, ground/1).

Proof. unif(x, y) ⇔ [def. of unif] ∃σ xσ = yσ. Since #τ is bijective, then
#τ(xσ) = #τ(yσ) ⇔ [σ-commutative] #τ(x)σ = #τ(y)σ. Given the def. of
unif, it follows that unif(#τ(x),#τ(y)). The proofs for other built-ins are similar.

In this work we do not require the semantics of built-ins like @< (i.e., term order-
ing) to be preserved, but if desired this can be achieved by selecting carefully
the order of keys in the pre-indexed term. Similarly, functor arity in principle
will not be preserved since ground arguments that are part of the rtype structure
are allowed to be removed.

3.1 Building Pre-Indexed Terms

We are interested in building terms directly into their pre-indexed form. To
achieve this we take inspiration from WAM compilation. Complex terms in
variable-term unifications are decomposed into simple variable-structure uni-
fications X = f(A1, . . . , An) where all the Ai are variables. In WAM bytecode,
this is further decomposed into a put str f/n (or get str f/n) instruction fol-
lowed by a sequence of unify arg Ai. These instructions can be expressed as
follows:

put_str(X,F/N,S0,S1), % | F/N |
unify_arg(A1,S1,S2) % | F/N | A1 |
...
unify_arg(An,Sn,S) % | F/N | A1 | ... | An |

where the Si represent each intermediate heap state, which is illustrated in the
comments on the right.

Assume that each argument Ai can be decomposed into its indexed part
Aik and its value part Aiv (which may omit information present in the key).
Pre-indexing builds terms that encode Aik into the main functor by incremental
updates:

g_put_str(X,F/N,S0,S1), % | F/N |
g_unify_arg(A1,S1,S2) % | F/N<A1k> | A1v |
...
g_unify_arg(An,Sn,S) % | F/N<A1k,...,Ank> | A1v | ... | Anv |

The rtype constructor annotations (that we will see in Sect. 3.2) indicate how
the functor and arguments are indexed.

Cost Analysis. Building and unifying pre-indexed terms have impact both on
performance and memory usage. First, regarding time, although pre-indexing
operations can be slower, clause selection becomes faster, as it avoids repetitive
lookups on the fixed structure of terms. In the best case, O(n) lookups (where n

322 J.F. Morales and M. Hermenegildo

is the size of the term) become O(1). Other operations like unification are sped-
up (e.g., earlier failure if keys are different). Second, pre-indexing has an impact
on memory usage. Exploiting the data structure allows more compact represen-
tations, e.g., bitpair(bool,bool) can be assigned an integer as key (without
storage costs). In other cases, the supporting index structures may effectively
share the common part of terms (at the cost of maintaining those structures).

3.2 Pre-Indexing Methods

Pre-indexing is enabled in an rtype by annotating each constructor with mod-
ifiers that specify the indexing method. Currently we support compact trie-like
representations and packed integer encodings.

Trie representation is specified with the index(Args) modifier, which indi-
cates the order in which arguments are walked in the decision-tree. The process
is similar to term creation in the heap, but instead of moving a heap pointer,
we combine it with walking through a trie of nodes. Keys are retrieved from the
term part that corresponds to the rtype structure.

./2

a/1

x

./2

c/1

z

[]

./2

a/1

x

./2

d/1

w

[]

./2

b/1

y

./2

c/1

z

[]

./2

b/1

y

./2

d/1

w

[]

Fig. 1. Example terms for pre-indexing

For example, let us consider the input set of terms [a(x), c(z)], [a(x), d(w)],
[b(y), c(z)], [b(y), d(w)], where a, b, c, d are function symbols and x, y, z, w are
variable symbols. The heap representation is shown in Fig. 1.3 We will compare
different rtype definitions for representing these terms.

As mentioned before, nv represents the rtype for any nonvar term (where its
main functor is taking part in pre-indexing). The declaration:

:- rtype lst ---> [] ; [nv|lst]:::index([0,1,2]).

specifies that the lookup order for [|] is (a) the constructor name (./2), (b)
the first argument (not a pre-indexed term, but takes part in pre-indexing), and
(c) the second argument (pre-indexed). The resulting trie is in Fig. 2. In the
figure, each node number represents a position in the trie. Singly circled nodes
are temporary nodes, doubly circled nodes are final nodes. Final nodes encode

3 Remember that [1,2] = .(1,.(2,[])).

Pre-indexed Terms for Prolog 323

1

2

[]

3

4

5

(z)

#2

c(z)

6

7

(w)

#2

d(w)

8

9

(x, z)

#5(z)

10

(x,w)

#7(w)

a(x)
11

12

(y, z)

#5(z)

13

(y,w)

#7(w)

b(y)

./2

Fig. 2. Index for example terms (rtype lst ---> [] ; [nv|lst]:::index([0,1,2]))

1

2

[]

2

3

4

(z)

c(z)

5

(w)

d(w)

<lst>./2

4

6

7

(x, z)

a(x)

8

(y, z)

b(y)

<lst>./2

5

9

10

(x,w)

a(x)

11

(y,w)

b(y)

<lst>./2

Fig. 3. Index for example terms (rtype lst ---> [] ; [nv|lst]:::index([2,0,1]))

terms. The initial node (#1) is unique for each rtype. Labels between nodes
indicate the lookup input. They can be constructor names (e.g., ./2), nv terms
(e.g., b(y)), or other pre-indexed lst (e.g., #2 for [], or #5(z) for [c(z)]). The
arguments are placeholders for the non-indexed information. That is, a term
[a(g),c(h)] would be encoded as #9(g,h).

Trie indexing also supports anchoring on non-root nodes. Consider this dec-
laration:

:- rtype lst ---> [] ; [nv|lst]:::index([2,0,1]).

Figure 3 shows the resulting trie (which has been separated into different sub-
trees for the sake of clarity). For ./2, the lookup now starts from the second
argument, then the constructor name, and finally the first argument. The main
difference w.r.t. the previous indexing method is that the beginning node is
another pre-indexed term. This may lead to more optimal memory layouts and
need fewer lookup operations. Note that constructor names in the edges from
initial nodes need to be prefixed with the name of the rtype. This is necessary
to avoid ambiguities, since the initial node is no longer unique.

324 J.F. Morales and M. Hermenegildo

Garbage Collection and Indexing Methods. Indexing structures require
special treatment for garbage collection4. In principle, it would not be necessary
to keep in a trie nodes for terms that are no longer reachable (e.g., from the
heap, WAM registers, or dynamic predicates), except for caching to speed-up
node creation. Node removal may make use of lookup order. That is, if a key at
a temporary level n corresponds to an atom that is no longer reachable, then all
nodes above n can be safely discarded.

Anchoring on non-root nodes allows the simulation of interesting memory
layouts. For example, a simple way to encode objects in Prolog is by introducing a
new object operation that creates new fresh atoms, and storing object attributes
with a dynamic objattr(ObjId, AttrName, AttrValue) predicate. Anchoring
on ObjId allows fast deletion (at the implementation level) of all attributes of a
specific object when it becomes unreachable.

4 Applications and Experimental Evaluation

To show the feasibility of the approach, we have implemented the pre-indexing
transformations as source-to-source transformations within the Ciao system.
This is done within a Ciao package which defines the syntax and processes the
rtype declarations as well as the marking of pre-indexing points.

As examples, we show algorithmically efficient implementations of the Lempel-
Ziv-Welch (LZW) lossless data compression algorithm and the Floyd-Warshall
algorithm for finding the shortest paths in a weighted graph, as well as some con-
siderations regarding supporting module system implementation. In the following
code, forall/2 is defined as \+ (Cond, \+ Goal).

4.1 Lempel-Ziv-Welch Compression

Lempel-Ziv-Welch (LZW) [16] is a lossless data compression algorithm. It encodes
an input string by building an indexed dictionary D of words and writing a list of
dictionary indices, as follows:

1- D := {w | w has length 1} (all strings of length one).
2- Remove from input the longest prefix that matches some word W in D, and

emit its dictionary index.
3- Read new character C, D := D ∪ concat(W,C), go to step 2;

otherwise, stop.

A simple Prolog implementation is shown in Figs. 4 and 5. Our implementa-
tion uses a dynamic predicate dict/2 to store words and corresponding numeric
indices (for output). Step 1 is implemented in the build dict/1 predicate.

4 Automatic garbage collection of indexing structures is not supported in the current
implementation.

Pre-indexed Terms for Prolog 325

1 compress(Cs, Result) :- % Compress Cs

2 build_dict(256), % Build the dictionary
3 compress_(Cs, #lst([]), Result).

4

5 compress_([], W, [I]) :- % Empty, output code for W
6 dict(W,I).

7 compress_([C|Cs], W, Result) :- % Compress C

8 WC = #lst([C|^W]),

9 (dict(WC,_) -> % WC is in dictionary
10 W2 = WC,

11 Result = Result0

12 ; dict(W,I), % WC not in dictionary
13 Result = [I|Result0], % Output the code for W

14 insert(WC), % Add WC to the dictionary
15 W2 = #lst([C])

16),

17 compress_(Cs, W2, Result0).

Fig. 4. LZW Compression: main code.

Steps 2 and 3 are implemented in the compress /3 predicate5. For encoding words
we use lists. We are only interested in adding new characters and word match-
ing. For that, list construction and unification are good enough. We keep words in
reverse order so that appending a character is done in constant time. For constant-
time matching, we use an rtype for pre-indexing lists. The implementation is straigh-
forward. Note that we add a character to a word in WC = #lst([C|^W]) (Line 8).
The annotation (whose syntax is implemented as a user-defined Prolog operator)
is used by the compiler to generate the pre-indexed version of term construction.
In this case, it indicates that words are pre-indexed using the lst rtype and that W
is already pre-indexed (indicated by the escape ^ prefix). Thus we can effectively
obtain optimal algorithmic complexity.

Performance Evaluation. We have encoded three files of different format
and size (two HTML files and a Ciao bytecode object) and measured the perfor-
mance of alternative indexing and pre-indexing options. The experimental results
for the algorithm implementation are shown in Table 16. The columns under
indexing show the execution time in seconds for different indexing methods:

5 We use updates in the dynamic program database as an instrumental example for
showing the benefits of preindexing from an operational point of view. It is well known
that this style of programming is often not desirable. The illustrated benefits of prein-
dexing can be easily translated to more declarative styles (like declaring and compos-
ing effects in the type system) or more elaborate evaluation strategies (such as tabling,
that uses memoization techniques).

6 Despite the simplicity of the implementation, we obtain compression rates similar
to gzip.

326 J.F. Morales and M. Hermenegildo

1 % Mapping between words and dictionary index
2 :- data dict/2.

3

4 % NOTE: #lst can be changed or removed, ˆ escapes cast
5 % Anchors to 2nd arg in constructor
6 :- rtype lst ---> [] ; [int|lst]:::index([2,0,1]).

7

8 build_dict(Size) :- % Initial dictionary
9 assertz(dictsize(Size)),

10 Size1 is Size - 1,

11 forall(between(0, Size1, I), % Single code entry for I

12 assertz(dict(#lst([I]), I))).

13

14 insert(W) :- % Add W to the dictionary
15 retract(dictsize(Size)), Size1 is Size + 1, assertz(dictsize(Size1)),

16 assertz(dict(W, Size)).

Fig. 5. LZW Compression: auxiliary code and rtype definition for words.

Table 1. Performance of LZW compression (in seconds) by indexing method.

Data size Indexing (time)

Original Result None Clause Term

Data1 1326 732 0.074 0.025 0.015

Data2 83101 20340 49.350 1.231 0.458

Data3 149117 18859 93.178 2.566 0.524

none indicates that no indexing is used (except for the default first argument,
first level indexing); clause performs multi-level indexing on dict/2; term uses
pre-indexed terms.

Clearly, disabling indexing performs badly as the number of entries in the
dictionary grows, since it requires one linear (w.r.t. the dictionary size) lookup
operation for each input code. Clause indexing reduces lookup complexity and
shows a much improved performance. Still, the cost has a linear factor w.r.t. the
word size. Term pre-indexing is the faster implementation, since the linear factor
has disappeared (each word is uniquely represented by a trie node).

4.2 Floyd-Warshall

The Floyd-Warshall algorithm computes the shortest paths problem in a weighted
graph in O(n3) time, where n is the number of vertices. Let G = (V,E) be a
weighted directed graph, V = v1, . . . , vn the set of vertices, E ⊆ V 2, and wi,j the
weight associated to edge (vi, vj) (where wi,j = ∞ if (vi, vj) /∈ E and wi,i = 0).
The algorithm is based on incrementally updating an estimate on the shortest
path between each pair of vertices until the result is optimal. Figure 6 shows a

Pre-indexed Terms for Prolog 327

1 floyd_warshall :-

2 % Initialize distance between all vertices to infinity
3 forall((vertex(I), vertex(J)), assertz(dist(I,J,1000000))),

4 % Set the distance from V to V to 0
5 forall(vertex(V), set_dist(V,V,0)),

6 forall(weight(U,V,W), set_dist(U,V,W)),

7 forall((vertex(K), vertex(I), vertex(J)),

8 (dist(I,K,D1),

9 dist(K,J,D2),

10 D12 is D1 + D2,

11 mindist(I,J,D12))).

12

13 mindist(I,J,D) :- dist(I,J,OldD), (D < OldD -> set_dist(I,J,D) ; true).

14

15 set_dist(U,V,W) :- retract(dist(U,V,_)), assertz(dist(U,V,W)).

Fig. 6. Floyd-Warshall code

simple Prolog implementation. The code uses a dynamic predicate dist/3 to
store the computed minimal distance between each pair of vertices. For each
vertex k, the distance between each (i, j) is updated with the minimum distance
calculated so far.

Performance Evaluation. The performance of our Floyd-Warshall implemen-
tation for different sizes of graphs is shown in Fig. 7. We consider three indexing
methods for the dist/3 predicate: def uses the default first order argument
indexing, t12 computes the vertex pair key using two-level indices, p12 uses a
packed integer representation (obtaining a single integer representation for the
pair of vertices, which is used as key), and p12a combines p12 with a specialized
array to store the dist/3 clauses.

The execution times are consistent with the expected algoritmic complexity,
except for def. The linear relative factor with the rest of methods indicates that
the complexity without proper indexing is O(n4). On the other hand, the plots
also show that specialized computation of keys and data storage (p12 and p12a)
outperforms more generic encoding solutions (t12).

4.3 Module System Implementations

Module systems add the notion of modules (as separate namespaces) to predi-
cates or terms, together with visibility and encapsulation rules. This adds a sig-
nificantly complex layer on top of the program database (whether implemented
in C or in Prolog meta-logic as hidden tables, as in Ciao [4]). Nevertheless,
almost no changes are required in the underlying emulator machinery or pro-
gram semantics. Modular terms and goals can be perfectly represented as M:T
terms and a program transformation can systematically introduce M from the
context. However, this would include a noticeable overhead. To solve this issue,

328 J.F. Morales and M. Hermenegildo

20 40 60 80 100

0

5

10

15

Number of nodes

T
im

e
re
la
ti
ve

to
p1

2a
def
t12
p12
p12a

Fig. 7. Execution time for Floyd-Warshall

Ciao reserves special atom names for module-qualified terms (currently, only
predicates).

We can see this optimization as a particular case of pre-indexing, where the
last step in module resolution (which maps to the internal representation) is a
pre-indexing cast for an mpred rtype:

:- rtype mpred ---> nv:nv ::: index([1,0,2]).

For example, given a module M = lists and goal G = append(X,Y,Z), the
pre-indexed term MG = #mpred(M:G) can be represented as ’lists:append’
(X,Y,Z),7 where the first functor encodes both the module and the predicate
name. To enable meta-programming, when MG is provided, both M and G can be
recovered.

Internally, another rewrite step replaces predicate symbols by actual pointers
in the bytecode, which removes yet another indirection step. This indicates that
it would be simple to reuse pre-indexing machinery for module system imple-
mentations, e.g., to enhance modules with hierarchies or provide better tools
for meta-programming. In principle, pre-indexing would bring the advantages of
efficient low-level code with the flexibility of Prolog-level meta representation of
modules. Moreover, anchoring on M mimicks a memory layout where predicate
tables are stored as key-value tables inside module data structures.

5 Related Work

There has been much previous work on improving indexing for Prolog and
logic programming. Certain applications involving large data sets need any- and
multi-argument indexing. In [7] an alternative to static generation of multi-
argument indexing is presented. The approach presented uses dynamic schemes
7 Note that the identifier does not need any symbolic description in practice.

Pre-indexed Terms for Prolog 329

for demand-driven indexing of Prolog clauses. In [14] a new extension to Prolog
indexing is proposed. User-defined indexing allows the programmer to index both
instantiated and constrained variables. It is used for range queries and spatial
queries, and allows orders of magnitude speedups on non-trivial datasets.

Also related is ground-hashing for tabling, studied in [17]. This technique
avoids storing the same ground term more than once in the table area, based on
computation of hash codes. The approach proposed adds an extra cell to every
compound term to memoize the hash code and avoid the extra linear time factor.

Our work relates indexing techniques (which deal with fast lookup of terms in
collections) with term representation and encoding (which clearly benefits from
specialization). Both problems are related with optimal data structure imple-
mentation. Prolog code is very often used for prototyping and then translated to
(low-level) imperative languages (such as C or C++) if scalability problems arise.
This is however a symptom that the emulator and runtime are using subopti-
mal data structures which add unnecessary complexity factors. Many specialized
data structures exist in the literature, with no clear winner in all cases. If they
can be directly implemented in Prolog, they are often less efficient than their
low-level counterparts (e.g., due to data immutability). Without proper abstrac-
tion they obscure the program to the point where a low-level implementation
may not be more complex. On the other hand, adding them to the underlying
Prolog machines is not trivial. Even supporting more than one term represen-
tation may have prohibitive costs (e.g., efficient implementations require a low
number of tags, small code that fits in the instruction cache, etc.). Our work
aims at reusing the indexing machinery when possible and specializing indexing
for particular programs.

The need for the right indexing data structures to get optimal complexity is
also discussed in [11] in the context of CHR. In [9] an improved term encoding for
indexed ground terms that avoids the costs of additional hash-tables is presented.
This offers similar results to anchoring in pre-indexing. Reusing the indexing
machinery is also studied in [8], which shows term flattening and specialization
transformations.

6 Conclusions and Future Work

Traditionally, Prolog systems index terms during clause selection (in the best
case, reducing a linear search to constant time). Despite that, index lookup is
proportional to the size of the term. In this paper we have proposed a mixed app-
roach where indexing is precomputed during term creation. To do that, we define
a notion of instantiation types and annotated constructors that specify the index-
ing mode. The advantage of this approach is that lookups become sub-linear.
We have shown experimentally that this approach improves clause indexing and
that it has other applications, for example for module system implementation.

These results suggest that it may be interesting to explore lower-level index-
ing primitives beyond clause indexing. This work is also connected with structure
sharing. In general, pre-indexing annotations allow the optimization of simple
Prolog programs with scalability problems due to data representation.

330 J.F. Morales and M. Hermenegildo

As future work, there are some open lines. First, we plan to polish the current
implementation, which is mostly based on program rewriting and lacks garbage
collection of indexing tables. We expect major performance gains by optimizing
some operations at the WAM or C level. Second, we want to extend our repertoire
of indexing methods and supporting data structures. Finally, rtype declarations
and annotations could be discovered and introduced automatically via program
analysis or profiling (with heuristics based on cost models).

References

1. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press,
Cambridge (1991)

2. Boyer, R., More, J.: The sharing of structure in theorem-proving programs. Mach.
Intell. 7, 101–116 (1972)

3. Graf, P. (ed.): Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)
4. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J.,

Puebla, G.: An overview of ciao and its design philosophy. Theory Pract. Logic
Program. 12(1–2), 219–252 (2012). http://arxiv.org/abs/1102.5497

5. Johnson, E., Ramakrishnan, C.R., Ramakrishnan, I.V., Rao, P.: A space efficient
engine for subsumption-based tabled evaluation of logic programs. In: Middel-
dorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722, pp. 284–299. Springer,
(1999)

6. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1853–1964 Elsevier
and MIT Press (2001)

7. Santos Costa, V., Sagonas, K., Lopes, R.: Demand-driven indexing of prolog
clauses. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 395–
409. Springer, Heidelberg (2007)

8. Sarna-Starosta, B., Schrijvers, T.: Transformation-based indexing techniques for
Constraint Handling Rules. In: CHR, RISC Report Series 08–10, pp.3–18. Univer-
sity of Linz, Austria (2008)

9. Sarna-Starosta, B., Schrijvers, T.: Attributed data for CHR indexing. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 357–371. Springer,
Heidelberg (2009)

10. Schrijvers, T., Santos Costa, V., Wielemaker, J., Demoen, B.: Towards typed pro-
log. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
693–697. Springer, Heidelberg (2008)

11. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity
of constraint handling rules. ACM Trans. Program. Lang. Syst. 31(2), 8:1–8:42
(2009)

12. Swift, T., Warren, D.S.: Tabling with answer subsumption: implementation, appli-
cations and performance. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS,
vol. 6341, pp. 300–312. Springer, Heidelberg (2010)

13. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming.
TPLP 12(1–2), 157–187 (2012)

14. Vaz, D., Costa, V.S., Ferreira, M.: User defined indexing. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 372–386. Springer, Heidelberg (2009)

http://arxiv.org/abs/1102.5497

Pre-indexed Terms for Prolog 331

15. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Report 309, Arti-
ficial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park CA
94025 (1983)

16. Welch, T.A.: A technique for high-performance data compression. IEEE Comput.
17(6), 8–19 (1984)

17. Zhou, N.F., Have, C.T.: Efficient tabling of structured data with enhanced hash-
consing. TPLP 12(4–5), 547–563 (2012)

Author Index

Abdennadher, Slim 59, 92
Alves, Sandra 148

Balaniuk, Remis 219

Chen, Wu 279
Chowdhury, Md. Solimul 279
Christiansen, Henning 41
Cornish, J. Robert M. 3

Danilenko, Nikita 241
Degtyarev, Anatoli 148
De Schreye, Danny 21
Drabent, Włodzimierz 261

Ebnenasir, Ali 201
Elsawy, Ahmed 59

Fernández, Maribel 148
Frühwirth, Thom 74, 92
Futatsugi, Kokichi 182

Gall, Daniel 74
Gallego Arias, Emilio Jesús 299
Gange, Graeme 3
Gutiérrez, Raúl 113

Hermenegildo, M. 317

Karimi, Arash 279
King, Andy 133
Kirkeby, Maja H. 41

Lipton, James 299
Liu, Fangfang 279
Lucas, Salvador 113

Mariño, Julio 299
Meseguer, José 113
Morales, J.F. 317

Navas, Jorge A. 3
Nicholson, Colin 21
Nys, Vincent 21

Ogata, Kazuhiro 182

Preining, Norbert 182

Schachte, Peter 3
Sharaf, Nada 92
Singh, Ranjeet 133
Søndergaard, Harald 3
Stuckey, Peter J. 3

Tahat, Amer 201

Vidal, Germán 167

You, Jia-Huai 279

Zaki, Amira 59

	Preface
	Organization
	Obscuring Code
	Unveiling and Veiling Information in Programs1

	Synthesizing Functions from Relations in Leon
	Contents
	Program Analysis and Transformation
	Analyzing Array Manipulating Programs by Program Transformation
	1 Introduction
	2 Source and Target Language
	3 From Scalar to Set Machine Transfer Functions
	4 Orderings
	5 The Transformation
	5.1 Reading and Writing
	5.2 Index Manipulation
	5.3 Control Flow

	6 Selecting segment Bounds
	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	A Array Operations with Non-segment Variables
	References

	Analysing and Compiling Coroutines with Abstract Conjunctive Partial Deduction
	1 Introduction
	2 Preliminaries
	3 An Example of a CC Transformation, Using ACPD
	4 A More Complex Example, Introducing the multi Abstraction
	5 Discussion
	References

	Constraint Handling Rules
	Confluence Modulo Equivalence in Constraint Handling Rules
	1 Introduction
	2 Background
	3 Preliminaries
	4 Constraint Handling Rules
	5 Proving Confluence Modulo Equivalence for CHR
	5.1 Joinability of 1-Critical Corners
	5.2 About Critical 2-, 3- and -Corners

	6 Confluence of Viterbi Modulo Equivalence
	7 Confluence of Union-Find Modulo Equivalence
	8 Discussion and Detailed Comments on Related Work
	9 Conclusion and Future Work
	References

	Exhaustive Execution of CHR Through Source-to-Source Transformation
	1 Introduction
	2 Constraint Handling Rules
	2.1 Syntax
	2.2 Operational Semantics

	3 Transformation
	4 Soundness and Completeness of the Transformation
	5 Inverse Execution Using Proposed Transformation
	6 Conclusion
	References

	A Formal Semantics for the Cognitive Architecture ACT-R
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 ACT-R
	2.3 Constraint Handling Rules

	3 Formalization of the ACT-R Production System
	3.1 Chunk Stores
	3.2 Buffer Systems
	3.3 The Operational Semantics of ACT-R
	3.4 Running Example: Operational Semantics of ACT-R

	4 Translation of ACT-R Rules to CHR
	5 Soundness and Completeness
	6 Conclusion
	References

	CHRAnimation: An Animation Tool for Constraint Handling Rules
	1 Introduction
	2 Constraint Handling Rules
	3 Why ``CHRAnimation''?
	4 System Architecture
	5 Annotation to Visualize CHR Algorithms
	5.1 Basic Constraint Annotation
	5.2 Multi-constraint Annotation
	5.3 Rule Annotations

	6 Transformation Approach
	7 Examples
	8 Visualizing Different Semantics
	8.1 Transformation Approach
	8.2 Visualization

	9 Conclusion
	A Annotations
	References

	Termination Analysis
	Extending the 2D Dependency Pair Framework for Conditional Term Rewriting Systems
	1 Introduction
	2 Preliminaries
	3 2D Dependency Pairs for CTRSs
	3.1 2D Dependency Pair Framework for CTRSs

	4 Removing Useless Connection Pairs
	5 Subterm Processor
	6 Simplifying the Conditions of the Rules
	6.1 Simplification by Unification
	6.2 Narrowing the Conditions of the Rules

	7 Narrowing the Right-Hand Sides of Rules
	8 Detection of Infinite CTRS Problems
	9 Experimental Evaluation
	10 Related Work and Conclusions
	References

	Security
	Partial Evaluation for Java Malware Detection
	1 Introduction
	1.1 Contributions

	2 Primer on Java Obfuscation
	2.1 Reflection Obfuscation
	2.2 String Obfuscation
	2.3 Other Obfuscations

	3 Partial Evaluation
	3.1 Type Declarations
	3.2 new
	3.3 Arithmetical Operations
	3.4 this and Parameters
	3.5 return and virtualinvoke
	3.6 goto
	3.7 Example

	4 Experiments
	5 Related Work
	6 Future Work
	7 Conclusion
	References

	Access Control and Obligations in the Category-Based Metamodel: A Rewrite-Based Semantics
	1 Introduction
	2 Preliminaries
	3 Obligations and Events
	4 Obligations in the Category-Based Metamodel
	4.1 Obligation Axioms
	4.2 Event and Event Type Representation

	5 A Rewrite Semantics for Obligations
	5.1 Analysis of Policies

	6 Related Work
	7 Conclusions
	References

	Program Testing and Verification
	Concolic Execution and Test Case Generation in Prolog
	1 Introduction
	2 Preliminaries
	3 A Deterministic Semantics
	4 Concolic Execution
	5 Test Case Generation
	5.1 The Algorithm
	5.2 Test Case Generation in Practice

	6 Concluding Remarks and Future Work
	References

	Liveness Properties in CafeOBJ -- A Case Study for Meta-Level Specifications
	1 Introduction
	1.1 Related Work
	1.2 Layout of the Article

	2 The QLOCK Protocol
	2.1 Verification Properties
	2.2 Short Introduction to CafeOBJ
	2.3 Base Specification
	2.4 Verification by Induction and Exhaustive Search

	3 Extended Specification
	3.1 Fairness
	3.2 Transition Sequence
	3.3 Waiting Times

	4 Verification of Properties
	4.1 Proof Score with Patterns
	4.2 The CafeOBJ Search Predicate

	5 Discussion and Conclusion
	References

	Program Synthesis
	A Hybrid Method for the Verification and Synthesis of Parameterized Self-Stabilizing Protocols
	1 Introduction
	2 Formal Specifications of Basic Concepts
	2.1 Protocols
	2.2 Distribution and Atomicity Models
	2.3 Computation
	2.4 Closure and Convergence

	3 Problem Statement
	4 Specification of Add_Weak
	5 Verification of Add_Weak
	5.1 Verifying the Equality of Projections on Invariant
	5.2 Verifying Weak Convergence

	6 Reusability and Generalizability
	6.1 PVS Specification of Coloring
	6.2 Mechanical Verification of Parameterized Coloring

	7 Discussion and Related Work
	8 Conclusion and Future Work
	References

	Drill and Join: A Method for Exact Inductive Program Synthesis
	1 Introduction
	2 Boolean Ring, F2 Field, Boolean Polynomials and Boolean Functions
	3 Abstract Algebra and Higher Order Functions
	4 The Drill Function
	5 The Join Function
	6 The Drill & Join Program Synthesis Method
	7 The Main Algorithms of the Drill & Join method
	8 A Common Lisp Version of the Drill & Join Method
	9 Discussion
	10 Applications
	11 Conclusion
	12 Appendices
	12.1 Details of the Fibonacci Sequence Program Synthesis

	References

	Program Derivation
	Functional Kleene Closures
	1 Introduction
	2 Algebraic Preliminaries
	3 A Functional Approach
	4 Application to Square Matrices
	5 A Functional Implementation
	6 Alternative Implementations and Comparison
	6.1 Using Arrays
	6.2 Another List Version
	6.3 Blockwise Implementation
	6.4 A Note on Complexity
	6.5 Comparison

	7 Related Work and Discussion
	References

	Semantic Issues in Logic Programming
	On Completeness of Logic Programs
	1 Introduction
	2 Correctness and Completeness
	2.1 Specifications
	2.2 Correctness and Completeness
	2.3 Approximate Specifications
	2.4 Proving Correctness

	3 Proving Completeness
	4 Pruning SLD-Trees and Completeness
	4.1 Pruning as Clause Selection
	4.2 The Cut in the Last Clause

	5 Discussion
	References

	Polynomial Approximation to Well-Founded Semantics for Logic Programs with Generalized Atoms: Case Studies
	1 Introduction
	2 Preliminaries
	2.1 Language
	2.2 Logic Programs with Generalized Atoms
	2.3 Well-Founded Semantics for Normal Logic Programs

	3 Well-Founded Semantics for Logic Programs with Generalized Atoms
	3.1 Complexity

	4 Polynomial Approximation for DL-Programs
	4.1 Description Logic Program
	4.2 Removing Non-monotone Dl-Atoms as a Polynomial Approximation

	5 Polynomial Approximation for Logic Programs with Aggregates
	5.1 Syntax and Semantics of Logic Programs with Aggregates
	5.2 Disjunctive Rewrite as a Polynomial Approximation

	6 Related Work and Discussion
	A Appendix: Proof of Theorem 1
	References

	Program Transformation and Optimization
	Declarative Compilation for Constraint Logic Programming
	1 Introduction
	2 Relation Algebras and Signatures
	2.1 Relational Language and Theory
	2.2 Semantics

	3 Program Translation
	3.1 Constraint Translation
	3.2 Translation of Constraint Logic Programs
	3.3 The Least Relational Interpretation Satisfying Definitional Equations

	4 A Rewriting System for Resolution
	4.1 Meta-Reductions
	4.2 A Rewriting System for SLD Resolution

	5 Operational Equivalence
	5.1 The Resolution Transition System

	6 Related and Future Work
	7 Conclusion
	References

	Pre-indexed Terms for Prolog
	1 Introduction
	2 Background
	3 Pre-indexing
	3.1 Building Pre-Indexed Terms
	3.2 Pre-Indexing Methods

	4 Applications and Experimental Evaluation
	4.1 Lempel-Ziv-Welch Compression
	4.2 Floyd-Warshall
	4.3 Module System Implementations

	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

