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    Abstract     In the quest for developing more effective immune therapy strategies for 
cancer, to date, unraveling and successful modulation of the mechanisms of tumor 
escape in the microenvironment became an urgent challenge. While immune sup-
pression is considered an important mode of immune escape, this overview will 
deal with another important mechanism of immune escape in the tumor microenvi-
ronment: the microenvironment-regulated resistance of tumor cells toward the cyto-
toxic machinery of immune effector cells. We have recently studied the impact of 
the microenvironment to the development of immune resistance in multiple 
myeloma (MM) and will outline the backgrounds and current knowledge about the 
mechanisms and modulation of this type of immune escape.  
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7.1          Introduction 

    Eradication of malignant cells through the cytotoxic machinery of immune cells 
such as cytotoxic T cells (CTLs) and natural killer (NK) cells is the ultimate aim of 
cellular immunotherapy of cancer. Starting from the early applications of allogeneic 
stem cell transplantation, followed by successful donor lymphocyte infusions, clini-
cians and immunologists have witnessed and appreciated the potential power of 
cellular immunotherapy in the battle of hematological and non-hematological 
malignancies [ 1 ]. Over the past two decades, the rapid identifi cation of tumor- 
associated antigens [ 2 ,  3 ], development of new technologies such as T cell receptor 
(TCR)-gene transfer [ 4 ] and recently the remarkable successes of virus-specifi c 
T cells [ 5 ], tumor infi ltrating lymphocytes (TIL) [ 6 ] and chimeric antigen receptor 
(CAR)-engineered T cells [ 7 – 9 ] in the treatment of various hematologic cancers, 
have elevated cancer immunotherapy to a new level, with high expectations. 
Nonetheless, despite the optimal activation and infi ltration of abundant numbers 
of tumor-reactive CTLs or NK cells at tumor sites, human cancers, mainly due to 
genetic heterogeneity as well as micro-environmental infl uences, display various 
mechanisms to evade the immune attack [ 10 ,  11 ]. To date, the unraveling and the 
successful modulation of the mechanisms of tumor escape in the microenvironment 
became the most urgent challenges to achieve the next level of success in the immu-
notherapy of cancer [ 12 ,  13 ]. 

 Currently, most scientists consider immune suppression as the main mechanism 
of immune escape in the tumor microenvironment [ 14 – 17 ]. There is, indeed, a 
large body of evidence that the tumor microenvironment is a suppressive infl am-
matory niche [ 18 ,  19 ], with the presence of several immune suppressive soluble 
factors, such as IDO, Arginase, INOS or TGF-β [ 20 – 22 ], secreted either from 
tumor cells [ 23 ], accessory cells (vascular endothelium, stromal cells, fi broblasts) 
[ 24 ] or from suppressive immune cells such as regulatory T cells [ 25 ], tumor asso-
ciated macrophages [ 26 ], and myeloid derived suppressor cells [ 27 ,  28 ], many of 
which are recruited or induced in the microenvironment through crosstalk with 
tumor cells and tumor stroma [ 29 ]. This immune suppressive milieu also involves 
the strong upregulation of the immune checkpoint molecules PD1 on T cells and 
PD-L1/2 on tumor cells [ 30 – 35 ], and in some reported cases through interaction 
with stroma [ 36 ]. 

 This chapter will, however, deal with another, entirely distinct mechanism of 
immune escape in the tumor microenvironment: the microenvironment-regulated 
resistance of tumor cells toward the cytotoxic machinery of immune effector cells. 
This resistance of tumor cells against cytotoxic attack, although extensively docu-
mented in the melanoma setting, and may be as important as “immune suppres-
sion”, has not received suffi cient attention yet, probably because it has not been seen 
as a microenvironment-mediated phenomenon. We have recently studied the impact 
of the microenvironment to the development of immune resistance in multiple 
myeloma (MM) and will outline below the backgrounds and current knowledge 
about the mechanisms and modulation of this type of immune escape.  
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7.2     MM the Model for Investigating the Role 
of the Microenvironment in Human Cancers 

 MM is the malignant disorder of antibody producing clonal plasma cells [ 37 ]. It is 
the second most common hematological malignancy worldwide. Despite four excit-
ing decades of drug development, MM remains incurable by chemotherapy due to 
the induction of drug resistance [ 38 ,  39 ]. Although experimental and clinical studies 
indicate the immune competence of MM cells and possibility to treat the disease 
with cellular immunotherapy [ 40 – 42 ], the overall outcome of allo-SCT, DLI or 
other experimental immunotherapies in MM is at most moderate, underscoring the 
ability of MM cells to evade the cellular immune attack. 

 Traditionally, the biology of MM and its therapy-response is studied prefera-
bly in the context of the microenvironment [ 43 – 46 ] because MM, especially in 
the initial phases of the disease, is entirely dependent on its natural habitat, the 
bone marrow (BM). Over the past decades, it has been extensively documented 
that the BM provides MM cells an ideal sanctuary by the production of several 
survival cytokines such as IL-6 and IL-8, VEGF, SDF-1 and many others, and by 
interactions of MM cells with extracellular matrix and BM accessory cells, in 
particular with stromal cells (BMSCs) and vascular endothelial cells (VECs) [ 47 , 
 48 ]. In fact, once taken out of this natural niche, primary human MM cells rap-
idly die, and are very diffi cult to engraft even in the BM of immune defi cient 
mice [ 49 – 51 ].  

7.3     Importance of the Tumor Microenvironment 
in Drug Resistance 

 Investigations aiming at understanding the molecular basis of drug resistance of 
MM have demonstrated that the many soluble factors produced in the BM micro-
environment not only provide proliferative and survival signals to MM cells, but 
also -individually or collectively- contribute to the development of drug resistance 
[ 52 ]. Perhaps, more important is the induction of drug resistance through the 
(integrin- mediated) adhesion of MM cells to BMSCs and VECs. This type of envi-
ronmentally, thus epigenetically, regulated drug resistance, which is generally 
known as “Cell Adhesion-Mediated Drug Resistance” (CAM-DR), has originally 
been demonstrated for MM cells in the late nineties [ 53 ], and has subsequently 
been described also for several other hematological and non-hematological malig-
nancies [ 54 – 58 ]. While integrins were initially shown to play a key role in this type 
of drug resistance, another important molecule appears to be NOTCH [ 59 – 61 ]. The 
relation of this environmentally regulated drug resistance with immune resistance 
will become obvious upon outlining the molecular nature of both types of resis-
tance mechanisms.  
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7.4     The Apoptotic Pathways: Immune Resistance 
Meets Drug Resistance 

 Studies have shown that the molecular basis of CAM-DR is the cell 
 adhesion- dependent triggering of a complex series of signaling events resulting in 
the transcriptional or posttranscriptional regulation of intracellular molecules 
involved in apoptotic signaling for programmed cell death [ 45 ,  46 ]. This ability of 
the microenvironment to modulate apoptotic pathways was, in fact, for us a major 
reason to start studying the relation of the microenvironment with immune resis-
tance, because not only drugs, but also cytotoxic immune cells kill the tumor cells 
via the induction of apoptosis. 

 In general terms, apoptosis involves a complex cascade of molecular events that 
can be initiated inside the cell or by external dead signals. Accordingly, two main 
apoptotic pathways have been described: the intrinsic or mitochondrial pathway and 
the extrinsic or death receptor pathway [ 62 ,  63 ] (Fig.  7.1 ). Several pro-apoptotic 
anticancer drugs are designed for activating either of these pathways [ 64 – 71 ]. While 
immune cells can trigger the extrinsic death receptor pathway [ 72 ], a major mecha-
nism of tumor cell lysis by CTLs and NK cells is the apoptosis induced by the 
degranulation of granzyme/perforin from the cytotoxic granules upon engagement 
with the target cells [ 73 ]. This specifi c mechanism has traditionally been defi ned as 
a separate pathway, although it is also initiated by external signals. As will be out-
lined below, more important is the considerable overlap between these pathways. 
All three signaling pathways eventually converge and mediate the execution phase 
of apoptosis via the activation of caspase-3. Hence, although immune cells may in 
some cases kill drug resistant tumor cells, specifi c drug resistance mechanisms may 
overlap with immune resistance mechanisms, with potentially important clinical 
consequences.   

7.5     The Modulation of Intrinsic, Extrinsic and Granzyme/
Perforin Mediated Pathways of Apoptosis by 
the Microenvironment 

 The intrinsic apoptosis pathway, which involves mitochondrial depolarization, is 
initiated with the activation of pro-apoptotic proteins BAX and BAK, by BIM and 
BID, respectively [ 74 ] (Fig.  7.1 ). Oligomers or multimers of activated BAX and 
BAK engage with the mitochondrial membrane [ 75 ], induce the formation of 
mitochondrial pores and cause the release of cytochrome-c and SMAC/Diablo 
from the mitochondria into the cytosol [ 76 ]. By binding to the APAF-1 protein, 
cytochrome- c generates a large cytoplasmic complex, the apoptosome [ 77 ]. This 
complex binds and activates caspase-9, which in turn can activate several execu-
tioner caspases including the caspase-3 [ 78 ]. Several members of the BCL-2 fam-
ily of proteins are important regulators of this pathway. Briefl y, the mitochondrial 
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  Fig. 7.1    Apoptotic pathways activated by immune effector cells (CTLs/NK cells) and their regu-
lation by the microenvironment. The simplifi ed scheme demonstrates the key molecules and the 
overlap between the intrinsic, extrinsic and granzyme pathways of apoptosis. Also note the conver-
gence of these pathways at the level of caspase 3 (Cas-3). The molecules that are known to be 
modulated by the stroma-tumor interactions are indicated with  red  (downregulated) and  green  
(upregulated) boxes.  Cas-3  caspase 3,  Cas-8  caspase 8,  Cas-9  caspase 9,  Cyt-C  cytochrome C, 
 Gr-B  granzyme B       
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membrane- associated BCL-2, BCL-2A1, BCL-W BCL-XL and MCL-1 proteins 
protect the cells form apoptosis by inhibiting the oligomerization of BAX and 
BAK. In contrast, the other members, such as PUMA and NOXA, improve the 
oligomerization of BAX and BAK via competitive binding to the former anti-
apoptotic members of the BCL-2 family of proteins [ 79 ]. It has been extensively 
demonstrated that the mediator and regulatory molecules of the intrinsic pathway 
are signifi cantly infl uenced by stroma-derived soluble factors and adhesion. For 
instance, IL-6, through activation of STAT3 upregulates the transcription of 
BCL-XL [ 80 ], induces adhesion of MM cells to stroma, downregulates BIM [ 81 , 
 82 ] and BAX [ 83 ] and upregulates the anti-apoptotic BCL-2 proteins [ 83 ], espe-
cially of MCL-1 [ 44 ,  84 ]. Upregulation of MCL-1 and BCL-2 importantly contrib-
utes to drug resistance in MM, acute myeloid leukemia and B-cell acute 
lymphoblastic leukemia [ 85 ,  86 ]. Several studies indicate that not only integrins 
but also Notch signaling can have a major impact on the protection of tumor cells 
from apoptosis via modulation of the intrinsic pathway [ 59 – 61 ]. 

 The signaling of the extrinsic apoptosis pathway involves the triggering of the 
tumor necrosis factor (TNF) family of death receptors including FAS (CD95), TNF- 
related apoptosis-inducing ligand-receptor 1 (TRAIL-R1), TRAIL-R2 and TNF 
receptor apoptosis-mediating protein (TRAMP). CTLs, especially of the CD4+ 
phenotype, frequently trigger FAS to activate the extrinsic pathway [ 87 – 93 ]. 
Triggering of death receptors activates FADD and then caspase-8, which in turn 
either directly activates caspase-3 or cleaves BID to signal via the intrinsic pathway 
[ 94 ]. In this pathway, the FLICE-like inhibitory protein FLIP can inhibit recruit-
ment and activation of caspase-8. Soluble factors produced by BMSCs have been 
shown to upregulate FLIP expression [ 95 ]. In addition, integrin-mediated adhesion 
inhibits activation of caspase-8 due to increased cellular redistribution of FLIP [ 96 ]. 
In addition, we have recently shown that MM cell-stroma interactions signifi cantly 
downregulates MM cell surface FAS expression [ 97 ]. 

 Finally, the Granzyme/perforin pathway, which is exclusively utilized by CTLs 
and NK cells, is initiated by the degranulation of the preformed cytotoxic granules 
containing granzymes, perforin and serglycin into the immune synapse upon 
engagement of immune effector cells with target cells. Perforin, with its complement- 
like structure, generates membrane pores in the target cell to enable the cytotosolic 
entry of granzymes, which are the key molecules to induce signaling for cytotoxic 
cell-mediated apoptosis [ 98 ]. Among the 12 granzymes described until now, the 
granzyme B is the most abundantly present one in cytotoxic granules. It cleaves 
proteins after aspartate residues and can directly activate caspase-3 to trigger apop-
tosis. But, similar to caspase 8, granzyme-B can also trigger the intrinsic pathway 
of apoptosis through the activation of BID [ 98 ]. This clear overlap between the 
intrinsic pathway and granzyme-mediated lysis may have important consequences: 
for instance, melanoma cells that have been made resistant to CTL killing display 
signatures for hyperactivation of the NF-κB pathway, and overexpression of BCL-2, 
BCL-XL, and MCL-1 [ 99 ]. In fact, the effi cacy of (CAR) T cell therapy can be 
signifi cantly upregulated by inhibition of BCL-2 family of proteins [ 100 ,  101 ]. 
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Thus the above described microenvironment-mediated drug resistance mechanisms 
of intrinsic pathway, may very well infl uence the outcome of CTL therapy. 

 In human cells, granzyme B can be inhibited by the proteinase inhibitor-9 (PI-9) 
[ 102 ]. The expression levels of this molecule in pediatric ALL cells correlate with 
their resistance against immune cell mediated lysis [ 103 ]. In the clinical setting, 
PI-9 expression is an important predictor of disease-free survival in melanoma 
patients treated with immunotherapy [ 104 ]. Interestingly, PI-9 gene expression can 
be induced by NF-κB signaling [ 105 ] as well as by hypoxia [ 106 ], which is a typical 
feature of the bone marrow microenvironment and has been shown to induce resis-
tance against NK mediated lysis of MM cells [ 107 ]. 

 Since all major apoptotic pathways converge at the level of caspase-3 activation, 
the (microenvironment-mediated) signals that regulate the activity of this execu-
tioner caspase may contribute to the development of both immune- and drug resis-
tance. A specifi c group of molecules that regulates the activation of caspases is the 
IAP family of proteins [ 108 – 110 ]. XIAP, one of the best characterized IAPs, inhib-
its the activity of caspase-3, -7, and -9. Survivin (BIRC5), another well-known IAP, 
is frequently expressed in human tumor cells, and inhibits caspase-3 and -7. The 
activities of these molecules can be controlled, in turn, by the proapoptotic protein 
SMAC/Diablo, which is released upon mitochondrial depolarization [ 111 ,  112 ]. 
IAPs are indeed important in mediating both drug and immune resistance: for 
instance, in a recent study, cis-platinum resistant human ovarian cancer cells were 
found less susceptible toward NK-cell mediated killing than the parental cells partly 
due to the upregulation of cIAP-1 and -2 [ 113 ], Also survivin-3B, an alternative 
splice variant of survivin, was recently associated with chemotherapy resistance as 
well as with resistance to FAS-mediated immune cell toxicity [ 114 ]. Taken together, 
these and some earlier studies [ 115 ] demonstrate that drug resistance mechanisms 
show substantial overlap with the documented mechanisms of immune resistance. 
Unfortunately, however, the impact of the microenvironment on the induction of 
immune resistance has not been widely studied, except for MM. 

 The fi rst indirect evidence for the microenvironment-mediated immune resis-
tance in MM was provided by a study in which BM stroma conferred resistance to 
Apo2 ligand/TRAIL induced lysis in part by regulating c-FLIP [ 95 ]. In this case, 
soluble factors were found responsible for immune resistance. Using mainly an 
in vitro co-culture system, which was originally developed to study BMSC-induced 
drug resistance [ 44 ], we and other investigators have recently questioned whether 
the BM microenvironment can also cause a CAM-DR like immune resistance. 
Indeed, MM cells were protected against NK cells by co-culture with autologous 
BMSCs [ 116 ]. Subsequently, we have reported in vitro and in vivo evidence that 
MM cells are protected from CD4+ and CD8+ CTL-mediated lysis upon direct cel-
lular interactions with VECs and BMSCs derived either from MM patients or from 
healthy individuals [ 97 ]. In our study, the protection of MM cells by accessory cells 
could be observed in the absence of immune suppression; hence, analogous to 
CAM-DR, we designated this type of cell adhesion-mediated immune resistance as 
CAM-IR. In further analysis, we discovered that MM cell-stroma interactions sig-
nifi cantly downregulated MM cell FAS surface expression, but correction of FAS 
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expression by bortezomib, did not entirely abrogate CAM-IR. By contrast, 
 upregulation of survivin/MCL-1 appeared a central mechanism of CAM-IR, since 
we could entirely neutralize the immune resistance, in vitro as well as in a recently 
developed MM model in vivo [ 51 ], by combining T cells with the small molecule 
YM155, a suppressant of survivin and MCL-1 [ 117 ,  118 ]. Although we have not 
elucidated the entire mechanisms of CAM-IR yet, we have observed that CAM-IR, 
like CAM-DR, can be inhibited by interfering with integrin binding on intact cells, 
but unlike CAM-DR, cannot be induced by sole binding of MM cells to fi bronectin, 
vitronectin, or laminin. Signals initiating CAM-IR are therefore most likely trig-
gered by the collective action of integrins with other receptor-ligand systems. 
A possible candidate is the NOTCH signaling pathway, since we have recently 
observed that CAM-IR could also be abrogated by inhibition of the NOTCH path-
way by gamma secretase inhibitors (GSI) (unpublished observations).  

7.6     Towards the Design of Immune-Chemotherapy 
Strategies to Overcome Microenvironment-Mediated 
Immune Resistance 

 Our fi ndings as well as evidence provided from other studies underscore the notion 
that the interactions between tumor cells and the cells of the microenvironment can 
induce resistance toward the cytotoxic machinery of immune cells through upregu-
lation of anti-apoptotic molecules such as survivin, BCL-2 and MCL-1. Thus, suc-
cessful anti-tumor immunotherapy may rely not only on eliminating the immune 
suppressive factors from the microenvironment, but also on modulation of the 
mechanisms that induce or mediate immune resistance. Among several theoreti-
cally conceivable strategies, specifi c attention needs to be paid for modulating the 
target molecules/pathways without compromising T cell function. With this respect, 
neutralizing survivin/MCL-1 with YM155 is a suitable strategy as we have not 
observed any T cell compromising effects of YM155. Several other pathways such 
as the PI3-K/AKT pathway, that are activated by microenvironmental infl uences 
play important roles in tumor development, survival, proliferation and drug resis-
tance through induction of anti-apoptotic molecules [ 119 ]. The modulation of these 
pathways may be benefi cial but need to be cautiously explored as these pathways 
may also play essential roles in T cell activation. For instance, the popular MEK 
inhibitors appear to impair T cell functions and are probably not suitable candidates 
to combine with immune therapy. On the other hand, selective inhibitors of BRAF 
were shown to enhance T-cell recognition of melanoma without affecting lympho-
cyte function [ 120 ]. More practical choices may be the general regulators of epigen-
etic mechanisms, such as histone deacetylase (HDAC) inhibitors as they have been 
shown to modulate drug resistance as well as to improve CTL-mediated lysis of 
tumor cells through upregulation of death receptors [ 121 ], and downregulating 
intracellular c-IAP-2 and BCL-XL expressions [ 122 ]. 
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 Among all these choices, however, the most appealing strategies may be 
 disrupting the tumor-stroma interactions. Since T cells require integrins to generate 
a proper immune synapse, targeting integrin-mediated adhesion may not be feasi-
ble. However, in the BM an effective disruption of stroma-tumor interactions may 
be achieved using CXCR4 inhibitors, which induce mobilization of stem cells and 
myeloma cells from the BM. Such a strategy has already been shown to successfully 
overcome stroma-mediated activation of STAT3 [ 123 ] and HGF/MET [ 124 ] path-
ways, and to prevent the drug resistance of myeloma cells induced by BMSCs [ 125 ]. 
Furthermore, disturbing the stroma-tumor interactions may also prevent the upregu-
lation of immune checkpoint molecules [ 36 ]. Finally, since NOTCH signaling also 
seems important in the microenvironment-mediated drug resistance and similarly 
may induce immune resistance, its modulation can also be explored. Nonetheless, 
more investigation is required on NOTCH, as there are confl icting reports on its 
role, especially on the cytotoxic activity of T cells [ 126 – 128 ].  

7.7     Concluding Remarks 

 The appreciation of the role of the microenvironment, not only in the induction of 
immune suppressive events but also in the protection of tumor cells against cyto-
toxic T cell attack, will stimulate the research and encourage the scientists and clini-
cians to combine immunotherapy not only with agents that can modulate immune 
suppression but also with those that can eliminate the resistance mechanisms 
induced by the microenvironment. Furthermore, the increasing consciousness that 
drug resistance may in several cases also cause immune-resistance may stimulate 
the discussion whether heavily pretreated and multidrug resistant patients are suit-
able candidates for clinical testing of cellular immunotherapy strategies.     
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