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  For several decades, treatment of cancer consisted of chemotherapeutic drugs, 
radiation, and hormonal therapies. Those were not tumor specifi c and exhibited 
severe toxicities in many cases. But during the last several years, targeted cancer 
therapies have been developed. Targeted cancer therapies are drugs or other agents 
(e.g. antibodies) that block the growth and spread of cancer by interfering with 
specifi c gene products that regulate tumor cell growth and progression. Targeted 
cancer therapies are also sometimes called “molecularly targeted drugs.” We have 
witnessed in the last decade a signifi cant explosion in the development of targeted 
cancer therapies developed against various specifi c cancers. These include drugs/
antibodies that interfere with cell growth signaling or tumor blood vessel 
development, promote the cell death of cancer cells, stimulate the immune system 
to destroy specifi c cancer cells and to deliver toxic drugs to cancer cells. One of the 
major problems that arise following treatment with both conventional therapies and 
targeted cancer therapies is the development of resistance, preexisting in a subset of 
cancer cells or cancer stem cells and/or induced by the treatments. Tumor cell 
resistance to therapies remains a major problem and several strategies are being 
considered to reverse the resistance by various manipulations.

Resistance to Targeted Anti-Cancer Therapeutics will focus on the basic and 
translational research behind the molecular mechanisms of resistance found in 
many kinds of anti-cancer therapeutics.    
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Preface

In 1909, Paul Ehrlich proposed that the immune system can recognize and destroy 
nascent tumor cells. A century later, this principle has been applied successfully for 
the treatment of patients with various cancers by the use of monoclonal antibodies, 
adoptively transferred T-cells, genetic amplifi cation of T-cells bearing high affi nity 
TCR, ADCs, CAR T-cells and check point blocking antibodies (see below). 
Immunotherapy against cancer has recently experienced signifi cant translational 
clinical applications in the treatment of many cancer types. We witnessed a few 
decades ago the initial clinical application of T-cell-mediated immunotherapy, ini-
tially by the ex vivo culture and activation of cancer patients BPMCs with IL-2, to 
generate LAK cells and, subsequently, the culture and propagation of TILs from 
cancer tissues and their adoptive transfer into the patients. Subsequently, various 
modalities have been examined and applied in cancer, such as ex vivo DCs pulsed 
with tumor lysates or tumor peptides and administered into the patients with growth 
factors. In addition, several cancer vaccines have been developed. Further, targeting 
T-reg cells and MDCS resulted in enhancing the anti-tumor T-cell response. A num-
ber of successfully current immunotherapies in cancer patients, including check 
point targeted antibodies (e.g., anti-CTLA-4, PD-1, and PDL-1) and adoptive T-cell 
therapies (e.g., genetically transduced T-cell receptors and CARs), are reported to 
be clinically effective in the treatment of advanced cancers, many of which are 
resistant to conventional chemotherapy and radiation. The likelihood of responsive-
ness to these immunotherapies differs strongly depending on tumor type. Targeting 
check points resulted in signifi cant responses in melanoma, renal cell carcinoma, 
and non-small cell lung cancer. For CARs, signifi cant clinical responses have been 
achieved in lymphomas. All of the aforementioned is a testimony to the important 
role of immunotherapy mediated by T-cells and antibodies that have resulted in the 
new generation of targeted therapies and reduced toxicity encountered by conven-
tional chemotherapy and radiotherapy. Several of the aforementioned immunother-
apy strategies were effective in the treatment of drug-resistant tumor cells. However, 
there is still a subset of nonresponsive patients who have a cancer with either a natu-
rally acquired resistance or an induced intrinsic resistance to such therapies.
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The successful requirements for an adoptive and optimal T-cell response consist 
of three key elements: the ability to induce a T-cell response; the ability to infi ltrate 
into the tumor microenvironment; and the ability to kill the tumor cells. Most anti-
cancer cellular and humoral therapies have given little attention to the generally 
encountered tumor cell resistance to cytotoxic activities mediated by such therapies. 
In fact, tumor cells develop several mechanisms to escape tumor cell death. Tumor 
cell resistance may be responsible, in large part, for the fact that many cancer 
patients fail to respond to cytotoxic immunotherapy in the presence of anti-tumor 
cytotoxic T-effector cells and antibodies.

Clearly, one of the important, and not completely exploited, area in cancer immu-
notherapy is the underlying mechanisms of tumor cell resistance to CTL and anti-
body-mediated cytotoxicities. Several reported studies explored the underlying 
molecular bases of tumor cell resistance to CTL and shed new light on the improve-
ment of current immunotherapy of cancer and that could signifi cantly improve the 
clinical response. Resistance of Cancer Cells to CTL-Mediated Immunotherapy 
reviews, in large part, several of the mechanisms underlying the tumor cell resis-
tance to CTL-Mediated cytotoxicity, and suggests several means to overcome the 
resistance by the use of combination treatments with agents targeting resistance in 
combination with CTL-Mediated immunotherapy. This volume comprises the con-
tributions of leaders in the fi eld, and provides numerous examples of molecular 
bases of CTL resistance. (While this volume does not cover the fi eld in its entirety, 
due to the vast scope of the subject, subsequent volumes under consideration will 
cover other areas of CTL resistance in cancer and their clinical implications.)

This volume is divided into four parts. Part I, Factors Regulating Resistance to 
CTL Cytotoxicity, consists of fi ve review chapters. Doctors Maccalli and colleagues 
reviewed “Resistance of Cancer Stem Cells to Cell-Mediated Immune Responses.” 
It is clear that, in the majority of cancers, cancer stem cells (CSCs) are believed to 
be responsible, in large part, for tumor initiation, progression, metastasis, and resis-
tance to cytotoxic therapies. CSCs have been reported to escape immune surveil-
lance, though they exhibit antigenic molecules that can be targeted for 
immunotherapy, rescuing both the new growth and resistance to CTL-Mediated 
therapy. Doctors Dolstra and colleagues reviewed “Role of Co-inhibitory Molecules 
in Tumor Escape from CTL Attack.” Tumor cells may express co-inhibitory mole-
cules (CIMs) that can severely inhibit CD-8 T-cell cytotoxicity. These inhibitory 
molecules on the cancer cell surface, such as PDL-1, will inhibit CTL cytotoxic 
activity via interaction and cell signaling of PD-1 on the surface of CTL. In addi-
tion, CIMs such as CTLA-4, LAG-3, BTLA, Tim-3, and CD200R have been impli-
cated in the inhibition of CTL functions. The authors have discussed the role each 
of the above CIMs and, as well, suggest various approaches to inhibit their activities 
and restore cytotoxic activity. Doctors Seliger and Bergner reviewed “Role of the 
Non-classical HLA Class I Antigens for Immune Escape.” One of the mechanisms 
of tumor escape from immune surveillance is the overexpression of the non-classi-
cal class I HLA-G+ antigen that is often overexpressed in solid and hematopoietic 
tumors. This overexpression leads to its interaction with inhibitory receptors ILT2, 
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ILT4, and KIR2DL4. HLA-G+ tumors are associated with poor clinical outcomes. 
The inhibition of HLA-G can increase the sensitivity to tumor cells to CTL and NK 
cytotoxicities. The authors describe the role of HLA-G+ as a therapeutic target. 
Doctors Mami-Chouaib and colleagues reviewed “Integrins: Friends or Foes of 
Antitumor Cytotoxic T Lymphocyte Response.” The authors describe the role of 
integrins and their ligands in the regulation of T-cell effector functions that result in 
CTL activation and triggering of their cytotoxic machinery. Of particular interest is 
the authors’ description of the integrins CD103 and LFA-1 and their respective 
ligands, E-cadherin and ICAM-1, in the regulation of T-cell effector functions. Also 
discussed is the importance of integrin-antagonists in cancer immunotherapy.
Doctors Noonan and Murphy reviewed “Cytotoxic T Lymphocytes and their 
Granzymes: An Overview.” In addition to several immunotherapeutic strategies, 
including antibodies and adoptive transfer of CTLs, novel strategies are aimed at the 
cell death pathways including granzymes and death ligands (Fas-L TNFalpha 
TRAIL). In this review, examples of granzymes-mediated cell death using the pro-
totype of granzyme-bound immunotoxin therapy are discussed. In addition, in this 
review, the authors discuss the initiation and the activation of the effector functions 
of CTL and how they can be used in cancer immunotherapy. 

Part II, “Infl uence of the Tumor Microenvironment on the Resistance to CTL 
Cytotoxicity,” consists of three review chapters. Doctors Chouaib and colleagues 
reviewed “Hypoxia: A Formidable Saboteur of the Anti-tumor Response.” The 
tumor microenvironment (TME), in addition to modulating the anti-tumor response, 
fosters resistance of tumor cells to CTL cytotoxicity. This review emphasizes the 
infl uence of hypoxic stress that impacts angiogenesis, tumor progression, and 
immune tolerance. It includes a discussion on how hypoxia in TME protects tumor 
cells by modulation of various molecular signaling pathways in the tumor cells and 
rendering them viable, proliferative, and resistant to CTL. The authors suggest that 
hypoxia is a target for tumor reactivity to CTL. Doctors Mutis and colleagues 
reviewed “Mechanisms and Modulation of Tumor Microenvironment-Induced 
Immune Resistance.” The authors discuss the mechanism by which the TME regu-
lates the resistance of tumor cells to CTL cytotoxicity. The authors discuss the mod-
ulation of intrinsic, extrinsic, and granzyme/perforin-mediated pathways of 
apoptosis by the TME and have used multiple myeloma as a cancer model. As well, 
they discuss strategies to override the resistance of tumor cells to CTL-Mediated 
immunotherapies. Doctors Sandra Hodge and Greg Hodge reviewed “Evasion of 
Cytotoxic Lymphocyte and Pulmonary Macrophage Mediated Immune Responses 
in Lung Cancer.” The authors discuss the regulation of tumor cell resistance to CTL 
cytotoxic therapy, and describe the resistance of lung cancer cells to granzyme 
B-mediated attack through the expression of a specifi c inhibitor (such as the intra-
cellular serine protease inhibitor PI-9). PI-9 is expressed in CTLs and protects the 
tumor cells to killing by granzyme B. The authors cite studies that report that PI-9 
expression positively correlated with cancer stage among patients with solid and 
hematologic malignancies, suggesting that targeting PI-9 may be a strategy to 
improve immunotherapy in lung cancers.
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Part III, “Resistance to Death Ligands-Mediated Apoptosis and Sensitization” 
consists of four review chapters. Doctor Bonavida reviewed “Sensitization of 
Immune-Resistant Tumor Cells to CTL-Mediated Apoptosis via Interference at the 
Dysregulated NF-/Snail/YY1/PI3K/RKIP/PTEN Resistant Loop.” He discusses the 
mechanisms by which tumor cells develop resistance to CTL-Mediated apoptosis 
via a dysregulated loop consisting of the NF-kB/Snail/YY1/RKIP/PTEN. This dys-
regulated loop further regulates cell growth, proliferation, MET, metastasis, and the 
resistance to both CTL and chemotherapeutic drugs. The role of each of the gene 
products in the loop and its direct involvement in the regulation of the above func-
tions and, in particular, to CTL-Mediated apoptosis via death ligands (Fas-L, TNFa, 
DR4, and DR5) is discussed. Also discussed is the manner in which each of the gene 
products in the loop has potential for reversal of resistance as well as inhibition of 
tumor cell growth and metastasis. Several examples are provided with different 
agents that target different gene products of the loop and resulted in the reversal of 
resistance to CTL cytotoxicity. Doctors Zhang and colleagues reviewed “Overcoming 
Cancer Cell Resistance to Death Receptor Targeted Therapies.” Targeting death 
receptors for cancer treatment has been explored in both the laboratory and in 
human clinical trials. Among the death ligands that are not toxic to normal tissues, 
TRAIL, is being investigated in clinical trials through the use of either recombinant 
TRAIL or agonist antibodies to TRAIL receptors DR4 and DR5. While these stud-
ies are ongoing clinically, both alone and in combination with conventional chemo-
therapy, it must be noted that many patient cancer cells are resistant to such therapies 
and require sensitizing agents that can be used in combination to reverse resistance. 
The authors discuss various approaches to reverse resistance. Doctors Chen and col-
leagues reviewed “Pancreatic Cancer Resistance to TRAIL Therapy: Regulators of 
the Death Inducing Signaling Complex.” The authors discuss the resistance of pan-
creatic cancer to TRAIL-induced apoptosis. They have identifi ed several factors in 
the death receptor activated DISC (which include FLIP, calmodulin, Src, and PARP- 
1) that contribute to the resistance of cancer cells to death receptor-mediated apop-
tosis. Also discussed are mechanisms that regulate the DISC that result in the 
resistance of TRAIL apoptosis. In addition, they suggest, for pancreatic cancer, 
various therapeutic targets for immunotherapy. Doctors Thiery and colleagues 
reviewed “Resistance of Carcinoma Cells to CTL-Mediated Immunotherapy.” The 
authors discuss the role of EMT and cancer stemness in the resistance to both chemo 
and CTL-Mediated therapeutics. As well, they explored the immunological synapse 
and how it is affected by EMT and discuss the manner in which the inhibition of 
EMT can restore cytotoxic immune function.

Part IV, “Future Directions” consists of two chapter reviews. Doctors Kawakami 
and colleagues reviewed “Cancer Induced Immunosuppression and Its Modulation 
by Signal Inhibitors.” The authors describe various signal-mediated pathways that 
regulate the immune response, and how signal inhibitors may enhance anti-tumor 
responses. The authors suggest personalized treatments (as the oncogenic signal 
activities are different for each cancer patient). They also consider and recommend 
personalized treatment for immunotherapy. Doctors Mehrotra and colleagues  
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reviewed “Quality of CTL Therapies: A Changing Landscape.” The authors discuss 
the various mechanisms by which tumor cells escape immune surveillance and 
discuss several strategies that they recommend be investigated in order to restore 
the immune functions and, in particular, the response of tumor cells to T-cellmediated 
therapy. This chapter also provides various challenges for consideration in the 
future.

 Benjamin Bonavida
 Salem Chouaib

Preface



        



xi

Acknowledgements

The editors wish to acknowledge the signifi cant and continuous help and assistance 
provided throughout the development of this book by Joy Evangeline Bramble, 
Emily Janakiram, and Michael Koy of Springer. In addition, the editors wish to 
acknowledge the excellent technical assistance of Kathy Nguyen in both the editing 
and fi nalization of the contents of this volume.



        



xiii

Part I Factors Regulating Resistance to CTL Cytotoxicity

 1 Resistance of Cancer Stem Cells to Cell- Mediated 
Immune Responses .................................................................................  3
Veronica Catalano, Cecilia Eleuteri, Gaia Campoccia, 
Gianluca Giacobini, Mariangela Zane, Giorgio Stassi, 
Giorgio Parmiani, and Cristina Maccalli

 2 Role of Co-inhibitory Molecules in Tumor Escape 
from CTL Attack ....................................................................................  31
Wieger J. Norde, Willemijn Hobo, and Harry Dolstra

 3 Role of the Non-classical HLA Class I Antigens 
for Immune Escape ................................................................................  59
Barbara Seliger and Simon Jasinski-Bergner

 4 Integrins: Friends or Foes of Antitumor Cytotoxic 
T Lymphocyte Response ........................................................................  73
Marie Boutet, Stephanie Corgnac, and Fathia Mami-Chouaib

 5 Cytotoxic T Lymphocytes and Their Granzymes: 
An Overview ...........................................................................................  91
Janis Noonan and Brona M. Murphy

Part II  Infl uence of the Tumor Microenvironment 
on the Resistance to CTL Cytotoxicity

 6 Hypoxia: A Formidable Saboteur of the Anti- tumor Response .........  115
Meriem Hasmim, Yosra Messai, Stéphane Terry, 
Bassam Janji, Muhammad Zaeem Noman, and Salem Chouaib

Contents



xiv

 7 Mechanisms and Modulation of Tumor 
Microenvironment-Induced Immune Resistance ................................  143
Tuna Mutis, Niels W.C.J. van de Donk, and Richard W.J. Groen

 8 Evasion of Cytotoxic Lymphocyte and Pulmonary 
Macrophage-Mediated Immune Responses in Lung Cancer .............  159
Sandra Hodge and Greg Hodge

Part III  Resistance to Death Ligands-Mediated Apoptosis 
and Sensitization

 9 Sensitization of Immune-Resistant Tumor Cells 
to CTL-Mediated Apoptosis via Interference 
at the Dysregulated NF-κB/Snail/YY1/PI3K/RKIP/PTEN 
Resistant Loop ........................................................................................  177
Benjamin Bonavida

 10 Overcoming Cancer Cell Resistance to Death Receptor 
Targeted Therapies ................................................................................  209
Julianne D. Twomey, William Hallett, and Baolin Zhang

 11 Pancreatic Cancer Resistance to TRAIL Therapy: 
Regulators of the Death Inducing Signaling Complex .......................  235
Yabing Chen, Kaiyu Yuan, and Jay McDonald

 12 Epithelial Mesenchymal Transition Influence 
on CTL Activity ......................................................................................  267
Wilfried Engl, Virgile Viasnoff, and Jean Paul Thiery

Part IV Future Directions and Challenges

 13 Cancer Induced Immunosuppression 
and Its Modulation by Signal Inhibitors ..............................................  287
Yutaka Kawakami, Li Qian, Naoshi Kawamura, 
Junichiro Miyazaki, Kinya Tsubota, Tomonari Kinoshita, 
Kenta Nakamura, Gaku Ohmura, Ryosuke Satomi, Juri Sugiyama, 
Hiroshi Nishio, Taeko Hayakawa, Boryana Popivanova, 
Sunthamala Nuchsupha, Tracy Hsin-ju Liu, Hajime Kamijuku, 
Chie Kudo-Saito, Nobuo Tsukamoto, Toshiharu Sakurai, 
Tomonobu Fujita, and Tomonori Yaguchi

 14 Quality of CTL Therapies: A Changing Landscape ...........................  303
Krishnamurthy Thyagarajan, Shilpak Chatterjee, 
Pravin Kesarwani, Michael I. Nishimura, and Shikhar Mehrotra

 Erratum to ......................................................................................................  E1

 Index ................................................................................................................  351

Contents



xv

Contributors

Benjamin Bonavida Department of Microbiology, Immunology and Molecular 
Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer 
Center, University of California, Los Angeles, CA, USA

Marie Boutet INSERM (Institut national de la Santé et de la Recherche médicale), 
Team 1: Tumor Antigens and T-Cell Reactivity, Villejuif, France

Gustave Roussy (Institut de Cancérologie Gustave Roussy), rue Édouard Vaillant, 
Villejuif, FranceUniversité Paris-Sud, Orsay, France

Gaia Campoccia Medical Oncology and Immunotherapy, University Hospital of 
Siena, V.le Bracci, Siena, Italy

Veronica Catalano Department of Surgical and Oncological Sciences, University 
of Palermo, Palermo, Italy

Shilpak Chatterjee Department of Surgery, Hollings Cancer Center (HO 512H), 
Medical University of South Carolina, Charleston, SC, USA

Yabing Chen Department of Pathology, University of Alabama at Birmingham, 
Birmingham, AL, USA

The Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA

Salem Chouaib INSERM, Gustave Roussy Campus, rue Edouard Vaillant, Villejuif, 
France

Stephanie Corgnac INSERM (Institut national de la Santé et de la Recherche 
médicale), Team 1: Tumor Antigens and T-Cell Reactivity, Villejuif, France

Gustave Roussy (Institut de Cancérologie Gustave Roussy), rue Édouard Vaillant, 
Villejuif, FranceUniversité Paris-Sud, Orsay, France

Harry Dolstra Department of Laboratory Medicine – Laboratory of Hematology, 
Nijmegen Medical Centre, Radboud University, Nijmegen, The Netherlands



xvi

Cecilia Eleuteri Department of Surgical and Oncological Sciences, University of 
Palermo, Palermo, Italy

Wilfried Engl Mechanobiology Institute, National University of Singapore, 
Singapore, Singapore

Tomonobu Fujita Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Gianluca Giacobini Medical Oncology and Immunotherapy, University Hospital 
of Siena, V.le Bracci, Siena, Italy

Richard W. J. Groen Department of Hematology, VU University Medical Center, 
Amsterdam, The Netherlands

William Hallett Offi ce of Biotechnology Products, Center for Drug Evaluation 
and Research, Food and Drug Administration, Bethesda, MD, USA

Meriem Hasmim INSERM, Gustave Roussy Campus, rue Edouard Vaillant, Villejuif, 
France

Taeko Hayakawa Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Willemijn Hobo Department of Laboratory Medicine – Laboratory of Hematology, 
Nijmegen Medical Centre, Radboud University, Nijmegen, The Netherlands

Greg Hodge Department of Lung Research, Hanson Institute, Adelaide, SA, 
AustraliaThoracic Medicine, Royal Adelaide Hospital, and Medicine, University of 
Adelaide, Adelaide, SA, Australia

Sandra Hodge Department of Lung Research, Hanson Institute, Adelaide, SA, 
AustraliaThoracic Medicine, Royal Adelaide Hospital, and Medicine, University of 
Adelaide, Adelaide, SA, Australia

Bassam Janji Laboratory of Experimental Hemato-Oncology, Centre de Recherche 
Public de la Santé (CRP-Santé), Val Fleuri, Luxembourg

Simon Jasinski-Bergner Institute of Medical Immunology, Martin Luther 
University Halle-Wittenberg, Halle, Saale, Germany

Hajime Kamijuku Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Yutaka Kawakami Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Naoshi Kawamura Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Pravin Kesarwani Department of Surgery, Hollings Cancer Center (HO 512H), 
Medical University of South Carolina, Charleston, SC, USA

Contributors



xvii

Tomonari Kinoshita Division of Cellular Signaling, Institute for Advanced 
Medical Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Chie Kudo-Saito Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Tracy Hsin-ju Liu Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Cristina Maccalli Medical Oncology and Immunotherapy, University Hospital of 
Siena, V.le Bracci, Siena, Italy

NIBIT-Italian Network for Bio-therapy of Tumors, Siena, Italy

Fathia Mami-Chouaib INSERM (Institut national de la Santé et de la Recherche 
médicale), Team 1: Tumor Antigens and T-Cell Reactivity, Villejuif, France

Gustave Roussy (Institut de Cancérologie Gustave Roussy), rue Édouard Vaillant, 
Villejuif, FranceUniversité Paris-Sud, Orsay, France

Jay McDonald Department of Pathology, University of Alabama at Birmingham, 
Birmingham, ALUSA

The Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA

Shikhar Mehrotra Department of SurgeryHollings Cancer Center (HO 512H), 
Medical University of South Carolina, Charleston, SC, USA

Yosra Messai INSERM, Gustave Roussy Campus, rue Edouard Vaillant, Villejuif, 
France

Junichiro Miyazaki Division of Cellular Signaling, Institute for Advanced 
Medical Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Brona M. Murphy Department of Physiology and Medical Physics, Centre for 
Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland

Tuna Mutis Department of Hematology, VU University Medical Center, 
Amsterdam, The Netherlands

Kenta Nakamura Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Michael I. Nishimura Department of Surgery, Loyola University, Maywood, IL, 
USA

Hiroshi Nishio Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Muhammad Zaeem Noman INSERM, Gustave Roussy Campus, rue Edouard 
Vaillant, Villejuif, France

Janis Noonan Department of Physiology and Medical Physics, Centre for Systems 
Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland

Contributors



xviii

Sunthamala Nuchsupha Division of Cellular Signaling, Institute for Advanced 
Medical Research, Keio University School of Medicine, Shinjuku, Tokyo, Japan

Wieger J. Norde Department of Laboratory Medicine – Laboratory of Hematology, 
Nijmegen Medical Centre, Radboud University, Nijmegen, The Netherlands

Gaku Ohmura Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Giorgio Parmiani Medical Oncology and Immunotherapy, University Hospital of 
Siena, V.le Bracci, Siena, Italy

NIBIT-Italian Network for Bio-therapy of Tumors, Siena, Italy

Boryana Popivanova Division of Cellular Signaling, Institute for Advanced 
Medical Research, Keio University School of Medicine, Shinjuku, Tokyo, Japan

Li Qian Division of Cellular Signaling, Institute for Advanced Medical Research, 
Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Toshiharu Sakurai Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Ryosuke Satomi Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Barbara Seliger Institute of Medical Immunology, Martin Luther University 
Halle-Wittenberg, Halle, Saale, Germany

Juri Sugiyama Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Giorgio Stassi Department of Surgical and Oncological Sciences, University of 
Palermo, Palermo, Italy

Stéphane Terry INSERM, Gustave Roussy Campus, rue Edouard Vaillant, Villejuif, 
France

Jean Paul Thiery Department of Biochemistry, Yong Loo Lin School of Medicine, 
National University of Singapore, Singapore, Singapore

Cancer Science Institute of Singapore, National University of Singapore, Singapore, 
Singapore

Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology 
and Research)SingaporeSingapore

Krishnamurthy Thyagarajan Department of Surgery, Hollings Cancer Center 
(HO 512H), Medical University of South Carolina, Charleston, SC, USA

Kinya Tsubota Division of Cellular SignalingInstitute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Nobuo Tsukamoto Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Contributors



xix

Julianne D. Twomey Offi ce of Biotechnology Products, Center for Drug 
Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA

Niels W. C. J. van de Donk Department of Hematology, VU University Medical 
Center, Amsterdam, The Netherlands

Virgile Viasnoff Mechanobiology Institute, National University of Singapore, 
Singapore, Singapore

Tomonori Yaguchi Division of Cellular Signaling, Institute for Advanced Medical 
Research, Keio University, School of Medicine, Shinjuku, Tokyo, Japan

Kaiyu Yuan Department of Pathology, University of Alabama at Birmingham, 
Birmingham, AL, USA

Mariangela Zane Department of Surgical and Oncological Sciences, University 
of Palermo, Palermo, Italy

Baolin Zhang Offi ce of Biotechnology Products, Center for Drug Evaluation and 
Research, Food and Drug Administration, Bethesda, MD, USA

Contributors



       

   Part I 
   Factors Regulating Resistance 

to CTL Cytotoxicity 



3© Springer International Publishing Switzerland 2015 
B. Bonavida, S. Chouaib (eds.), Resistance of Cancer Cells to CTL-Mediated 
Immunotherapy, Resistance to Targeted Anti-Cancer Therapeutics 7, 
DOI 10.1007/978-3-319-17807-3_1

    Chapter 1   
 Resistance of Cancer Stem Cells 
to Cell- Mediated Immune Responses 

                Veronica     Catalano*    ,     Cecilia     Eleuteri*    ,     Gaia     Campoccia    ,     Gianluca     Giacobini    , 
    Mariangela     Zane    ,     Giorgio     Stassi    ,     Giorgio     Parmiani    , and     Cristina     Maccalli    

    Abstract     In the past decades, the hierarchical organization of tumors, governed by 
Cancer Stem Cells (CSCs), have been reported with regard to several tumor types. 
Advances in sequencing technologies have demonstrated that diverse genetic CSCs 
subclones, derived from the branching evolution, compete with each other within 
the tumor mass, thereby contributing to the functional heterogeneity. It is becoming 
increasingly clear that epigenetic modifi cations and microenvironmental infl uences 
are important determinants of tumor fi tness resulting in disease progression, recur-
rence and reduced patient survival. Therefore, more effective therapies will require 
gaining insights into the role of genetic and non-genetic infl uences in coordinating 
tumor maintenance. 

 CSCs are believed to be responsible for tumor initiation, progression and resis-
tance to therapeutic agents. Therefore, CSC-targeted therapeutic interventions are 
desirable to achieve complete tumor eradication. Immunotherapy can represent a 
valuable treatment thanks to its antigen-specifi city. The molecular and immunologi-
cal characterizations, though still not defi nitive, of CSCs revealed their low 
 effi ciency in eliciting adaptive immune responses and the presence of features cor-
relating with escape from immunosurveillance. Nevertheless, CSC-specifi c mole-
cules may represent novel targets for immunotherapy and immunomodulatory 
agents may able to rescue their immunogenicity. This information might be exploited 
to design novel CSC-targeting therapies, possibly in association with inhibitors of 
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survival pathways and/or with differentiation agents and cytotoxic drugs. These 
therapeutic strategies are desirable in order to target the entire cancer and can repre-
sent a promising strategy to achieve complete tumor regression.  

  Keywords     Cancer stem cells   •   Cancer stem cell markers   •   Signaling pathways of 
cancer stem cells   •   T cell responses   •   NK Cells   •   Immunomodulatory molecules   • 
  CSC-targeted therapies   •   Immune escape  

  Abbreviations 

   ABC    ATP-binding cassette   
  ADAM    A disintegrin and metalloprotease   
  APC    Adenomatosis polyposis coli   
  APCs    Antigen presenting cells   
  APM    Antigen processing machinery   
  B7-H1, 3, 4    B7 homolog family members   
  BMP    Bone morphogenetic protein   
  CEA    Carcino embryonic antigen   
  CK1    Casein kinase 1   
  COA-1    Colon antigen-1   
  CRC    Colorectal cancer   
  CSC    Cancer stem cells   
  CSL    CBF1/Su(H)/Lag-1   
  CXCR-4    C-X-C chemokine receptor type 4   
  EMT    Epithelial-to-mesenchymal transition   
  Ep-CAM    Epithelial cell adhesion molecule   
  EphB    Ephrin B   
  ESC    Embryonic stem cells   
  FZ    Frizzled   
  GBM    Glioblastoma multiforme   
  GDF-15    Growth differentiation factor 15   
  Gp100    Glycoprotein 100   
  GS    γ-Secretase   
  GSK3    Glycogen synthase kinase 3   
  Hh    Hedgehog   
  HLA    Human leukocyte antigen   
  IDO    Indoleamine 2,3-dioxigenase   
  IFN    Interferon   
  IL-10    Interleukin-10   
  IL-13α2    α2 chain of IL-13 receptor   
  IL-4       Interleukin-4   
  LRP    Low-density-lipoprotein-related protein5/6   
  M    Mastermind-like protein 1   
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  MAA       Melanoma associated antigen   
  MAGE    Melanoma-associated antigen gene   
  MART-1    Melanoma antigen recognized by T cells   
  MDSC    Myeloid derived suppressor cell   
  Melan-A    Protein melan-A,  see also  MART-1   
  MHC    Major histocompatibility complex   
  MSC    Mesenchymal stem cell   
  MUC-1    Mucin 1   
  NKG2D    Natural killer group 2, member D   
  Notch-IC    Receptor intracellular domain   
  NY-ESO-1    New York esophagus 1 antigen   
  PD-1    Programmed cell death protein 1   
  PD-L1    Programmed death ligand 1   
  PGE2    Prostaglandin E2   
  PSA    Prostate specifi c antigen   
  PTCH    Patched   
  R    Recombining binding protein suppressor of hairless   
  Runx2    Runt-related transcription factor 2   
  SMO    Smoothened   
  STAT3    Signal transducer and activator of transcription 3   
  SVV-1    Survivin 1   
  TAA    Tumor associated antigen   
  TCF    T-cell factor-1   
  TGF-β1    Tumor growth factor beta 1   
  Treg    T regulatory cell   

1.1          Introduction 

    According to the classical model of tumorigenesis, every cell of the body is equally 
susceptible to acquire an unlimited and uncontrolled proliferative potential, follow-
ing genetic and epigenetic mutations. Clonal evolution of different subclones, dic-
tated by environmental infl uences and continuing mutagenesis, explains the 
phenotypic differences observed in a tumor population [ 1 ]. Accumulating evidences 
suggest that tumor growth and progression are driven by a subset of cells with 
“stemness” properties, called cancer stem cells (CSCs). Located at the top of tumor 
hierarchy, these cells possess the long-life capacity to self-renew and generate the 
heterogeneous population of differentiated descendants, which constitute the tumor 
bulk [ 2 ]. The practical translation of this defi nition is their ability to generate a seri-
ally transplantable phenocopy of the original malignancy when injected into 
immuno-compromised mice [ 3 ]. 

 From a clinical point of view, CSCs have been defi ned by multiple resistant 
mechanisms against anti-cancer therapies contributing to tumor recurrence and 
metastatic dissemination [ 4 ]. Similar to normal stem cells, CSCs were reported to 
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shuttle between quiescence, slow-cycling and active states [ 5 ,  6 ]. Despite the loss of 
the CDK4/6 pathway regulation, the retention in a non-proliferating or G0 state, 
depends on the activation of p21 and p27 cell-cycle inhibitors, which block the 
transition from G1 to S-phase [ 7 ]. Interestingly, CSCs are stimulated to enter in a 
proliferative state in response to signals produced by the tumor microenvironment, 
such as the TGF-β family members which abrogate the p21 and p27 activation [ 8 ]. 
Although conventional cancer therapies are targeting the cell cycle and/or rapidly 
dividing cells, most patients relapse because of the quiescent regrowth of CSCs [ 9 ]. 
Complementary mechanisms responsible for chemoresistance are represented by 
high levels of anti-apoptotic factors (FLIP, BCL-2, Bcl-xl, IAP family members) 
[ 10 ], active DNA repair capacity [ 11 ], up-regulation of cell pumps such as the mul-
tidrug resistance transporter (MDR1) [ 4 ] and increased metabolic activity through 
ALDH1 [ 12 ]. By stabilizing the cysteine transporter subunit xCT and, thereby, reg-
ulating the intracellular levels of reduced glutathione (GSH), a primary intracellular 
antioxidant, CSCs are also able to protect themselves from ROS-inducing antican-
cer drugs [ 13 ]. Lastly, CSCs can be diffi cult to reach because they reside in a per-
missive environment that protects them from diverse genotoxic insults [ 14 ,  15 ]. 

 In addition, to sustain CSCs functional traits [ 16 ,  17 ], the tumor microenviron-
ment is also involved in the CSC generation through induction of “stemness” fea-
tures into differentiated tumor cells [ 18 ,  19 ]. Along this line, HGF-producing 
myofi broblasts are able to provide a CSC phenotype to non-CSC, by reactivating 
the Wnt signaling pathway. These dedifferentiated cancer cells acquire the expres-
sion of stem cell-associated genes but also gain tumorigenic potential [ 20 ]. The 
unexpected plasticity of CSCs enables these cells to change their phenotype and to 
assume different functions and properties, including a stem cell state. Epithelial 
cells undergoing the epithelial-to-mesenchymal transition (EMT) lose polarity and 
cell-to-cell adhesion properties. However, they acquire a mesenchymal-like pheno-
type associated with increased motility, invasiveness and resistance to apoptosis 
[ 21 ]. CSCs can be also generated by inducting the EMT program, which stimulates 
the expression of CSCs markers and increases tumorigenic potential [ 22 ]. By either 
down-regulating “stemness”-repressed microRNAs [ 23 ,  24 ] or by inducing expres-
sion of Bmi-1 [ 25 ], EMT-inducing factors, like cytokines and hypoxia, stimulate the 
expression of transcription factors associated to self-renewal program. 

 Recent data show that cytokines secreted by the tumor microenvironment, 
including HGF, osteopontin and stromal-derived factor 1α, reprogram colorectal 
CD44v6 −  progenitors in metastatic stem cells by increasing the CD44v6 expression 
via the Wnt pathway activation. Survival analysis, conducted by using Kaplan- 
Meier curves, revealed that in patient cohorts, low levels of CD44v6 predict 
increased probability of disease-free survival. Importantly, the inhibition of phos-
phatidylinositol 3-kinase (PI3K) that selectively killed CD44v6 expressing CSCs 
has been shown to be effective in reducing the metastatic process initiated by CSCs, 
through the expression of CD44v6 [ 26 ]. 

 These evidences underline the importance of studying the complex interplay 
between CSCs and the tumor microenvironment, which may lead to the identifi ca-
tion of novel drug candidates. 
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 It has been extensively demonstrated that the immune system plays a relevant 
role in the control of tumor growth; in fact, lost of immunity is associated with 
cancer risk, and on the other hand effi cient systemic immune responses can lead 
to tumor killing [ 27 ,  28 ]. The interplay between tumor development and the 
immune system has been re-defi ned by a step-wise process that includes 3 differ-
ent phases (3E), early elimination, equilibrium and escape [ 29 ]. The concept that 
the immune infi ltrate at tumor site can have prognostic signifi cance has been ini-
tially proposed by Mihm et al. [ 30 ] for melanoma; then it was extended to other 
neoplastic tissues and, more recently, it was quantitatively and molecularly 
defi ned leading to the development of the immunoscore as an effi cient prognostic 
tool for solid tumors [ 31 ]. 

 Despite the fact that in the last two decades a variety of molecular and regulatory 
features of tumor immunology have been extensively dissected, effective therapeu-
tic vaccines for solid tumors have not yet been convincingly obtained; an overall 
10–20 % of clinical responses have been observed. A possible explanation for these 
disappointing clinical results may lie in the failure to elicit effective and persistent 
immune responses by tumor vaccine in cancer patients. On the other hand, many 
factors can work in concert to inhibit anti-tumor immunity, including the release by 
tumor cells of suppressive cytokines/factors, the induction of regulatory T lympho-
cytes (Tregs) and/or myeloid derived suppressor cells (MDSCs) [ 32 – 34 ]. 

 Moreover, the modulation by the complex interactions of co-stimulatory or nega-
tive regulatory molecules, defi ned as immune checkpoint molecules, on antigen pre-
senting (APC)/tumor cells and on effector immune cells has been shown to play a 
key role in the regulation of anti-cancer immune responses [ 35 ]. The clinical devel-
opment of immune-checkpoint blockade agents showed durable clinical responses 
and increase of survival for patients with solid tumors with different histological 
origins [ 36 ]. These evidences indicate that immunotherapy represents a promising 
treatment for cancer patients as it can induce effi cient anti-tumor immune responses 
in these patients. Notably, the effectiveness of immunotherapy could be increased 
by targeting CSCs that represent the component of the tumor responsible of resis-
tance to standard therapy, such as chemotherapy and radiotherapy, and to immuno-
therapy as well [ 11 ,  37 – 39 ]. 

 The characterization of the immunological profi le of CSCs and of the relation-
ship between CSCs and anti-tumor immunity, thus, represent a relevant issue to 
design novel and more effective immunotherapy interventions for cancer patients.  

1.2     CSCs Markers 

 CSCs are hypothesized to derive from normal stem cells through an aberrant step of 
differentiation or after a reprogrammed leading to a less differentiated status [ 3 ]. In 
light of this, it is possible to identify CSCs by using stemness characteristic mark-
ers, such as transcription factors acting during early embryogenesis, or genes 
involved in pluripotency maintenance. Similarly, cancer stem/progenitor cells can 
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be recognized by following specifi c proteins that intervene in early organogenesis, 
from the three different germ layers. 

 In association with Oct4, Sox2 forms a trimeric complex involved in embryonic 
development. These markers are transcription factors that perform their function by 
binding to DNA and activating some important genes, such as  YES1 ,  FGF4 ,  UTF , 
and  ZFP206 . Nanog is a transcription factor induced by Oct4 involved in stem cell 
self-renewal and pluripotency and hence, preventing differentiation. CSC identifi ca-
tion can be obtained by following genes belonging to stem cell pathways, such as 
 Wnt ,  Hedgehog , and  Notch  (classifi ed also by EMT-inducing signaling pathways) 
(  www.uniprot.org    ). 

 In proceeding with differentiation, embryonic stem cells undergo a phenotype 
change in their tissue destination. To analyze the differentiation towards each lineage, 
it is possible to use ectodermal (i.e., Notch, Nestin, p63), mesodermal (i.e., BMP4, 
Nodal, CD34, Cryptic), and endodermal (i.e., a-fetoprotein, beta-catenin, CXCR4, 
SOX17) markers. In relation to tissue differentiation and development, these marker 
classes belong to all cells with the same tissue derivation. For this reason, they are 
commonly used and constitute a simple screen panel for CSC characterization. Being 
that most markers are intracellular, they cannot be used for FACS sorting or beads 
separation. Hence, the challenge of many research groups is the identifi cation of 
membrane markers that can be stable and specifi c to a defi nite pathology. 

 The cells with the capacity to effl ux Hoechst 33342 vital dye, that were fi rst 
identifi ed in mouse bone marrow, are referred to as “side population” (SP) because 
they are composed of unstained cells in the left lower quadrant of a FACS profi le 
[ 40 ]. SP has been used to isolate malignant cells since their ability to effl ux dyes 
correlates to multidrug resistance mediated by the ABC transporters over- expression 
[ 41 ]. Moreover, these cell subsets are highly enriched for the capacity to initiate 
tumor formation upon serial transplantation and express stem-like genes [ 42 ]. 

 The use of Hoechst dye to isolate stem-like cells has met with criticisms. In fact, 
this is a dynamic process, based on dye effl ux, in which variables in staining times, 
dye and cellular concentrations can affect the SP phenotype. Since the DNA binding 
induced by Hoechst staining promotes a toxic effect in living cells, the SP cells, 
isolated through this method, may be a population able to resist the lethal effects 
rather than stem-like cells. Furthermore, fl ow cytometry gating strategies, used to 
defi ne SP cells, cannot be associated with gating strategies involved in staining 
using other markers [ 43 ]. 

 A similar method of characterization of CSCs is the analysis of the cell subset 
expressing an high Aldehyde Dehydrogenase (ALDH) activity, which is involved in 
early cellular differentiation, detoxifi cation, and drug resistance, through the oxida-
tion of intracellular aldehydes [ 44 ]. ALDH belongs to the oxidoreductase enzyme 
family and is highly expressed in stem and progenitor cells, thus it is used as a 
functional marker for CSC isolation from solid tumors (i.e., breast, lung, ovarian, 
prostate, head-neck, and thyroid cancer), as well as in multiple myelomas and acute 
leukemia [ 45 ]. Using the ALDEFLUOR™ assay, it is possible to isolate cancer 
stem and progenitor cells through cell sorting with a positive selection, without 
compromising their vitality. 
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 In solid tumors, several cell surface markers are used to isolate cell subsets 
enriched with CSCs, such as CD44 [ 46 – 49 ], CD24 [ 57 ,  50 ], EpCAM [ 46 ,  51 ], 
THY1 (also called CD90) [ 52 ], and CD133 [ 51 ,  53 – 57 ]. 

 CD133, also known as Prominin-1, is a pentaspan transmembrane glycoprotein 
originally identifi ed as a marker for human CD34 +  hematopoietic stem and progeni-
tor cells by Miraglia et al. [ 58 ]. It was recognized as an important marker in the 
identifi cation and isolation of cell subsets with “stemness” properties in many tumor 
tissues, such as brain [ 55 ], kidney [ 59 ], prostate [ 56 ], hepatic [ 60 ], and colon [ 53 , 
 57 ]. Nonetheless, the usage of CD133 as an identifi cation and isolation marker in 
colon CSCs is controversial because its expression pattern is not completely eluci-
dated. In line with this, CD133 +  and CD133 −  cell fractions have been reported to 
display similar “stemness” and differentiation potential, including the ability to 
generate tumors similar to the parental ones [ 61 ]. Kamper and colleagues explained 
the contradictions found in the literature by studying possible regulation mecha-
nisms of epitope expression. CD133 is expressed in both CSCs and differentiated 
tumor cells. Whereas the CD133 mRNA and protein expression remained 
unchanged, differentiation led to down-regulation of the AC133 epitope, correlating 
with differential glycosylation and reduced antibody detection [ 62 ]. 

 The CD133 polarized localization suggests its role in regulating proliferation but 
its functions remains still unclear. Recent studies highlight that CD133 could be 
involved in tumor angiogenesis since CD133 +  glioma cells have shown to produce 
vascular endothelial growth factors [ 63 ]. In the intestine, CD133 has been proposed 
as a stem cell marker susceptible to neoplastic transformation, being prone to acti-
vate Wnt signaling [ 64 ]. Therefore, it is important to note that CSC identifi cation 
and isolation requires the use of more than one specifi c marker.  

1.3     Survival Pathways in CSCs 

 The signaling pathways, which regulate normal stem cell self-renewal, lead to 
tumorigenesis when dysregulated; a comprehensive understanding of the path-
ways involved in development, “stemness” and apoptosis, is considered to be a 
very important goal in cancer therapy. The most important signaling pathways that 
regulate normal and cancer stem cell functions are: Notch, Wnt, BMP and 
Sonic-Hedgehog. 

 The Notch signaling pathway is evolutionarily conserved and has profound, 
context- dependent phenotypic consequences because it is involved in the mainte-
nance of stem cells and in differentiation regulation. In both humans and rodents, the 
Notch genes encode four distinct members (from Notch1 to Notch4) of a transmem-
brane heterodimeric receptor family. In physiologic conditions, Notch ligands (Delta 
and Jagged) binding induces the Notch receptor intracellular domain (Notch-IC) 
release via a cascade of proteolytic cleavages catalyzed by a disintegrin and metal-
loprotease (ADAM) and γ-secretase (GS) proteases. Notch-IC translocates into the 
nucleus and modulates the gene expression by binding the transcription factor, 
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CBF1/Su(H)/Lag-1 (CSL), and recruiting co-activators, such as recombining 
 binding protein suppressor of hairless (R) and mastermind-like protein 1 (M) [ 65 ] 
(Fig.  1.1a ). The aberrant activation of this pathway contributes to tumorigenesis 
[ 66 – 70 ]. With the notable exception of epidermal keratinocytes where Notch-1 

  Fig. 1.1    Pathways involved in CSC survival and differentiation. ( a ) Notch signaling. Notch sig-
naling relies on the activation of Notch receptors by Delta and Jagged ligands expressed in a 
neighbor cell. The release of Notch-IC, subsequent to the two proteolytic events catalyzed by 
ADAM and GS proteases, leads to the transcription of target genes by binding the transcription 
factor CSL and recruiting the co-activators R and M. ( b ) Canonical Wnt/β-catenin signaling. Wnt 
binds to FZ, which recruits LRP5/6 as co-factor and interacts with Dsh. β-catenin cytoplasmatic 
localization is regulated by a destruction complex formed by APC, Axin2,    GSK3βCK1, which 
directs its degradation by ubiquitination. In presence of Wnt ligands, Dsh inhibits GSK3 and the 
destruction complex disassembles allowing β-catenin to shift to the nucleus. ( c ) BMP signaling. 
The heterodimerization of BMPR receptors induced by BMP proteins promotes the phosphoryla-
tion of SMAD 1,5,8 and their association with SMAD 4. The complex formed enters into the 
nucleus and stimulates the target genes’ transcription aided by Runx2 and a cofactor (C). ( d ) 
Hedgehog signaling. Signaling by Hh depends on the interaction between the membrane proteins 
SMO and PTCH. When bound to Hh, PTCH does not repress SMO, which in turn activates GLI 
transcription factors       
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functions as a tumor suppressor [ 71 ], the inappropriate activation of the Notch 
 pathway results in the stimulation of proliferation, restriction of differentiation and 
prevention of apoptosis in T-cell acute lymphoblastic leukemia [ 69 ], breast cancer 
[ 72 ,  73 ], melanoma [ 74 ], lung adenocarcinoma [ 75 ] and others. Therefore, a possi-
ble anticancer therapy goal may be the Notch signaling inhibition that is achieved at 
many different levels. It is possible to interfere with receptor activation by blocking 
ligand-induced conformational changes [ 76 ] and releasing the Notch-IC receptor by 
blocking the ADAM [ 77 ] or GS proteases cleavage [ 53 ,  65 ,  78 ]. In addition, Notch 
signaling could be inhibited by disrupting protein–protein interactions involved in 
nuclear events, including the assembly of co-activators [ 79 ,  80 ]. The γ-secretase 
inhibitors (GSIs) and monoclonal antibodies (mAbs), which block Notch receptors, 
are currently in the beginning stages of clinical trials [ 81 ,  82 ]. Moreover, mAbs that 
target Notch ligand Delta-like 4 have been shown to inhibit Notch signaling in endo-
thelial cells by inducing disorganized angiogenesis [ 83 ]. In the platinum-resistant 
ovarian cancer, the inhibition of Notch signaling by a GSI and conventional 
Paclitaxel chemotherapy, synergistically reduced xenograft growth [ 84 ]. In intesti-
nal crypts, where the staminal cell niche is located, Notch directs proliferation when 
Wnt signaling activity is high and promotes enterocyte differentiation when Wnt 
activity levels are reduced [ 85 ].  

 Wnt proteins constitute a family of signaling molecules that regulate cell-to-cell 
interactions during development. They are secreted glycoproteins that bind to the 
extra-cellular domain of the Frizzled (FZ) receptor, a seven-transmembrane protein 
that requires different co-receptors to mediate three different Wnt pathways:

   (1) the canonical Wnt/β-catenin cascade; (2) the non canonical planar cell polarity 
(PCP) pathway; and (3) the Wnt/Ca 2+  pathway.    

 In the canonical Wnt pathway, the co-factor low-density-lipoprotein-related 
 protein5/6 (LRP5/6) interacts with the cytoplasmatic phosphoprotein Dishevelled 
(Dsh) [ 86 ]. This interaction causes an accumulation of β-catenin in the cytoplasm 
and its translocation into the nucleus, where it attracts, as co-activator, some 
 transcription factors belonging to the T-cell factor-1 and lymphoid enhancing fac-
tor-1 TCF-1/LEF-1 family as well as regulating gene transduction. In the absence of 
Wnt ligands, a destruction complex formed by Axin2, adenomatosis polyposis coli 
(APC), glycogen synthase kinase 3 (GSK3) and casein kinase 1 (CK1), degrades 
β-catenin by targeting for ubiquitination. The canonical Wnt pathway activation 
produces the translocation of the negative Wnt regulator, Axin2, to the plasma 
membrane where it binds to the cytoplasmatic tail of LRP-5/6. Thus, Axin2 becomes 
de-phosphorylated and its stability is decreased. Moreover, Dsh inhibits the GSK3 
activity of the destruction complex allowing the β-catenin accumulation in the 
nucleus (Fig.  1.1b ) [ 85 ]. 

 The Wnt canonical signaling is important in many developmental processes and 
in the regulation of self-renewal in normal and CSCs. In particular, the Wnt target 
gene  leucine-rich repeat-containing G protein-coupled receptor 5  ( Lgr5 ) marks 
stem cells in multiple adult tissues and cancers [ 87 ]. A germline APC mutation is 
the genetic cause of a hereditary colorectal cancer syndrome called Familiar 
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Adenomatous Polyposis (FAP) [ 88 ,  89 ]. The cytoplasmatic interaction of APC with 
β-catenin provided the fi rst connection between the Wnt pathway and human cancer 
[ 90 ,  91 ]. In intestinal epithelial cells in which APC is mutated, the constitutive 
β-catenin/TCF4 complex activates a genetic program within the crypt of stem/pro-
genitor cells for the maintenance of cell proliferation [ 92 ]. In rare cases of colorec-
tal cancer where APC is not mutated, Axin2 or β-catenin could be mutant [ 93 ,  94 ]. 
Loss-of-function mutations in Axin2 have been found in hepatocellular carcinomas 
whereas, oncogenic β-catenin mutations occur in a wide variety of solid tumors 
[ 95 ]. Concerning the colon cancer crypt, β-catenin induces the expression of EphB 
receptors which, interact with ephrin ligands inducing cells proliferation and thereby 
tumor progression [ 96 ,  97 ]. 

 The non-canonical PCP pathway is one of the two Wnt pathways that does not 
involve β-catenin. After binding to Fz and its co-receptor (NRH1, Ryk, PTK7, or 
ROR2), the Wnt4, Wnt5a and Wnt11 ligands promote the pathway activation. These 
receptors form a complex inclusive of Dsh and Dishevelled-associated activator of 
morphogenesis 1 (DAAM1), which activate the small G-protein Rho and the Rho- 
associated kinase (ROCK), one of the cytoskeleton major regulators. The non- 
canonical Wnt pathway was shown to regulate both cell polarity and movements of 
dorsal mesodermal cells during neural tube closure [ 98 ]. ROCK activation has also 
been implicated in the cancer stem cells cytoskeleton organization and thereby in 
their migration and metastatis formation [ 99 ,  100 ]. 

 The non-canonical Wnt signaling is reported to antagonize β-catenin-dependent 
transcription, suggesting an important anti-oncogenic effect [ 101 ]. However, a core 
PCP pathway scaffolding protein VANGL1 has been shown to promote metastasis 
in colon cancer. Moreover, it has been demonstrated that Wnt5a promotes mam-
mosphere formation via a non-canonical mechanism which involves ROR2 as 
 co- receptor [ 102 ]. 

 The Wnt/Ca 2+  pathway shares many components of the PCP pathway, but plays 
a different role in stimulating intracellular Ca 2+  release by ER [ 103 ,  104 ]. The intra-
cellular calcium accumulation activates several Ca 2+  sensitive proteins, including 
protein kinase C [ 105 ] and calcium/calmodulin-dependent kinase II [ 106 ]. In mela-
nomas, the activation of PKC as a result of the Wnt/Ca 2+  pathway is involved in cell 
proliferation and metastasis. Thus, targeting this pathway could be relevant to can-
cer therapy [ 107 ]. 

 The Bone morphogenetic protein 4 (BMP4) is able to activate a differentiation 
program and stimulate apoptosis in colon cancer stem cells. This reduces the 
β-catenin activation through inhibition of the PI3K/AKT pathway and up-regulation 
of the Wnt-negative modulators [ 108 ]. 

 Bone Morphogenetic Proteins (BMPs) are secreted signaling molecules that 
comprise a subfamily of the TGF-β family. There are at least 20 structurally and 
functionally related BMPs, most of which play a role in embryogenesis and mor-
phogenesis in various tissues and organs. BMP signaling depends on the heterodi-
merization of type I and II BMP receptors (BMPR) that lead to phosphorylation of 
the downstream molecules SMAD 1,5,8 and their association with SMAD 4. This 
complex translocates into the nucleus where it interacts with Runt-related 
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 transcription factor 2 (Runx2) and a cofactor (C) (Fig.  1.1c ) [ 85 ]. Considering that 
BMP4 prevents cell proliferation and stimulates apoptosis by inducing the BAX 
expression and downregulating BCL-2 and Bcl-xL levels, the BMPR agonist could 
be useful in targeting cancer stem cells by activating a differentiation program and 
so potentiating the chemotherapy’s cytotoxicity through BCL-2 negative inhibition 
in glioblastoma (GBM) [ 109 ]. It has recently been demonstrated that the BMP7 
variant is a possible and innovative approach to the treatment of GBM since it 
decreases tumor growth in orthotopic mice models and stem cell markers expres-
sion, while enhancing differentiation markers expression [ 110 ]. 

 The Hedgehog (Hh) signaling pathway plays very important functions in growth 
regulation, survival and fate during embryonic development and in the maintenance/
repair of adult tissues. The Hh proteins initiate signaling by binding to the receptor 
Patched (PTCH). The subsequent receptor internalization alleviates the inhibitory 
effect of Patched on the 7-transmembrane protein Smoothened (SMO), which in 
turn activates the Hh pathway. Thus, the derepressed SMO activates GLI transcrip-
tion factors, which translocate directly to the nucleus and drive the transcription of 
target genes (Fig.  1.1d ) [ 111 ]. Deregulation of this pathway has been associated 
with tumorigenesis or tumor growth acceleration in a wide variety of tissues. Basal 
cell carcinoma, medulloblastoma, gastric cancer and pancreatic cancer bear muta-
tions in components of the Hh pathway [ 112 – 116 ]. Moreover, the Hh pathway plays 
important roles in regulating self-renewal of normal and tumorigenic human mam-
mary stem cells [ 117 ]. In GBM the treatment with an Hh pathway inhibitor, cyclo-
pamine, caused a 40–60 % reduction in tumor growth and of the tumorigenic 
potential of CSCs [ 118 ]. 

 Finally, it is demonstrated that, in the human pancreatic adenocarcinoma cell 
line, inhibiting the Hh pathway by cyclopamine, depressed tumor spheres self- 
renewal [ 119 ] and reversed gemcitabine resistance [ 120 ].  

1.4       Immunological Profi le of CSCs 

 The characterization of the immune profi le of CSCs is complementary to their 
genomic/molecular assessment, and is mandatory to determine their susceptibility 
to innate and/or adaptive immune responses. Along this line, it is worthy to assess 
the expression of Tumor Associated Antigens (TAAs) and of the effi ciency of their 
antigen processing and presentation by CSCs, as well as their expression profi le of 
regulatory molecules of immune responses. Several groups have carried out studies 
in this fi eld, however, thus far, this issue has not been clearly dissected. 

 The characterization of the immune profi le of CSCs, including the expression of 
Major Histocompatibility Complex (MHC) class I and class II, of Antigen- 
Processing Machinery (APM) and of other immunologically relevant molecules has 
been determined in CSCs deriving from tumors with different histological origins, 
such GBM, melanoma and colorectal cancer (CRC) [ 121 – 124 ]. 
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 Low or negative expression of MHC class I and class II molecules is detected in 
these CSCs as compared with the autologous non-CSC counterpart of tumors [ 124 , 
 125 ]. Moreover, low susceptibility of CSCs to IFN (α or γ) or de-methylating agent 
(5-Aza-2′-deoxycytidine), with some heterogeneity depending on the tissue origins, 
to increase the expression of MHC and APM molecules and of ligands of the receptor 
NKG2D (NKG2DLs) has been reported [ 124 ,  125 ]. Similar results are observed by 
Wu et al. [ 126 ], showing failure by GBM CSCs to express suffi cient levels of MHC 
class I molecules and NK cell activatory ligands, leading to lack of susceptibility to 
NK-mediated lysis [ 126 ]. Along this line, melanoma-derived CSCs but not their 
autologous non-CSC counterparts have been found to be defective for MHC class I 
and class II molecules [ 122 ]. Taken together these evidences indicate that low effi -
ciency in antigen processing and presentation of TAAs can occur in CSCs, revealing 
that these cells represent poor targets for cell-mediated immune responses (Fig.  1.2 ).  

 These observations are in line with the documentation that molecular defects can 
occur in MHC and APM molecules in bulk tumors with different tissue origins 
[ 127 – 130 ]. 

NKG2D

IDO

CD 200
MHC I

TCR

PD-L1
CSC

PD-1

IL-4

NK Cell

T regs, Th2,
MDSCs

Th1 CD8+ T Cell

NKG2DLs

inhibitory soluble factors
-TGFβ, hepatocyte GF
-IL-4, IL-6, IL-10, IL-13
-prostaglandin E2

  Fig. 1.2    The immunomodulatory activity of CSCs is regulated by the interaction of multiple stim-
ulatory and inhibitory molecules. The expression or not of immune-related molecules, such as 
MHC molecules, NKG2DLs and other ligands of NK activatory receptors, can result in inducing 
or not effi cient T cell-mediated responses against CSCs. On the other hand, negative immuno-
modulatory molecules such as PD-L1, CD200, IDO and IL-4 can suppress cell-mediated immuno-
surveillance. Soluble factors (TGFβ, hepatocyte GF, IL-4, IL-6, IL-10, IL-13 and prostaglandin 
E2) released by CSCs can inhibit effector functions and lead to the differentiation of immune cells 
with regulatory activity, T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs) 
or of Th2-type T cell responses       
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 This immune profi le of CSCs resembles that of the physiological normal stem 
cells. In fact, embryonic stem cells (ESCs) express low levels of classical antigen- 
presenting MHC class, no MHC class I and II molecules. Moreover, they express 
low levels or are negative for the ligands of activatory NK cell receptor (NKp44, 
NKp30, NKp46, and CD16) [ 131 ]. Similarly, normal heamatopoietic stem cells dis-
play down-regulation of MHC class I molecules [ 132 ] thus, suggesting that low 
MHC molecules expression is a common feature of “stemness” allowing their pres-
ervation and leading to the escape from cell-mediated immune responses. Non- 
classical MHC molecules, that can exert inhibitory signals (e.g. HLA-G), are 
commonly expressed at high levels by both ESCs and mesenchymal stem cells 
(MSCs) contributing to the evasion from recognition by T or NK cells [ 133 – 136 ].  

1.5       Expression of TAAs by CSCs 

 During the neoplastic transformation the abnormal expression of some surface, 
nuclear or cytoplasmic molecules occur. These molecules can represent tumor- 
associated antigens (TAAs), that following their processing and presentation in 
association with MHC molecules, can elicit T lymphocyte-mediated anti-tumor 
responses. These TAAs can be classifi es as following:

•     Differentiation TAAs . Tumor cells share these antigens with normal cells of the 
same lineages, however, they are overexpressed in neoplastic cells. This group of 
TAAs has mainly been found in melanoma and melanocytes, e.g. MART-1/
Melan-A, Gp100, and tyrosinase but also in other epithelial tissues such as the 
prostate specifi c antigen (PSA) found in prostate, CEA in CRC and MUC-1 in 
CRC, lung cancer, mammary cancer etc. [ 137 ].  

•    Cancer-testis antigens  (CTAs), which represent tumor specifi c TAAs, since 
their expression in normal tissues is restricted to the testis and placenta. They 
include the MAGE family proteins (A1, -A2, -A3), NY-ESO-1, NA-17, LAGE, 
etc. [ 137 ].  

•    Mutated TAAs : they could arise from point mutations in oncogenes, tumor sup-
pressor genes or genes involved in survival and proliferation pathways [ 138 ].    

 These molecules represent the potential targets of cancer immunotherapy and 
since their molecular identifi cation, they have been exploited for several vaccine- 
based clinical studies for cancer patients. [ 139 ]. Targeting TAAs specifi cally 
expressed by CSCs could improve the effi cacy of cancer vaccines and improve the 
induction of systemic T cell-mediated immune responses. 

 The characterization of molecularly known tumor antigens by CSCs has been the 
objects of a few studies, showing lack or limiting expression of these molecules. 
Failure in detecting either differentiation, such as MART-1, Gp100, or CT antigens, 
such as MAGE, NY-ESO-1, or IL-13Rα2 has been documented in CSC from mela-
noma, GBM or CRC [ 121 – 123 ]. On the other hand, NY-ESO1, Ep-CAM, CEA and 
SVV-1 were detected in CSCs either from melanoma or CRC, respectively 
(Table  1.1 ) [ 123 ,  140 ].
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   However, none of these TAAs are reported as eliciting effi cient T cell-mediated 
responses against CSCs, suggesting that defective antigen processing and presenta-
tion of these antigens, as described in Sect.  1.4 , and/or the lack of suffi cient expres-
sion of these TAAs can prevent the activation of T cell immune responses and their 
exploitation as target for vaccine based-immunotherapy. Of note, circulating precur-
sor effector cells recognizing a few of these antigens have been found in GBM, 
melanoma and CRC models, indicating that, though these TAA can elicit immune 
responses, they cannot be targeting CSCs (Table  1.1 ) [ 141 – 143 ]. 

 Interestingly, T cell responses against the COA-1 antigen, which is expressed by 
CSCs, have been isolated in CRC patients, suggesting that this molecule may repre-
sent, al least for CRC, a valuable target molecule for T cell-mediated immune 
responses against CSCs (Table  1.1 ) [ 123 ]. 

 Further efforts are needed to exploit the mutational profi le of CSCs in order to 
identify candidate TAAs arising from somatic mutations in their genome and to 
validate their role as novel immunogenic CSC-associated target molecules for 
immunotherapy. 

     Table 1.1    Expression of TAAs by CSCs   

 TAA  Tumor type  TAA category 
 Expression 
in CSCs  Reference(s) 

 Survivin  CRC/GBM  Over-expressed 
antigen a  

 Yes  [ 121 ,  123 ] 

 Gp100  Melanoma/CRC/GBM  Differentiation 
antigen 

 Yes/no/no  [ 121 ,  123 , 
 168 ] 

 MAGE  Melanoma/CRC/GBM  CT antigens  Yes/no/no  [ 121 ,  123 , 
 169 ] 

 MART-1  Melanoma  Differentiation 
antigen 

 No  [ 122 ] 

 CEA  CRC  Differentiation 
antigen 

 Yes  [ 123 ] 

 MUC-1  Breast cancer  Over-expressed 
antigen 

 Yes  [ 170 ] 

 NY-ESO 1  CRC/CRC/GBM  CT antigens  Yes/no/no  [ 121 ,  123 , 
 169 ] 

 HER2/neu  Breast cancer  Over-expressed 
antigen 

 No  [ 171 ] 

 COA-1  CRC  Over-expressed 
antigen 

 Yes  [ 123 ] 

 SOX-2  GBM  Over-expressed 
antigen 

 Yes  [ 121 ] 

 CD133  CRC/GBM  Over-expressed 
antigen 

 Yes  [ 172 ] 

 IL-13Rα2  GBM/CRC  Over-expressed 
antigen 

 Yes  [ 121 ,  123 , 
 145 ] 

   a TAAs over-expressed in tumors  
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 Although a defi nitive profi le of TAAs expressed by CSCs has not been achieved 
yet, acquiring a comprehensive analysis of genetic, molecular and immunological 
features of CSCs may provide relevant information to identify novel highly immu-
nogenic molecules for the specifi c targeting of CSCs.  

1.6     Cell-Mediated Immune Responses Against CSCs 
and Immune Escape Mechanisms 

 The knowledge of immunological properties of CSCs in relationship with their tis-
sue origins is still limited, however, several reports have shown their resistance to 
immune-mediated reactivity [ 124 ,  125 ]. Differential gene and protein expressions 
for some immunological-related molecules, such as down-modulation of molecules 
related to IFN signaling, cytokines, etc. or up-regulation of the AKT-STAT signal 
pathway, which was found to be involved in immune escape mechanisms [ 144 ], 
have been described in GBM-CSCs as compared with the differentiated non-CSC 
counterpart of tumors [ 121 ]. These evidences, together with that described in 
Sects.  1.4  and  1.5  indicate that CSCs deriving from solid tumors can indeed display 
peculiar biological properties and can behave differently from cells lacking the 
“stemness” function [ 124 ,  125 ]. 

 Along with an increasing effort in characterizing immunological properties of 
CSCs, it comes clearer that CSCs can act as immunomodulators toward cell- 
mediated immune responses [ 124 ,  125 ]. Although some variability can occur 
depending on tissue origins and on the procedures for their in vitro isolation. GBM- 
CSCs display impairment of T cell proliferation and can induce a preferential 
 selection/differentiation of Th2-type T cell responses following their co-culture 
in vitro with either autologous or allogeneic patient-derived peripheral blood lym-
phocytes [ 121 ]. 

 On the other hand, CMV-specifi c T cells can recognize and kill brain-derived 
CSCs, indicating that strong immunogenic viral-derived epitopes can be presented 
in the HLA-restricted context by CSCs and can be recognized by T cells [ 145 ]. The 
evidence that CD4 + CD56 +  T cells with an Th2-associated cytokine profi le repre-
sented the major subpopulation in tumor infi ltrating lymphocytes of GBM patients 
was reported as result of local tumor suppression of immune responses [ 146 ]; thus, 
indicating that this mechanism might be driven by the presence of tumor cells with 
“stemness” properties. Along this line, the unsuccessful targeting of melanoma- 
derived CSCs by T lymphocytes recognizing melanoma-associated antigens 
(MAAs) has been also reported; this phenomenon is associated with negative or low 
levels of expression of MAA by CSCs, as discussed in Sect.  1.5  [ 122 ,  147 ]. 

 Failure in successful anti-CSCs activity by the innate immune system has been 
documented in GBM and ovarian cancer, depending on low or negative expression 
of ligands for NK receptors and MHC class I molecules [ 126 ,  148 ]. Susceptibility 
to NK-mediated reactivity can be detected for CSCs from human CRC, primary oral 
squamous and ovarian carcinoma when the immune profi le of these cells displays 
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effi cient expression of NK-receptor ligands and lack or low expression of MHC 
class I molecules [ 149 – 151 ], Similar observations have been reported for mouse 
prostate CSCs [ 152 ]. 

 These evidences highlight the heterogeneity of CSCs in terms of the immuno-
logical profi le and of their susceptibility to cell-mediated immune responses. The 
low expression of MHC molecules and APM by CSCs can be partially overcome by 
vaccine-based models using professional antigen-presenting cells (APCs) loaded 
with CSC lysates to elicit effi cient cell-mediated immune responses, as shown in 
both human and mouse models [ 153 – 156 ]. 

 Taken together, the observations discussed, thus far, corroborate the hypothesis 
that low effi ciency by CSCs in antigen-processing and presentation, as well as low 
expression of TAAs and/or of ligands for activatory NK cell receptors can impair 
cell-mediated immune responses. In some cases, CSCs can be targeted by immune 
responses induced in vivo either by the vaccination with APC loaded with CSCs- 
derived TAAs or by the treatment with immunomodulatory agents (e.g. IFN-α) [ 126 ].  

1.7     Immunoregulatory/Immune Escape Mechanisms 
Associated with CSCs 

 CSCs not only represent poor target cells for anti-tumor immune responses but they 
also display immune-regulatory properties. This indication originates from a variety 
of reports showing that these cells can secrete cytokines and soluble suppressive fac-
tors, such as Galectin-3, TGFβ, IL-10, IL-13, PGE2, PD-1, B7-H1, B7-H3, B7-H4, 
and GDF-15 [ 122 ,  157 – 161 ] (Table  1.2  and Fig.  1.2 ). The immunosuppressive 

       Table 1.2    Immunomodulatory molecules associated with CSCs   

 Molecule  CSCs 
 Non-CSC 
tumor 

 Normal stem 
cells  Reference(s) 

 IL-4  Over-expressed  Low levels  Not detected  [ 123 ] 
 IL-6  Over-expressed/

down-modulated 
 Expressed  Expressed  [ 122 ,  158 ,  159 ] 

 IL-10  Over-expressed/absent  Expressed  Expressed  [ 122 ,  158 ] 
 IL-13  Over-expressed/absent  Expressed  Expressed  [ 121 ,  122 ] 
 TGF-β1  Over-expressed/absent  Expressed  Expressed  [ 121 ,  122 ] 
 B7-H4  Over-expressed  Expressed  Expressed  [ 157 ] 
 PG2D  Expressed  Expressed  Expressed  [ 174 ] 
 GDF-15  Over-expressed  Not detected  Not detected  [ 159 ] 
 STAT3  Over-expressed  Expressed  Expressed  [ 158 ] 
 Galectin-3  Over-expressed  Expressed  Expressed  [ 122 ] 
 IDO  Over-expressed  Expressed  Expressed  [ 173 ], Unpublished 

results 
 CD200  Expressed  Expressed  Expressed  [ 165 ] 
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activity of cancer initiating cells has been recently described both in GBM and 
 melanoma, showing that CSC-like cells can inhibit T cell activation and prolifera-
tion by the induction of Tregs [ 122 ,  158 ,  159 ]. Furthermore, B7-H1, B7-H4, PD-1 
and PD-L1 can be detected on CSCs from both GBM and CRC; these molecules 
inhibit T cell activation and proliferation following their encountering with CSCs, 
with implication for cell-mediated immunesurveillance of tumors (Table  1.2  and 
Fig.  1.2 ) [ 121 ,  123 ].

   Of note, the expression of B7 family members in brain tumor cells, including 
CSCs, has been related with their immunoresistance to T cell-mediated responses 
[ 157 ,  162 ]. CRC-CSCs express and secrete IL-4, with higher levels as compared 
with the autologous non-CSC tumor counterpart, which function is determinant for 
drug and apoptosis resistance and for the immune evasion of these cells [ 123 ,  163 ]. 
The membrane-associated IL-4 on CSCs predominantly exerts, by cell-to-cell con-
tact, inhibition of T cell proliferation and of their anti-tumor activity (Table  1.2  and 
Fig.  1.2 ) [ 123 ]. Furthermore, the neutralization of this cytokine, by specifi c mono-
clonal antibodies, can restore T cell proliferation and anti-tumor activity [ 123 ]. In 
this model, soluble IL-4, though released by CRC-CSCs, leads only to partial 
in vitro inhibition of T cell reactivity [ 123 ]. Therefore, the blocking of IL-4 on 
CSCs can overcome at least one of the negative immunomodulatory activities of 
these cells and can rescue the activation and proliferation of both T and NK cells 
[ 123 ,  149 ]. These observations are in line with the demonstration that IL-4 signaling 
is a relevant key regulator for epithelial tumor behavior and lack of responsiveness 
to standard therapies [ 163 ,  164 ]. 

 Moreover, CD200, a molecule that can block myeloid cell activities has been 
shown to be expressed by CSCs [ 165 ] while GBM-CSCs can evade from T cell 
recognition by the STAT3 pathway (Table  1.2  and Fig.  1.2 ) [ 158 ]. 

 Despite the common feature of the immunosuppressive activity associated 
with CSCs, a variety of negative immunoregulatory signaling can be detected on 
these cells. Nevertheless, it appears clearly that these negative immune regulatory 
signals are not CSC-specifi c, but are shared with normal stem cells [ 166 ,  167 ]. 
Along this line, PGE2, acting by inhibiting macrophage and T cell activation, and 
indoleamine 2,3-dioxigenase (IDO) (Fig.  1.2 ), that depletes tryptophan prevent-
ing T cell activation and proliferation, are produced by CSCs to prevent immune 
reactivity and autoimmune diseases. Recently, the expression IDO has been 
found, following IFN-γ treatment, on CSCs from GBM and CRC and has been 
found as responsible for the inhibition of T cell proliferation following their co-
culture in vitro with autologous CSCs ( see  Table  1.2  and    Maccalli et al., personal 
communication). 

 Taken together, the observations reported, thus far, indicate that CSCs indeed 
display a low immunogenic profi le and immunomodulatory functions that are typi-
cal features of “stemness” functions. Thus, immune-escaped CSCs, with low immu-
nological properties, can favour the propagation and accumulation of cancer cells 
and can evade immunosurveillance. These cells may represent the self-renewal res-
ervoir of a tumor, allowing cancer cell survival and progression. 
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 The immunological characterization of CSCs still needs to be fully elucidated, 
however, the available information can contribute in identifying novel strategies that 
can revert the immunomodulatory activity of these cells and can target CSCs, such 
as the usage of immune checkpoint blockade agents [ 35 ] in combination with 
vaccine- based immunotherapy.  

1.8     Conclusions 

 Progress has been achieved in gaining the biological and immunological character-
ization of CSCs. Aberrantly expressed signaling pathways have been identifi ed to 
be associated with CSCs and to confer their “stemness” properties and the ability to 
metastasize. In addition, these investigations have allowed the identifi cation of 
markers that may be exploited to isolate ex vivo CSCs responsible for tumor initia-
tion and propagation. Along this line, small agents are available to target CSCs that 
will be used soon for clinical studies. 

 Heterogeneity can be detected in CSCs isolated from different tumors depending 
on the genomic background and/or the histological origin, however, a common fea-
ture of these cells is their ability in evading cell-mediating immune responses. This 
characteristic is achieved by the expression and the activation in CSCs of a variety 
of immunomodulatory signaling pathways, thus leading to the impairment of cell- 
mediated immune responses specifi cally targeting CSCs (Fig.  1.2 ). 

 The immune privilege of CSCs can favor the survival of an immune-hidden res-
ervoir of self-renewing cells that can warrant tumor propagation. Relevant 
 implications are that the treatment with either a survival pathway inhibitor or differ-
entiation-inducing small agents may be not suffi cient for the complete CSC elimi-
nation. Therefore, the therapeutic combination of these agents with immunotherapy 
strategies is desirable. Novel immunotherapy strategies targeting CSCs should take 
into account the plasticity and heterogeneity of CSCs. 

 Further efforts are needed to fully dissect the relationship between CSCs and the 
innate/adaptive immune responses, however, the molecular identifi cation of at least 
a few of the immunoregulatory molecules expressed by CSCs can enable to block 
these signaling pathways by the usage of appropriate immunomodulating agents 
(e.g. immune checkpoint blockade agents, inhibitory molecules).     
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    Chapter 2   
 Role of Co-inhibitory Molecules in Tumor 
Escape from CTL Attack 

             Wieger     J.     Norde    ,     Willemijn     Hobo    , and     Harry     Dolstra    

    Abstract     The immune system can be a potent defense mechanism against cancer. 
Especially CD8 +  cytotoxic T lymphocytes (CTL) have a great killing capacity 
towards tumor cells. However, their potential is often dampened by immune sup-
pressive mechanisms in the tumor microenvironment. Co-inhibitory molecules 
(CIM) expressed by tumor cells, immune cells and stromal cells in the tumor milieu 
can severely hamper CD8 +  T-cell responses against cancer cells. Today, a variety of 
co-inhibitory molecules, including PD-1, CTLA-4, LAG3, BTLA, Tim-3 and 
CD200R, have been implicated in tumor escape from CTL attack. Sustained signal-
ing via these CIM can result in functional exhaustion of T-cells, a process in which 
the ability to proliferate, secrete cytokines and mediate lysis of tumor cells is 
sequentially lost. In this chapter, we discuss the infl uence of co-inhibitory pathways 
in suppressing CD8 +  T-cell function in various immune settings. These include the 
natural immune surveillance by CTL against tumor cells, or in therapeutic settings 
like allogeneic stem cell transplantation or chimeric antigen receptor (CAR) T-cell 
therapy. In addition, we discuss exciting pre-clinical and clinical data of immuno-
therapeutic approaches interfering with negative co-signaling, either as monother-
apy or in conjunction with vaccination strategies. Numerous studies indicate that 
co-inhibitory signaling limits the clinical benefi t of current CTL-based therapies. 
Therefore, interference with CIM is an attractive immunotherapeutic intervention 
for cancer therapy.  
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  Abbreviations 

   AB    Antibody   
  ACRBP    Acrosin binding protein   
  AG    Antigen   
  alloSCT    Allogeneic stem cell transplantation   
  AML    Acute myeloid leukemia   
  APC    Antigen-presenting cell   
  BMS    Bristol-Myers Squibb   
  BTLA    B- and T-lymphocyte attenuator   
  CAR    Chimeric antigen receptor   
  CAR-T    CAR-transduced T-cell   
  CCR7    C-C chemokine receptor type 7   
  CD    Cluster of differentiation   
  CD200R    CD200 Receptor   
  CD62L    CD62 ligand   
  CEA    Carcinoembryonic antigen   
  CIM    Co-inhibitory molecule   
  CIM-L    Co-inhibitory ligand   
  CIM-R    Co-inhibitory receptor   
  CLEC15A    C-type lectin domain family 15 member A   
  CLL    Chronic lymphoid leukemia   
  CML    Chronic myeloid leukemia   
  CMV    Cytomegalovirus   
  CSM-L    Co-stimulatory ligand   
  CSM-R    Co-stimulatory receptor   
  CTAG1B    Cancer/testis antigen 1B   
  CTL    Cytotoxic T-lymphocyte   
  CTLA-4    Cytotoxic T-lymphocyte-associated protein 4   
  DC    Dendritic cell   
  EBV    Epstein-Barr Virus   
  EMA    European Medicines Agency   
  Fc    Fragment crystallizable region   
  FDA    Food and Drug Administration   
  FoxP3    Forkhead box P3   
  gD    Herpes simplex virus glycoprotein D   
  GVHD    Graft-versus-host-disease   
  GVT    Graft-versus-tumor   
  Her-2    Human epidermal growth factor receptor 2   
  HIV    Human immunodefi ciency virus   
  HLA    Human lymphocyte antigens   
  HVEM    Herpesvirus entry mediator   
  ICOS    Inducible T-cell costimulator   
  IFN-γ    Interferon gamma   
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  Ig    Immunoglobulin   
  KLRG1    Killer cell lectin-like receptor G1   
  LAG3    Lymphocyte-activation gene 3   
  LIGHT    Lymphotoxin-like, exhibits inducible expression, and competes with 

herpes simplex virus glycoprotein D for HVEM, a receptor expressed 
by T lymphocytes   

  LT-α    Lymphotoxin-alpha   
  MAGE-A    Melanoma-associated antigen   
  MHC    Major histocompatibility complex   
  MiHA    Minor histocompatibility antigen   
  MM    Multiple myeloma   
  NK    Natural killer cell   
  NY-ESO-1    New York esophageal squamous cell carcinoma-1   
  PAP    Prostate acid phosphatase   
  PBMC    Peripheral blood mononuclear cells   
  PD-1    Programmed cell death 1   
  PD-1H    PD-1 homolog   
  PD-L1    Programmed death-ligand 1   
  PD-L2    Programmed death-ligand 2   
  pMHC    Peptide-MHC complex   
  siRNA    Small interfering RNA   
  SLAMf4    Signaling lymphocyte-activation molecule family member 4   
  TAA    Tumor-associated antigen   
  TCR    T-cell receptor   
  TCR-T    TCR-transduced T-cell   
  T EFF     Effector T-cell   
  T EM     Effector memory T-cell   
  Th1    Helper 1 T-cell   
  TIL    Tumor-infi ltrating lymphocyte   
  Tim-3    T-cell immunoglobulin and mucin domain 3   
  Tim-4    T-cell immunoglobulin and mucin domain 4   
  T N     Naïve T-cell   
  TNFR    Tumor necrosis factor receptor   
  T REG     Regulatory T-cell   
  T SCM     Stem cell memory T-cell   
  VISTA    V-domain Ig suppressor of T-cell activation   
  Wnt    Wingless-related integration site   

2.1          Introduction 

    It is evident that both the innate and adaptive immune systems participate in the 
recognition and clearance of tumor cells by a process known as cancer immunosur-
veillance. In particular, tumor-reactive CD8 +  cytotoxic T-lymphocytes (CTL) are 
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major effectors in the immune response against cancer cells. However, despite the 
powerful aspects of CTL-mediated immune reactions, too often tumor cells are 
able to evade immune recognition and destruction. Tumor cells exploit several 
mechanisms to escape from CTL-mediated immunity, such as disruption of anti-
gen presentation, down-regulation of HLA molecules, recruitment of regulatory 
T-cells (T REG ) and myeloid-derived suppressor cells, as well as secretion of immune 
suppressive cytokines [ 1 ]. In the last decade, another powerful immune suppres-
sive mechanism came into the limelight: the repressive action of co-inhibitory 
receptors [ 2 ].  

2.2     CTL Activation 

 Activation of T-cells to become CTL effectors, initially requires two signals [ 3 – 5 ]. 
Firstly, the TCR-CD3 complex needs to interact with the cognate peptide presented 
in HLA molecules on dendritic cells (DC). However, whether or not the T-cell 
becomes activated, is predominantly dependent on signaling of either co- stimulatory 
molecules (CSM) or co-inhibitory molecules (CIM) upon ligation with their corre-
sponding ligands expressed by the APC [ 6 ]. The balance between these positive and 
negative co-signals determines the functionality of T-cells during immunity and 
tolerance. The stimulatory signal is generally provided by CD28, expressed on the 
T-cell, interacting with its ligands CD80 and CD86 on the DC. In the absence of 
co-stimulation the T-cell will become functionally anergic, and thereby tolerant to 
the antigen, which is one of the physiological mechanisms involved in the elimina-
tion of self-reactive T-cells. In addition, ligation of CIM to their corresponding 
ligands on APC results in T-cell inhibition, and via this natural feedback loop, sus-
tained T-cell activation is prevented and the effector T-cell response resolves. 
Therefore, the balance in positive and negative co-signals determines the activation 
state of the T cells during immunity and tolerance. 

 The kinetics and differentiation of CTL that constitute anti-tumor responses are 
divided in several stages [ 7 ]. First, the CD62L + CCR7 + CD45RA +  naive T-cells (T N ) 
encounter the antigen presented by DC. Due to the expression of the selectin CD62L 
and the chemokine receptor CCR7 these cells home to the secondary lymphoid 
organs. However, upon this stimulation by the DC, these T-cells clonally expand 
and loose the expression of CD62L, CCR7, CD28 and CD45RA, while upregulat-
ing activation markers such as CD45RO, CD69 and CD25. These effector T-cells 
(T EFF ) subsequently migrate to the target tissues, where they eradicate tumor cells. 
After the peak of the response, upon which most or all target cells have been 
destroyed, the contraction phase commences, and most tumor-reactive T-cells will 
undergo apoptosis. However, a minority of the T-cells will survive to become long- 
lived memory cells, either effector (T EM ) or central memory (T CM ). While the T EM  
reside in the periphery and upon recall show a strong effector response, the T CM  
have a strong proliferative property, regain expression of CD62L and CCR7, and 
migrate to the lymph nodes and BM, where they convey a lifelong memory against 
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the antigen of their specifi city. During all these activation and differentiation events, 
signaling through CSM and CIM has a great infl uence on the functional capacity 
and differentiation status of CTL.  

2.3     Tumor-Associated Antigens 

 The immune system can harness a powerful attack against cancer cells. This can be 
done by cells from the innate immune system, such as NK cells that can attack 
tumor cells without prior sensitization [ 8 ]. Furthermore, the adaptive T-cell immune 
system has a great potential of recognizing and lysing tumor cells. This is mainly 
done by CTL, which recognize tumor-associated antigens (TAA) presented by the 
cancer cells. TAA are overexpressed, or ideally, solely expressed by tumor cells and 
consequently recognized as foreign, and an effective CD8 +  T-cell immune response 
can be constituted against these antigens. Different classes of TAA exist. One class 
of TAA is highly overexpressed differentiation genes, such as tyrosinase and 
gp100 in melanoma, proteins which are differentially expressed at low levels in 
healthy melanocytes [ 9 ]. 

 Another class is the oncofetal antigens, like carcinoembryonic antigen (CEA), 
which are usually expressed only in the fetal stage, and therefore no immune toler-
ance against these TAA exists [ 10 ]. Furthermore, cancer-testis antigens, including 
MAGE-A, NY-ESO-1, ACRBP and CTAG1B, can be aberrantly expressed by tumor 
cells [ 11 ,  12 ]. Since these are also only expressed by fetal tissues and the immune- 
privileged testes, a prominent immune response can be observed against these 
TAA. Finally, new antigens caused by de novo mutations in the cancer cells can 
occur in any gene. Since these mutations result in a true novel epitope, a very strong 
CTL response can be elicited. Especially in cancers with a high mutation rate, such 
as melanoma and lung cancer, these novel TAA occur frequently [ 13 ]. 

 Altogether, these TAA are the major target in natural CD8 +  T-cell tumor surveil-
lance, and form an attractive fi eld for immunotherapy, such as tumor infi ltrating 
lymphocyte (TIL) infusion or DC vaccination loaded with TAA [ 14 ]. Vaccination 
with the most potent APC, i.e. DC, provides a great option for antigen-specifi c 
stimulation of tumor-reactive CTL [ 15 ]. Currently, DC vaccination is being per-
formed in phase 3 clinical trials against four malignancies, including melanoma, 
prostate cancer, glioma and renal cell carcinomas [ 16 ]. In prostate cancer, vaccina-
tion is being performed against the prostate cancer-antigen prostate acid phospha-
tase (PAP) with the sipuleucel-T treatment [ 17 ]. In addition, vaccination with 
melanoma-antigens has reached promising results [ 18 ]. Several parameters of DC 
vaccination still need to be optimized, such as DC culture, choice of DC subpopula-
tion, the method of loading of tumor antigens, choice of maturation stimuli, and 
method of administration to the patient [ 19 ]. However, in the majority of studies an 
increase in the median overall survival has been documented, underlining the poten-
tial of this therapy [ 16 ].  
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2.4     Allogeneic Stem Cell Transplantation 

 Another cancer immunotherapy, based on CTL recognition of antigens expressed 
on tumor cells, is allogeneic stem cell transplantation (alloSCT). This procedure can 
still be regarded as one of the most powerful cell-based immunotherapy to date, due 
to potent graft-versus-tumor (GVT) responses constituted by alloreactive T-cells 
[ 20 ]. These alloreactive CD8 +  T-cell responses eradicate the malignant cells upon 
recognition of polymorphic HLA-presented peptides, known as minor histocompat-
ibility antigens (MiHA). AlloSCT greatly enhanced the cure rate for aggressive 
hematologic cancers, although many patients still fail to launch effective immune 
responses and develop relapsed disease. Moreover, a major drawback of alloSCT is 
the occurrence of graft-versus-host disease (GVHD), a potentially life-threatening 
complication predominantly caused by alloreactive T-cells recognizing healthy tis-
sues, notably the skin, liver and gastrointestinal tract. Since hemato-restricted 
MiHA are solely expressed by the redundant patient hematopoietic system includ-
ing the malignant counterparts, they hold the key to separate GVT from GVHD 
[ 21 ]. In fact, these MiHA are equally immunogenic as de novo TAA or viral epit-
opes, since the antigens are completely foreign to the donor immune system and 
immune tolerance has not been initiated. Therefore, alloSCT can be a very powerful 
and curative cancer immunotherapy.  

2.5     Adoptive T-Cell Transfer 

 Adoptive transfer of CTL is an appealing means to prevent or treat relapse of the 
tumor cells, and so far various strategies have been exploited. Nevertheless, speci-
fi city is crucial to avoid systemic toxicity. One method to obtain suffi cient numbers 
of T-cells reactive against a TAA or MiHA is via isolation of these cells from the 
effector repertoire of patients present, followed by a fast expansion protocol [ 22 , 
 23 ]. Already in the 1980s, the fi rst studies with tumor-reactive T-cells in mice were 
performed by the isolation of TIL and subsequent culture and administration, which 
resulted in remission of cancer [ 24 ]. This led to clinical trials in humans, and a 
response rate near 50 % or more has made TIL administration an established treat-
ment option [ 25 ]. A different technique is the isolation and expansion of naive 
tumor-reactive T-cells from a healthy donor by ex vivo stimulation with peptide- 
presenting DC [ 26 ,  27 ]. However, this can be a time-consuming and laborious pro-
cess, especially for overexpressed TAA. The feasibility of both approaches has been 
demonstrated by several groups [ 22 ,  23 ,  26 – 28 ]. Importantly, one phase I trial 
reported in fi ve out of seven patients with relapsed leukemia a complete, but tran-
sient, remission upon adoptive transfer of MiHA-specifi c T-cells expanded from 
post-transplant recipient PBMC [ 28 ]. Unfortunately, the infused T-cells failed to 
persist in vivo, which might be due to their terminal T EFF/EM  differentiation stage 
and, consequently, rapid exhaustion of these cells as a result of the extensive in vitro 
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culture protocol. To prevent the exhaustion of these T-cells, a search for the T-cell 
type with the highest proliferative potential has led to the identifi cation of the stem 
cell memory T-cell (T SCM ) [ 29 ,  30 ]. Although T SCM  have experienced antigen- 
stimulation, they resemble T N  in their expression of CD62L and their ability to dif-
ferentiate into all other T-cell differentiation states. In addition, it was found that by 
inhibition of either the Akt or Wnt pathway in vitro, it is possible to generate high 
numbers of tumor-reactive T SCM  [ 30 ,  31 ]. Together with their proven excellent anti- 
tumor effects in murine models, this subtype of CTL holds great promise for future 
therapies [ 32 ]. 

 A third way to effi ciently generate high numbers of tumor-reactive CTL with 
high-affi nity TCR is by gene transfer of the antigen-TCR α and β chains into donor 
T-cells [ 22 ,  33 ]. To prevent the induction of GVHD in patients treated with alloSCT, 
the TCR genes should preferentially be transferred into donor T-cells with a known 
specifi city that does not recognize and target GVHD-tissues, such as virus-specifi c 
T-cells [ 34 ]. Another potential complication might be mispairing of the introduced 
and native TCR chains, thereby generating a new potentially harmful specifi city 
[ 35 ]. Efforts are being made to prevent this mispairing, amongst which is the trans-
fer of TCR α and β chains into γδ T-cells. Successful TCR gene transfer and resul-
tant cytolytic competence has been demonstrated for both TAA and MiHA [ 36 – 39 ]. 
Importantly, with TCR gene transfer the complete MiHA-TCR is introduced into 
the donor T-cells, therefore matching of the HLA-restriction allele between recipi-
ent and donor is no longer required. 

 A novel therapeutic approach utilizing the power of CTL is chimeric antigen 
receptor (CAR) T-cells. These CAR consist of an antibody fragment recognizing a 
tumor antigen expressed on the surface of these T-cells. Ingeniously, to enable T-cell 
activation, this antibody fragment is coupled to the CD3 ξ-chain, leading to an intra-
cellular activation cascaded upon recognition of the antigen [ 40 ]. This chimeric 
receptor combines the high avidity and specifi city of antibodies with the activation 
of CTL, resulting in highly effective CTL responses. Second and third generation 
CAR have been engineered to express motives of CSM in the intracellular domain, 
such as CD28, 4-1BB and OX40. Thereby, in addition to the cytolytic capacity of 
CAR, also proliferation and survival are sustained. Impressive results have been 
obtained in clinical trials. Especially CAR recognizing CD19 developed by the June 
lab, have been able to effi ciently lyse cancer cells in patients with high tumor bur-
dens, and have resulted in cure of leukemia patients [ 41 ]. After this pioneering work 
in leukemia, other target antigens are currently being explored in different malig-
nancies, making CAR therapy hold great promise for the future. 

 Nevertheless, despite the curative potential of the cellular therapies described 
afore, numerous studies have demonstrated that tumor cells explore immune sup-
pressive mechanisms to dampen tumor-reactive CTL responses, resulting in sub- 
optimal clinical effi cacy. One of the pivotal mechanisms exploited by tumor cells 
is manipulation of CTL activation, either by enhancing CSM or interfering with 
CIM signaling. Tumor cells can evade immune control by down-regulating CSM 
such as CD80 and CD86, and up-regulating various co-inhibitory ligands, thereby 
limiting the therapeutic potential of current immunotherapies against cancer. 
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This chapter will address the role of CIM in tumor immune evasion from CTL 
attack, and discuss options to prevent T-cell inhibition without severe adverse 
effects. We will discuss the role of separate CIM involved in tumor escape from 
CTL, and subsequently elaborate on combinations of CIM in the tumor setting. 
Finally, the incorporation of CIM interference in near future anti-cancer immuno-
therapy will be discussed.  

2.6     Co-inhibitory Molecules in Cancer 

 A variety of CIM have been implicated in cancer immune escape. Here, we discuss 
the CIM prominently involved in suppressing anti-tumor immunity.  

2.6.1     PD-1 

2.6.1.1     Expression and Function of PD-1 

 Programmed death 1 (PD-1; CD279) is an immunoreceptor and member of the B7/
CD28 family [ 42 ]. In 1992, PD-1 was identifi ed on hybridoma T-cells undergoing 
apoptosis and was believed to be a programmed cell death-induced gene [ 43 ]. 
Further characterization demonstrated that PD-1 is inducibly expressed on stimu-
lated CD8 +  T-cells, CD4 +  T-cells, B cells and monocytes [ 44 ]. PD-1 binds two 
ligands, PD-L1 (B7-H1; CD274) and PD-L2 (B7-DC; CD273) [ 45 ]. While PD-L1 
is expressed on various non-lymphoid tissues, PD-L2 expression is mainly restricted 
to APC, like DC and macrophages [ 46 ]. Furthermore, multiple tumor types express 
PD-L1 and its expression is elevated upon IFN-γ exposure [ 47 ]. PD-L1 molecules 
on tumor cells can deliver negative signals towards PD-1-expressing tumor-reactive 
CTL, thereby inhibiting anti-tumor immunity [ 48 ]. Indeed, PD-L1 expression has 
been associated with poor prognosis in solid tumors [ 47 ]. 

 It has been demonstrated that PD-1 plays a crucial role in T-cell regulation in 
various immune responses such as peripheral tolerance, autoimmunity, infection 
and anti-tumor immunity [ 46 ]. High PD-1 expression on viral antigen-specifi c CTL 
in chronic viral infections was recognized as a hallmark for T-cell dysfunction upon 
antigen re-encounter [ 49 ]. This phenomenon, known as exhaustion, is characterized 
by the sequential loss of the ability to proliferate, secrete cytokines and kill target 
cells. Especially in HIV infection, T-cell impairment could be relieved by PD-1 
blockade both in vitro and in animal models [ 50 ,  51 ]. It has also been shown that 
PD-1 strongly attenuates the downstream signaling of the TCR [ 52 ]. In an elegant 
model system, the infl uence of PD-1 ligation on T-cell triggering was investigated 
[ 53 ]. Engagement of PD-1 raises the threshold of T-cell stimulation by increasing 
the number of TCR/peptide-MHC complexes needed for activation. It has been 
reported that exhausted T-cells have elevated expression of multiple CIM and a 
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distinct gene signature, different from anergic cells, resulting in changes in TCR 
and cytokine signaling pathways [ 54 ]. The importance of downstream PD-1 signal-
ing was nicely demonstrated by the identifi cation of an exhaustion-specifi c gene 
signature in HIV-specifi c T-cells [ 55 ].  

2.6.1.2     PD-1 in Cancer 

 PD-1 has been shown to have a prominent suppressive function in anti-cancer 
immunity. Expression of its ligand PD-L1 on tumor cells conveys a negative signal 
to tumor-reactive T-cells [ 56 ]. In addition, PD-1-expressing TIL present in breast 
cancer tissue are associated with a poor prognosis [ 57 ]. Moreover, in melanoma was 
shown that PD-1 +  TIL were functionally impaired as compared to their PD-1- 
negative counterparts [ 58 ]. 

 The involvement of PD-1 in alloSCT has been investigated both in mouse mod-
els and in the human setting. In a study investigating chronic myeloid leukemia 
(CML), using a retrovirus-induced CML model, it was demonstrated that tumor- 
specifi c T-cells can become exhausted [ 59 ]. In this model, consisting of PD-1 +  
tumor-reactive T-cells and PD-L1 +  CML cells, exhaustion could be overcome by the 
administration of either PD-L1 antagonistic antibody or PD-1 defi cient T-cells. In 
accordance, it was shown that the bulk T-cell population from CML patients exhib-
ited increased expression of PD-1 [ 59 ]. Also, in the alloSCT setting, high PD-1 
expression was observed on alloreactive CTL that specifi cally recognize hemato- 
restricted MiHA in myeloid leukemia patients [ 60 ]. Furthermore, proliferation of 
these PD-1 +  MiHA-specifi c CTL by stimulation with MiHA-loaded DC ex vivo was 
suboptimal, indicating dysfunctional CTL due to PD-1 signaling. Importantly, upon 
treatment with anti-PD-1 or anti-PD-L1 blocking antibodies ex vivo proliferation of 
the MiHA-specifi c CTL was reinvigorated. 

 These and many more studies have led to clinical trials exploring the potency of 
PD-1 blocking antibodies, putting the PD-1 pathway in the forefront of anti-tumor 
therapy. Three antagonistic anti-PD-1 antibodies are currently in advanced clinical 
trials, i.e. pidilizumab, nivolumab and pembrolizumab    (formerly lambrolizumab) 
(Table  2.1 ). Furthermore, three anti-PD-L1 antibodies, BMS-936,559, MEDI4736, 
MPDL3280A and MSB0010718C, are being investigated inclinical trials (Table  2.1 ). 
In 2012, exciting reports on the use of the anti-PD-1 nivolumab and the anti-PD-L1 
blocking antibody BMS-936,559 in patients with advanced malignancies were 
 published [ 61 ,  62 ]. Response rates upon administration of anti-PD-1 to patients 
with solid tumors ranged from 18 % to 28 %, depending on tumor type. Importantly, 
responses were durable, with the majority of patients having responses for over a 
year. Notably, the therapy was relatively well tolerated and only for one patient a 
serious adverse event, infl ammatory colitis, was reported [ 63 ]. Interestingly, also 
blocking the ligand, PD-L1, could induce durable tumor regression with an objec-
tive response rate of 6–17 %, with prolonged responses of over a year. The lack of 
strong toxic effects in this study provided promise that the PD-1 blockade might 
have a more subtle effect than the CTLA-4 blockade. This rendered anti-PD-1 
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       Table 2.1    Blocking antibodies and fusion proteins targeting CIM in clinical trials   

 CIM  Name  Isotype  Company  Trial/approved 

 CD200  ALXN6000/
Samalizumab 

 IgG2/
G4—kappa, 
humanized 

 Alexion  Phase I/II 

 CTLA-4  Ipilimumab/Yervoy 
(MDX-010) 

 IgG1  BMS  FDA approved 
melanoma 2011; 
Canada and EU 2012 

 CTLA-4  Tremelimumab/
ticilimumab/
CP-675,206 

 Fully human 
IgG2 

 Pfi zer  Clinical trials only 

 PD-1  Nivolumab/BMS-
936558 (MDX-1106) 

 Fully human 
IgG4 

 BMS  Phase III multiple 
tumors 

 PD-1  Pidilizumab/CT-011  Humanized 
IgG1 

 CureTech/Teva  Phase II multiple 
tumors 

 PD-1  Pembrolizumab/
lambrolizumab/
MK-3475 

 Humanized 
IgG4 

 Merck  FDA approved sept 
2014 melanoma 

 PD-L1  MPDL3280A  Engineered 
human IgG1 

 Roche/Genentech  Phase I/II 

 PD-L1  MEDI4736  Engineered 
human IgG1 

 MedImmune  Phase I 

 PD-L1  MSB0010718C  Fully human 
IgG1 

 Merck 

 PD-L1  BMS-936,559  Fully human 
IgG4 

 BMS  Phase I 

 PD-L2  AMP-224  Rec fusion 
protein 
PD-L2/Fc 

 Amplimmune/
GlaxoSmithKline 

 LAG3  BMS-986,016  BMS  Phase I 
 LAG3  IMP321  Rec fusion 

protein 
sLAG3/FC 

 Immutep  Phase I 

   IgG  immunoglobulin G  

 antibodies as interesting candidates for cancer therapy and gave rise to more exten-
sive trials. In 2013, the results were reported for the anti-PD-1 antibody    pembroli-
zumab in melanoma [ 64 ]. In this more homogenous patient group, a response rate 
of 38 %, and even 52 % in the highest dose was obtained. As in the previous studies, 
most responses were durable. These exciting results have encouraged registration if 
these PD-1 blockers. On July 4th 2014, Ono Pharmaceutical and partner Bristol-
Myers Squibb (BMS), gained approval in Japan for nivolumab [ 65 ]. Furthermore, 
Merck aims to receive the First US approval for pembrolizumab in melanoma on 
October 28th 2014. These approvals open up endless possibilities of using PD-1 
antagonists against various malignancies, as well as combining anti-PD-1 antibod-
ies with other treatment modalities.
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2.6.2         CTLA-4 

2.6.2.1     Expression and Function of CTLA-4 

 Cytotoxic T lymphocyte associated antigen-4 (CTLA-4; CD152), was the fi rst 
 identifi ed CIM, and is partly similar to the co-signaling molecule CD28 [ 66 ]. While 
CD28 is constitutively expressed on the membrane of naïve T-cells, CTLA-4 is 
primarily localized in intracellular compartments and quickly translocates to the 
cell membrane upon T-cell activation. The inhibitory function of CTLA-4 was 
revealed in knockout mice, which showed multi-organ T-cell infi ltration leading to 
lethal lymphoproliferative disease [ 67 ]. Like CD28, CTLA-4 has an extracellular 
domain containing the MYPPPY binding motif, enabling both receptors to interact 
with CD80 (B7-1) and CD86 (B7-2) expressed by APC. However, the binding affi n-
ity of CTLA-4 for these ligands is higher by a factor 10–100, thus outcompeting 
CD28 and thereby promoting immune inhibition [ 68 ]. 

 As CTLA-4 is up-regulated upon TCR ligation, it plays an important role in 
attenuating effector T-cell activation and maintaining immune homeostasis and cen-
tral tolerance. In addition, CTLA-4 signaling in immunosuppressive T REG  mediates 
the control of auto-reactive T-cells, as in vivo interference with CTLA-4 on these 
T-cells elicited pathological autoimmunity [ 69 ]. The effect of CTLA-4 interference 
could either be due to depletion and/or inhibition of T REG . It was shown that 
 T REG - specifi c CTLA-4 defi ciency resulted in down-regulation of CD80/CD86 on 
APC [ 70 ]. This can be explained by endocytosis of APC-derived CD80 and CD86 
by T REG  [ 71 ]. Subsequently, the APC acquires a less stimulatory phenotype, result-
ing in a lasting inhibitory effect after CTLA-4 ligation. This concept has been inves-
tigated further in vivo. Here it was found that T REG  can reduce CD80/CD86 
expression after encounter with a DC. When CTL are subsequently activated with 
these hypostimulatory DC, the effector T-cells display enhanced levels of T-cell 
immunoglobulin and mucin domain 3 (Tim-3) and PD-1. Via this mechanism, CTL 
function is indirectly attenuated via CTLA-4 signaling [ 72 ]. 

 CTLA-4 as such is not a marker of exhausted cells, but elevated levels on viral 
antigen-specifi c T-cells correlated with their dysfunction in patients with chronic 
viral infections, which in turn could be restored by CTLA-4 blockade [ 73 ]. Also in 
metastatic melanoma, high expression of CTLA-4 was correlated to antigen- specifi c 
T-cell dysfunction [ 74 ]. Moreover, in various CD80 and CD86-positive tumor mod-
els, monotherapy with CTLA-4 blocking antibody resulted in elimination of estab-
lished tumors and long-lasting antitumor immunity [ 75 ]. Interestingly, CTLA-4 
also has an infl uence on the motility of CTL. After addition of a CTLA-4 antagonist 
in a mouse model, it was shown that CTL exhibited increased motility, indicating 
that CIM blockade does not only restore cytolytic activity, cytokine secretion and 
proliferation, but could also enhance CTL migration [ 76 ]. Although anti-CTLA-4 
treatment works in vivo, CTLA-4 blockade in vitro has not been successful in 
reversing T-cell dysfunction. This can be due to limitations of the in vitro models, 
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as CTLA-4 blockade may exert it’s in vivo action via multiple immune mediators 
(e.g. effector T-cells, antibody responses, T REG ) [ 77 ]. 

 All these preclinical fi ndings have stimulated clinical exploration of anti-CTLA-4 
blocking antibodies. At the moment, two blocking antibodies exist, ipilimumab and 
tremelimumab (Table  2.1 ). Most studies have been performed with ipilimumab in 
melanoma, and impressively, in these patients the median overall survival almost 
doubled [ 78 ]. In follow-up studies, the effects of CTLA-4 blockade were consistent 
[ 79 ] and in 2011, the FDA and EMA approved ipilimumab treatment for advanced 
melanoma, thereby paving the way for further exploration of therapies targeting 
CIM in cancer. Unfortunately, not all studies involving tremelimumab displayed a 
positive effect on overall survival [ 80 ]. Also, for both blocking antibodies, not all 
patients gained clinical benefi t and individual responses are hard to predict. 
Furthermore, the occurrence of adverse toxic effects upon CTLA-4 blockade were 
a problem, even leading to death in some cases [ 80 ]. However, these were the pio-
neering studies involving CIM blockade, and by increased clinical awareness and 
protocols to tackle these immune related complications, severe adverse events have 
been decreased.  

2.6.2.2     CTLA-4 in Stem Cell Transplantation 

 Experimental and clinical studies have demonstrated that co-inhibitory molecules 
hamper T-cell immunity against hematologic cancers in both the autologous and 
allogeneic settings. This might be due to native expression of CD80 and CD86 on 
hematologic tumor cells. CTLA-4:CD80/86 interactions also take place between 
T-cells and hematologic tumor cells. In multiple myeloma (MM) patients, CD86 but 
not CD80 was expressed by tumor cells, while CTLA-4 was up-regulated on T-cells, 
which led to anergy of tumor-specifi c T-cells [ 81 ]. Similar to these results, T-cells 
from chronic lymphocytic leukemia (CLL) patients responded to anti-CD3 activa-
tion by a decrease in CD28 and an increase in CTLA-4 expression, resulting in an 
inhibitory phenotype [ 82 ]. In addition to MM, also in acute myeloid leukemia 
(AML) cells tumor cells were demonstrated to have heterogeneous CD86 expres-
sion, but CD80 levels were generally low or absent [ 60 ,  83 ]. 

 The alloreactive T-cell function after alloSCT is also strongly infl uenced by 
CIM. The importance of CTLA-4 in modulating allogeneic immune responses has 
been confi rmed by association of certain CTLA-4 genotypes with overall survival 
and the incidence of leukemia relapse after alloSCT. It was demonstrated that 
CTLA-4 blockade shortly after alloSCT increased GVHD [ 84 ]. However, when 
anti-CTLA-4 was administered at later time-points after alloSCT, the GVT effect 
was boosted without signs of GVHD. In patients, ipilimumab administration at late 
time-points after alloSCT has been explored in one phase I trial [ 85 ]. Following a 
single infusion of the ipilimumab in 29 alloSCT patients with a recurrent or pro-
gressive hematological malignancy, three clinical responses were observed. 
Importantly, no induction or exacerbation of clinical GVHD was reported, although 
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similar to other CTLA-4 blockade trials 14 % of the patients showed organ-specifi c 
immune- related adverse events. The lack of GVHD induction is likely attributed to 
the median interval of 1 year between the last donor T-cell infusion and ipilim-
umab administration. This provides a window for anti-tumor immunotherapy in 
the post- alloSCT setting and emphasizes the importance of appropriate timing of 
CIM blockade.   

2.7     Combining PD-1 and CTLA-4 Blockade 

 It has been recognized that CTLA-4 and PD-1 exert their role in attenuating T-cell 
activation at different physiological locations and moments of the immune response. 
CTLA-4 is mostly involved in the inhibition of CTL priming in the lymph node, 
while PD-1 seems to limit T-cell proliferation and function in lymphoid tissues as 
well as in the periphery, i.e. at the tumor site. Therefore, the effects of concurrent 
PD-1 and CTLA-4 blockade are of great interest. In a mouse tumor model, it was 
demonstrated that double-positive CD8 +  TIL was more dysfunctional than either 
single PD-1 or CTLA-4 positive CD8 +  T-cells. In addition, double PD-1/CTLA-4 
blockade led to reversal of TIL dysfunction and subsequent tumor rejection in the 
majority of mice [ 86 ]. Two studies which strengthen the idea of CTLA-4’s role in 
T-cell priming versus PD-1’s role in peripheral tolerance investigated the TCR rep-
ertoire [ 87 ,  88 ]. In patient who had received CTLA-4 blocking antibodies, an 
increased repertoire of TCR was observed. This indicates that at least part of the 
effect of CTLA-4 blockade is by an increase in T-cell priming. In contrast, in 
patients who had been treated with PD-1 blockade, this extended TCR repertoire 
was not observed, indicating that the clinical effi cacy of this treatment is more likely 
due to reinvigoration of existing CTL responses. 

 These distinct roles of PD-1 and CTLA-4 warranted combined clinical trials to 
investigate whether administration of blocking both CIM would have an additive or 
a synergistic clinical effect. In the fi rst study testing this hypothesis, in an impres-
sive number of 65 % of patients clinical activity was observed, while these were 
patients with a very poor prognosis [ 89 ]. Also at the maximum dosages, 53 % of the 
patients fulfi lled the criteria for the stringent objective responses, all with tumor 
reduction of 80 % or more. These impressive clinical responses were associated 
with in grade 3/4 adverse events in 53 % of the patients, which generally were 
reversible and were not more severe than observed with monotherapy. Also in fol-
low- up data, it was shown that a group of 17 patients who received the optimum 
combination dose of anti-PD-1 and anti-CTLA-4 showed an overall survival rate of 
94 % at 1 year and of 88 % at 2 years, exceeding by far the suboptimal responses 
typically observed in patients treated with either antibody alone [ 65 ]. These results 
are very promising for the future as optimal combinations of CIM blockade can 
yield very impressive clinical responses.  
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2.8     BTLA 

2.8.1     Expression and Function of BTLA 

 B and T lymphocyte attenuator (BTLA), (CD272), is an inhibitory receptor with 
structural similarities to CTLA-4 and PD-1 [ 90 ]. BTLA is mainly expressed by 
immune cells, including T- and B-cells, DC and myeloid cells [ 91 ,  92 ]. In contrast 
to other B7/CD28 family members, BTLA binds a member of the tumor necrosis 
factor receptor (TNFR) superfamily, namely herpes virus entry mediator (HVEM) 
[ 93 ]. HVEM is part of an intricate signaling network as it has at least four additional 
binding partners that distinctively mediate T-cell responses: i.e. CD160, LIGHT 
(for lymphotoxin-like, exhibits inducible expression, and competes with HSV gly-
coprotein D for HVEM, a receptor expressed by T lymphocytes), lymphotoxin-α 
(LT-α) and herpes simplex virus glycoprotein D (gD) [ 94 ]. BTLA or CD160 signal-
ing upon HVEM binding results in T-cell inhibition [ 93 ,  95 ]. Interestingly, naïve 
T-cells express both HVEM and BTLA, and these molecules form a T-cell intrinsic 
heterodimer complex [ 96 ]. Due to formation of this complex, HVEM is unavailable 
for extrinsic ligands, and no co-stimulatory signal is transduced. In humans, persis-
tent expression of BTLA was observed on EBV- and CMV-specifi c CD8 +  T-cells, 
which negatively affected T-cell function [ 97 ,  98 ]. Furthermore, high BTLA expres-
sion correlated with impaired tumor-reactive T-cell function in melanoma patients 
[ 74 ,  97 ]. These tumor-specifi c T-cell responses could be restored in vitro by inter-
ference with the BTLA-HVEM pathway in combination with vaccination therapy. 
In addition, co-expression of BTLA, PD-1 and Tim-3 rendered melanoma-specifi c 
CD8 +  T-cells highly dysfunctional, which could be reversed by combined blockade 
of all three CIM [ 99 ]. In a mouse tumor vaccination model, blockade of the BTLA/
CD160/HVEM pathway caused regression of large tumor masses [ 100 ]. These 
results show that in the right setting BTLA blockade can be of great signifi cance, 
warranting evaluation of clinical effectiveness. In addition, the effect of a BTLA 
blocking antibody has been investigated on MiHA-specifi c T-cell functionality in 
samples from alloSCT patients [ 91 ]. As shown for PD-1, BTLA was also highly 
expressed on MiHA-specifi c CTL. Moreover, in the majority of the patients BTLA 
blockade resulted in increased outgrowth of MiHA-specifi c CD8 +  T-cells. 
Interestingly, in three patients BTLA blockade effects were more prominent than 
those of PD-1, indicating that BTLA has a non-redundant function to PD-1, and 
therefore it holds promise in cancer immunotherapies.   

2.8.2     Tim-3 

 The co-signaling receptor Tim-3 is expressed on Th1 CD4 +  and CD8 +  T-cells, and 
is involved in co-inhibition. In mice, the interaction of Tim-3 with its ligand 
galectin- 9 was demonstrated to prevent in autoimmune diseases and promote 
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malignancies [ 101 ]. Furthermore, in HIV [ 102 ] and melanoma patients [ 103 ], 
dysfunctional CD8 +  T-cells have been shown to co-express Tim-3. In this regard 
interference with Tim-3 signaling is an interesting treatment option, and enhanced 
tumor vaccine effi cacy has been observed by Tim-3 blockade [ 104 ]. Interestingly, 
both Tim-3 and PD-1 were expressed on a subset of exhausted CD8 +  T-cells in a 
murine AML model, and expression levels increased [ 105 ] during tumor progres-
sion [ 106 ]. While either Tim-3 or PD-L1 blockade alone was not suffi cient to 
improve survival, the combination of the two antagonistic antibodies signifi cantly 
decreased tumor burden and enhanced survival. Also, in a melanoma vaccination 
model, the vast majority of vaccination-induced CTL upregulated PD-1 and a 
minority also upregulated Tim-3. Levels of PD-1 and Tim-3 expression by CTL at 
the time of vaccine administration correlated inversely with their expansion 
potential in vivo. Importantly, dual blockade of PD-1 and Tim-3 enhanced the 
expansion and cytokine production of vaccine-induced CTL in vitro [ 107 ]. Also, 
combining Tim-3 blockade with activation of CD137, a co-stimulatory receptor, 
conveyed long term protection against ovarian carcinoma in a mouse model [ 108 ]. 
Finally, blocking of Tim-3 and its family member Tim-4 resulted in a better anti-
tumor effect against murine melanoma. All these studies show that, although 
always in conjunction with another co-signaling molecule, Tim-3 can be involved 
in tumor evasion, making it an attractive partner in combinatorial blockade. In 
contrast, a stimulatory role for TIM-3 and galectin-9 has been reported in the 
interaction of CD8 +  T-cells and DC [ 109 ]. This discrepancy might be explained by 
the fi ndings that Tim-3 signaling enhances TCR stimulation [ 96 ]. T-cell exhaus-
tion may be caused by prolonged TCR signaling via Tim-3, thereby prolonging 
the effector phase of T-cell activation at the expense of T-cell memory [ 110 ]. 
Therefore, depending on the setting, Tim-3 may act as either a co-stimulatory or a 
co-inhibitory receptor.  

2.8.3     LAG3 

 Lymphocyte-activation gene 3 (LAG3; CD223) is a co-inhibitory receptor highly 
similar to CD4 and therefore also binds HLA class II molecules [ 111 ,  112 ]. LAG3 
seems to be non-redundant from PD-1, as both are expressed on distinct popula-
tions CTL [ 113 ]. Recently, it was demonstrated that PD-1 and LAG3 act synergisti-
cally in the onset of autoimmune diseases and tumor escape in mice [ 114 ,  115 ]. In 
a leukemia model, PD-1 and CTLA-4 were blocked to reverse CTL tolerance. 
However, also blockade of LAG3 was necessary to fully restore CTL function 
[ 116 ]. Altogether, these results indicate that LAG3, like Tim-3, is a good candidate 
as an additive blocking target. At the moment, clinical trials are being performed 
with a blocking antibody and a soluble LAG3 fusion molecule (Table  2.1 ), and 
these studies have the potential to add LAG3 to the list of targets in cancer immu-
notherapy [ 117 ].  
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2.9     Other Co-inhibitory Players 

 In addition to the afore discussed molecules, other co-inhibitory players are being 
studied to characterize their contribution to functional suppression of tumor- reactive 
T-cell immunity. 

 In 2011, a new CIM highly similar to PD-1 was discovered by two groups: 
PD-1H (PD-1 homolog) or VISTA (V-domain Ig suppressor of T-cell activation) 
[ 105 ,  118 ]. This molecule is broadly expressed on hematopoietic cells and expres-
sion levels are further up-regulated on T-cells and APCs following activation. In 
in vitro studies the interaction with soluble VISTA-Ig fusion protein or VISTA +  
APC mediated the suppression of T-cell cytokine production and proliferation, 
which could be alleviated by blocking antibody treatment [ 118 ,  119 ]. Recently, it 
was also demonstrated that VISTA can enhance the conversion of naïve T-cells into 
FoxP3 +  T-cells [ 119 ]. In vivo, VISTA overexpression on tumor cells strongly ham-
pered protective tumor-reactive T-cell responses. Importantly, VISTA blockade 
impaired the suppressive function and emergence of T REG , as well as modulated the 
suppressive tumor micro-environment, thereby, promoting tumor-reactive T-cell 
immunity [ 120 ]. Interestingly, treatment with PD-1H blocking antibody prevented 
the induction of GVHD in murine alloSCT models, although the mechanism of 
action has not been elucidated [ 105 ]. These data illustrate that PD-1H/VISTA exerts 
both an immunoregulatory function in the tumor micro-environment, as well as a 
direct immunosuppressive action on anti-tumor T-cell responses, making it an inter-
esting therapeutic target. 

 Killer cell lectin-like receptor G1 (KLRG1), also known as CLEC15A or MAFA, 
is an inhibitory receptor expressed on NK cells and subsets of CD4 +  and CD8 +  
T-cells [ 121 ]. It has been demonstrated that interaction with its ligand E-cadherin 
results in the functional inhibition of KLRG1 +  NK cells, thereby preventing effec-
tive killing of tumor cells [ 122 ,  123 ]. In T-cells, KLRG1 expression has been mostly 
studied as a marker of terminal differentiation. KLRG1 +  antigen-experienced T EFF/

EM  cells exhibited preserved capacity to secrete cytokines upon antigen reencounter, 
but were incapable of proliferation [ 121 ]. Importantly, one study demonstrated that 
interference with KLRG1 signaling, by targeting of E-cadherin with a blocking 
antibody, results in enhanced TCR-induced proliferation of highly differentiated 
CD28 − CD27 −  CTL [ 124 ]. More studies are warranted to characterize the involve-
ment of KLRG1 signaling in tumor immune escape and the potential of KLRG1 
blockade for cancer immunotherapy. 

 2B4 (i.e. CD244, SLAMf4) is a member of the CD2 subset of the immunoglobu-
lin superfamily, and is expressed on NK cells, monocytes, basophils and eosino-
phils. Furthermore, 2B4 expression is up-regulated on a subset of CD8 +  T-cells 
following activation [ 125 ,  126 ]. Its binding partner is CD48 [ 127 ]. Most functional 
studies have been performed with NK cells, where 2B4 was demonstrated to have 
both activating and inhibitory functions [ 128 ]. Interestingly, in a murine transplan-
tation model, 2B4 expression was up-regulated on allograft-reactive CD8 +  T-cells, 
but not CD4 +  T-cells, following selective CD28 blockade [ 129 ]. Preservation of 
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inhibitory signaling via CTLA-4 was required for the up-regulation of 2B4. 
Subsequent inhibitory signaling via 2B4 reduced expression levels of the co- 
stimulatory molecule ICOS, and mediated enhanced allograft survival. These results 
indicate that 2B4 is involved in the control of antigen-specifi c CTL functionality. 

 CD200 Receptor (CD200R) is an inhibitory receptor expressed by cells of 
myeloid and lymphoid origins, including NK cells and T-cells following activation 
[ 130 ]. Its ligand CD200 (OX2) is expressed by diverse cell types, including immune 
cells, neurons and epithelia. Importantly, overexpression of CD200 by tumor cells 
has been associated with progression of various solid and hematologic cancers 
[ 131 ]. In a murine leukemia model, CD200Fc suppressed CD4 +  and CD8 +  T-cell 
functionality, resulting in loss of protection from tumor growth [ 132 ]. Ex vivo stud-
ies with human CLL demonstrated that CD200 is involved in the functional sup-
pression of CTL-mediated tumor killing and CD4-mediated suppression of CTL 
functionality, which could be reverted with CD200 blocking antibody or CD200 
siRNA treatment [ 133 ]. In a murine model with CD200 +  human B-CLL, adminis-
tration of CD200 blocking antibody resulted in restored T-cell proliferation and 
tumor control [ 134 ]. Moreover, patients with CD200 +  AML were found to have 
reduced numbers of functional NK cells [ 135 ], had signifi cantly compromised Th1 
memory and CTL memory responses [ 136 ], and showed increased numbers of 
FoxP3 +  T REG  [ 137 ]. CD200 blockade in vitro could recover NK cell and T-cell func-
tionality [ 135 ,  136 ], and is therefore an attractive target for therapy. Interestingly, 
the fi rst clinical results have already been reported about an anti-CD200 blocking 
antibody (Table  2.1 ) [ 138 ]. Although it was in a small cohort, promising results 
were obtained in a study with B-CLL and MM patients: 36 % of patients experi-
enced at least a 10 % reduction in bulky disease and notably, one patient experi-
enced a partial response with a maximum of 71 % reduction in bulky disease.  

2.10     Future Prospects 

 Several therapeutic strategies are being developed to dampen the inhibitory signal-
ing by CIM in order to optimize tumor-reactive CTL immunity (Fig.  2.1 ). The chal-
lenge of interference with immune checkpoints is to boost anti-tumor reactivity, 
while avoiding adverse events such as systemic toxicity. This can potentially be 
achieved by combining the alleviation of co-inhibition with other therapeutic 
options or optimal dosage and timing of antibody administration. Appealing combi-
nations are the simultaneous targeting of multiple co-inhibitory receptors, co- 
stimulatory agonists in parallel with CIM antagonists, or incorporation in existing 
cellular therapies. For example, DC vaccination may be applied together with 
blocking antibodies against CIM to boost CTL-mediated anti-tumor immunity.  

 CAR T-cells are a promising treatment modality in cancer therapy. Although in 
second and third generation CAR T-cell constructs a strong co-stimulatory signal is 
incorporated in the form of CD28, 4-1BB and OX40 intracellular signaling 
domains, this powerful therapy also seems to be dampened by CIM [ 139 ,  140 ]. 
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In a murine tumor model with Her-2-specifi c CAR-T-cells, a signifi cant increase in 
tumor growth inhibition was observed after PD-1 blockade [ 141 ]. In addition, the 
amount of immune suppressive myeloid derived suppressor cells was decreased 
upon PD-1 blockade, through a yet unknown mechanism. Therefore, CIM block-
ade in combination with CAR-T-cell therapy may improve the clinical effi cacy of 
this novel therapy. 

 Although anti-CTLA-4 and anti-PD-1 monotherapies have shown very exciting 
results, toxic effects of blocking CIM may still be a problem. Approaches that 
 concurrently deliver a tumor-antigen-specifi c stimulus may lead to less adverse 
events. These include combination therapies with treatment modalities such as 
immunomodulatory anti-cancer agents, vaccines, T REG  depletion or nanoparticles. 
Recently, another treatment modality in which an antigen-specifi c stimulation is 
combined with an intervention for co-inhibition was explored. PD-L1/L2 silenced 
MiHA- loaded DC boosted the expansion of MiHA-specifi c T-cells ex vivo [ 142 ], and 

  Fig. 2.1    To boost tumor-reactive T cell immunity different immunotherapeutic strategies can be 
exploited as monotherapy or in combination. First, co-inhibitory signaling pathways can be 
blocked with antagonistic antibodies to prevent and/or alleviate the functional impairment of 
CTLs. Furthermore, agonistic antibodies targeting co-stimulatory molecules can be applied to fur-
ther augment CTL functionality. In addition, dendritic cell vaccination can be applied to provide 
effi cient antigen presentation and strong stimulatory signals to tumor-reactive CTLs. Another 
strategy is the alloSCT in hematological malignancies, which can elicit powerful MiHA-reactive 
CTL responses. Finally, by adoptive transfer of highly potent TCR-transduced or CAR-transduced 
(stem-cell like) T cells direct attack of tumor cells can be provoked. The power of these immuno-
therapeutic approaches can be further intensifi ed by combination with antibodies to interfere with 
co-inhibitory signaling pathways          
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 following these promising results, a clinical trial combining DLI with vaccination 
of PD-L1/L2 silenced donor DC loaded with hemato-restricted MiHA will start. All 
clinical studies provide a platform for incorporating blockade of CIM as adjuvant 
therapy of choice in cancer patients, with numerous options for combination thera-
pies. Importantly, the risk of breaking tolerance systemically by blockade of one 
CIM could be prevented by using lower levels of multiple blocking antibodies tar-
geting different CIM simultaneously, since together these may boost immune 
responses in a non-redundant manner. This is stressed by the fact that exhausted 
T-cells are known to display multiple co-inhibitory receptors [ 143 ]. Notably, the 
impressive results obtained by combining blocking antibodies against PD-1 and 
CTLA-4 is a perfect example of harnessing the power of these two non-redundant 
immune checkpoints, and many more combinations need to be investigated in the 
clinical setting. 

 After identifi cation of the role of CIM in CD8 +  T-cell functions, their signifi -
cance on T-cell exhaustion was clearly established. However, with time, the 
notion of CIM as direct markers of dysfunction has been adjusted. Although their 
negative effect on T-cell functions is evident, expression as such does not qualify 
a T-cell as exhausted [ 144 ]. It has been shown that CIM, most notably PD-1, are 
also present on healthy cells [ 145 ] and that several CIM are up-regulated after 
T-cell activation [ 146 ,  147 ], while their expression had no direct effect on cyto-
kine production by CTL. The activation-induced up-regulation indicated the 
physiological role of CIM as a negative feedback loop in CTL effector responses. 
Moreover, during T-cell differentiation most CIM are also up- or down-regulated 
[ 91 ,  146 ]. All these results indicate that, although on the whole T-cell population 
PD-1 expression can be an indicator for exhaustion, expression as such is not a 
marker of exhaustion on the individual T-cell level. Especially the fact that PD-1 
can be an activation marker is demonstrated by a study investigating TIL in mela-
noma. Here it was shown that PD-1, LAG3 and Tim-3 are the identifying markers 
for tumor-reactive CTL [ 148 ]. The realization that not expression, but signaling 
via the CIM causes CTL dysfunction, has prompted the investigation of down-
stream signaling pathways and gene expression in impaired CTL. It was found 
that exhausted T-cells display a distinct gene signature, different from anergic 
cells, resulting in changes in TCR and cytokine signaling pathways [ 54 ]. Indeed, 
it was demonstrated that PD-1 downstream signaling results in an exhaustion 
gene signature in HIV-specifi c T-cells [ 55 ]. Further research into these mecha-
nisms in CTL impairment in the tumor setting can yield novel targets to prevent 
or reverse exhaustion. 

 Altogether, CIM play a pivotal role in natural and therapeutic CTL-mediated 
immunity against cancers. With increasing knowledge of a growing number of 
CIM, novel mono- and combinatorial treatment options are becoming available. In 
the end, this can lead to optimized immunotherapy against cancers.     
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    Chapter 3   
 Role of the Non-classical HLA Class I
Antigens for Immune Escape 

             Barbara     Seliger      and     Simon     Jasinski-Bergner   

    Abstract     Tumors have developed different mechanisms to evade immune 
 surveillance including alterations of classical and non-classical HLA class I anti-
gens. The non-classical HLA-G antigen is often overexpressed in solid and hemato-
poietic tumors, thereby, creating a tolerogenic phenotype leading to an escape from 
T and NK cell-mediated immune responses by binding to the inhibitory receptors 
ILT2, ILT4 and KIR2DL4. Consequently, HLA-G +  tumors are associated with dis-
ease progression and in some cases with a poor clinical outcome of patients. 
Furthermore, high levels of soluble HLA-G have often been detected in serum, 
plasma and malignant ascites of tumor patients, which also correlated with a poor 
patients’ prognosis. Under physiologic conditions HLA-G expression is tightly con-
trolled, limited to mainly immune privileged tissues/cells and could be regulated at 
the transcriptional, epigenetic as well as post-transcriptional levels. Recently, miRs 
regulating HLA-G expression have been identifi ed, which could be used as tools for 
therapeutic intervention. Translational inhibition of HLA-G could reduce the 
immune escape of tumors, and increase the sensitivity to T cell- and/or NK cell-
mediated cytotoxicity. However, the function of HLA-G expression is more com-
plex, since next to trogocytosis a HLA-G-mediated inhibition of malignant 
hematopoietic cell proliferation was found mediated by an interaction of HLA-G 
with the ILT2 receptor involved in the negative signaling of B cell proliferation. 
Furthermore, HLA-G-regulating miRs also possess tumor suppressive activities by 
modulating apoptosis sensitivity and drug resistance. HLA-G exhibits a dual tumor 
type-dependent role by altering not only the immune surveillance, but rather also 
shaping the tumorigenic properties of tumor cells.  
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  Abbreviations 

   β 2 -m    β 2 -Microglobulin   
  APC    Antigen presenting cells   
  APM    Antigen processing machinery   
  bp    Base pair   
  CLL    Chronic lymphatic leukemia   
  CTL    Cytotoxic T lymphocyte   
  DAC    Desoxyazacytidine   
  DC    Dendritic cells   
  GSN    Gelsolin   
  HLA    Human leukocyte antigen   
  IDO    Indolamine 2, 3-deoxygenase   
  IFN    Interferon   
  ILT    Immunoglobulin-like transcript   
  JAK    Janus kinase   
  LIF    Leukemia inhibitory factor   
  MDSC    Myeloid-derived suppressor cells   
  miR    MicroRNA   
  MMP    Matrix metalloproteinases   
  mTOR    Mammalian target of rapamycin   
  NK    Natural killer   
  PKC    Protein kinase C   
  RCC    Renal cell carcinoma   
  SNP    Single nucleotide polymorphism   
  TAM    Tumor associated macrophages   
  TAP    Transporter associated with antigen processing   
  TGF    Transforming growth factor   
  Treg    Regulatory T cell   
  TSA    Trichostatin A   
  UTR    Untranslated region   

3.1          Introduction 

 Tumors could evade immune surveillance by multiple mechanisms including loss 
or downregulation of HLA class I antigens due to a reduced or impaired expression 
of various components of the antigen processing machinery (APM), loss of co- 
stimulatory molecules, expression of co-inhibitory molecules, such as B7-H1 and 
B7-H4 and of the non-classical antigens HLA-G and HLA-E as well as secretion of 
immune suppressive factors, like adenosine, indolamine 2,3-deoxygenase (IDO), 
IL-10 and transforming growth factor (TGF)-β. These different processes could 
result in impaired responses of immune effector cells and/or the induction of vari-
ous immune suppressive cell subpopulations. 

B. Seliger and S. Jasinski-Bergner



61

 Since recent reports suggest an increased complexity regarding the activity of 
HLA-G in human tumors, this article will focus on the expression, function, regula-
tion as well as on the clinical signifi cance, but also on the non-immunologic activity 
of HLA-G both in solid tumors as well as in hematologic malignancies [ 1 ]. The 
diverse activities of HLA-G might be driven by the interaction of HLA-G with its 
receptors present on various immune cell types including NK, T, B and dendritic 
cells (DC) and phagocytes [ 2 ], thereby creating a negative signal that counteracts 
immune activation. This enables an evasion of HLA-G +  tumor cells from the host 
immune surveillance. An increased knowledge of the molecular mechanisms of het-
erogeneous expression and regulation of HLA-G might help to develop therapeutic 
strategies to inhibit HLA-G expression [ 3 ,  4 ]. 

3.1.1     Features of HLA-G 

 In contrast to classical HLA class I molecules, HLA-G has a limited polymorphic 
diversity and is alternatively spliced leading to seven distinct protein isoforms encod-
ing for four membrane-bound (HLA-G1, -G2, -G3, -G4) and three soluble HLA-G 
(sHLA-G, HLA-G5, -G6, -G7) molecules, respectively. The membrane- bound HLA-
G1 variant represents a full length version of the molecule, while HLA- G2, HLA-G3 
as well as HLA-G4 lack one or two exons. The HLA-G5-6 isoforms contain part of 
intron 4, while HLA-G7 contains a part of intron 2 harboring a stop codon, which 
leads to the loss of the membrane domain. In addition to sHLA-G5, -G6 and -G7, 
HLA-G1 also exists as a soluble molecule due to proteolytic cleavage by a matrix 
metalloprotease (MMP), in particular of MMP2, but not of MMP9 [ 5 ]. Like classical 
HLA-class I antigens, the non-classical HLA-G can form heterodimers with β 2 -
microglobulin (β 2 -m), but also as homodimers- and tetramers, which are able to bind 
to receptors on T and NK cells, but dimers and tetramers exert a higher affi nity. Both 
HLA-G1 and -G5 contain a peptide-binding region and could bind peptides origi-
nated from proteolysis of intracellular proteins. Thus, HLA-G is able to present anti-
genic peptides to T cells, which is important for monitoring an anti-tumoral defense. 

 Basal HLA-G expression is mainly restricted to immune-privileged organs, to 
cytotrophoblasts, pancreas, monocytes, erythroid and endothelial progenitors sug-
gesting a tight regulation of HLA-G expression under physiologic conditions [ 6 – 9 ]. 
In addition, HLA-G expression could be found in different immune cell populations, 
like T cells, professional antigen presenting cells (APC) as well as mesenchymal 
stem cells. In this context it is noteworthy that the presence and absence of HLA-G 
in the physiologic context is independent of HLA class I antigen expression.  

3.1.2     HLA-G and Immune Responses 

 HLA-G can bind to the leukocyte immunoglobulin-like receptors ILT-2 and 
ILT-4 expressed on B cells, T cells, NK cells, dendritic cells (DC), neutrophils and 
on KIR2DL4 on NK and T cells and on CD160 expressed on endothelial cells 
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(PMID: 16809620). This leads to a protection of cells from NK cell, T cell and 
neutrophil- mediated destruction [ 10 ] as well as impaired function of DC by binding 
ILT-2 and ILT-4 [ 11 ,  12 ]. HLA-G dimers consisting of HLA-G associated with β 2 -m 
have been demonstrated to mainly exert an immune inhibitory function [ 13 ]. This 
tolerogenic activity is not only mediated by the interaction with its inhibitory 
receptor(s), but also by a synergy with other molecules e.g. IL-10 and IDO [ 14 ]. 
Furthermore, HLA-G-modifi ed DC induces a tolerogenic potential by a selective 
increase in the expression of B7-1/CD80 [ 15 ]. In addition, β 2 -m-free HLA-G could 
activate NK cells by increasing cytotoxicity and pro-infl ammatory cytokine produc-
tion [ 16 ]. HLA-G could also induce the frequency of myeloid-derived suppressor 
cells (MDSC) and shift cytokine production to a Th2 phenotype. In contrast, HLA-G 
monomers are mainly involved in non-immunologic functions.  

3.1.3     Regulation of HLA-G Expression 

 Since physiologic HLA-G expression is very restricted in adults, HLA-G expres-
sion has to be tightly controlled. However, an aberrant expression is often found in 
pathophysiologic situations, such as tumors, viral infections, autoimmune diseases, 
infl ammation as well as transplantations. HLA-G expression has been shown to be 
controlled at the epigenetic, transcriptional, posttranscriptional and posttransla-
tional levels [ 17 ]. 

 Epigenetic modifi cations mediated by DNA hypermethylation of the HLA-G 
promoter or hypoacetylation of the histones H3 and H4 are often associated with a 
lack of HLA-G expression. Repression or downregulation of HLA-G expression 
could be reverted by treatment with demethylating agents, like 5′aza-2′-
deoxycytidine (DAC) or by inhibitors of histone deacetylases, e.g. trichostatin A 
(TSA), thereby directly inducing or enhancing HLA-G surface expression [ 18 – 20 ]. 

 The analysis of the HLA-G promoter also suggested a transcriptional control, 
which is mediated by various unique regulatory elements including the cAMP 
response elements CRE to which the CREB1 transcription factor could bind [ 21 ], 
binding sites for the interferon regulatory factor (IRF), the heat shock factor (HSF- 1) 
and the progesterone receptor [ 22 ,  23 ]. In addition, different negative regulatory 
sequences were identifi ed, such as the Ras responsive element known to bind the 
Ras responsive element binding protein I (RREB-I), the GLI-3 factor and a LINE 
element [ 24 ,  25 ]. 

 Environmental factors present in tumors as well as in placenta were able to mod-
ulate HLA-G expression. These include IL-10, IFN-γ, IFN-β, the leukemia inhibi-
tory factor (LIF) [ 26 ], hormones like dexamethasone, hydrocortisone as well as 
progesterone, galectin-1, IDO and various stress conditions, like heat shock and 
hypoxia [ 27 ,  28 ]. Most of these molecules affect HLA-G gene expression transcrip-
tionally and/or posttranscriptionally and were able to modulate HLA-G expression. 
Next to the transcriptional regulation, HLA-G expression is also often post- 
transcriptionally controlled, which could be mediated by mechanisms targeting the 
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3′ untranslated region (3′-UTR) that affect the mRNA stability and degradation of 
HLA-G. Recently, a number of HLA-G specifi c microRNAs (miRs) have been 
identifi ed [ 29 ]. These include members of the miR-148 family, like miR-148a, miR- 
148b and miR-152, as well as miR-133a [ 30 – 32 ]. Recent data demonstrate that the 
G-protein coupled estrogen receptor reduced miR-148a expression and promotes 
HLA-G in breast cancer [ 33 ]. HLA-G can also undergo post-translational modifi ca-
tions. In particular, in trophoblasts HLA-G is highly glycosylated, while in an 
infl ammatory microenvironment HLA-G could be also nitrated [ 34 ,  35 ]. 
Furthermore, HLA-G can form high molecular weight complexes due to ubiqui-
nation, which might have pathophysiologic relevance [ 36 ]. Concerning structural 
alterations/single nucleotide polymorphisms (SNPs) SNPs have been described in 
the 5′- and 3′-UTR of the HLA-G gene, which can modulate HLA-G expression 
under physiologic and pathophysiologic conditions. 

 So far, 33 SNPs have been identifi ed in the 5′-UTR, which defi ne at least eleven 
haplotypes [ 37 ,  38 ]. They have been shown to potentially modify methylated CpG 
oligonucleotides, thereby, infl uencing the transcriptionally activity of HLA- 
G. However, the impact of the HLA-G promoter polymorphisms in association with 
HLA-G expression has not yet been determined in detail. In contrast, SNPs identi-
fi ed in the 3′-UTR, in particular a 14 base pair (bp) insertion/deletion and 7 SNPs, 
which defi ne at least 7 haplotypes, have been analyzed [ 39 – 41 ]. The presence and/
or absence of the 14 bp SNP was directly associated with HLA-G expression under 
normal as well as pathophysiologic conditions [ 42 ]. Furthermore, HLA-G tran-
scripts representing the 14 bp sequence are associated with reduced HLA-G mRNA 
expression and lower sHLA-G levels. HLA-G transcripts generated by the 14 bp 
alleles can be further processed by removing a 92 bp fragment containing the 14 bp 
sequence. These transcripts are more stable due to the AU-rich element within the 
14 bp fragment. In addition, a 4 bp SNP was identifi ed upstream of the AU-rich ele-
ment, which could also infl uence HLA-G mRNA stability, since it affects the bind-
ing of the miR-148 family members. Thus, microenvironmental factors as well as 
the HLA-G polymorphisms are important regulators of HLA-G expression under 
physiologic and pathophysiologic conditions.  

3.1.4     Pathophysiologic Expression of HLA-G 
in Human Tumors 

 HLA-G expression is upregulated in different pathophysiologic conditions includ-
ing transplantation, infl ammatory diseases and viral infections [ 43 ]. In addition, 
HLA-G could be expressed in both solid and hematopoietic tumor cells and has 
been extensively described [ 44 – 47 ]. HLA-G can be found in all types of cancer 
independent of their ectodermic, mesodermic or endodermic origin. However, the 
frequency of HLA-G positivity strongly varied from 20 to 90 % (Table  3.1 ). In addi-
tion, increased concentrations of sHLA-G isoforms have been detected in plasma 
and in malignant ascites of tumor patients. Until now, HLA-G expression has been 
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    Table 3.1    Distinct frequency of HLA-G expression in different tumor types   

 Malignancy 

 Number and type 
of investigated 
samples  Used methods 

 Frequency 
in (%)  Reference(s) 

 Acute myeloid 
leukemia 

 99 sera  FC/ELISA  50.5 (FC) and 
83 (ELISA) 

 [ 73 ,  81 ] 

 Acute lymphoblastic 
leukemia 

 25 sera  RT-PCR  100 (RT-PCR)  [ 68 ] 

 B-cell chronic 
lymphocytic 
leukemia 

 77 sera  FC  27.2 (FC) 
 36.7 (FC) 

 [ 53 ,  87 ] 

 Bladder transitional 
cell carcinoma 

 75 tumor lesions  IHC  68 (IHC)  [ 72 ] 

 Breast cancer  396 tumor lesions, 
89 sera, 
17 malignant 
ascites 

 IHC/ELISA/FC  52.7 (IHC), 
59.6 (FC), 
94.1 (ELISA) 

 [ 74 ,  76 ,  84 , 
 86 ] 

 Breast ductal 
carcinoma 

 45 tumor lesions  IHC  62.2 (IHC)  [ 83 ] 

 Cervical cancer  119 tumor lesions, 
152 sera 

 IHC/ELISA  45.4 (IHC), 
90.1 (ELISA) 

 [ 89 ] 

 Colorectal cancer  181 sera  ELISA  76.8 (ELISA)  [ 70 ,  90 ] 
 Esophageal 
squamous cell 
carcinoma 

 60 tumor lesions, 
118 sera 

 RT-PCR/ELISA  70 (RT-PCR), 
upregulated in 
sera 

 [ 70 ,  89 ] 

 Kazkh esophageal 
carcinoma 

 60 tumor lesions  IHC  75 (IHC)  [ 75 ,  88 ] 

 Gastric cancer  52 tumor lesions, 
28 sera 

 IHC, ELISA  30.8 (IHC), 
85.7 (ELISA) 

 [ 70 ,  82 ] 

 Glioblastoma  39 tumor lesions  IHC  64.1 (IHC)  [ 79 ] 
 Hepatocellular 
carcinoma 

 173 tumor lesions, 
5 cell lines 

 IHC/WB  57.2 (IHC), 
80 (WB) 

 [ 79 ] 

 Hodgkin’s 
lymphoma 

 175 tumor lesions  IHC  54.3 (IHC)  [ 71 ] 

 Non-small lung 
cancer 

 43 sera  ELISA  51.2 (ELISA)  [ 70 ] 

 Lung cancer  136 sera  ELISA  40.4 (ELISA)  [ 85 ] 
 Ovarian serous 
carcinoma 

 74 tumor lesions, 
24 malignant 
ascites 

 IHC/ELISA  60.8 (IHC), 
100 (ELISA) 

 [ 86 ] 

 Ovarian carcinomas  137 tumor lesions  IHC  47.9 (IHC)  [ 52 ] 
 Renal cell carcinoma  146 tumor lesions, 

16 sera 
 IHC/ELISA  48.6 (IHC), 

100 (ELISA) 
 [ 69 ,  80 ] 

 Rectal cancer  484 tumor lesions  IHC  94 (IHC)  [ 51 ] 
 Testicular germ cell 
tumors 

 34 tumor lesions  IHC  20.6 (IHC)  [ 78 ] 

 Trophoblastic 
tumors 

 15 tumor lesions  IHC  93.3 (IHC)  [ 77 ] 

    IHC  immunohistochemistry,  WB  western blot,  FC  fl ow cytometry  
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analyzed in > 1,000 tumor patients of distinct origin using antibodies recognizing 
membrane-bound and/or soluble HLA-G isoforms (Table  3.1 ). The frequency of 
HLA-G expression signifi cantly varied between the tumor types analyzed. 
Furthermore, HLA-G expression was also detected in tumor-infi ltrating immune 
cells as well as in regulatory T cells (Treg). HLA-G expressed or released by tumor 
associated macrophages (TAM) may interact with inhibitory receptors on NK cells, 
thereby, regulating the release of pro-angiogenic factors, which lead to the estab-
lishment of a tolerogenic microenvironment [ 48 ].

3.1.5        Clinical Signifi cance of HLA-G in Solid 
and Hematopoietic Tumors 

 Relevance of HLA-G for tumor progression and survival of patients with solid 
tumors was found, since HLA-G expression has been shown to be associated with 
malignant transformation. High expression levels of membrane-bound HLA-G in 
solid tumors correlated with high histological grades, advanced clinical stages and 
worse patients’ outcome. In addition, high levels of soluble HLA-G (sHLA-G) in 
plasma from patients were also associated with a poor prognosis [ 45 ,  46 ,  49 ,  50 ]. 
These data suggest a role of HLA-G in immune surveillance and progression of 
disease. Thus, HLA-G might have a clinical value in diagnosis, staging or prognosis 
of cancer. However, standardizing of HLA-G testing and analysis of large cohorts of 
solid tumor samples with known clinicopathologic parameters is required to use 
HLA-G as biomarker. Controversial to these fi ndings HLA-G expression has 
recently also been shown to be associated with a better clinical outcome in rectal 
carcinoma and high grade ovarian cancer [ 51 ,  52 ]. 

 In contrast to solid tumors, high levels of membrane-bound HLA-G was found 
in various B cell malignancies, which could be correlated with a good clinical 
outcome of multiple myeloma, non-Hodgkin-B lymphoma and chronic lympho-
blastic leukemia (CLL) patients [ 53 ,  54 ]. The discrepancy of these results are so far 
not well understood, but might be explained by (1) distinct technologies and meth-
ods used for determination of HLA-G expression, (2) distinct guidance of the study 
and antibodies used and (3) the patients cohort analyzed, which might have 
received different treatment regimens e.g. tyrosine kinase inhibitors or chemother-
apy and by (4) the presence of other immune modulatory molecules. However, 
another explanation might the interaction of HLA-G with its receptor expressed on 
hematopoietic malignant cells, which inhibits the proliferation and induces cell 
cycle arrest of B cell lymphoma, myeloma as well as B-CLL [ 55 ]. This is in line 
with an altered signal transduction found in malignant B cells upon interaction of 
HLA-G with the ILT-2 receptors, which was mediated by an increased phosphory-
lation of protein kinase C (PKC) and a decreased phosphorylation of AKT, mTOR, 
GSK-3β, c-Raf and FOX-O proteins [ 55 ]. Based on these results a dual role of 
HLA-G could be postulated, which dependent on the tumor type may enhance or 
inhibit tumor growth.  
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3.1.6     Modulation of HLA-G in Tumors 

 It has been shown that HLA-G could be upregulated by DAC and/or by different 
cytokines e.g. IFN-γ. A multicentric study recently demonstrated an upregulation of 
HLA-G by DAC and IFN-γ in glioblastoma [ 56 ]. Furthermore, both substances 
could also induce HLA-G expression in renal cell carcinoma [ 18 ]. Since tumor 
patients are treated with DAC and IFN-γ might be present in the microenvironment 
one might consider an impact of these substances on the HLA-G expression of 
tumors. Other factors of the tumor microenvironment like hypoxia and pH as well 
as hormones could alter HLA-G expression [ 28 ]. The modulation of HLA-G is 
dependent on HIF-1 stabilization and thus might control HLA-G expression in 
hypoxic tumors.  

3.1.7     Altered Immune Response of HLA-G +  Tumors 

 Despite high levels of immune cell infi ltration tumors can evade immune surveil-
lance, which based on the immune editing hypothesis consists of the three distinct 
processes (1) elimination, (2) equilibrium and (3) escape. Interestingly, HLA-G can 
interfere with each step: HLA-G impairs the elimination by inhibiting T and B cell 
proliferation, the cytotoxic activity of T and NK cells, antigen presentation of DCs 
as well as phagocytic activity of neutrophils. In addition, pro-infl ammatory cyto-
kines and immune suppressive factors present in the tumor microenvironment, like 
IFN-γ, IL-10 and IDO, could enhance HLA-G expression [ 57 ], thereby, affecting 
the equilibrium phase. In the evasion phase, tumors have also failed to express vari-
ous immune modulatory molecules in the presence of enhanced HLA-G levels, 
thereby, gaining resistance to susceptibility of effector cells. Since tumors often 
create a hypoxic microenvironment and altered metabolism angiogenesis, invasion 
and metastasis formation are promoted in addition to induced HLA-G expression, 
which is associated with the secretion of high levels of IL-10 and IDO not only by 
tumor cells, but also by tumor-infi ltrating leukocytes [ 27 ] and an increased fre-
quency of Treg, and myeloid-derived suppressor cells (MDSC) [ 58 ,  59 ]. Recent 
data also emphasize an impact of the HLA-G conformation on the anti-tumor 
response, which could be altered by the tumor microenvironment [ 60 ]. In addition, 
sHLA-G plays a role in suppressing the functions of various immune competent 
cells. It could impair the chemoattraction of different immune cells, which is impor-
tant for the modulation of immune responses in cancer, but also in other diseases 
[ 61 ]. After these different processes alter antitumor immune responses and lead not 
only to an expansion of tumor cells, but also to the inhibition of both innate and 
adaptive immune responses against the tumor. Such data have been recently obtained 
due to the development of a model using the murine receptor paired immunoglobulin- 
like receptor (PIR)–B to which human HLA-G binds [ 62 ] and which represents a 
homologue of the human ILT. Both human and murine HLA-G expressing tumor 
cells form tumors in immune competent mice, while treatment with HLA-G-specifi c 
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antibodies led to reduced tumor formation. The role of HLA-G was demonstrated 
not only to negatively interfere with the innate and adaptive immune responses, but 
also to enhance the frequency of MDSC, Tregs and to induce a Th2 versus a Th1/
TH17 phenotype.  

3.1.8     Other Roles of HLA-G 

 Next to the distinct mechanisms and functions of HLA-G in the immunologic con-
text described above, HLA-G plays a role in cell communications. It has been 
recently shown to act through trogocytosis, which allows the transfer of membrane 
proteins and fragments from one cell to the other. Interestingly, not only HLA-G, 
but also ILT-2 functions through trogocytosis [ 63 ]. Thus, trogocytosis might explain 
also the general inhibitory effect of HLA-G. HLA-G might also interact with other 
so far unknown receptors, thereby, mediating its activities. In addition, HLA-G is 
involved in cell proliferation and migration. Analysis of transfectants expressing the 
HLA-G homodimer resulted in the detection of a large set of differentially expressed 
genes including cytokines, but also pro-infl ammatory and pro-angiogenic proteins 
[ 64 ] suggesting a role of HLA-G in angiogenesis and infl ammation.  

3.1.9     HLA-G as Therapeutic Target 

 Due to its immune suppressive function, HLA-G represents a suitable therapeutic 
target for transplantation, viral infection and tumors [ 65 ]. Interference with the 
HLA-G function might boost on one hand the anti-neoplastic potential of cytotoxic 
effectors, while on the other hand the activity of intrinsic immune suppressive cells. 
Indeed, synthetic HLA-G proteins could be used in therapy of transplantation [ 66 ]. 
Since downregulation of HLA-G transcripts or protein might affect cancer therapy, 
nanoparticles targeting HLA-G by RNA interference could be used in vivo [ 67 ]. 
Within the recent identifi cation of HLA-G-specifi c miRs, the use of antagomiRs as 
modulators of HLA-G expression in tumors is postulated and should be further 
tested. Due to the advantage of its surface expression, one postulate is the use of a 
combination of HLA-G antibody with other cancer drugs to reach the tumor site in 
order to maximize the therapeutic effects and minimize the adverse side effects. 
Therefore, it is currently under investigation to control HLA-G expression for thera-
peutic purposes not only in the context of cancer immune therapy.   

3.2     Conclusion 

 Membrane-bound and soluble HLA-G are important players for mounting immune 
tolerance in tumor patients and might serve as prognostic or therapeutic markers for 
malignancies.     
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    Chapter 4   
 Integrins: Friends or Foes of Antitumor 
Cytotoxic T Lymphocyte Response 

             Marie     Boutet    ,     Stephanie     Cognac    , and     Fathia     Mami-Chouaib    

    Abstract     Elimination of cancer cells by the immune system requires the induction 
of a strong and durable antitumor cytotoxic T lymphocyte (CTL) response. 
Immunotherapy approaches aim at generating tumor-specifi c CTL capable of 
migrating to the tumor site and at optimizing their functional activities toward target 
cells. Unfortunately, clinical trials indicate that despite an increase in the frequency 
and reactivity of antitumor CD8 +  T lymphocytes, the effi cacy of current immuno-
therapeutic strategies remains limited and rarely resulted in the eradication of 
malignant cells. Integrins and their ligands play critical roles in regulating T-cell 
effector functions, including adhesion to antigen presenting cells (APC), costimula-
tion, migration to lymphoid organs and infl ammatory sites, and extravasation. 
Although some of those are known to promote tumor cell proliferation and dissemi-
nation, others are required for T-lymphocyte homing and retention within the tumor 
microenvironment and for CTL activation and triggering of cytotoxic activity 
within a hostile ecosystem. In this chapter, we will briefl y summarize fi ndings 
involving integrins, in particular CD103 (α E /β 7 ) and LFA-1 (α L /β 2 ), and their respec-
tive ligands, E-cadherin and intercellular adhesion molecule 1 (ICAM-1), in regu-
lating the effector phase of the antitumor T-cell response and we provide insights 
into the potential implication of their altered expression in tumor resistance to CTL-
mediated cancer immunotherapy. The characterization of integrin-dependent path-
ways involved in the potentiation of antitumor CTL functions may lead to enhanced 
immune protection and improved cancer immunotherapy.  
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  Abbreviations 

   APC    Antigen-presenting cell   
  CAF    Cancer-associated fi broblasts   
  ECM    Extracellular matrix   
  EMT    Epithelial-to-mesenchymal-transition   
  ICAM    Intercellular adhesion molecule   
  IS    Immune synapse   
  LFA    Leukocyte function-associated antigen   
  mAb    Monoclonal antibody   
  MTOC    Microtubule-organizing center   
  pMHC-I    Peptide-major histocompatibility complex class I   
  TAA    Tumor-associated antigen   
  TCR    T-cell receptor   
  TGF    Transforming growth factor.   

4.1          Introduction 

    Over the last decade there have been signifi cant advances in the fi eld of tumor 
immunology and immunotherapy contributing to the validation of the concept of 
antitumor immune surveillance and leading to the development of novel therapies 
targeting tumor-specifi c processes in order to eliminate cancer cells. The generation 
of tumor-reactive cytotoxic T lymphocytes (CTL) from patients with various solid 
tumors had led to promising immunotherapeutic approaches, either by expanding 
the T cells in vitro before transferring them into patients [ 1 ] or by identifying the 
recognized tumor-associated antigens (TAA) which can then be used in vaccination 
trials such as in melanoma and lung cancer [ 2 – 4 ]. Unfortunately, clinical trials indi-
cate that despite an increase in the frequency of tumor-specifi c CD8 +  T lympho-
cytes, the effi cacy of current therapeutic vaccines remains limited and rarely resulted 
in the eradication of transformed cell [ 5 ]. Current studies are, therefore, focusing on 
a better understanding of the mechanisms of scarce tumor regressions [ 6 ,  7 ], the 
activation state of antitumor CD8 +  T cells and their capacity to migrate to the tumor 
site [ 8 ,  9 ]. Immunotherapy strategies have also benefi ted from the recent knowledge 
of the T-cell molecules involved in the regulation of antitumor CTL responses, lead-
ing to the development of monoclonal antibody (mAb)-based therapies against 
inhibitory receptors such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) and pro-
grammed cell death protein 1 (PD-1), known to inhibit T-cell activities [ 10 ,  11 ]. 
However, although these treatments resulted in impressive survival responses in 
some cancers, including melanoma and lung cancer [ 12 – 14 ], a still are elevated 
fraction of cancer patients does not respond to these therapeutic interventions [ 15 ], 
indicating that these approaches alone cannot be a cure-all for the future. 

 It is now clear that multiple mechanisms inhibiting antitumor T-cell functions could 
be responsible for the failure of the immune system to destroy cancer cells [ 16 ,  17 ]. 
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Overcoming these resistances needs a better understanding of the  physiology of 
the tumor niche and the crosstalk between cancer cells and immune cells. Indeed, 
immunotherapy failures are likely due to diverse mechanisms related to the hostile 
microenvironment established by the tumor to suppress immune responses. In this 
regard, cancer cells frequently develop resistance to T-cell receptor (TCR)-mediated 
cytotoxic activity by using multiple strategies including loss of major histocompa-
tibility complex (MHC) and adhesion molecules, such as the leukocyte function 
 associated antigen-1 (LFA-1) ligand, intercellular adhesion molecule-1 (ICAM-1), 
resistance to the lytic granule exocytosis pathway and secretion of immunosuppres-
sive factors, such as transforming growth factor-beta (TGF-β1) [ 18 ]. Defects in anti-
gen processing molecules, such as proteasome or transporter associated with antigen 
processing (TAP) subunits, have also been described as a strategy used by malignant 
cells for countering the host CD8 T-cell immunity. TAP defi ciencies have been 
observed in a wide variety of human cancers, including cervical carcinoma [ 19 ], 
head and neck cancer [ 20 ] and non-small cell lung carcinoma (NSCLC) [ 21 ], and are 
associated with tumor escape from the immune system control. In addition, factors 
that control the accumulation of immune cells at the tumor site are essential in con-
trolling T-cell responses. Indeed, to destroy tumors, CTL must fi rst be able to migrate 
to the tumor site, infi ltrate the tumor tissue and interact with target cells to fi nally 
trigger tumor cell destruction. There is now overwhelming evidence indicating that 
chemokines and chemokine receptors regulate immunocompetent cell homing, 
retention and activation, and that some of them are able to induce changes in the 
tumor microenvironment that lead to a high infi ltration by specifi c T lymphocytes 
(reviewed in [ 22 ]). However, previous studies have pointed toward a role of a dense 
and deregulated extracellular matrix (ECM) in controlling the distribution of T cells 
within the tumor and their capacity to interact with cancer cells [ 23 ]. Paradoxically, 
our group also pointed toward a role of TGF-β1, rather known for its immunosup-
pressive functions, in the induction of integrin α E (CD103)β 7  (thereafter named 
CD103) on the tumor-infi ltrating lymphocyte (TIL) surface to promote both cyto-
kine secretion and cytotoxic activity toward autologous epithelial tumor cells lack-
ing ICAM-1 [ 24 ,  25 ]. Thus, this integrin appears as a key player in CTL activation 
whose expression is probably adjusted by the tumor microenvironment not only to 
promote T-cell adhesion to target cells through its interaction with its ligand, the 
epithelial cell marker E-cadherin, but also to provide positive signals triggering CTL 
effector functions [ 26 ]. Here, we emphasize the role of integrins and their ligands in 
regulating the CTL-mediated antitumor response and we provide insights into their 
contribution to tumor growth, metastasis and escape from the T-cell immunity.  

4.2     Integrins Are Major Regulators of T-Cell Functions 

 Integrins are heterodimeric cell adhesion receptors involved in cell–cell and cell- 
ECM adhesions [ 27 ]. Multiple integrins are expressed on T lymphocytes and play 
critical roles in regulating T-cell functions, including adhesion to antigen presenting 
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cells (APC), costimulation, migration to lymphoid organs and infl ammation sites, 
and extravasation [ 28 ,  29 ]. It is well known that interactions between lymphocytes 
and the vascular endothelium are essential for the recruitment of T cells to infl am-
matory tissues and achievement of effi cient immune responses (Fig.  4.1 ). Diapedesis 
is a multistep process involving tethering and rolling of lymphocytes on endothelial 
cells and rapid activation of integrins, followed by fi rm arrest of the cells before 
extravasation into target tissues [ 30 ]. Integrins α 5 β 1 , α V β 3  and α 2 β 1  and their respec-
tive ligands, collagen, fi bronectin and vitronectin, play an important role in the 
migration of immune cells [ 31 ]. β 2  integrins LFA-1 (α L /β 2  or CD11a/CD18) and 
Mac-1 (α M β 2 ), and α4 integrins such as VLA-4 (α 4 β 1 ) and α 4 β 7  are involved in the 
arrest of rolling leukocytes in blood vessels by binding to their respective available 

  Fig. 4.1    Infl uence of integrin family members on antitumor T-cell responses. Leukocyte integrins 
α L β 2  and α 4 β 1  contribute to T-cell migration and recruitment at the tumor site. This multistep pro-
cess is mediated by binding of integrins to their respective ligands on endothelial cells. T lympho-
cyte recruitment within a TGF-β1-rich tumor microenvironment results in decrease in LFA-1 
expression and induction of CD103 integrin on activated tumor-specifi c CD8 +  T cells. The interac-
tion of CD103 on TIL with E-cadherin on epithelial tumor cells promotes maturation of the 
immune synapse and triggers cytokine production and polarized exocytosis of cytotoxic granules 
leading to target cell lysis ( red outline ). However, TGF-β1 downregulates ICAM-1 expression on 
tumor cells and is also an important inducer of EMT, associated with a decrease in E-cadherin 
expression level, leading to cancer cell resistance to CTL-mediated killing. Moreover, integrins 
α v β 3 , α 4 β 1  and α 9 β 1  confer tumor cell escape from the immune system by promoting angiogenesis, 
through VEGF production, and metastasis and inhibiting apoptosis of cancer cells such as by 
upregulating Bcl-2 expression. Others integrins, such as α 9 β 1  and α 4 β 1  on tumor cells, are involved 
in the recruitment of TAM and CAF at the tumor site, which also participate in the establishment 
of a protumoral microenvironment       
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ligands [ 32 ,  33 ]. The β 2  integrin LFA-1 plays also an essential role in  TCR-dependent 
cytotoxicity by interacting with its cognate ligand, ICAM-1 (CD54), on target cells 
[ 34 ]. Indeed, tight adhesion between T cells and specifi c target cells is a prerequi-
site for effective CTL-mediated lysis. This adhesion can also be provided by the 
interaction of integrin CD103 (α E β 7 ) on CD8 +  T lymphocytes with its ligand, 
E-cadherin, on epithelial target cells [ 25 ]. The interaction of CD103 on tumor-spe-
cifi c TIL with E-cadherin on cancer cells is necessary for positioning the cytotoxic 
granules near the interface and their delivery into the target, leading to lysis of the 
target cell (Fig.  4.1 ).  

 Integrins transmit bidirectional signals including intracellular signals that initiate 
the so-called “inside-out” signaling and “outside-in” signals that are induced fol-
lowing the interaction between activated integrins and their ligands [ 35 ]. In T cells, 
the “inside-out” signaling is initiated by the T-cell receptor (TCR) or the chemokine 
receptor engagement resulting in clustering of individual integrin units and confor-
mational changes in the integrin itself leading to a high increase in the affi nity for 
its ligand. The “outside-in” signaling, triggered by the integrin-ligand binding, gen-
erates downstream signals that induce cell spreading, retraction, migration, prolif-
eration, and survival. Studies indicated that the TCR engagement induces 
phosphorylation of signaling molecules, such as ZAP-70, which contribute to 
 integrin activation [ 36 ]. Likewise, proinfl ammatory chemokines, such CXCL12 
(SDF- 1, stromal cell-derived factor 1), activate integrin LFA-1 and thus enhance the 
adhesion of T cells to dendritic cells (DC) [ 37 ]. It has been also reported that CCL25 
(TECK) increases T-cell recruitment at infl ammatory sites by enhancing α 4 β 1 /
VCAM-1 interaction [ 38 ]. Thus, besides their adhesion properties, integrins regu-
late multiple leukocyte functional responses resulting from outside-in signaling, 
including migration, proliferation, cytokine secretion, and degranulation [ 35 ].  

4.3     CD103 Integrin: A Key Asset for CTL Functional 
Activities in Epithelial Tumors 

 CD103 integrin was initially detected on intestinal intraepithelial lymphocytes 
(IEL) [ 39 ,  40 ]. It is expressed at high levels on mucosal T lymphocytes, and is 
essential for CD8 +  T-cell functions within the gut epithelium [ 41 ]. Indeed, this inte-
grin plays a major role in the retention of IEL in mucosal tissues by interacting with 
the extracellular domains 1 and 2 of its ligand, E-cadherin [ 42 ]. Consistently, exper-
iments performed in α E -subunit-defi cient mice revealed a reduced number of T cells 
in mucosal tissues [ 43 ]. CD103 integrin is also found on mucosal mast cells and DC 
[ 44 ] as well as on CD4 +  and CD8 +  regulatory T cells [ 45 ]. CD103 +  DC have been 
reported to potentiate T-cell responses [ 46 ] and to prime CD8 +  T lymphocytes after 
vaccination [ 47 ]. Moreover, CD103 +  DC are involved in self or non-self antigen 
cross-presentation [ 48 ], gut homing [ 49 ] and Treg development [ 50 ]. It has been 
reported that CD103 +  Treg cells mediate immunosuppressive activities such as in 
the skin where they inhibit infl ammation [ 51 ], and in graft-versus-host disease 
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(GVHD) where they contribute to preventing the disease [ 52 ]. CD103 also serves as 
a marker of tissue-resident memory (T RM ) T cells [ 53 ,  54 ], and accumulating evi-
dence indicates that this integrin is directly involved in the intraepithelial retention 
of T RM  by modulating their capacity to exit non-lymphoid tissues [ 55 ]. 

 Adhesiveness of CD103 to its ligand appeared to be regulated by “inside-out” 
signals, as CD103-expressing IEL have been shown to bind more avidly to 
E-cadherin after treatment with anti-CD3 mAb [ 42 ]. In addition, a role of CD103 in 
transmitting “outside-in” signaling has been reported, since anti-CD103 mAb 
increases T-cell proliferation in response to suboptimal concentrations of anti-CD3 
[ 56 ,  57 ] and induce redirected lysis of Fc-receptor-bearing target cells [ 41 ,  58 ]. 
A role of CD103 in shaping leukocyte morphogenesis and motility has also been 
reported [ 59 ]. Moreover, this integrin has been associated with the cytotoxicity of 
CD8 +  T cells in GVHD [ 60 ,  61 ], allogeneic transplant rejection [ 62 – 64 ] and auto-
immune diseases [ 65 ]. 

 Importantly, studies have revealed the expression of CD103 on a large proportion 
of CD8 +  T cells infi ltrating epithelial tumors, including bladder [ 66 ], colon [ 67 ], 
pancreas [ 68 ] and lung [ 25 ]. This integrin is induced on CD8 +  T lymphocytes upon 
TCR engagement and exposure to TGF-β1, abundant within the tumor microenvi-
ronment, through binding of NFAT-1 and Smad2/3 transcription factors to the pro-
moter and enhancer elements of the  ITGAE  gene that encodes CD103 [ 69 ]. Thus, 
CD8 +  T lymphocytes expressing CD103 selectively expand within the lung tumor 
microenvironment, and the interaction of this integrin with E-cadherin on target 
cells plays an essential role in TCR-dependent cancer cell killing [ 25 ]. Indeed, 
CD103 is recruited at the immune synapse (IS) formed between CTL and epithelial 
tumor cells, and its interaction with E-cadherin is required for polarized exocytosis 
of lytic granules, specialized secretory lysosomes that contain perforin and gran-
zymes, leading to target cell death. CD103 has a critical costimulatory function in 
antitumor CTL activation, and its ligation to E-cadherin triggers “outside-in”  signals 
that promote phosphorylation of ERK1/2 kinases and phospholipase Cγ1 (PLCγ1) 
and lead to cytotoxic granule relocalization at the IS [ 26 ]. Moreover, the CD103-E-
cadherin interaction potentiates cytokine production by activated CTL following 
stimulation with specifi c target cells and promotes attachment of T cells on epithe-
lial tissues under conditions of vascular shear fl ow [ 24 ]. This integrin plays also a 
unique role in T-cell retention within epithelial tumors by a mechanism involving 
recruitment of CCR5 at the IS between TIL and specifi c target cells [ 70 ]. Together, 
these results emphasize a crucial role for CD8 + /CD103 +  T cells infi ltrating human 
epithelial tumor lesions in the antitumor immune response and suggest their poten-
tial benefi t in adoptive TIL transfer-based cancer immunotherapy.  

4.4     Protumoral Effects of Certain Integrin Members 

 Solid tumors can express a variety of integrins that may be involved in their initia-
tion, progression and metastasis. Indeed, tumor cells share the majority of integrins 
expressed on epithelial cells, the functions and expression levels of which could be 
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modulated during tumor formation [ 71 ]. The cell–cell and cell-ECM adhesion 
 proprieties of integrins are responsible for tumor cell migration and invasion. In 
this regard, integrins α v β 3 , α 5 β 1 , α 2 β 1  and α v β 6  as well as α 6 β 4 , α 4 β 1  and α V β 5  have 
been extensively described for their contribution to tumor growth, angiogenesis 
and metastasis [ 72 – 76 ]. For instance, activation of integrin α v β 3  controls tumor 
angiogenesis and metastasis through continuous production of VEGF [ 77 ,  78 ]. 
Remarkably, it has been reported that α v β 3  antagonists, including specifi c mAb and 
RGD peptide mimetics, prevent tumor growth thus providing an effective antian-
giogenic approach for cancer treatment [ 79 ,  80 ]. Another feature of integrins is 
their ability to regulate tumor cell survival and apoptosis. Indeed, by interacting 
with the ECM, integrins are capable of enhancing cell survival [ 81 ] through diverse 
mechanisms including Bcl-2 upregulation and activation of the PI3K-AKT path-
way [ 82 – 84 ]. Moreover, adhesion of α v β 3  to vitronectin has been demonstrated to 
protect tumor cells from apoptosis enabling resistance to chemotherapeutic drugs 
[ 85 ]. Thus, by increasing survival, angiogenesis and metastatic potential, integrins 
are often associated with tumor progression and decreased survival of cancer 
patients [ 86 ,  87 ]. 

 In addition to their direct impact on tumor cell behavior, integrins can also infl u-
ence the migration and intratumoral functions of immunosuppressive cell subpopu-
lations, such as tumor-associated macrophages (TAM), Treg and cancer-associated 
fi broblasts (CAF). In this context, α 4 β 1  integrin has been associated with recruitment 
of TAM at the tumor site where they participate to tumor growth by promoting the 
angiogenesis process [ 88 ]. More recently, it has been reported that the integrin α 9 β 1  
on tumor cells promotes recruitment of CAF within the tumor microenvironment 
where they secrete growth factors, in particular osteopontin, a key mediator of 
tumor progression and metastasis [ 89 ]. Overall, integrins contribute to the 
 proliferation, survival and migration not only of normal cells, but also of malignant 
cells [ 81 ].  

4.5     Altered Expression of Integrins and Integrin Ligands 
Contributes to Tumor Escape from CTL Response 

 CTL are a key component of the adaptive immune response to tumors. Inadequate 
CD8 T-cell immunity is, at least in part, responsible for tumor growth. Cytotoxic 
activity proceeds through a multistep mechanism including interaction of the TCR 
with specifi c peptide-MHC class I (pMHC-I) complexes, integrin-mediated adhe-
sion of CTL to target cells, polarization of the microtubule organizing center 
(MTOC) toward the cell–cell interface and relocalization of cytotoxic granules 
along the microtubules toward the MTOC [ 90 ]. Killing of target cells then occurs 
through the release of cytotoxic granule content in secretory clefts that provide a 
limited space in which cytolytic agents are kept concentrated without any bystander 
effect [ 91 ]. Upon T cell-target cell contact, remodeling of the actin cytoskeleton and 
rearrangement of cell surface receptors and cytoplasmic proteins result in the 
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formation of a so-called IS [ 90 ,  92 ,  93 ]. TCR and associated signaling molecules 
are clustered at the center of the interface, the central supramolecular activation 
complex (cSMAC) [ 94 ], while adhesion molecules, such as integrin LFA-1, are 
localized at the peripheral (p)SMAC [ 95 ]. The interaction of LFA-1 on CTL with 
ICAM-1 on target cells plays a critical role in TCR-mediated lysis by directing the 
exocytosis of the cytotoxic granule content to the surface of target cells near the 
cSMAC [ 90 ,  96 ]. 

 The involvement of integrin LFA-1 and its ligands ICAM-1 in the interaction 
between CTL and tumor cells has been widely documented [ 97 ,  98 ]. Binding of 
LFA-1 on CTL to ICAM-1 on target cells is a prerequisite for T-cell activation and 
for directing the release of cytotoxic granules into the target [ 34 ]. In addition to its 
well-documented role as an adhesion molecule, ICAM-1 might also function as a 
cell surface receptor capable of initiating intracellular molecular events that facili-
tate antigen presentation to T cells. Indeed, association of ICAM-1 with MHC-I 
proteins and subsequent engagement with LFA-1 leads to recruitment of MHC-I 
presenting molecules to the CTL-target cell contact zone and thus enhances recog-
nition of pMHC-I complexes by specifi c TCR [ 99 ]. Moreover, in vivo experiments 
showed that increased expression of ICAM-1 in tumors results in an enhanced 
response to adoptive immunotherapy that is correlated with increased lymphocyte 
adhesion and enhanced cytotoxic activity of TIL [ 100 ,  101 ]. In contrast, LFA-1- 
defi cient mice failed to reject immunogenic tumors demonstrating the pivotal role 
of LFA-1-ICAM-1 interaction in the antitumor T-cell response [ 102 ]. The LFA-1- 
ICAM-1 interaction also plays a major role in the generation of tumor-specifi c 
CD8 +  T cells capable of inhibiting tumor growth in vivo and maintaining long-term 
survival [ 97 ]. It has been demonstrated that ICAM-1 plays a critical role in the 
 regulation of tumor susceptibility to CTL-mediated killing by interfering with acti-
vation of the PTEN/PI3K/AKT pathway, and ICAM-1 knockdown corresponds to a 
mechanism used by metastatic melanoma cells to escape from antitumor CTL 
responses [ 103 ]. It has been also shown that radiation induces enhancement of 
ICAM-1 expression on adenocarcinoma cells suggesting that low dose radiation 
may trigger the accumulation of LFA-1 +  CTL at the tumor site, thereby, promoting 
an antitumor immune response [ 104 ]. 

 Thus far, the only reported ligand of CD103 is E-cadherin [ 42 ,  105 ]. E-cadherin 
is known to provide tumor suppressor function [ 106 ], and reduced expression of 
E-cadherin during cancer progression and metastatic invasion has been observed in 
many epithelial tumors [ 107 ,  108 ]. Lung cancers frequently express low levels of 
E-cadherin [ 25 ], and its knockdown may be associated with tumor escape from 
intraepithelial CTL responses. Indeed, the adhesive interaction between CD103 and 
its ligand plays a pivotal role in the retention of CD8 +  T cells in epithelial tissues 
[ 68 ,  109 ], thus providing a local adaptive immune response [ 110 ]. Our previous 
results indicated that loss of E-cadherin expression, such as using specifi c siRNA, 
abrogates TCR-mediated tumor cell killing by autologous CD8 + CD103 +  T cells. 
These results suggest that downregulation of E-cadherin during the epithelial tumor 
metastatic process could result in the inhibition of the local antitumor CTL response, 
suggesting a mechanism for immune selection of cancer cells with reduced 
E-cadherin expression. 
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 Epithelial-to-mesenchymal transition (EMT) is a key process that contributes to 
tumor invasion, metastatic dissemination, and acquired resistance to therapy [ 111 ]. 
During EMT, the expression level of E-cadherin is decreased, whereas the 
N-cadherin and vimentin expression levels are increased. These events lead to an 
organized disassembly of epithelial cell–cell contacts and the acquisition of a mes-
enchymal motile phenotype allowing dissemination of tumor cells from the primary 
site [ 112 ,  113 ]. It has been shown that loss of E-cadherin expression by itself is 
suffi cient to induce the entire process of EMT [ 114 ]. It has also been shown that the 
interaction of integrin α 1 β 1  with its ligand collagen type I leads to a decrease in 
E-cadherin expression [ 115 ]. This process is dependent on various integrin signal-
ing pathways activated by Src, integrin-linked kinase (ILK), FAK or RhoGTPases 
[ 116 ]. ILK plays an important role in EMT, and its upregulation in tumor cells 
inhibits E-cadherin expression, thus promoting cancer cell invasion [ 117 ]. TGF-β is 
also an important factor in EMT by downregulating E-cadherin and inducing mes-
enchymal markers, such as Snail, slug or vimentin [ 118 ]. 

 TGF-β1 is frequently described as an immunosuppressive cytokine used by can-
cer cells to escape from the immune system and CTL functions [ 18 ]. It is also a 
powerful tumor suppressor factor by inducing apoptosis of pre-malignant cells 
[ 119 ]. TGF-β is present in its inactivated form (latent TGF-β) within the tumor 
microenvironment, but it can be activated either by proteases (plasmin or matrix 
metalloproteases, MMP) or after interaction with α v  integrins. Members of the α v  
integrin family and α 8 β 1  integrin bind directly to TGF-β through a RGD motif on the 
integrin, whereas α v β 8  needs MMP-1 to fully activate latent TGF-β [ 120 – 122 ]. Our 
previous data indicated that engagement of both the TGF-β1 receptor and TCR via 
an active form of TGF-β1 and the specifi c tumor pMHC-I complex, respectively, is 
required for CD103 expression on CD3 + /CD8 +  TIL. A variation in the density of 
CD103 +  TIL may refl ect inter-patient variations in the intratumoral level of TGF-β1 
or factors involved in its activation, such as α V  integrins, or the frequency of tumor 
antigen-specifi c T-cells. In contrast, secretion of TGF-β1 within the tumor microen-
vironment induces downregulation of LFA-1 and inhibition of integrin-dependent 
T-cell functions [ 123 ]. Moreover, it has been reported that TGF-β1 downregulates 
ICAM-1 expression on human cancer cells and inhibits CTL-mediated tumor cell 
killing [ 124 ]. These fi ndings suggest that LFA-1 contributes to T-cell migration to 
the tumor site and that recruitment of T lymphocytes within a TGF-β1-rich ecosys-
tem induces LFA-1 downregulation and CD103 induction on activated tumor- 
specifi c T cells thus insuring in situ CTL effector functions (Fig.  4.1 ). However, 
TGF-β1 is also involved in modulating E-cadherin expression on epithelial tumor 
cells thus conferring resistance to TIL-mediated cytotoxicity.  

4.6     Conclusion 

 Multiple resistance mechanisms developed by the tumor to evade the immune sys-
tem are far from having been all discovered. In this regard, integrins play an impor-
tant role in tumor progression by promoting angiogenesis, metastasis and survival 
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of malignant cells. One of the current approaches to prevent progression of solid 
tumors is to target integrins expressed on cancer cells. The design of integrin antag-
onists became an important tool in cancer immunotherapy. Clinical trials using spe-
cifi c mAbs, such as etaracizumab and Vitaxin targeting α v β 3  integrin, and RGD 
peptide mimetics are underway in cancer patients and showed encouraging results 
[ 125 – 127 ]. 

 With regard to T cells, CD8 + /CD103 +  lymphocytes infi ltrating the epithelial 
tumor lesions play a major role in antitumor CTL responses, and TIL expressing 
CD103 are associated with increased patient survival in ovarian cancer [ 128 ] and 
NSCLC (our group, manuscript submitted for publication). Thus, by characterizing 
CD8 + /CD103 +  TIL and identifying the molecular mechanisms involved in their 
retention within the tumor microenvironment and the signaling pathways associated 
with their activation and potentiation of TCR-mediated cytotoxic activities, we hope 
that manipulating this tumor-specifi c T-cell subpopulation will permit to improve 
cancer immunotherapy strategies.     
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    Chapter 5   
 Cytotoxic T Lymphocytes and Their 
Granzymes: An Overview 

             Janis     Noonan     and     Brona     M.     Murphy    

    Abstract     There is considerable evidence that the immune system armed with 
deadly cytotoxic T lymphocytes (CTLs) has the proclivity to destroy cancer cells. 
Based on these fi ndings, a number of cancer immunotherapies have been designed, 
each utilising a different approach to acquire their lethal skills. However, despite the 
sound rationale underlying CTL-based immunotherapies, treatment resistance 
remains a galling obstacle. This review provides an overview of the molecular 
events that inspired the development of CTL-based immunotherapies and explains 
some of the mechanisms by which these treatments unfortunately fail.  
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  PD-1    Programmed death-1   
  TCR    T cell receptor   
  TNF    Tumour necrosis factor   

5.1          Introduction 

 Our understanding of the immune system and its involvement in cancer prevention 
and development has greatly evolved over the last century, from Ehrlich’s fi rst con-
ception of cancer immune-surveillance to Burnet and Thomas’ reformulation of his 
theory to the current concept of cancer immune-editing. Nowadays, it is generally 
accepted that by monitoring, targeting and destroying transformed cells, the immune 
system can function as an extrinsic tumour suppressor mechanism when intrinsic 
mechanisms fail. While both innate and adaptive immune responses are considered 
necessary for effi cient cancer immunotherapy, the recognition and destruction of 
transformed cells relies largely on the lethal talents of cytotoxic T lymphocytes 
(CTLs). It is thanks to the tremendous progress that has been made in unveiling the 
molecular basis of CTL killer activity that new and promising therapies have 
emerged, such as vaccination, the adoptive transfer of tumour specifi c T lympho-
cytes, the delivery of agonist and antagonist antibodies, and the administration of 
granzyme-based immunotoxins. Herein, we will describe the maturation, activation 
and effector functions of CTLs that underlie the rationale for utilising these anti- 
cancer therapies. In particular, we will emphasise the role of CTLs in cancer 
immune-surveillance and describe some of the mechanisms by which cancer cells 
can evade this process, leading ultimately to cancer immune-escape.  

5.2     Origin and Maturation of Cytotoxic T Lymphocytes 

 CTLs are the killer arm of T cells or T lymphocytes, a type of white blood cell 
belonging to the adaptive immune system. Like all mature blood lineages, they 
originate from hematopoietic stem cells, which reside almost exclusively in adult 
bone marrow. These precursors then enter the thymus, where T lymphocyte matura-
tion and development occur. During their migration from the thymic cortex into the 
medulla, developing T lymphocytes (thymocytes) are subjected to a number of 
sequential signals that essentially educate them to distinguish between healthy 
‘self’ and ‘non-self’, a process which in turn bestows central tolerance upon the 
immune system. 

 At the core of this ‘education’ lies the T cell receptor (TCR), which is responsi-
ble for recognizing and binding antigenic peptides displayed on the surface of anti-
gen presenting cells (APCs) by major histocompatibility complex (MHC) molecules. 
TCRs are heterodimers composed mostly of α and β chains, both of which are 
encoded by pre-existing variable (V), diverse (D) and joining (J) gene segments. 
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Different combinations of these gene segments underlie the diverse recognition 
spectrum of mature T lymphocytes and give rise to a fl exible immune system capa-
ble of identifying foreign invaders, such as viruses and bacteria, as well as trans-
formed tumour cells. The TCR α chain is comprised of V and J segments only, while 
the TCR β chains contains all three V, D and J segments. Rearrangement of these 
segments is accomplished by a coordinated set of reactions, beginning with the 
cleavage of DNA within well-conserved recombination signal sequences (RSSs) by 
lymphocyte-specifi c recombination-activating genes (RAG1 and RAG2), and end-
ing with the reassembly of these segments using common DNA repair mechanisms. 
Further TCR diversity is introduced through various deletions and insertions at gene 
segment junctions, a process known as junctional diversifi cation. Together with 
V(D)J recombination, this gives rise to a repertoire of T lymphocytes, each with its 
own receptor that is structurally organised to respond to a different antigen. 

 To ensure these receptors are ‘sensible’ they undergo the life and death tests of 
positive and negative selection. Positive selection, which is primarily mediated by 
thymic epithelial cells, ensures that randomly generated TCRs are able to interact 
with ‘self’ peptides bound to either Class I or Class II ‘self’ MHC molecules. In this 
case, high affi nity interactions generate a strong TCR signal that results in thymo-
cyte survival, while the rest die by ‘neglect’ via apoptosis. In contrast, the process 
of negative selection, which is mediated largely by bone marrrow-derived APCs, 
namely macrophages and dendritic cells, ensures that those thymocytes that bind 
too strongly to ‘self’ peptides bound to ‘self’ MHC molecules die by apoptosis. As 
a result of these life and death processes, the repertoire of T lymphocytes leaving 
the thymus is restricted to interactions with ‘self’ MHC molecules and tolerant to 
‘self’ antigens. 

 The majority of developing T lymphocytes that survive the thymic selection pro-
cess develop into α:β TCR expressing cells, while the rest give rise to a small popu-
lation of T lymphocytes comprised of γ and δ chains. If this selection process goes 
awry, autoreactive T lymphocytes escape into the circulation, which may result in 
autoimmunity if peripheral tolerance mechanisms also fail to censor these ‘self’ 
harming cells. An equally dire outcome may arise if thymocytes gain oncogenic 
mutations that result in various forms of T lymphocytic leukemia. 

 During the maturation process, T lymphocytes also develop other specifi c cell 
surface markers, such as CD4 and CD8, which are considered T lymphocyte co- 
receptors since they ‘co-recognize’ the TCR ligands; CD4 recognises antigens 
bound to MHC class II molecules while CD8 recognises those bound to MHC class 
I. When T lymphocyte progenitors fi rst enter the thymus from the bone marrow they 
are double negative for CD4 and CD8; however, following productive V(D)J recom-
bination and functional generation of the TCR-β chain, thymocytes committed to 
the α:β lineage start to express CD8 and then CD4, forming a pool of double posi-
tive (CD4 + CD8 + ) cells; these occupy much of the thymic cortex while they wait for 
their TCR α chains to be rearranged. Given their distinct ability to recognise either 
MHC class I or II molecules, it is not surprising that CD4 and CD8 play a funda-
mental role in the positive selection process of α:β TCR expressing thymocytes 
fated for survival. Those that do mature beyond the negative selection process leave 
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the thymus and enter the periphery as single positive CD4 +  or CD8 +  cells, although 
double positive CD4 + CD8 +  T cells have also been described in pathological condi-
tions and in healthy individuals [ 1 ,  2 ]. The expression of CD4 or CD8 on mature yet 
naïve α:β TCR expressing cells refl ects their eventual effector function; CD4 +  cells 
are mostly programmed to become cytokine-secreting helper T cells, while CD8 +  
cells are programmed to become CTLs that monitor the body, ready to destroy any-
thing considered to be a threat to the host. 

 One of the early hypotheses of immune-surveillance postulated that our immune 
systems survey our bodies for tumours, similar to the way it scans for invading for-
eign pathogens. However, this theory was largely abandoned following a number of 
studies carried out in the 1970s that demonstrated the rate of spontaneous tumour 
growth in nude mice, which lack a thymus and thus possess signifi cantly less T 
lymphocytes, was similar to that of their immune-competent littermates [ 3 ,  4 ]. We 
now know that nude mice retain some functional CTLs and a normal or even ele-
vated level of natural killer (NK) cells, a type of cytotoxic lymphocyte critical to 
innate immunity; this almost certainly explains why these athymic animals do not 
show an increased incidence of spontaneous tumours. Improved mouse models of 
immune-defi ciency have since provided the fi rst real evidence that an intact immune 
system can help defend against the formation of tumour cells. For example, mice 
defi cient in RAG2, which is needed for the rearrangement of TCR gene segments 
and thus the maturation of T lymphocytes, demonstrate more susceptibility to 
carcinogen- induced sarcomas and spontaneous epithelial tumours compared to age- 
matched wild-type controls [ 5 ]. While this study supports, in principle, the concept 
of immune-surveillance, it was also the fi rst to highlight the paradoxical role the 
immune system can play in tumour cell destruction and development. Critically, the 
authors observed that tumour cells developing in the presence of an intact immune 
system are less immunogenic than those developing in immune-defi cient hosts. In 
other words, the immune system favours the eventual outgrowth of tumours that are 
more adept at escaping immune detection. This fi nding helped to pave the way for 
the coining of a new hypothesis, that of ‘cancer immune-editing’, which emphasises 
the dual role of the immune system in cancer suppression and promotion [ 6 ]. 
Schreiber et al. [ 6 ] have since divided this process into three distinct phases, termed 
“elimination”, “equilibrium”, and “escape”. Although the underlying molecular 
mechanisms driving these three phases have yet to be fully elucidated, we do know 
that one of the fi rst responses of the immune system is to activate our T lymphocytes 
and arm them with effective killing machinery.  

5.3     Activation of Cytotoxic T Lymphocytes 

 Our understanding of the mechanisms underlying CTL activation and antigen rec-
ognition has grown exponentially in recent years and this understanding has led to 
exciting advancements in the fi eld of autoimmunity and cancer immunology. 
Briefl y, as mentioned above, CD4 +  and CD8 +  T cells recognise antigens bound to 
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MHC class II and I molecules, respectively; these antigens represent a ‘sampling’ of 
cellular proteins that are brought to the surface of APCs by MHC-derived mole-
cules. Once there, they are presented to naïve CTL precursor cells, which then scan 
for cellular alterations using their specifi c TCR. It was once thought that MHC 
molecules only presented antigens that were of intracellular origin; however, an 
alternative cross-presentation pathway also exists, whereby APCs such as dendritic 
cells internalise exogenous antigens bound to MHC class I molecules [ 7 ]. This pro-
cess of antigen presentation occurs in the secondary lymphoid tissues and is neces-
sary for naïve T cells to gain effector function. 

 An effective CTL immune response, which is mainly derived from naïve CD8 +  T 
cells, can be divided into three phases: priming, contraction, and memory forma-
tion. The priming phase follows the initial recognition of a foreign antigen and leads 
to extensive proliferation and expansion of that specifi c T cell; these develop into 
effector CTLs that travel to the site of infection and eliminate the infected or altered 
cell by inducing apoptosis and secreting effector cytokines. During the contraction 
phase, approximately 95 % of these CTLs are subjected to activation-induced cell 
death (AICD), making them short lived effector cells, while the remainder become 
long lived memory cells that are maintained at stable levels for years; this allows for 
a swift recall of the CTL response should the same antigen be encountered again. 

 Three signalling events are basically required for the expansion, differentiation 
and cytolytic activity of antigen-specifi c CTLs. The fi rst, provided by the above- 
mentioned TCR-antigen-MHC complex, takes place in the context of an immuno-
logical synapse (IS) and leads to CD8 +  T cell proliferation and differentiation. In 
this case, TCR signalling, which requires CD8 and the associated common CD3 
signalling chain [ 8 ], results in the phosphorylation of the Src kinases, Lck and Fyn 
[ 9 ], which in turn initiate phosphorylation of the immunoreceptor tyrosine based 
activation motifs (ITAMs) in the CD3 complex [ 10 ] and recruitment of ζ-associated 
protein of 70 kDa (ZAP-70) [ 11 ]. ZAP-70 is activated by Lck and goes on to phos-
phorylate the adaptor protein LAT, resulting in the assembly of a ‘proximal signal-
ling complex’, consisting of the adaptors Grb2, GADS and SLP-76, the guanine 
nucleotide exchange factor, Vav1, the Tec kinases, Itk and Txk/Rlk, and the phos-
pholipase, PLCγ [ 8 ,  12 ]. Other drivers of activation include phosphoinositide 
3-kinase (PI3K), which leads to activation of pyruvate dehydrogenase kinase (PDK) 
and subsequent activation of the Akt/PKB signalling pathway [ 13 ]; this ultimately 
triggers further signalling pathways, including those of NFκB, FoxO and mTOR 
[ 14 ,  15 ]. TCR-induced increases in intracellular calcium via PLCγ-mediated gen-
eration of the second messengers IP3 and DAG, as well as activation of MAPK 
pathways, are also critical for the activation of naïve CTL precursors [ 8 ]. 

 Co-stimulatory molecules provide the second signalling event required to acti-
vate effi cient cytolytic function. Indeed, evidence from the last decade has revealed 
that the ultimate fate of the T lymphocyte response, i.e. tolerance versus immunity, 
is dependent upon the balance of co-stimulatory and co-inhibitory signals received. 
The immunoglobulin (Ig) superfamily member, CD28, has long been considered the 
main co-stimulatory receptor involved in this process; it is constitutively expressed 
on naïve T lymphocytes and binds two ligands, B7-1 (CD80) and B7-2 (CD86), 
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expressed on APCs [ 16 – 18 ]. Through the modifi cation and amplifi cation of TCR 
signalling, CD28 has been shown to have a broad impact on CTL function, includ-
ing activation [ 19 ], differentiation [ 20 ], proliferation and survival [ 21 ], tolerance 
[ 22 ], memory [ 23 ], upregulation of metabolic activity [ 24 ], and upregulation of 
IL-2 expression [ 25 ]. Similarly, the co-stimulatory molecule, 4-1BB (CD137), a 
member of the tumour necrosis factor (TNF) receptor superfamily that is inducibly 
expressed on activated CD8 +  T cells, plays a crucial role in CD8 +  T cell proliferation 
[ 26 ], upregulation of anti-apoptotic genes [ 27 ,  28 ], prevention of AICD [ 29 ], aug-
mentation of cytotoxicity, and production of type 1 cytokines such as IL-2, TNF-α 
and interferon-γ (IFN-γ) [ 30 ]. CD40, a co-stimulatory TNF family member that is 
expressed on APCs is involved in the priming of CTL responses [ 31 ,  32 ] and in the 
induction of IL-12, a known amplifi er of CTL responses [ 33 ,  34 ]. Most of the evi-
dence suggests that these molecules provide the majority of co-stimulatory signals 
needed for optimal CD8 +  T cell expansion and survival in vivo. Additional co- 
stimulatory molecules include the TNF receptor family members, OX-40, herpesvi-
rus entry mediator (HVEM), glucocorticoid-induced tumour necrosis factor receptor 
(GITR), CD30, and CD27, as well as the B7 family member, inducible co- stimulator 
(ICOS). In the absence of such signals, CD8 +  T cells remain unresponsive or become 
actively tolerant to antigens. 

 In order to keep T cell activation in check and ‘fi ne tune’ the CTL response co- 
stimulation must be countered by co-inhibitory signals. Cytotoxic T lymphocyte 
antigen 4 (CTLA-4), a homologue of CD28, is the best described co-inhibitory 
molecule. In contrast to CD28 that is constitutively expressed on CD8 +  T cells, 
CTLA-4 expression is rapidly upregulated following CD8 +  T cell activation; the 
level of expression and recruitment to the IS is dependent upon the intensity of the 
TCR signal [ 35 ]. Like CD28, it binds B7-1 and B7-2, although its affi nity for these 
ligands is 20–100 times higher [ 36 ]. Thus, small amounts of CTLA-4 can effec-
tively out-compete CD28 ligand binding, leading to attenuation of the CTL response. 
CTLA-4 binding to B7-1 and B7-2 has also been shown to cause transendocytosis 
of these co-stimulatory ligands, resulting in their degradation inside CTLA-4 
expressing cells [ 37 ]. Furthermore, various studies have demonstrated that reverse 
signalling through B7-1 and B7-2 on APCs can result in the production of indole-
amine 2,3-dioxygenase (IDO), an enzyme that degrades tryptophan into by- products 
that inhibit CD8 +  T cell proliferation [ 38 – 41 ]. Recruitment of inhibitory proteins to 
the IS has also been highlighted as a mechanism of CTLA-4 action [ 42 – 44 ], as has 
reduction in the dwell time between CD8 +  T cells and APCs [ 45 ]. Other co- inhibitory 
molecules include programmed death-1 (PD-1), B7-H4, lymphocyte activating 
gene 3 (LAG3), T cell immunoglobulin and mucin domain containing 3 (Tim3), and 
CD200 receptor. Ultimately, co-inhibitory signals lead to inhibition of CD8 +  T cell 
cycle progression, survival pathways and IL-2 production. 

 The third signal required for the successful development of CTLs comes from 
pro-infl ammatory cytokines such as IL-12 and IFN-α/β, released by directly acti-
vated APCs [ 46 ]. Studies have shown that CD8 +  T cells that expand in the absence 
of this third signal show poor survival, do not develop cytolytic function in vitro 

J. Noonan and B.M. Murphy



97

[ 47 ] or in vivo [ 48 ,  49 ], and fail to generate a responsive memory population [ 46 ]. 
In other words, it appears that infl ammatory cytokines underlie the immunological 
decision to either enforce tolerance or to produce an effective cytolytic response. 
Cytokine-driven chromatin remodelling seems to play an important role in the 
molecular mechanisms responsible for the effects of IL-12 and IFN-α/β [ 47 – 50 ]. 
Indeed, it has been demonstrated that IL-12 and IFN-α infl uence the expression of 
a variety of proteins in CD8 +  T cells; Agarwal et al. [ 50 ] reported that IL-12 and 
IFN-α regulate approximately 350 genes in common, many of which are involved 
in the cytolytic functions of CTLs, such as granzymes, FasL and IFNγ, as well as 
others involved in proliferation and co-stimulation, such as OX-40 and 4-1BB. 
IL-12, in particular, has been shown to promote the differentiation of effector CD8 +  
T cells [ 47 ]. For example, Joshi et al. [ 51 ] demonstrated that IL-12-induced eleva-
tion of the transcription factor, T-bet, in responding CD8 +  T cells enforces an effec-
tor CTL phenotype [ 51 ], which seems to be linked to mammalian target of rapamycin 
(mTOR) activity [ 52 ]. Furthermore, Lee et al. [ 53 ] reported that IL-12 priming 
induces IL-10 expression from activated CD8 +  T cells, which functionally mediates 
the memory-generating effect of IL-12 by enhancing the survival of activated CD8 +  
T cells. In addition, IFN-α/β signalling has been implicated in pre-sensitising naïve 
CTL precursor cells for the rapid acquisition of effector function upon antigen 
exposure [ 54 ]. More recently, it was demonstrated that sustained IL-2 signalling 
through the IL-2 receptor, CD25, prolongs the division of activated CD8 +  T cells, a 
signalling event that is maintained by IL-12 and type 1 IFN [ 55 ]. Countless studies 
have reported on the role of IL-2 in CTL activation and response, especially with 
regards to memory formation and CTL proliferation. Upon their initial activation, 
CD8 +  T cells are known to produce a burst of IL-2 that coincides with their exten-
sive proliferation; however, upon the acquisition and demonstration of cytolytic 
activity, IL-2 production ceases and CD8 +  T cells are unable to proliferate in 
response to subsequent stimulation [ 56 ]. During this period, they must rely upon the 
‘help’ of CD4 +  T cells, one of the main producers of IL-2 in the body. CD4 +  T cells 
also secrete IL-21, which is reportedly necessary for sustaining long-term effector 
function of CTLs, particularly during chronic viral infection when IL-2 production 
is decreasing [ 57 ]. A recent study also highlights the ‘help’ provided by IL-21- 
secreting CD4 +  T cells in promoting the survival of CD8 +  T cells under IL-2 depri-
vation [ 58 ]. Such studies enforce the importance of infl ammatory cytokines in 
driving maximal activation of the CTL response. They also emphasise the require-
ment of CD4 +  helper T cells for CD8 +  T cell priming, effector function, as well as 
the development of CTL memory. Besides their secretion of IL-2 and IL-21, these 
cells provide helper affects by directly inducing CD40 co-stimulation [ 59 ] and by 
indirectly activating APCs through CD40–CD40L interactions [ 31 ,  60 ]. Of course, 
it must also be mentioned that a small subset of highly differentiated CD4 +  T cells 
acquire cytolytic activity, thus making them CD4 +  CTLs. 

 One of the main turning points in the fi eld of cancer immunology was the iden-
tifi cation of antigens expressed on the surface of naturally occurring tumours, along 
with the fi nding that cancer patients can produce T lymphocytes that are capable of 
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both recognising and reacting to these antigens. We now know that CTLs can elicit 
an immune response to antigens with high tumour specifi city, such as those derived 
from mutated genes, those encoded by cancer germ-line genes, and those of viral 
origin, as well as antigens with low tumour specifi city (tumour-associated antigens), 
such as differentiation antigens and those arising from the overexpression of a par-
ticular protein. Current immunotherapy strategies in development and undergoing a 
clinical trial assessment owe their rationale and continuing success to both our 
growing understanding of the mechanisms involved in antigen recognition and TCR 
activation, such as those described above, as well as the identifi cation of these vital 
tumour antigens. To date, there are three main immunotherapeutic strategies that 
have emerged as a result of such knowledge: adoptive T cell transfer, vaccination, 
and the delivery of antibodies that enhance the anti-tumour immune response. The 
former involves the isolation of tumour-specifi c T lymphocytes from the patient or 
a donor, which are then expanded ex vivo before being re-infused back into the 
body. This approach has seen particular success in melanoma and viral-based malig-
nancies [ 61 ,  62 ], prompting attempts to utilise this method in a broader range of 
cancers. Furthermore, to enhance the effi cacy of this approach, genetic engineering 
of antigen receptors on ex vivo-expanded T lymphocytes, mainly the TCR and the 
chimeric antigen receptor (CAR) has also been employed. For a summary of the 
available clinical data, see a recent review by Kershaw et al. [ 63 ]. Agonist and 
antagonist antibodies that target co-stimulatory and co-inhibitory molecules, respec-
tively, have also been developed to enhance the anti-tumour response of the immune 
system. This approach is based on the fi nding that tumour cells can evade immune- 
surveillance by down-regulating co-stimulatory molecules, like CD80 and CD86, or 
by contrast, up-regulating co-inhibitory molecules, like CTLA-4 and PD-1 [ 64 ]. To 
date, there are two FDA approved drugs for the treatment of melanoma that are 
based on targeting these co-inhibitory molecules: Ipilimumab, which blocks CTLA- 
4, and Keytruda, an inhibitor of PD-1. Due to their success, these drugs are now in 
clinical trials for other types of cancer. Finally, promising pre-clinical and clinical 
data have emerged from new cancer vaccination therapies that employ the use of 
TAAs, such as CD47 and MUC1, respectively, to elicit an immune response pre-
dominated by CTLs [ 65 ,  66 ]. Furthermore, the potential synergy of combining vac-
cination with antibodies against CTLA-4 and PD-1 has also been realised. A recent 
study by Duraiswamy et al. [ 67 ] demonstrated that dual blockade of these co- 
inhibitory molecules along with tumour vaccination led to remarkable tumour rejec-
tion in mice as a result of enhanced CTL activity. 

 While each of these therapies adopts a different approach to induce an effi ca-
cious CTL immune response, their success relies on one common theme: the ability 
of CTLs to kill infected and transformed cells. Above, we have described the mech-
anism by which CTLs can identify these harmful cells, now we will venture to 
explain the process by which CTLs can kill them, and how, even when a CTL 
response has been elicited, tumour cells can fi ght back to suppress the immune 
response once again.  
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5.4     Effector Mechanisms of Cytotoxic T Lymphocytes 

 CTLs display their lethal talents by programming target cells to undergo apoptosis 
by one of at least two main effector mechanisms: death receptor ligand binding and 
granzyme release from specialised secretory lysosomes. Both mechanisms require 
cell–cell contact and can be executed within minutes of antigen recognition. The 
former requires the presence of death receptors on the surface of target cells and 
the presence of their cognate ligands on the surface of CTLs, e.g. Fas, TNF and 
TNF- related apoptosis-inducing ligand (TRAIL). Upon ligand-receptor binding, 
activation of the extrinsic apoptotic pathway is triggered and cell death occurs via 
the classical caspase cascade. IFN-γ secretion by CTLs, which occurs so long as 
TCR stimulation continues, also contributes to this event by boosting the level of 
Fas and MHC class I on target cells, thereby enhancing both the potential of CTLs 
to recognise foreign antigens and to kill tumour cells. From here-on, we will focus 
on the second and foremost effector mechanism of CTLs, which relies on the pola-
rised release of cytotoxic molecules into the intercellular space and the formation of 
pores in the target cell; this is a tightly regulated process, designed to prevent CTLs 
from accidentally killing themselves as well as healthy neighbouring cells. 

 It takes approximately 5–8 days after antigen recognition for naïve CTL precur-
sor cells to differentiate, proliferate and migrate to the appropriate target site. It is 
while these cells are differentiating into effector CTLs that pore-forming perforin 
and cell death-inducing granzymes are synthesised and stored. Perforin, a 67 kDa 
protein, is fi rst synthesised as an inactive precursor protein in the endoplasmic retic-
ulum (ER), then modifi ed in the Golgi apparatus by the addition of glycans, and 
fi nally packaged into specialised secretory lysosomes as an active protein. Upon its 
release into the synaptic cleft, the high extracellular concentration of Ca 2+  as well as 
the neutral pH of the extracellular environment promotes the binding of perforin to 
the target cell membrane [ 68 ], where monomers polymerise to form a range of 
pores, approximately 120–170 Å in diameter [ 69 ]; these in turn facilitate the deliv-
ery of granzymes in the cytoplasm. A recent study by Lopez et al. [ 70 ] demon-
strated that the infl ux of Ca 2+  into isolated human lymphocytes is followed by the 
exocytosis of perforin and the formation of pores in target cells in as little as 30 s; 
using time-lapse microscopy, these authors demonstrated that the initiation of pore 
repair occurs 20 s later and is completed within 80 s. Importantly, this short window 
is suffi cient time for lethal amounts of granzymes to be delivered into the target cell. 
These particular conditions of high Ca 2+  concentration and neutral pH, which are 
found in the extracellular environment but not in the secretory lysosomes, help 
explain why perforin doesn’t subject CTLs to self-imposed toxicity. 

 There are 5 known human granzymes: granzyme A (GzmA), GzmB, GzmH, 
GzmK, and GzmM; and 11 known mice granzymes: GrzA-G and GzmK-N. The 
fi ve human granzymes share an amino acid sequence homology of approximately 
40 %, are structurally related to the trypsin-chymotrypsin serine protease family, 
and have an active catalytic site made up of key residues corresponding to histidine, 
serine and aspartic acids. The genes encoding these human granzymes have been 
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mapped to different chromosomal loci, with  GzmA  and  K , both tryptases, found on 
chromosome 5,  GzmB , an aspase, and  H , a chymase, found on chromosome 14, and 
 GzmM , a metase, found on chromosome 19 [ 71 ]. Granzymes make up approxi-
mately 90 % of the secretory lysosomal mass. These proteases are expressed with a 
signal sequence that fi rst directs them to the ER, where cleavage of the signal pep-
tide produces an inactive proenzyme. Then a mannose-6-phosphate tag is added to 
them in the Golgi apparatus, which subsequently directs them to secretory lyso-
somes, where they are proteolytically activated by the lysosomal cysteine protease, 
cathepsin C [ 72 ]. Alternate mechanisms for granzyme activation within secretory 
lysosomes likely exist as well, given that some granzyme activity can be observed 
in CTLs derived from cathepsin C-defi cient mice [ 73 ]. Within the secretory lyso-
somes, granzymes and perforin are found in the electron-dense central core, bound 
to a chondroitin sulphate proteoglycan, serglycin; this complex is thought to prevent 
both the oligomerisation of perforin and the diffusion of granzymes inside CTLs, 
while also concentrating the granzymes prior to their secretion. As with perforin, 
the acidic pH of secretory lysosomes keeps the proteolytic activity of granzymes at 
bay, although, should they leak out into the cytosol, CTLs are further protected by 
their intracellular expression of serine protease inhibitors, serpins [ 74 ]. 

 Once inside the cytoplasm of target cells, each granzyme has distinct methods of 
promoting cell death. Thus, a cohort of cell death pathways are activated at once, 
which in turn enhances both the speed and effi ciency of the cell death process. The 
ability of granzymes to act on different substrates also enhances the probability of 
malignant cells dying by CTLs since it ensures cell death can still occur even if one 
pathway to death becomes blocked. For a disease such as cancer in which apoptotic 
dysfunction is a major molecular hallmark, this capability of CTLs is a particularly 
exploitable trait. 

 GrzA and GrzB are the best described granzymes, with GrzB considered the 
most potent inducer of apoptosis and, thus, the main effector of immune- surveillance. 
Consequently, GzmB has received a great deal of attention with regards to develop-
ing an immunotoxin for cancer therapy. GzmB induces apoptosis by two main path-
ways; the fi rst is mediated through the direct activation of caspases like -3, -7, -8, 
and 10, and the second is arbitrated through the cleavage of Bid [ 75 ,  76 ]. Caspases 
convey the apoptotic signal in a proteolytic cascade, beginning with the initiator 
caspases like -8 and -10 and ending with the executioner caspases like -3 and -7; 
these then propel the apoptotic signal forward by cleaving several downstream 
death substrates like the inhibitor of caspase-activated DNase (ICAD), poly(ADP 
ribose) polymerase (PARP), and the nuclear-envelope intermediate-fi lament pro-
tein, lamin B. These, in turn, are responsible for most of the morphological hall-
marks of apoptosis, such as DNA fragmentation and membrane blebbing. Besides 
direct cleavage, executioner caspases can also be activated by GzmB-induced cleav-
age of Bid. This pathway is associated with the Bcl-2 family of proteins that govern 
the integrity of the outer mitochondrial membrane; briefl y, cleavage of Bid by 
GzmB results in its truncated form, tBid, migrating to the outer mitochondrial mem-
brane, where it promotes the release of caspase activators, like cytochrome c and 
SMAC/DIABLO. The presence of cytochrome c in the cytosol is necessary for the 
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subsequent formation of the apoptosome and the downstream activation of 
 caspase- 3, while SMAC/DIABLO promotes caspase activation by inhibiting inhib-
itors of apoptosis (IAP) family proteins. In the presence of perforin, GzmB has also 
been shown to accumulate in the nucleus of target cells, where it can directly cleave 
substrates involved in the maintenance of DNA, like ICAD and PARP, thereby 
resulting in DNA fragmentation and cell death in a caspase-independent manner 
[ 77 ]. Similarly, GzmB can cleave cytoskeletal alpha-tubulin in a caspase- 
independent manner, which likely incapacitates target cells during CTL-mediated 
killing [ 78 ]. Lastly, the induction of reactive oxygen species (ROS) from caspase-
dependent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activa-
tion has been implicated in GzmB-induced death [ 79 ]. Thus, GzmB not only has the 
propensity to induce cell death but it can do so at multiple levels of the apoptotic 
pathway. 

 Of course, should CTLs or GzmB-based immunotoxin therapy be successfully 
delivered into targeted malignant cells, these cells still have ways of preventing their 
demise. In such cases, immune-surveillance leads to immune-escape and subse-
quently to tumour development. For example, a number of GzmB-specifi c serpins 
that inhibit its activity, such as PI-9 and SPI-6, have been detected at high concen-
trations in tumour cells resistant to CTL-induced death [ 80 – 84 ]. While this may act 
as an obstacle to GzmB-mediated therapy, the potential use of these serpins as bio-
markers for early-stage carcinomas should not go unrecognised. On the other hand, 
enhanced PI-9 expression has been linked to poor clinical prognosis in a number of 
cancer types, including large cell lymphoma [ 85 ], nasopharyngeal carcinoma [ 86 ], 
melanoma [ 87 ], and lung cancer [ 88 ], which may in turn be useful for predicting 
treatment outcome to GzmB-based therapies. Despite these serpin setbacks, GzmB 
is still an attractive molecule for targeted cancer treatment. In 2012, Losasso et al. 
[ 89 ] used computational approaches to identify GzmB mutations that affect their 
binding to PI-9 without signifi cantly disturbing their enzymatic activity; in this 
study, the R201K mutation emerged as a particularly promising candidate for anti- 
tumour immunotherapy. In agreement with this fi nding, Schiffer et al. [ 90 ] recently 
reported on the anti-tumour effi cacy of the R201k GzmB mutant in an in vitro and 
in vivo models of classical Hodgkin lymphoma; these authors used a cytolytic 
fusion protein technique against the Hodgkin-selective receptor, CD30, to target 
abnormal cells exclusively. Alternatively, down-regulation of PI-9 expression and 
activity in target cells has been proposed as a treatment option to overcome GzmB 
resistance [ 91 ]. While both approaches have great clinical potential, their success is, 
however, dependent upon enhanced PI-9 expression being the mechanism of cancer 
immune-escape. Combinatorial drug therapies have also received some positive 
results. Chuang et al. [ 92 ] used a perforin-CCAAT/enhancer binding protein delta 
(CEBPD) pro-drug to enhance levels of pro-caspase-8 and combined it with a 
perforin- GzmB pro-drug to activate caspase-8 and caspase-3; used together, these 
drugs displayed an additive effect on triggering the apoptotic pathway in prostate 
cancer cells [ 92 ]. Another combination therapy with potential clinical value is 
GzmB and ABT-737 [ 93 ]; the latter acts as an antagonist of the anti-apoptotic pro-
tein, Bcl-2, which is frequently overexpressed in cancer cells. Given that GzmB 
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preferentially activates the mitochondrial pathway to cell death, an event that is 
prevented by Bcl-2, the combination of ABT-737 and GzmB may have the proclivity 
to sensitise Bcl-2 overexpressing cells to GzmB-induced death. Yet, one could argue 
on the necessity of pairing this enzyme with a selective inhibitor of Bcl-2 given its 
propensity to elicit multiple pathways to death. In particular, this argument may be 
strengthened by the fi ndings that CTLs can overcome Bcl-2 overexpression to kill 
target cells [ 94 ,  95 ], presumably through the actions of alternative granzymes. 

 Unlike GzmB, GzmA induces single-stranded DNA damage rather than DNA 
fragmentation [ 96 ], while the cell death pathway evoked by GzmA culminates 
without caspase involvement and without cleavage of important caspase substrates, 
like ICAD [ 97 ]. Instead, this pathway to death is characterised by damage to the 
inner mitochondrial membrane, leading to the lethal production of ROS. Martinvalet 
et al. [ 98 ] provided some insight into how GzmA can accomplish this feat; their 
work revealed that GzmA-mediated generation of ROS leads to the induction of 
cell death by rapidly penetrating the mitochondrial matrix to cleave components of 
the electron transport chain, namely the NADH dehydrogenase (ubiquinone) Fe-S 
protein 3 (NDUFS3). This process of ROS production has been postulated to medi-
ate the subsequent translocation of the ER-associated complex, SET, to the nucleus, 
where it induces DNA damage through single-stranded nicking [ 99 ]. Other targets 
of GzmA include lamins, which play a role in maintaining the structural integrity 
of the nuclear membrane [ 100 ], and linker histone H1, which affects chromatin 
organisation. A second cell death pathway evoked by GzmA that challenges these 
above- mentioned fi ndings was recently described by Susanto et al. [ 101 ]; these 
authors used time-lapse microscopy to demonstrate that GzmA can induce a novel 
form of cell death characterised by a writhing “worm-like” morphology that they 
termed “athetosis”. In contrast to previous fi ndings, this study found that GzmA-
mediated cell death was dependent upon an intact actin cytoskeleton and occurred 
in the absence of early mitochondrial damage and ROS production and without the 
distinct apoptotic feature of membrane blebbing. Their data further indicate that 
mitochondrial damage occurs late in the GzmA-mediated cell death process, down-
stream of actin cytoskeletal alterations. While certainly intriguing, additional 
experiments are required to validate their fi ndings, particularly with regards to 
identifying GzmA substrates linked to the actin cytoskeleton. Their study does, 
however, support the notion that GzmA acts as a back-up cell death mechanism 
should the GzmB pathway to death become blocked, as demonstrated by the fact 
that apoptosis was induced far more than athetosis in wild-type cytotoxic lympho-
cytes. This suggests that GzmA-mediated cell death may be occurring at a slower 
pace than that of GzmB, presumably due to the ability of GzmB to rapidly activate 
several caspases. Thus, it may be that although GzmA contributes to the overall cell 
death process by targeting the actin cytoskeleton and generating ROS, ultimately 
the cells die by GzmB since this granzyme completes its pathway to death fi rst. 
This would also explain the dominant apoptotic phenotype that is observed follow-
ing CTL treatment. 

 To date, no intracellular inhibitor of human GzmA has been uncovered; although 
recently, Kaiserman et al. [ 102 ] identifi ed Serpinb6b as a fast and effi cient inhibitor 
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of mouse GzmA. On the one hand, this indicates a possible functional divergence 
between the two species that may affect consistencies in research fi ndings but it also 
highlights a potential clinical benefi t of using GzmA-based therapies to treat cancer. 
Without risk of inhibition, GzmA-induced toxicity could provide an essential and 
uninterrupted pathway to tumour cell death. Or perhaps even better, the combined 
treatment of GzmA and GzmB could deliver a faster induction of tumour cell death 
driven mostly by GzmB but reinforced by GzmA should PI-9 expression become 
up-regulated or caspase-mediated cell death become blocked. In accordance with 
this, cells demonstrating resistance to caspase-mediated cell death, including Bcl-2 
overexpressing cells, remain sensitive to apoptosis by GzmA but not GzmB [ 99 ]. 

 However, despite the multitude of evidence indicating a role for GzmA in tar-
geted cell death, there are many reports and suppositions that GzmA is not cytotoxic 
at all. The fact that human GzmA has no known intracellular inhibitor is one of the 
leading arguments in support of this theory. Rather, two human extracellular inhibi-
tors of GzmA, pancreatic secretory trypsin inhibitor and serpin antithrombin III 
(serpinC1), have been identifi ed, which helps to strengthen the notion that GzmA is 
primarily involved in the regulation of infl ammation rather than cytotoxicity. 
Support for this theory was recently helped along by Kaiserman et al. [ 102 ]; they 
assessed the cytotoxicity of human and mouse GzmA and found a fi vefold increase 
in the cytotoxicity of mouse GzmA compared to human. And yet, the EC 50  (650 nM) 
was still an order of magnitude higher than that of mouse GzmB and two orders of 
magnitude higher than that of human GzmB. As mentioned by the authors, based on 
these fi gures alone, it is diffi cult to see how GzmA could function as a dedicated 
cytotoxin or, indeed, as a back-up to GzmB. Interestingly, Martinvalet et al. [ 103 ] 
found that purifi ed human GzmA was barely active in killer cell assays while the 
recombinant form expressed in bacteria was cytolytic at high nanomolar concentra-
tions and demonstrated comparable activity to GzmB; this study highlights the 
importance of enzyme preparation when reporting on fi ndings from GzmA-related 
studies. It also proposes the possibility that purifi ed native material potentially has 
reduced cytotoxicity because it contains mostly pro-enzyme not yet activated. 
Alternatively, the native enzyme preparation could contain an inhibitor that hasn’t 
been identifi ed to date. Lastly, given the above-mentioned differences in mouse and 
human GzmA, caution is essential when drawing conclusions from knockout mouse 
models or mouse models of disease. More studies on humanised cancer mouse 
models are needed to validate the physiological relevance of GzmA before its cyto-
toxic potential is cast aside. 

 A similar caution was recently provided by de Poot and Bovenschen [ 104 ] in 
their review of GzmM following fi ndings that mouse and human GzmM display 
divergent and species-specifi c substrate specifi cities. The cell death pathway acti-
vated by GzmM is not completely understood, and like GzmA, there is much in the 
way of contradictory fi ndings. While several studies have observed that GzmM 
induces apoptosis without evoking DNA fragmentation, mitochondrial perturba-
tion, and caspase activation [ 105 ,  106 ], there is an equal amount of studies that have 
found the opposite to be true [ 107 ,  108 ]. Still, several intracellular substrates of 
human GzmM have been identifi ed, some of which overlap with those of other 
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granzymes. GzmM substrates include: components of the cytoskeleton such as ezrin 
and α-tubulin [ 109 ]; ICAD and PARP [ 110 ]; surviving [ 111 ]; nucleophosmin [ 106 ]; 
FADD [ 108 ]; and the DNA topology enzyme, topoisomerase II alpha [ 107 ]. A par-
ticularly interesting substrate of GzmM, and one with great clinical potential, was 
identifi ed by Mahrus et al. [ 112 ], namely, the specifi c GzmB serpin inhibitor, PI-9. 
Cleavage of PI-9 by GzmM renders this serpin functionally inactive, leaving GzmB 
free to induce apoptotic cell death. Given the role of PI-9 in tumour resistance to 
GzmB-mediated therapy, a GzmM and GzmB combination therapy approach might 
enable CTLs to overcome this immune-escape mechanism. However, to substanti-
ate this supposition, more work needs to be carried out in humanised mouse models, 
especially given the fact that PI-9 inhibition of GzmB occurs at a faster rate than its 
cleavage by GzmM [ 112 ]. Unfortunately, another challenge that may supersede this 
exciting clinical possibility comes from the discovery of GzmM specifi c serpins. 
Both extracellular, SerpinA1 and SerpinA3, and intracellular, SPI-CI and SerpinB4, 
serpins have been identifi ed to date [ 112 – 114 ]. SerpinB4, in particular, has been 
shown to inhibit GzmM activity, while overexpression of SerpinB4 in tumour cells 
prevents GzmM-induced and NK-cell mediated cell death [ 114 ]. Thus, upregulation 
of GzmM specifi c serpins likely represents another mechanism by which tumour 
cells can escape death. 

 Far less is known about the function and molecular mechanisms of GzmK and 
GzmH. GzmK shares some similarities with GzmA in that they are both tryptases 
that can cause ROS generation, single-stranded DNA nicking, SET cleavage, and 
the induction of caspase-independent cell death [ 115 ]. This has led to suggestions 
that GzmK acts as a back-up or fail-safe mechanism for GzmA. Still, GzmK sub-
strates that don’t overlap with those of GzmA have also been identifi ed, such as p53 
and Bid [ 116 ,  117 ], which contends with this belief. GrzH demonstrates death- 
inducing similarities with GzmB, such as loss of plasma membrane potential, chro-
matin condensation, DNA damage, phosphatidylserine exposure, and Bid-dependent 
mitochondrial damage [ 118 ]. However, as with GzmA and M, these fi ndings have 
been widely contradicted by other studies. For example, Fellows et al. [ 119 ] found 
that GzmH induces cell death independent of Bid and caspase activity and with a 
transient production of ROS. A study by Ewena et al. [ 120 ] recently aimed to clarify 
these disparities; their fi ndings indicate that GzmH only weakly processes Bid and 
only at high concentrations and after a long exposure time, which suggests that this 
process is not central to the death-inducing capabilities of GzmH. Instead, their 
fi ndings suggest that Bax and/or Bak are central mediators of GzmH-mediated cell 
death, although it remains unclear as to how these proteins are activated. Interestingly, 
they did fi nd that GzmH, like GzmB, can directly cleave ICAD, while  overexpression 
of Bcl-2 also signifi cantly affected target cell death. However, unlike GzmB, they 
found no evidence that GzmH promotes the activation of caspases; rather, they 
found that the presence of caspase-3 enhanced the killing ability of GzmH without 
being necessary for it to occur. This caspase-independent form of cell death pro-
duced by both GzmK and GzmH might prove vital to the future development of 
granzyme-based immunotoxins for the treatment of cancers in which caspase inhib-
itors like XIAP are highly expressed.  
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5.5     Extracellular Roles of Granzymes 

 It is only in recent years that research has turned away from solely concentrating on 
the intracellular roles of granzymes. Now, evidence is mounting in favour of alter-
native perforin-independent extracellular functions that granzymes play in infl am-
mation and extracellular matrix remodelling. How these relate to their ability to kill 
cancer cells has yet to be fully clarifi ed. It is widely known that infl ammation pro-
motes tumorigenesis and yet GzmA, in particular, has been demonstrated to infl u-
ence the production and processing of certain infl ammatory cytokines. One can 
only conclude from this that the extracellular roles of granzymes might counter 
their intracellular tumour-cell-death promoting roles, and lead instead to tumour 
growth and invasion. Indeed, extracellular matrix remodelling by GzmB has been 
implicated in the invasion of cancer cells in urothelial carcinoma [ 121 ]. This of 
course fi ts in with Schreiber’s theory of cancer immuno-editing in which the 
immune system promotes both host protection and tumour development. The pre-
cise timing and/or mechanism by which the immune system begins to favour one 
over the other needs to be elucidated to ensure CTL-based immunotherapies don’t 
worsen rather than help the problem.  

5.6     Concluding Remarks 

 Thanks to the remarkable unveiling of the mechanisms involved in CTL activation 
and tumour antigen recognition, promising therapies like vaccination, the adoptive 
transfer of tumour specifi c T lymphocytes, and the delivery of antibodies that 
enhance the anti-tumour immune response are now in development and undergoing 
clinical trial assessment, with some already FDA approved. Furthermore, due to the 
elucidation of the cell death pathways elicited by granzymes, administration of 
granzyme-based immunotoxin therapy is another avenue proving to be a potential 
clinical contender. Such fi ndings and developments have validated the long- 
standing theory that the immune system can survey our bodies for tumours similar 
to the way it scans for foreign invading bodies. However, presently, it is far from 
being a curative treatment option. Serpin setbacks, poor reactivity of T lympho-
cytes against TAAs, immunosuppressive features of tumour cells, and severe side 
effects associated with some immunotherapy drugs have dampened the initial 
enthusiasm for immunotherapy-based treatments. Many of these obstacles have 
been addressed in this ever-advancing fi eld, leading in turn to modifi cation of 
established treatment strategies. Time will tell if they stand a chance in ensuring 
that tumour immune- surveillance leads only to tumour immune-elimination and 
never to tumour-immune escape.     
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    Abstract     The tumor microenvironment (TME) promotes neoplastic transformation, 
supports tumor growth and invasion, protects the tumor from host immunity and 
fosters therapeutic resistance. It is well established that tumor stroma components 
are engaged in an active and complex molecular cross-talk that has serious implica-
tions for immunological recognition of tumor cells in shaping the microenviron-
ment. In this regard, a common feature of solid tumors and one of the hallmarks of 
the TME is at present attracting a particular and increased attention in the fi eld of 
cancer immunology since hypoxic stress impacts angiogenesis, tumor progression 
and immune tolerance. In this chapter, we will discuss how tumors use hypoxic 
stress to their own advantage by activating key biochemical and cellular pathways 
that are important in their progression and survival and how hypoxic stress induces 
tumor target adaptation that compromises the effectiveness of CTL activity. In this 
respect, modulating hypoxia may be a good strategy to control tumor progression at 
different fronts.  
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  HIF    Hypoxia-inducible factor   
  MDSC    Myeloid-derived suppressive cells   
  TAM    Tumor-associated macrophages   
  TGF-β    Transforming growth factor-β   
  Treg    T regulatory cells   

6.1          The CTL in the Context of Microenvironmental Hypoxia 

 Multiple efforts have been made to develop cancer immunotherapy strategies 
because of their unique capacity to distinguish between normal cells and neoplastic 
cells. The identifi cation of tumor-associated antigens (TAAs) recognized by spe-
cifi c cytotoxic T lymphocytes (CTL) within solid tumors argues in favor of a role of 
the immune system in controlling tumor progression and has made possible their 
use in vaccination trials, mainly in melanoma and lung cancer [ 1 ,  2 ]. However, 
positive clinical results have been scarce most likely because of the weak immuno-
genicity of these TAA, the low frequency of tumor-specifi c T lymphocyte precur-
sors and the resistance of tumor cells to CTL attack [ 3 ]. Therefore, the development 
of more effi cient therapeutic vaccines inducing strong and long-lasting CTL 
responses still requires improved strategies to increase CTL recruitment at the 
tumor site and potentiate their cytotoxic activity, and sensitization of cancer cells to 
CTL-mediated killing. The ultimate goal of most cancer immunotherapy strategies 
is to induce a strong CTL response. The prevailing view is that induced CTL will 
eradicate tumor cells. However, this view has been seriously challenged by clinical 
observations showing that even if a strong and sustained cytotoxic response are 
induced, complex issues, due to an unfavorable tumor microenvironment resulting 
in an impaired lymphocyte migration and recruitment, tumor evasion and selection 
of immuno- resistant tumor cell variants remain [ 4 ]. Despite the signifi cant progress 
during the last decade in antitumor immunotherapy and cancer vaccine approaches, 
there is still a need for more effective treatments to maximize cancer patients sur-
vival rates. In this regard, novel strategies for tumor target selection, vaccine design 
and immunostimulatory intervention are being developed in the context of the 
tumor microenvironment. 

 The restricted view of tumor progression as a multistep process as defi ned by the 
accumulation of mutations in cancer cells has largely ignored the substantial contri-
bution of the tumor microenvironment to malignancy. It has been less than two 
decades since researchers have included the tumor ecosystem in their analysis of 
cancer development. Indeed, it is now well admitted that the environment of a tumor 
is an integral part of its physiology, structure and function. Its role during the initia-
tion and progression of carcinogenesis is presently considered to be of critical 
importance [ 5 ], both for better understanding of the fundamental cancer biology and 
for exploiting this source of relatively new knowledge to improve molecular diag-
nostics and therapeutics. 

M. Hasmim et al.



117

 It is now well established that the dynamic and reciprocal interactions between 
tumor cells, metabolites and a variety of cells from the tumor microenvironment 
orchestrate several events, which are critical for tumor evolution toward metastasis. 
In this context, many cellular and molecular elements of the tumor ecosystem are 
emerging as attractive targets for therapeutic approaches. Among these targets, 
hypoxia, which is a hallmark of solid tumors, is strongly associated with the 
advanced disease stage and the poor clinical outcome [ 6 ]. These are, in part, due to 
inappropriate local immune reaction and resistance of hypoxic tumor cells to cyto-
toxic treatments. In fact, most human tumors develop a pathophysiological micro-
environment during growth, characterized by an irregular microvascular network 
and regions of chronically and transiently hypoxic cells [ 7 ]. It has become clear that 
hypoxia plays a crucial role in tumor promotion and immune escape by conferring 
tumor resistance [ 8 ], immunosuppression [ 9 – 11 ] and tumor heterogeneity [ 12 ], 
which contribute to the generation of diverse cancer invasion programs and 
enhanced stroma plasticity [ 8 ,  13 ]. Accumulating evidence indicates that tumor 
stroma components, including hypoxia, are engaged in an active molecular cross-
talk that has serious implications for immunological recognition of target cells. 
Therefore, it is crucial to elucidate the effect of hypoxia on shaping the immune and 
the tumor cells within the tumor milieu and its functional consequences on the anti-
tumor immune response.  

6.2     Hypoxia as a Major Component of the Tumor 
Microenvironment 

 Oxygen (O2) is one of the most important elements necessary to sustain life of aero-
bic organisms. In fact, oxygen is essential for aerobic respiration and robust mito-
chondrial generation of ATP as well as to perform other critical biological processes 
[ 14 ]. Oxygen homeostasis is, therefore, a critical component of many physiologic 
and pathologic processes. Hypoxia is an oxygen deprivation condition in which tis-
sues are inadequately oxygenated. While ambient air is 21 % O2, the majority of 
healthy tissues has access to 2–9 % O2. Hypoxia is therefore defi ned as less than 
2 % O2 [ 15 ]. Hypoxia is frequently encountered in both healthy and disease states. 
Physiological hypoxia is associated with a range of normal processes including fetal 
development, adaptation to altitude, and wound healing. The presence of physio-
logic hypoxic microenvironments has been observed in a range of tissues including 
the retina, medulla of the kidney, epidermis of the skin, thymus, hypoxic niches 
within the bone marrow, and even regions within the spleen. Pathologic states of 
hypoxia are associated with intense infl ammation such as within arthritic joints, 
atherosclerotic plaques and domains within solid tumors, which can modulate the 
responses of infi ltrating cells including T lymphocytes. Thus, an insuffi cient oxygen 
supply in cells or tissues is also a prominent feature of a number of pathological 
conditions including ischemic cardiovascular disease, myocardial infarction, stroke, 
obesity, etc. [ 16 ]. In solid tumors, hypoxia is a major microenvironmental 
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component (Fig.  6.1 ). In order to protect themselves from hypoxia, cells have 
 developed an adaptive molecular response involving a transcriptional program 
 regulated by the hypoxia-inducible factors (HIFs). HIF is a dimeric protein com-
posed of an oxygen- sensitive alpha subunit (HIF-1α, HIF-2α or HIF-3α) and an 

  Fig. 6.1    Hypothetical model of conditioning tumor cells and the subsequent tumor evolution by 
the tumor microenvironment. Immune pressure and hypoxic stress shape tumor stroma and facili-
tate malignant progression through induction of tumor cell plasticity and the subsequent aggres-
sive tumor phenotype. Under a favorable tumor microenvironment (normoxia), tumor cells are 
eliminated by CTLs. However, in a more hostile and stressor tumor microenvironment (i.e., 
hypoxic, immunosuppressive cytokines, acidosis), resistant tumor subtypes are generated by sev-
eral intrinsic and/or microenvironmental mechanisms such as immune or stromal pressure, EMT, 
stemness, and morphological change. Upon acquisition of an aggressive phenotype, tumor resis-
tant variants expand and invade surrounding tissue. Hypoxic stress induces protective autophagy 
in tumor cells and plays a determinant role in shaping tumor stroma and regulating the cross-talk 
between the tumor infi ltrating lymphocytes and stromal cells. Adapted from  Chouaib et al., Crit 
Rev Immunol 2014        
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oxygen-insensitive beta subunit (HIF-1β/ARNT). Each subunit contains basic 
helix-loop-helix-PAS (bHLH- PAS) domains that mediate heterodimerization and 
DNA binding. In the presence of oxygen, HIF-1α is hydroxylated on proline resi-
dues 402 and/or 564 by the prolyl hydroxylase domain protein 2 (PHD2), resulting 
in the interaction of HIF-1α with the von Hippel–Lindau (VHL) tumor suppressor 
protein. VHL recruits an ubiquitin ligase that targets HIF-1α for proteasomal degra-
dation. Under hypoxic conditions, PHD2-dependent hydroxylation is inhibited 
leading to a rapid accumulation of HIF-1α and its dimerization with HIF-1β. HIF-1 
then binds to the core DNA binding sequence 50-RCGTG-30 (R, purine (A or G)) 
in the promoter region of target genes, recruits co-activators and activates transcrip-
tion (Fig.  6.2 ). In addition to PHD2-dependent hydroxylation of proline residues, 
oxygen-dependent hydroxylation of asparagine-803 by the factor inhibiting HIF-1 
(FIH-1) blocks the interaction of HIF-1α with the co-activators P300/CBP under 
normoxic conditions. Both PHD2 and FIH-1 use oxygen and α-ketoglutarate as 
substrates and generate CO2 and succinate as by-products of the hydroxylation 
reaction. Their activities are therefore inhibited under hypoxic conditions. Similar 
to HIF-1α, HIF-2α is also regulated by oxygen-dependent hydroxylation. HIF-1α 
and HIF-2α are structurally similar in DNA binding and dimerization domains but 
differ in their transactivation domains. Consequently, they share overlapping target 

  Fig. 6.2    Hypoxic and normoxic areas in solid B16-F10 tumors. Confocal microscopy analysis of 
hypoxic areas (pimonidazole staining,  green ), blood vessels (CD31 staining,  red ), and nuclei 
(ToPro,  blue ) in B16-F10 melanoma engrafted tumor sections. Adapted from  Noman et al., Cancer 
Res 2011        
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genes in addition to the regulation by each of a set of unique targets. The genes 
induced by hypoxia-dependent HIF-1α and HIF-2α play important roles in the 
metabolism, pH regulation, cell survival, and angiogenesis. Homozygous mice for 
a null allele at the locus encoding HIF-1α and HIF-2α die at embryonic days 10.5 
and 12.5, respectively [ 17 ], confi rming the critical role of HIF’s in vertebrate evolu-
tion. More recently, the conditional knockout of HIF-1α in specifi c types of cells 
has demonstrated important roles in adipogenesis, chondrogenesis, hematopoiesis, 
etc. [ 16 ]. Hypoxia was also demonstrated to have an important impact on immune 
functions. In fact, HIF-1α was shown to play an active role in the regulation of neu-
trophil survival, macrophage survival and differentiation, dendritic cell function 
and T-cell differentiation [ 18 ]. In addition, prolonged exposure of T cells to a 
hypoxic environment, both under physiologic and pathologic conditions, suggested 
that their role is likely infl uenced both by hypoxia exposure and modulation of HIF.    

6.3     Hypoxic Stress and T Cells 

6.3.1     Hypoxia Interferes with the CTL Response 

 The HIF stabilization in T cells is not exclusively dependent on decreased oxygen 
since oxygen-independent inducers of HIF have been identifi ed in T cells. Antibody- 
mediated TCR/CD3 engagement results in HIF-1α stabilization via the PI3K/mTOR 
pathway leading to increased HIF-1α protein synthesis [ 19 ]. TCR-activated T cells 
also increased HIF-1α mRNA synthesis by mechanisms involving protein kinase C 
and Ca(2+)/calcineurin [ 20 ]. TCR-mediated HIF-1 stabilization can be further 
enhanced under hypoxic conditions [ 21 ]. Independently of TCR stimulation, HIF-1α 
mRNA is augmented when T cells are cultured in the presence of TGF-β or IL-6 
alone and the combination of the two further enhanced HIF-1α mRNA levels [ 22 ]; 
the IL-6 and TGF-B-dependent regulations of HIF-1α mRNA involve STAT3 [ 22 ]. 

 It is now admitted that in physiologic conditions, cells encounter oxygen levels 
that do not exceed 20–40 mmHg. CD8 +  T cells from lymphoid organs (spleen, 
lymph nodes) were found to harbor pimonidazole staining, indicating a hypoxic 
state within these organs [ 23 ]. This suggests that CD8 +  T cells could be found in 
hypoxic tissue zones. Moreover, CD8 +  (and CD4 + ) T cells were found in hypoxic 
adipose tissues of obese mice [ 24 ]. Whether these hypoxic levels are comparable to 
those found in tumors has not been evaluated. Instead, CD8 + T cells have been found 
to localize to hypoxic tumors [ 25 ]; however, their distribution inside the tumors, i.e. 
whether CD8 +  T cells are inside or outside the intra-tumoral hypoxic zones, is not 
clearly elucidated. 

 The effects of hypoxia on the cytotoxic functions of CD8 +  T cells have been 
analyzed by several groups. A study by Caldwell et al. revealed that hypoxic stress 
potentiated the lytic capacities of CD8 +  T cells [ 26 ]. The authors have shown that 
culturing mouse splenocytes under hypoxic conditions (2.5 % pO2) induced a delay 
in CD8 +  T cell development as compared to normoxia but increased the cytolytic 
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activity of developed CD8 +  T cells. These CD8 +  T cells displayed higher cell sur-
face density of CD25, TCR/CD3 complexes and LFA-1 molecules. More recently, 
deletion of  Vhl  in CD8 +  T cells, which resulted in constitutive expression of HIF-1 
and HIF-2, delayed CD8 +  T cell differentiation into effector cells but increased their 
cytotoxic functions which correlated with an increased expression of granzyme B 
[ 27 ]. These increased effector capacities were dependent on HIF-1 and HIF-2 and 
resulted in a better ability to inhibit tumor growth in mice. 

 HIF-1 was also shown to control the expression of  GZMD ,  E , and  F  genes [ 28 ]. 
Whether HIF factors were able to directly regulate the expression of granzymes genes 
is not documented. In normoxic conditions, the effector CD8 +  T lymphocytes were 
found to have constitutive levels of HIF-1 as compared to naïve CD8 +  T cells due to 
activation of the mTORC pathway [ 28 ]. If they were cultured under hypoxia (1 % 
pO2), their HIF-1 levels increased more along with perforin expression. Targeting 
HIF-1β in effector CD8 +  T cells decreased the expression of perforin but perforin is 
not a direct target gene of HIF-1 [ 28 ]. These results illustrate the in vitro effects of 
hypoxia on CD8 +  T cell activity and suggest that hypoxic stress increases lytic func-
tions of these cells but decreases their proliferative and differentiating capacities. 

 In mice challenged with tumors, hypoxic tumors were described to induce the 
upregulation of the costimulatory receptor CD137 at the surface of tumor- infi ltrating 
CD8 +  T cells in a HIF-1-dependent manner. The ligation of CD137 by agonistic 
antibodies increased CD8 +  T cell activity based on in vitro increased production of 
IFNγ and TNFα by CD137 +  CD8 +  T cells and on in vivo decrease in tumor growth 
[ 25 ]. However, the benefi cial effects of CD137 upregulation on tumor progression 
were found to be tumor specifi c since spontaneous breast carcinoma were resistant 
to anti-CD137 immunotherapy. Moreover, antigenic stimulation of T cells was nec-
essary for optimal upregulation of CD137 by hypoxia, implying that, in antigenic 
loss variant tumors, the hypoxia-induced upregulation of CD137 may be impaired. 

 Therefore CD8 +  T cells facing hypoxic conditions do not lose their cytolytic 
properties and even seem to be more lytic due to their upregulation of cytotoxic 
proteins, TCR, and adhesion molecules. 

 On the other hand, the effect of hypoxia on cytokine production by CD8 +  T cells 
is less well determined. In vitro cultured hypoxic CD8 +  T cells secreted less IFN-γ 
and less IL-2 [ 26 ]. In vitro-activated CD8 +  T cells with constitutive HIF-1 did not 
alter their IFN-γ production [ 28 ].  Vhl -defi cient CD8 +  T cells isolated from mice 
expressed more IFN-γ and TNF [ 27 ]. This diversity in culture conditions and in the 
activation of the hypoxic signalization (hypoxia, antigenic stimulation, or VHL 
deletion) could have different impacts on cytokine production by CD8 +  T cells, 
making it diffi cult to draw defi nite conclusions.  

6.3.2     Hypoxic Stress Impacts Immune Suppression 

 Increasing evidence demonstrates that tumor hypoxia impacts the anti-tumor 
immune response by promoting local immunosuppression and inhibiting immune 
killing functions. Macrophages, T regulatory (Treg) cells, and myeloid-derived 
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suppressor cells (MDSC) are the most studied immunosuppressive cells within the 
tumor microenvironment, and the role of tumor hypoxia in their recruitment and 
immunosuppressive functions is becoming evident (Fig.  6.3 ). Within the tumoral 
tissue, macrophages differentiate into tumor-associated macrophages (TAM) with 
the expression of TAM markers such as CD206 [ 29 ]. The exposure of TAM to 
tumor-derived cytokines such as IL-4 and IL-10 is able to convert them into polar-
ized type II or M2 macrophages with immune-suppressive activities and resulting in 
tumor progression [ 29 ]. TAM are found to be preferentially located in tumor hypoxic 
areas, where they accumulate HIF-1 and HIF-2 [ 30 ]. The relative contribution of 
HIF-1 and HIF-2 in the regulation of gene expression in TAM is not yet completely 
elucidated. Besides studies reporting a role of HIF-1 and HIF-2 in the promotion of 
macrophage angiogenic properties [ 31 ,  32 ], HIF-1α was also reported to be crucial 
for macrophage-mediated inhibition of T cells in hypoxic conditions [ 33 ]. 

  Fig. 6.3    Schematic overview of normoxic and hypoxic regulation of HIF1α. ( a ) Solid tumors 
contain areas of variable oxygen concentrations. Tumor cells closest to a perfused blood vessel 
have relatively high O2 concentrations (normoxic cells, highlighted in  red ). The O2 concentra-
tions decline as distance from the vessel increases (hypoxic cells, highlighted in  blue ). ( b ) In 
normoxia, HIF1α is hydroxylated by prolyl hydroxylases (PHDs), resulting in its interaction with 
the von Hippel–Lindau tumor suppressor protein (VHL), which recruits an E3 ubiquitin-protein 
ligase that subsequently catalyzes polyubiquitination of HIF-1α, thereby targeting it for protea-
somal degradation ( c ) Under hypoxic conditions, hydroxylation is inhibited and HIF-1α rapidly 
accumulates, dimerizes with HIF-1β and binds to the HRE (hypoxia response elements) in target 
genes. HIF1 thereby controls several important processes in tumor biology. Adapted from  Noman 
et al., CRI 2011        
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In hypoxic areas of tumors, TAM also up-regulate the expression of the MMP-7 
protein in hypoxic areas of tumors [ 34 ]. MMP-7 is known to cleave the Fas ligand 
from neighbouring cells, making tumor cells less responsive to lysis by NK and T 
cells [ 35 ].  

 MDSCs have also been demonstrated to directly promote immune tolerance 
[ 36 ]. In tumor bearing hosts, tumor-derived factors such as VEGF, GM-CSF, pros-
taglandins favour the accumulation of MDSCs in tumoral tissues and secondary 
lymphoid organs [ 37 ]. In these sites, MDSCs induce T cell anergy, restrain the 
effector phase of the CD8 +  T cell, and can promote antigen-specifi c T reg prolifera-
tion [ 37 ,  38 ]. HIF-1α has been directly shown to regulate the function and differen-
tiation of MDSC within the hypoxic tumor microenvironment [ 39 ]. In this regard, 
our laboratory has recently shown that tumoral MDSC upregulate the expression of 
PD-L1 in a HIF-1-dependent manner through direct binding to the  Pd-l1  promoter. 
PDL-1-positive MDSC decrease effector functions of CD8 +  and CD4 +  T cells via 
secretion of immunosuppressive cytokines such as IL-6 and IL-10 [ 11 ]. A cross-talk 
between MDSC and macrophages has also been reported, proposing that MDSC 
down-regulate IL-12 production by macrophages and increase their own production 
of IL-10 in response to signals from macrophages. This interaction between MDSC 
and macrophages polarizes classically activated (M1) macrophages toward a type 2 
immunosuppressive phenotype and accentuates the M2 phenotype of M2 macro-
phages, which is likely to establish an environment that skew CD4 +  and CD8 +  T cell 
immunity toward a tumor-promoting type 2 response [ 40 ]. 

 Under hypoxic stress and in the presence of TGF-β, CD4 +  T cells upregulate 
Foxp3 through direct binding of HIF-1 to the Foxp3 promoter region, inducing 
Treg formation [ 41 ]. Tumor hypoxia also attracts Treg inside the tumor bed by 
impacting the cytokinic profi le inside the microevironment. Facciabene et al. have 
recently reported that hypoxic stress increases the expression and secretion of 
CCL28 by tumor cells [ 9 ]. CCL28 act as a chemoattractant for Treg cells, whose 
immunosuppressive functions on CD8 +  T cells are well documented. We have also 
provided evidence that hypoxic stress, by inducing the embryonic factor Nanog in 
tumor cells, activates the expression and secretion of the immunosuppressive 
TGF-β by tumor cells by a mechanism involving at least the direct binding of 
Nanog to the TGF-B promoter. Targeting Nanog in tumor cells decreases TGF-β 
and reverses the intra-tumoral immune cell infi ltrate by increasing CD8 +  T cells 
and decreasing macrophages and Treg numbers [ 10 ]. These fi ndings connect stem-
cell-associated factors with inhibition of the immune response in the hypoxic 
tumor environment. 

 Metabolic factors are also involved in hypoxia-mediated immunosuppression. 
Tissue hypoxia increases the local concentration of extracellular adenosine that acts 
on CD8 +  (and CD4 + ) T cell A2A adenosine receptors (A2AR) causing intracellular 
AMPc accumulation and subsequent inhibition of activated T cells. The use of 
A2AR antagonists or genetic depletion of A2AR in mice challenged with tumors is 
able to inhibit or delay tumor growth [ 42 ].  

6 Hypoxia-Induced Mechanisms of Tumor Resistance to CTL-Mediated Killing



124

6.3.3     Hypoxia Infl uences Tumor Vessel Normalization 
and T Cell Migration 

 Tumor vasculature is structurally and functionally abnormal due to the 
 disequilibrium between pro- and anti-angiogenic factors within the tumors. Tumor 
vessels are leaky and tortuous with inadequate pericyte coverage and with absence 
or insuffi cient basal membrane support [ 7 ]. Blood fl ow is impaired resulting in 
decreased oxygen supply creating a hypoxic tumor microenvironment enriched 
with VEGF and other growth factors that, besides enhancing tumor progression 
and angiogenesis, modulate immune infi ltration. Indeed, CCL2 released by tumor 
cells attract monocytes that differentiate into macrophages within the tumoral tis-
sue [ 43 ]. Cancer cells that overexpress TGF-β are associated with increased TAM 
and decreased tumor-infi ltrating dendritic cells in their microenvironment [ 44 ]. 
TGF-β is also involved in tumor recruitment of Treg cells via regulation of CCL22 
production by tumor cells [ 45 ]. Within tumors, TAM are preferentially located in 
hypoxic zones of the tumors where they polarize to a an M2-like immunosuppres-
sive phenotype. Tumor hypoxia induces tumor cells to secrete CCL28 which are 
chemoattractants for Treg cells [ 9 ]. Tumor hypoxia induces the expression by 
tumor cells of transcription factors such as Nanog which, via the direct activation 
of TGF-β expression in tumor cells, favors tumor infi ltration by macrophages and 
Treg to the detriment of CD8 +  T cells [ 10 ]. In addition, the tumor microenviron-
ment affects the cell adhesion molecule expression profi le of the tumor endothe-
lium which is implicated in the preferential infi ltration of tumors by 
immunosuppressive cells. For example, ICAM-1, VCAM-1, or CLEVER-1 expres-
sions on tumor vessels have been involved in the preferential trans-endothelial 
migration of Treg cells [ 46 ]. On the other hand, infi ltrating anti-tumor T cells 
remain segregated at the tumor periphery. Margin et al., using adoptive transfer of 
GFP-labeled anti-tumor CD8 +  T cells into mice bearing tumors, have shown that 
CD8 +  T cells are located at the periphery of tumors [ 47 ], which are the less hypoxic 
zones. Blohm et al. have also shown that transferred anti-tumor CD8 +  T cells were 
at the merges of the tumor and excluded from the central avascular areas which 
were mostly colonized by Gr1 +  cells [ 48 ] (Fig.  6.4 ).  

 Targeting tumor angiogenesis using anti-angiogenic therapies results in a win-
dow whereby tumor vessels are “normalized” with increased vessel perfusion and 
decreased hypoxia, a concept proposed by Jain [ 7 ]. This normalization associates 
with better infi ltration of drugs and anti-tumor immune cells. Recently, Collet et al. 
have shown that the use of tumor cells expressing a hypoxia-driven soluble 
VEGF-R2 leads to vessel normalization, improved oxygenation of tumors, and 
tumor growth inhibition [ 49 ], refl ecting the prominent contribution of hypoxia to 
tumor progression. In a spontaneous model of insulinoma, deletion of the  Rgs5  gene 
results in normal vascular architecture in the tumoral tissue as compared to wild 
type mice, with reduced vessel leakiness, improved oxygenation, and clearly 
increased anti-tumor T cell infi ltration following adoptive transfer [ 50 ]. 
Overexpression of the histidine-rich glycoprotein (HRG) in tumor cells reduces 
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tumor growth and induces vessel normalization, which associates with a skewing of 
TAM to M1-like macrophages and an increased dendritic cell recruitment [ 51 ]. The 
use of anti-angiogenic therapy to normalize tumor vessels also decreases immuno-
suppressive cell infi ltration by reducing MDSC recruitment within the tumor bed 
and polarizing TAM to an M1-like phenotype [ 52 ].   

6.4     Hypoxic Stress and Tumor Target Plasticity 

6.4.1     Tumor Cell Heterogeneity: Cancer Stem Cells 

 Tumor growth is dependent on the presence of a subpopulation with stem-like 
 properties called cancer stem cells (CSCs) within the tumor [ 53 ]. CSC are in an 
undifferentiated state, undergo self-renewal, and when implanted in immunodefi -
cient mice are able to develop tumors and to re-establish the bulk tumoral heteroge-
neity [ 54 ]. CSC also have the property to resist conventional anti-tumor therapies 
[ 55 ], which makes them a probable cause of tumor recurrences after treatment. 

  Fig. 6.4    Infl uence of Hypoxia on the tumor cells and on innate and adaptive immune systems. 
Diverse effects of hypoxia on innate immune system (Macrophage, DC, MDSC, NK and neutro-
phil) and adaptive immune system (CTL, T reg and B cells). In general, hypoxia amplifi es the 
activity of innate immune cells while suppressing the response of the adaptive immune system.  DC  
dendritic cells,  MDSC  myeloid derived suppressor cells,  NK  natural killer cells,  CTL  cytotoxic T 
lymphocyte,  T reg  T regulatory cells. Adapted from  Noman et al., CRI 2011        
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Therefore, their eradication in the tumor is a therapeutic challenge that justifi es a 
better  understanding of their emergence and persistence in the tumoral tissue. In this 
regard, hypoxia and HIFs have been described to induce tumor cell dedifferentia-
tion towards an immature phenotype and similarly to maintain tumor cells with 
stem- cell properties [ 12 ]. Several reports show the role of hypoxia and HIFs in 
promoting a stem-like phenotype through the expression of embryonic transcription 
factors such as OCT4, SOX2, and NANOG that are required for self-renewal main-
tenance in stem cells or the activation of the Notch- signaling pathway that regulates 
cell self-renewal and differentiation [ 12 ]. A study from Jogi et al. has shown that 
culturing neuroblastoma cells under hypoxia led to an increase of neural crest gene 
expression and a decrease of neuron lineage marker expression [ 56 ]. In glioblas-
toma, Mc Cord et al. have reported that glioblastoma neurospheres under hypoxia 
show an increased proportion of CD133 +  stem-like cells and the induction of embry-
onic markers such as OCT4 and SOX2. This was associated with a selective increase 
of HIF-2α [ 57 ]. Hypoxia was reported by Chen et al. to activate the Notch signaling 
pathway in lung adenocarcinoma, which revealed to be essential since using a 
Notch-signaling inhibitor under hypoxia induced cell death [ 58 ]. However, the 
Notch pathway can also promote cell differentiation in keratinocytes and certain 
neural stem cells [ 59 ,  60 ]. This ability of hypoxia to increase the stem cell-like sub-
set inside a tumor cell population refl ects the plasticity of the CSC compartment and 
the role of micro-environmental stimuli in shaping this particular subset. 

 Some of the effects of hypoxia on tumor cell differentiation are directly mediated 
by the HIFs. Li et al. reported that targeting HIF-1α and HIF-2α in CD133 +  glioma 
stem cells decreased their survival and their tumorigenic and angiogenic potentials 
[ 61 ]. They also reported a preferential expression of HIF-2α in CD133 +  glioma stem 
cells whereas HIF-1α was present in both the stem and non-stem tumor cells and it 
needed more severe hypoxia to be stabilized. Another study using human neuro-
blastoma cells also found a selective expression of HIF-2α in an immature cell 
subset, with the induction of differentiation when targeting HIF-2α [ 62 ]. 
Overexpression of HIF-2α in non-glioma stem cells was suffi cient to induce a stem- 
cell like phenotype (sphere forming ability, and larger tumors after mice engraft-
ment) [ 63 ]. HIF-2 was also shown to directly activate the expression of SOX2 [ 64 ]. 
At a clinical level, HIF-2α expression in patients correlated with poorer prognosis. 
These fi ndings support a preferential targeting of HIF-2α for selective eradication of 
CSC without adverse effects on normal progenitor cells. HIF-1α is not outdone 
since a recent study by Wang et al. using human leukemia showed a selective activa-
tion of HIF-1α in CSC under normoxic conditions due to VHL defi ciency, and that 
blocking HIF-1α activity was able to eliminate leukemia stem cells without affect-
ing the normal hematopoietic stem cells [ 65 ]. Our laboratory has identifi ed HIF-1 as 
the inducer of NANOG expression under hypoxic stress in non small cell lung car-
cinoma and in B16-F10 melanoma cells, and NANOG contributed to the acquisition 
of stem-cell like features under hypoxic stress [ 10 ,  66 ]. These studies and others 
describe the effects of hypoxia in converting differentiated cancer cells into stem- 
like cancer cells via the expression of embryonic factors or the induction of stem 
cell properties. The tumoral expression of transcription factors associated with 
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stemness may also lead to tumor target resistance to CTL-mediated lysis. Our 
group has identifi ed hypoxia-induced NANOG as a critical molecule involved in 
resistance to CTL-mediated lysis in an HIF-1-dependent manner and by a mecha-
nism involving STAT3. Indeed, hypoxia-induced NANOG was found to be impli-
cated in the phosphorylation of STAT3 under hypoxic stress and, thereby, in its 
translocation to the nucleus [ 66 ]. Of note, the constitutive expression of NANOG 
in cervical cancer cells also mediates resistance to lysis by CTL by a mechanism 
involving Akt [ 67 ].  

6.4.2     Tumor Cell Heterogeneity: Circulating Tumor Cells 

 Circulating tumor cells (CTCs) are rare isolated cells that have shed from a pri-
mary tumor into the vasculature and invade surrounding tissues through lymphatic 
and blood vessels. CTCs are therefore believed to be responsible for dissemina-
tion from a primary tumor to reach distant sites forming metastases. The presence 
of CTCs was associated with tumor progression and metastatic disease in several 
epithelial tumors and they could be used as strong prognostic and predictive mark-
ers for patient’s clinical outcome and survival [ 68 ]. Although the relationship 
between CTCs and tumor hypoxia has not been fully investigated, it is evident that 
the hypoxic tumor microenvironment contributes both directly and indirectly to 
increased metastases by regulating the number of genes. Kallergi and colleagues 
showed that metastatic breast cancer patients’s CTCs express VEGF both at the 
mRNA and protein levels. More interestingly, double and triple staining experi-
ments on CTCs showed that VEGF co-expressed with HIF-1α and VEGF2 [ 69 ]. 
In another study, Eliane et al., using the human triple negative breast cancer cell 
line MDA-MB-231, generated orthotopic xenografts in mice that produced CTCs 
and resulted in lung metastases. These xenografts were found to be profoundly 
hypoxic and produced CTCs that were captured and cultured. They examined the 
response of CTCs and parental MDA-MB-231 cells to hypoxia (O2 levels of 
0.2 %) and compared the ability of both cell types to develop tumor xenografts 
in vivo .  These CTCs demonstrated an altered response to hypoxia compared with 
the parental MDA-MB-231 cells from which they were derived and a greater 
aggression in vivo [ 70 ]. 

 It is still unclear whether the hypoxia-driven CTCs resistant phenotype (EMT 
and CSC like) helps these cells evade the immune system. However, given that 
CTCs express EMT and CSC markers, both involved in a decreased sensitivity to 
cytotoxic immune effectors, one could expect that CTC are resistant to cell- mediated 
cell death as compared to the primary tumor from which they originate. Interestingly, 
Steiner et al showed that several CTCs exhibited mutations in key genes such as 
 KRAS  or  TP53  that could not be detected in the tumor. Gene expression analyses 
revealed both a pronounced upregulation of CD47 as a potential immune-escape 
mechanism and a signifi cant down-regulation of several other pathways. This study 
suggests that upregulated immune-escape pathway, may be responsible for survival 
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of CTCs in the circulation [ 71 ]. Moreover, as EMT and CTCs emergence are an 
interrelated process and as almost all CTCs express EMT markers, it is strongly 
suggested that CTCs are resistant tumor cells to T cell-mediated lysis. CTCs are 
reported to express survivin [ 72 ,  73 ], an anti-apoptotic protein that confers resis-
tance to cytotoxic therapies and cytotoxic effectors [ 74 ]. Survivin expression in 
CTC may, thus, promote immune escape. Whether CTCs can resist the immune 
system by using the above mentioned pathways is a very interesting and unknown 
question. The identifi cation of CTCs-immune-escape mechanisms as potential tar-
gets to disrupt the metastatic cascade in cancer is critical and a better understanding 
of the interaction between CTCs, CTLs and their microenvironment may provide 
new antitumoral targeted therapies.  

6.4.3     Tumor Plasticity: Epithelial-to-Mesenchymal Transition 

 Epithelial-to-mesenchymal transition (EMT) is a complex biological process in 
which polarized epithelial cells lose their epithelial properties while gaining pheno-
typic properties of mesenchymal cells. These include a down-regulation of the epi-
thelial (E)-cadherin expression and tight junctional proteins such as occludins, and 
increased expression levels of the mesenchymal cytoskeleton component, vimen-
tin, and/or neuronal (N)-cadherin. This phenotypic conversion generally correlates 
with increased resistance to cell death, and enhanced migratory and invasive prop-
erties. In many types of tumors, EMT is believed to be an important step toward 
local invasion and subsequent tumor dissemination through lymphatic or hematog-
enous spread, thus allowing tumor progression. Moreover, EMT may be important 
in the initiation or maintenance of a subpopulation of cancer stem cells [ 75 ]. 
Accumulating evidence now suggests that HIF factors can directly stimulate the 
expression of several E-box binding transcription factors (TFs) known to regulate 
EMT including (SNAIL, SLUG, TWIST), and the pivotal roles of these factors 
have been demonstrated in cancer cells from various tissues [ 76 ]. In addition, 
hypoxic conditions can sustain major EMT-inducing pathways such as transform-
ing growth factor-β, nuclear factor kappaB and Notch signaling pathways. This 
clearly establishes a link between hypoxia and the induction of EMT and/or main-
tenance of a mesenchymal phenotype. EMT can also provide cancer cells with the 
capacity to escape immune surveillance. Thus, immunosuppression was induced in 
melanoma cells transduced with SNAIL in a manner that seems to rely on inhibition 
of dendritic cell maturation and concomitant expansion of a population of Treg-like 
CD4 +  Foxp3+, which can result in inhibition of the cytotoxic T lymphocytes (CTL) 
lysis activity toward the cancer cells [ 77 ]. In line with this fi nding, we provided 
evidence that introduction of SNAIL in mammary carcinoma cells induces resis-
tance to CTL-mediated lysis [ 78 ]. In addition, acquisition of the EMT phenotype in 
the cells was associated with stem-like properties and activation of autophagy. In 
this respect, we found that this observed autophagic state was responsible, at least 
in part, for the reduced susceptibility to CTL-mediated lysis. Our most recent 
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analyses also identifi ed the WISP2 (WNT-1-inducible signaling pathway protein 2), 
KLF-4, miR-7 and TGF-beta  signaling as part of a regulatory network controlling 
EMT and stem-cell properties in breast cancer cells, that may be responsible for 
promoting reduced susceptibility to CTL-mediated lysis [ 79 ]. Although the link 
between hypoxia and EMT has been established, the precise molecular network and 
pathways in place have yet to be fully characterized. Clearly, future studies should 
explore further the potential relationships between these events and immune sur-
veillance during cancer progression.   

6.5     Hypoxic Stress Impairs Tumor Target Susceptibility 
Through Different Mechanisms 

6.5.1     Hypoxia Confers Resistance to Tumor Targets 
Against Effector Cell-Mediated Killing 

 Several reports have clearly demonstrated that the hypoxic tumor microenviron-
ment favours the emergence of tumor variants with increased metastatic and inva-
sive potentials [ 80 ]. HIF’s, mostly HIF-1α, play a central protective role under 
hypoxic conditions [ 81 ,  82 ]. As the hypoxic tumor variants are resistant to radio-
therapy and chemotherapy, one might postulate that the exposure to low levels of 
oxygen may lead to adaptive responses allowing tumor cells to escape from immune 
surveillance. Fink and colleagues reported the inhibition of Natural Killer (NK) 
cytotoxicity toward liver cell lines under hypoxic conditions [ 83 ]. Hypoxia contrib-
utes to tumor cell shedding of MHC class I chain-related molecule (MIC) through a 
mechanism involving impaired nitric oxide (NO) signalling [ 84 ]. Thus, hypoxia is 
able to confer tumoral cell resistance to effector cell cytotoxicity. 

 Since hypoxia is a common feature of solid tumors and one of the hallmarks of 
tumor microenvironment, we asked whether hypoxia confers tumor resistance to 
CTL-mediated killing. We have shown that hypoxic exposure of tumor cells (lung 
cancer, melanoma and breast cancer) inhibits the CTL clone-induced autologous 
target cell lysis [ 85 ]. Such inhibition correlates with HIF-1α induction. While 
hypoxia had no effect on p53 accumulation, it induced the phosphorylation of 
STAT3 in tumor cells by a mechanisms at-least in part, involving VEGF secretion. 
Interestingly, the observed lysis inhibition was not associated with an alteration of 
CTL reactivity and tumor cell recognition indicating that tumor-induced priming of 
the autologous CTL clone was not affected after exposure of tumor target cells to 
hypoxia. 

 STAT3 contributes to malignant transformation and progression by regulating 
genes involved in proliferation, survival, self-renewal, invasion, angiogenesis and 
immune evasion [ 86 ,  87 ]. STAT3 is a critical modulator of the cross-talk between 
tumor and immune cells within the solid tumor microenvironment [ 88 ]. A STAT3 
small molecule inhibitor has been reported to reverse immune tolerance in  malignant 
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glioma patients [ 89 ]. Another STAT3 inhibitor, sunitinib, positively changed the 
immunosuppressive phenotype in RCC tumors [ 90 ]. More interestingly, sunitinib 
malate, a receptor tyrosine kinase inhibitor, could reverse MDSC-mediated immune 
suppression and modulate the tumor microenvironment by increasing higher per-
centage and infi ltration of CD8 and CD4 cells, thereby improving the effi cacy of 
immune-based therapies [ 91 ]. 

 While numerous fi ndings provided compelling evidence that a causal relation-
ship exists between the signal transducer and activator of transcription (STAT3) 
activation and HIF-1α dependent angiogenesis, their relationship in regulating 
tumor cell susceptibility to CTL-mediated specifi c lysis under hypoxic conditions is 
not yet known [ 8 ]. Interestingly, gene silencing of STAT3 by siRNA resulted in 
HIF-1α inhibition and a signifi cant restoration of target cell susceptibility to CTL- 
induced killing under hypoxic conditions by a mechanism involving, at least in part, 
the down-regulation of AKT phosphorylation. Moreover, knock down of HIF-1α 
resulted in the restoration of target cell lysis under hypoxic conditions. This was 
further supported by DNA microarray analysis whereby STAT3 inhibition resulted 
in a partly reversal of the hypoxia-induced gene expression profi le [ 85 ]. 

 These above results suggest a new role for hypoxia-dependent activation of 
STAT3 in tumor resistance to the immune system [ 85 ]. The proposed role for STAT3 
suggests that the effect of hypoxic induction of STAT3 extends beyond its critically 
important role in controlling cell survival and apoptosis. This points to the potential 
role of STAT3 in tumor adaptation induced by hypoxia. Our data suggested a new 
role for hypoxia-dependent induction of HIF-1 and activation of STAT3 in tumor 
resistance to the immune system [ 85 ]. Our studies have demonstrated that the con-
comitant hypoxic induction of pSTAT3 and HIF-1α are functionally linked to the 
alteration of NSCLC target susceptibility to CTL-mediated killing. This emphasizes 
that a better understanding of the tumor behavior and its interplay with the killer 
cells in the context of the complexity and plasticity of an hypoxic microenvironment 
will be a critical determinant in a rational approach to tumor immunotherapy. 
Although resistance of tumor targets to killer cells is likely to be regulated by mul-
tiple factors [ 92 ], we believe that the hypoxic microenvironment is a key determi-
nant involved in the control of target sensitivity to CTL-mediated lysis. Therefore, 
the possibility that novel approaches targeting HIF-1α and STAT3 with potent small 
molecule drugs, being actively developed, may provide an exciting novel approach 
for cancer immunotherapy.  

6.5.2     Hypoxia-Induced Autophagy Renders Tumor Cells 
Resistant to Anticancer Therapies Including Effector 
Cell-Mediated Killing 

 It is now well established that hypoxia, through HIF induction, regulates a plethora 
of genes involved in several biological processes to allow survival and to re- establish 
a normal oxygen supply. Thus, autophagy is an important pathway activated under 
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hypoxic stress allowing tumor cell adaptation and survival by acting as a catabolic 
process crucial for cellular homeostasis and maintenance of cell integrity [ 93 ,  94 ]. 
It is also well established that autophagy can act as either a tumor suppressor or a 
tumor promoter. The different roles of autophagy in cancer cells seem to depend on 
the tumor type, stage, and genetic context. Indeed, autophagy clearly suppresses the 
initiation and development of tumors [ 95 ], however, it is considered as a key sur-
vival pathway in response to stress, and many established tumors require autophagy 
to survive. 

 Briefl y, autophagy is a degradation mechanism of cell components which allows 
the recycling of essential amino acids, nucleotides, and fatty acids necessary for 
energy and macromolecule biosynthesis [ 96 ,  97 ]. The autophagic degradation pro-
cess occurs in double-membrane vesicles called autophagosomes. These autopha-
gosomes sequester organelles damaged proteins and cytoplasmic contents to deliver 
them to lysosomes for degradation [ 98 ]. 

 The mechanisms by which hypoxia activates the autophagy pathway in cancer 
cells are currently well defi ned. Briefl y, HIF-1 induces the expression of the atypical 
BH3-only proteins the Bcl-2/E1B 19 kDa-interacting protein 3 (BNIP3/BNIP3L) 
which are capable of triggering autophagy by displacing Beclin1 from Bcl-2/Beclin1 
or Bcl-XL/Beclin1 complexes. Subsequently, free Beclin1 can thus induce autoph-
agy (Fig.  6.5 ) [ 99 ,  100 ]. Recently it has been shown that, in several human cancer 
cell lines, hypoxia increased the transcription of the essential autophagy genes, 
namely, the microtubule-associated protein 1 light chain 3beta ( MAP1LC3B ) and 
autophagy-related gene 5 ( ATG5 ) through the transcription factors ATF4 and CHOP, 
respectively, which are regulated by the PKR-like ER kinase (PERK, also known as 
EIF2AK3). MAP1LC3B and ATG5 are not required for the initiation of autophagy 
but mediate phagophore expansion and autophagosome formation which are the 
major steps in the autophagy fl ux. It has been proposed that the transcriptional 
induction of MAP1LC3B replenished MAP1LC3B protein that was turned over 
during extensive hypoxia-induced autophagy. Furthermore, pharmacological inhibi-
tion of autophagy sensitized human tumor cells to hypoxia, reduced the fraction of 
viable hypoxic tumor cells, and sensitized xenografted human tumors to irradiation. 
Therefore, UPR is an important mediator of the hypoxic tumor  microenvironment 
and that it contributes to resistance to treatment through its ability to facilitate 
autophagy [ 101 ]. Autophagy is not only involved in tumor resistance to irradiation 
but also plays a critical role in chemo- and immune-therapy [ 102 ]. Collectively, 
these studies strongly argue that autophagy is an important mediator of the hypoxic 
tumor microenvironment and that it contributes to resistance to treatment.  

 The relationship between hypoxic stress, autophagy and specifi c cell-mediated 
cytotoxicity remains unknown. We have shown that hypoxia-induced resistance of 
lung tumor to CTL-mediated lysis was associated with autophagy induction in tar-
get cells. In turn, this correlated with STAT3 phosphorylation on tyrosine 705 resi-
due (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA 
targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 (via inhibition 
of Src kinase) and restoration of hypoxic tumor cell susceptibility to CTL-mediated 
lysis. Autophagy-induced pSTAT3 and pSrc regulation appeared to involve the 
Ubiquitin Proteasome System (UPS) and p62/SQSTM1.  
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6.5.3     Blocking Hypoxia-Induced Autophagy in Tumors 
Promotes Regression 

 Of more interest, in vivo experiments using B16F10 melanoma tumor cells  indicated 
that depletion of beclin1 resulted in an inhibition of B16F10 tumor growth and 
increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by 

  Fig. 6.5    Model of pSTAT3 regulation by hypoxia-induced autophagy in tumor cells. Hypoxic 
stress leads to the accumulation of HIF-1a. By an as yet undefi ned mechanism, HIF-1a increases 
the level of phospho-Src, which subsequently phosphorylates STAT3 at the Tyr705 residue. As 
HIF-target gene products, BNIP3 and BNIP3L are transcriptionally upregulated and compete with 
the BECN1-BCL2 complex. This competition releases BECN1 from the complex and then acti-
vates the autophagic machinery by recruiting several autophagic proteins including ATG5. As an 
autophagic substrate, SQSTM1/p62 is degraded in the autophagosomes following their fusion with 
lysosomes. In view of the fact that SQSTM1/p62 is involved in targeting pSTAT3 to the UPS, its 
degradation leads to the accumulation of pSTAT3 in cells. In autophagy-defective cells, SQSTM1/
p62 is no longer degraded, and its accumulation accelerates the UPS-dependent degradation of 
pSTAT3. Adapted from  Noman et al., Autophagy 2012        
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hydroxychloroquine (HCQ) in B16F10 tumor bearing mice and mice vaccinated 
with the TRP2 peptide dramatically increased tumor growth inhibition. Collectively, 
the current study establishes a novel functional link between hypoxia-induced 
autophagy and the regulation of antigen specifi c T cell lysis and points to a major 
role of autophagy in the control of in vivo tumor growth [ 8 ]. Beside its function as 
a protein degradation process, recent evidence points for a novel role of autophagy 
in innate and adaptive immunites [ 103 ]. Indeed, the autophagy pathway can modu-
late key steps in the development of adaptive immunity. In this context, it has been 
proposed that autophagy regulates the development and survival of lymphocytes as 
well as the modulation of antigen processing and presentation [ 104 ]. Autophagy 
induction in target cells also increases their potential to serve as immunogens for 
dendritic cell cross-presentation to CD8 +  T cells. Furthermore, the autophagy path-
way can also modulate the selection and survival of some CD4 +  T cells in the thy-
mus [ 105 ]. However, much still remains to be learned about the relationship 
between hypoxia-induced autophagy and the tumor immunotherapy. Obviously, 
targeting autophagy in hypoxic tumor cells may have a major impact on the cancer 
immunotherapy.  

6.5.4     Role of Hypoxia-Regulated MicroRNA’s in the Fine 
Tuning of the Hypoxic Response 

 MicroRNA’s (miRNA’s) are about 18–24 nucleotides, small non-coding RNAs. 
They negatively regulate mRNA expression by repressing translation or directly 
cleaving the targeted mRNA [ 106 ]. Over the past few years, the role of miRNA has 
expanded from their functions in the development of round worms to ubiquitous 
regulator implicated in several critical processes, including proliferation, cell death 
and differentiation, metabolism and, importantly, tumorigenesis [ 107 ]. 

 Hypoxia, as an essential component of the tumor microenvironment, is capable 
of stabilizing transcription factor HIF-1α which, in turn, is capable of regulating its 
target genes (classical pathway of response to hypoxia), but also a lot of microRNA’s 
(new pathways of response to hypoxia). These microRNA’s regulated by hypoxia 
are known as Hypoxia regulated microRNA’s (HRM). These HRM are capable of 
repressing the expression of different target genes, thereby, infl uencing important 
processes in tumor development like angiogenesis, cell survival and cell death 
[ 108 ,  109 ]. Recently it has been shown that certain HRM are capable of affecting 
HIF1α expression [ 110 ]. Among these HRM, miR-210 is the only miRNA consis-
tently upregulated in both normal and transformed hypoxic cells and it is also gener-
ally recognized as a robust HIF target [ 111 ]. Mir-210 has been considered as an 
in vivo marker of tumor hypoxia [ 112 ]. Mir-210 has been correlated positively to 
poor patient’s prognosis in head and neck cancers and mir-210 has been detected in 
the serum of breast cancer patients [ 113 – 115 ]. Mir-210 also participates in the 
hypoxic response of endothelial and neuronal cells [ 116 ]. MiR-210 has been fre-
quently reported as the master regulator of the tumor hypoxic response [ 108 ,  109 ]. 
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However, a signifi cant number of additional miRNAs have also been linked to the 
cellular response to hypoxia. Although the role of miR-210 in tumorigenesis, angio-
genesis, mitochondrial metabolism, cell survival and DNA repair has been well 
characterized [ 108 ,  109 ], its role in the immune response remains unknown. Of 
particular interest is its role in the regulation of tumor susceptibility to antigen spe-
cifi c killer cells. 

 We have reported the defi nition of miR-210 as a microRNA regulated by hypoxia 
in lung cancer and melanoma, documenting its involvement in blunting the suscep-
tibility of tumor cells to lysis by antigen-specifi c cytotoxic T lymphocytes (CTL). 
MiR-210 was induced in the hypoxic zones of human tumor tissues. Its attenuation 
in hypoxic cells signifi cantly restored susceptibility to autologous CTL-mediated 
lysis, independent of tumor cell recognition and CTL reactivity. A comprehensive 
approach using transcriptome analysis, argonaute protein immunoprecipitation and 
luciferase reporter assays revealed that the genes  PTPN1 ,  HOXA1  and  TP53I11  
were miR-210 target genes regulated in hypoxic cells. In support of their primary 
importance in mediating the immunosuppressive effects of miR-210, coordinate 
silencing of PTPN1, HOXA1 and TP53I11 dramatically decreased tumor cell sus-
ceptibility to CTL-mediated lysis. These fi ndings show how miR-210 induction 
links hypoxia to immune escape from CTL-mediated lysis, by providing a 
 mechanistic understanding of how this miRNA mediates immunosuppression in 
oxygen- deprived regions of tumors where cancer stem-like cells and metastatic 
cellular behaviors are known to evolve. More importantly, the increased expression 
of miR- 210 also correlates with the improved survival of transplanted mesenchy-
mal stem cells (MSC) in a rat model. By downregulating caspase-8-associated pro-
tein 2 (CASP8-AP2), a pro-apoptotic regulator of Fas-mediated apoptosis, miR-210 
protects MSC from cell death. At last mir-210 is capable of regulating several cel-
lular processes by regulating the expression of genes involved in angiogenesis, cell 
cycle, cell survival and tumor initiation [ 111 ]. In summary, miR-210 plays a crucial 
role in mediating the cellular response to hypoxia resulting in a better adaptation of 
hypoxic cells to the tumor microenvironment. Manipulating miR-210 within the 
tumor microenvironment may therefore lead to novel diagnostic and therapeutic 
approaches. 

 The mechanisms depicted in III, IV, and V sections are summarized in Fig.  6.3 .   

6.6     Targeting Hypoxia to Improve Current 
Immunotherapy Approaches 

 Immunotherapeutic strategies aimed at triggering or enhancing anti-tumor immu-
nity are at present disappointing due to diverse tumor escape mechanisms from 
immunosurveillance [ 117 ,  118 ]. It has been well established now that tumor-derived 
changes to the patient’s immune system may infl uence anti-cancer responses and 
favour tumor growth. There are increasing indications that tumor stroma including 
hypoxia plays a crucial role in the control of immune protection and contains many 
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overlapping mechanisms to maintain tumor functional disorder and evasion of 
antigenic- specifi c immunotherapy. Therefore, in parallel to the efforts oriented 
towards the identifi cation of potential candidate antigens for vaccination, closer 
attention should be paid to the complexity of the tumour ecosystem in deviating the 
functions of tumour infi ltrating cells. It seems obvious that more could be achieved 
by combining therapies that tackle malignancies from multiple angles, with the 
tumor microenvironment conditioned to support a powerful effector arm generated 
by immunotherapy. Tumor immunotherapy in the clinic has not taken it into account 
the hypoxic microenvironment and its impact on the therapeutic outcome. Because 
hypoxia-inducible factor (HIF) was recently shown to regulate the tumorigenic 
capacity of tumor and cancer stem cells under hypoxic conditions [ 61 ], further 
investigation is required to demonstrate if HIF-1 is prevalent enough in human can-
cer to be a general target. A number of anticancer drugs have been shown to inhibit 
HIF’s, which interfere with a range of processes including HIF-1α mRNA produc-
tion (e.g. aminofl avone), HIF-1α protein synthesis (e.g. rapamycin), HIF-1α protein 
stabilization (e.g. HSP90 inhibitors, pleurotin), HIF-1α/HIF-1β dimerization (e.g. 
acrifl avine), HIF-DNA binding (e.g. echinomycin), HIF transactivation (e.g. bort-
ezomib), HIF-1α protein expression (e.g. wortmannin), and HIF-1α activity (bort-
ezomib) [ 18 ,  119 ]. However, none of these drugs have been shown to specifi cally 
target HIF-1α. We believe that pharmacologic manipulation of hypoxic signaling 
will result in increased effector T cells, improve vaccine effi cacy, and in general 
improving anti-tumoral immunotherapy. Whether the suppression of hypoxia may 
be a promising strategy that is selective for facilitating immunotherapeutic effi cacy 
in cancer patients is at present being investigated.  

6.7     Conclusion 

 Hypoxia is a key component of the tumor microenvironment and represents a well 
admitted source of therapeutic failure in clinical oncology. Accumulating data sug-
gest that a hypoxic microenvironment promotes the acquisition of tumor resistance 
to cell death and protects cancer cells from antitumor immune attack by multiple 
overlapping mechanisms. The tremendous progress in our knowledge of the molec-
ular mechanisms underlying tumor hypoxia will certainly provide new opportuni-
ties to better understand and target the tumor microenvironment. At present, one 
challenge in cancer immunology is how to shape the microenvironment to promote 
T cell traffi cking and overcome immunosuppression. We believe that a better 
knowledge of the key suppressive mechanisms associated with the hypoxic tumor 
microenvironment should provide the means to tailor treatments and develop new 
combinatorial therapeutic strategies. Therefore, targeting tumor hypoxia and its 
associated pathways should be a new strategy to better control the emergence of 
resistant tumor variants and ensure more effective cancer therapies. We believe that 
a better knowledge of the key suppressive mechanisms associated with the hypoxic 
tumor microenvironment should provide the means to tailor treatments and develop 
new combinatorial therapeutic strategies for immunotherapy.     
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    Chapter 7   
 Mechanisms and Modulation of Tumor 
Microenvironment-Induced Immune 
Resistance 

             Tuna     Mutis     ,     Niels     W.  C.  J.     van de     Donk    , and     Richard     W.  J.     Groen   

    Abstract     In the quest for developing more effective immune therapy strategies for 
cancer, to date, unraveling and successful modulation of the mechanisms of tumor 
escape in the microenvironment became an urgent challenge. While immune sup-
pression is considered an important mode of immune escape, this overview will 
deal with another important mechanism of immune escape in the tumor microenvi-
ronment: the microenvironment-regulated resistance of tumor cells toward the cyto-
toxic machinery of immune effector cells. We have recently studied the impact of 
the microenvironment to the development of immune resistance in multiple 
myeloma (MM) and will outline the backgrounds and current knowledge about the 
mechanisms and modulation of this type of immune escape.  
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7.1          Introduction 

    Eradication of malignant cells through the cytotoxic machinery of immune cells 
such as cytotoxic T cells (CTLs) and natural killer (NK) cells is the ultimate aim of 
cellular immunotherapy of cancer. Starting from the early applications of allogeneic 
stem cell transplantation, followed by successful donor lymphocyte infusions, clini-
cians and immunologists have witnessed and appreciated the potential power of 
cellular immunotherapy in the battle of hematological and non-hematological 
malignancies [ 1 ]. Over the past two decades, the rapid identifi cation of tumor- 
associated antigens [ 2 ,  3 ], development of new technologies such as T cell receptor 
(TCR)-gene transfer [ 4 ] and recently the remarkable successes of virus-specifi c 
T cells [ 5 ], tumor infi ltrating lymphocytes (TIL) [ 6 ] and chimeric antigen receptor 
(CAR)-engineered T cells [ 7 – 9 ] in the treatment of various hematologic cancers, 
have elevated cancer immunotherapy to a new level, with high expectations. 
Nonetheless, despite the optimal activation and infi ltration of abundant numbers 
of tumor-reactive CTLs or NK cells at tumor sites, human cancers, mainly due to 
genetic heterogeneity as well as micro-environmental infl uences, display various 
mechanisms to evade the immune attack [ 10 ,  11 ]. To date, the unraveling and the 
successful modulation of the mechanisms of tumor escape in the microenvironment 
became the most urgent challenges to achieve the next level of success in the immu-
notherapy of cancer [ 12 ,  13 ]. 

 Currently, most scientists consider immune suppression as the main mechanism 
of immune escape in the tumor microenvironment [ 14 – 17 ]. There is, indeed, a 
large body of evidence that the tumor microenvironment is a suppressive infl am-
matory niche [ 18 ,  19 ], with the presence of several immune suppressive soluble 
factors, such as IDO, Arginase, INOS or TGF-β [ 20 – 22 ], secreted either from 
tumor cells [ 23 ], accessory cells (vascular endothelium, stromal cells, fi broblasts) 
[ 24 ] or from suppressive immune cells such as regulatory T cells [ 25 ], tumor asso-
ciated macrophages [ 26 ], and myeloid derived suppressor cells [ 27 ,  28 ], many of 
which are recruited or induced in the microenvironment through crosstalk with 
tumor cells and tumor stroma [ 29 ]. This immune suppressive milieu also involves 
the strong upregulation of the immune checkpoint molecules PD1 on T cells and 
PD-L1/2 on tumor cells [ 30 – 35 ], and in some reported cases through interaction 
with stroma [ 36 ]. 

 This chapter will, however, deal with another, entirely distinct mechanism of 
immune escape in the tumor microenvironment: the microenvironment-regulated 
resistance of tumor cells toward the cytotoxic machinery of immune effector cells. 
This resistance of tumor cells against cytotoxic attack, although extensively docu-
mented in the melanoma setting, and may be as important as “immune suppres-
sion”, has not received suffi cient attention yet, probably because it has not been seen 
as a microenvironment-mediated phenomenon. We have recently studied the impact 
of the microenvironment to the development of immune resistance in multiple 
myeloma (MM) and will outline below the backgrounds and current knowledge 
about the mechanisms and modulation of this type of immune escape.  
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7.2     MM the Model for Investigating the Role 
of the Microenvironment in Human Cancers 

 MM is the malignant disorder of antibody producing clonal plasma cells [ 37 ]. It is 
the second most common hematological malignancy worldwide. Despite four excit-
ing decades of drug development, MM remains incurable by chemotherapy due to 
the induction of drug resistance [ 38 ,  39 ]. Although experimental and clinical studies 
indicate the immune competence of MM cells and possibility to treat the disease 
with cellular immunotherapy [ 40 – 42 ], the overall outcome of allo-SCT, DLI or 
other experimental immunotherapies in MM is at most moderate, underscoring the 
ability of MM cells to evade the cellular immune attack. 

 Traditionally, the biology of MM and its therapy-response is studied prefera-
bly in the context of the microenvironment [ 43 – 46 ] because MM, especially in 
the initial phases of the disease, is entirely dependent on its natural habitat, the 
bone marrow (BM). Over the past decades, it has been extensively documented 
that the BM provides MM cells an ideal sanctuary by the production of several 
survival cytokines such as IL-6 and IL-8, VEGF, SDF-1 and many others, and by 
interactions of MM cells with extracellular matrix and BM accessory cells, in 
particular with stromal cells (BMSCs) and vascular endothelial cells (VECs) [ 47 , 
 48 ]. In fact, once taken out of this natural niche, primary human MM cells rap-
idly die, and are very diffi cult to engraft even in the BM of immune defi cient 
mice [ 49 – 51 ].  

7.3     Importance of the Tumor Microenvironment 
in Drug Resistance 

 Investigations aiming at understanding the molecular basis of drug resistance of 
MM have demonstrated that the many soluble factors produced in the BM micro-
environment not only provide proliferative and survival signals to MM cells, but 
also -individually or collectively- contribute to the development of drug resistance 
[ 52 ]. Perhaps, more important is the induction of drug resistance through the 
(integrin- mediated) adhesion of MM cells to BMSCs and VECs. This type of envi-
ronmentally, thus epigenetically, regulated drug resistance, which is generally 
known as “Cell Adhesion-Mediated Drug Resistance” (CAM-DR), has originally 
been demonstrated for MM cells in the late nineties [ 53 ], and has subsequently 
been described also for several other hematological and non-hematological malig-
nancies [ 54 – 58 ]. While integrins were initially shown to play a key role in this type 
of drug resistance, another important molecule appears to be NOTCH [ 59 – 61 ]. The 
relation of this environmentally regulated drug resistance with immune resistance 
will become obvious upon outlining the molecular nature of both types of resis-
tance mechanisms.  
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7.4     The Apoptotic Pathways: Immune Resistance 
Meets Drug Resistance 

 Studies have shown that the molecular basis of CAM-DR is the cell 
 adhesion- dependent triggering of a complex series of signaling events resulting in 
the transcriptional or posttranscriptional regulation of intracellular molecules 
involved in apoptotic signaling for programmed cell death [ 45 ,  46 ]. This ability of 
the microenvironment to modulate apoptotic pathways was, in fact, for us a major 
reason to start studying the relation of the microenvironment with immune resis-
tance, because not only drugs, but also cytotoxic immune cells kill the tumor cells 
via the induction of apoptosis. 

 In general terms, apoptosis involves a complex cascade of molecular events that 
can be initiated inside the cell or by external dead signals. Accordingly, two main 
apoptotic pathways have been described: the intrinsic or mitochondrial pathway and 
the extrinsic or death receptor pathway [ 62 ,  63 ] (Fig.  7.1 ). Several pro-apoptotic 
anticancer drugs are designed for activating either of these pathways [ 64 – 71 ]. While 
immune cells can trigger the extrinsic death receptor pathway [ 72 ], a major mecha-
nism of tumor cell lysis by CTLs and NK cells is the apoptosis induced by the 
degranulation of granzyme/perforin from the cytotoxic granules upon engagement 
with the target cells [ 73 ]. This specifi c mechanism has traditionally been defi ned as 
a separate pathway, although it is also initiated by external signals. As will be out-
lined below, more important is the considerable overlap between these pathways. 
All three signaling pathways eventually converge and mediate the execution phase 
of apoptosis via the activation of caspase-3. Hence, although immune cells may in 
some cases kill drug resistant tumor cells, specifi c drug resistance mechanisms may 
overlap with immune resistance mechanisms, with potentially important clinical 
consequences.   

7.5     The Modulation of Intrinsic, Extrinsic and Granzyme/
Perforin Mediated Pathways of Apoptosis by 
the Microenvironment 

 The intrinsic apoptosis pathway, which involves mitochondrial depolarization, is 
initiated with the activation of pro-apoptotic proteins BAX and BAK, by BIM and 
BID, respectively [ 74 ] (Fig.  7.1 ). Oligomers or multimers of activated BAX and 
BAK engage with the mitochondrial membrane [ 75 ], induce the formation of 
mitochondrial pores and cause the release of cytochrome-c and SMAC/Diablo 
from the mitochondria into the cytosol [ 76 ]. By binding to the APAF-1 protein, 
cytochrome- c generates a large cytoplasmic complex, the apoptosome [ 77 ]. This 
complex binds and activates caspase-9, which in turn can activate several execu-
tioner caspases including the caspase-3 [ 78 ]. Several members of the BCL-2 fam-
ily of proteins are important regulators of this pathway. Briefl y, the mitochondrial 
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  Fig. 7.1    Apoptotic pathways activated by immune effector cells (CTLs/NK cells) and their regu-
lation by the microenvironment. The simplifi ed scheme demonstrates the key molecules and the 
overlap between the intrinsic, extrinsic and granzyme pathways of apoptosis. Also note the conver-
gence of these pathways at the level of caspase 3 (Cas-3). The molecules that are known to be 
modulated by the stroma-tumor interactions are indicated with  red  (downregulated) and  green  
(upregulated) boxes.  Cas-3  caspase 3,  Cas-8  caspase 8,  Cas-9  caspase 9,  Cyt-C  cytochrome C, 
 Gr-B  granzyme B       
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membrane- associated BCL-2, BCL-2A1, BCL-W BCL-XL and MCL-1 proteins 
protect the cells form apoptosis by inhibiting the oligomerization of BAX and 
BAK. In contrast, the other members, such as PUMA and NOXA, improve the 
oligomerization of BAX and BAK via competitive binding to the former anti-
apoptotic members of the BCL-2 family of proteins [ 79 ]. It has been extensively 
demonstrated that the mediator and regulatory molecules of the intrinsic pathway 
are signifi cantly infl uenced by stroma-derived soluble factors and adhesion. For 
instance, IL-6, through activation of STAT3 upregulates the transcription of 
BCL-XL [ 80 ], induces adhesion of MM cells to stroma, downregulates BIM [ 81 , 
 82 ] and BAX [ 83 ] and upregulates the anti-apoptotic BCL-2 proteins [ 83 ], espe-
cially of MCL-1 [ 44 ,  84 ]. Upregulation of MCL-1 and BCL-2 importantly contrib-
utes to drug resistance in MM, acute myeloid leukemia and B-cell acute 
lymphoblastic leukemia [ 85 ,  86 ]. Several studies indicate that not only integrins 
but also Notch signaling can have a major impact on the protection of tumor cells 
from apoptosis via modulation of the intrinsic pathway [ 59 – 61 ]. 

 The signaling of the extrinsic apoptosis pathway involves the triggering of the 
tumor necrosis factor (TNF) family of death receptors including FAS (CD95), TNF- 
related apoptosis-inducing ligand-receptor 1 (TRAIL-R1), TRAIL-R2 and TNF 
receptor apoptosis-mediating protein (TRAMP). CTLs, especially of the CD4+ 
phenotype, frequently trigger FAS to activate the extrinsic pathway [ 87 – 93 ]. 
Triggering of death receptors activates FADD and then caspase-8, which in turn 
either directly activates caspase-3 or cleaves BID to signal via the intrinsic pathway 
[ 94 ]. In this pathway, the FLICE-like inhibitory protein FLIP can inhibit recruit-
ment and activation of caspase-8. Soluble factors produced by BMSCs have been 
shown to upregulate FLIP expression [ 95 ]. In addition, integrin-mediated adhesion 
inhibits activation of caspase-8 due to increased cellular redistribution of FLIP [ 96 ]. 
In addition, we have recently shown that MM cell-stroma interactions signifi cantly 
downregulates MM cell surface FAS expression [ 97 ]. 

 Finally, the Granzyme/perforin pathway, which is exclusively utilized by CTLs 
and NK cells, is initiated by the degranulation of the preformed cytotoxic granules 
containing granzymes, perforin and serglycin into the immune synapse upon 
engagement of immune effector cells with target cells. Perforin, with its complement- 
like structure, generates membrane pores in the target cell to enable the cytotosolic 
entry of granzymes, which are the key molecules to induce signaling for cytotoxic 
cell-mediated apoptosis [ 98 ]. Among the 12 granzymes described until now, the 
granzyme B is the most abundantly present one in cytotoxic granules. It cleaves 
proteins after aspartate residues and can directly activate caspase-3 to trigger apop-
tosis. But, similar to caspase 8, granzyme-B can also trigger the intrinsic pathway 
of apoptosis through the activation of BID [ 98 ]. This clear overlap between the 
intrinsic pathway and granzyme-mediated lysis may have important consequences: 
for instance, melanoma cells that have been made resistant to CTL killing display 
signatures for hyperactivation of the NF-κB pathway, and overexpression of BCL-2, 
BCL-XL, and MCL-1 [ 99 ]. In fact, the effi cacy of (CAR) T cell therapy can be 
signifi cantly upregulated by inhibition of BCL-2 family of proteins [ 100 ,  101 ]. 
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Thus the above described microenvironment-mediated drug resistance mechanisms 
of intrinsic pathway, may very well infl uence the outcome of CTL therapy. 

 In human cells, granzyme B can be inhibited by the proteinase inhibitor-9 (PI-9) 
[ 102 ]. The expression levels of this molecule in pediatric ALL cells correlate with 
their resistance against immune cell mediated lysis [ 103 ]. In the clinical setting, 
PI-9 expression is an important predictor of disease-free survival in melanoma 
patients treated with immunotherapy [ 104 ]. Interestingly, PI-9 gene expression can 
be induced by NF-κB signaling [ 105 ] as well as by hypoxia [ 106 ], which is a typical 
feature of the bone marrow microenvironment and has been shown to induce resis-
tance against NK mediated lysis of MM cells [ 107 ]. 

 Since all major apoptotic pathways converge at the level of caspase-3 activation, 
the (microenvironment-mediated) signals that regulate the activity of this execu-
tioner caspase may contribute to the development of both immune- and drug resis-
tance. A specifi c group of molecules that regulates the activation of caspases is the 
IAP family of proteins [ 108 – 110 ]. XIAP, one of the best characterized IAPs, inhib-
its the activity of caspase-3, -7, and -9. Survivin (BIRC5), another well-known IAP, 
is frequently expressed in human tumor cells, and inhibits caspase-3 and -7. The 
activities of these molecules can be controlled, in turn, by the proapoptotic protein 
SMAC/Diablo, which is released upon mitochondrial depolarization [ 111 ,  112 ]. 
IAPs are indeed important in mediating both drug and immune resistance: for 
instance, in a recent study, cis-platinum resistant human ovarian cancer cells were 
found less susceptible toward NK-cell mediated killing than the parental cells partly 
due to the upregulation of cIAP-1 and -2 [ 113 ], Also survivin-3B, an alternative 
splice variant of survivin, was recently associated with chemotherapy resistance as 
well as with resistance to FAS-mediated immune cell toxicity [ 114 ]. Taken together, 
these and some earlier studies [ 115 ] demonstrate that drug resistance mechanisms 
show substantial overlap with the documented mechanisms of immune resistance. 
Unfortunately, however, the impact of the microenvironment on the induction of 
immune resistance has not been widely studied, except for MM. 

 The fi rst indirect evidence for the microenvironment-mediated immune resis-
tance in MM was provided by a study in which BM stroma conferred resistance to 
Apo2 ligand/TRAIL induced lysis in part by regulating c-FLIP [ 95 ]. In this case, 
soluble factors were found responsible for immune resistance. Using mainly an 
in vitro co-culture system, which was originally developed to study BMSC-induced 
drug resistance [ 44 ], we and other investigators have recently questioned whether 
the BM microenvironment can also cause a CAM-DR like immune resistance. 
Indeed, MM cells were protected against NK cells by co-culture with autologous 
BMSCs [ 116 ]. Subsequently, we have reported in vitro and in vivo evidence that 
MM cells are protected from CD4+ and CD8+ CTL-mediated lysis upon direct cel-
lular interactions with VECs and BMSCs derived either from MM patients or from 
healthy individuals [ 97 ]. In our study, the protection of MM cells by accessory cells 
could be observed in the absence of immune suppression; hence, analogous to 
CAM-DR, we designated this type of cell adhesion-mediated immune resistance as 
CAM-IR. In further analysis, we discovered that MM cell-stroma interactions sig-
nifi cantly downregulated MM cell FAS surface expression, but correction of FAS 
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expression by bortezomib, did not entirely abrogate CAM-IR. By contrast, 
 upregulation of survivin/MCL-1 appeared a central mechanism of CAM-IR, since 
we could entirely neutralize the immune resistance, in vitro as well as in a recently 
developed MM model in vivo [ 51 ], by combining T cells with the small molecule 
YM155, a suppressant of survivin and MCL-1 [ 117 ,  118 ]. Although we have not 
elucidated the entire mechanisms of CAM-IR yet, we have observed that CAM-IR, 
like CAM-DR, can be inhibited by interfering with integrin binding on intact cells, 
but unlike CAM-DR, cannot be induced by sole binding of MM cells to fi bronectin, 
vitronectin, or laminin. Signals initiating CAM-IR are therefore most likely trig-
gered by the collective action of integrins with other receptor-ligand systems. 
A possible candidate is the NOTCH signaling pathway, since we have recently 
observed that CAM-IR could also be abrogated by inhibition of the NOTCH path-
way by gamma secretase inhibitors (GSI) (unpublished observations).  

7.6     Towards the Design of Immune-Chemotherapy 
Strategies to Overcome Microenvironment-Mediated 
Immune Resistance 

 Our fi ndings as well as evidence provided from other studies underscore the notion 
that the interactions between tumor cells and the cells of the microenvironment can 
induce resistance toward the cytotoxic machinery of immune cells through upregu-
lation of anti-apoptotic molecules such as survivin, BCL-2 and MCL-1. Thus, suc-
cessful anti-tumor immunotherapy may rely not only on eliminating the immune 
suppressive factors from the microenvironment, but also on modulation of the 
mechanisms that induce or mediate immune resistance. Among several theoreti-
cally conceivable strategies, specifi c attention needs to be paid for modulating the 
target molecules/pathways without compromising T cell function. With this respect, 
neutralizing survivin/MCL-1 with YM155 is a suitable strategy as we have not 
observed any T cell compromising effects of YM155. Several other pathways such 
as the PI3-K/AKT pathway, that are activated by microenvironmental infl uences 
play important roles in tumor development, survival, proliferation and drug resis-
tance through induction of anti-apoptotic molecules [ 119 ]. The modulation of these 
pathways may be benefi cial but need to be cautiously explored as these pathways 
may also play essential roles in T cell activation. For instance, the popular MEK 
inhibitors appear to impair T cell functions and are probably not suitable candidates 
to combine with immune therapy. On the other hand, selective inhibitors of BRAF 
were shown to enhance T-cell recognition of melanoma without affecting lympho-
cyte function [ 120 ]. More practical choices may be the general regulators of epigen-
etic mechanisms, such as histone deacetylase (HDAC) inhibitors as they have been 
shown to modulate drug resistance as well as to improve CTL-mediated lysis of 
tumor cells through upregulation of death receptors [ 121 ], and downregulating 
intracellular c-IAP-2 and BCL-XL expressions [ 122 ]. 
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 Among all these choices, however, the most appealing strategies may be 
 disrupting the tumor-stroma interactions. Since T cells require integrins to generate 
a proper immune synapse, targeting integrin-mediated adhesion may not be feasi-
ble. However, in the BM an effective disruption of stroma-tumor interactions may 
be achieved using CXCR4 inhibitors, which induce mobilization of stem cells and 
myeloma cells from the BM. Such a strategy has already been shown to successfully 
overcome stroma-mediated activation of STAT3 [ 123 ] and HGF/MET [ 124 ] path-
ways, and to prevent the drug resistance of myeloma cells induced by BMSCs [ 125 ]. 
Furthermore, disturbing the stroma-tumor interactions may also prevent the upregu-
lation of immune checkpoint molecules [ 36 ]. Finally, since NOTCH signaling also 
seems important in the microenvironment-mediated drug resistance and similarly 
may induce immune resistance, its modulation can also be explored. Nonetheless, 
more investigation is required on NOTCH, as there are confl icting reports on its 
role, especially on the cytotoxic activity of T cells [ 126 – 128 ].  

7.7     Concluding Remarks 

 The appreciation of the role of the microenvironment, not only in the induction of 
immune suppressive events but also in the protection of tumor cells against cyto-
toxic T cell attack, will stimulate the research and encourage the scientists and clini-
cians to combine immunotherapy not only with agents that can modulate immune 
suppression but also with those that can eliminate the resistance mechanisms 
induced by the microenvironment. Furthermore, the increasing consciousness that 
drug resistance may in several cases also cause immune-resistance may stimulate 
the discussion whether heavily pretreated and multidrug resistant patients are suit-
able candidates for clinical testing of cellular immunotherapy strategies.     
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    Abstract     Lung cancer is responsible for more cancer-related deaths than colon, 
breast and prostate cancers combined. Survival rates for lung cancer are generally 
lower than those for most cancers, with an overall 5-year survival rate for lung can-
cer of about 16 % compared to 65 % for colon cancer, 89 % for breast cancer, and 
over 99 % for prostate cancer. Lung cancer comprises several types with varying 
response to therapy and survival rates; although they can be broadly grouped into 
small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). 
NSCLC includes squamous cell carcinoma, adenocarcinoma, and large cell carci-
noma. SCLC accounts for approximately 20 % of all primary lung cancers and in 
general and tends to be more aggressive; some studies suggest that 60–70 % of 
patients with small cell lung cancer have evidence of distant spread at the time of 
initial diagnosis; treatment usually is limited to chemotherapy and/or radiation ther-
apy. By contrast, surgical resection for NSLC may be an option. 

 COPD/emphysema is a highly prevalent airways disease that arises as a result of 
noxious injury to the lungs. Cigarette smoke plays a signifi cant role in the aetiol-
ogy of both COPD and lung cancer. Both smokers and COPD patients have an 
increased risk of developing lung cancer; however, there is an increased risk of 
developing lung cancer in smokers with COPD far above that of smokers without 
COPD. The carcinogenic effects of tobacco smoke have been well-described 
with over 80 % of lung cancer cases occurring in smokers or ex-smokers. The bur-
den of COPD and the associated prevalence of COPD-associated lung cancer are 
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projected to increase in the coming decades due to continued exposure to COPD 
risk factors and the changing age structure of the world’s population. Despite these 
alarming statistics, it is unknown why many lung cancers are relatively resistant to 
conventional therapies.  

  Keywords     Lung cancer   •   Immune evasion   •   Cytotoxic T-cell   •   CD8 T-cell   •   NK 
cells   •   NKT-like cells   •   Tregs   •   Granzyme B   •   PI-9   •   Macrophage phagocytosis  

  Abbreviations 

   AA    Arachidonic acid   
  COPD    Chronic obstructive pulmonary disease   
  COX    Cyclooxygenase-2   
  CTL    Cytotoxic T-cells   
  EP1–4    E-prostanoid 2 receptor 1–4   
  IFN    Interferon   
  IL-    Interleukin   
  LC-ESI-MSMS    High performance liquid chromatography—electrospray tandem 

mass spectrometry   
  NK cells    Natural killer cells   
  NSCLC    Non small cell lung cancer   
  PGE2    Eicosanoid prostaglandin E2   
  PI-9    Proteinase inhibitor 9   
  SCLC    Small cell lung cancer   
  TGF    Transforming growth factor   
  TNF    Tumour necrosis factor   
  Tregs    Regulatory T lymphocytes   

8.1         Introduction 

8.1.1    Lung Cancer 

 Lung cancer is responsible for more cancer-related deaths than colon, breast and 
prostate cancers combined [ 1 ]. For small cell lung cancer (SCLC), many patients 
have evidence of distant spread at the time of initial diagnosis thus management is 
usually limited to chemotherapy and/or radiation therapy. For non-small cell lung 
cancer (NSLC), surgical resection for NSLC may be an option [ 2 – 4 ]. Both cigarette 
smokers and patients with chronic obstructive pulmonary disease (COPD) have an 
increased risk of developing lung cancer [ 5 ,  6 ]. It is currently unclear why many 
lung cancers are relatively resistant to conventional therapies.  
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8.1.2     Elimination of Tumour Cells by Natural Killer (NK) 
and Cytotoxic T-cells (CTL) 

    CTLs are important barriers against virally infected cells and tumour cells. 
Elimination of tumour cells by NK and CTL’s is induced through two major cyto-
lytic pathways; the death receptor pathway (mediated by the TNF/Fas family) and 
the calcium-dependent granule exocytosis pathway [ 7 ,  8 ]. The latter pathway 
involves removal of the target cell by the process of apoptosis mediated by the 
release of pore-forming perforin and enzymes that are stored in the cytoplasmic 
granules of CTL’s. These enzymes comprise granzymes, perforin and granulysin 
[ 9 – 11 ]. After a cytotoxic/target cell junction, perforin is released by exocytosis 
before forming pores upon the target cell membrane. Granzyme B and granulysin 
are passively conducted through the target cell membrane, followed by caspase 
cleavage and induction of DNA fragmentation. Although widely considered to be 
essential for the entrance of these mediators into the target cell, accumulating evi-
dence suggests that perforin is not absolutely necessary for this function, although 
it is required for granzyme B-induced cytolysis (cleaving several intracellular pro-
teins, including caspase-3, and inducing DNA fragmentation). Granulysin, in con-
trast, has a structural similarity to the saposin family and it has been suggested that 
its lytic activity occurs due to cell membrane damage as a result of interactions 
between granulysin and negative charges from target cell mitochondrial membrane 
lipids, although this is augmented by the presence of perforin.   

8.2     Resistance of Tumour Cells to CTL-Induced Apoptosis 

 It is becoming increasingly documented, however, that many tumour cells have the abil-
ity to resist CTL-induced apoptosis. Of particular importance to the survival and prolif-
eration of lung cancer cells may be resistance to granzyme B-mediated attack. One 
means of this resistance may be the expression of specifi c proteins that inhibit tumour 
cell death induced by the granzyme pathway. The only known specifi c inhibitor of gran-
zyme B is the intracellular serine protease inhibitor PI-9 [ 12 – 14 ]. PI-9 is a serpin that 
inactivates granzyme B, thereby inhibiting progression of the apoptotic pathway. PI-9 is 
normally found in lymphoid tissue, immune-privileged sites and CTL’s. PI-9 is nor-
mally present in the cytoplasm and nucleus. When present in the cytoplasm of CTL’s 
PI-9 is thought to protect the cells from destruction by their own granzyme B [ 14 ,  15 ]. 
Secreted PI-9 has also been found, although the study did not ascertain whether the PI-9 
was actually released from the cells or released as a result of cellular necrosis [ 12 ]. 

 Interestingly, the expression of PI-9 has been reported in various cancer cells, 
where it is likely to act by preventing granzyme B/perforin-mediated apoptosis of 
the cancer cell [ 15 – 19 ]. This potential evasion mechanism was highlighted in a 
study of anaplastic large cell lymphoma where a relationship between high numbers 
of cancer cells expressing PI-9 and poor outcome was shown [ 17 ]. In B cell non- 
Hodgkins lymphoma, high PI-9 expression was shown to be associated with high 
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grade malignancy [ 15 ]. PI-9 is also thought to directly inhibit the caspase (caspase-
 1 and potentially caspases-8 and -10) and Fas/FasL pathways of apoptosis induction 
[ 20 ]. The anti-apoptotic protein cellular FLICE inhibitory protein (cFLIP) is a fur-
ther anti-apoptotic protein that may bind via two death effector domains and func-
tions as an inactive caspase-8 surrogate [ 21 – 23 ]. Increased expression of cFLIP has 
been reported in colonic carcinoma where it may act to inhibit apoptosis induced by 
the CTL mediators [ 24 ].  

8.3     PI-9 in Lung Cancer 

 Increased granzyme B in CTL’s associated with increased cell death in BAL and 
blood from COPD patients has been reported [ 25 ]. However, based on the fi ndings 
described above, it is likely that lung tumour-associated CTLs will exhibit reduced 
expression of granzyme B even in the presence of COPD, and this could result from 
increased production of the granzyme B inhibitor PI-9 by the lung cancer cells. 
Consistent with the presence of PI-9 in other cancer types discussed above, high 
expression of PI-9 has been shown in some NSCLC cell lines and tumour cells from 
lung cancer resection [ 18 ]. The PI-9 was shown to form a complex with granzyme 
B and inhibit granzyme B-mediated cytotoxicity. Soriano et al. applied both fl ow 
cytometry and immunohistochemistry to show that reduced granzyme B expression 
by CD8+ T-cells in curative lung cancer tissue resected from lung cancer patients 
and increased PI-9 expression by the lung cancer cells (Fig.  8.1 ) [ 26 ]. The authors 
compared PI-9 expression between bronchial brushing-derived primary large air-
way epithelial cells and disaggregated epithelial cells from non-cancer areas of 
resected lung tissue, validating the use of these cells as controls.  

 Soriano et al. further investigated whether soluble mediators secreted by the vari-
ous lung cancer cell lines could inhibit granzyme B by CD8+ T-cells [ 26 ]. All can-
cer cell lines with the exception of H1466 signifi cantly reduced expression of this 
cytotoxic mediator. Cytotoxicity was also assessed in CD8+ T-cells positively 

  Fig. 8.1    ( a ) PI-9 expression by A. primary large airway epithelial cells collected by bronchial 
brushing at fl exible bronchoscopy from 16 healthy controls (‘Large airway EC’) B. epithelial cells 
obtained from non-cancer areas of resected lung tissue (‘Non-cancer tissue’) and C. cancer cells 
from cancer areas of lung tissue (‘Cancer tissue’) from a cohort of 17 cancer patients. PI-9 expres-
sion determined using fl ow cytometry.  Reproduced with permission from Soriano et al. Lung 
Cancer  2012;77(1):38–45. ( b ) Immunohistochemical analysis of PI-9 expression in cancer and 
non-cancer lung tissue. PI-9 expression as measured by a scoring index in epithelial cells from non-
cancer and cancer tissue from lung cancer tissue from patients with no COPD (‘Non-cancer Tissue; 
No COPD’ and ‘Cancer Tissue; No COPD’), epithelial cells from non-cancer and cancer lung tissue 
from subjects with Cancer + COPD (‘Non-cancer Tissue; + COPD’ and ‘Cancer Tissue; + COPD’). 
(A) Positive PI-9 expression in primary lung cancer tissue ( brown staining ). (B) Negative staining 
with serum only. (C) Low staining for PI-9 in epithelial cells from non-cancer tissue. Original 
magnifi cation 200× (A) and 400× (B) and (C). (D) Data summarized in histogram (mean ± SEM). 
 Reproduced with permission from Soriano et al. Lung Cancer  2012;77(1):38–45            
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selected from PBMC and stimulated with a Dynabeads CD3/CD28 T cell expander 
[ 26 ]. After removal of beads, CD8+ T-cells were resuspended in cancer cell super-
natants. Cytotoxicity using K562 human myeloid leukemia cells was analysed by a 
modifi ed fl ow-cytometric method described by Kim et al. [ 27 ]. 

 Again, soluble mediators secreted by the various lung cancer cell lines induced a 
reduction in the cytotoxic potential of the CD8+ T-cells. Interestingly, H1466 cells 
with relatively low expression of PI-9 also had a relatively low effect on cytotoxicity 
and granzyme B production by CD8+ T-cells. Thus, available evidence suggests that 
PI-9 over-expression by lung cancer cells and a resultant down-regulation of granzyme 
B expression by lung cancer-associated CD8+ T-cells may provide an immune evasion 
mechanism against granzyme B-mediated cytotoxicity in lung cancer. Whether the 
levels of perforin and granulysin follow the same pattern of  expression as granzyme B 
remains to be determined; it is also possible that levels of one or all of these mediators 
are decreased in T-cells from the tumour vs the normal tissue environment contribut-
ing to reduced apoptosis and tumour evasion. Treatment strategies that inhibit expres-
sion of these mediators within cancer cells will enhance the cell’s sensitivity to 
granzyme B/perforin-mediated apoptosis and/or apoptosis induced by other agents.  

8.4     The Role of Natural Killer (NK) and NKT-Like Cells 
in Lung Cancer Evasion 

 The preceding section described the ability of cytotoxic cells including CD8+ 
T-cells to mount immune responses to cancer via the release of cytolytic enzymes 
including granzyme B and perforin. Hodge et al. showed that NK and NKT-like 
cells are also potent producers of these cytotoxic and proinfl ammatory mediators, 
suggesting a strong role for these cell types in the elimination of tumour cells [ 28 ]. 
The gating strategy applied to identify NK and NKT-like cells is shown in Fig.  8.2 .  
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  Fig. 8.2    Flow cytometry gating strategy to identify perforin and granzyme B positive NK 
(CD56 + CD3−) cells and NKT-like (CD56 + CD3+) cells. The  central panel  shows staining with 
CD3-PE-Cy5 vs CD56 APC. The  left panel  shown staining for perforin (FITC) vs. granzyme B 
(PE) on NK cells gated on the basis of negative staining for CD3 and positive staining for CD56. 
The  right panel  shows staining for perforin (FITC) vs. granzyme B (PE) on NKT-like cells gated 
on the basis of positive staining for both CD3 and CD56       
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 Resistance to attack by NK and NKT-like cells is, therefore, essential for the 
survival and proliferation of lung cancer cells, although until recently it was 
unknown whether their production of cytotoxic mediators was changed in the pro- 
tumour environment. Resistance to attack by NK and NKT-like cells is therefore 
essential for the survival and proliferation of lung cancer cells, although until 
recently, it was unknown whether their production of cytotoxic mediators was 
changed in the pro-tumour environment. Recently, Hodge et al. further described 
the relative expression of NK and NKT-like cells in lung cancer vs non-cancer lung 
tissue, and their relative production of granzyme B, perforin and pro-infl ammatory 
cytokines [ 29 ]. They investigated lung cancer and normal tissue (from lung resec-
tion surgery for management of lung cancer), identifi ed by experienced patholo-
gists. Tissue was dissaggregated into single cells. Following adherence and removal 
of macrophages, pro-infl ammatory  c ytokines and expression of the cytotoxic medi-
ators granzyme B and perforin were measured in CD4 and CD8+ T, NKT-like cells 
and NK cells by fl ow cytometry. They found a signifi cant decrease in the percentage 
of T, NKT-like subsets and NK cells expressing perforin and IFN-γ compared with 
normal tissue. There was also a decrease in the percentages of CD8+ T cells and 
CD8+ NKT-like cells expressing granzyme B compared with normal tissue 
(Fig.  8.3a ). Thus, lung cancer is associated with decreased expression of perforin 
(Fig.  8.3b ), granzyme B and IFN-γ (Fig.  8.3c ) by infi ltrating T cells, NKT-like and 
NK cells and may be an important immune evasion mechanism.  

 Hodge et al. then investigated whether the cancer cells secrete soluble mediators 
that exert a suppressive effect on the production of pro-infl ammatory cytokines by 
NK and NKT-like cells. 

 Treatment of lung cancer supernatants with a Cox-2 inhibitor, indomethacin, sig-
nifi cantly negated the suppressive effect of lung cancer supernatants on IFNγ and 
TNFα production by CD4 and CD8 T and NKT-like and NK cells [ 29 ] (Fig.  8.4 ).   

8.5     Decreased Pulmonary Macrophage Function in Lung 
Cancer as a Potential Immune Evasion Mechanism 

 Dehle et al. continued the theme of immune surveillance, again utilizing well- 
characterized lung tissue samples obtained at lobectomy for the management of 
lung cancer [ 30 ]. They focused on the lung macrophage as this cell has been exten-
sively shown to have a signifi cant defect in the ability to phagocytose apoptotic cells 
(efferocytosis) with resultant airway infl ammation [ 31 – 34 ]. The potential relevance 
of effective macrophage phagocytic ability in cancer was shown in patients treated 
with rituximab, a drug which acts, in part, by opsonizing cells and increasing phago-
cytosis. The treatment had a positive prognostic value despite the high number of 
tumour-associated macrophages [ 31 ]. 

 Un-cleared apoptotic material is likely to be important in the progression of lung 
cancer as this material can then undergo secondary necrosis and perpetuate the 
infl ammatory response [ 35 – 37 ]. Importantly, uncleared apoptotic material induces 
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anti-DNA antibodies to self antigens, that results in a “pseudo-autoimmune status” 
leading to an infl ux of immature dendritic cells and the induction of regulatory T 
lymphocytes (Tregs) [ 38 ,  39 ]. Tregs are endogenous regulators of the immune 
response that are capable of attenuating immune responses to self and non-self anti-
gens. There is abundant evidence for the role of these cells in cancer development 
[ 40 ]. One study showed that the inhibition of Tregs in a mouse model of cancer 
induced an increase in intra-tumoural CTL numbers and reduced tumour burden 
[ 41 ]. Jarnicki et al. reported in a cancer model that tumour growth facilitated 
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  Fig. 8.3    ( a ) Intracellular granzyme B expression in CD4+ and CD8+ T cell and NKT-like subsets 
and NK cells from normal ( clear bars ) and cancer tissue ( grey bars ). There was a signifi cant 
decrease in the percentage of CD8+ T cells expressing granzyme B from cancer tissue compared 
with normal tissue. There was also an decrease in the percentage of CD8+ NKT-like cells and NK 
cells expressing granzyme B compared with normal tissue (*p < 0.05).  Reproduced from Hodge 
et al. Clinical and Experimental Immunology 2014 in press.  ( b ) Perforin expression in CD4+ and 
CD8+ T cell and NKT-like subsets and NK cells from normal ( clear bars ) and cancer tissue ( grey 
bars ). There was a decrease in the percentage of CD4+ and CD8+ T cells expressing perforin from 
cancer tissue compared with normal tissue. There was also a decrease in the percentage of CD8+ 
NKT-like cells and NK cells expressing perforin compared with normal tissue (*p < 0.05; 
**p < 0.01).  Reproduced from Hodge et al. Clinical and Experimental Immunology 2014 in press . 
( c ) IFN-γ production in CD4+ and CD8+ T cell and NKT-like subsets and NK cells from normal 
( clear bars ) and cancer tissue ( grey bars ). There was a decrease in the percentage of CD4+ and 
CD8+ T cells, CD4+ and CD8+ NKT-like cells and NK cells producing IFN-γ from cancer tissue 
compared with normal tissue (*p < 0.05; **p < 0.01).  Reproduced from Hodge et al. Clinical and 
Experimental Immunology 2014 in press        
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the induction or recruitment of CD4 Tregs that secreted IL-10 and TGF-β and 
 suppressed the effector CD8 T cell responses [ 42 ]. Chen et al. further reported that 
Tregs derived from mice with hepatocellular carcinoma down-regulated the expres-
sion of costimulatory molecules CD80/CD86 and inhibited the production of TNF-α 
and IL-12 by dendritic cells, further supporting the essential role for Tregs in the 
establishment and persistence of tumor immune suppression [ 43 ]. 

 The role of Tregs in the increased susceptibility of COPD patients to lung cancer 
has not been fully assessed. One study showed a lower frequency of Tregs, Foxp3 
and IL-10 in the blood of patients with moderate and severe COPD [ 44 ]. Interestingly, 
the study also reported that increased ratios of Th17 to Tregs were negatively cor-
related with the values of forced vital capacity (FVC), forced expiratory volume in 
1 s (FEV1) and FEV1/FVC, suggesting that an imbalance of circulating Th17 cells 
and Tregs is associated with the deterioration of pulmonary function in COPD [ 44 ]. 
The same authors found that mice with chronic cigarette smoke exposure showed 
signifi cant increase in lung Th17 prevalence and Th17-related cytokines (IL-17A, 
IL-6 and IL-23) accompanied by a decrease in the prevalence of Tregs, Forkhead 
box (Fox) p3 mRNA and the Treg-related regulatory cytokine IL-10, as compared to 
mice that underwent sub-acute CS exposure and air-exposure [ 45 ]. A similar trend 
was also found for the Th17/Treg ratios in peripheral blood. A further study showed 
that Tregs from COPD patients suppressed lipoprotein P6-specifi c T cell prolifera-
tion to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-
generated regulatory cytokines and both IL-10 and TGF-β were elevated. Taken 
together these data suggest that functionally suppressive Tregs may contribute to 
effector T cell dysfunction and the development and perpetuation of infl ammation in 
COPD [ 46 ]. However, the mechanisms by which the chronic airway infl ammation 
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  Fig. 8.4    The percentage inhibition of IFN-γ and TNFα by CD4 and CD8 T and NKT-like and 
CD56+ NK cells in the presence of lung cancer supernatant ( clear bars ). Inhibition of pro- 
infl ammatory cytokines in the presence of lung cancer supernatants was signifi cantly negated in 
the presence of indomethacin in most lymphocyte subsets ( grey bars ).  Reproduced from Hodge 
et al. Clinical and Experimental Immunology 2014 in press        
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COPD is associated with an enhanced risk for lung cancer, and the role of Tregs in 
the progression to lung cancer are not well-defi ned. In one study that applied a mouse 
model of lung cancer, using an oncogenic form of K-ras (K-ras(G12D)) that is fre-
quently found in human lung cancer, an increased presence of Th17 and Tregs in the 
lung cancer tissues was shown [ 47 ]. A further study applied a doxycycline-treated 
IKTA (IKKβ trans-activated) mouse model that developed chronic airway infl amma-
tion and markedly increased numbers of lung tumours in response to urethane. The 
lungs of these mice were shown to have a substantial increase in functional Tregs. 
Importantly, Treg depletion using repetitive injections of anti-CD25 antibodies lim-
ited excessive tumour formation in the mice, while at 6 weeks following urethane 
injection, antibody-mediated Treg depletion in the IKTA mice reduced the number 
of premalignant lesions in the lungs. Thus, persistent infl ammatory signalling in the 
airway may facilitate tumourigenesis by effects on the immune/infl ammatory envi-
ronment in the lungs. There is, however, still a need for more comprehensive studies 
to defi ne the differential expression of Tregs in blood, BAL and lung/tumour tissues 
from subjects with COPD with/without lung cancer. Whether there is differential 
expression of Tregs in the various compartments and whether these are related to a 
higher risk of developing lung cancer remain to be explored. 

 To investigate whether the macrophage phagocytic defect was present in cancer 
(no COPD), Dehle et al. investigated efferocytosis in both alveolar and lung tissue 
macrophages and found that decreased efferocytosis was noted in all cancer/COPD 
groups in both compartments (presented in Fig.  8.5 ) [ 30 ]. Others have also 
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from Dehle et al. PLoS One April 26 2013    http://dx.plos.org/10.1371/journal.pone.0061573           
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found evidence for defective macrophage phagocytic function in lung cancer [ 48 ]. 
The investigators showed that phagocytosis of fl uorescent beads and surface expres-
sion of mannose receptor (required for effective phagocytosis) on alveolar macro-
phages from patients with lung cancer was reduced. However, the study did not 
investigate the link between COPD and cancer and it is currently unknown whether 
there is variability in the ability of macrophages to phagocytose various lung cancer 
cells or whether COPD subjects with lung cancer demonstrate further reduced abil-
ity to phagocytose the tumour cells.  

 Further in vitro experiments confi rmed that the presence of supernatant from the 
lung cancer cells decreased the ability of alveolar macrophages to phagocytose 
apoptotic cells (Fig.  8.6a ). To identify the mediators responsible for these effects, 
Arachidonic Acid (AA) metabolites in cancer cells were qualitatively identifi ed by 
LC-ESI-MSMS, and the effects of COX inhibition (using indomethacin) on effero-
cytosis were assessed.    All three lung cancer cell lines tested (A549, H2009, SBC-1) 
showed detectable levels of PGE2, PGD2, PGF2α, TXN2 and 6ketoPGF1. 
11-HETE, TxB2; 12- and 5- HETE; EPA, DHA, 8-HODE, LTB4, 12(5)TETE, 
PGB2 and 13(5)HODE were not identifi ed. The eicosanoid prostaglandin E2 
(PGE2) is present to some degree in nearly all cell types including cancer cells, and 
exerts it effects by interacting with four different receptors termed E-prostanoid 2 
receptor (EP1–EP4). PGE2 release is mediated by phospholipase A2 followed by 
metabolism by cyclooxygenase-2 (COX-2). Based on the presence of PGE2, the 
investigators assessed the effects of the COX inhibitor, indomethacin, on efferocy-
tosis (Fig.  8.6b ). It was shown that the phagocytic defect is at least partially a result 
of inhibition by soluble mediators produced by cancer cells that include PGE2. 
These data are consistent with another study of NSCLC cell lines A549 and H1299 
[ 49 ]. PGE2 was also shown to have a suppressive effect on phagocytosis of bacteria 
[ 50 ]. In mesothelioma cancer cells co-cultured with macrophages induced a 

  Fig. 8.6    ( a ) Prostaglandins inhibit efferocytosis and partially mediate the inhibitory effect of can-
cer cell line supernatants on the phagocytosis of apoptotic bronchial epithelial cells by U937 cells. 
U937 cells were incubated with varying concentrations of PGE2 for 18 h and efferocytosis 
assessed. ( b ) Prostaglandin inhibition of efferocytosis involves COX-2 U937 cells were incubated 
in normal RPMI media or SBC-1 supernatant that had been treated with indomethacin. Values are 
presented as percentage of macrophages ingesting apoptotic cells  * , p < 0.05 compared with control 
(RPMI media treatment). Reproduced with permission from  Dehle et al. PLoS One April 26 2013        
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decrease in phagocytosis but an increase in the PGE-2 release [ 51 ]. Taken together, 
this data describe the new and exciting fi ndings that decreased efferocytosis in air-
way and lung tissues in lung cancer and the inhibition of efferocytosis via release of 
soluble prostaglandins by lung cancer cells may be a potential immune evasion 
mechanism in lung cancer.   

8.6     The Effect of Cancer Stage on Mediators 
of Immune Evasion 

 Soriano et al. found that PI-9 expression positively correlated with cancer stage 
among the patients with NSCLC [ 26 ]. Others also reported that PI-9 expression is 
associated with poor prognosis or clinical outcome in anaplastic large B-cell lym-
phoma, or in vaccinated patients with stage III and IV melanoma [ 16 ]. There 
remains, however, a need for further investigations of large numbers of lung cancer 
cases over a 5 year period to allow for the important investigation of the correlation 
of PI-9 with long-term patient outcomes in lung cancer. As curative lobectomy is 
not routinely applied for the management of SCLC, assessing the association 
between SCLC stage and PI-9 expression in cells obtained from lung tissue is more 
diffi cult. Consistent with the concept that the more aggressive SCLC would exhibit 
increased expression of PI-9, one study reported that SBC1 and SBC3 expressed 
more PI-9 than NSCLC lines [ 26 ]. In contrast, Rousalova et al. reported higher 
expression of PI-9 in NSCLC cell lines compared to SCLC cell lines [ 18 ]. The vary-
ing data may have resulted from the two studies using different cell lines. The wide 
variability in the expression of PI-9 in NSCLC cell lines may have also contributed 
[ 26 ], and further larger studies are warranted. Also required are investigations of the 
association between PI-9 levels and survival rates. Preliminary studies in our labo-
ratory using cell lines have found a signifi cant negative correlation between levels 
of PI-9 in the lung cancer cells and the reported 5 year survival rate for the various 
cancer types and stages (unpublished). 

 Interestingly, and consistent with the PI-9 data from Soriano et al. [ 26 ], Dehle 
reported that the most signifi cant suppressive effects of cancer cell supernatant on 
macrophage function were noted using the SCLC cell line, SBC-1 [ 30 ]. It is tempt-
ing to speculate that this is representative of the more aggressive nature of this lung 
cancer type. Another study of primary NSCLC demonstrated the highest levels of 
both mRNA and protein COX-2 expression in adenocarcinoma cells compared with 
large cell and squamous cell carcinoma [ 38 ] (Fig.  8.7 ). They did not, however, 
investigate SCLC.  

 In a subsequent publication, Hodge et al. retrospectively performed a correlation 
of cancer stage and CD8+ production of granzyme B for 21 patients with NSCLC 
that had been recruited for previous studies [ 29 ]. Cancer stage ranged from 1A to 
3A. They showed a signifi cant negative correlation between granzyme expression 
by CD8+ T-cells and cancer stage (correlation coeffi cient −0.508, p = 0.019) [ 30 ].  
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8.7     Conclusion 

 Further understanding the mechanisms for the evasion of cytotoxic lymphocyte and 
macrophage-mediated immune responses in lung cancer will have direct signifi -
cance in providing new therapeutic strategies with high potential for clinical transla-
tion. Treatment strategies for lung cancer that target immune suppressive factors 
(e.g. PI-9) represent a potentially effective approach to improving treatment effi -
cacy or as cancer preventatives in COPD. Moreover, their combination with current 
and new chemotherapeutic agents may revolutionize lung cancer treatment.     
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    Chapter 9   
 Sensitization of Immune-Resistant Tumor 
Cells to CTL-Mediated Apoptosis via 
Interference at the Dysregulated NF-κB/Snail/
YY1/PI3K/RKIP/PTEN Resistant Loop 

             Benjamin     Bonavida    

    Abstract     Cancer cells respond initially to various cytotoxic therapies (chemotherapy, 
radiation, immunotherapy), however, a subset of cancer cells is unresponsive or 
 develops resistance as a consequence of the therapy. Immunotherapy has gained a 
signifi cant momentum recently by the positive clinical response rates achieved with 
either anti-tumor cytotoxic T lymphocytes (CTL) or anti-tumor monoclonal antibodies- 
based therapies that are more specifi c and less toxic than chemotherapy. A prerequisite 
of CTL-mediated successful immunotherapy is that the tumor cells, following recog-
nition by the CTL, have to be sensitive to CTL-mediated cell death. This prerequisite 
is not being encountered in many cancers and is a major factor for the clinical failure 
of immunotherapy. Tumor cells develop several mechanisms to escape cell death, 
hence, for successful immunotherapy, one must interfere with these resistance mecha-
nisms in an effort to sensitize the tumor cells to CTL- mediated cell death. This review 
discusses one mechanism by which tumor cells developed resistance to CTLs, namely, 
via a dysregulated NF-κB/Snail/YY1/RKIP/PTEN loop. This loop has been shown to 
regulate tumor cell resistance to cytotoxic agents, including CTLs. Various examples 
are provided to discuss the roles each of the gene products in this loop and, also, 
examples of various agents that have been shown to interfere with expression of fac-
tors of this loop and resulting in the reversal resistance when used in combination with 
CTL/death ligands. It is proposed that the combination of agents that target the resis-
tant gene product that regulates resistance in this loop in tumors with anti-tumor CTL 
death ligands should result in a more successful response to immunotherapy.  
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  Abbreviations 

   Akt    Protein kinase B   
  CTL    Cytotoxic T lymphocytes   
  DcR1    Decoy receptor 1   
  DcR2    Decoy receptor 2   
  DETANONOate    ( Z )-1-[2-(2-aminoethyl)- N -(2-ammonioethyl)amino]diazen-

1-ium-1,2-diolate   
  DR4    Death receptor 4   
  DR5    Death receptor 5   
  Fas    Fas receptor   
  Fas-L    Fas ligand   
  MHC    Major histocompatibility complex   
  NF-κB    Nuclear factor-kappaB   
  NK    Natural killer   
  NPI-0052    Salinosporamide A; marizomib   
  PI3K    Phosphoinositide 3-kinase   
  PTEN    Phosphatase and tensin homolog   
  RKIP    Raf kinase inhibitor protein   
  YY1    Yin Yang 1   

9.1          Introduction 

    The innate immune system is a primary defense system that has been conserved 
throughout evolution in plants, fungi, insects and vertebrates [ 1 ]. In mammals, the 
innate immune system consists of effector cells and circulating factors that defend 
the host immediately after infection or newly-arised transformed or neoplastic cells. 
The initial response is transient [ 2 ] and furthered by the adaptive immune system. The 
innate immune system effector cells constitute natural killers (NK), mast cells, 
eosinophils, basophils and phagocytic cells (macrophages and dendritic cells) [ 3 ]. 
The innate immune system is pivotal for the activation of the adaptive immune 
 system [ 4 ,  5 ]. The adaptive primary immune system is endowed with the exquisite 
capacity to recognize a large number of “non-self” antigens and that is followed 
by immunological memory. It is mediated by cellular (T-lymphocytes) and humoral 
(B antibody-producing lymphocytes) responses. Antigen presentation, an innate 
immune response mediated by APC, stimulates T cells to become helper (CD4+) or 
cytotoxic (CD8). CTLs are a subset of CD8+ lymphocytes that induce cell death 
following recognition and interaction with targets expressing the appropriate MHC 
peptide complex recognized by the specifi c T cell receptor. 

 Tumor resistance to conventional therapies, such as chemotherapy, hormonal 
therapy and radiation, has rejuvenated cancer immunotherapy. Tumor-specifi c 
CTLs have been identifi ed and, thus, several strategies were developed to generate 
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tumor-specifi c CTLs for the therapy of drug-resistant tumors [ 6 – 9 ]. These strategies 
assumed that the successful generation of tumor-specifi c CTLs may be suffi cient to 
overcome the acquired resistance in cancer cells to conventional treatments and that 
such tumors would be sensitive to CTL-mediated killing. However, this assumption 
was not compatible with reports of patients’ failure to respond to CTL anti-tumor 
killing. Failure of current therapies in cancer patients may result from one or more 
mechanisms, including the low frequency of tumor-specifi c CTLs, tumor-mediated 
immunosuppression, downregulation of MHC expression on tumor surfaces and 
activation-induced CTL cell death by the tumor [ 10 ,  11 ]. Further, one mechanism of 
killing by CTL is through the perforin/granzyme-inducing necrosis in tumor cells, 
and this may be effective in some tumors. However, other mechanisms of apoptosis 
will not be effective by CTL, since most conventional therapies, including drugs and 
radiation, mediate their killing through apoptosis. Therefore, cross-resistance to 
apoptosis is achieved in drug/radiation-resistant tumors and such resistant tumor 
cells will not be killed by CTLs [ 12 ,  13 ]. 

 To induce sensitivity of tumor cells to apoptosis induced by immunotherapy, sev-
eral strategies have been devised, including cancer vaccines, monoclonal antibod-
ies, recombinant cytokines, adaptive cellular administration, gene therapy, etc. [ 14 ].  

9.2     Mechanisms of Killing by CTL 

 Cytotoxic NK and T lymphocytes mediate their killing by granule exocytosis and 
death ligands. Granules contain both granzymes and perforin [ 15 – 18 ]. The granules 
delivered through the exocytotoxic pathway become activated through target cell 
recognition by the cytotoxic lymphocytes. De-granulation takes place whereby the 
microtubules are mobilized, leading the pre-formed granules into the lysosomes 
toward the point of contact with the target cell and, thus, releasing the cytotoxic 
molecules [ 19 ,  20 ]. Perforin has an amino-terminal domain with lytic activity [ 21 ]. 
It also has an alpha-helix amphipathic domain that regulates its transmembrane 
insertion and allows the formation of pores on the cell membrane [ 22 ]. Once it is 
released, the anchored perforin polymerizes in the presence of calcium to form 
cylindrical pores of a diameter of 5–20 nm [ 23 ]. Granzymes are soluble proteins of 
a globular structure and belong to the same proteases family. Granzymes A and B are 
the most abundant in the lytic granules. Granzymes are released as multi- molecular 
complexes and can induce apoptosis by both caspase-dependent and independent 
mechanisms [ 24 ,  25 ]. Granzyme A induces caspase-independent apoptosis. It 
cleaves single-stranded DNA and hydrolyzes proteins containing basic amino acids 
such as arginine and lysine [ 26 ,  27 ]. Granzyme B cleaves protein substrates at the 
carboxyl side of the amino acids, such as aspartic acid. It induces apoptosis through 
(1) activation of caspase 3 directly [ 28 ] and (2) promotes the permeability of the 
mitochondrial membrane and cleaves Bid [ 28 ] and Bid induces cytochrome C 
release and other apoptotic molecules such as HtrA2/Omni, endoG and AIF into the 
cytoplasm and leading to the activation of caspases and inducing apoptosis. 
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 In addition to perforin and granzyme killing, CTL can also be triggered by acti-
vation of death ligands such as TNF-α, Fas-L and TRAIL by corresponding death 
receptors on the target cells [ 29 ]. Death receptors consist of TNF-R1/R2, Fas, and 
DR4 and DR5 [ 30 ]. 

 Apoptotic cell death is manifested by two main pathways, namely, the type I and 
type II pathways. These are mediated by a family of caspases (cysteine proteases) 
with aspartic acid specifi city. These caspases are present in living cells as inactive 
zymogens (pro-caspases) and their activation results in an auto-catalytic processing 
of caspase cascades. They are divided into two categories: initiators (examples cas-
pases 8–10) and effector/executioners (examples caspases 3, 6 and 7) [ 31 ]. In the 
type I apoptotic pathway, a caspase cascade is triggered following the oligomeriza-
tion of surface death receptors (Fas, DR4, DR5, TNF-αR1) and undergoes activa-
tion of caspase 8 that activates caspase 3, resulting in the activation of PARP and 
DNA cleavage. In the type II pathway, it involves the mitochondrion and its damage 
results in its permeabilization and release of cytochrome C and Smac/DIABLO and 
resulting in the activation of caspases 9 and 3, PARP and DNA cleavages. The 
released cytochrome C binds to an adaptor module, Apaf-1, which recruits pre- 
caspase 9 and forms the apoptotic complex (cytochrome C/Apaf-1/pro-caspase 9) 
and results in the activation of caspases 9, 7 and 3. Hence, the activation of caspase 
3 by type I and type II is their merging point [ 32 – 35 ]. 

 TRAIL binds to four receptors, two death receptors (DR4 and DR5) and two 
decoy receptors (DcR1 and DcR2). The decoy receptors lack the functional cyto-
plasmic domain that is needed for apoptotic signaling. Like TNF-α and Fas-L, 
TRAIL initiates the apoptotic signal upon binding to its cognate receptors, DR4 and 
DR5, all in trimeric forms, resulting in the formation of the death-inducing signal-
ing complex (DISC). This complex recruits pro-caspase 8 by means of the death 
domain interaction with the adaptive molecule FADD [ 36 ,  37 ]. This leads to activa-
tion of pro-caspase 8 into caspase 8, which, in turn, leads to a caspase activation 
cascade involving caspase 3. In type II, TRAIL activates caspase 8 and generates a 
truncated BID, and, in turn, it triggers the mitochondria to release cytochrome C, 
leading to activation of caspases 9 and 3 and resulting in apoptosis [ 38 ].  

9.3     Mechanisms of Resistance to CTL Killing 

 Cancer cells exhibit hyperactivated and constitutively activated survival/anti- 
apoptotic pathways, including the PI3K/Akt, p38 MAPK, Raf/MEK/ERK, and 
NF-κB pathways, etc. [ 39 ,  40 ]. These pathways regulate the resistance mechanisms 
endowed in tumor cells. Several mechanisms have been postulated for tumor cell 
resistance to CTL-mediated killing and have been reviewed elsewhere [ 41 – 44 ] 
(Fig.  9.1 ). Below, additional mechanisms of resistance of tumors to CTL are briefl y 
discussed.  
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9.3.1     The Dysregulated NF-κB/Snail/YY1/RKIP/PTEN 
Resistant Loop in Tumors Resistant to CTL 

 We have established a dysregulated NF-κB/Snail/YY1/RKIP/PTEN loop in cancer 
cells. This loop was established by the fi ndings that NF-κB is hyper-activated in 
most cancers, and it regulates, downstream, several target genes, among which are 
the metastatic-inducer transcription factor Snail [ 46 ,  47 ] and the immune resistance 
transcription factor YY1. Overexpression of Snail, in turn, suppresses the metastatic 
suppressor RKIP, which, when overexpressed, inhibits both the Raf/MEK/ERK and 
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  Fig. 9.1    Targeting the NF-κB/Snail/RKIP loop to reverse resistance of tumor or infected cells to 
apoptosis mediated by CTLs or NK cells. NF-κB hyperactivation in tumor cells or after a viral 
infection results in overexpression of gene products known to confer tumor cell resistance to apop-
totic stimuli such as Snail, YY1, and several anti-apoptotic proteins that are directly involved in the 
suppression of the intrinsic apoptotic pathway. Targeting of NF-κB by conventional and novel 
anti-tumor agents, such as nitric oxide donors or proteasome inhibitors, results in downstream 
inhibition of Snail and YY1 and up-regulation of RKIP and death receptor expression such as DR5 
and Fas, respectively. RKIP induction leads to further inhibition of NF-κB and NF-κB targets, 
while death receptor overexpression confers higher tumor cell susceptibility to cell killing induced 
by death ligands such as TRAIL or FasL. All of the above demonstrate that the tight regulation of 
the NF-κB-Snail-RKIP loop could serve as a key modulator of tumor and virus-infected cell 
response to apoptosis by CTLs or NK cells. (Permission for reproduction by publisher [ 45 ])       
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NF-κB pathways [ 48 ,  49 ]. In addition, YY1 regulates positively Snail [ 50 ] and 
 negatively PTEN. Thus, in cancer cells the expressions and activities of NF-κB, 
Snail and YY1 are upregulated, leading to downregulation of both RKIP and PTEN 
expressions and activities (Fig.  9.1 ). This loop, hence, is interconnected by the vari-
ous gene products, and each individual gene product will, invariably, modify the 
other gene products in the loop. NF-κB has been shown to regulate cell survival and 
resistance to apoptosis and, hence, its overexpression and downstream overexpres-
sion of Snail and YY1 will also regulate tumor cell resistance. Likewise, overex-
pression of RKIP and PTEN will, in turn, regulates sensitivity to apoptosis [ 45 ]. 

 Below, the role of each of the loop factors in the regulation of tumor cell resis-
tance to immunotherapy is briefl y described. 

9.3.1.1      NF-κB 

 NF-κB is a transcription factor that regulates many genes associated with infl amma-
tion and apoptosis [ 51 ]. It is activated by many factors [ 52 ]. NF-κB and Rel proteins 
constitute a family of structurally-related eukaryotic transcription factors that are 
involved in the control of a large number of normal cellular processes [ 53 ]. 
Generally, NF-κB is present as a latent, inactive IκB-based complex in the cyto-
plasm. It is activated by extracellular factors. The activation of NF-κB facilitates 
tumor cells’ escape from immune surveillance [ 54 ]. NF-κB regulates death signal-
ing pathways through the overexpression of c-FLIP, Bcl- XL  and IAPs, which are 
inhibitors of apoptosis by death ligands [ 53 ]. 

 Several mouse models showed an association between NF-κB activation and 
tumor promotion, progression and metastasis [ 55 ]. The NF-κB-mediated inhibition 
of programmed cell death involves an alteration of the c-Jun-N-terminal kinase 
(JNK) cascade mediated through the induction of the expression of a JNK inhibitor 
[ 56 ] or induction of selected downstream targets such as the caspase inhibitor XIAP, 
the zinc-fi nger protein A20, the inhibition of the MKK/JNKCC2 kinases, GADD45β/
MYD118 [ 57 ]. 

 The NF-κB signaling pathway, in part, regulates innate and adaptive immune 
responses [ 58 ] and, clearly, plays a role in cancer development and progression. 
NF-κB is involved in the bridge of infl ammation and cancer and particularly, cancer 
immune surveillance by killer lymphocytes. Most tumor cells exhibit hyper- 
activated NF-κB and downstream upregulation of anti-apoptotic target gene prod-
ucts that result in tumor cell resistance to apoptotic stimuli including cytotoxic 
lymphocytes [ 59 – 62 ]. Inhibition of NF-κB sensitizes tumor cells to cytotoxicity by 
chemo and immuno drugs and CTL [ 63 ,  64 ] (Fig.  9.2 ).   

9.3.1.2     Snail 

 Snail is a member of the Snail superfamily of zinc-fi nger transcription factors and 
plays a pivotal role in embryonic development and cell survival [ 66 ,  67 ]. Snail is 
intrinsically involved in the regulation of epithelial mesenchymal transition (EMT) 
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during metastasis by inhibiting the expression of the metastatic suppressor genes 
E-cadherin and RKIP [ 3 ,  68 ], downregulation of tight functional components 
(occludin and claudin) and induces the expression of metalloproteinases [ 69 ,  70 ]. In 
addition to Snail regulation by NF-κB, it is also self-regulated by binding to its own 
promoter [ 71 ]. Also, YY1 is an activator of Snail [ 50 ]. 

 Inhibition of NF-κB results in the inhibition of Snail and YY1 and induction of 
RKIP. Likewise, overexpression of RKIP inhibits NF-κB, Snail and YY1 (Figs.  9.1  
and  9.2 ). The role of Snail in the regulation of resistance to TRAIL was demon-
strated by treatment of cells with Snail siRNA, and such treated cells were sensi-
tized to TRAIL apoptosis. These treated cells expressed high RKIP, low NF-κB and 
Snail and upregulation of DR5 [ 45 ,  72 – 74 ].  
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  Fig. 9.2    NPI-0052 sensitizes tumor cells to apoptosis via activation of the intrinsic apoptotic 
pathway and inhibition of Bcl-xL expression. Schematic diagram representing the role of the 
NF-κB-Snail-RKIP circuitry in the regulation of tumor cell sensitivity to TRAIL- and CDDP- 
induced apoptosis by NPI-0052. The constitutively active NF-κB pathway induces high levels of 
Snail and antiapoptotic gene products and represses RKIP expression, thus conferring to tumor 
chemoimmunoresistance. NPI-0052 regulates cell survival and apoptosis via inhibition of phos-
phorylated IκBα degradation and consequently NF-κB inactivation. NPI-0052-mediated NF-κB 
inhibition leads to the induction of RKIP through downregulation of its transcriptional repressor 
Snail. NPI-0052-induced RKIP upregulation potentiates further NF-κB inhibition and suppression 
of NF-κB-regulated antiapoptotic gene targets, thus leading to tumor chemoimmunosensitization. 
(Permission for reproduction by publisher [ 65 ])       
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9.3.1.3     YY1 

 YY1 is a ubiquitously expressed zinc-fi nger transcription factor that is involved in 
several cellular functions and in both tumor establishment and progression [ 75 ]. 
YY1 is overexpressed in many tumors and correlates with prostate tumor progres-
sion [ 76 ,  77 ]. NF-κB has been reported to regulate YY1 transcription and expres-
sion [ 78 ]. YY1 has been shown to regulate resistance of tumor cells to Fas-L-induced 
apoptosis [ 79 ] and TRAIL-induced apoptosis [ 80 ]. YY1 was found to regulate 
tumor cell resistance to TRAIL via its binding to one binding site on the DR5 pro-
moter [ 80 ]. Inhibition of NF-κB or direct inhibition of YY1 by siRNA sensitized 
tumor cells to TRAIL apoptosis concurrently with upregulation of DR5 [ 63 ,  80 ]. 
The inhibition of YY1 by siRNA and sensitization to TRAIL may be due to an indi-
rect mechanism in which the inhibition of YY1 would result in the inhibition of 
Snail and leading to de-repression of RKIP. Upregulation of RKIP in tumor cells, in 
turn, would inhibit both NF-κB and Raf/MEK/ERK and downstream anti-apoptotic 
gene products (Fig.  9.2 ). Alternatively, YY1 may have a direct effect independent 
of Snail and NF-κB and this mechanism has not yet been explored. 

 Most tumor cells are resistant to TRAIL. Zhang and Fang [ 81 ] reviewed several 
resistance mechanisms. Genotoxic drugs such as ADR, VP16 and CDDP sensitize 
tumor cells to TRAIL apoptosis concomitantly with upregulation of DR5 expres-
sion [ 82 – 85 ] (Fig.  9.3 ). We have also reported that rituximab sensitized cells to 
Fas-L apoptosis via upregulation of Fas as a consequence of the inhibition of DR5 
repressor YY1 [ 87 ,  88 ] (Fig.  9.4 ). Hence, we hypothesized that drug-induced sensi-
tization to TRAIL may also involve the inhibition of YY1 and upregulation of DR5. 
We have identifi ed a putative binding site for YY1 on the DR5 promoter [ 89 ]. The 
fi ndings revealed that treatment of tumor cells with chemotherapeutic drugs sensi-
tized tumor cells to TRAIL concomitantly with inhibition of YY1 and upregulation 
of DR5. Synergy was achieved by the combination treatment in apoptosis. The role 
of YY1 in the negative transcriptional regulation of DR5 was corroborated by us 
using a reporter system whereby the putative YY1 binding site was deleted or 
mutated [ 90 ]. The inhibition of YY1 may be the result of drug-induced inhibition of 
NF-κB, as inhibitors of NF-κB also inhibited YY1 [ 91 ]. Furthermore, treatment of 
cells with siRNA YY1 mimicked drug-induced sensitization of tumor cells to 
TRAIL apoptosis.    

9.3.1.4     RKIP 

 We discussed above in Sec.  9.3.1.1  the role of NF-κB in the regulation of resistance 
and, downstream, its target the transcription factor YY1 in the regulation of resis-
tance to both Fas-L and TRAIL. Inhibition of NF-κB reversed the resistance and 
sensitized the cells to Fas-L and TRAIL apoptosis. Clearly, the intrinsic inhibitors 
of NF-κB may mimic chemical inhibitors and would also sensitize tumor cells to 
Fas-L and TRAIL apoptosis. Hence, Yeung et al. [ 48 ,  49 ] have reported the cloning 
of a new gene product, Raf kinase inhibitor protein (RKIP) that was shown to inhibit 
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both the Raf/MEK/ERK and NF-κB pathways. The expression of RKIP is low in 
many  cancers and absent in metastatic cancer [ 45 ]. The induction of RKIP was 
reported to inhibit metastatic prostate cancer in a murine model and where it has 
been coined a “metastatic suppressor” [ 92 ]. RKIP depletion resulted in a decrease 
of the mitotic index, a short time for the metaphase to anaphase transition and also 
a defect in the spindle checkpoint [ 93 ]. Altogether, the above fi ndings suggested 
that RKIP expression is involved in tumor cell arrest, apoptosis and the regulation 
of metastasis. Further, the fact that RKIP inhibits the NF-κB and Raf/MEK/ERK 
pathways is concordant with above effects and its expression shifts the balance from 
proliferation toward cytostasis and apoptosis. Several agents that result in the induc-
tion of RKIP resulted in the reversal of resistance and sensitization to Fas-L and 
TRAIL apoptosis [ 63 ,  86 ,  90 ,  94 ,  95 ]. Baritaki et al. reported that RKIP induction 
resulted in the inhibition of NF-κB and YY1 and sensization to TRAIL apoptosis 
concomitantly with upregulation of DR5. Treatment of tumor cells with RKIP 
siRNA reversed tumor cell sensitization to TRAIL [ 63 ]. The fi ndings with RKIP 

  Fig. 9.3    Schematic diagram representing the role of the proteasome inhibitor NPI-0052 in the 
regulation of tumor cells sensitivity to TRAIL-induced apoptosis. Treatment with NPI-0052 results 
in the modifi cation of several genes regulating the apoptotic pathways. NPI-0052 inhibits the 
NF-κB pathway via inhibition of Iκβα and p65 phosphorylation. NF-κB inhibition by NPI-0052 
leads to the down-regulation of Bcl-xL and the induction of Bax contributing to the mitochondrial 
membrane depolarization. Furthermore, NPI-0052 inhibits the transcription repressor YY1, lead-
ing to up-regulation of DR5. Thus, the combination of NPI-0052 and TRAIL results in the activa-
tion of the mitochondrial apoptotic pathway, inhibition of antiapoptotic gene products, activation 
of procaspases-9 and -7, formation of the apoptosome, and altogether downstream activation of the 
effector caspase-3 resulting in apoptosis. (Permission for reproduction by publisher [ 86 ])       
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induction on TRAIL sensitization is also likely to be involved in sensitization to 
Fas-L, since both ligands are regulated by YY1. The fi ndings on the role of RKIP in 
the sensitization to Fas-L and TRAIL are consistent with its role as an “immunosur-
veillance gene” in addition to its role as a “metastatic suppressor gene.”  

9.3.1.5     PTEN 

 It has been reported that metastatic melanoma cells are resistant to CTL [ 96 ]. In 
comparison with primary melanoma cells that are susceptible to CTL, in contrast, 
the metastatic cells are resistant and shown to express less ICAM-1. Treatment of 

  Fig. 9.4    DHMEQ-induced immunosensitization in resistant tumor cells. The schematic diagram 
illustrates tumor cells that constitutively express the activated NF-κB pathway. Activation of the 
NF-κB pathway results in the upregulation of the transcription repressor YY1. YY1 has been 
shown to negatively regulate the transcription and expression of the death receptors Fas and DR5 
and thus regulates tumor cell resistance to Fas-L or TRAIL-induced apoptosis. Inhibition of NF-κB 
by DHMEQ results in inhibition of YY1, upregulation of Fas and DR5 and sensitization to Fas-L- 
mediated apoptosis and TRAIL-mediated apoptosis, respectively. In addition, the diagram illus-
trates an example of Rituximab-mediated inhibition of the NF-κB pathway via the induction of 
RKIP, thus inhibiting YY1 like DHMEQ and resulting in tumor cell sensitization to immunother-
apy. (Permission for reproduction by publisher [ 64 ])       
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metastatic cells with interferon-gamma increased the expression of ICAM-1 and 
susceptibility to CTL-killing. Further, there was an inverse correlation between the 
expressions of ICAM-1 and PTEN. ICAM-1-knockdown was shown to increase 
PTEN and inhibit PI3K/Akt signaling. These fi ndings implicate the role of PTEN in 
the regulation of tumor cell sensitivity to CTL. 

 Reddy et al. [ 97 ] have reported that the metastasis-associated protein 1 (MTA1) 
is overexpressed in many human cancers and contributes to metastasis. MTA1 
represses PTEN by recruiting HDAC4 with YY1 on the PTEN promoter. 
Upregulation of MTA1 decreases PTEN expression and stimulates the PI3K/Akt 
pathway. Hence, the upregulation of YY1 in cancer cells is accompanied by the 
inhibition of PTEN, the activation of PI3K/Akt and NF-κB pathways and the down-
stream expression of anti-apoptotic gene products; all of these affects the resistance 
to apoptosis by CTL and cytotoxic drugs. 

 Gao et al. [ 98 ] have stably expressed PTEN in a squamous carcinoma cell line 
and resulted in the induction of apoptosis via the negative regulation of the PI3K/
Akt pathway and inhibition of anti-apoptotic gene products. New fi ndings also 
implicate the sensitivity of CTL to apoptosis. Nguyen et al. [ 99 ] have reported the 
study on engineered ePTEN whereby its expression in tumor cells with a suppressed 
PTEN resulted in a decrease in PIP3 levels, inhibition of the phosphorylation of the 
PI3K pathway, inhibition of both the proliferation and migration, and reversal of 
resistance. Kim et al. [ 100 ] have examined the resistance of cancer stem cells 
(CSCs) to apoptotic stimuli and the roles of the PTEN/PI3K/Akt/NF-κB pathway in 
CSCs and the regulation of ABCG2. Knock-out of PTEN increased stem-like prop-
erties of CSCs in prostate cancer cells (sphere formation, number of stem cells, 
EMT, and ABCG2 expression). The loss of PTEN in prostate cancer cells resulted 
in the development of CSCs and resistance. 

 Wang et al. [ 101 ] have established TRAIL-resistant breast cancer cell lines for 
investigation. These cell lines exhibited the EMT phenotype, invasiveness and 
downregulation of PTEN. Silencing miR-221 resulted in the upregulation of PTEN 
and the inhibition of both EMT and invasion. Likewise, knock-out miR-221 sensi-
tized the cells to TRAIL apoptosis by targeting PTEN. The resistance to TRAIL 
correlated with the inhibition of PTEN. 

 Hao et al. [ 102 ] have examined the role Twist and Snail transcription. The PI3K/
Akt pathway has been shown to regulate the twist and Snail transcription. Since Snail 
has been reported by us in the inhibition of TRAIL apoptosis [ 45 ] its inhibition by 
PTEN, via mediated-inhibition of PI3K/Akt, resulted in sensitization to TRAIL apop-
tosis. Thus, PTEN plays a role indirectly in the regulation of CTL- mediated killing. 

 Fang et al. [ 103 ] have examined the differential expression of microRNAs 
between chemo-sensitive and chemo-resistant colorectal cancer (CRC) cell lines 
and found an increased expression of miR-17-5p in the resistant cell line as well as 
in the metastatic CRC from patients. Higher levels of miR-17-5p correlated with 
poor survival. PTEN was a target of miR17-5p in colon cancer and the repression of 
PTEN correlated with chemo-resistance. This fi nding suggested indirectly the 
cross-resistance and, most likely, resistance to CTL. Zhang et al. [ 104 ] have reported 
that PTEN is a target gene of miR-205. MiR-205 inhibited PTEN, resulting in the 
activation of the PI3K/Akt pathway and resistance to apoptosis.    
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9.4     Reversal of Tumor Resistance to CTL Apoptosis 

9.4.1     The NF-κB Inhibitor DHMEQ 

 DHMEQ is an inhibitor that prevents the translocation of NF-κB into the nucleus 
[ 105 ] DHMEQ exerts anti-tumor effects in vivo in various experimental model sys-
tems [ 64 ,  106 ]. It has also been shown that DHMEQ can act as an immuno- 
sensitizing agent. Treatment of B-NHL cells with DHMEQ sensitized the cells to 
Fas-L apoptosis via inhibition of NF-κB [ 107 ]. Both rituximab-sensitive and resis-
tant B-NHL cell lines were sensitized to TRAIL by DHMEQ treatment via inhibi-
tion of NF-κB [ 95 ] (Fig.  9.4 ).  

9.4.2     Proteasome Inhibitors 

 NPI-0052 (marizomib) is a non-peptide murine-derived proteasome inhibitor 
reported to inhibit, irreversibly, all three enzymatic activities (CT-L, trypsin-like 
and caspase-like) of the 26S proteasome core [ 108 ,  109 ]. NPI-0052 was reported to 
have an anti-tumor activity in in vivo xenograft tumor models [ 110 ]. Treatment of 
tumor cells with proteasome inhibitors sensitized the cells to TRAIL apoptosis, 
concomitantly with DR5 upregulation [ 111 – 114 ] (Fig.  9.3 ). The mechanism by 
which proteasome inhibitors upregulate DR5 was not known and was examined by 
Baritaki et al. [ 86 ]. The fi ndings demonstrated that NPI-0052 inhibited the DR5 
repressor YY1 and resulted in the upregulation of DR5 and sensitization to TRAIL 
apoptosis. The inhibition of YY1 by NPI-0052 was the result, in part, of the inhibi-
tion of NF-κB transcription activity [ 78 ]. NPI-0052 treatment in combination with 
TRAIL activated the mitochondrial type II apoptotic pathway and synergy was 
achieved in apoptosis. There was inhibition of the anti-apoptotic gene products 
XIAP, IAPs and Bcl- XL  along with the induction of Bax. The role of DR5 upregula-
tion in sensitization was corroborated by fi ndings demonstrating that treatment of 
cells with siRNA DR5 attenuated signifi cantly TRAIL-induced apoptosis [ 115 ]. 
These fi ndings above demonstrated for the fi rst time that proteasome inhibitors- 
induced upregulation of DR5 was due in large part to the inhibition of YY1, a 
repressor of DR5 transcription [ 63 ]. Both NF-κB inhibitors such as DHMEQ and/or 
siRNA YY1 treatment sensitized tumor cells to TRAIL apoptosis with the upregula-
tion of DR5 and, thus, mimicked proteasome inhibitors. 

 We have reported previously that induction of RKIP sensitized tumor cells to 
TRAIL via inhibition of NF-κB and YY1 and upregulation of DR5. Beach and col-
leagues [ 3 ] have reported that Snail, a target of NF-κB, represses RKIP transcription 
and expression. Snail is a member of the Snail superfamily of zinc-fi nger transcrip-
tion factors with a pivotal role in embryonic development and cell survival [ 66 ]. 
Snail is regulated, in part, by NF-κB [ 46 ,  47 ] and, in part, by itself [ 71 ]. Thus, we 
hypothesized that since NPI-0052-mediated sensitization to TRAIL resulted from 
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the inhibition of NF-κB and its target YY1, it was likely that NPI-0052-mediated 
inhibition of NF-κB would also result in the inhibition of Snail and de-repression of 
RKIP transcription, and this modifi cation may be involved in TRAIL sensitization. 
Hence, the NF-κB/Snail/YY1/RKIP dysregulated loop will be modifi ed by NPI- 
0052, and each modulated gene product will be involved in sensitization. Treatment 
with specifi c NF-κB inhibitors, such as DHMEQ, mimicked NPI-0052 in the inhibi-
tion of NF-κB and Snail, along with upregulation of RKIP and sensitization to 
TRAIL [ 65 ] (Fig.  9.4 ). In addition, RKIP overexpression mimicked treatment with 
Snail siRNA or NPI-0052 in sensitization of cells to TRAIL apoptosis, concomitant 
with a decrease of Bcl- XL . In contrast, treatment with RKIP siRNA reversed the 
sensitization to TRAIL. Collectively, the fi ndings above established the NF-κB/
Snail/YY1/RKIP circuitry in tumor cells that regulates tumor cell sensitivity to 
TRAIL apoptosis (Figs.  9.2  and  9.3 ). 

 Several immunotherapeutic strategies have been developed and applied in the 
treatment of cancer patients. These include cancer vaccines, immunotherapy (ex 
vivo activated dendritic cells, IL2, adoptive T cell therapy, antibodies, genetically 
engineered T and B cells). In patients with melanoma, the above various approaches 
have resulted in clinical responses initially, though the majority of patients experi-
ences relapses and no longer responds to further treatments [ 116 ]. T cells geneti-
cally engineered expressing anti-tumor T cell receptors were developed and showed 
signifi cant anti-tumor response in animal model systems [ 117 ,  118 ] and were 
reported the outgrowth of immune-resistant tumor variants in patients treated with 
immunotherapy. Noteworthy, the Rosenberg group genetically engineered periph-
eral blood T cells to express high affi nity TCR for melanoma MART-1 and called 
F5 MART-1 TCR cells and achieved a partial complete response in patients [ 119 ]. 
The low clinical response in patients by F5 suggested that either the CTL are not 
recognizing the tumor targets or reaching the targets or, alternatively, the tumor cells 
were resistant to CTL-killing. These possibilities were examined by Jazirehi et al. 
[ 120 ]. The approach used was to generate F5 CTL-resistant tumor clones and exam-
ine their mechanism of resistance. The resistant clones expressed the same levels of 
MART-1 and HLA-1 complexes, though they proliferated faster than the parental 
cells. Further, the resistant clones exhibited more hyper-activated NF-κB activity 
and, downstream, higher expression of anti-apoptotic gene products as compared to 
parental cells. In the absence of killing of the clones by F5 CTL, however, the F5 
CTL still recognized the targets via binding and conjugate formation and also were 
triggered to release interferon γ and IL2 comparable to the sensitive tumor cells. 
The hyper-activated NF-κB activity in the clones suggested it may be regulating the 
resistance to CTL as it has been reported to confer immune resistance [ 121 ], and its 
inhibition reverses resistance. We treated the resistant clones with bortezomib and 
resulted in the sensitization of those cells to F5 CTL. Protective factors regulated by 
NF-κB (Bcl-2, Bcl- XL  and Mcl-1) were also shown to reverse resistance following 
their inhibition using various inhibitors or siRNA. The above fi ndings implied that, 
in vivo, in patients treated with immunotherapy and have circulating CTL that the 
failure of response may be due to the acquisition of resistance of the tumor cells. 
Hence, interventions are needed to target the tumor cells’ resistance and to be used 
in combination with immunotherapy to result in an effective clinical response.  
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9.4.3     NO 

 Many cancers exhibit constitutively activated NF-κB and it was reported that NF-κB 
regulates tumor cell sensitivity to TRAIL apoptosis in hepatoma cells [ 122 ]. 
Downstream targets of NF-κB include the Bcl2 family and the Bcl2-related gene 
(Bcl- XL ), and those were reported to regulate tumor cell sensitivity to drug-mediated 
apoptosis [ 123 ]. The roles each of NF-κB and Bcl- XL  in the regulation of TRAIL 
apoptosis were examined [ 91 ]. NO donors such as DETANONOate were reported 
to sensitize tumor cells to Fas-L and TRAIL-induced apoptosis [ 37 ,  124 – 126 ]. The 
mechanism by which NO sensitizes tumor cells to TRAIL apoptosis was examined. 
The fi ndings demonstrated that NO inactivates NF-κB activity by S-nitrosylation of 
NF-κB p50 and downstream Bcl- XL  expression. Inhibition of either NF-κB or Bcl- XL  
sensitized tumor cells to TRAIL apoptosis. The synergy achieved by the combina-
tion treatment with DETANONOate and TRAIL resulted in the activation of type II 
apoptotic pathway and resulted in apoptosis. While each treatment resulted in the 
activation of the mitochondria, associated with membrane depolarization and 
release of cytochrome C and Smac/DIABLO, however, neither achieved subsequent 
activation of caspases 9 and 3. In contrast, the combination treatment resulted in 
complementary activities and activated caspases 9 and 3, leading to apoptosis. 
Using prostate cancer cell lines as a model, DETANONOate sensitized both 
androgen- dependent and androgen-independent lines to TRAIL apoptosis (Fig.  9.5 ). 
While treatment with ActD or VP16 sensitized tumor cells to TRAIL via inhibition 
of XIAP [ 127 ], DETANONOate treatment did not affect XIAP, but primarily inhib-
ited Bcl- XL  (Fig.  9.6 ). These studies suggest that tumor cells’ resistance to TRAIL is 
mediated by several mechanisms that can be altered by different agents. The mecha-
nism by which NO perturbs the mitochondria has been reported by several investi-
gators. Poderoso et al. [ 128 ] have reported that NO binds to cytochrome C oxidase 
(Complex IV) in the mitochondria electron transfer chain and resulting in the 
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  Fig. 9.5    Schematic diagram of the role of YY1 in the negative regulation of DR5 transcription and 
resistance to TRAIL-induced apoptosis. The tumor cells constitutively express activated    NF-κB 
and YY1 activities and express low levels of DR5. These cells are resistant to TRAIL-induced 
apoptosis. Treatment of the tumor cells with DETANONOate inhibits NF-κB and YY1 and results 
in the inhibition of YY1 repressor activity. These lead to the upregulation of DR5 and sensitization 
to TRAIL-induced apoptosis. (Permission for reproduction by publisher [ 80 ])       
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generation of superoxide. Superoxide interacts with NO to form peroxinitrite, which 
induces mitochondrial dysfunction and the release of cytochrome C.   

 NO donors inhibit NF-κB DNA-binding activity and downstream targets, includ-
ing anti-apoptotic gene products. In addition, NO inhibits p50 and p65 through 
nitrosylation. We have reported that treatment of tumor cells with DETANONOate 
sensitizes cells to TRAIL apoptosis [ 91 ]. Sensitization of tumor cells by NO 
involved the inhibition of NF-κB and downstream, the DR5 repressor YY1, leading 
to upregulation of DR5. Hence, we hypothesized that DETA treatment will inhibit 
YY1 and sensitize the cells to TRAIL apoptosis. YY1 was identifi ed as a resistant 
factor and regulates resistance to both chemotherapy and irradiation. For TRAIL, 
YY1 represses DR5 and is responsible, in part, for TRAIL resistance, and, thus, its 
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  Fig. 9.6    Proposed model of actinomycin D (Act D)-sensitized tumor necrosis factor-related 
apoptosis- inducing ligand (Apo2L/TRAIL)-mediated apoptosis. Apo2L/TRAIL initiates apopto-
sis by trimerization of its cognate receptors DR4 and DR5, followed by activation of the initiator 
caspase-8. Active caspase-8 can directly activate caspase-3 or indirectly activate caspase-9 by 
means of the mitochondrial pathway. The direct pathway that activates caspase-3 after caspase-8 
activation is known as the type I pathway; the indirect activation of caspase-3 by means of the 
activation of caspase-9 is termed the type II pathway. In the type II pathway, caspase-9 is activated 
when cytochrome C is released from the mitochondria, which is triggered by active caspase-8. The 
activation of caspase-3 leads to the fi nal apoptotic phenotypes such as DNA fragmentation and 
chromosomal condensation. Various anti-apoptotic proteins inhibit each signaling event through-
out the pathway. c-FLIP inhibits the activation of caspase- 8. Bcl-2-related family proteins guard 
against mitochondrial release of cytochrome C. IAP family proteins directly inhibit the activation 
of caspase-9 and-3. Apo2L/TRAIL could induce cytochrome C but did not activate caspase-9 
(Signal II). The blockade of signal I is potentially mediated primarily through XIAP (stop sign). 
Pretreatment with Act D suppresses the expression of XIAP, thus, removing the block (Signal I). 
The combination treatment of Apo2L/TRAIL and Act D then leads to completion of the apoptotic 
pathway. (Permission for reproduction by publisher [ 127 ])       
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inhibition by NO will reverse resistance. The DR5 promoter has a consensus  binding 
site for YY1 and was corroborated by its interaction, directly, by ChIP analysis and, 
indirectly, by deletion or mutation of the YY1 consensus binding site on the DR5 
promoter. The in vitro fi ndings were corroborated in vivo in mice bearing human 
tumor xenografts and in which the treatment with DETANONOate was shown to 
result in the inhibition of YY1 and upregulation of DR5 as assessed ex vivo in 
tumors derived from the DETANONOate-treated mice. 

 The direct role of DR5 upregulation in TRAIL sensitization has been reported 
[ 129 ]. However, with DETANONOate, many other factors are involved, such as 
the inhibition of anti-apoptotic gene products. In addition to YY1 repression of 
DR5, Yoshida et al. [ 7 ], using a reporter system for human DR5, identifi ed two 
SP-1 sites, respectively, for the basal transcriptional activity of the DR5 gene pro-
moter. Nakata et al. [ 130 ] reported that HDAC inhibitors upregulate DR5 expres-
sion and sensitize the cells to TRAIL apoptosis. Other inducers of DR5 have also 
been reported. For example, p53 transactivates DR5 gene expression [ 131 ,  132 ]. 
Genotoxic agents (doxorubicin, VP16, gamma irradiation) induced DR5 in a 
p53-dependent or independent manners [ 129 ,  133 ]. Dexamethasone and interferon 
gamma induce apoptosis by DR5 expression in a p53-independent manner [ 134 ]. 
Sulindac sulfi te [ 134 ] and 2-methoxy-estradiol [ 135 ] induced DR5 through mecha-
nisms that are not yet known.  

9.4.4     Rituximab and Galiximab 

9.4.4.1     Rituximab 

 The standard treatment of B-NHL is the combination of rituximab and chemother-
apy (R-CHOP) [ 136 ]. We have reported that rituximab treatment of B-NHL cell 
lines sensitized the cells to drug-induced apoptosis [ 137 – 140 ]. Rituximab treatment 
inhibited the constitutively activated survival pathways, such as NF-κB and MEK/
ERK1/2 [ 138 ] and the p38 MAPK [ 73 ]. Based on the fi ndings of rituximab- mediated 
sensitization to drugs, we sought to investigate whether it would also sensitize the 
cells to Fas-L apoptosis. The hypothesis put forth was that inhibition of NF-κB in 
ovarian cancer cells by interferon γ sensitized the cells to Fas-L via inhibition of 
NF-κB and its target YY1. Inhibition of YY1 was accompanied by the induction of 
Fas, as well as the inhibition of YY1 sensitized the cells to Fas-L apoptosis [ 79 ]. 
Therefore, the possible inhibition of YY1 by rituximab via inhibition of NF-κB may 
sensitize the B-NHL cells to Fas-L apoptosis. The fi ndings established synergy in 
apoptosis in B-NHL cells treated with a combination of rituximab and Fas-L. The 
synergy was the result, in part, of inhibition of the Fas-repressor YY1 and other 
anti-apoptotic gene products regulated by NF-κB. Chemical inhibitors established 
the roles of p38 MAPK, NF-κB and YY1 in the regulation of resistance. The 
observed synergy in apoptosis was the result of the activation of type II mitochon-
drial apoptotic pathway. 
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 We speculated that in an in vivo setting, rituximab may exert a new mechanism 
of cytotoxicity by sensitizing tumor cells to Fas-L expressing cells, such as T and 
NK lymphocytes and contributes to its in vivo anti-tumor activities [ 88 ]. 

 We have reported that rituximab treatment of TRAIL-resistant B-NHL cell lines 
are sensitized to TRAIL apoptosis. Hence, we postulated that the treatment of tumor 
cells with rituximab will also sensitize them to CTL circulating in vivo alone or in 
combination with adoptive immunotherapy and/or other approaches to generate 
anti-tumor CTL. Vega et al. [ 141 ] have examined the above hypothesis in vitro. In 
previous studies, we reported that rituximab sensitizes Fas-resistant B-NHL to 
Fas-L apoptosis [ 87 ,  88 ]. In other studies, by us and others, rituximab also sensi-
tized tumor cells to TRAIL apoptosis [ 142 – 144 ]. The in vitro studies were validated 
in vivo, in which administration of rituximab and TRAIL inhibited B-NHL tumor 
xenografts growth [ 143 ]. The mechanism by which rituximab sensitized tumor cells 
to TRAIL was predicated on the fi nding that inhibition of NF-κB reverses resistance 
to TRAIL via inhibition, downstream, of the DR5 repressor YY1 [ 90 ]. We have 
previously reported that rituximab inhibits NF-κB activity in B-NHL cell lines [ 95 ] 
delineating the mechanism of rituximab resistance. The above fi ndings on rituximab- 
mediated sensitization to Fas-L and TRAIL add a novel mechanism to be involved 
in vivo (Fig.  9.7 ) in which rituximab activates lymphocyte-mediated cytotoxicity of 
tumor cells in vivo in addition to the postulated mechanisms of ADCC and CDC. The 
patients’ effector cells, CTL and NK, express the death ligands that can trigger cor-
responding receptor on the B-NHL tumors, and their interaction mediate tumor cell 
apoptosis. These fi ndings strongly suggested that patients with B-NHL may respond 
to a combination of rituximab and CTL-mediated immunotherapy. However, not all 
cells are sensitive, and that may explain one mechanism of failures of patients to 
respond to rituximab treatment.   

9.4.4.2     Galiximab 

 The anti-CD80 mAb galiximab has been tested for its signal mediating effects on 
CD80-positive B-NHL cell lines. Galiximab is a high affi nity primitized anti-CD80 
(IgG-1λ) that contains variable regions of primate cynolmogous macaque origin and 
constant regions of human origin [ 145 ]. It has been considered for clinical treat-
ment. The studies undertaken were reminiscent of prior studies discussed above 
with the anti-CD20 mAb rituximab. The CD80 membrane bound co-stimulatory 
molecule has been reported in its activity in the regulation of T cells and is a mem-
ber of the B7 co-stimulatory molecules [ 146 ]. CD80 expression is found at the 
surface of B cells, APCs and T cells [ 147 ] and on the surface of a variety of lym-
phoid malignancies [ 148 ] Anti-CD80 antibody inhibits cell proliferation and 
induces ADCC in vivo against B-NHL xenografts [ 149 ] and in vitro cytotoxicity 
[ 150 ]. Galiximab also exerted anti-tumor effects in vivo in mice bearing human 
lymphoma xenografts [ 151 ]. 

 Cell signaling in B-NHL by galiximab was reported by Martinez-Paniagna et al. 
[ 152 ]. The fi ndings revealed that galiximab exerts anti-proliferative effects and 
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 sensitized the B-NHL cells to apoptosis by both chemotherapy and immunotherapy. 
Galiximab signals the cells via the CD80 receptor, resulting in the inhibition of the 
activation of the NF-κB pathway and also inhibited the Akt pathway and downstream 
targets YY1 and Snail and Bcl- XL . Individually, each of these gene products inhibited 
by galiximab sensitizes cells to TRAIL apoptosis. Thus, galiximab interferes with the 
dysregulated NF-κB/Snail/YY1/RKIP loop to reverse drug and immune resistance. 
Overall, treatment of tumor cells with galiximab inhibited both NF-κB and Akt and 
resulted in the sensitization to TRAIL, Fas-L and chemotherapy.   

9.4.5     Chemotherapeutic Drugs 

 Lymphokine activated killer cells (LAK) and tumor-infi ltrating lymphocytes (TIL) 
are promising immunotherapeutic anti-cancer strategies [ 153 – 155 ]. LAK and TIL 
kill autologous and allogeneic tumor cells via the perforin/granzyme pathway and 

  Fig. 9.7    Schematic diagram of the mechanism by which rituximab sensitizes B-NHL cells to 
TRAIL-induced apoptosis. B-NHL cells maintain their resistance to TRAIL-induced apoptosis 
through constitutively active NF-κB and YY1, which negatively regulate DR5 expression. Cell 
treatment with rituximab inhibits NF-κB and YY1 leading to the inhibition of YY1 repressor activ-
ity on the DR5 promoter and up-regulation of DR5 expression. In parallel, rituximab-mediated 
NF-κB inhibition downstream inhibits the expression of anti-apoptotic gene products, such as 
Bcl-XL and Mcl-1. The combination of rituximab and TRAIL results in the cleavage of caspases 
9, 8, and 3 and PARP, all of which lead to apoptosis. (Permission for reproduction by publisher [ 141 ])       
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TNF family of apoptosis-inducing ligand [ 155 – 158 ]. The TIL in tumors are not 
effective and not cytolytic and may become anergic [ 159 ]. Alternatively, TIL may 
be functional, but the surviving tumor cells may be resistant to killing. The study by 
Frost et al. [ 160 ] demonstrated that patients-derived TIL kill tumor cell lines if the 
tumor cells are pre-treated with low concentrations of chemotherapeutic drugs such 
as CDDP and VP16. The above studies point to the fi ndings that tumor cells develop 
resistance to CTL, LAK and TIL in vivo ,  and it should be considered that in addi-
tion to the generation of anti-tumor CTL response, one has to consider resistance of 
tumor cells to killing and the tumor cells must be treated to reverse their resistance 
so that the combination treatment will be effective. 

 TRAIL is a member of the TNF superfamily that has been reported to kill sensi-
tive tumor cells selectively and not killing normal cells; hence, it has been consid-
ered a potential therapeutic target. Both in vitro and in vivo studies reported 
TRAIL-mediated anti-tumor activities [ 83 ,  161 – 163 ]. Noteworthy, while both 
Fas-L and TNF-α exert in vivo toxicities, in contrast, TRAIL is not toxic [ 164 ]. 

 Tumor cell resistance to TRAIL apoptosis can be sensitized by sub-toxic concen-
trations of chemotherapeutic drugs [ 83 ,  163 – 168 ]. The fi ndings that actinomycin D 
(ActD) sensitized AIDS-Kaposi sarcoma cells to TRAIL apoptosis [ 166 ], we exam-
ined the sensitizing activity of ActD in TRAIL-resistant prostate cancer cell lines 
[ 127 ]. Indeed, ActD sensitized several human prostate carcinoma cell lines to 
TRAIL apoptosis. The combination treatment resulted in caspase activation follow-
ing activation of the type II mitochondrial apoptotic pathway. The combination 
treatment activated caspases 8 and 9, but no activation with single agent alone. 
Earlier times following treatment revealed upregulation of Bcl- XL  and downregula-
tion of XIAP. The upregulation of Bcl- XL  did not allow the cytochrome C release. 
The direct role of XIAP inhibition in sensitization was corroborated by overexpres-
sion of Smac/DIABLO that mimicked ActD in tumor sensitization to TRAIL apop-
tosis. Of interest, treatment with TRAIL activated the mitochondria (membrane 
depolarization) and release of cytochrome C in the absence of downstream activa-
tion. Hence, the overexpression of XIAP protein prevented cytochrome C activation 
of caspase 9. The IAP family members exert their anti-apoptotic function down-
stream of cytochrome C by directly binding to caspases and preventing the activa-
tion of effector caspases (9 and 3) [ 169 ]. XIAP is the most potent anti-apoptotic 
protein among the IAP family. ActD treatment suppresses XIAP very early after 
treatment and there was little effect on other anti-apoptotic proteins. Smac/DIABLO 
is an inactivator of IAP family proteins [ 170 ] (Fig.  9.6 ). Resistance to TRAIL 
involves loss of agonist receptors (DR4 and DR5) and overexpression of decoy 
receptors [ 168 ,  171 ,  172 ]. 

 Several mechanisms have been postulated to delineate how ActD inhibits 
XIAP. Two signal models were proposed for the sensitization of cells by ActD to 
TRAIL apoptosis. This model explains the synergy achieved by ActD and TRAIL 
as complementary pro-apoptotic effects. TRAIL initiates the necessary type II 
apoptotic signal and perturbing the mitochondrial and cytochrome C but was not 
suffi cient to activate caspases (Signal II). Signal I was required to inhibit the 
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 anti- apoptotic gene product XIAP and other resistant factors. The combination 
resulted in the activation of caspases and resulted in apoptosis [ 85 ]. Like TRAIL, 
ActD also sensitized to Fas-L apoptosis [ 173 ]. Hence, ActD is a good example of 
the reversal of tumor cell resistance to CTL apoptosis (Fig.  9.6 ). 

 The overexpression of Smac/DIABLO inhibits XIAP, which is overexpressed in 
resistant tumor cells and was shown to be responsible, in part, for resistance to 
TRAIL apoptosis [ 85 ,  127 ]. The inability to induce apoptosis by translocation of 
cytochrome C and endogenous Smac/DIABLO by TRAIL highlights the impor-
tance of the inhibitors downstream of the apoptotic events in tumor resistance. The 
overexpression of XIAP protein is associated with poor response to apoptosis- 
inducing therapies. In leukemia patients, high level of XIAP in tumor cells corre-
lated with poor survival [ 174 ]. XIAP was also found to be highly expressed in 
resistant ovarian cancers to chemotherapy and radiation, and treatment with anti- 
sense XIAP reversed resistance [ 175 ,  176 ]. 

 The effect of TRAIL treatment on representative tumor MM cell lines, 8226 and 
ADR-resistant variant 8226/dox40, were used to determine the relative effects of 
TRAIL on both ADR-sensitive (8226) and ADR-resistant (8226/dox40) cell lines. 
The fi ndings revealed that 8226/dox40 was more resistant to TRAIL than 8226. 
Further, treatment of 8226/dox40 with ADR sensitized the cells to ADR apoptosis 
[ 139 ]. These fi ndings suggested that ADR may exert a different signaling than a 
cytotoxic killing since the 8226/dox40 was resistant to ADR-induced cell death and 
that such signaling by ADR must have altered the anti-apoptotic pathways and 
resulted in sensitization to TRAIL apoptosis. The 8226/dox40 resistance to TRAIL 
was not the result of poor or absent expression of DR4 or DR5. The synergy achieved 
by ADR and also by VP16 in combination with TRAIL and apoptosis of 8226/
dox40 is consistent with previous fi ndings of drug-induced sensitization to TRAIL 
[ 168 ,  176 – 179 ]. Lower concentrations of ADR were used for sensitization than the 
concentrations used for cytotoxicity in the sensitization of tumor cells. Of interest, 
the low concentration of ADR activity was active in the MDR-expressing 8226/dox 
variant [ 180 ]. 

 The mechanism of ADR-induced sensitization of 8226/dox40 to TRAIL apopto-
sis was examined. There was some modest upregulation of DR5 by ADR. There 
was little change in any of the pro- or anti-apoptotic gene products by ADR, though 
there was upregulation of both caspase 9 and Apaf-1. The combination treatment 
resulted in depolarization of the mitochondrial membrane. These fi ndings demon-
strated that ADR sensitizes TRAIL-resistant MDR-positive tumor cells to TRAIL 
apoptosis as a result of the activation of the type II apoptotic pathway. The sensiti-
zation was independent of the MDR phenotype by a drug that is resistant to 
MDR. Since CTL mediates its cytotoxic activity, in part, by TRAIL, thus, treatment 
of tumor cells with low concentrations of drugs (example ADR and VP16) would 
sensitize tumor cells to CTL-apoptosis. Similar fi ndings were also reported for sen-
sitization of Fas-L resistant tumor cells by drugs and their sensitivity to CTL-
mediated apoptosis [ 165 ].  
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9.4.6     Gene Modifi cation (siRNA/Overexpression): 
RKIP as a Model 

 The development of tumor cell resistance to CTL-mediated cytotoxic mechanisms 
underlies the search for molecular targets that govern resistance and their possible 
consideration as potential therapeutic targets. TRAIL and agonist DR4/DR5 mAbs 
are currently being explored in the clinic for treatment of various cancers [ 181 , 
 182 ]. We and others have reported on possible mechanisms that regulate resistance 
to TRAIL and their reversal by sensitizing agents [ 63 ,  82 – 84 ]. 

 Chatterjee et al. [ 94 ] have reported that drug resistance of tumor cells can be 
sensitized to drug apoptosis by overexpression of RKIP. RKIP is a member of the 
phosphatidyl-ethanolamine-binding protein family and it inhibits both the NF-κB 
and the Raf/MEK/ERK pathways [ 48 ,  49 ]. The fi nding that constitutively activated 
NF-κB and Raf/MEK/ERK survival anti-apoptotic pathways mediated resistance, 
their inhibition by RKIP may reverse resistance and render the cells sensitive to 
apoptotic stimuli. For instance, inhibition of NF-κB resulted in downstream inhibi-
tion of the Fas and DR5 repressor factor YY1 and resulting in deregulation of Fas 
and DR5 expression, leading to sensitization to Fas-L and TRAIL apoptosis, respec-
tively [ 12 ,  79 ,  87 ,  88 ]. The fi ndings reported by Baritaki et al. [ 90 ] demonstrated 
overexpression of RKIP in tumor cell lines sensitizes cells to TRAIL apoptosis and, 
in contrast, inhibition of RKIP reversed the sensitization to TRAIL. The induction 
of RKIP correlated with inhibition of YY1 and upregulation of DR5. The combina-
tion of TRAIL and overexpression of RKIP resulted in activation of both type I and 
type II apoptotic pathways. Similar to the inhibition of NF-κB and YY1 and the 
upregulation of DR5 that sensitized the cells to TRAIL, therefore, RKIP expression 
was shown to mimic these inhibitions. 

 RKIP acts upstream of the kinase complex that regulates NF-κB activity [ 49 ]. 
These fi ndings suggested that RKIP induction inhibits NF-κB and YY1 and aug-
ments DR5 expression underlying the mechanism of RKIP-induced sensitization to 
TRAIL. However, RKIP-induced inhibition of the Raf/MEK/ERK pathway may 
also be involved in sensitization, since this pathway was reported to override the 
apoptotic signaling by death receptors, including TRAIL [ 183 ]. We have suggested 
that since YY1 is involved in the regulation of both Fas-L and TRAIL resistance, 
therefore, RKIP overexpression may also sensitize the cells to Fas-L apoptosis by 
inhibiting YY1 and inducing Fas. 

 Overexpression of RKIP is manifested in the cells by depolarization of the mito-
chondrial membrane potential, activation of caspases and also, downregulation of 
anti-apoptotic gene products such as XIAP and Bcl- XL . Treatment of cells overex-
pressing RKIP potentiated the type II apoptotic pathway (Fig.  9.3 ). The fi ndings above 
suggest strongly that RKIP regulates the immune response by CTL and NK cells and 
it is a new role, in addition to its metastatic suppressor role previously identifi ed. 

 Since the levels of RKIP are low in most tumors, thus, it may be a critical deter-
minant in cancer progression through modulation of the anti-tumor immune 
response. Hence, RKIP is a target whereby its induction may inhibit metastasis and 
sensitize the cells to both drugs and the immune response.   
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9.5     Clinical Applications 

 The resistance of tumor cells to cytotoxic lymphocytes leads to disease progression 
in the host. The resistance to killing by CTL is not restricted to the lymphocytes as 
mechanisms governing anti-apoptotic outcomes in cancer cells are also governed for 
various agents-mediated apoptosis (chemotherapy, hormonal, irradiation, antibody, 
chemical inhibitors, etc.). The identifi cation of the mechanism of a gene(s) product 
that regulates killing by CTL and cytotoxic agents have been represented by various 
manipulations discussed herein. For example, the dysregulated NF-κB/Snail/YY1/
RKIP/PI3K/PTEN loop offers novel intervention approaches to modulate its role in 
resistance and shift the balance from anti- to pro-apoptotic activities [ 45 ].  

9.6     Conclusions and Future Directions 

 In this review, the resistance of model cancer tumor cells to CTL/ligands-mediated 
cytotoxicity was analyzed via one mechanism, among many other mechanisms dis-
cussed elsewhere, that tumor cells use to inhibit CTL-mediated cytotoxicity. The 
dysregulated NF-κB/Snail/RKIP/YY1/PTEN was shown to regulate resistance to 
apoptotic stimuli induced by CTL ligands (examples Fas-L, TRAIL, TNF-α) and 
how its interference, by various selective agents that disrupted this loop, resulted in 
the sensitization of tumor cells to CTL-induced apoptosis. The various fi ndings that 
have been discussed in in vitro model systems must be confi rmed and validated in 
clinical trials. In addition, since the interference by specifi c agents directed against 
each one of the various factors in the loop was suffi cient to sensitize the tumor cells 
to CTL, it suggests that one must be able to develop novel agents that target specifi -
cally any of these factors and possibly achieving the same results. In addition to the 
reversal of resistance to CTL-mediated apoptosis via modulation of the loop, that 
same loop has been shown to also regulate the resistance to chemotherapeutic drugs, 
on one hand, as well as in the regulation of EMT and metastasis. Therefore, the 
agents that will interfere and sensitize the cells to CTL-mediated apoptosis will also 
be able to override the cross-resistance between chemotherapy and immunotherapy, 
as well as inhibit EMT and metastasis. Such an approach has unique attributes and 
functions that is not achieved by agents that are more selective and more confi ned.     
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    Chapter 10   
 Overcoming Cancer Cell Resistance to Death 
Receptor Targeted Therapies 

             Julianne     D.     Twomey    ,     William     Hallett    , and     Baolin     Zhang    

    Abstract     Death receptors (DRs) are promising targets for cancer therapies because 
of their ability to induce apoptosis in cancer cells. These receptors are characterized 
by an intracellular death domain, which transmits a death signal from their cognate 
ligands, including TNF-related apoptosis inducing ligand (TRAIL). Currently, mul-
tiple clinical trials are underway to evaluate the antitumor activity of recombinant 
human TRAIL and agonistic antibodies to its receptors DR4 and DR5. Although the 
products have shown a tolerated safety profi le in the completed phase 1 studies, a 
large number of cancer cell lines are found to be resistant to these agents, raising a 
concern about their clinical effi cacy. This review provides an update of recent 
advances in understanding the molecular mechanisms involved in cancer cell resis-
tance to DR4/DR5 targeted therapies. This information will be further discussed 
with respect to combinational strategies to overcome or bypass resistance mecha-
nisms towards a better treatment outcome.  

  Keywords     Death receptors   •   Apoptosis   •   Targeted therapies   •   Drug resistance   • 
  Predictive biomarkers   •   Combinational therapies  
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  BH    Bcl-2 homology   
  c-FLIP    Cellular FADD-like IL-1 beta-converting enzyme inhibitor 

protein   
  DISC    Death inducing signaling complex   
  DLT    Dose limiting toxicities   
  DR    Death receptors   
  EGFR    Epidermal growth factor receptor   
  FADD    Fas-associated death domain   
  FOLFIRI    Fololinic acid, fl uorouracil, and irinotecan   
  FOLFOX    Fololinic acid, fl uorouracil, and oxiplatin   
  HER    Human epidermal receptor   
  IAP    Inhibitor of apoptosis proteins   
  IFN    Interferon   
  IGFR    Insulin-like growth factor receptor   
  MOA    Mechanism of action   
  NSCLC    Non-small cell lung cancer   
  PNET    Primitive neuroectodermal   
  rhTRAIL    Recombinant human TRAIL   
  SCLC    Small cell lung cancer   
  siRNA    Small interfering RNA   
  SMAC/DIABLO    Second mitochondrial activator of caspases/direct inhibitor of 

apoptosis-binding protein with low pI   
  tBid    Truncated Bid   
  TNFR    Tumor necrosis factor   
  TRAIL    TNF-related apoptosis inducing ligand   
  XIAP    x Chromosome-linked inhibitor of apoptosis   

10.1          Introduction 

    The cell surface death receptors are promising targets for cancer therapy due to their 
ability to induce apoptosis in cancer cells. To date, six human death receptors (DRs) 
have been identifi ed, including Tumor Necrosis Factor Receptor (TNFR) 1, Fas 
(CD95), DR3, DR4 (TRAIL-R1), DR5 (TRAIL-R2) and DR6. These receptors are 
characterized by an intracellular death domain that transmits a death signal from 
their respective cognate ligands including TNFα, FasL, and TNF-related apoptosis 
inducing ligand (TRAIL/Apo2L). Despite the ability of TNFα and FasL to induce 
apoptosis in cancer cells, severe toxicities to normal cells leading to hypertension 
and hepatotoxicity preclude their use in systemic cancer therapy [ 1 ,  2 ]. In contrast, 
recombinant human TRAIL (rhTRAIL) preferentially induces apoptosis in a variety 
of tumor cell lines without harming many normal cell types [ 3 ,  4 ]. Moreover, 
administration of rhTRAIL into mice bearing human tumor xenografts induces sig-
nifi cant tumor regression without systemic toxicity. These promising results have 
led to multiple clinical trials of rhTRAIL and agonistic antibodies to DR4 or DR5 
as potential anticancer therapies (Table  10.1 ). These products have shown a 
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well- tolerated safety profi le in the completed Phase I studies [ 5 – 9 ]. However, a 
signifi cant portion of tumor cell lines as well as primary human tumor cells are 
found to be resistant to these therapies due to intrinsic or acquired mechanisms 
[ 10 – 14 ]. Undoubtedly, non-responsive patients will not benefi t from the treatments 
but may still suffer from the potential side effects. An in-depth analysis of resistance 
mechanisms could facilitate the identifi cation of biomarkers for predicting tumor 
response to the DR-targeted therapies and aiding in the development of combina-
tional therapies to overcome resistance towards a better clinical outcome of cancer 
treatment.

10.2        Apoptosis Signaling Through Death Receptors 

 Like other TNF ligands, native TRAIL exists as a homotrimer that cross-links its 
death receptors (DRs) 4 and/or 5 on the surface membrane of target cells (Fig.  10.1 ). 
The agonistic antibodies act in a similar mode. Activation of DR4 and/or DR5 
results in the recruitment of the adaptor molecule Fas-associated death domain 
(FADD) and the procaspase-8 or -10 into a death-inducing signaling complex 
(DISC). Within the DISC, caspase-8 or -10 is activated by self-processing that sub-
sequently activates the downstream effector caspases such as caspase-3, -6, and 
-7 in a mitochondrial-independent or -dependent manner. The latter process is 
linked by caspase-8 mediated truncation of Bid (tBid) [ 15 – 17 ]. The activated cas-
pases propagate apoptotic programming by cleaving a wide range of structural and 
signaling proteins, ultimately leading to apoptosis of the target cell. TRAIL resis-
tance has been associated with defects in the relevant apoptosis signaling compo-
nents or regulatory proteins. These factors will be discussed with respect to their 
functional relevance in cancer resistance: (1) functionality of receptors, (2) avail-
ability of caspases, and (3) status of regulatory proteins.  

10.2.1     Defi ciency of Surface Death Receptors 

 Initiation of a death-signaling cascade relies on the surface expression of DR4 and 
DR5 for TRAIL or antibody ligation. Defi ciency of these receptors on the cell mem-
brane is enough to render cancer cells resistant to TRAIL-induced apoptosis, regard-
less of the expression status of other signaling proteins. This lack of surface 
expression is seen in a variety of cancer lines and primary tumor cells, including 
those derived from breast [ 14 ] and oral squamous carcinoma [ 18 ]. The absence of 
death receptors on the surface membrane of the cell does not correlate with receptor 
total protein levels [ 14 ], indicating these receptors are trapped within the cell. Many 
mechanisms have been implicated in this mislocalization of the death receptors, 
such as unsuccessful traffi cking to the plasma membrane [ 19 – 22 ], increased endo-
cytosis [ 13 ,  14 ,  23 – 25 ], and autophagosome localization [ 26 ]. Studies have shown 
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in cells with defi cient surface expression, the DRs are mainly found in the  cytoplasm 
and the nucleus [ 19 – 22 ,  27 ,  28 ]. Our work has shown that both DR4 and DR5 
undergo constitutive or ligand-induced internalization in some breast cancer cell 
lines [ 12 – 14 ]. Constitutive endocytosis may occur through faulty dileucine-based 

  Fig. 10.1    Checkpoints of TRAIL-induced apoptosis signaling pathway. The TRAIL apoptotic 
signaling pathway is initiated through ligation of TRAIL or agonistic antibodies targeting DR4/5. 
This ligation induces assembly of a DISC composed of FADD and pro-caspase 8/10. Caspase 8 is 
activated and released to initiate caspase 3/7 to induce apoptosis. Caspase 8 can also cause the 
cleavage of Bid to truncated Bid (tBid), linking to the mitochondrial-dependent caspase activation. 
The key resistance mechanisms include surface defi ciency of DR4/5 (R1), upregulated c-FLIP 
(R2), caspase 8 defi ciency (R3), Bcl2 protein family over-expression (R4), inhibitor of apoptosis 
proteins (R5), caspase 3 defi ciency (R6), and mislocalization of the DRs to autophagosomes (R7), 
the nuclear membrane (R8) or other membrane localization (R9) within the cytoplasm. To achieve 
better cancer treatment outcomes, combinational therapies can be used to circumvent the specifi c 
resistance mechanisms in cancer cells       
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sorting signals, such as EAQC337LL within DR4. DR4/DR5 endocytosis is just 
beginning to be understood, but may be a mechanism to terminate apoptosis signal-
ing through TRAIL receptors [ 13 ]. 

 Autophagy and Ras-dependent events have also been implicated in the surface 
defi ciency of the death receptors. Our work has shown that TRAIL-resistant breast 
cancer cells have higher levels of basal autophagosomes, with DR4 and DR5 located 
within LC3-II labeled autophagosomes [ 26 ]. This autophagosomal localization may 
confer TRAIL resistance to the cell, preventing receptor traffi cking to the mem-
brane. This resistance due to autophagy has been reported in pancreatic cancer cell 
lines [ 29 ]. Implications of Ras small GTPase in DR-mediated apoptosis come from 
a study of oral squamous cell carcinomas, which found that TRAIL sensitivity cor-
related with expression of endogenous Ras [ 18 ]. In fact, constitutive expression of 
active Ras with mutant RasV12 selectively upregulated surface expression of DR5 
and restored TRAIL-sensitivity in resistant cell lines. Similar fi ndings were observed 
in colon cancers where overexpression of H-Ras increased death receptors through 
a MEK-dependent pathway [ 30 ]. Conversely, K-Ras mutations confer resistance to 
pancreatic and lung cancer cell lines [ 31 ]. Our laboratory has recently shown that 
wild-type H-Ras is upregulated in some cancer cells where it renders cancer resis-
tance to TRAIL and is closely correlated with a defi ciency of surface DR4 and DR5 
[ 18 ]. Mutations in the Ras family are commonly found in tumors and, therefore, 
further studies on Ras’ effect on TRAIL sensitivity are warranted to better under-
stand the pleiotropic effects Ras family members have on tumor resistance. 

 DR5 was thought to be the primary receptor for TRAIL leading to apoptosis in 
various types of cancer cells. At least six anti-DR5 antibodies, which compares 
with only one anti-DR4 antibody, are currently under development (Table  10.1 ). 
Indeed, our studies have shown that DR4 is defi cient at a much higher frequency 
than DR5 [ 14 ]. This observation suggests that targeting DR5 would be more ben-
efi cial in cancer treatment in several types of cancer lines. Our studies also show 
that TRAIL requires both DR4 and DR5 for a maximal killing in breast cancer 
cells. The two death receptors may act synergistically by forming hetero-receptor 
complexes [ 14 ]. The surface defi ciency in either receptor would lower the sensitiv-
ity of target cells to TRAIL. Paradoxically, other studies show that TRAIL induces 
apoptosis exclusively through DR4 in cancer cell lines from skin [ 32 ], ovary [ 33 ], 
and leukocytes [ 34 ] as well as primary cells from chronic lymphocytic leukemia 
and mantle cell lymphoma [ 35 ]. The molecular basis for this preference of TRAIL 
is not clear but may be due to differences in the functional status of death receptors 
in a specifi c tumor.  

10.2.2     Defi ciency of Caspase 8 and 10 

 Inhibition of initiator caspases is another mechanism of preventing death 
 receptor- mediated apoptosis. Cells that lack expression of critical initiator 
 caspases-8 and -10 are found to be resistant to TRAIL-induced apoptosis [ 36 ]. 
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For instance, some colon cancer cell lines resist TRAIL-mediated apoptosis by 
reducing basal procaspase- 8 and by increasing active caspase-8 degradation after 
TRAIL exposure [ 37 ]. Alteration of the genetic code, deletion of genetic material, 
and aberrant gene methylation are also common pathways leading to loss of gene 
function in human cancers. Many human tumors reduce expression of caspase-8 
through hyper-methylation, as was observed in glioma cells with stem cell features 
[ 38 ] in primitive neuroectodermal (PNET) brain tumors [ 39 ], small cell lung can-
cers (SCLC) [ 40 ] and in neuroblastomas [ 41 ]. The study with PNET tumors found 
that caspase-8 mRNA and protein expression of caspase-8 could be restored with the 
DNA methylation inhibitor 5-aza-2′-deoxycytidine [ 39 ]. Other studies have demon-
strated that interferon (IFN)-γ is capable of restoring caspase-8 expression that is 
silenced by methylation [ 40 ]. The identifi cation of new strategies to overcome 
methylation of caspase-8 is critical to the promotion of DR-mediated therapies.  

10.2.3     Upregulation of Anti-Apoptosis Proteins 

 DR-mediated caspase activation is also regulated by intracellular proteins such as 
c-FLIP, IAPs and Bcl2 family members. Cellular FLICE (FADD-like IL-1-beta- 
converting enzyme) inhibitory protein (c-FLIP) is a master anti-apoptotic regulator 
and resistance factor that suppresses death receptors including TNF-α, Fas, and 
TRAIL. c-FLIP is a family of alternatively spliced variants that primarily consist of 
long (c-FLIP(L)) and short (c-FLIP(S)) splice variants, and both forms can protect 
cells from apoptosis [ 42 ]. c-FLIP competes with the initiator caspases for binding 
to FADD due to the high sequence homology to the caspase death domains [ 43 ]. 
The binding of c-FLIP to the death domain of the death receptors prevents DISC 
formation and subsequent activation of the caspase cascade. 

 Another mechanism utilized by cancer cells to resist TRAIL-induced apoptosis 
is upregulation of the inhibitor of apoptosis proteins (IAP). IAP family members are 
characterized by the presence of a ~70 amino acid motif referred to as the baculovi-
rus IAP Repeat (BIR) domain [ 44 ]. These BIR domains mediate IAP binding and 
caspases inhibition. The most potent IAP is the X chromosome-linked inhibitor of 
apoptosis (XIAP), which inhibits the function of effector caspases including 
Caspase-3, -7, and -9 [ 45 ]. The inhibitory activity of XIAP is overcome by a protein 
called second mitochondrial activator of caspases/direct inhibitor of apoptosis- 
binding protein with low pI (Smac/DIABLO). Smac/DIABLO is released from 
mitochondria during apoptosis and antagonizes XIAP, promoting apoptosis in a 
positive feedback loop [ 46 ]. 

 Apoptosis is also prevented by upregulation of Bcl-2 family members, which 
include at least 20 proteins, all of which contain one or more conserved Bcl-2 
homology (BH) domains. Bcl-2, Bcl-xL, Bcl-w, and Mcl-1 are members of the 
Bcl-2 family that inhibit apoptosis in response to many cytotoxic agents. Bcl-2 
overexpression protects neuroblastoma, glioblastoma, and breast cancer cells from 
TRAIL-mediated apoptosis by blocking caspase-3, -7, and -9 cleavage as well as 
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cleavage of XIAP [ 47 ,  48 ]. Resistance to TRAIL mediated by Bcl-xL was 
 demonstrated in pancreatic cancer cell lines [ 49 ]. These studies demonstrated that 
TRAIL treated BCL-xL expressing cells resulted in normal caspase-8 cleavage, but 
suppression of caspase-3 activity and apoptosis, which was abrogated by the admin-
istration of antisense oligonucleotides to BCL-xL mRNA [ 49 ]. Bcl-2 was also seen 
to be highly expressed in TRAIL-resistant tissues [ 50 ]. The upregulation of anti- 
apoptotic proteins will aid in cancer survival to TRAIL receptor agonists.   

10.3     Ongoing Clinical Trials Evaluating DR-Targeted 
Therapies 

 Multiple clinical trials are underway to evaluate recombinant human TRAIL and 
agonistic antibodies against DR4 or DR5. Dulanermin (Apo2L/TRAIL/AMG951; 
Amgen/Genentech) is presently the only recombinant form of human TRAIL in 
clinical trials. Monoclonal antibodies against DR4 such as mapatumumab (human 
IgG1; GSK) or DR5 which include lexatumumab (human IgG1; GSK), drozitumab 
(human IgG1; Genentech/Roche), tigatuzumab (humanized IgG1; Daiichi-Sankyo), 
conatumumab (human IgG1; Amgen), and LBY135 (chimeric mouse/human IgG1; 
Novartis) are being developed to in phase I/II clinical studies. Another possible 
solution is a recombinant adenovirus encoding TRAIL, Ad-TRAIL, is in early 
development for cancer therapy [ 51 ]. A summary of the clinical trials that involved 
these therapies is found in Table  10.1 . Understanding the resistance mechanisms to 
these drugs will advance the development of combinational therapies to overcome 
cancer death evasion. 

10.3.1     Major Safety Findings from Phase 1 Studies 

 Clinical trials have shown death receptor targeting therapeutics do not have sub-
stantial toxicity, with the majority of side effects being fatigue and nausea. 
Dulanermin was given to 71 patients in a Phase 1 trial to patients with advanced 
cancer [ 7 ]. The adverse events (AE) associated with treatment were mostly mild, 
though two patients with sarcoma (synovial and undifferentiated) experienced 
serious AEs associated with rapid tumor necrosis. Agonistic anti-DR4 therapy, 
mapatumumab, was also well tolerated in Phase 1 studies, with no drug-related 
hepatic or dose-limiting toxicities (DLT) [ 52 ,  53 ]. Mapatumumab was given to 41 
patients with advanced cancer and the majority of adverse events were grade 1 
(mild) or 2 (moderate) on a 5 point scale [ 54 ]. Clinical studies which passed into 
phase II did not demonstrate an ability to shrink tumors within refractory colon 
cancer [ 55 ] or non-SCLC (NSCLC) [ 56 ]. Agonistic antibodies targeting DR5 have 
also shown tolerance in clinical studies across a variety of tumor types with minor 
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DLT [ 57 ,  58 ]. In one study, lexatumumab was given to 37 patients, resulting in 
DLTs including asymptomatic elevations of serum amylase, transaminases, and 
bilirubin [ 59 ]. Similar observations were seen for drozitumab [ 6 ], tigatuzumab 
[ 60 ], and conatumumab [ 61 ].  

10.3.2     Current Combinational Therapies 

 Survival mechanisms for cancer cells result from multiple pathways, suggesting a 
combination of therapeutics could potentially work well together to target TRAIL- 
resistance. In anticipation of tumor resistance to TRAIL signaling pathway targets, 
the ongoing Phase 2 studies are focused on evaluation of the DR-targeted therapies 
in combination with classical chemotherapies or other targeted therapies. These 
include paclitaxel and carboplatin used for NSCLC [ 62 ], gemcitabine for advanced 
pancreatic cancer [ 63 ], doxorubicin in unresectable soft tissue sarcomas [ 64 ] and 
FOLFOX for colorectal cancer [ 65 ]. 

 The primary mechanisms of action (MOA) for Paclitaxel is inhibition of mitosis 
by stabilizing microtubules during cell division, while the MOA for platinum com-
pounds like carboplatin is binding DNA, forming crosslinks that affect DNA repli-
cation. These compounds may combine well with DR-targeting therapies. Paclitaxel, 
and other taxanes such as docetaxel, increase the surface expression of DR4/DR5 
[ 66 ,  67 ] and decrease AKT activity [ 68 ]. Additionally, the platinum family of com-
pounds, such as carboplatin, cisplatin, and oxaliplatin, increase DR4/DR5 [ 65 ,  66 ] 
and decrease levels of c-FLIP [ 69 ]. Current trials have combined Dulanermin with 
paclitaxel, carboplatin, and bevacizumab in NSCLC and were well tolerated with 
58 % progression free survival [ 70 ] but in studies combining carboplatin/paclitaxel 
with tigatuzumab there was no improvement over the effi cacy of the chemothera-
peutics [ 71 ]. Fully understanding the mechanisms through which chemotherapies 
can enhance DR-induced apoptosis is needed. 

 Gemcitabine is the standard treatment for patients with advanced pancreatic can-
cer. Gemcitabine is a nucleoside analog of cytidine but with fl uorine atoms replac-
ing the hydrogen atoms on the secondary carbon, resulting in inhibited DNA 
replication. There is evidence to suggest that gemcitabine may also combine well 
with DR-targeted therapies. Pyrimidine chemotherapies such as gemcitabine and 
5-Fluorouracil reduce the levels of c-FLIP [ 42 ] and increase caspase-8 activity [ 72 , 
 73 ], both of which are common mechanisms of resistance against DR-induced 
apoptosis. When gemcitabine was combined with tigatuzumab, 45 % of patients 
with metastatic pancreatic cancer within a phase II trial showed disease stability 
[ 74 ]. Gemcitabine was also tested in combination with cisplatin and mapatumumab, 
showing toleration and stable disease progression for a median of 6 months in 25 
out of 49 patients [ 75 ]. 

 Additionally, there are a series of chemotherapy regimens used for the treatment 
of colorectal cancer with names such as FOLFOX or FOLFIRI. Combining 
 FOLol inic acid,  F luorouracil, and  OX aliplatin is known as FOLFOX, while 
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 replacing oxaliplatin with  IRI notecan is known as FOLFIRI. Fluorouracil, in 
 particular 5-fl uorouracil (5-FU), is a pyrimidine analog that inhibits thymidylate 
synthase. Folinic acid (leucovorin) augments the function of 5-FU. Oxaliplatin, 
similar to carboplatin, cross-links DNA preventing replication and transcription. 
Irinotecan is a topoisomerase inhibitor. The dosage regimens of FOLFOX can be 
modifi ed and the resulting treatments include names like FOLFOX6 and modifi ed 
FOLFOX6 (reviewed in [ 76 ]). The 5-fl uorouracil and oxaliplatin components of 
FOLFOX are known to sensitize tumors to DR-targeted therapies. Drozitumab 
combined with both mFOLFOX6 and Bevacizumab resulted in stable disease for 
three out of eight patients treated [ 77 ]. FOLFOX combined with Conatumumab has 
also been explored in metastatic pancreatic cancer [ 78 ]. 

 When treating the apoptotic signaling pathway, combinational therapies can 
expand to incorporate alternate signaling pathways. Current work is focusing on 
combining targets against the insulin-like growth factor receptor (IGFR) pathway 
[ 79 ] and the epidermal growth factor receptor (EGFR) pathway [ 80 ] with anti-DR5. 
IGFR agonistic antibody ganitumab with conatumumab showed tumor shrinkage 
and 36 % stable disease across patients with NSCLC, colorectal cancer, sarcoma, 
pancreatic cancer, and ovarian cancer [ 79 ]. Ganitumab was also combined with 
conatumumab and FOLFIRI, but resulted in patients with the FOLFIRI and conatu-
mumab demonstrating progression-free survival [ 81 ]. Combining conatumumab 
and soluble TRAIL has shown increased DR clustering, resulting in increased DISC 
creation [ 82 ,  83 ]. Further studies combining different DR-agonists could yield 
interesting results for apoptosis induction.  

10.3.3     Alternate Combination Strategies 

 Studies aim to improve the antitumor activity of DR4/DR5 by rationally designing 
mixtures that would overcome or bypass the resistance mechanisms within cancer 
cells. These include combinations with classical chemotherapies such as the ones 
discussed earlier. To further improve synergistic therapies, the main resistance 
mechanisms within the cell described earlier should be targeted, such as surface 
defi ciency of DR4 and DR5, increased c-FLIP expression, decreased caspase-8 
activity, and overexpression of anti-apoptotic proteins, such as XIAP. 

 Receptor defi ciency on the cell surface is suffi cient to render cancer cells resis-
tant to TRAIL-induced apoptosis. Chemotherapies such as cisplatin and carboplatin 
can be used in combination with DR targeting therapeutics due to their ability to 
increase the surface expression of DR5 [ 66 ]. The proteasome inhibitor bortezomib 
[ 84 ,  85 ], the anti-melanoma drug ADI-PEG20 [ 86 ], p53 activating agents [ 87 ], anti- 
angiogenic therapies such as 3TSR [ 88 ], and histone deacetylase inhibitors [ 89 ,  90 ] 
have shown increases in surface DR expression, sensitizing cells to TRAIL. Therapies 
which increase DR expression can act synergistically with rhTRAIL or antibodies, 
dependent on a functional caspase signaling cascade. 
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 c-FLIP is an important target for cancer therapy. Small interfering RNAs 
(siRNAs) that inhibited the expression of c-FLIP(L) in human cancer cell lines 
augmented TRAIL-induced DISC recruitment, activation, processing, and release 
of caspase-8 [ 91 ,  92 ]. The siRNA knockdown of c-FLIP is also postulated to target 
the tumor initiating cells within breast cancer lines [ 93 ]. Additionally, bortezomib is 
known to reduce c-FLIP expression [ 94 ] and sensitize cells to recombinant or 
immune-mediated TRAIL killing [ 95 ]. Small molecule-mediated inhibition of 
c-FLIP may have a strong therapeutic outlook [ 96 ]. 

 Hyper-methylation of caspase-8 is a well-studied mechanism of caspase-8 
silencing [ 38 ,  40 ]. Demethylating agents, such as 5-Aza-2′-deoxycytidine 
(5-dAzaC), are capable of restoring caspase-8 expression caused by hyper- 
methylation [ 38 ,  97 ]. In fact, treatment of neuroblastoma with a combination of low 
concentrations of 5-dAzaC and IFN-γ restored caspase-8 expression and sensitized 
tumors to TRAIL-mediated apoptosis [ 98 ]. Overexpression of IFN-γ combined 
with XIAP inhibitors increased caspase-8 activity in pancreatic cell lines sensitized 
cancer cells to TRAIL [ 99 ]. 

 XIAP inhibitors also present a promising approach to augmenting TRAIL- 
mediated apoptosis. Small molecule inhibitors of XIAP cooperate with TRAIL to 
induce apoptosis in childhood acute leukemia cells via enhanced TRAIL-induced 
activation of caspases, loss of mitochondrial membrane potential, and cytochrome c 
release in a caspase-dependent manner [ 100 ]. Another potential method of reducing 
XIAP levels is through the sub-toxic doses of roscovitine, a specifi c inhibitor of 
Cdc2 and Cdk2 [ 101 ]. Roscovitine treated TRAIL-resistant glioma cells reduced 
their expression of XIAP and survivin, two major inhibitors of caspases, and sensi-
tized the cells to TRAIL-mediated apoptosis. Treatment of selumetinib (therapeutic 
targeting the MEK pathway) [ 102 ] or Dacarbazine [ 103 ] both downregulated IAPs 
and sensitized the cells to TRAIL. Modulation of the pro-apoptotic and anti- 
apoptotic signaling pathways through chemotherapy and alternative targeted thera-
peutics will combine well with DR-targeted therapies to induce cancer cell death.  

10.3.4     Predictive Biomarkers for Cancer Response 

 Successful application of combinational therapies relies on predictive biomarkers of 
patient response. Biomarkers are currently being evaluated to improve therapeutics 
targeting the apoptosis signaling pathway [ 104 ]. The fi rst indicator of potential 
responsiveness to DR targeted therapies is expression of DR4 or DR5. However, 
many studies have demonstrated that sensitivity cannot be predicted based on DR4 
or DR5 surface expression alone [ 18 ,  27 ,  105 ,  106 ]. Studies from our laboratory 
have pursued this research topic. 

 We have identifi ed a gene signature of over 71 over-expressed genes that were 
predictive of TRAIL sensitivity by examining the genome-wide mRNA expression 
profi les of 95 human cancer cell lines [ 11 ]. The over-expressed genes were domi-
nated by two functionally related gene families: interferon-induced genes and major 
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histocompatibility genes. These data are consistent with the fi ndings that treatment 
of cancers with interferon sensitizes the tumors to TRAIL-related therapies [ 98 ]. 
Another study approached the identifi cation of biomarkers for TRAIL via mRNA 
expression and had very interesting results. The mRNA expression profi les of pan-
creatic, NSCLC, and melanoma cell lines showed that up to 30 % of these tumors 
had increased expression of GALNT14, a peptidyl O-glycosyltransferase. The 
investigators were able to increase or decrease TRAIL sensitivity by selectively 
overexpressing or silencing GALNT14 [ 27 ]. 

 Another possibility for identifying biomarkers that indicate apoptosis sensitivity 
is to look at autophagy. Autophagy and apoptosis have a complex relationship, 
either being triggered together or developing through mutually exclusive processes. 
Our studies indicate one role for autophagy is to protect tumor cells from TRAIL- 
mediated apoptosis. During autophagy, cellular components, including membrane 
components containing DR4 and DR5, are invaginated into autophagic vesicles 
(autophagosomes). These autophagosomes fuse with lysosomes to form autolyso-
somes wherein autophagic cargos are degraded. Our studies indicate that this pro-
cess also provides tumors with resistance to death receptor-mediated therapies [ 26 ]. 
Breast cancer cell lines with high levels of basal autophagic function in nutrient rich 
conditions have a high level of TRAIL resistance. Similar levels of basal autophagy 
were found in pancreatic [ 107 ], melanoma [ 108 ], and NSCLC [ 109 ]. The basal 
autophagic activity sequesters death receptors into intracellular compartments 
where they are not exposed to TRAIL and thus are resistant. Our studies indicate 
that the death receptors were housed in LC3-II labeled autophagosomes, and disrup-
tion of the autophagosomes restored surface expression of death receptors and 
increased sensitivity to TRAIL. Analysis of tumors for LC3-II may provide predic-
tive markers of tumor resistance to TRAIL-related therapies. 

 Oncogenic proteins, such as Ras GTPases, may also provide unique opportuni-
ties to identify biomarkers for TRAIL sensitivity. Many cancer types upregulate the 
Ras signaling pathway due to gain of function mutations in  ras  genes themselves or 
alterations in the proteins that regulate Ras [ 110 – 112 ]. Ras is also shown to promote 
activation of cell death pathways, in contrast to its best known function of promot-
ing growth [ 113 ]. Ras interacts with various downstream effector targets such as 
MEK, PI3K, and Rho GTPases [ 114 ,  115 ]. Recent evidence suggests that Ras regu-
lates the expression of death receptors and increases TRAIL sensitivity [ 30 ,  116 , 
 117 ]. In fact, transfection of oral squamous cell carcinomas with H-RasV12, a con-
stitutively active H-Ras mutant, increased surface expression of DR5 and sensitivity 
to either TRAIL or anti-DR5 [ 18 ]. These fi ndings support the idea of using Ras as a 
biomarker for predicting DR sensitivity. 

 The involvement of Ras in TRAIL sensitivity of tumors is pertinent because of 
the expansion of growth factor inhibitors currently used to treat cancer. The human 
epidermal receptor (HER) family of growth factor receptors, including members 
EGFR and HER2, are important regulators of tumor cell proliferation, survival, 
angiogenesis, and metastasis [ 118 ]. Engagement of an HER by its cognate ligand 
initiates the Ras signaling pathway. EGFR and HER2 are frequently aberrantly 
overexpressed or mutated in a wide range of tumors; therefore, these receptors 
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 represent attractive targets for cancer treatment. This has resulted in the  development 
of multiple anti-HER therapeutics, including mAbs trastuzumab (anti-HER2), 
cetuximab (anti-EGFR), and multiple small molecule tyrosine kinases inhibitors 
targeting EGFR (e.g. gefi tnib, erlotnib) and HER2 (e.g. CP-724, 714, M578440). 

 It has been reported that TRAIL activates the EGRF pathway, and that the 
cetuximab- mediated sensitization to TRAIL is due to the inhibition of TRAIL- 
mediated EGFR activation in colorectal cancers [ 119 ]. Additionally, the combina-
tion of cetuximab with TRAIL resulted in increased clustering of DR4 and FADD 
into lipid rafts [ 120 ], which is known to enhance the function of death receptors 
[ 121 ]. Breast and ovarian cancers treated with trastuzumab are also sensitized to 
DR-mediated apoptosis. Trastuzumab treatment decreases Akt kinase activation 
but not mitogen-activated protein kinase activation and sensitizes cell lines to 
TRAIL [ 122 ]. These studies indicate that anti-HER therapeutics, in addition to 
their direct suppression of tumor growth, also provide favorable conditions for 
TRAIL-triggered apoptosis.   

10.4     Perspectives 

 There is great potential in TRAIL-based therapies, yet the limitations of TRAIL 
receptor agonists as a single agent need to be overcome. The benefi ts of TRAIL as 
a targeted therapeutic with mild toxicity are outweighed by the lack of effi cacy in 
clinical trials due to the protein’s short half-life and the cancer cell’s TRAIL resis-
tance mechanisms. Thus, a renewed effort into combinational therapies that counter 
these resistances allowing DR targeted therapies to initiate apoptosis is needed. 

 The most effective combinational therapies will overcome DR surface defi -
ciency, loss of the initiator caspases-8 and -10, and overexpression of anti-apoptotic 
molecules such as c-FLIP and XIAP. Many current combinations use chemothera-
pies to upregulate DR expression or inhibit anti-apoptotic proteins. The clinical use 
of combination therapy promotes investigation of molecular interactions of combi-
nation components, as not all chemotherapies will improve the effi cacy of agonistic 
antibodies. The effectiveness of DR-targeted therapies will be maximized by opti-
mizing therapies based on the resistances of different cancer types and for individ-
ual patients. 

 The next generation of combination therapies that exploit cellular machinery to 
augment DR therapies is another exciting realm of future discoveries. The combina-
tion of DR-targeted therapies with EGFR inhibitors, such as cetuximab and 
 trastuzumab, offer new potential avenues for cancer treatment now that scientists 
have a growing understanding of the infl uence that the EGFR-Ras pathway has on 
DR-mediated apoptosis. Our recent work demonstrating the high basal level of 
autophagy causing surface defi ciencies of DRs recommend combinational therapies 
that target the Ras/EGFR pathway in combination with the DR pathway. 
Chemotherapeutics that inhibit autophagy offer promise by reducing the traffi cking 
of DR4 and DR5 from the surface into autophagosomes. In fact, treatment of cells 
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with hydroxychloroquine, an inhibitor of autophagy, increased caspase-3 activation 
and DR-mediated apoptosis [ 123 ,  124 ]. Future studies that directly inhibit autoph-
agy with DR targeted therapies are needed to examine the enhancement of apoptotic 
signaling. 

 Recent studies analyzing the synergistic effects of combining DR targeted thera-
peutics that overcome DR signaling pathway defi ciencies such as insuffi cient recep-
tor clustering and DISC formation are clinically relevant [ 82 ,  83 ]. Combining 
DR-specifi c therapeutics provides an alternative to chemotherapeutic administra-
tion, taking advantage of the benefi ts of targeted therapeutic and cancer-specifi c 
toxicity. This could potentially further the use of rhTRAIL in cancer patients. 

 Additionally, there is an unmet need for biomarkers that predict tumor sensitivi-
ties to TRAIL receptor targeted therapies. Much of the basic science needed to 
identify biomarkers is available; we are well aware of inducers and inhibitors of 
apoptosis that generally indicate TRAIL resistance, such as lack of surface DR4/5. 
However, the apoptotic machinery is redundant, and multiple lines of attack are 
needed to overcome resistances. Therefore, these biomarkers need additional 
sophistication than simply surface expression of DR5 or lack of caspase-8. When 
well designed, combinational drugs could lead to improved outcomes of cancer 
treatment by circumventing the specifi c resistance mechanisms in cancer cells.     
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    Chapter 11   
 Pancreatic Cancer Resistance to TRAIL 
Therapy: Regulators of the Death Inducing 
Signaling Complex 

             Yabing     Chen     ,     Kaiyu     Yuan    , and     Jay     McDonald   

    Abstract     Pancreatic cancer is the fourth leading cause of cancer deaths in the 
United States. It is generally a fatal cancer with poor prognosis. Once pancreatic 
cancer becomes metastatic, it is uniformly fatal with an overall average survival of 
typically 6 months. The only potentially curative therapy for pancreatic cancer is 
surgical resection. Unfortunately, the majority of pancreatic cancer patients have 
advanced and inoperable disease at the time of diagnosis. Studies from our group 
and others have supported that modulating tumor necrosis factor-related apoptosis- 
inducing ligand (TRAIL)-mediated apoptosis provides potential novel avenues for 
cancer therapy. However, resistance of pancreatic cancer to TRAIL therapy remains 
a large clinical hurdle. Thus, better understanding of the molecular events regulat-
ing pancreatic cancer cell apoptosis would facilitate the development of novel strat-
egies to enhance the effi cacy of TRAIL therapy. 

 Dysregulation of apoptosis of tumor cells plays an important role in the pancre-
atic cancer pathogenesis and their resistance to therapies. We and others have dem-
onstrated that the formation of death receptor-activated death-inducing signaling 
complex (DISC) and the recruitment of DISC components determine both the 
downstream apoptotic and survival signaling pathways. We have identifi ed several 
components in the death receptor-activated DISC that mediate death receptor- 
induced survival pathways, including FLIP and three new DISC components, 
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calmodulin (CaM), Src and poly(ADP-ribose) polymerase (PARP-1), which 
contribute to the resistance of cancer cells to death receptor-activated apoptosis. 
This review discusses the roles of TRAIL death receptors and the molecular 
 regulators in the DISC that contribute to the resistance to TRAIL-induced apopto-
sis. The specifi c apoptotic regulators as potential therapeutic targets for TRAIL-
resistant pancreatic cancers are emphasized, including death receptor 5 (DR5), 
FLIP, CaM, Src and PARP-1.  

  Keywords     Pancreatic cancer   •   TRAIL   •   Resistance   •   Apoptosis   •   Death receptor   • 
  Death-inducing signaling complex  

  Abbreviations 

   AKT    Protein kinase B   
  Bak    Bcl-2 homologous antagonist/killer   
  Bax    Bcl-2-associated X protein   
  Bcl-2    B-cell lymphoma 2   
  Bcl-X L     B-cell lymphoma-extra large   
  BID    BH3 interacting-domain death agonist   
  CaM    Calmodulin   
  DcR    Decoy receptor   
  DD    Death domain   
  DED    Death effector domain   
  DISC    Death-inducing signaling complex   
  DNA-PK    DNA protein kinase   
  DR4    Death receptor 4   
  DR5    Death receptor 5   
  DRs    Death receptors   
  FADD    FAS-associated death-domain   
  FLIP    FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein   
  GALNT14    Polypeptide N-acetylgalactosaminyltransferase 14   
  GALNT3    Polypeptide N-acetylgalactosaminyltransferase 3   
  HDAC    Histone deacetylase   
  IAP    Inhibitors of Apoptosis   
  Mcl-1    Myeloid cell leukemia-1 protein   
  NF-κB    Nuclear factor kappa-light-chain-enhancer of activated B cells   
  PARP    Poly (ADP-ribose) polymerase   
  SH2    Src homology 2   
  TFP    Trifl uoperazine   
  TMX    Tamoxifen   
  TNF    Tumor necrosis factor   
  TNF-R    Tumor necrosis factor receptor   
  TRADD    TNFR-associated death-domain   
  TRAIL    TNF-related apoptosis-inducing ligand   
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  TRAIL-R    TNF-related apoptosis-inducing ligand receptor   
  XIAP    X-linked inhibitor of apoptosis protein.   

11.1          Introduction 

    Pancreatic cancer is the fourth leading cause of cancer deaths in the USA, causing an 
estimated 227,000 deaths per year worldwide [ 1 ]. The American Cancer Society esti-
mated 43,920 new cases and 37,390 deaths from pancreatic cancer in 2012 in the 
USA. It is the most lethal type of digestive cancer. Since 1975, the 5-year survival 
rate has only improved from 2 to 6 %. Only 7 % of cases are diagnosed at an early 
stage, and even with disease localized to the pancreas, the 5-year survival rate is only 
22 % (American Cancer Society) [ 2 ,  3 ]. Once pancreatic cancer becomes metastatic, 
it is uniformly fatal with an overall average survival of typically 6 months. The etiol-
ogy of pancreatic cancer remains unclear, although smoking, family history of 
chronic pancreatitis, advancing age, male sex, diabetes mellitus, obesity, non-O 
blood group, occupational exposures (e.g., to chlorinated hydrocarbon solvents and 
nickel), African-American ethnic group, high fat diet and diets low in vegetable and 
folate have all been considered to be risk factors [ 4 – 7 ]. The only potentially curative 
therapy for pancreatic cancer is surgical resection. Unfortunately, only 20 % of 
patients are resectable at the time of diagnosis. Even among those patients who 
undergo resection for pancreatic cancer and have tumor-free margins, the 5-year sur-
vival rate after resection is 10–25 % [ 7 ]. Gemcitabine or 5-fl uorouracil chemotherapy 
coupled with radiotherapy may improve the quality of life of patients, but their sur-
vival benefi t is very limited [ 5 ,  8 ]. Despite improved knowledge in our understanding 
of cancer development, resistance of pancreatic cancer to current therapies remains a 
large clinical hurdle. Therefore, a better understanding of the pathogenesis of pancre-
atic cancer and its molecular mediators is essential for developing novel strategies 
and therapeutic targets to prevent, diagnose and cure this highly fatal tumor. 

 Dysregulation of apoptosis of tumor cells plays an important role in the pancre-
atic cancer pathogenesis and their resistance to therapies. Our group has a long-term 
interest in molecular mechanisms underlying cancer cell resistance to death 
receptor- activated apoptosis, and we have been seeking effective reagents that over-
come the resistance of cancer cells to therapies targeting death receptors. Studies 
from our group and others have demonstrated that modulating the components in 
the Death-Inducing Signaling Complex (DISC) determines the downstream sur-
vival and apoptosis signals conveyed by the death receptors. We have identifi ed 
several DISC components that mediate death receptor-activated survival pathways, 
including FLIP and three new DISC components, calmodulin (CaM), Src and 
poly(ADP-ribose) polymerase (PARP-1) [ 9 – 17 ]. This review focuses on the roles of 
death receptors and molecular regulators in the DISC that contribute to the resis-
tance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a prom-
ising therapy for pancreatic cancer. The specifi c apoptotic regulators, including 
DR5, FLIP, CaM, Src and PARP-1, as potential therapeutic targets for TRAIL- 
resistant pancreatic cancers are emphasized.  
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11.2     Apoptosis and Cancer 

 Apoptosis is a major mechanism of programmed cell death that plays a pivotal role 
during development and in the control of tissue homeostasis during adult life. 
Apoptosis is used by multicellular organisms to eliminate unnecessary or irrepara-
bly damaged cells. The ability of tumor cell populations to expand in number is 
determined by increased cell proliferation, resistance to apoptotic cell death, or the 
combination of both. Altered expression of pro- and/or anti-apoptotic proteins may 
render cells resistant to apoptosis, a hallmark of many types of cancer, thus resulting 
in abnormal accumulation of neoplastic cells [ 18 ]. At the cellular level, there are 
two main apoptotic pathways, the extrinsic and intrinsic pathways [ 19 ]. The intrin-
sic pathway, also called the mitochondrial pathway, mediates apoptosis initiated by 
internal signals, such as growth factor deprivation, exposure to cytotoxic drugs or 
radiation that cause DNA damage and are mostly engaged by conventional chemo-
therapeutic drugs [ 20 ]. On the other hand, the extrinsic pathway is initiated by acti-
vation of death receptors (DRs) present on the cell surface, such as the Fas death 
receptor (CD95), the tumor necrosis factor receptor (TNF-R) and TRAIL receptors 
[ 21 ]. Since some DRs are selectively increased only in cancer cells, inducing 
DR-activated apoptosis is a promising venue for cancer therapy, compared to other 
anticancer drugs, including inhibitors of protein kinases or growth receptors. 
Additionally, combination therapies of death receptor agonists with chemotherapy 
or radiotherapy to trigger both extrinsic and intrinsic pathways may reduce exces-
sive systemic toxicity toward normal cells and tumor resistance after recurrent treat-
ments [ 22 ].  

11.3     DRs-Activated Apoptosis 

 The DRs belong to a subgroup of the TNF superfamily, including the well-known 
TNF-R, Fas, TRAIL receptors (TRAIL R1/DR4 and TRAIL R2/DR5) and other 
DRs such as DR3, DR6 and actodysplasin A receptor and nerve growth factor 
receptors [ 19 ,  21 ]. These DRs share a ‘death domain’, a conserved 80-amino-acid 
sequence in the cytoplasmic tail that is necessary for the direct activation of the 
apoptotic signaling pathways by the DRs [ 19 ,  21 ]. There are two distinct cell 
surface- expressed TNF-Rs: TNF-R1 and TNF-R2. TNF-R1 mediates TNF-induced 
apoptotic signaling [ 23 ], whereas TNF-R2 does not transmit apoptotic signals due 
to its lack of death domain [ 24 ,  25 ] TNF-induced apoptosis is mediated by the 
recruitment of the adaptor proteins TNFR-associated death-domain protein, Fas- 
associated death-domain protein (FADD) and caspase-8 to the cytoplasmic death 
domain of the TNF-R1 [ 25 ,  26 ]. Fas is the best characterized among DRs. It is a 
type I transmembrane receptor expressed in activated lymphocytes and tumor cells 
[ 27 ], which plays a crucial role in regulation of the immune system by triggering 
autocrine or paracrine cell death [ 28 ]. Five TRAIL receptors encoded by separate 
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genes have been identifi ed in humans [ 29 ]. TRAIL R1 (DR4, TNFRSF10a) and 
TRAILR2 (DR5, TNFRSF10b) contain two cysteine-rich extracellular ligand- 
binding domains and an intracellular DD, which is required for the activation of the 
extrinsic apoptotic pathway. DR4 and DR5 have been shown to form homomeric 
and heteromeric complexes [ 30 ], Two membrane-bound decoy receptors (DcRs) 
that lack a functional DD, TRAIL R3 (DcR1, TNFRSF10c) and TRAIL R4 (DcR2, 
TNFRSF10d), however, block TRAIL-induced apoptosis by competing for ligand 
binding with DR4 and DR5 or by forming complexes with the signaling receptors 
to produce non-functional receptor heterocomplexes [ 31 ]. Osteoprotogerin 
(TNFRSF11b), a soluble protein that also binds to TRAIL, may function extracel-
lularly to inhibit TRAIL-binding to the functional death receptors.    Among the fi ve 
receptors, DR5 has the highest binding affi nity to TRAIL while osteoprotogerin has 
the lowest affi nity [ 29 ,  32 ]. 

 The molecular events that mediate death receptor-activated signals are similar 
for Fas and TRAIL receptors. Binding of trimerized Fas ligand and TRAIL to their 
functional receptors triggers the assembly of the DISC, which recruits FADD that 
leads to recruitment and activation of the initiating caspases at the DISC, including 
caspase-8 and -10 [ 33 ,  34 ]. Activation of the initial caspase-8 or 10 in turn activates 
downstream effector caspases, such as caspase-3, 6 and -7, leading to apoptosis. In 
type I cells, a high level of caspase-8 activation at the DISC can directly activate the 
effector caspases that trigger apoptosis [ 35 ]. In type II cells, a low level of caspase-8 
activation in the DISC is enhanced via the mitochondrial amplifi cation mechanisms, 
which is initiated by the cleavage of the BH-3-only protein, Bid that induces the 
accumulation of Bax in the mitochondria and the subsequent release of mitochon-
drial cytochrome C to the cytoplasm that activates caspase-9 [ 36 ]. Therefore, activa-
tion of caspase-8 in the DISC is a pivotal trigger for death receptor-mediated 
apoptotic signals [ 21 ]. The death receptor-activated DISC may also recruit the 
FLICE-like inhibitor protein (FLIP), an enzymatically inactive homologue of cas-
pase- 8 [ 37 ,  38 ]. Increased recruitment of FLIP into the DISC may inhibit caspase-8 
recruitment and, thus, transmits primarily survival signals through the DISC [ 37 , 
 38 ]. Therefore, recruitment of different components in the DISC determines the 
downstream survival and apoptosis signals conveyed by the death receptors, which 
play important roles in cancer cell resistance to death receptor-activated apoptosis 
[ 10 – 13 ,  15 – 17 ,  39 ].  

11.4     Trail in Cancer Therapy 

 The possibility of targeting TNF-R and Fas for tumor-specifi c killing has been lim-
ited due to systemic toxicity and lack of selectivity on tumors over normal tissues 
[ 22 ,  40 ]. TNF treatment induced severe adverse events including hepatotoxicity and 
hypotension [ 41 ], while Fas ligand was also found to be highly cytotoxic on primary 
hepatocytes, non-transformed cells and liver in rodents [ 42 ,  43 ]. Recently, local 
administration of a novel hexameric Fas ligand APO010 [ 44 ], a chimera of collagen 
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domain of adiponectin edng to the Fas ligand extracellular domain, was shown to be 
effective on xenograft tumors in preclinical studies [ 45 – 48 ]. However, its safety and 
tolerability in human are unknown, which is currently being tested in a phase I study 
in patients with solid tumors (NCT00437736). In sharp contrast, the selective 
tumor-killing effects of recombinant human TRAIL has been demonstrated in 
numerous preclinical studies in a variety of tumor cells without affecting normal 
cells [ 49 – 54 ]. 

 In mice and non-human primates, soluble TRAIL inhibits growth of TRAIL- 
sensitive human tumor xenografts, with no apparent systemic toxicity [ 54 ,  55 ]. In 
addition, monoclonal antibodies for DR4 and DR5 also exhibit potent therapeutic 
effi cacy in mouse xenograft models of several human tumors [ 56 – 60 ]. The antibod-
ies specifi cally targeting DR4 and DR5 may not only overcome DcRs-mediated 
resistance to TRAIL but also have benefi ted from a signifi cantly longer plasma 
half- life [ 61 ]. Many recombinant TRAIL or anti-human DR4 or DR5 monoclonal 
antibodies have been tested in phase I-III clinical trials for their anti-tumor effi cacy, 
including dulanermin (TRAIL agonist) [ 62 ], mapatumumab (for DR4) [ 61 ,  63 – 65 ], 
conatumumab (AMG 655, for DR5) [ 66 ,  67 ], CS-1008 (TRA-8, humanized mono-
clonal antibody for DR5) [ 68 ], lexatumumab (for DR5) [ 68 ,  69 ] and PRO95780 
(fully human monoclonal antibody DR5 agonist) [ 70 ,  71 ]. Among the antibodies 
for DR4 or DR5, conatumumab (AMG655, antibody for DR5) [ 72 ] and tigatu-
zumab (CS-1008, TRA-8, monoclonal antibodies for DR5) [ 73 ] have been tested 
for pancreatic tumors (Clinicaltrials.gov). In general, these agents have been well- 
tolerated, showing low toxicity in patients in several clinical trials [ 74 – 76 ]. 
However, clinical trials with the TRAIL and DR4/5 agonist antibodies to date have 
shown limited anti-tumor effi cacy. For instance, antitumor activity of dulanermin 
[ 62 ] or PRO95780 [ 70 ] was evidenced in few patients. Mapatumumab affected 
only specifi c group of lymphomas patients [ 63 ], while conatumumab [ 66 ] and lexa-
tumumab [ 69 ,  77 ] showed effectiveness only in advanced solid tumors. Moreover, 
therapies combining the TRAIL, DR4 or DR5 antibodies with other anticancer 
therapy, such as cytotoxic agents like gemcitabine or doxorubicin and target agents 
like antibodies for growth factors found minimal or no improvement in response 
rate or progression- free survival [ 62 ,  71 ,  72 ,  78 – 84 ]. The resistance of tumor cells 
to TRAIL-induced apoptosis and lack of ability for the other anticancer agents to 
sensitize TRAIL- induced apoptosis apparently contribute to the limited effi cacy of 
the current TRAIL therapies. Experimental studies have shown that substantial 
numbers of cancer cells are resistant to TRAIL-induced apoptosis, especially some 
highly malignant tumors such as pancreatic cancer [ 85 ]. Accordingly, resistance to 
TRAIL-induced apoptosis in cancer cells remains a clinical challenge. Better 
knowledge of the molecular and cellular mechanisms of TRAIL resistance is criti-
cal for the successful application of TRAIL and DR4 or DR5 agonist antibodies in 
cancer therapy.  
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11.5     Trail Resistance 

 TRAIL has been shown to induce both extrinsic and intrinsic apoptotic pathways in 
human pancreatic cancer cell lines [ 86 ,  87 ] and pancreatic tumors in patients [ 88 ]. 
However, both apoptotic pathways are inhibited in the majority of the human pancreatic 
cancer cell lines [ 86 ,  89 ] and tumors [ 88 ]. Experimental studies have postulated multi-
ple mechanisms that are responsible for TRAIL resistance, including low expression or 
mutations of the death-inducing receptors DR4 and DR5, high expression of the decoy 
receptor DcR1 or DcR2, and increased expression of anti- apoptotic molecular such as 
FLIP [ 76 ]. Additionally, recent studies have shown that a secondary signaling complex 
may be formed subsequent to the assembly of the primary TRAIL-activated DISC that 
leads to activation of TRAIL-induced non-canonical kinase pathways, which contribute 
to the TRAIL resistance in normal cells as well as the resistant tumor cells [ 90 ]. 

 Despite recent progress, the expression of apoptosis-inducing receptors or the 
components of the TRAIL-induced apoptosis/survival pathways has not been a con-
sistent predictor of TRAIL sensitivity of pancreatic cancer cells [ 76 ,  85 ,  91 ]. 
Therefore, understanding the regulation of basic mechanisms of TRAIL-activated 
signaling pathways may not only provide molecular insights into the non-toxic 
effect of TRAIL in normal tissues, but also identify novel molecular targets and 
strategies to enhance the effi cacy of TRAIL therapy in resistant tumors. As TRAIL- 
activated DISC formation and recruitments determine the downstream apoptotic 
and survival signaling pathways, the key components of TRAIL-activated DISC 
that mediate TRAIL-induced apoptosis and their modulation in cancer cells leading 
to TRAIL resistance are the focuses of this review. 

11.6     The TRAIL Receptors 

 The apoptosis-inducing TRAIL DRs, DR4 or DR5, are selectively expressed in 
transformed cells while the apoptosis-inhibiting DcRs are generally expressed in 
normal cells [ 33 ,  34 ], which support the selective tumor-killing effects of 
TRAIL. However, the expression of the TRAIL apoptosis-inducing death receptors 
may not predict TRAIL resistance of pancreatic cancer cells [ 76 ]. Increased expres-
sion of the apoptosis-inhibiting DcRs and altered expression of apoptosis-inducing 
DRs have been linked to resistance of several cancer cells to TRAIL-induced apop-
tosis. In many studies, reagents that enhance expression of the apoptosis-inducing 
DR4 or DR5 are found to sensitize a variety of cancers to TRAIL therapy. 

11.6.1     Decoy Receptors 

 The DcRs are expressed in some primary tumors such as gastrointestinal, prostate, 
lung and acute myeloid leukemia cancer cells [ 92 – 95 ], but not in other tumors 
including neuroblastomas, primary breast and lung cancers [ 96 ,  97 ]. In some TRAIL 
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resistant tumor cells, including human pancreatic cancer cells, breast cancer cells 
and lung cancer cells, TRAIL DcR2 is highly expressed and the relative ratio of DRs 
to DcRs predicted the sensitivity of these cancer cells to TRAIL-mediated apoptosis 
[ 98 ,  99 ]. Consistently, knockdown or blocking DcR2 increased TRAIL sensitivity in 
human prostate cancer cells and lung cancer cells [ 93 ,  94 ]. Additionally, shedding 
of DcR1 from the cell surface restores TRAIL sensitivity in Hela cells [ 100 ]. On the 
other hand, overexpression of DcR1 or DcR2 in TRAIL sensitive cancer cells ren-
dered them resistance to TRAIL-induced apoptosis [ 31 ,  101 – 104 ]. Therefore, it was 
postulated that the expression of DcRs may not only protect normal cells but also 
render resistance of some cancer cells to TRAIL-induced apoptosis. However, 
another study found no correlation between the expression of DcRs and TRAIL 
resistance in a panel of human melanoma cells [ 105 ]. For instance, the TRAIL-
resistant melanoma cell line WM3211 express DR5, but not DcR1 and DcR2 [ 106 ], 
whereas DcR1, DcR2 or both are expressed in the TRAIL-sensitive melanoma cell 
lines, WM9, WM793 and WM1205 [ 106 ]. Accordingly, high expression of DcR1 
and DcR2 may not solely predict TRAIL resistance of cancer cells. As the DcRs 
inhibit TRAIL-inducing apoptosis signals by blocking TRAIL binding to its func-
tional DRs, selective agonists with higher binding affi nity to the DRs than the DcRs 
may improve therapeutic effi cacy on TRAIL-resistant tumors due to high DcRs.  

11.6.2     Death Receptors 4 and 5 

 Among the fi ve TRAIL receptors identifi ed in humans [ 29 ], DR4 and DR5 are the 
only ones that contain both extracellular ligand-binding domains and intracellular 
DD that mediate TRAIL-induced activation of the extrinsic apoptotic pathway. The 
expression levels of DR4 and DR5 are much higher in cancer cells compared with 
those in normal cells [ 107 ]. However, a consistent correlation between the expres-
sion of DR4 or DR5 and TRAIL sensitivity of cancer cells has not been determined 
[ 76 ,  103 ,  108 – 113 ]. With fi ve pancreatic cancer cell lines, we have recently demon-
strated that the expression of DR5 is correlated with the sensitivity of pancreatic 
cancer cells to DR5-mediated apoptosis [ 108 ]. As mutations and post-translational 
modifi cation on the DR4 and DR5 have been reported in several cancer cells, includ-
ing pancreatic cancers, it is likely that such modulations on the DRs may interfere 
with their ligand binding, clustering and lipid raft localization, which are critical 
initial events for the formation of TRAIL-induced DISC that leads to activation of 
downstream apoptosis signals. 

   Mutations on DR4 and DR5 

 The genes for DR4 and DR5 are located at chromosome 8p21-22 [ 114 ], a segment 
identifi ed by genome-wide searches to be one of the most common sites of loss 
heterozygosity due to allelic deletions in several cancers including hepatocellular 
carcinoma and pancreatic cancer [ 115 ]. Among many DR4 polymorphisms, the 
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most extensively studied polymorphisms are rs2230229 (A1322G), rs20575 
(C626G) and rs20576 (A683C) [ 116 ]. Missense mutations on the DR4 gene has 
been found in human ovarian, bladder, lung, head and neck squamous cell and gas-
tric adenocarcinoma cancer cells [ 112 ,  117 ]. Mutations of the DR5 gene have also 
been identifi ed in a variety of human cancers, including head and neck [ 118 ], non-
small- cell lung [ 119 ], breast [ 120 ], non-Hodgkin’s lymphoma [ 121 ], hepatocellular 
carcinoma [ 122 ] and gastric cancers [ 123 ]. A 2-bp insertion in the DD domain of 
the DR5 results in a premature stop codon and a truncated DR5A in primary head 
and neck cancer [ 118 ]. Mutations in the death domain region of DR5 was identifi ed 
in non-small-cell lung cancer specimens [ 119 ], human hepatocellular carcinoma 
[ 122 ], non-Hodgkin’s lymphoma [ 121 ], but not in normal tissues. These mutations 
resulted in missensed or truncated DR5. 

 The DR4 and DR5 mutations have been linked to tumor growth and metastasis. 
The Glu228Ala (A683C, rs20576) mutation in the ligand binding domain of DR4 is 
associated with increased risk for prostate cancer metastases [ 124 ] and higher risk 
for ovarian cancer in carriers of BRCA1 mutations [ 125 ]. In breast cancer, muta-
tions in DR4 at Asn373Asp, Pro376Leu, and Ala402Val are associated with the 
metastasized cancer [ 120 ], suggesting their function during the progression of 
breast cancer into metastatic stages. Similarly, DR5 mutations within or fl anking the 
DD domain at Gly426Glu, Gln416Arg, and Gly426Arg have been identifi ed in 
metastasized breast cancer, but no DR5 mutations were detected in non-metastatic 
breast cancer [ 120 ]. The mechanisms and mode of action of these DR4 and DR5 
mutations on tumor growth and metastasis have not been fully understood. 
Overexpression of the above breast cancer metastasis-associated DR4 and DR5 
mutants in 293 cells led to suppression of TRAIL-induced apoptosis [ 120 ]. 
Consistently, over-expression of the DR4 A1322G mutant rendered several cancer 
cells resistant to TRAIL-induced apoptosis, including human ovarian cancer, blad-
der and colon cancer cells [ 112 ]. The DR5 mutations, such as L334F, E326K, 
E338K and K386N, failed to form a functional DISC to induce apoptosis, and inhib-
ited the function of wild-type DR4 receptor in lymphoma cells [ 126 ]. Therefore, it 
is likely that mutated DR4 and DR5 may impair TRAIL-binding or interact with 
themselves or normal DR4 or DR5 proteins to form a structurally abnormal DR 
trimers on the tumor cell surface, which may function as a “dominant negative” 
regulator to impair the normal function of DR4 or DR5 to activate downstream 
apoptosis signaling pathways. As a result, DR4 or DR5 mutations may increase 
TRAIL-resistance of tumor cells, so as to escape immuosurveillance during tumor 
growth and metastasis as well as TRAIL therapy.  

   Modifi cation on DR4 and DR5 

 Post-translational modifi cations on DR4 and DR5, such as O-glycosylation of DR4 
and DR5 [ 127 ] or palmitoylation of DR4 [ 128 ], have been suggested to affect their 
trimerization and thus regulate TRAIL resistance in some cancer cells. Palmitoylation 
modifi cation on DR4 was found to increase its lipid raft localization and 
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oligomerization, which facilitates TRAIL-activated downstream death signaling in 
breast and leukemia cancer cell lines [ 128 ]. In pancreatic cancer cells and some 
other cancers, the expression of a peptidyl O-glycosyltransferase, GALNT14, is 
correlated with TRAIL-sensitivity [ 127 ]. In myeloma cells, another peptidyl 
O-glycosyltransferase, GALNT3, regulates TRAIL sensitivity [ 129 ]. It is believed 
that O-glycosylation of DR4 or DR5 promotes ligand-stimulated clustering of these 
apoptosis-inducing death receptors, thus leading to TRAIL-triggered DISC recruit-
ment and activation of caspase-8. This notion is supported by the observations that 
inhibition of GALNY14 led to decreased sensitivity of pancreatic cancer and colon 
cancer cell lines to TRAIL-induced apoptosis [ 127 ], while increased expression of 
GALNT3 enhanced DISC formation and caspase-8 activation [ 129 ]. Accordingly, 
altered post-translational modifi cation on DR4 and DR5, such as O-glycosylation 
and palmitoylation, may affect DRs trimerization that is an important initial event 
for TRAIL-induced apoptotic signaling. Therefore, altered post-translational modi-
fi cation on DR4 or DR5 may explain the resistance of some cancer cells to TRAIL- 
induced apoptosis, despite their expression of high levels of DR4 or DR5.  

   Upregulation of DR4 and DR5 

 Although the correlation between the expression levels of DR4 or DR5 and the sensi-
tivity of tumor cells to TRAIL-induced apoptosis has not been demonstrated, pharma-
cological drugs that upregulate the expression of DR4 and/or DR5 appear to exclusively 
enhance TRAIL-induced apoptosis. Chemotherapeutic agents such as doxorubin and 
etoposide increase the expression DR4 and DR5, and enhance sensitivity of cancer 
cells to TRAIL-induced apoptosis [ 130 ,  131 ]. Nature product derivatives, including 
quercetin, Gossypol, gamma-T3 and nimbolide, have been shown to upregulate the 
expression of DR5 and/or DR4, and thus sensitizing TRAIL- induced apoptosis in a 
verity of cancer cells, including human pancreatic, kidney, leukemia and colon cancer 
cells [ 132 – 135 ]. In addition, epigenetic modifi cation by histone deacetylase inhibitors 
[ 136 ] and post-translational regulation by the proteasome inhibitor, bortezomib [ 107 ] 
are also found to upregulate the expression of DR4 and DR5 and sensitize the cells to 
TRAIL-induced apoptosis. Although the selective cytotoxity of these reagents towards 
cancer cells but not normal cells have not been determined, it supports the concept that 
safe pharmacological agents that upregulate DR4 and DR5 expression may represent 
a unique approach to sensitize TRAIL therapy for resistant cancer cells.    

11.7     TRAIL-Activated Apoptosis Signals 

 Engagement of DR4 or DR5 with TRAIL induces extrinsic apoptotic signaling path-
ways via recruiting several cytosolic proteins to form the TRAIL-activated DISC 
[ 30 ,  137 ]. Activation of caspase-8 in the DISC is a pivotal trigger for TRAIL- induced 
apoptotic signals [ 21 ], which in turn cleaves and activates  downstream effector 
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 caspases to execute cell killing. As the TRAIL-activated DISC may also recruit 
FLIP, the enzymatically inactive homologue of caspase-8 that mediates primarily 
survival signals through the DISC [ 37 ,  38 ], the relative levels of FLIP and caspase-8 
affects the recruitment and activation of caspases-8 in the DISC, and thus deter-
mines the activation of downstream apoptosis signals. Additionally, since low levels 
of caspase-8 activation in the DISC may be enhanced in the mitochondria, the regu-
lators in the mitochondrial, such as the members of the Bcl-2 family, also contribute 
to the sensitivity of cancer cell to TRAIL-induced apoptosis. 

11.7.1     Caspase-8 

 Caspase-8 is a cysteine protease that has 480 amino acids and contains two death 
effector domains and a catalytic protease domain [ 138 ]. Two major caspase-8 iso-
forms have been observed, a 55 kDa caspase-8/a and a 53 kDa caspase-8/b [ 139 ]. 
Caspase-8 is expressed as an inactive zymogen, which can be activated by multiple 
steps that include oligomerization and proteolysis cleavage [ 140 ]. The fi rst cleavage 
of caspase-8 generates p43/41 intermediate fragments, which are further cleaved 
into p26/24, p18 and p10 fragments [ 140 ]. Active caspase-8 consists of a tetramer 
with two large and small subunits. 

 Mutations on caspase-8 have been reported in a variety of malignancies and lead 
to reduced death receptor-mediated cell death [ 141 – 144 ]. A point mutation that 
altered the stop codon and increased the size of the encoded caspase-8 protein has 
been identifi ed in human squamous cell carcinoma [ 141 ], which render the cells less 
sensitive to apoptosis [ 141 ]. Several other point mutations or missense mutations 
have also been identifi ed in gastric, hepatocellular and colorectal cancer [ 142 – 144 ]. 
Cancer cells with these mutations are resistant to DR5-induced apoptosis [ 142 –
 144 ], while overexpression of the caspase-8 G1238A, C1237T or 1381 insertion 
mutant in 293 T cells reduced DR5-induced apoptosis [ 144 ]. In addition, decreased 
expression of caspase-8 has also been demonstrated in TRAIL resistant cancer cells, 
such as head and neck carcinoma [ 145 ], childhood neuroblastomas and 
 medulloblastomas [ 146 – 149 ]. Inhibition of DNA methylation was found to increase 
caspase- 8 expression and thus enhance TRAIL-induced apoptosis in resistant neu-
roblastoma cells [ 147 ,  149 ]. In contrast, DNA methylation and histone hypoacety-
lation inhibit caspase-8 and increase TRAIL-induced apoptosis in small cell lung 
carcinoma [ 150 ,  151 ]. Furthermore, decreased caspase-8 stability and accelerated 
degradation was determined in TRAIL resistant colon cancer cells, while over 
expression of caspase-8 protein restore their sensitive to TRAIL-induced apoptosis 
[ 152 ]. TRAIL increased caspase-8 ubiquitination in TRAIL-sensitive lung cancer 
cells [ 153 ], whereas inhibition of caspase-8 ubiquitination was associated with 
decreased caspase-8 activity and inhibited TRAIL-mediated apoptosis [ 153 ], sug-
gesting ubiquitination of caspase-8 is required for TRAIL sensitivity. Therefore, 
altered expression of caspase-8, by mutation, DNA methylation/acetylation and 
ubiquitination contribute to reduced caspase-8 activation in TRAIL resistant tumors, 
and thus inhibiting TRAIL-induced apoptosis.  
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11.7.2    Inhibitors of Caspase-8 Activation 

11.7.2.1    FLICE Like Inhibitory Proteins (FLIP) 

 Suppression of apoptosis by intracellular survival factors is important in the devel-
opment of chemoresistance. As the enzymatically inactive homologue of caspase-8, 
the relative levels of FLIP and caspase-8 determine which of these two proteins is 
dominant when recruited to the death receptor, thus regulating the survival or death 
of the cells. Two major FLIP isoforms have been identifi ed, a short FLIP, FLIP S , and 
a long FLIP, FLIP L  [ 154 ]. Both FLIP L  and FLIP S  can be recruited into the TRAIL- 
activated DISC by binding to FADD [ 154 ], however, they affect TRAIL-activated 
downstream signaling in distinct ways [ 154 ]. FLIP S  contains two DEDs that allows 
its binding to FADD, and thus blocks the recruitment and activation of caspase-8 by 
FADD [ 154 ]. In addition to two DEDs, FLIP L  also contains a caspase-like domain 
that allows it to form a dimer with pro-caspase 8 and 10 in the DISC. Despite of its 
lack of an essential cysteine residue for catalytic activity, the FLIP L  and caspase-8 
heterodimer results in a lower degree of activation, favoring proliferation and dif-
ferentiation pathways rather than apoptosis pathways [ 155 ]. As the expression of 
caspase-8 is quite stable, modest changes in expression of FLIP appear to determine 
whether a cell proliferates or dies in response to upstream stimuli [ 156 ]. In hepato-
cellular carcinoma and melanoma, the ratio of FLIP/caspase-8 has been reported to 
be correlated with TRAIL resistance [ 157 ,  158 ]. Elevation of FLIP expression has 
been identifi ed in pancreatic carcinoma [ 109 ] and many other tumor cells [ 106 ,  109 , 
 112 ,  159 – 163 ], which contributes to their resistance to TRAIL-induced apoptosis. 
Inhibition of FLIP in the pancreatic cancer or other cancer cells decreases the TRAIL 
resistance [ 106 ,  109 ,  112 ,  159 – 165 ]. The molecular signals that are linked to FLIP 
upregulation in cancer cells include activation of AKT, which induces FLIP expres-
sion that regulates the resistance of leukemia [ 166 ] and gastric cancer cells [ 160 ] to 
TRAIL-induced apoptosis. Inhibition of AKT decreases FLIP expression and sensi-
tizes the gastric cancer cells to TRAIL-mediated apoptosis [ 160 ]. Furthermore, a 
recent study identifi ed a FLIP antisense oligonucleotide that sensitized cancer cells 
but not a normal lung cell line to TRAIL-induced apoptosis [ 167 ], indicating the 
possibility to specifi cally target FLIP in cancer cells to enhance TRAIL therapy.  

11.7.2.2    BCL-2 Family Proteins 

 The mitochondrial pathway is important for TRAIL-induced apoptosis. In type II 
cells, low level of caspase-8 is activated in the DISC. Activation of caspase-8 in the 
DISC can cleave Bid, which in turn translocates to the mitochondria. Pro- and anti- 
apoptotic Bcl-2 family members can form hetero- and homo-dimers on the mito-
chondrial membrane, regulating the release of cytochrome  c  into and subsequential 
activation of caspase-9 and then downstream effector caspases. Several members of 
the Bcl-2 family proteins, including the anti-apoptotic protein, Bcl-2, Bcl-X L  and 
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myeloid cell leukemia-1 protein (Mcl-1), and pro-apoptotic proteins, Bid, Bax, and 
Bak, are involved in the crosstalk between cytosolic and mitochondrial signaling. 
Therefore, the relative levels of the pro-apoptotic and anti-apoptotic Bcl-2 family 
members modulate caspase-8 activation and the sensitivity of cancer cells to 
TRAIL-induced apoptosis [ 168 ]. 

 The contribution of the pro-apoptotic members, Bax and Bak, to TRAIL-induced 
apoptosis has been demonstrated in normal cells as well as cancer cells. In mouse 
embryonic fi broblasts, TRAIL-induced apoptosis was inhibited when Bak and Bax 
are deleted [ 169 ]; whereas deletion of Bax was suffi cient to block TRAIL-induced 
apoptosis in human colon cancer cell lines [ 170 – 172 ]. The anti-apoptosis effects of 
Bcl-2 and Bcl-X L  in TRAIL-mediated apoptosis have been well studied. 
Overexpression of Bcl-2 was found to inhibit TRAIL-induced caspase-8 cleavage, 
thus inhibiting TRAIL-induced apoptosis in many cancer cells, such as neuroblas-
toma, glioblastoma, breast cancer and colon cancer cells [ 173 ,  174 ]. Similarly, the 
expression of Bcl-X L  was highly correlate with sensitivity to TRAIL-induced apop-
tosis in several pancreatic adenocarcinoma cells [ 85 ]. Overexpression of Bcl-X L  in 
the TRAIL-sensitive Colo357 cells, which express low levels of Bcl-X L , rendered 
the cells resistant to TRAIL-induced apoptosis [ 85 ]. In contrast, inhibition of Bcl- 
X L    sensitized TRAIL-resistant pancreatic cancer PANC-1 cells to TRAIL-induced 
cell death [ 85 ]. Mcl-1 can inhibit pro-apoptotic Bcl-2 family proteins such as Bid 
and thus inhibit TRAIL-induced apoptosis [ 175 – 177 ]. High expression of Mcl-1, 
but not Bcl-2, was demonstrated in invasive cholangiocarcinoma and cultured 
human cholangiocarcinoma cell lines [ 176 ]. Consistently, overexpression of Mcl-1, 
but not Bcl-2, mediates the resistance of cancer cells to TRAIL-induced apoptosis; 
while down regulation of Mcl-1 sensitized the cells to TRAIL-mediated apoptosis 
[ 175 ]. Taken together, these studies support the important roles of the anti-apoptotic 
Bcl-2 family proteins in regulating caspase-8 activation via the mitochondria path-
way, and thus mediating resistance of cancer cells to TRAIL-induced apoptosis.  

11.7.2.3    Inhibitor of Apoptosis Proteins (IAP) 

 The IAP proteins mostly execute their inhibitory effects on death receptor-induced 
apoptosis by directly interacting with the active sites of the effector caspases, such 
as caspase-3, 6 and -7, or caspase-9, thus inhibiting the catalytic activity of these 
caspases [ 178 ]. Among the eight IAPs were identifi ed in humans, the X-linked IAP 
(XIAP) is the most potent inhibitor of caspase activity involved in both intrinsic and 
extrinsic apoptosis pathways [ 179 ,  180 ]. High expression of XIAP mediates the 
resistance of a variety of cancer cells to TRAIL-induced apoptosis [ 181 – 185 ], while 
inhibition of XIAP enhances the sensitivity of cancer cells to TRAIL-induced apop-
tosis [ 186 – 188 ]. A few studies have identifi ed the inhibitory effects of IAPs on 
DISC assembly and caspase-8 activation in breast cancer and ovarian cancer cells 
[ 189 ]. Nonetheless, the majority of studies have demonstrated the effects of IAPs on 
death receptor-induced apoptosis downstream of DISC and caspase-8 activation via 
blocking caspase-9 and caspase-3. Therefore, cancer cells with high expression of 
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IAPs may be resistant to a variety of apoptosis-inducing agents, including TRAIL, 
thus targeting IAPs should effectively sensitize such resistant cancer cells to TRAIL- 
induced apoptosis.    

11.8     TRAIL-Induced Survival Regulators in the DISC 

 In addition to FLIP, we have reported several DISC components that mediate the 
death receptor-mediated survival pathways, including CaM, Src, and PARP-1 [ 9 –
 17 ,  108 ]. Consistently, we demonstrated that pharmacological inhibition of FLIP, 
CaM, Src or PARP-1 enhances death receptor-mediated apoptosis in cholangiocar-
cinoma and pancreatic cancers [ 11 ,  15 – 17 ,  108 ]. The roles of death receptor 
activated- DISC recruitment of CaM, Src and PARP-1 in regulating TRAIL resis-
tance are discussed below. 

11.8.1    Calmodulin (CaM) 

 Previous studies from our group have demonstrated that two potent calmodulin 
antagonists, tamoxifen (TMX) and trifl uoperazine (TFP) induce apoptosis in chol-
angiocarcinoma and pancreatic cancer cells and decrease tumor cell growth in 
mouse xenograft models [ 17 ,  190 ,  191 ]. We have demonstrated that TMX, a known 
estrogenic inhibitor, is an effective CaM antagonist, being as potent as TFP [ 192 ]. 
CaM is a small intracellular protein that mainly functions as an intracellular media-
tor of Ca 2+  signals [ 193 ]. The role of Ca 2+ /CaM in cancer pathogenesis remains 
unclear and somewhat paradoxical, because Ca 2+  is critical for both cell division and 
cell death. Elevated levels of Ca 2+ -bound CaM are associated with cancer [ 194 ]. 
Antagonists of CaM inhibit tumor cell invasion in vitro and metastasis in vivo [ 195 ], 
suggesting that CaM antagonists are promising chemotherapeutic agents for cancer. 
Consistently, we have shown that CaM antagonists induce apoptosis in cholangio-
carcinoma cells, through caspase-dependent apoptosis pathways and a caspase- 
independent pathway by inducing depolarization of the mitochondrial membrane 
[ 190 ]. In addition, we found that TMX inhibits phosphorylation of AKT [ 15 ]. The 
expression and activation of other molecules downstream of CaM activation may 
also play important roles in determining cell responses to apoptotic stimuli. The 
Ca 2+ /CaM-dependent kinase II (CaMKII) upregulates the expression of FLIP in 
astrocytes and glioma cells [ 196 ,  197 ], suggesting CaM may inhibit apoptosis via 
activating its downstream enzymes. We have identifi ed a Ca 2+ -dependent interaction 
between CaM and Fas death receptor in Jurkat cells and osteoclasts that is regulated 
during Fas and CaM antagonists-induced apoptosis [ 198 ,  199 ]. Recruitment of CaM 
into the Fas-mediated DISC has been identifi ed in cholangiocarcinoma and pancre-
atic cancer cells [ 11 ,  17 ]. CaM was found to interact directly and in a Ca 2+ -dependent 
manner with FLIP in the DISC, but not FADD and caspase-8 [ 16 ]. Furthermore, a 
direct interaction of CaM and Src has demonstrated in pancreatic cancer cells [ 17 ]. 
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The CaM antagonist, TFP, decreased CaM binding to Src and inhibited Fas-induced 
recruitment of Src into the DISC and Src activation [ 17 ]. Similarly, we found that 
CaM was recruited into DR5-activated DISC. CaM antagonists blocked DISC- 
recruitment of Src, sensitized DR5-induced apoptosis in vitro and enhanced effi -
cacy of DR5 therapy in pancreatic cancer xenograft model (unpublished data). The 
recruitment and direct interaction of CaM with survival signals Src and FLIP in the 
DISC support its role in regulating death receptor-activated signaling in the 
DISC. This novel regulatory role of CaM in the DISC may present a unique oppor-
tunity for the use of the readily available and well tolerated CaM antagonists, such 
as TMX and TFP, to enhance the effi cacy for TRAIL therapy. Further elucidation of 
the fundamental function of CaM in the TRAIL-DISC may reveal novel molecular 
insights into the basic mechanisms of TRAIL-induced apoptosis, which will be use-
ful for the development of new specifi c agents to overcome TRAIL resistance.  

11.8.2    Src Kinase 

 The Src kinase has also been linked to TRAIL resistance that contributes to breast 
cancer metastasis [ 200 ]. In TRAIL resistant hepatic carcinoma cells, inhibition of 
Src activity sensitized the cancer cells to TRAIL-induced apoptosis [ 201 ]. The 
molecular mechanisms underlying Src-mediated TRAIL resistance remain unclear. 
TRAIL was shown to active Src kinase that leads to AKT activation and thus resis-
tant of prostate cancer cells [ 202 ]. Consistently, inhibition of Src sensitized the 
prostate cancer cells to TRAIL-induced apoptosis [ 202 ]. In addition, TRAIL- 
activated Src family kinase was also found to active epidermal growth factor recep-
tor and human epidermal receptor 2-mediated survival signaling in colorectal cancer 
cells, which led to resistance of the cells to TRAIL-induced apoptosis [ 203 ]. Src 
activation has also been demonstrated to inhibit caspase-8 activation in Hela cells, 
via phosphorylating caspase-8 at Tyrosine 380 that inhibits caspase-8 cleavage 
[ 204 ]. In contrast, increased caspase-8 cleavage was associated with Src inhibition, 
which contributes to increased apoptosis in TRAIL resistant hepatic carcinoma cells 
[ 201 ]. In pancreatic cancer cells, we have reported that activation of Src kinase by 
the death receptor Fas promotes survival of the pancreatic cancer cells [ 17 ]. 
Importantly, we have demonstrated that Src is recruited into the Fas-activated DISC 
via interaction with CaM at amino acids 204–214 that overlaps the Src homology 2 
(SH2) domain. The CaM antagonist, TFP, decreased CaM binding to Src, which 
inhibited Fas-induced recruitment of Src into the DISC and Src phosphorylation at 
tyrosine 416 that are key to its activation [ 17 ]. We also found that Src was recruited 
into the DR5-activated DISC in pancreatic cancer cells (unpublished data). 
Accordingly, recruitment of Src, via CaM, into the death receptor-activated DISC 
may provide the proximity for Src to phosphorylate caspase-8, which inhibits cas-
pase- 8 cleavage and activation as seen in Hela cells. Further investigations are war-
ranted to characterize the molecular mechanisms underlying death receptor 
signaling-induced DISC-recruitment and activation of Src kinase, and its action on 
DISC proteins, including caspase-8, that lead to TRAIL resistance.  
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11.8.3    Poly (ADP-Ribose) Polymerase 1 

 We have recently characterized several lines of human pancreatic cancer cells, and 
demonstrated that the expression levels of DR5 and anti-apoptotic protein FLIP was 
not correlated to their resistance to TRA-8 (DR5 agonist antibody)-induced apopto-
sis [ 108 ]. In contrast, we have identifi ed a novel function of poly(ADP-ribose) poly-
merase- 1 (PARP-1) in regulating the resistance of pancreatic cancer cells to 
TRA-8-induced apoptosis in vitro and in vivo [ 205 ]. 

 The PARP proteins are highly abundant nuclear proteins that are activated when 
DNA is damaged [ 206 ]. PARP enzymes modify proteins by adding chains of ADP 
ribose units (pADPr). To date, 17 members of the PARP family have been identifi ed 
on the basis of sequence homology. PARP-1 is the prominent member of the family 
of PARPs and accounts for 75–90 % of cellular pADPr formation and modifi cation 
[ 207 ]. PARP-1 plays an important role in repairing single-strand DNA breaks by 
modifying proteins associated with DNA repair [ 208 ], so as to maintain genomic 
integrity and cell survival in response to genotoxic insults [ 209 – 212 ]. In many 
tumors, the expression of PARP-1 is elevated and is associated with a poor progno-
sis [ 213 – 219 ]. Accordingly, PARP-1 antagonists, used as a mono-therapy for tumors 
with DNA repair defi ciencies or in combination with DNA damage-inducing agents, 
may increase accumulation of irreparable damaged DNA that triggers intrinsic 
apoptotic pathways signaling pathway in cancer therapy [ 208 ,  220 – 223 ]. For exam-
ple, PARP-1 inhibition has been used to treat cancers with DNA repair defi ciencies, 
such as BRCA-defi cient breast and ovarian cancer [ 224 ] and BRCA2-associated 
pancreatic cancer [ 221 ]. Combined use of PARP inhibitors with DNA damaging 
reagents or radiation sensitizes glioma, ovarian and pancreatic cancers to therapy 
[ 220 ,  222 ,  223 ]. Currently, several PARP inhibitors in combination with DNA- 
damaging agents such as platins, cyclophosphamide, ionizing radiation, and gem-
citabine are in Phase I and Phase II trials [ 206 ]. Importantly, all of these investigations 
are based on the known function of PARP-1 in regulating DNA repair, and targeting 
the intrinsic apoptosis pathways. 

 The function of PARP-1 in the death receptor-activated extrinsic apoptosis 
pathways have not been studied previously. Our recent studies have identifi ed a 
novel function of PARP-1 in the DR5-associated DISC, where it regulates the 
resistance of pancreatic cancer cells to TRA-8-induced apoptosis [ 108 ]. We deter-
mined a correlation between PARP-1 expression and the resistance of pancreatic 
cancer cells to TRA-8. Inhibition PARP-1 in resistant pancreatic cell lines, PANC-1 
and Suit-2 cells, sensitizes the cells to TRA-8-induced apoptosis. We found that 
inhibition of PARP-1 alone does not induce apoptosis of pancreatic cancer cells, 
suggesting that PARP-1 regulates TRA-8-induced extrinsic apoptosis via a mecha-
nism independent of its function in DNA repair. As a novel component of the DR5-
activated DISC, PARP-1 contributes to TRAIL resistance of pancreatic cancer 
cells by inhibiting caspase-8 activation in the DISC [ 108 ]. We found that PARP-1 
does not modify DR5 under basal conditions, but regulates the pADPr modifi ca-
tion of the DR5- associated DISC complex, and thus modulates downstream apop-
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totic signaling. PARP-1 was found to directly regulate pADPr modifi cation of 
caspase-8 and thereby inhibiting its activation. The mechanisms underlying 
 PARP-1-mediated pADPr modifi cation of caspase-8 is not clear. It is plausible that 
the presence of PARP-1 in the DR5-associated complex provides the proximity for 
PARP-1 to modify (pro)caspase-8 in the DISC. PARP-1 targets aspartate residues 
[ 208 ], and the aspartate residues at 216, 374 and 384 are cleavage of caspase-8 into 
its active forms [ 225 ,  226 ]. Therefore, pADPr modifi cation on these caspase-8 
aspartate residues by PARP-1 may lead to blockage of caspase-8 cleavage and thus 
inhibiting caspases-8 activation. Consistently, inhibition of PARP-1 blocks pADRr 
modifi cation of caspase- 8, which facilitates DR5-mediated activation of cas-
pase-8 in the DISC and sensitizes tumor cells to TRA-8-induced apoptosis. This 
novel function of PARP-1 in the DR5-activated apoptotic signaling machinery 
suggest the use of cytoplasmic PARP-1 expression as a potential diagnostic marker 
to identify sensitivity of cancer to TRA-8 therapy, and further support interven-
tions combining PARP-1 inhibitors with death receptor agonists to treat resistant 
pancreatic cancers.    

11.9     Conclusion 

 Pancreatic cancer remains a highly challenging cancer with high morbidity and 
mortality, largely due to the lack of early diagnosis and effective therapy. The selec-
tive tumor-killing effects of TRAIL and death receptor agonists make them promis-
ing avenues for treating many cancers, including pancreatic cancer. Several 
recombinant TRAIL or anti-human DR4 or DR5 monoclonal antibodies have been 
tested in phase I-III clinical trials. These agents are generally well-tolerated and low 
toxicity in patients, however, they have shown limited effi cacy. Therefore, better 
understanding of basic mechanisms underlying resistance of cancer cells to TRAIL- 
induced apoptosis is warranted for the development of novel strategies for early 
diagnosis and therapy. Studies from our group and others have demonstrated that 
regulation of the apoptosis or survival mediators in the TRAIL-activated DISC 
could effectively promote TRAIL-induced apoptosis in resistant pancreatic cancer 
cells, thus, enhancing the effi cacy of TRAIL therapy (Fig.  11.1 ). Literature also 
suggests that the expression of functional death receptors and the decoy receptors 
could be utilized as effective biomarkers for diagnosis and possibly targets for ther-
apy. Decreased expression or mutation of the DR4 or DR5 death receptor, increased 
expression of the decoy receptors and upregulation of anti-apoptotic regulators such 
Bcl-2, Bcl-X L , Mcl-1 and IAPs have been shown to increase TRAIL resistance in 
may tumors. As shown in the schematic Fig.  11.1 , inhibition of the recruitment and 
activation of the key apoptotic mediator, caspase-8, by survival signals in the DISC, 
such as FLIP, CaM, Src and PARP-1, effectively sensitized resistant cancer cells to 
TRAIL-induced apoptosis. Therefore, using combination therapies of TRAIL ago-
nists with the antagonists of these DISC survival regulators may represent novel 
strategies to enhance therapeutic effi cacy for TRAIL-resistant pancreatic cancer.      
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    Chapter 12   
 Epithelial Mesenchymal Transition 
Infl uence on CTL Activity 

             Wilfried     Engl    ,     Virgile     Viasnoff    , and     Jean     Paul     Thiery    

    Abstract     Epithelial-mesenchymal transition (EMT) is a fundamental process 
orchestrating embryonic morphogenesis that also operates during carcinoma pro-
gression to promote invasion and metastasis. This review critically assesses whether 
EMT confers stemness, resistance to chemo- and targeted therapeutics, and immune 
escape. EMT inducers share common targets that alter apico-basal polarity, intercel-
lular adhesion and the actin cytoskeleton, events that also contribute to the transdif-
ferentiation of epithelial into mesenchymal cells. The considerable genomic 
heterogeneity exhibited by tumors, concomitant with their rapidly evolving sub- 
clones, is a major caveat in the success of targeted therapeutics. With the recent 
spectacular progress in immunotherapy for some solid tumors, one can now envi-
sion expanding upon this strategy for other tumors, pending the improved effi cacy 
of T lymphocyte-mediated cytotoxicity. This review explores how the immunologi-
cal synapse can be affected by EMT and posits how EMT reversal by kinase inhibi-
tors could help restore a functional immunological synapse, in cooperation with 
antibodies abrogating immune suppression.  
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  Abbreviations 

   ALDH1    Aldehyde dehydrogenase-1   
  APC    Antigen presenting cell   
  CK1    Casein kinase 1   
  cSMAC    Central supra-molecular activation cluster   
  CT    Computed tomography   
  CTL    Cytotoxic T lymphocyte   
  CTLA-4    Cytotoxic T lymphocyte associated protein 4   
  dSMAC    Distal supramolecular activation cluster   
  EGF    Epidermal growth factors   
  EGFR    Epidermal growth factor receptor   
  EMT    Epithelial-mesenchymal Transition   
  ERBB2    Receptor tyrosine-protein kinase   
  FGF    Fibroblast growth factor   
  GSK3b    Glycogen synthase 1   
  HGF    Hepatocyte growth factor   
  HMLE    Human mammary epithelial cell line   
  h-TERT    Human telomerase reverse transcriptase   
  ICAM-1    Intercellular adhesion molecule-1   
  IGF    Insulin-like growth factor   
  LFA-1    Lymphocyte function associated antigen-1   
  MAPK    Mitogen activated protein kinase   
  MCF7    Epithelial mammary adenocarcinoma cell line   
  MHC    Major histocompatibility antigen   
  miRNA    MicroRNAs   
  MRI    Magnetic resonance imaging   
  NSCLC    Non-small cell lung cancer   
  PD-1    Programmed death-1 protein   
  PD-1 L    Programmed death-1 protein ligand   
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  PI3K    phosphoinositide 3-kinase   
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  PRC    Polycomb repressor complex   
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  SHP2    Tyrosine-protein phosphatase non-receptor type 11   
  TCR    T-cell surface receptors   
  TGF-β    Transforming growth factor beta   
  TNF-α    Tumor necrosis factor alpha   
  T reg     Regulatory T cell   
  WISP2    Wnt1-inducible signaling pathway protein 2   
  ZAP70    Zeta-chain-associated protein kinase 70   
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12.1          Introduction 

    Carcinoma—the most predominant form of malignancy—derives from the 
 transformation of epithelial cells; yet, decades can separate an initial oncogenic 
event and the formation of a clinically detectable mass. Recent deep-sequencing 
studies have shown that carcinomas accumulate thousands of point mutations and 
considerable genomic alterations [ 1 ]. Although the concept of clonal evolution is 
well accepted today, it now appears that primary carcinoma comprises multiple, 
independent clones and that metastases also exhibit considerable heterogeneity and 
evolve independently from the primary carcinoma; this knowledge therefore puts 
into question the value and validity of prognoses and therapeutic interventions that 
are implemented based on the histopathology and expression of markers and muta-
tional profi les at the primary site. In addition, the number of potential driver muta-
tions far exceeds the number of targeted therapeutics that can be used in combination 
to circumvent the progression of primary and metastatic tumors. The outstanding 
responses observed in some advanced cancers, such a melanoma and lung cancer, 
with B-RAF and epidermal growth factor receptor (EGFR) kinase inhibitors are not 
long-lasting in the majority of patients due to multiple resistance mechanisms, 
including de novo mutations and the activation of alternate pathways [ 2 ]. We are 
thus facing a considerable dilemma as to how to effectively treat the primary carci-
noma, aside from surgery and radiotherapy, not-withstanding the even much more 
demanding treatment of the metastases. 

 In the neo-adjuvant setting, clinicians can explore a combination of conventional 
and targeted therapeutics but complete pathological is not frequently observed and 
a residual tumor mass needs to be surgically removed. The lines of treatment in 
adjuvant therapies remain more diffi cult to adjust since one cannot follow responses 
in apparently diseased-free patients based on margin-free surgical specimens and 
the lack of detection of disease extension by imaging. Minimal residual disease of 
less than 5 mm in diameter cannot be detected today even by the most advanced 
combined CT-PET and MRI imaging even though such a tumor mass actually rep-
resents more than 100 million carcinoma cells. Strategies to combat these rapidly 
evolving molecular heterogeneities must be equally effective to target all cancer 
cells, whatever their genetic and epigenetic statuses. 

 Promising results have recently been obtained in restoring the immune response 
in patients. In particular, one of the now well-studied mechanisms of immune mod-
ulation of cytotoxic T lymphocytes (CTLs) is initially triggered by the programmed 
death protein 1 (PD1), a cell surface receptor of the Ig superfamily, which, upon 
binding to its PD1-L ligand, becomes phosphorylated in the immunoreceptor 
tyrosine- based switch motif in the cytoplasmic domain. Phosphorylated PD-1 can 
then recruit the tyrosine phosphatase SHP-2, which deactivates the T-cell receptor 
(TCR)/co-receptor complex-associated tyrosine kinase ZAP70, leading to the inhi-
bition of cytokine production and CTL clonal expansion [ 3 ]. Clinical trials based on 
the use of PD1 or PD1-L antibodies have shown promising clinical results for 
patients with cutaneous melanoma [ 4 ] as well as for those with non-small cell lung 
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cancer (NSCLC) and renal carcinoma [ 5 ]. These patient responses have prompted 
multiple studies to further understand the extraordinary complexity of the immune 
network, which, once perturbed, unfortunately leads to major toxicities and side 
effects, such fatigue, rash, pruritus, diarrhea and, oftentimes, autoimmune diseases. 
Altering PD1-mediating tolerance has major consequences in promoting the aggres-
siveness of CTLs and other immune cells within the normal tissues [ 3 ,  6 ]. 
Nevertheless, knowing that all other cancer treatments exhibit serious side effects, 
the immunology community remains engaged in defi ning and undertaking more 
advanced preclinical studies and clinical trials to manage these side effects, which 
are fortunately reversible. 

 Aside from inhibiting T-cell responses through surface molecules, such as CTL- 
associated protein 4 (CTLA-4) and PD-1, numerous other mechanisms can inter-
vene to energize the cytotoxic responses of T-lymphocytes, some of which can be 
intrinsic to carcinoma cells. Indeed, the cells may not present adequately the tumor 
antigens due to the lack of expression of the major histocompatibility complex 
(MHC) class 1 antigens or through defective intracellular processing of the tumor 
antigens [ 7 ]. Other mechanisms involve epithelial cell plasticity, which occurs in 
most carcinomas that have undergone dedifferentiation, a hallmark in the pathologi-
cal grading system. This review briefl y describes the role of Epithelial-Mesenchymal 
Transition (EMT) in development, a process that is likely hijacked by carcinoma 
cells to invade and disseminate. The review describes how EMT is induced and 
executed, and explores the functional consequences of EMT in carcinoma cells, 
particularly in terms of its effect on the functionality of the immunological synapse 
as a consequence of the acquisition of a mesenchymal-like phenotype. The hypoth-
esis that carcinoma cells exhibiting a mesenchymal-like phenotype can escape 
immune response may result from altered dynamics of the actin cytoskeleton. Thus, 
the dynamic structure of the immunological synapse is reviewed, with attempts to 
envisage the potential mechanisms needed to restore cytotoxic functions in T-cells, 
possibly through an EMT reversal of mesenchymal-like carcinoma target cells.  

12.2     EMT in Development 

 One of us previously proposed that carcinoma cells high-jack this process for their 
invasion and metastasis [ 8 ]. To understand the concept and signifi cance of EMT in 
carcinoma, it is necessary to explain EMT in development and the predominant 
mechanisms involved in its induction and execution. 

 EMT is an evolutionarily conserved, fundamental process in embryogenesis [ 9 ] 
that allows immobilized epithelial cells to assume a migratory behavior as single 
cells and move to different territories to ultimately contribute to tissue morphogen-
esis. EMT is implicated in gastrulation, the most important morphogenetic step dur-
ing which a primitive embryo, composed of hundreds to thousands of cells, forms 
the three germ layers—ectoderm, mesoderm and endoderm—to shape the body 
plan. The initial discoveries were made in  Drosophila , where it was demonstrated 
that two transcription factors, Snail and Twist, played major roles in orchestrating 
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these gastrulation events. Later, two orthologs of  dSnail  were linked with driving 
EMT during gastrulation in higher vertebrates. Snail is also implicated in the forma-
tion of the neural crest in vertebrates. Interestingly, the neural crest gives rise to 
various derivatives including the peripheral nervous system and melanocytes; the 
latter are notorious for becoming invasive and metastatic upon acquiring a malig-
nant phenotype, resuming part of their embryonic program, which involves EMT.  

12.3     EMT Inducers and Transducers 

 In numerous epithelial cell lines, ligands, such as hepatocyte growth factor (HGF), 
fi broblast growth factors (FGFs), epidermal growth factors (EGFs), insulin-like 
growth factors (IGFs) and transforming growth factor beta (TGF-β), have been 
shown to activate their cognate kinase surface receptors and promote EMT. Other 
factors, namely endothelin-1, interleukin 6 and tumor necrosis factor alpha (TNF- 
α), are also documented to initiate EMT. Activation of the canonical Ras/mitogen 
activated protein kinase (MAPK) pathway, Src kinase and phosphoinositide 3-kinase 
(PI3K) pathway have been described in multiple instances to promote the transcrip-
tion of EMT drivers leading to modulation of E-cadherin-mediated intercellular 
adhesion and actin cytoskeleton remodeling [ 10 ]. In mammals, several classes of 
transcriptional repressors have been extensively described [ 11 ]. A prototypic exam-
ple of the repression mechanism is provided by Snail1 and Snail2 binding to E-boxes 
in the E-cadherin proximal promoter, which is reinforced by the recruitment of the 
histone deacetylases as part of the Mi-2/nucleosome remodeling and deacetylase 
(NurD) complex. Snail also interacts with the histone methyltransferases, EZH2 
and SUZ12, which are components of the polycomb repressor 2 (PRC2) complex 
and are involved in catalyzing trimethylate H3K27 repressive marks. The histone 
methyltransferase, G9a, can dimethylate H3K9, which is then additionally methyl-
ated by SUV39H1 to create a strong repressive mark. The recruitment of DNA 
methyl transferases (DNMTs) to sites of repressive H3K9me3 marks will further 
re-enforce E-cadherin repression. The PRC2 complex can then recruit the PRC1 
complex, including BMI1, which contributes to the maintenance of the mesenchy-
mal phenotype and stemness in carcinoma cells. Similar mechanisms operate for 
Zeb and Twist transcriptional repression. 

 Other epigenetic mechanisms include epithelial splicing regulatory proteins 
(ESPRs), which lead to splice variants. Furthermore, microRNAs (miRNA) offer 
another important layer of regulation. In particular, the miR-200 family directly 
inhibits EMT in a number of cell lines by targeting Zeb transcripts. miR-205 also 
targets Suz12 and BMI1 in addition to Zeb transcripts. Mir-34, a downstream gene 
of p53, can also inhibit EMT, whereas miR-9 targets E-cadherin and needs addi-
tional events to induce to EMT. Interestingly, this higher level of regulation of EMT 
is also subjected to epigenetic silencing. Finally, post-translational modifi cation 
can affect the stability of repressors, such is the case for Snail1, which can be 
 phosphorylated by casein kinase 1 (CK1) and by glycogen synthase 1 (GSK3b), 
promoting its ubiquitination and degradation [ 11 ].  
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12.4     How Is EMT Executed? 

 The signaling pathways described above induce drastic reorganization of the 
 apico- basal polarity of normal epithelial cells as well as that of well-differentiated 
adenoma or in situ carcinomas, which still possess some degree of apico-basal 
polarity and retain intercellular adhesive structures. Tight junctions are the fi rst 
structures affected at the onset of progression. These proteins are initially assem-
bled at the apex of epithelial cells through the specifi c localization of the occludin 
and claudin tetraspan proteins, which are themselves connected with the cortical 
actin microfi laments through PDZ-containing adaptor proteins [ 12 ]. Most interest-
ingly, tight junctions also recruit polarity genes and exhibit an indirect control of the 
Hippo pathway [ 13 ]. In one seminal study, EMT signaling, mediated by TGF-βRs 
localized at tight junctions, was shown to induce degradation of RhoA through the 
non-canonical Par6/Smurf-1 pathway and consequently destabilize the actin micro-
fi laments [ 14 – 16 ]. Once an epithelial cell loses its tight junctions—especially in the 
context of oncogenic events such as that of p53 mutations—hyperplasia is triggered 
through a weakening of growth control, and this weakening has been linked to the 
dysregulation of the Hippo pathway and other control mechanisms of the cell cycle, 
ultimately inducing anoikis resistance [ 17 ]. 

 Adherens junctions, the most critical E-cadherin mediated adhesion system in 
epithelial cells, are then rapidly affected, as EMT inducers target signaling nodes 
that affect actin microfi lament dynamics [ 10 ]. Cells then lose their adherens junc-
tions either through a direct downregulation event mediated by the aforementioned 
transcriptional repressors and/or through a network of newly activated kinases, such 
as Src kinase, which can suppress E-cadherin–actin cytoskeleton coupling and 
adhesion strengthening. 

 Finally, desmosomes, another landmark adhesive structure of epithelial cells, are 
destabilized, and evidence points to various mutations in essential components, 
such as the desmosomal cadherins and their associated cytoplasmic partners 
[ 12 ,  18 ], in hindering their reassembly.  

12.5     What Are the Functional Consequences of EMT 
and When Does It Occurs in Carcinoma 

 One landmark study [ 19 ] showed that human mammary epithelial cells (HMLEs)—
h-TERT (human telomerase reverse transcriptase) and SV40 large and small T 
antigen immortalized—can acquire stemness when induced to undergo EMT by 
the forced expression of Snail1 or Twist or by adding TGF-β. Most mesenchymally 
transitioned or ‘EMTed’ cells express normal mammary stem cell markers with 
high CD44 and low CD24 expression. Others have shown that H-RASV12- 
transformed HMLE cells readily acquire a mesenchymal phenotype with stem 
cell- like attributes [ 19 ,  20 ]. Fluorescence-activated cell sorted CD44 high /CD24 low  
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human breast carcinoma cells exhibit an EMTed phenotype, concomitant with a 
loss of E-cadherin expression, an increase in the transcriptional repressors Snail, 
Twist and Zeb, and expression of the classical EMT markers, Vimentin, N-cadherin 
and fi bronectin. HMLE cells can spontaneously generate CD44 high /CD24 low  stem 
cells from an initial population of CD44 low /CD24 high  cells that lack any stem cell 
capacity, and it was this fi nding that helped to illustrate the potential for non-clo-
nogenic mammary cells to generate stem cells under certain circumstances [ 21 ]. 
To further document the capacity of non-stem cells to acquire stemness, the forced 
expression of several combinations of transcription factors was investigated in epi-
thelial mammary adenocarcinoma cell line (MCF7), and this, in turn, led to the 
discovery that the co-expression of Snail2 and Sox9 is suffi cient to engender stem 
cell properties [ 22 ]. Recent investigations, however, have identifi ed two types of 
stem cells in the  normal mammary gland and in breast carcinoma [ 23 ]: one exhib-
its similar mesenchymal- like properties as those described above and are CD44 high /
CD24 low , whereas another population exhibits an epithelial phenotype and expresses 
aldehyde dehydrogenase-1 (ALDH1), another stem cell marker. Remarkably, the 
two stem cell compartments can be interconverted, at least in vitro. These studies 
stress that stem cells exhibit remarkable plasticity and can be potentially generated 
from a non-stem cell compartment. Thus, the theory that stem cells form a stable 
population with low proliferative capacity and can accumulate more mutations 
than the rapidly cycling cancer cells with a fi nite life span may need to be revis-
ited. This is a crucial issue with regard to therapeutic strategies that aim to elimi-
nate stem cells specifi cally, as these cells appear capable of re-emerging from a 
non-stem cell population and therefore may not be completely eliminated during 
treatment. 

 Another note of caution is that EMT may not necessarily engender stemness but 
may only favor carcinoma cell dissemination. The transcription factor Prrx1, a 
homeobox protein expressed in the early embryonic stage, can affect EMT in the 
paraxial mesoderm in a manner that is independent of Snail activity [ 24 ]. Such tran-
scription can promote invasion and the formation of micrometastases but it would 
need to be downregulated for secondary tumors to develop, indicating that EMT and 
the acquisition of stemness may be uncoupled. EMT reversal was hypothesized to 
allow for secondary carcinoma formation [ 8 ], and this hypothesis was vindicated in 
an experimental model analyzing the behavior of carcinogen-induced primary squa-
mous skin carcinoma using a Twist-inducible system [ 25 ]. Thus, the spatiotemporal 
regulation of EMT is essential for squamous cell carcinoma metastasis.  

12.6     EMT Confers Resistance to Chemotherapeutics 
and to Targeted Therapeutics 

 Multiple mechanisms have been described to confer drug resistance in cancer cells. 
Drug resistance can be elicited by rapid effl ux, metabolic inactivation, mutations of 
the target, DNA damage repair, and escape from apoptosis [ 2 ]. EMT may also 
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induce refractoriness in carcinoma acquiring a mesenchymal phenotype, as 
observed in sarcoma. Numerous studies have emphasized that EMT acquisition 
can account for resistance to targeted therapeutics, such as in NSCLC and prostate 
cancer [ 26 ]. However, the documentation that EMT will promote resistance is 
often circumstantial and not fully elucidated. Epithelial carcinoma cells that are 
chronically exposed to chemotherapeutic agents can progressively acquire a mes-
enchymal phenotype; however, in many established cell lines exhibiting a mesen-
chymal phenotype, the drug GI50 values do not always mirror an increase in 
resistance [ 27 ]. Tan and colleagues recently established a specifi c and generic EMT 
scoring method for tumors and their corresponding cell lines [ 28 ], wherein a sys-
temic survey of the drug GI50 was undertaken to determine the extent to which the 
EMT score correlated with increased drug resistance. They showed a correlation in 
particular tumor types or molecular subtypes for certain drugs, but an anti-correla-
tion was also found for other drugs in the same or other tumor types. This study, in 
addition to many other studies, refl ects the extraordinary complexity of drug resis-
tance, which is further compounded by the comparisons of innate or acquired resis-
tance in these tumors.  

12.7     EMT Can Induce Immune Escape 

 In 2009, a pioneering study by Kudo-Saito and colleagues showed that the forced 
expression of Snail1 could induce an EMT-like mechanism in B16F10 melanoma 
cells, which are not epithelial but express E-cadherin [ 29 ]. Co-culture of spleen 
cells with the B16F10 Snail-expressing cells revealed an induction of Foxp3 in the 
regulatory CD4 + CD25 –  T cell population (T reg ); this occurred as a result of the pres-
ence of impaired antigen-presenting dendritic cells (APCs) generated through 
direct contact with these Snail-expressing B16F10 cells. Similarly, in syngeneic 
mice, the primary tumors of mock-transfected B16F10 melanomas became infi l-
trated by CTLs following injection of dendritic cells whereas the Snail-expressing 
melanomas induced CD4 + Foxp3 +  T reg  cells and was thus able to abrogate dendritic 
cell responses. 

 CTL lysis is also inhibited in MCF7 cells that are rendered mesenchymal through 
the forced expression of wild-type, constitutively activated Snail1 or following 
long-term exposure to TNFα [ 30 ]. The immunological synapse of the mesenchymal- 
like MCF7 cell line seems defective, as shown by its morphology and phosphoryla-
tion status. Immune escape was also associated with activation of an autophagic 
program, which may contribute to promoting survival in these cells. Perturbing the 
secreted protein WISP2 (Wnt1-inducible signaling pathway protein 2) also leads to 
the acquisition of a mesenchymal phenotype, and WISP2 knockdown was shown 
to activate the TGFβR pathway, a much lower expression of miR-7-5b, and a higher 
expression of the stem cell transcription factor KLF4, one of its target genes. 
Carcinoma cells expressing KLF4, TGFβ, Smad2/3 and Twist have been detected 
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in basal-like breast cancer, and the expression of these proteins possibly contributes 
to the immune escape in these cells [ 31 ]. The lack of a functional immunological 
synapse may be in part due to diminished antigen presentation, but it also likely 
results from defective cortical machinery in the post-synaptic cytoplasmic domain, 
reminiscent of the mechanism described above for Snail-expressing or TNFα-
treated MCF7 cells [ 32 ].  

12.8     Genesis of an EMT Phenotype in Primary Tumors 

 Tumors of different histotypes exhibit a wide spectrum of EMT scores [ 28 ], and 
this EMT spectrum has been broadly classifi ed previously as four categories: epi-
thelial, intermediate-epithelial, intermediate-mesenchymal and mesenchymal 
[ 33 ]. However, this scoring method provides only an average value of the EMT 
score of a particular carcinoma and its stroma. For example, laser-microdissection 
of specifi c breast tumor sections, of which there are known to be fi ve molecular 
subtypes (Luminal A, Luminal B, ERBB2-positive, Claudin-low and Basal) was 
undertaken to eliminate this stromal cell component. The dissected tumors in the 
Luminal A, Luminal B and ERBB2 subtypes demonstrated relatively more epithe-
lial-like scores as compared with those for their non-dissected counterparts, 
whereas the Basal subtype was more mesenchymal-like than the three other 
molecular subtypes. Remarkably, the Claudin-low subtype retained a very high 
EMT score after microdissection, with a high EMT score indicative of a more 
mesenchymal phenotype [ 28 ]. 

 Nonetheless, these scores—microdissected or not—still only offer a global 
score of the tumor. To investigate EMT scoring at the level of single cells, tissue 
microarray analyses comprising 500 breast samples (representing all molecular 
subtypes) were performed using a panel of 28 epithelial and mesenchymal mark-
ers, and, more recently, in situ hybridization was carried out to identify cells 
potentially engaged in EMT. Together, the results of the two studies point toward 
the presence of  approximately 3 % of intermediate-mesenchymal and mesen-
chymal-like carcinoma cells in Luminal-type tumors and 11 % in basal-like 
tumors [ 34 ,  35 ]. 

 Also at the cellular level, studies have elucidated that a signifi cantly high per-
centage of circulating tumors cells (CTCs) exhibit a mesenchymal-like phenotype 
[ 35 ,  36 ]. CTCs are derived from either primary or metastatic tumors as single cells 
or cell clusters, and these cells tend to display a partial or complete EMTed pheno-
type. The mechanisms by which EMT is induced prior to the release of CTCs into 
the blood stream may involve the local induction by stromal cells, such as macro-
phages [ 37 ] or bone marrow-derived cells [ 38 ], or hypoxic environmental condi-
tions [ 7 ]. EMT can also occur in these cells while in the circulation, presumably 
through their interactions with platelets in microemboli [ 39 ,  40 ].  

12 EMT and the Immunological Synapse



276

12.9     Immunological Synapse Biomechanics 

 T-cell activation and function require physical contact with APCs. T-cells are highly 
motile cells that are constantly in transit throughout the tissues. T-cell surface recep-
tors (TCR) continually scan the APCs for antigenic peptides bound to the MHC 
(pMHC). As few as 10 pMHCs are capable of actuating a T-cell response [ 41 ]. The 
type and amount of information that is exchanged between T-cells and APCs is 
determined by the duration of the interaction, the identity of the receptors/signaling 
molecules engaged and recruited, the strength of the signals transmitted, and the 
presence or absence of secretion [ 42 ]. These diverse interaction modes might defi ne 
a molecular code, in which the differences in timing, spacing and molecular compo-
sition of the signaling platform determine the outcome of T-cell–APC interactions. 

12.9.1     Architecture of the Immunological Synapse 

 Formation of the immunological synapse results from a close coordination between 
the actin cytoskeleton, the pMHC–TCR interactions, and integrin-based adhesion 
signaling that occurs between LFA-1 (lymphocyte function associated antigen-1) on 
the T-cell and ICAM-1 (intercellular adhesion molecule-1) on the APC. 

 In a fi rst phase, the T-cell must transform rapidly, changing from loosely adher-
ent and highly motile to a tightly and arrested cell in a matter of seconds. The 
plasma membranes of both T-cells and APCs are coated with glycocalyx, a layer 
consisting of large glycoproteins and proteoglycans [ 43 ] that creates a repulsive 
barrier between these two cells. To counteract this steric hindrance, integrin-based 
adhesion must bring the two cell membranes within 40 nm of each other. Induction 
of invasive pseudopodia [ 44 ] can further reduce the distance between opposing 
membranes down to 15 nm and thus can promote TCR binding to the pMHC com-
plex. In inactivated T-cells, LFA-1 is held in a state of low affi nity with its ligand. 
However, during pMHC–TCR ligation, integrins undergo conformational changes 
mediated by cytoplasmic proteins that link integrins with the actin cytoskeleton. 
This process increases the affi nity and avidity of integrins with their ligands [ 45 ]. 

 TCR triggering leads to the rapid nucleation of F-actin, which is coupled to vari-
ous adaptor molecules downstream of TCRs. In turn, this signaling favors the 
coalescence of TCRs into stable “microclusters” that are actively engaged in signal-
ing [ 46 ,  47 ]. As a result, the actin cytoskeleton has a supportive role in promoting a 
continued signaling wherein the motile T-cell becomes sessile and engages the APC 
for a longer duration. Upon TCR signaling, a reduction in RhoA activity and an 
increase in Rac1 activity suppress the polarized state of the motile T-cell [ 48 ]. In 
addition, Ca 2+  is released from endoplasmic reticulum [ 49 ,  50 ], and this induces 
Ca 2+ -modulated actin-binding proteins to globally reduce the cortical tension and 
collapse the uropod-like structure. 

 At this stage, the T-cell is spreading and a mature immunological synapse appears 
within approximately 30 min for naïve T cells and 1–3 min for T-cell blasts after 
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initial T-cell-APC contact [ 51 ]; this synapse might persist for as long as 20 h 
depending on the nature of the T-cell [ 52 ]. Various cell surface receptors, including 
TCR and LFA-1, are ultimately segregated. The TCR microclusters translocate cen-
tripetally and fuse into the zone of central supra-molecular activation cluster 
(cSMAC). Interestingly, PD-1 is associated with these microclusters and it thus very 
effectively transduces inhibitory signals through a SHP2-mediated dephosphoryla-
tion of the proximal TCR-associated transducers [ 53 ]. LFA-1 clusters, on the other 
hand, are organized around the cSMAC to form a highly contractile zone, known as 
the peripheral SMAC (pSMAC). 

 Immunological synapse formation is concomitant with the dramatic induction of 
polarization of several organelles, such as the Golgi apparatus (GA), mitochondria 
and the endoplasmic reticulum. A key event is the movement of the centrosome 
right up to the membrane at the edge of the cSMAC [ 54 – 56 ]. The centrosome rap-
idly polymerizes α/β tubulin dimers in microtubules [ 57 ], and these organize a pro-
fuse radial network of microtubules at the T-cell–APC contact area [ 57 ,  58 ]. This 
dynamic network provides a platform for intracellular transport [ 59 ] and promotes 
TCR microcluster translocation towards the cSMAC in a dynein-dependent manner. 
The reorientation of the GA and associated vesicles depends on the correct localiza-
tion of the centrosome at the immunological synapse, thereby favoring the polarized 
secretion of cytokines and microvesicles. In cSMAC, receptors are targeted for deg-
radation [ 47 ] and the immunological synapse will then be terminated when its sym-
metry is destroyed [ 60 ].  

12.9.2     Actin Dynamics, Force Generation 
and Mechanosensing 

 Dynamic rearrangements of the actin cytoskeleton are necessary for the various 
effective functions of immune cells (Fig.  12.1 ). They provide powerful mechanical 
forces by which immune cells can migrate, polarize, and exert effector functions.  

 During immunological synapse formation, cells must overcome the repulsion 
that is present as a result of the negative charges on their surface as well as the pro-
tective layer of glycocalyx that hinders the interaction of relatively small surface 
molecules, such as TCR or pMHC. This ability to overcome repulsion is achieved 
by invasive pseudopodia. Using high-resolution microscopy on T-helper cells, Ueda 
and co-workers visualized pseudopodia that penetrated deeply into the APC and 
almost reaching the nuclear envelope; this penetration occurred without damaging 
either of the cell membranes [ 52 ]. This event may involve considerable force and 
might help to increase the surface area between the two cells. This allows more 
TCR-pMHC conjugates to form and a full response to be initiated. 

 Upon engagement of the TCR, the T-cell starts to reorganize its actin cytoskel-
eton. The radial actin polymerization forms a lamellipodia over the APC increasing 
the contact area. In many cases, actin regulation is overlapped between different 
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processes in the cell. Here, both the formation of lamellipodia during rapid 
 migration and actin reorganization at the T cell-APC interface are similar processes 
in terms of cytoskeletal rearrangements, as common actin regulators are recruited 
[ 61 ,  62 ]. After the area reaches its maximal size, the F-actin layer beneath the con-
tact zone continues to undergo polymerization at the edge, which results in centrip-
etal actin fl ow driving TCR microcluster migration. Genetic manipulation of the 
actin polymerization effectors yields signifi cantly affects T cell activation, and 
F-actin severing proteins have also been reported to be crucial for T-cell function 
[ 63 ]. Thus, actin dynamics at the T-cell synapse are tightly regulated to achieve 
optimal T-cell function. 

 An increasing number of models propose that biomechanical processes are the 
driving forces behind T cell activation. Using a biomembrane force probe, Husson 
et al. [ 64 ] demonstrated that, upon engagement of TCR alone, T-cells generate a 
reproducible sequence of pushing and pulling forces, with the pushing phase  supported 

  Fig. 12.1    Initiation and maturation of the immunological synapse. Localization of the different 
F-actin structures with a predominance of actomyosin in the peripheral supra-molecular activation 
cluster (pSMAC) and the actin-rich distal supramolecular activation cluster dSMAC [ 76 ]. Both of 
the pMHC–TCR (peptide-bound major histocompatibility complex–T cell receptor) and LFA1–
ICAM1 (lymphocyte function associated antigen-1–intercellular adhesion molecule-1) complexes 
are carried centripetally by the actin retrograde fl ow. The formation of the immunological synapse 
induces polarization of several organelles, such as the Golgi apparatus, mitochondria, the endo-
plasmic reticulum, and the centrosome       
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by actin polymerization. The pulling phase, by comparison, might constitute an 
additional level for the cell to evaluate the “quality” of the contact formed. It is also 
now accepted [ 65 ,  66 ] that force loads modulate the molecular interactions, in par-
ticular, through exponentially shifting dissociation constants. Indeed, several stud-
ies by different groups have shown that applying mechanical forces to the TCR can 
activate T-cells and that the TCR can act as a mechanosensor: Lateral forces applied 
to the TCR were able to trigger an elevation in cytoplasmic Ca 2+  [ 67 ] whereas 
axial forces applied by micro-manipulation were able to rescue T-cell stimulating 
defects associated with elongated pMHCs [ 68 ]. Moreover, in mouse [ 69 ] and 
human [ 70 ] studies, T-cells displayed correlations between substrate stiffness and 
T-cell response.  

12.9.3     Mesenchymal-Like Carcinoma Can Alter the Cortical 
Actin Dynamics of CTL During the Ontogeny 
of the Immunological Synapse 

 As described above, following initial recognition by the TCR, adhesive contact in 
an immunological synapse is initiated, in part, by the heterophilic interaction 
between LFA-1 and ICAM-1, which is, in turn, strengthened by the subsequent 
coupling of this complex with a stable actin network. LFA-1 can interact indirectly 
with cortical actin microfi laments through Talin, and I-CAM through Ezrin. This 
adhesive structure, which assembles at the periphery of the immunological synapse, 
can constitute a platform for ensuring the subsequent maturation events of the 
immunological synapse. The external ring of adhesion is reminiscent of the 
cadherin- mediated adhesion structure that assembles in cell doublets in suspension 
[ 71 ]. These E-cadherin microclusters that are assembling at the onset of cell-cell 
contact rapidly migrate to the periphery of the contact area and develop into tight 
cadherin clusters equally spaced on a ring-like structure. This process is entirely 
dependent on acto-myosin contractility. 

 To form a stable ring, the two cells should be equally effective in their ability to 
form cadherin microclusters that are appropriately linked and stabilized with actin 
microfi laments. Indeed, the ring structure cannot form when one of these cell part-
ners expresses a defective, truncated cadherin that is unable to engage into adhesion 
strengthening; this has been clearly shown by measuring the force of separation of 
cells [ 72 ]. Thus, we hypothesize that if the target carcinoma has a more mesenchymal- 
like morphology, the cells could be refractory to establishing a pSMAC ring when 
interacting with a CTL, and this, consequently, could affect the formation of the 
cSMAC and its lysis of the target. Clearly, this hypothesis needs to take into account 
the many other features of the immunological synapse and, in particular, the polar-
ization of organelles. It is noteworthy that epithelial cells transform their putative 
adhesive rings as a circumferential belt promoting the fi nal stage of polarization of 
their basal polarity plasma membrane domains and organelles. 
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 Further studies will allow us to address the quality and dynamics of critical actin 
cytoskeleton-associated proteins [ 73 ], ascertain the associated molecular machinery 
that could become partially defective in carcinoma cells undergoing EMT, and how 
this defect can prevent the maturation of the immunological synapse.   

12.10     Conclusion 

 This brief review emphasizes the critical role of EMT is the progression of carci-
noma and the potential to improve the functional activity through EMT reversal 
drug-mediated strategies [ 74 ]. On-going experiments in breast, lung and ovarian 
carcinoma cell lines show the potential of kinase inhibitors to revert partially the 
EMT phenotype, which is hoped to reduce the invasion and clonogenic properties 
of these cells [ 28 ,  31 ,  33 ,  75 ].     
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    Abstract     Although cancer immunotherapy has recently demonstrated durable 
responses even in patients with advanced cancer, not all patients or cancer types 
respond to the therapy. Pretreatment immune status varies among cancer patients 
and is correlated with responses to immunotherapy. Immune conditions may be 
defi ned by the balance of positive and negative pathways in the anti-tumor immune 
responses, which are regulated by both cancer cell characteristics and patients’ 
immune-reactivity along with various environmental factors. Gene alterations and 
signal activation defi ne the immunological characteristics of cancer cells; tumor 
specifi c peptides derived from passenger mutations induce anti-tumor T-cells and 
oncogene activation (e.g. driver mutations, overexpression: MAPK, STAT3, NF-κB, 
β-catenin) rather promote immunosuppression. Oncogene/signal activation in can-
cer cells triggers multiple immunosuppressive cascades involving various immuno-
suppressive molecules and cells (e.g. TGF-β, IL10, IL6, VEGF, Treg, MDSC). 
Signal inhibitors are able to augment anti-tumor T-cell responses through multiple 
mechanisms including inhibition of cancer-induced immunosuppression, immuno-
genic cancer cell death, and enhancement of immune cell functions. Since the 
oncogene- signal activation status is different among patients, personalized immu-
notherapy combined with appropriate signal inhibitors may be considered for the 
development of effective immunotherapy.  
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  Abbreviations 

   ACT    Adoptive cell therapy   
  CAF    Cancer associated fi broblast   
  CAR    Chimeric antigen receptor   
  CTL    Cytotoxic T lymphocyte   
  DC    Dendritic cell   
  EMT    Epithelial to mesenchymal transition   
  MDSC    Myeloid derived suppressor cells   
  MSI    Microsatellite instability   
  pDC    Plasmacytoid DC   
  TCR    T-cell receptor   
  Tfh    Follicular helper T-cells   
  TIL    Tumor infi ltrating T-cells   
  Treg    Regulatory T-cells   

13.1          Introduction 

    Human cancer cells acquire immunoresistance through multiple mechanisms dur-
ing long developmental processes and evade from immune-defense systems 
(Immune-editing) [ 1 ]. Thus, immunological elimination of cancer is relatively 
diffi cult. However, recent cancer immunotherapies including immune checkpoint 
blockade (PD-1/PD-L1, CTLA-4 blockade) and adoptive cell therapy (ACT) 
using anti-tumor T-cells (tumor infi ltrating T-cells, T-cell receptor (TCR) or chi-
meric antigen receptor (CAR) gene transduced T-cells) have shown clear anti-
tumor effects in clinical trials for patients with various advanced cancers [ 2 – 6 ] 
However, these are still patients and cancer types not responding to these immu-
notherapies. Therefore, their improvement is needed possibly by combination of 
immune-interventions targeting multiple key regulating points (e.g. reversal of 
cancer induced immune- suppression) in the anti-tumor immune responses through 
the understanding of human immunopathology particularly in the tumor 
microenvironments.  
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13.2     Differences of the T-Cell Immune Status 
in the Tumor Microenvironments 

 Anti-tumor T-cells appear to be essential for the clinical effects of the immune- 
checkpoint blockade therapies and ACTs. In the anti-PD-1 Ab therapy, patients with 
cancer cells expressing PD-L1, which appears to be induced by IFN-γ produced by 
tumor infi ltrating CD8 +  T-cells, are highly responsive to the therapy, indicating that 
preexisting anti-tumor T-cell responses is essential for the anti-PD-1 Ab therapy to 
work [ 7 ]. In addition, T-cell infi ltrations in tumors were reported to correlate with 
prognosis after various cancer therapies, including surgery, radiation, chemother-
apy, and immunotherapy in patients with various cancers (e.g. colon cancer, lung 
cancer, ovarian cancer, head and neck cancer, melanoma) [ 8 ]. High infi ltrations of 
CD3 +  T-cells, CD8 +  T-cells, FOXP3 +  T-cells, and CD20 +  B-cells in tumors are cor-
related with favorable prognosis after curative surgery in Japanese patients with 
colon cancer. An international collaboration was organized by the Society for 
Immunotherapy of Cancer (SITC) (initiated by Jerome Galon, INSERM) to confi rm 
the prognostic role of the tumor infi ltrating CD3 +  T-cells and CD8 +  T-cells 
(Immunoscore) in large numbers of colon cancer patients by using a customized 
analytic software [ 9 ]. The inclusion of immunological status into the current prog-
nostic TNM staging criteria may improve clinical management of colon cancer 
patients. Peripheral blood immune status also varies in cancer patients and corre-
lates with responses to various cancer therapies including immunotherapy. High 
plasma IL6 or IL8, but not other cytokines such as TNF-α and IL1β, were found to 
correlate with poor prognosis of patients with various cancers including colon can-
cer, prostate cancer, and liver cancer after various cancer vaccines (e.g. peptide vac-
cine, dendritic cell vaccine) (Fig.  13.1 ).   

13.3     Positive and Negative Immune Pathways 
for Anti- Tumor T-Cell Responses 

 The heterogeneity of the immune-status in cancer patients may be defi ned by a bal-
ance of positive and negative pathways in the anti-tumor T-cell responses. Various 
environmental factors including intestinal microbiota, which have recently been 
reported to infl uence on the systemic anti-tumor immune responses, diet which 
causes obesity and promotes chronic infl ammation, and smoking which introduces 
various chemicals affecting the immune system, may also infl uence the immune 
status. We have previously reported that tumor infi ltrating T-cells (TILs) in mela-
noma recognize not only shared tumor antigens, but also tumor specifi c peptides 
(one amino acid difference from corresponding self-peptides) derived from genomic 
DNA missense mutations [ 10 – 14 ]. It has recently been demonstrated that mela-
noma TILs often recognize patients’ unique peptides derived from passenger muta-
tions by evaluating TIL responses to the mutations identifi ed by whole exomic DNA 
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sequencing [ 15 ]. In particular, UV-related melanoma and smoking-related lung 
 cancer were found to have more DNA mutations than other cancers, and they are 
relatively responsive cancers to anti-PD-1 Ab therapy, suggesting that spontaneous 
T-cell responses against mutated antigens are involved in the anti-tumor effects of 
the anti-PD-1 Ab therapy. High CD8 +  T-cell infi ltration was observed in MSI (mic-
rosatellite instability)  +  colon cancer, and the patients have relatively good prognosis 
after surgery even though with pathologically malignant appearance. Immune 
responses to frameshift mutations caused by dysfunction of DNA mismatch repair 
enzymes such as MLH1 were detected [ 16 ], suggesting that MSI +  colon cancer may 
be a good candidate for the anti-PD-1 Ab therapy. Therefore, quantity and quality 
of DNA mutations in cancer cells may be one of the factors defi ning the T-cell 
immune status of cancer patients. Other DNA alterations also affect T-cell infi ltra-
tion in tumors. Deletion of DNA-encoding the chemokine CXCL13, which may 
recruit CXCR5 +  follicular helper T-cells (Tfh) and induce subsequent IL-21- 
dependent support of memory CD8 +  T-cells and B-cells, and deletion of DNA 
encoding the cytokine IL15 which may expand TILs, were reported to cause less 
T- cell infi ltration in colon cancers [ 17 ,  18 ]. In addition to these cancer cell’s gene 
alterations, difference in patients’ immune-reactivity partly defi ned by polymor-
phism of immunoregulating molecules including HLA, may infl uence the anti- 
tumor T-cell induction pathway (Fig.  13.2 ).   

  Fig. 13.1    Mechanisms defi ning the immune status of cancer patients. The immune status of can-
cer patients may be defi ned by a balance of positive and negative pathways in the anti-tumor T-cell 
response along with environmental factors. Passenger mutations may induce anti-tumor T-cells, 
while driver mutations and oncogene activation rather trigger immunosuppressive cascades       
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13.4     Immunosuppressive Cascades Triggered by Cancer 
Cell’s Oncogenes and Signal Activation 

 In a negative immunosuppressive pathway, overproduction of immunosuppressive 
molecules such as TGF-β in the tumor microenvironments triggers a series of 
immunosuppressive cascades and consequent inhibition of anti-tumor T-cell induc-
tion and accumulation into tumors. For example, TGF-β not only impairs T-cell 
stimulatory function of dendritic cells (DCs) through decrease of CD80/CD86 and 
MHC expressions, but also recruits immunosuppressive regulatory T-cells (Treg), 
and myeloid derived suppressor cells (MDSCs) in tumors and sentinel lymph 
nodes [ 19 ]. TGF-β also induces epithelial to mesenchymal transition (EMT) which 
 promotes invasion and metastasis of cancer cells via a decrease of the adhesion 
molecule E-cadherin and an increase of protease MMPs. Interestingly, one of the 
EMT-inducing transcription factors, snail, induces multiple immunosuppressive 
cytokines such as IL10, TGF-β and TSP − 1, and chemokines such as CCL2. IL10, 
TGF-β and TSP − 1 have abilities to impair DC functions and subsequent induction 
of Tregs, and CCL2 recruits CCR2 +  immunosuppressive MDSCs. These EMT- 
related immunosuppressions may further promote metastasis of cancer cells [ 20 ,  21 ]. 

  Fig. 13.2    Gene alterations in cancer cells trigger multiple immunosuppressive cascades. 
Activation of oncogenes and subsequent signaling trigger multiple immunosuppressive cascades 
involving various immunosuppressive molecules and cells in tumor-associated microenviron-
ments, including tumors, sentinel lymph nodes, and bone marrow. Personalized use of signal inhib-
itors may reverse the cancer-induced immunosuppression       
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M2-like macrophages which produce abundant CCL22 were also generated in 
tumors and sentinel lymph nodes, and recruit CCR4 +  Tregs into tumors and sentinel 
lymph nodes, resulting in immunosuppressive conditions in the tumor associated 
microenvironments [ 22 ]. TGF-β is produced by cancer cells via genetic alterations 
and various infi ltrated immune cells. In contrast to the involvement of passenger 
DNA mutations the in anti-tumor T-cell induction pathway, driver mutations of 
oncogenes appear to rather promote the negative immunosuppressive pathway in 
the anti-tumor immune responses. Because oncogene and subsequent signaling acti-
vation status are different among cancer types and patients even with the same his-
tology, immunosuppression mechanisms triggered by each oncogene should be 
investigated, and in a therapeutic view, personalized use of appropriate signal inhib-
itors should be considered [ 23 ] (Fig.  13.3 ).   

13.5     Immunosuppression Induced by the MAPK Signaling 
Pathway and Its Modulation 

 One of the reasons we began the research on oncogene-associated immunosuppres-
sion is based on the fi ndings of the possible involvement of constitutively activated 
MAPK signaling in human melanoma-induced immunosuppression. The common 
BRAF mutation dependent MAPK signal activation was found to not only augment 

  Fig. 13.3    Combination of signal inhibitors and other immune-interventions. Signal inhibitors may 
augment the induction of anti-tumor T-cells by acting on both the cancer cells and the various 
immune cells, and enhance anti-tumor effects of immunotherapy including immune-checkpoint 
blockades       
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cell proliferation and invasion of melanoma cells, but also induce production of 
multiple cytokines, IL-6, IL-10, and VEGF, which have an ability to suppress T-cell 
stimulatory function of DCs through inhibition of IL-12 and TNF-α production and 
augmentation of IL-10 production [ 24 ,  25 ]. Treatment of human melanoma cells by 
either lentiviral BRAF (V600E) specifi c shRNAs or MEK inhibitors decreased the 
immunosuppressive activity of human melanoma cells. MEK inhibitors were also 
reported to increase the susceptibility of melanoma cells to cytotoxic T cell (CTL) 
lysis partly due to increased expression of melanocyte differentiation antigens such 
as MART-1/melan-A and gp100 [ 26 ]. 

 Mutant BRAF selective inhibitors have recently been developed, and their 
administration resulted in strong clinical responses. Dramatic tumor reduction by 
the BRAF inhibitors indicated the cytolysis of melanoma cells, which may release 
multiple endogenous tumor antigens including mutated antigens and trigger anti- 
tumor T-cell responses via antigen presentation by DC (Immunogenic cancer cell 
death). In addition, decrease of tumor cell numbers, decreased production of mul-
tiple immunosuppressive cytokines, increased susceptibility of cancer cells to CTLs 
partly via increased tumor antigen expression, and less inhibition of T-cell activa-
tion (T-cells also use wild type BRAF signaling), altogether may promote induction 
of anti-tumor T-cells. Interestingly, the administration of mutant BRAF selective 
inhibitors did not suppress the general immune responses [ 27 ,  28 ], and actually 
increased the infi ltration of granzyme positive CD8 +  T cells in tumors, in regressing 
tumors with necrosis but not in progressing tumors [ 29 ]. This T-cell infi ltration 
appears to be not a simple scavenger phenomenon, rather an active induction and 
recruitment of tumor antigen-specifi c T-cells. These observations suggest that the 
combined use of BRAF inhibitors may enhance the current immunotherapy for 
melanoma patients, including cancer vaccines, immune-checkpoint blockers and 
T-cell based ACT. The clinical trials of these combination immunotherapies have 
already begun. “Avoiding immune destruction” is now recognized as one of the 
hallmarks of cancer [ 30 ], and targeting a common signaling pathway such as the 
BRAF (N-RAS)-MAPK axis involved in the multiple hallmarks of cancer, includ-
ing immunosuppression, proliferation and invasion, may be an attractive strategy 
for cancer treatment. Inhibitors for EGF-R, which is upstream of MAPK signaling, 
were also found to inhibit production of immunosuppressive cytokines such as IL-6 
and VEGF from human lung cancer cells with EGF-R mutations. The administra-
tion of the EGF-R inhibitors showed synergistic anti-tumor effects when combined 
with cancer vaccines or immune-checkpoint blockades. Therefore, MAPK signal 
inhibitors may be useful for immunotherapy for patients with various cancers.  

13.6     Immunosuppression Induced by the JAK/STAT3 
Signaling Pathway and Its Modulation 

 During analysis of the immunological role of mutant BRAF in the cancer-induced 
immunosuppression, STAT3 activation in some melanoma cell lines was also found 
to induce similar immunosuppression. STAT3 depletion by lentiviral shRNAs 
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resulted in the inhibition of production of multiple immunosuppressive cytokines 
including IL-6, IL-10, and VEGF, and the reduction of the immunosuppressive 
activity of STAT3-activated human melanoma cells [ 25 ]. Interestingly, these immu-
nosuppressive cytokines activated STAT3 in various immune cells, including DCs, 
MDSCs, and Tregs, and rendered them immunosuppressive phenotypes. STAT3 
activation in DCs generated high IL-10 and low IL-12, thus, producing tolerogenic 
DCs in vitro, which have less T-cell stimulatory activity and Treg-inducing ability. 
In a mouse model, STAT3 depleted DCs had enhanced T-cell stimulatory activity 
and relatively resistant to tumor-derived immunosuppressive factors including IL6, 
IL10 and VEGF. Injection of the STAT3-depleted DCs into tumors which are under 
an immunosuppressed condition, induced better anti-tumor effects accompanied by 
high IFN-γ producing tumor antigen specifi c Th1 responses compared to control 
DCs [ 31 ]. Similarly, generation of immunosuppressive macrophages and MDSCs 
by tumor-derived immunosuppressive factors were partially inhibited by STAT3 
depletion of these myeloid cells. STAT3 was also involved in the expansion of 
MDSCs [ 32 ]. Increased STAT3 activation was observed in CD14 + HLA-DR negative/low  
MDSCs in peripheral blood of cancer patients [ 33 ]. STAT3 was also reported to be 
involved in the immunosuppressive Treg and anti-tumor CD8 + T cells in which 
STAT3 depletion enhanced anti-tumor activity when adoptively transferred [ 34 ,  35 ]. 
The importance of STAT3 activation by tumor-derived factors such as IL6 in tumor- 
promoting cancer-associated fi broblasts (CAFs) was also indicated. These observa-
tions indicate that the constitutive activation of STAT3 in cancer cells triggers the 
production of multiple immunosuppressive cytokines and the induction of various 
immunosuppressive and tumor promoting cells, including tolerogenic DCs, 
MDSCs, Tregs, and CAFs, partly through the activation of STAT3 in these cells 
[ 36 ]. Therefore, STAT3 inhibitors may be useful for the reversal of the cancer-
induced immunosuppression through acting on both cancer cells and various 
immune cells and stromal cells. 

 Clinical trials of STAT3 inhibitors have been being conducted for patients with 
various cancers for which direct inhibition of cancer growth is expected. In addition 
to the direct STAT3 inhibitors, drugs inhibiting STAT3 signaling at upstream or 
downstream may also be useful for reversal of immunosuppression and their com-
bined use with immunotherapy. Inhibitors of JAK2, which is a direct upstream of 
STAT3 signaling, have been shown to augment anti-tumor immunity and enhance 
anti-tumor effects of immunotherapies such as IL-12 administration [ 37 ]. 
Administration of a multikinase inhibitor Sunitinib, which also suppresses down-
stream STAT3 signaling, decreased MDSCs and Tregs along with increase of IFN-
γ- producing T-cells in peripheral blood of patients with kidney cancer [ 38 ]. Another 
multikinase inhibitor Dasatinib increasedthe response rate in about half of the 
patients with Ph1 + CML and Ph1 +  ALL accompanied by LGL lymphocytosis and 
autoimmune-like syndrome such as pleuritis. Dasatinib was reported to inhibit 
STAT3 signaling in peripheral blood leukocytes in these leukemia patients [ 39 ]. 
One of the natural compounds contained in the Japanese traditional medicines 
was found to have an activity by inhibiting both STAT3 and MAPK signaling and 
to inhibit production of immunosuppressive cytokines from human cancer cells. 
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The administration of this compound augmented tumor specifi c T-cells accompanied 
by a decrease of Tregs in tumor-bearing mice. Therefore, there may be various ways 
to inhibit the STAT3-associated immunosuppression.  

13.7     Immunosuppression Induced by the NF-κB 
Signaling Pathway and Its Modulation 

 High plasma IL-6 and IL-8, which are correlated with poor prognosis after various 
cancer immunotherapies, were observed in patients with ovarian cancer. The cor-
relation between NF-kB p65 and IL6 staining in the tumor microenvironment was 
observed by immunohistochemial analysis. An NF-κB inhibitor such as DHMEQ 
inhibited production of these immunosuppressive cytokines and chemokines (e.g. 
IL6, IL8, CCL2) by human ovarian cancer cells [ 40 ]. DHMEQ also inhibited the 
generation of immunosuppressive macrophages from human peripheral blood 
monocytes in the presence of human ovarian cancer cell-derived factors. In nude 
mice implanted with human ovarian cancer cell lines, impairment of T-cell stimula-
tory activity of murine DCs and accumulation of murine MDSCs in the spleen and 
tumors were observed partly due to increase of mouse compatible human IL6 pro-
duced by human ovarian cancer cells. Administration of DHMEQ reversed these 
immunosuppressive effects accompanied by decrease of hIL6. When mouse naïve 
T-cells were transferred into these mice, xenogeneic anti-tumor T-cells were induced 
and regressed human ovarian cancer cells. Administration of DHMEQ to these mice 
further enhanced T-cell dependent regression of human ovarian cancer cells. Thus, 
appropriate doses of NF-κB inhibitors may augment T-cell mediated anti-tumor 
activity via reversal of the cancer induced immunosuppression, although NF-κB is 
also involved in the T-cell induction pathway. Recently, various compounds that 
have an activity to inhibit NF-kB signaling were found in Japanese traditional medi-
cines and drugs which already are used for other diseases (drug repositioning), and 
their administration enhanced the induction of anti-tumor T-cells, and augmented 
anti-tumor effects of the immune-checkpoint blockade in a syngeneic NF-κB- 
dependent IL6 producing murine tumor model. 

 Type 1 IFNs were recently found to be important for the induction of anti-tumor 
T-cells. Plasmacytoid DCs (pDC) are one of the signifi cant producers of IFN-α, 
however, pDC functions such as type 1 IFN production was reported to be impaired 
in the tumor microenvironment. The ILT7 ligand (ILT7L) expressed on human 
 cancer cells was found to inhibits IFN-α production by ILT7 expressing pDCs and 
is possibly involved in the immunosuppression. NF-κB inhibitors inhibit the intrin-
sic expression of ILT7L in some of human renal cell cancer (RCC) cells, suggesting 
that NF-kB inhibitors may be useful for the cancer-induced immunosuppression in 
various ways [ 41 ]. Some cancer cells intrinsically express PD-L1 through activation 
of the AKT signaling in human glioma and the MAPK signaling in some cancer 
cells [ 42 ], although the main mechanism of PD-L1 expression appears to be the 
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adaptive resistance induced by cytokines produced by tumor infi ltrating T-cells. 
Therefore, signal inhibitors may also be useful for the reversal of the immunosup-
pression by intrinsically expressed immunosuppressive membrane molecules (e.g., 
ILT7L and PD-L1).  

13.8     Immunosuppression Induced by the Wnt/β-Catenin 
Signaling Pathway and Its Modulation 

 Activation of the Wnt/β-catenin signaling detected by nuclear staining of β-catenin 
was observed in various human cancers including about 30 % of melanoma which 
produce IL10. IL10 gene expression was found to be directly regulated by β-catenin 
signaling. Melanoma culture supernatants induced high IL-10 and low IL-12- 
producing DCs with low T-cell stimulatory activity in vitro in an IL-10-dependent 
manner, and these DCs had an ability to induce immunosuppressive FOXP3 +  Tregs. 
Depletion of β-catenin by specifi c shRNAs reduced the immunosuppressive activity 
of human melanoma cells [ 43 ]. The melanoma supernatants also had β-catenin- 
dependent immunosuppressive activity on the effector function of melanoma spe-
cifi c CTLs. T-cell stimulatory activity of murine DCs was impaired possibly via 
increased mouse compatible hIL10, when human melanoma cell lines were 
implanted in immunodefi cient SCID mice. The administration of a β-catenin inhibi-
tor restored murine DC’s T-cell stimulatory activity along with a decrease of hIL- 
10. Interestingly, the β-catenin inhibitor had an ability to directly enhance T-cell 
stimulatory activity of human DCs partly due to decreased IL-10 production by the 
DC themselves [ 44 ,  45 ]. β-catenin was also reported to be involved in the generation 
of regulatory DCs and survival of Tregs [ 46 ]. Therefore, β-catenin inhibitors may 
also be useful for the reversal of the immunosuppression induced by cancer cells 
with activated Wnt/β-catenin signaling.  

13.9     Personalized Combination of Immune-Modulators 
Targeting Multiple Key Points in the Anti-Tumor T-Cell 
Responses for Effective Cancer Immunotherapy 

 Two T-cell based immune-interventions, the immune-checkpoint blockade and 
T-cell based ACT, were shown to be effective for some of the advanced cancer 
patients, but they still need further improvement possibly by combination therapies. 
For development of effective cancer immunotherapy, based on the detailed immu-
nological analyses in various clinical trials of tumor antigen specifi c immunothera-
pies [ 47 ,  48 ], we have previously proposed the importance of combination of the 
following immune-interventions; (1) use of tumor antigens involved in cancer cell 
proliferation and survival, and expressed in cancer initiating cells [ 49 ], (2) in situ 
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tumor destruction methods to induce immune responses to endogenous tumor anti-
gens including unique mutated peptides (immunogenic cancer cell death) (e.g. che-
motherapy, molecular targeted drugs, anti-tumor Ab, radiation, cryoablation, 
radiofrequency ablation, oncolytic viruses) [ 50 ,  51 ], (3) methods to augment anti-
gen presenting DC functions (e.g. adjuvants (TLR/STING stimulators), cytokines 
(IL12, TNF-α), agonistic antibodies (anti-CD40 Ab)) [ 52 ], (4) in vivo anti-tumor 
T-cell activation and expansion (e.g. cytokines (IL2, IL7, IL15, IL21), agonistic Abs 
for co-stimulatory molecules on T-cells (anti-CD134, CD137 Ab), T-cell based 
ACT), and (5) methods to reverse the immunosuppression (neutralizing and deplet-
ing Abs (e.g. TGF-β, Τreg), immune-checkpoint blockers (e.g. anti-CTLA-4, anti-
PD- 1/PD-L1, anti-LAG3, anti-TIM3 Abs), chemotherapy, and molecular targeted 
drugs (e.g. signal inhibitors)) [ 53 ]. 

 The patients with less T-cell tumor infi ltrations and high levels of some cytokines 
(IL6, IL8) were shown to be of poor prognosis after various immunotherapies. 
Thus, one of the intriguing strategies is the use of above mentioned signal inhibitors 
for the immunosuppression inducing signaling. In addition to direct inhibition of 
cancer cell growth and invasion, signal inhibitors have activities to augment endog-
enous tumor antigen specifi c T-cell induction through causing immunogenic cancer 
cell death, enhancing DC functions, and decreasing immunosuppressive factors. In 
murine tumor models, combination of signal inhibitors and various immunothera-
pies including cancer vaccine and immune-checkpoint blockade has already been 
shown to be more effective. Clinical trials of combination immunotherapy has cur-
rently begun. One of the problems in the combination immunotherapy is the increase 
of adverse effects such as liver toxicity as observed in the combination of anti-CTLA-
 4 Ab and chemotherapy/molecular target therapy. 

 Since the oncogene-signaling activation status in cancer cells are different among 
patients, the personalized use of appropriate signal inhibitors is essential. In addi-
tion, treatment strategies should be designed based on the pretreatment immune sta-
tus of patients. For instance, immune-checkpoint blockades such as the PD-1/PD-L1 
blockade may be suffi cient for the patients with preexisting anti-tumor T-cell immu-
nity. If immunosuppression mechanisms other than PD-1/PD-L1 interaction are 
dominant, methods to reverse such mechanism should be combined. If  anti- tumor 
T-cell induction is not enough, combination of strong T-cell inducing methods 
including immunogenic cancer cell death inducers, strong cancer vaccines, and DC 
stimulating agents, should be considered. If the immunogenicity of cancer cells is 
too low (no presence of good immunogenic antigens), artifi cial anti-tumor T-cells 
such as tumor antigen recognizing TCR/CAR gene-transduced T cells could be used.  

13.10     Concluding Remarks 

 Cancer cell characteristics defi ned by gene alterations (immunogenicity and immu-
nosuppression ability) are the major factors for both positive and negative regula-
tion of the anti-tumor immune responses. Inhibitors targeting activated 
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oncogene-signaling not only directly inhibit cancer cell growth and invasion, but 
also improve the tumor immunoenvironment through multiple mechanisms acting 
on both the cancer cells and the immune cells, resulting in enhanced anti-tumor 
T-cell responses. Based on the patients’ immune status, personalized immune- 
interventions on multiple key regulating points, including reversal of the cancer- 
induced immune suppression, will lead to a more effective cancer control.     
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    Chapter 14   
 Quality of CTL Therapies: 
A Changing Landscape 

             Krishnamurthy     Thyagarajan    ,     Shilpak     Chatterjee    ,     Pravin     Kesarwani    , 
    Michael     I.     Nishimura    , and     Shikhar     Mehrotra    

    Abstract     The identifi cation and cloning of tumor-associated antigens (TAA) has 
led to clinical trials using vaccines designed to boost the host anti-tumor immune 
response. Impressive clinical responses have also been documented in melanoma 
patients treated with these tumor-reactive T cells. These studies and others indicate 
the potential of T cells for their use in the adoptive therapy of cancer. However, 
technical issues related to the generation of a large number of tumor-specifi c T cells 
have signifi cantly restricted the use of this promising approach. Moreover, only 
limited success has been achieved in terms of tumor regression or patient survival 
in numerous other immunotherapy trials. Evidences suggest that various tumor-
escape strategies such as defects in antigen presentation, tumor-induced immuno-
suppression, induction of T-cell death, T-cell receptor dysfunction, the presence of 
tolerogenic dendritic cells and regulatory T cells undermine the effectiveness of 
adoptively transferred T cells. Thus, a better understanding for eliciting effective 
anti-tumor immunity that leads to cancer regression in all patients is needed .  
Herein, we discuss the recent developments aimed at overcoming the constraints 
that exist and are changing the landscape for effectively employing adoptive T cell 
therapy to treat cancer.  
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  Abbreviations 

   2-DG    2-Deoxy- D -glucose   
  ACT    Adoptive cell therapy   
  AG    Antigen   
  AICD    Activation induced cell death   
  AMPK    Adenosine monophosphate-activated protein kinase   
  APC    Antigen presenting cell   
  BiTE    Bi-specifi c antibody T cell engager   
  BTLA-4    B and T lymphocyte attenuator 4   
  cAMP    Cyclic AMP   
  CAR    Chimeric antigen receptors   
  CMV    Cytomegalovirus   
  COX-2    Cyclooxygenase-2   
  c-SH    Cell surface thiols   
  CTL    Cytotoxic T lymphocyte   
  CTLA-4    Cytotoxic T-lymphocyte-associated protein 4   
  DC    Dendritic cells   
  GAPDH    Glyceraldehyde-3-phosphate dehydrogenase   
  GITR    Glucocorticoid-induced TNFR family related gene   
  GLUT-1    Glucose transporter 1   
  GM-CSF    Granulocyte-macrophage colony-stimulating factor   
  GzmB    Granzyme B   
  HAART    Highly active antiretroviral therapy   
  HIF-1α    Hypoxia-inducible factor 1-alpha   
  HIV    Human immunodefi ciency virus   
  HLA    Human lymphocyte antigen   
  ICOS    Inducible T-cell costimulator   
  IFNγ    Interferon gamma   
  iGSH    Intracellular glutathione   
  IL    Interleukin   
  iNOS    Inducible nitric oxide synthase   
  KO    Knockout   
  LAG-3    Lymphocyte-activation gene 3   
  MDSC    Myeloid-derived suppressor cell   
  MHC    Major histocompatibility complex   
  miRNA    MicroRNA   
  mTOR    Mammalian target of rapamycin   
  NKT    Natural killer T cells   
  NO    Nitric oxide   
  PBL    Peripheral blood lymphocytes   
  PD-1    Programmed death receptor-1   
  PGE2    Prostaglandin E2   
  RIPK    Receptor interacting kinases   
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  RNS    Reactive nitrogen species   
  ROS    Reactive oxygen species   
  TAA    Tumor associated antigens   
  TAM    Tumor-associated macrophages   
  TCA    Tricarboxylic acid   
  T CM     T central memory   
  TCR    T cell receptor   
  Teff    T effector cell   
  T EM     T effector memory   
  TGFβ    Transforming growth factor beta   
  TIL    Tumor infi ltrating lymphocytes   
  TIM-3    T cell immunoglobulin mucin-3   
  TNFα    Tumor necrosis factor alpha   
  Treg    T regulatory cell   
  T SCM      T  memory stem cells   

14.1          Introduction 

    Treatment of cancer has been a challenge despite the advances in therapeutic 
 regimens. Although evidences exist that immunosurveillance processes keep the 
tumor in check, however, the immune cells or factors can still facilitate tumor pro-
gression. Chemotherapy, radiation therapy and immunotherapy have all shown 
promise in the treatment of cancer and in extending the life span of patients [ 1 ]. 
Since the identifi cation of tumor-associated antigens (TAA), signifi cant advances 
have been made in adopting immunotherapeutic approaches that target the tumor—
either by using antigen-presenting dendritic cells (DC) to stimulate the tumor-antigen 
reactive cytolytic CD8 +  T cells (CTLs) [ 2 ], or directly expand tumor-reactive 
CTLs ex vivo before infusing back to the patients [ 3 ]. Adoptive immunotherapy, 
which involves the isolation of antigen-specifi c T cells, followed by their ex vivo 
expansion, and subsequent infusion into autologous tumor bearing hosts has devel-
oped as a promising approach for inducing objective responses and sometimes 
even cures in patients with advanced malignancies [ 4 ]. Several novel strategies to 
improve adoptive immunotherapy are emerging; such as blocking inhibitory mole-
cules ( CTLA-4, PD1, LAG-3, Tim-3, BTLA-4 ) [ 5 ,  6 ], engaging secondary costimula-
tory molecules ( 4-1BB, OX-40, ICOS, VISTA ) [ 5 ,  7 ,  8 ], expanding T cells in different 
cytokines ( IL-2, IL-15, IL-12, IL-21 ) [ 9 – 11 ], or using recently identifi ed T cell sub-
sets ( Th9, Th17 ) [ 12 ,  13 ]. Although novel means for enhancing the quality of tumor-
specifi c T cells in vitro have been discovered, how immunosuppressive elements 
produced by the tumor microenvironment impact the engraftment potential, func-
tion and anti- tumor activity of T cells in vivo are unknown. Though the therapeutic 
effi cacy of CTLs is dependent on multiple factors, we limit our discussion to 
 inter-twined aspects of survival, suppression, aging, and metabolism. We believe 
that these key aspects are interconnected tightly and control the extrinsic factors 
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(as cytokines in the microenvironment or during ex vivo expansion) to modulate the 
CTLs intrinsically (as survival, effector function, metabolic commitment), which 
result in differences in outcome. Figure  14.1  summarizes various strategies that 
have evolved with time due to our increased understanding of the innate and adap-
tive arms of the immune system and how they could be modulated to control the 
tumor progression. We discuss below in various sections some of the key changes 
that hold promise for current and future usages of CTLs in adoptive cell therapy 
(ACT) of cancer.   

14.2     CTL Type 

 The maintenance of immunity to combat any disease is primarily dependent on the 
presence of a robust immune system. The adaptive immune system is responsible 
for elimination of disease-causing agents from the body so as to keep it disease-free 
[ 14 ]. Immunologic approaches for treating cancer patients have so far been partially 
successful, mainly due to their inability to elicit an effective long-term anti-tumor 
immunity [ 15 ]. Immunologic tolerance to antigens expressed by the tumors is a 
likely explanation for the diffi culty in eliciting an effective anti-tumor immunity to 
self-antigens expressed by cancer cells. In order to break the immunological toler-
ance and mount anti-tumor T cell responses, various strategies such as repeated 
vaccination with antigen-pulsed DCs, expanding the T cells ex vivo, or inhibiting 
the action of inhibitory molecules/factors are employed [ 16 – 21 ]. Such therapeutic 
strategies based on stimulating the patient’s immune system represent an important 
treatment modality, but much remains to be discovered to optimize their use, e.g. a 

  Fig. 14.1    Breaking up the ‘gray’ areas in T cell responses in cancer. A schematic representation 
of the different approaches that have been employed over the years to improve CTL responses, 
leading to better therapeutic potential as well as better survival. These strategies have helped us 
better harness the T cell ‘powerhouse’ and direct it against cancer. This has also improved our 
understanding of the underlying biology of how T cell activation, memory generation and 
persistence       
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number of associated factors as cell death due to repeated vaccination, replicative 
senescence of ex vivo expanded CTLs or susceptibility to autoimmunity that 
 co- exist with these strategies .  Another important question that needs to be addressed 
is the type of the CTL that should be used in ACT (Adoptive Cell Therapy) to 
achieve long-term tumor control. 

14.2.1     CD8 vs. CD4 CTL 

 T cells either express the CD8 co-receptor on their cell surface and recognize 8–10 
amino acid peptide fragments that are bound to MHC class I molecules, or the CD4 
co-receptor on their cell surface which recognizes 10–15 amino acid peptide frag-
ments bound to MHC class II molecules [ 22 ]. While CD8 +  T cells have cytolytic 
capacity and represent the effector arm of T cell-mediated immunity, CD4 +  T cells 
are primarily considered as helper T cells that secrete cytokines and initiate or aug-
ment the function of cytotoxic T lymphocytes (CTLs) and B cells. Despite earlier 
reports about the capability of CD4 +  T cells to control tumor growth, their use was 
abandoned due to the poor understanding of the origin of regulatory T cells after 
various reports highlighted that CD4 +  T cells can also be potential suppressors 
[ 23 ,  24 ]. A recent study, however, tried to readdress this issue using class II restricted 
CD4 +  transgenic T cells and concluded that CD4 +  T cells can be more effi cient at 
tumor rejection than CD8 +  T cells [ 25 ]. In addition, other studies have argued for the 
potential of using the class I restricted CD4 +  T cells to generate cognate ‘help’ along 
with exploiting its potential to control tumor growth [ 26 ,  27 ]. It is, thus, believed 
that the effi cacy of adoptive immunotherapy could be substantially improved if both 
CD8 +  T cells and CD4 +  T cells could be engaged in an anti-tumor immune response 
directed at the same tumor-associated epitope. Thus, the fact that CD4 +  T cells 
could be central to the function of the immune system and have a key role in tumor 
immunity remain under-appreciated. We have recently developed a novel transgenic 
strain using a human tyrosinase epitope-reactive CD8 independent TCR TIL3183I 
isolated from MHC class-I restricted CD4 +  T cells [ 28 ]. In these mice (referred 
hereafter as h3T – h uman  T IL derived  T yrosinase  T CR), this HLA-A2 restricted, 
high affi nity TCR is expressed on both CD4 +  and CD8 +  T cells. Our preliminary 
data show that a comparable numbers of class I restricted CD4 +  and CD8 +  T cells 
from the h3T mice are equally potent in controlling growth of human melanoma in 
a xenograft model. Thus, methodologies that induce the robust stimulation of lytic 
properties of both CD8 +  and CD4 +  in parallel, in turn, might lead to a direct attack 
on tumor cells as well as an effi cient establishment of T cell memory. 

 Interestingly, CD4 T cells can also behave as CTLs depending on the conditions 
of activation. The CTL activity associated with CD4 T cells gets initiated upon 
repeated stimulation after which CD4 T cells show an increase in cytolytic mole-
cules such as perforin and granzyme [ 29 ]. Reports have shown that the initiation of 
a cytolytic program is associated with concordant changes in transcription factors, 
which are responsible for regulating this switch. Primarily, CD4 and CD8 T cells 
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develop in the thymus under the control of two key transcription factors, namely 
ThPOK and Runx3 [ 30 ]. ThPOK is responsible for the generation of CD4 T cells 
and Runx3 is responsible for CD8 T cells. Runx3 has also been shown to be respon-
sible for regulating genes associated with the CTL developmental program. CD4 T 
cells that are stimulated repeatedly by a cognate antigen lose ThPOK and up- 
regulate Runx3, thereby diverting the classical ‘helper’ T cells to cytotoxic CD4 T 
cells. The cytotoxic CD4 T cells also acquire a surface phenotype of markers that 
are associated with natural killer cells and CD8 T cells. Cell surface receptors such 
as CRTAM [ 31 ,  32 ] and CD244 [ 33 ] are also upregulated and IFNγ production is 
boosted. These cytotoxic CD4 T cells are capable of controlling infections as well 
as tumors. Transfer of CD4 T cells into tumor-bearing mice was reported to cause 
an increased expansion of T cells in vivo, differentiation and reduction in tumor 
burden in a mouse model of melanoma [ 34 ]. The transferred CD4 T cells acquire 
cytotoxic abilities on encounter with antigen and then mediate tumor clearance. 
Further, CD4 T cells have been shown to increase tumor infi ltration and prolifera-
tion of CD8 T cells, thus enhancing Class-I-mediated tumor rejection. There has 
also been a single case report in which a patient treated with ex vivo generated 
autologous CD4 +  T cell clones, that recognize the tumor-associated antigen 
NY-ESO-1 [ 35 ], remained disease-free two years later with the persistence of the 
transferred cells. Importantly, the patient had not received any lymphodepleting 
conditioning that is usually administered before adoptive immunotherapy with the 
intention of augmenting homeostatic proliferation and persistence of effector cells 
[ 36 ,  37 ]. Moreover, IL-2 was not administered after the transfer. This study indi-
cates the potential of tumor epitope-specifi c CD4 +  T cells in immunotherapy. 
Despite the above-mentioned attributes, CD4 T cells only cause Class II-mediated 
tumor rejection and since most solid tumors express MHC class I and not MHC 
class II [ 38 ] the use of CD4 T cells as direct mediators of tumor killing is limited. 
However, the ability of CD4 T cells to enhance CD8 T cell responses to tumor may 
be an important area to explore for the use of CD4 T cells in immunotherapy.  

14.2.2     Quality of the CTL Response 

 The primary premise of ex vivo expansion is to selectively enrich the tumor antigen- 
specifi c T cells and, at the same time, improve the quality of the T cell response. We 
further discuss below the two important parameters that crucially determine the 
quality of anti-tumor T cells, namely:  a)  strong effector functions and  b)  ability to 
persist longer in the tumor-bearing host. 

14.2.2.1     Role of Cytokine Preconditioning in CTL Function 

 Cytokines play an important role in the homeostasis as well as the proliferation of 
T cells in vivo. For optimal T cell activation and proliferation, T cells require three 
signals [ 39 ]. Signaling through the TCR and the co-stimulatory receptors constitute 
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the fi rst two signals while engagement of the cytokine receptors by appropriate 
cytokines makes up the third signal [ 40 ]. Since signals mediated through cytokine 
receptors are required for T cell proliferation and homeostasis, cytokine supple-
mentation is important while administration of T cells to patients. Also, gene trans-
fer studies have suggested that the expression of cytokine genes in tumor cells 
increases their immunogenicity and thus makes them more susceptible to killing by 
the CTLs [ 41 – 45 ]. Cytokines such as IL2 are supplemented with autologous T cells 
transfer and have been shown to increase the in vivo function and persistence. 
However, careful evaluation of the role of cytokines is necessary, prior to adminis-
tration, as these may have either adverse effects such as lymphodepletion when 
administered in higher doses [ 46 ] or potential toxicities associated with them, as in 
the case of IL12 [ 47 ]. Similarly, other studies have shown that expanding anti-
tumor T cells in IL15 or IL21 can result in a better persistence and an improved 
anti-tumor outcome [ 48 ,  49 ] 

 While toxic effects of IL12 were noted at high concentrations [ 47 ], when used at 
low concentration, it can be used for preconditioning T cells towards Th1 cells, 
which have the ability to produce high amount of IFN-γ. Mescher’s group has 
shown that IL12 can act as third signal for clonal expansion [ 40 ]. It was also shown 
that IL12 can also impart the memory phenotype to the T cells after antigen encoun-
ter and clonal expansion [ 50 ]. Recently, several groups have shown the potential 
role of IL12 in tumor immunotherapy. These studies show that CD8 +  T cells acti-
vated in the presence of IL12 exhibit a better tumor treatment [ 51 ,  52 ]. The mecha-
nisms of IL12 anti-tumor function are intricate and may be attributed to either 
higher expression of CD25 [ 53 ], or other co-stimulatory molecules such as ICOS or 
OX-40 [ 52 ]. A recent study shows that IL12 induces up regulation as several cell 
cycle proteins mediating robust cell division, prolongs CD25 expression, and there-
fore making cells more sensitive/responsive to IL2 [ 54 ]. Similarly, other studies 
have shown that preconditioning anti-tumor T cells in the presence of IL15 or IL21 
can result in their better persistence and an improved anti-tumor outcome. Klebanoff 
et al. have shown that exogenous IL15 can improve the T cell effi cacy [ 9 ], primarily 
by increasing the anti-apoptotic phenotype and expression of CD62L on T cells that 
aid in homing. Recently, our group has also shown that IL15 may act by increasing 
the antioxidant capacity and cell surface thiol levels of T cells, therefore these cells 
may have an edge over cells cultured in IL2 in a rich oxidative tumor microenviron-
ment [ 55 ]. Similarly, the presence of IL21 during priming also enhances tumor 
immunotherapy [ 49 ], by decreasing the transcription factor  EOMES , increasing the 
expression of CD62L ( L -selectin) and imparting T cells with a central memory-like 
phenotype. Another study suggests that IL21 may act by giving CD8 T cells a 
unique effector phenotype of CD44 high PD1 low CD25 low CD134 low CD137 low  [ 56 ]. One 
of the groups has also shown that IL21 acts synergistically with IL15 and IL7 for 
proliferation of CD8 +  T cells and exhibits a better anti-tumor response [ 48 ]. 
Moreover, reports suggest that IL21 increases degranulation and expression of IFNγ 
by tumor infi ltrating CD8 T cells [ 57 ]. In addition to enhancing cytotoxicity of T 
cells, IL21 was also shown to augment the production of other infl ammatory 
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 cytokines like IFNγ, IL2, TNFα, GM-CSF, IL1β and IL6 that can in turn potentiate 
the anti-tumor response of the T cells [ 58 ]. Thus, preconditioning with some of 
these cytokines alone or in combination can increase the effi cacy of CTLs for adop-
tive cell therapy.  

14.2.2.2     Effector Cytokine Secretion by CTLs 

 The effector functions of anti-tumor T cells are usually characterized by their ability 
to secrete various cytokines and cytolytic molecules following the recognition of its 
target antigen. Among various cytokines, the ability to secret IFNγ by anti-tumor T 
cells has been shown to be indispensable for tumor rejection. The crucial role of 
IFNγ-mediating anti-tumor response was originally highlighted by the study show-
ing that neutralization of IFNγ, but not TNFα, abrogates the LPS-mediated rejection 
of Meth A cells (3-methylcholanthrene (MCA)-induced fi brosarcoma cells of 
BALB/c mice) [ 59 ]. This observation was further supported by the fact that defi -
ciency of IFNγ in tumor antigen specifi c transgenic T cells signifi cantly impaired 
their anti-tumor potential [ 60 ]. Studies have shown that IFNγ can increase the 
immunogenicity of tumor cells by up-regulating their MHC expression and thus 
making them more susceptible to CTL-mediated lysis [ 61 – 63 ]. Moreover, IFNγ 
also has a direct pro-apoptotic and anti-angiogenic effect on tumor cells and can 
activate the tumor-resident APCs towards a pro-immunogenic type [ 64 ]. Evidences 
suggest that the co-operation of other cytokines with IFNγ is required for effective 
eradication of tumor. The study by Nagoshi et al. showed that production of 
GM-CSF along with IFNγ determined the effi cacy of adoptive cellular immuno-
therapy since neutralization of GM-CSF with a specifi c monoclonal antibody 
increased the tumor burden [ 65 ]. It was speculated that production of GM-CSF by 
the T cells resulted in the activation of macrophages and dendritic cells, which in 
turn actively participated in the induction of profound anti-tumor responses [ 66 ]. 
Another study showed that IL3 also plays an important role in anti-tumor immunity 
along with IFNγ and GM-CSF. Mice defi cient in IL3, IFNγ and GM-CSF 
(IL-3 −/− GM-CSF −/− IFNγ −/− ) developed lymphomas and non-lymphoid solid tumors 
at a higher rate than mice defi cient in IFNγ alone or both IL3 and GM-CSF or 
GM-CSF alone [ 67 ]. Similarly, some other studies have shown the role of TNFα as 
an important cytokine in controlling tumor growth [ 68 ]. Of late, a number of studies 
have established that rather than one dominant individual cytokine; a cumulative 
effect of many different cytokines imparts a much effi cient and long-lasting ‘poly-
functional’ phenotype that has an improved ability to control tumor growth [ 69 ]. 

 In addition to the Th1 category of cytokines mentioned above, recent studies 
have implicated the involvement of IL9 (previously considered to be a type-2 cyto-
kine), and IL17 in controlling tumor progression. With advancements in the 
 availability of various recombinant cytokines and antibodies, it has now become 
feasible to ex vivo program several conditions that promote the differentiation of the 
T cell subsets (Th1/Tc1, Th9/Tc9, Th17/Tc17) for use in the ACT protocol. Recent 
pre- clinical studies that utilize these strategies are discussed below. 
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   Th1/Tc1 

 The primary cellular subsets that have been shown to be important for  immunotherapy 
have been the T cells that can initiate an IFNγ response [ 70 ,  71 ]. Both CD4 and CD8 
T cells have shown potential, for treatment of tumors when cultured in the presence 
of IL12 to become polarized as either Th1 or Tc1 cells [ 72 ]. These T cell subsets 
express high levels of cytolytic molecules such as perforin and granzyme, which 
make them excellent candidates for anti-tumor effectors. The induction of the cyto-
lytic program is also accompanied by an increase in the levels of transcription fac-
tors like  T-bet  and  IRF4  which are responsible for the effector functions of these T 
cells [ 73 ]. These T cells upregulate CD25 that make them dependent on IL2 and 
induce STAT5. Signaling through the IL12 receptor enhanced the STAT4 levels, 
which regulate T-bet, and thus IFNγ production [ 74 ]. 

 However, Th1 or Tc1 cells are unable to provide long-term protection against 
tumors because of their effector-like phenotypes. There are confl icting reports 
regarding this phenomenon. Some studies argue that due to the faster expansion of 
T cells and increased proliferation, the Th1/Tc1 cells become exhausted and cannot 
persist for prolonged immune surveillance [ 75 ]. Other reports suggests that Tc1 
cells are able to persist as long-term homeostatic proliferating memory cells, which 
are able to retain function and mediate tumor growth suppression and metastasis 
[ 76 ]. With the identifi cation of different T cell subsets (i.e. Th9/Tc9, Th17/Tc17), 
that also exhibit anti-tumor potential when co-secreting IFNγ, the Th1/Tc1 cells 
that primarily secrete IFNγ have lost their prominence—but further studies that 
design the ex vivo culture conditions to program the T cell subsets with best features 
from all the subsets in building a potent hybrid CTL may improve immunotherapy.  

   Th17/Tc17 

 Intensive investigation has been focused on Th17 cells and indicates that this 
T helper subset is capable of mediating an anti-tumor effect [ 77 – 79 ]. Studies have 
shown that adoptive transfer of tumor antigen-specifi c T cells committed to produce 
IL17 swiftly eradicates large established tumors in mice [ 60 ]. The effi cacy of tumor- 
specifi c type-17 responses has also been reported in murine CD8 T cells (Tc17) and 
genetically engineered human CD4 T cells [ 80 ,  81 ]. Although Th17/Tc17 cells are 
committed to produce IL-17, however, their anti-tumor response depends on their 
ability to secret IFNγ, the absence of which signifi cantly dampens the anti-tumor 
response of Th17 cells [ 60 ]. However, the question remains that if IFNγ is crucial in 
mounting an effective anti-tumor response, then why the Th1/Tc1 cells that are 
committed to produce IFNγ are unable to provide a prolonged anti-tumor immunity. 
It is, thus, likely that the ability to mount a protective anti-tumor response depends 
not only on the cytokine response but also on the ability of the anti-tumor T cells to 
persist and develop long-term memory. 

 Studies have shown that although Th1 cells possess an effector phenotype 
(IFNγ hi  and GzmB hi ), however, their inability to persist longer in the tumor-bearing 
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 recipients restrains their usefulness in anti-tumor immunotherapy. On the contrary, 
Th17 cells exhibit reduced effector functions as compared to Th1 cells, but possess 
stem cell-like characteristics [ 77 ,  79 ], which allows them to persist longer in the 
tumor- bearing host and thus mount protective anti-tumor responses [ 77 ]. Genetic 
analysis of ex vivo polarized Th17 cells unveiled that they have overexpression of 
 Tcf7  and some other genes in the downstream pathway of the Wnt/β -catenin signal-
ling pathway [ 77 ]. The overexpression of  Tcf7  is generally found in naïve T cells 
and gradually decreases following activation. Thus, the overexpression of  Tcf7  and 
stemness-associated genes in Th17 might be responsible for the maintenance of 
their “young” phenotype and self-renewal capacity, which are necessary for their 
long term persistence in the host. 

 Another issue that needs to be considered when using Th17 cells is that of ‘plas-
ticity’ [ 82 ], that refers to changing the phenotype with the dynamic microenviron-
ment. It has been noticed that Th17 cells are not stable as they can also convert into 
an IL-17 + FoxP3 +  regulatory T cell (Treg) phenotype [ 83 ], or an effector IL-17 − IFNγ +  
phenotype under infl ammatory conditions in the tumor microenvironment [ 84 – 87 ]. 
This ‘plasticity’ or skew in the effector phenotype by Th17 cells may be responsible 
for decreased longevity in the anti-tumor activity of these cells. Further, IL17 has 
also been shown to be pro-tumorogenic in certain scenarios [ 88 ]. Thus, in order to 
promote the anti-tumor activity of Th17 cells, it may be crucial to understand the 
factors that are responsible for regulating its pro- vs. anti-tumorogenic properties. 
Our recent study has shown that while TGFβ and IL-6 help ex vivo differentiation 
to Th17 TGFβ  cells, they were also responsible for upregulation of the ectonucleotid-
ase CD73 on Th17 TGFβ  cells. CD73 (along with CD39) sequentially cleaves ATP to 
produce adenosine, which is immunosuppressive [ 89 ]. Thus, an alternative strategy 
to generate Th17 cells in the presence of IL-1βIL-6 (i.e. Th17 IL1β ) was more effi -
cient in controlling the tumor due to a reduced CD73 expression and a highly poly-
functional phenotype (as IFN-γ hi , CD107a hi , T-bet hi , Granzyme B hi , HIF-1α hi ). 
Although Th17 IL1β  cells lacked the expression of key stem cell genes (as  β-catenin , 
 TCF-6 ,  Lef-1 ) that have been attributed to the increased persistence of conventional 
Th17 TGFβ  cells, adding a trace amount of TGFβ to Th17 IL1β  cells not only restored 
the expression of stem cell genes and increased persistence, but also reduced 
activation- induced cell death [ 89 ]. Our data also show that Th17 TGFβ  and Th17 IL1β  
are the two spectrums of the T cell response—with Th17 TGFβ  being less glycolytic 
(discussed in detail later) than Th17 IL1β . The higher effector response associated 
with higher glycolytic Th17 IL1β  is also correlated to increased susceptibility to cell 
death. Our data also shows that including TGFβ at lower concentrations drops gly-
colysis and increases the stemness feature with reduced susceptibility to AICD as 
well. Thus, a comprehensive understanding of the factors that control long-term and 
stable anti-tumor T cell function is needed for improving ACT of cancer. Figure  14.2  
show how the understanding of the Th17 TGFβ  and Th17 IL1β  cells led us to devise 
ex vivo culture conditions to achieve long-term tumor control using Th17 cells with 
a hybrid Th1 + Th17 phenotype.  

 Interestingly, a recent report has suggested that the ability of Tc17 to control 
tumors is poorer than Tc1 cells. This enhanced ability of Tc1 cells has been  attributed 
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to IFNγ signaling in the tumor cells [ 90 ]. The abrogation of IFNγ signaling in tumor 
cells completely blocks the effect of Tc1 cells. Further, transcription factors, espe-
cially T-bet, RORγ and IRF4 play an important role in regulating the ability of 
Th17/Tc17 cells in mediating tumor regression and need to be considered when 
designing optimal culture conditions for CTL generation [ 91 ,  92 ].  

   Th9/Tc9 

 IL9, originally discovered as p40 in human T cell growth factor, has been shown to 
have pleiotropic roles on both myeloid and lymphoid cells [ 93 ]. Though understud-
ied for a long time, recent studies have focused on the role of IL9 and its effects on 
anti-tumor immunity [ 94 ]. T cells can be programmed to produce IL9 using TGFβ 
and IL4. Early studies have associated the IL9-producing T cells as a subset of the 
Th2 type cells. However, it has been observed that Th9 cells do not produce the 
classical Th2 cytokines [ 95 ,  96 ]. Instead, the production of IL9 leads to the suppres-
sion of Th2 cytokines. Further, the production of IL9 is also responsible for reduced 
IL12 production by APCs, thus blunting any possible Th1 type response [ 97 ]. 
Therefore, IL9 acts as both positive and negative regulator of immune responses. 
The majority work in the fi eld of IL9-producing T cells has shown the usefulness of 
CD4 T cells. Th9 cells have been shown to clear established melanoma in a mouse 
model [ 12 ,  98 ]. It was clearly demonstrated that IL9 was responsible for this effect 
using an IL9-blocking antibody. Administration of recombinant IL9 also led to 
reduction in tumor burden. The observed tumor regression was found to be depen-
dent on the interaction of IL9 and IL9R and signaling mediated through the 
IL9R. Further investigation revealed that the effect of IL-9 in inhibiting tumor 
growth is primarily mediated through mast cells, since defi ciency of mast cells 

  Fig. 14.2    A schematic fi gure highlighting the differences in effector molecules, stem cell associ-
ated genes, and metabolic commitment between the Th17 cells generated ex vivo using either 
TGFβ (Th17 TGFβ ) or IL1β (Th17 IL1β ) programming conditions. The key useful traits of these two 
type of Th17 cells used to generate hybrid Th17/Th1 cells result in improved immunotherapeutic 
control of the tumor growth       
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failed to control tumor growth [ 98 ]. The anti-tumor potential of IL-9 is only 
restricted to non-lymphoid tumors since they potentiate the growth and survival of 
lymphomas that express the IL-9R [ 98 ]. 

 Recently, there has also been interest in IL9-producing CD8 T cells and their 
ability to mediate tumor killing. IL9-producing CD8 T cells or Tc9 cells were 
recently studied and have been shown to be effective in mediating tumor regression 
while maintaining their signature cytokine profi les for an extended period of time 
[ 99 ,  100 ]. However, IL9 has been shown to have detrimental effects as well. IL9 has 
been reported to be involved in atopic dermatitis [ 101 ], and airway infl ammation 
[ 102 ]. Further, it has been shown that the expression of IL9 T cells is exclusive of 
IFNγ and is inhibited by IFNγ [ 103 ]. IFNγ is a key cytokine, which assists in tumor 
killing and also makes the tumors more susceptible to T cell killing. Since IL9- 
producing cells do not produce IFNγ, it may be of concern to use these cells for 
immunotherapy. Further, Th9 cells in vitro have been shown to retain IL9 produc-
tion for a short period of time, thereby, contradicting the fi ndings of Tc9 cells, which 
maintain IL9 production even after retrieval from the tumor- bearing mice. 
Nevertheless, further studies using IL9 are essential before these cells can be used 
as a potential therapy for different types of tumors.   

14.2.2.3     CTL Persistence 

 The persistence of transferred CTLs is important to mediate immunosurveillance 
against cancer. In addition, for adoptively transferred ex vivo expanded autologous 
T cells, it is imperative that T cells persist in the host and are, not only able to medi-
ate tumor killing, but also able to prevent recurrence of tumor growth. Survival of 
transferred T cells requires the availability of accessible niches that can be used by 
the T cell to engraft, ability to self-renew whereas death of transferred CTLs in the 
tumor microenvironment can be caused by repeated antigenic restimulation or 
activation- induced cell death (AICD), apoptosis and hypoxia among other factors. 
Other factors affecting T cell survival include oxidative stress in the microenviron-
ment of tumor; inhibitory molecules expressed by tumors and suppressive cells 
which mediate immune suppression under the aegis of the tumor. In addition, the 
niche available in vivo to the CTL for engraftment in tumor milieu could also affect 
the outcome of a T cell response and will be discussed below. 

   T Cell Death 

 There are various ways cell death occurs. One of the most common ways of T cell 
death is caspase-dependent cell death, commonly known as apoptosis [ 104 ]. T cells 
upon antigen challenge undergo clonal expansion. However, if antigen is present in 
abundance then T cells upon chronic re-stimulation undergo cell death commonly 
known as AICD [ 105 ,  106 ]. Snow et al. demonstrated that in the X-linked lympho-
proliferative disease, patients have a defective AICD machinery that leads to a fatal 
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increase in the number of lymphocytes [ 107 ]. Therefore, AICD is an important 
mechanism for the immune system to get rid of extra infl ammation. Earlier studies 
have shown that AICD requires caspase 3, and in some cases could be independent 
of activator caspases such as caspase 8 and caspase 9 [ 108 ]. Other groups have also 
shown that AICD is independent of granzyme and perforin-induced cell death and 
can be inhibited by blocking TNFα [ 109 ]. AICD can also be inhibited by blocking 
FasL or Fas receptor along with TNFα [ 110 ]. 

 With reference to T cell immunotherapy, it may be important to interfere with the 
death/contraction/AICD of the tumor-epitope reactive T cells to increase their per-
sistence in the tumor microenvironment in order to achieve a meaningful and sus-
tained tumor regression. Thus, an understanding of the kind of cell death that an 
effector T cell subset may undergo upon encountering TCR restimulation by TAA 
will be important, and has also been the focus of our group [ 111 ,  112 ]. Peter 
Kramer’s group has shown that AICD can be reduced in T cells by glucocorticoids 
by decreasing the FasL expression in T cells [ 113 ]. Several groups have utilized 
different cytokines during polarization, which may reduce AICD. One such strategy 
is the use of IL-15 during T cell activation [ 114 ]. We have shown that cells cultured 
in IL15 show less death in comparison to those cultured in IL2, as IL15 increases 
antioxidant levels and cell surface thiols on the T cells [ 55 ]. Another recent study 
shows that IL15 cultured cells show reduced caspase 3 activity by nitrosylating 
caspase 3 at cys163 site [ 115 ]. 

 One other common form of T cell death is caspase 1-mediated cell death, which 
is commonly referred to as pyroptosis [ 116 ,  117 ]. Pyroptosis mainly occurs during 
a chronic microbial or viral infl ammation. It is a form of programmed cell death 
orchestrated by caspase 1, which was known for its function to cleave pro-IL-1β and 
therefore known as IL1β converting enzyme (ICE) [ 118 ]. Recently, it has been dem-
onstrated that CD4 + T cell death occurring in HIV infection is through the caspase-1/
IL-1 β-mediated pathway [ 119 ]. T cells could be rescued by inhibiting caspase -1. 
One of the caspase-1 inhibitors, VX-765, which has already been validated for treat-
ing epilepsy [ 120 ], also has the potential to rescue T cells from pyroptosis induced 
by HIV [ 119 ]. One other less known form of cell death is necroptosis. Necrosis was 
found to occur in a programmed manner and therefore termed as necroptosis [ 121 ]. 
Necroptosis is a caspase independent form of cell death, which requires the activa-
tion of receptor interacting kinases 1 and 3 (RIPK1 and RIPK3). Degterev et al. 
have also identifi ed a compound (necrostatin-1), which can inhibit the RIPK1 [ 121 ]. 
Another group has recently shown that T cells defi cient in caspase 8 do not undergo 
classical cell death and instead may be undergoing Ripk1-mediated cell death which 
is not induced by TNF-α [ 122 ]. A recent study shows that some of the CD4 +  T cells 
infected with HIV may undergo necroptosis [ 123 ]. One other form of recently iden-
tifi ed cell death is ferroptosis. It is a non-apoptotic form of cell death, which is an 
iron-dependent form of cell death [ 124 ]. This type of cell death occurs due to iron- 
dependent accumulation of reactive oxygen species (ROS). Expression signature of 
ferroptosis is different for other types of cell death such as apoptosis or pyroptosis. 
A small molecule inhibitor known as ferrostatin 1 can inhibit ferroptosis [ 124 ]. 
While necroptosis as well as ferroptosis have not been yet identifi ed as prominent 
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pathways for T cell death, it is likely that under different physiological conditions 
in vivo such death pathways may ensue the death/contraction of certain subsets of 
CTLs. If so, the inhibitors as Necrostatin-1 or ferrostatin-1 may be used for rescuing 
the T cells from such forms of cell death. Thus, further studies are needed to com-
prehensively understand if there are any differences in the type of cell death at vari-
ous stages of the CTL life-span, so that the longevity of anti-tumor effector T cells 
can be accordingly modulated. We believe that using one of these approaches or a 
combination of these approaches may rescue the T cells from AICD and increase 
the effi cacy of immunotherapy [ 55 ,  108 – 110 ,  113 – 119 ,  121 ,  124 ].  

   Availability of Niches 

 The transfer of autologous T cells into patients helps in bolstering the immune 
response to cancer and also in killing the tumor cells [ 35 ,  125 ,  126 ]. The long-term 
goal of adoptive immunotherapy has been that after the clearance of the tumor, the 
transferred T cells persist as memory cells to prevent any further recurrence [ 127 , 
 128 ]. However, for this to happen, the T cells must reside in the secondary lym-
phoid organs as memory T cells so as to provide a rapid secondary immune 
response on re-encountering the tumor antigen. Since the host homeostatic mecha-
nisms are involved in equilibrating the number of T cells, by balancing out T cell 
expansion and death, it is only possible to transiently increase the available niche 
for transferred the T cells. It has been reported that the persistence or long-term 
survival of adoptively transferred T cells is dependent on the availability of spaces 
for engraftment of these cells [ 129 ]. This is important for the continued presence 
of increased frequency of tumor-specifi c T cells and suppression of tumor growth 
[ 130 ]. Various reports have suggested the benefi cial effects of radiation therapy in 
improving the immunotherapy of cancer [ 131 – 133 ]. It has been suggested that the 
use of radiation therapy enhances T cell therapy in various ways. Firstly, radiation 
therapy directly causes a dent in the tumor growth. Secondly, radiation has been 
shown to enhance the immunogenicity of cancer cells, which is essential for their 
recognition by T cells. Finally and most importantly, it has been shown that radia-
tion causes the death of host T cells and regulatory T cells (Treg) that can act as 
barriers to effective CTL therapy [ 36 ,  37 ]. The deletion of host T cells enhances 
the availability of cytokines to transferred CTLs [ 134 ], and Treg death leads to 
lower suppression of transferred T cells. Recent reports have suggested that low 
dose radiation enhances T cell stimulation leading to an increase in the production 
of IFNγ as well as lowering the threshold for T cell activation [ 135 ,  136 ]. Another 
study suggested that low dose radiation affects macrophage polarization, which in 
turn enhances the effi cacy of T cell immunotherapy [ 137 ]. Therefore, the ability of 
CTL therapy in controlling tumors depends on the ability of T cells to proliferate, 
persist and retain functionality, for which radiation therapy is an important tool in 
improving success.  
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   Ability to Self-Renew 

 One fundamental insight borne out of various clinical and adoptive T cell therapy 
studies is that the objective response is directly related to the long-term persistence 
of the adoptively transferred T cells into the host. The primary prerequisite for 
the long-term persistence of T cells is their ability to express various stem cell-like 
characteristics, which endows longevity, self-renewal capacity, and lesser suscepti-
bility to activation-induced death. Recent studies describe a novel subset of memory 
T cells termed as memory stem cells (T SCM ) which display stem-cell like features 
and can be identifi ed by the expression of CD62 hi , CCR7 hi , CD44 lo , SCA-1 hi  and 
Bcl2 hi  cells. Studies by Gattinoni et al. suggest that the Wnt/β-catenin pathway is 
highly operational in T SCM  cells as described for other self-renewing populations 
[ 138 ]. Indeed, stabilization of β-catenin by constitutive degradation of GSK3β dur-
ing antigenic stimulation of CD8 cells enhances T SCM  formation. Emerging evi-
dences suggest that since T SCM  cells do not achieve a full terminal differentiation 
in vitro ,  they are more effective than terminally differentiated effector T cells in 
eradicating the tumor in vivo. One potential reason behind this phenomenon is that 
although effector T cells are highly cytotoxic in vitro ,  they lose the ability to secrete 
IL2 and up-regulate KLRG-1 and are very sensitive to replicative senescence. 

 A recent study has also shown that the frequency of CD8 +  T SCM  is decreased in 
individuals with chronic, untreated HIV-1 infection, and that HAART has a restor-
ative effect on this subset [ 139 ]. In contrast, natural controllers of HIV-1 had the 
highest absolute number of CD4 +  T SCM  cells among all the infected groups. 
Therefore, the CD8 +  T SCM  population may represent a correlate of protection in 
chronic HIV-1 infection that is directly relevant to the design of T cell-based vac-
cines, adoptive immunotherapy approaches or the pharmacologic induction of T SCM . 
Also, T cell expansion after encountering bacterial infection shows that the CD62L hi  
cells have a stem cell like property and these cells can expand to provide protection. 
The same has also been shown to be the case in ultra-low dose CMV infections 
[ 140 ]. From these reports it is evident that a small pool of T cells that are similar to 
stem cells are able to provide protection against various ailments and that this might 
be the key to improve immunotherapy of cancer [ 141 ]. Further, harnessing the capa-
bility of these cells to self-renew may be another important step to mediate long- 
lived anti-tumor immunity.  

   Susceptibility to Tumor Microenvironment Stress 

 Various activation and inhibitory receptors on the tumor cell may mediate apoptosis 
of CTLs by inducing pro-apoptotic signaling. Tumors are known to express high 
levels of FasL, which causes apoptosis of CTLs that express Fas on their surface, 
due to their activation status [ 142 ]. Tumor-infi ltrating macrophages respond to IFNγ 
by producing TNFα and nitric oxide that induces the apoptosis of T cells. In order 
to make T cells resistant to these mechanisms of apoptosis, researchers have intro-
duced siRNA to Fas in CTLs, which led to decreased apoptosis of the transferred 
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T cells via the Fas-FasL interaction [ 143 ]. Downstream inhibition of signaling 
 molecules such as c-jun N-terminal kinases (JNK) leads to poorer activation of the 
apoptosis inducing factor (AIF) and effector caspases, thus leading to reduced 
AICD of T cells [ 144 ,  145 ]. Further, CTLs in the tumor microenvironment are sub-
ject to oxidative and metabolic stress. The tumor microenvironment is an oxidative 
environment, which reduces the ability of T cells to function as well as induces 
apoptosis. The presence of ROS, RNS and superoxide’s induces oxidative stress 
that in turn could affect the T cell function and its ability to control tumor growth. 
Various reports show that the use of antioxidants during cancer therapy, especially 
vitamins as supplements, increases the potential for tumor regression [ 146 ,  147 ]. 
Antioxidants help reduce the free radicals which cause damage to cells. As prophy-
lactic agents, these may be helpful in reducing the initiation of cancer. Further there 
is a possibility that these antioxidants may help reduce the oxidative environment in 
the tumors and make them more susceptible to killing by CTLs. However, the role 
of anti- oxidant enzymes in various T cell subsets is not clearly established. We have 
recently shown that TCR restimulation results in a decrease in the reductive state of 
actively dividing cells, rendering them more sensitive to oxidative stress [ 148 ]. We 
also show that a subset of T cells with central memory-like phenotype (T CM  cells) 
show increased expression of cell surface sulfhydryl groups (thiols; c-SH), a key 
target of redox regulation and other antioxidant protein molecules as compared to 
the effector memory-like phenotype (T EM  cells) [ 148 ]. 

 Cells use thiols such as glutathione and thioredoxin for protection against the 
detrimental effects of oxidants. It has also been documented that the overall level of 
reduced thiols on cell surface molecules differs on individual subsets of peripheral 
blood mononuclear cells and that these levels can be manipulated in vitro by alter-
ing the level of intracellular glutathione (iGSH). Glutathione (GSH), a cysteine- 
containing tripeptide (γ-glutamylcysteinylglycine) and its oxidized dimer GSSG, 
plays a key role in regulating the intracellular redox balance and the status of –SH 
groups on proteins and other molecules. Via GSSG, thioredoxin, glutaredoxin, glu-
tathione peroxidases, and other enzymes in the GSH system, GSH regulates the 
activity of enzymes and transcription factors by controlling whether the –SH group 
remains reduced and, hence, free or whether it is covalently coupled to GSH (or 
NO) [ 149 ]. Depletion of GSH is an early hallmark observed in apoptosis and the 
relationship between GSH depletion, generation of ROS, and progression of apop-
tosis has been recently addressed. Simultaneous single cell analysis of changes in 
the GSH content and ROS formation by multi-parametric fl ow-cytometry revealed 
that the loss of intracellular GSH was paralleled by the generation of different ROS 
including hydrogen peroxide, superoxide anion, hydroxyl radical, and lipid perox-
ides. iGSH levels also tend to decrease as HIV disease progresses and low GSH 
levels in subjects with advanced HIV disease predict poor survival and impact T cell 
function [ 150 ,  151 ]. 

 The role of ROS in determining T cell susceptibility to arthritis has also been 
shown recently [ 152 ]. These studies showed that the lower capacity to produce ROS 
is associated with an increased number of reduced thiol groups (–SH) on the T cell 
membrane surfaces. Our recent data also show that in adoptive cell therapy, the 
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increased expression of thiols on T cells could be directly correlated to increased 
effi cacy of the transferred CTLs [ 148 ]. CTLs with higher cell surface thiols were 
better in mediating rejection of tumors as compared to those having lower levels of 
thiol. Further, the persistence of T cells with higher cell surface thiols was also 
enhanced. T cells with higher cell surface thiols showed a CD62L hi CD44 hi  memory 
T cell-like phenotype. These data suggested that promoting the reductive cellular 
environment could result in the long-term maintenance of CD8 +  T cells, and may 
have implications in T cell adoptive immunotherapy protocols.    

14.2.3     Immunosuppression and CTL Response 

 Despite the major advances being made to improve the quality of tumor immuno-
therapy, a plethora of immunosuppressive mechanisms operating at the tumor site 
are considered to be the major obstacle for successful immunotherapy of cancer. 
Thus, increased understanding of these immunosuppressive mechanisms might 
open up new avenues to overcome the tolerizing conditions employed by the tumor 
microenvironment and, thus, dramatically increase the objective response of anti- 
tumor T cells. Compelling evidences suggest that the growing tumor can employ a 
myriad of immunosuppressive strategies to evade the anti-tumor T cell response. It 
has been widely accepted that tumor-mediated immunosuppression is not merely 
the property of tumor cells, rather, it crucially depends on its microenvironment. 
The tumor microenvironment is a dynamic network of various immunosuppressive 
cell populations that may act in concert to thwart anti-tumor T cell responses. We 
discuss briefl y different immunosuppressive strategies that affect the CTL responses: 

14.2.3.1     Immunosuppressive Cytokines 

 Secretion of various immunosuppressive cytokines and growth factors by the tumor 
cells and the associated stromal cells is an important mechanism dampening the 
effector T cell response. Among various immunosuppressive cytokines, TGFβ is the 
extensively studied cytokine that has shown to impair effector T cells function and 
proliferation. Historically, TGFβ has been considered as a growth promoting factor 
for the tumor cells. However, Ranges et al. [ 153 ] showed that apart from promoting 
the tumor growth, TGFβ may also play an important role in mediating tumor escape 
from host immune surveillance. Later on, Gorelik and Flavell confi rmed this fi nding 
by demonstrating that tumor evasion from immune response can be overcome by T 
cells specifi c blockade of TGFβ that results in the generation of robust the anti- 
tumor CTL response even against poorly immunogenic tumors [ 154 ]. Further study 
by Thomas et al. demonstrated that TGFβ can suppress various cytotoxic gene 
expressions namely perforin, GzmA, GzmB, FasL and IFN-γ in T cells and thus 
block the generation of anti-tumor CTL response. The study also indicated that 
neutralization of TGFβ can be of a potential therapeutic approach in restoring the 
cytotoxic gene expression in tumor specifi c CTL, leading to tumor clearance. 
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 In combination with TGFβ, the cytokine IL-13 has also shown to impair the 
generation of tumor specifi c CTL response. In a study by Terabe et al. showed that 
CD1d restricted NKT cells can repress the CTL response by mechanism involving 
production of IL-13 and TGFβ and activation of IL-4R/STAT-6 signaling pathway 
[ 155 ]. Thus, it is important to point out that blocking of TGFβ not only improves the 
quality of anti-tumor CTL therapy but also can overcome the NKT cell-mediated 
immunosuppression. Several strategies have been explored to inhibit the TGFβ sig-
naling including the administration of antisense TGFβ oligonucleotides that bind to 
the TGFβ mRNA resulting in the reduction of TGFβ secretion [ 156 ], use of differ-
ent TGFβ receptor kinase inhibitors, therefore, preventing the phosphorylation of 
downstream effectors such as SMADs [ 157 – 160 ], use of monoclonal antibodies to 
neutralize TGFβ depending on tumor localization and administration of monoclonal 
antibody to TGFβRII to interrupt the binding of TGFβ to its receptor [ 161 ]. Studies 
indicate that IL10 can also suppress the generation of a tumor-specifi c CTL 
response. It has been reported that tumor-associated macrophages (TAMs) and 
tumor-induced regulatory T cells (iTreg) secrete an elevated level of IL10 and pro-
tect the tumor cells by suppressing the functionality of cytotoxic T cells at the tumor 
site [ 162 ,  163 ].  

14.2.3.2     Ectonucleotidases 

 Recent studies suggest that accumulation of adenosine in the tumor microenviron-
ment is an important mechanism of suppressing the effector function of anti-tumor 
T cells [ 164 ,  165 ]. The accumulation of adenosine at the tumor site is thought to be 
mediated by the sequential cleavage of ATP that is present at a very high level in the 
tumor milieu [ 166 ], by ectonucleotidases namely CD39 and CD73 [ 167 ]. The ecto-
nucleotidase CD39 is involved in the breakdown of ATP to form AMP and CD73 
cleaves AMP to form adenosine [ 167 ]. Studies have shown that tumor cells includ-
ing melanoma, breast carcinoma, and HNSCC co-express CD39 and CD73 and 
contribute to adenosine at the tumor site [ 168 ,  169 ]. Several studies have shown that 
Tregs also express enzymatically active CD39 and CD73 on their cell surface [ 167 , 
 170 ]. It has been shown extensively that expression of CD39 and CD73 on Tregs is 
crucial for exerting their immunosuppressive function [ 167 ,  170 ]. Effector T cells 
cultured in the presence of CD39 and CD73 co-expressing suppressive cells fail to 
secrete various effector cytokines. A recent study from our group also reported that 
tumor-specifi c Th17 cells differentiated in the presence of TGFβ failed to control 
melanoma tumor growth since they co-express CD39 and CD73 which caused 
diminished IFNγ secretion by these cells at the tumor site [ 89 ]. Studies have shown 
that adenosine generated by the cleavage of ATP by CD39 and CD73 binds with 
A2AR and A2BR receptors, resulting in the concomitant activation of adenylyl 
cyclase (AC) and upregulation of cAMP which causes the suppression of effector 
cytokine production by T cells [ 171 ,  172 ]. Several attempts are currently being 
made to counteract the adenosine-mediated suppression of anti-tumor T cells by 
inhibiting CD73 and, thereby, disrupt the sequential cleavage of ATP leading to the 
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generation of adenosine. The study by Stagg et al. showed that administration of 
monoclonal antibody to CD73 signifi cantly inhibits the tumor growth and spontane-
ous metastasis in mice model [ 173 ]. A recent study has also shown that blocking of 
CD73 can increase the therapeutic potential of anti-PD1 and anti-CTLA-4 and, 
thus, can be used in combination with the checkpoint blockers for cancer immuno-
therapy [ 174 ]. 

 Similarly, prostaglandin E2 (PGE2) has an important role in the suppression of 
anti-tumor T cell response. PGE2 is the product of cyclooxygenase-2 (COX-2) 
activity that has been reported to be elevated in various tumors [ 175 ]. PGE2 binds 
to G-protein coupled receptors (EP1–EP4) on the cell surface and leads to an 
increase in the intracellular c-AMP levels resulting in the suppression of prolifera-
tion and the effector response of the T cells [ 176 ].  

14.2.3.3    Negative Co-stimulation 

 Emerging evidences suggest that signaling through the negative co-stimulatory 
pathways is one of the major confounding factors in mounting an adequate anti- 
tumor CTL response. Several strategies have been tested to block the negative co- 
stimulatory pathways to improve the effector response of anti-tumor T cells. One of 
the best studied negative immunological checkpoints is CTLA-4, which has been 
shown to inhibit T cell activation and function through its engagement with the co- 
stimulatory molecule B7.1 [ 177 ]. Allison and his group fi rst showed that blocking 
of the CTLA-4-B7 interaction signifi cantly increases the anti-tumor immune 
responses [ 177 ]. Further studies by this group showed that blockade of CTLA-4 in 
combination with a GM-CSF-transduced vaccine could eradicate poorly immuno-
genic tumors by enhancing the effi cacy of tumor-reactive T cells and altering the 
intratumor balance of effector and regulatory T cells [ 178 ]. 

 Another immunological checkpoint that contributes to the tumor evasion of 
immune response is the interaction between programmed death receptor-1 (PD-1) 
and its ligand (PD-L1) [ 179 ]. It has been shown that PD-1 expression on the T cells, 
following its activation upon engagement with its ligand PD-L1 or PD-L2 leads to 
the inhibition of T cell proliferation and effector cytokine production [ 180 ]. An 
interesting study by Dong et al. showed that the majority of the human tumors 
including breast cancer, lung cancer, melanoma, ovarian cancer, and  adenocarcinoma 
expressed PD-L1 and its expression is enhanced in the presence of IFNγ [ 181 ]. The 
expression of PD-L1 on tumor cells blocks the CTL response but induces apoptosis 
of the tumor antigen-specifi c T cells via induction of FasL and IL-10 [ 181 ]. It has 
also been shown that monoclonal antibody-mediated blocking of PD-L1 can 
enhance the CTL response by reducing the death of tumor specifi c T cells, resulting 
in a heightened objective response in various tumor models. In addition to blocking 
PD-L1, a recent study disclosed that an effective CTL response can also be gener-
ated by antibody-mediated blocking of PD1 [ 181 ,  182 ]. A clinical study by Topalian 
et al. demonstrated that administration of anti-PD1 monoclonal antibody elicited 
a signifi cant objective response in a substantial proportion of patients with 
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non–small-cell lung cancer, melanoma, or renal-cell cancer and in various sites of 
metastasis, including the liver, lung, lymph nodes, and bone [ 183 ]. 

 Emerging evidences indicated that another impediment for an effective anti- 
tumor CTL response is LAG-3, an immunological checkpoint which can restrain an 
anti-tumor T cells response [ 184 ]. Compelling evidences suggest that Lag-3 can be 
up-regulated on both CD4 and CD8 T cells following their activation and can be 
further stimulated by IL12 [ 185 ]. The expression of LAG-3 on T cells has been 
shown to negatively regulate T cells function by inhibiting their proliferation and 
cytokines secretion. Study by Grosso et al. [ 186 ] showed that by either genetic abla-
tion or by antibody-mediated blockade of LAG-3 signifi cantly increased the accu-
mulation and effector function of anti-tumor CD8 T cells at the tumor site. In 
particular, dual blockade of LAG-3 and PD-1 exerted a synergistic effect in revers-
ing the anergy among anti-tumor CD8 T cells [ 187 ]. Substantial evidences suggest 
that an augmented CTL response against the tumor can also be achieved by block-
ing TIM-3, which has been shown to negatively regulate the T cell function. Zarour 
and colleagues convincingly showed that blockade of TIM-3 along with other 
checkpoint blocks like PD-1 could reverse the tumor-induced T cell exhaustion in 
patients with advanced melanoma [ 188 ]. This fi nding was further confi rmed by the 
study of Ngiow et al. [ 189 ] who showed that antibody-mediated blockade of TIM-3 
has signifi cant therapeutic potential in eradicating large and established tumor 
growth by eliciting an effective anti-tumor CTL response.  

14.2.3.4    Myeloid Derived Suppressor Cells (MDSC) 

 Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of imma-
ture monocytes, macrophages, neutrophils and DCs, accumulate in the blood, bone 
marrow, spleen and within the primary and metastatic tumor site of a tumor-bearing 
individual and expand dramatically as the tumor progresses [ 190 ] In mice, MDSCs 
can be identifi ed by the surface expression of the myeloid lineage differentiation 
antigen Gr1 (Ly6G and LyGC) and the α M  integrin CD11b. Like murine MDSCs, 
in cancer patients, MDSCs can be identifi ed primarily on the basis of 
CD11b + CD33 + CD34 + HLA-DR −  along with CD14 predominantly for monocytic- 
MDSCs (m-MDSCs) and CD15 for granulocyte-MDSCs (g-MDSCs) [ 191 ]. The 
hallmark of MDSCs is their ability to suppress the anti-tumor T cell response. 
Studies have shown that MDSCs can induce tolerance to the antigen-specifi c CD8 +  
T cells and inhibit their IFNγ production [ 192 ]. Kusmartsev et al. showed that 
MDSCs can take up soluble antigens, process and present then to their surface and 
induce antigen-specifi c T cells anergy [ 193 ]. Further studies revealed MDSC- medi-
ated secretion of ROS and NO, which are predominantly used by g-MDSCs and 
m-MDSCs, respectively, suppress the T cell function. It has been shown that higher 
expressions of the NADPH oxidase subunit p47phox and gp91phox are associated 
with the production of ROS whereas the elevated expression of iNOS is responsible 
for NO generation by the MDSCs [ 194 – 196 ]. Reports suggest that NO can itself 
inhibit anti-tumor T cell responses using a variety of different pathways including 
the induction of T cell apoptosis, inhibition of the activation of JAK3/STAT5 
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 signaling pathway [ 197 ], and inhibition of the MHC class II expression [ 198 ]. 
However, the inhibition becomes robust when the MDSC-mediated hyper-produc-
tion of NO and ROS combines with each other to form peroxynitrite [ 199 ]. 
Accumulation of peroxynitrite causes nitration of the TCR-CD8 complex and, thus, 
induces unresponsiveness of the CD8 T cells to antigen-specifi c stimulation by 
affecting the conformational fl exibility of the TCR/CD8 and its interaction with the 
peptide- loaded MHC [ 199 ]. Moreover, peroxynitrite can also lead to the nitration of 
MHC class I on tumor cells and inhibits their ability to present processed tumor 
antigens, thus rendering the tumor cells resistant to an antigen-specifi c CTL response 
[ 200 ]. A recent study also suggests that MDSC-derived peroxynitrite not only 
induces an unresponsiveness to antigen specifi c CTLs but also blocks their recruit-
ment to the tumor site by causing nitration of the chemokine CCL2 [ 201 ]. In addi-
tion, MDSCs by secreting IL10 and TGFβ can induce the generation of Tregs, 
which in turn can block the anti-tumor CTL responses [ 202 ]. 

 Targeting signaling pathways underlying the suppressive potential of MDSCs in 
combination with ACT would be a promising approach in eradicating cancer. 
Several attempts are currently being made to inhibit the suppressive property of 
MDSCs. One convincing approach is to use the pharmacological inhibitor of ROS 
and NO to block peroxynitrite generation, since it plays an immense role in sup-
pressing the anti-tumor CTL response. Indeed, Molon et al. reported that attenuat-
ing RNS generation by a novel NO-donating drug AT38 dramatically improves the 
effi cacy of ACT protocols by inducing a massive increase in the intratumoral T cell 
infi ltration leading to inhibition of MDSC-mediated nitration of the chemokine 
CCL2, generally involved in the migration of CTLs to the tumor site [ 201 ]. Various 
agents that deplete or interfere with the generation of MDSCs can be used in com-
bination with ACT to increase their functionality. For instance, the tyrosine kinase 
inhibitor sunitinib, which interferes with the generation and suppressive function of 
CD33 + HLADR −  and CD15 + CD14 −  MDSCs could be a good candidate to test in a 
combinatorial immunotherapy of cancer [ 203 ].  

14.2.3.5    Regulatory T Cells (Treg) 

 Regulatory T cells (Tregs), a subset of CD4 +  T cells characterized by the high sur-
face expression of CD25 and the lineage specifi c transcription factor FoxP3, sup-
press the effector functions of conventional T cells and play an important role in 
maintaining peripheral tolerance. Tregs were originally identifi ed as a small popula-
tion (>5 %) of naturally occurring CD4 +  T cells, and have a role in preventing auto-
immunity by curtailing the autoreactive T cells [ 204 ]. However, signifi cant interest 
on Tregs affecting the anti-tumor T cell response has arisen since they accumulated 
in many human tumors. Studies have shown that CD4 + CD35 + FoxP3 +  cells are 
highly abundant at both the tumor site and in the circulation of patients with head- 
neck, lung, liver, breast, ovary, pancreatic, and skin cancers and inversely correlates 
with the survival of patients [ 205 – 208 ]. This observation was further supported by 
the study of Curiel et al. which shows that specifi c accumulation of Tregs at the 
tumor site but not in the draining lymph nodes directly correlates with the reduced 
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survival of patients with malignant ovarian carcinoma [ 209 ]. The authors have also 
shown that the migration of Tregs to the tumor site is mediated by the chemokine 
CCL22 that is secreted by tumor cells and the micro- environmental macrophages. 
However, other studies suggest that infl ammation might be a factor for the recruit-
ment of Tregs to the tumor site [ 210 ]. It is also believed that the high amount of 
self-antigens generated from the dying tumor cells get recognized by Tregs and 
recruit them to the tumor site. Subsets of Tregs (iTregs) present at the tumor site are 
different from the thymus derived conventional Tregs (nTregs) required for the 
maintenance of peripheral tolerance. It has been shown that iTregs are induced by 
cytokines and soluble factors secreted by the tumor cells and are highly suppressive 
in nature. Reports have shown that the tumor cell-derived TGFβ plays a decisive 
role in the preferential generation and recruitment of iTregs to the tumor site since 
blocking TGFβ selectively impairs the function of iTregs without affecting nTregs 
[ 211 ]. It has been reported that in addition to the high surface expression of CD25 
and the transcription factor FoxP3, iTregs can be identifi ed by the expression of 
various surface markers including CTLA-4, GITR, LAG-3, CD39 and CD73, which 
are required for the suppressive function of Tregs [ 212 ,  213 ]. 

 Pioneering studies revealed that depletion of Tregs by administration of the anti-
 CD25 monoclonal antibody heightened T cell-mediated rejection of tumor growth. 
Study by Turk et al. [ 214 ] demonstrated that depletion of Tregs in tumor-bearing 
mice results in concomitant immunity to poorly immunogenic tumors. Another 
potential therapeutic approach for depletion of Tregs is the use of Denileukin difti-
tox (Ontak), a ligand toxin fusion consisting of full-length IL2 fused to the enzy-
matically active and translocating domains of diphtheria toxin [ 215 ]. The drug is 
specifi cally internalized by the CD25 +  T cells where the ADP-ribosyltransferase 
activity of diphtheria toxin is cleaved in the endosome, resulting in their transloca-
tion into the cytosol, where it inhibits protein synthesis, leading to apoptosis. Ontak 
has been approved by FDA for treating patients with cutaneous T-cell leukaemia/
lymphoma. But this drug can be used in other tumor models in order to decrease the 
frequency of Tregs so that anti-tumor CTL response can be generated. Furthermore, 
several other approaches thwarting the immunosuppressiveness of Tregs have been 
explored including the use of anti-GITR agonistic antibody to attenuate the suppres-
sive activity of Tregs and engagement of TLR-8 to reverse the function of Tregs. 
Heeger and his group have also shown that signaling through the C3aR/C5aR nega-
tively regulates the function of Tregs [ 216 ], and thus, the use of anti-C3aR/C5aR 
agonistic antibody could be exploited as a therapeutic target to manipulate the func-
tionality of Tregs so as to increase the anti-tumor CTL response.    

14.3     T Cell Metabolism 

 The nutrient requirements of any cell are linked with the metabolic pathways that 
are required for the cell to carry out its functionality. The energy machinery, there-
fore, drives either anabolic or catabolic processes depending on the needs of the 
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cell. The main source of energy, adenosine triphosphate or ATP, is generated in the 
cell by two major processes viz. (1) glycolysis and (2) oxidative phosphorylation. 
Carbohydrates, especially glucose, are the main source of energy in the cell. Amino 
acids and lipids are also utilized but the intermediates enter the tricarboxylic acid 
(TCA) cycle directly from where they subsequently follow similar pathways of oxi-
dative phosphorylation. T cell activation leads to dramatic shifts in cell metabolism 
in order to make the building blocks for daughter cells [ 217 ]. Quiescent T cells 
require predominantly ATP-generating processes, whereas proliferating effector 
T cells require high metabolic fl ux through growth-promoting pathways. Further, 
functionally distinct T cell subsets require distinct energetic and biosynthetic path-
ways to support their specifi c functional needs. Pathways that control immune cell 
function and metabolism are intimately linked, and changes in cell metabolism at 
both the cell and system levels have been shown to enhance or suppress specifi c 
T cell functions. As a result of these fi ndings, cell metabolism is now appreciated as 
a key regulator of T cell function specifi cation and fate [ 218 ,  219 ]. It is now appar-
ent that activation of T cells leads to an increase in the glucose uptake as well as 
production of lactate. Recent studies have shown that activated T cells increase the 
breakdown of glucose and glutamine in order to meet the requirements of produc-
tion of structural constituents prior to division. There is also a concomitant increase 
in the uptake of glucose by up-regulation of a soluble carrier family receptor, Glut-1 
[ 220 ]. Apart from proliferation, T cells differentiate on activation to become effec-
tors, whose main function is the production of effector cytokines for initiating the 
resolution of disease state [ 218 ]. It has been recently shown that CD4 T cells depend 
on glycolysis for the production of effector cytokines like interferon gamma (IFNγ) 
[ 221 ]. Further it has also been demonstrated that the initial activation phase requires 
the generation of reactive-oxygen species from the mitochondria [ 222 ]. It is there-
fore evident that energy metabolism plays an important role in regulating the func-
tion of T cells [ 217 – 219 ]. 

 The control of T cell function by metabolism and therefore, the disease outcome 
is a fi eld of active study and emerging studies in this fi eld have led to slow but 
 comprehensive understanding of the energetics of T cell biology. Proliferating 
T cells as well as the tumors that they are being used to treat are inherently glyco-
lytic in nature. Therefore, reduction in glucose availability for either the effector or 
the target is detrimental. Since the tumor cells are already established prior to 
immunotherapy, they have the ability to decrease the availability of glucose to the 
CTLs. Another requirement is for the CTLs to have the ability to form long-lived 
memory cells effi ciently. Complicating the matter further is the fact that T cells 
encounter lower levels of oxygen i.e. hypoxic conditions within the tumor microen-
vironment, which leads to the upregulation of a key regulatory molecule, HIF-1α, 
that causes an increase in the glycolytic rate. This balance between the extrinsic 
factors and its affect on T cell function and metabolism is depicted in Fig.  14.3 . 
Thus, ways to manipulate the bioenergetics of T cells in order for it to adapt to the 
glycolytically active tumor microenvironment will be a useful strategy to increase 
the life-span and function of the anti-tumor T cell effectors.  
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 A recent study has suggested that the use of the glucose analog 2-DG that limits 
glycolysis can improve long term T cell functionality by preserving the generation 
of long-term memory T cells. The report suggests that the inherent glycolytic nature 
of proliferating T cells leads them to become exhausted and terminally differenti-
ated, which makes them unsuitable for mediating long-term immune surveillance. 
Inhibition of glycolysis by using 2-deoxyglucose leads to activated T cells forming 
long-lived memory cells. Additionally and more importantly, this leads to the 
T cells being less susceptible to apoptosis due to the withdrawal of glucose by 
tumor cells in vivo [ 223 ]. The functionality of CTLs is a key factor that determines 
the effi cacy of therapy i.e. the effector molecules and cytokines secreted by the anti- 
tumor T cells determine the therapeutic potential of T cells. A recent study showed 
a link between the metabolic state of a T cell and the ability of T cells to metabolize 
glucose [ 221 ]. The study showed that IFNγ produced by T cells is dependent on the 
ability of T cells to utilize glucose and induce a key glycolytic enzyme, 

  Fig. 14.3    A schematic diagram illustrating how extrinsic factors can synergize or affect T cell 
intrinsic pathways that infl uences CTL fate. T cells utilize glucose as a primary carbon source for 
generating energy. Glucose is transported inside the cell by glucose transporter ( GLUT1 ). Glucose 
( yellow dots ) is converted to pyruvate in process known as glycolysis. Pyruvate may enter into 
mitochondria for generating ATP through oxidative phosphorylation (OXPHOS). OXPHOS or 
mitochondrial respiration produces reactive oxygen species (ROS— red dots ). Increase in GLUT1 
may suggest higher glucose uptake. Increased glycolysis and increased glucose uptake have been 
associated with increased T cell effector functions. On the other hand increase in OXPHOS is 
associated with memory generation. It is also suggested that increased OXPHOS may increase 
longevity/survival of T cells. However, this is not yet completely understood ( red question mark ). 
There may exist a crosstalk between mTOR pathway, glycolysis and OXPHOS. It is known that 
blocking mTOR increases memory generation. However crosstalk between mTOR and glycolysis 
is still under investigation ( red question mark ). Extrinsic factors such as IL2, IL12, IL15 and IL21 
may affect one of these pathways, thereby effecting effector function or memory T cell generation       
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glyceraldehyde- 3-phosphate dehydrogenase (GAPDH), which regulates the 
 translation of IFNγ. Therefore, it is evident that T cells require glucose for their anti-
tumor functionality but inhibiting their glycolysis for a short time during the effec-
tor phase enhances long-term anti-tumor immunity. 

 Different polarized T cells such as Th1, Th2, and Th17 among others, have 
shown promise for anti-tumor therapy. These T cells differ in their cytokine 
 production patterns and consequently, in their metabolic states as well [ 218 ]. The 
cytokine- induced polarization also modulates the metabolic signaling within the 
T cells. A recent study has shown that Teff and Tregs require distinct metabolic 
programs to support these functions. Th1, Th2, and Th17 cells express high surface 
levels of the glucose transporter Glut1 and are highly glycolytic. Tregs, in contrast, 
expressed low levels of Glut1 and have high lipid oxidation rates [ 218 ]. The mTOR 
and AMPK pathways are important regulators of the balance of energy metabolism 
in T cells. mTOR regulates glycolysis whereas AMPK promotes oxidative phos-
phorylation and lipid oxidation. Data suggests that the effector T cell subsets are 
preferentially glycolytic and activate mTOR to various degrees for energy genera-
tion [ 224 ]. A recent study has also dissected the requirement of fatty acid oxidation 
in memory T cells [ 225 ]. The study also shows that there is a transition (to what?) 
of the metabolic state when memory T cells generate an effector response. Inhibitors 
of glycolysis such as rapamycin have also been shown to enhance the memory-like 
phenotype without affecting the effi cacy of T cells [ 148 ]. In essence, the role of 
metabolism in regulating T cell responses is very important and different avenues of 
modulating the metabolic state are being studied so as to improve T cell responses 
and get a better therapeutic effi cacy.  

14.4     T Cell Aging 

 Age has been a factor that is closely associated with the occurrence of cancer. The 
accumulation of somatic mutations, telomeric instability and epigenetic dysregula-
tion increases with age leading to the phenomenon of cellular senescence [ 226 ]. The 
breakdown of internal regulatory mechanisms in the cell leads to genomic instabil-
ity that fi nally initiates tumorigenesis. Another consequence of this dysregulation is 
degeneration of the ability of the immune system to maintain proper immunosur-
veillance. This is an additional factor that leads to increase in chances of tumorigen-
esis. More importantly, age is a major hurdle in the immunotherapy of cancer. Aging 
is a natural process that leads to a decrease in functionality and effectiveness of the 
immune system. Specifi cally, there is a decrease in the number of hematopoietic 
progenitor cells and involution of the thymus that leads to a reduction in the naïve 
pool of T cells. CD4 T cells in an aging individual lose their ability to get stimulated 
adequately because of their inability to form stable, functional synapses and, there-
fore, are not able to proliferate and differentiate. Further defects in the B cell com-
partment also lead to a poorer differentiation of Th cell subsets [ 227 ,  228 ]. CD8 
T cells, on the other hand, show a shift in the available repertoire of TCR Vβ due to 
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the variety of infections encountered during an individuals’ lifetime and hence, may 
not be able to respond adequately to the different tumor antigens [ 229 ]. Additionally, 
there is also an increase in the regulatory populations such as Treg’s that retard the 
generation of a potent immune reaction. All of these factors lead to a poorer immune 
response to tumor antigens in an aged individual. 

 The goal of CTL therapy is to be able to engineer the T cells from a patient and 
then infuse them back, such that there is an increase in the effi ciency of T cells in 
recognizing and eliminating tumor cells. The underlying assumption is that the T 
cells that are isolated from patients are functional and are amenable to manipula-
tions that are done ex vivo before infusion. Another issue of concern is the ability of 
the infused cells to persist in the patient and perform the cytolytic activity. T cells in 
an individual progressively lose their function and become deregulated by a process 
known as immunosenescence. At a single cell level, T cells lose their ability to 
respond effectively to stimuli due to various factors such as changes in signal trans-
duction, costimulatory molecules, membrane fl uidity and/or the formation of the 
T cell receptor complex itself. It has been suggested that the membrane fl uidity in 
T cells from aged individuals is compromised, which leads to poorer formation of 
the TCR complex [ 230 ]. This has been attributed to an increased level of membrane 
cholesterol that is associated with ageing [ 231 ,  232 ]. Further downregulation of 
costimulatory molecules such as CD28 also leads to poorer ability of T cells to initi-
ate a T cell signaling cascade [ 233 ]. The loss of such receptors leads to changes in 
signaling effi ciencies between young and old individuals which results in differ-
ences in the cellular outcome i.e. activation, proliferation and apoptosis. Reports 
studying T cell clones at different passage stages suggest a global change in the 
gene expression of molecules involved in signal transduction and apoptosis [ 234 ]. 
Further, there is also evidence to suggest that T cells from aged individuals show 
poorer activation of the Src family kinase, Lck, during activation of T cells [ 235 ]. 

 The apparent problems in ageing, therefore, need to be overcome in order to 
improve the immunotherapy using an aged immune system. Aging also leads to 
reduction in the telomere length. However, a recent study shows that substituting a 
glucose rich diet can increase the lifespan of telomerase knockout (KO) mice with 
a dysfunctional telomere [ 236 ]. High glucose diet also rescued a dysfunctional 
mitochondrial metabolism in telomerase knockout (KO) mice. This study showed 
that blocking mTOR by rapamycin may reduce the rescue of mitochondrial 
 biogenesis [ 236 ]. However, this study does not account for the energy metabolism 
in T cells, however, we have recently reported that using rapamycin reduces mito-
chondrial respiration in anti-tumor T cells [ 148 ], and improves in vivo CTL’s sur-
vival. Therefore, regulating the metabolism in aged T cell may be helpful for T cell 
adoptive therapy. Reports suggest that the hematopoietic progenitor cells, which 
have the capability to self-renew, can be used to generate T cells, which would be 
similar to those from a young individual [ 237 ,  238 ]. Further thymic involution, 
which is the main reason for loss of young cells, can be reversed by the use of IL7, 
growth hormones or keratinocyte growth factors [ 238 ]. The signal strength to acti-
vate T cells can be boosted by using adjuvants that can activate other receptors 
whose signaling cross talks with that of the TCR [ 237 ,  239 ]. Further, recent advances 
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have also improved the potential for personalized medicine, which can be used to 
identify T cells that have the potential to mediate tumor regression in aged individu-
als so as to achieve improved specifi cities. Overall, rejuvenation of the aged immune 
system will involve identifying different pathways that cause T cells to lose func-
tionality and targeting these pathways will be the key to a better immunotherapy in 
these individuals.  

14.5     Future Strategies 

14.5.1     Genetic Modifi cation of T Cells for Immunotherapy 

 With the development of retroviral gene transfer technology, it is now possible to 
effi ciently endow T cells with antigen-specifi c receptors. Recently, two clinical tri-
als successfully used this approach to show that normal autologous T lymphocytes 
transduced ex vivo with anti-TAA–TCR genes and re-infused in cancer patients can 
persist and express the transgene for a prolonged time in vivo and mediate the dura-
ble regression of large established tumors [ 240 ,  241 ]. Thus, genetic modifi cation of 
T cells, prior to adoptive transfer, has provided a potential means to overcome many 
other obstacles and enhance the effi cacy of T-cell therapy. We have been able to 
retrovirally transduce an antioxidant enzyme, catalase in human T cells and protect 
them from oxidative stress [ 242 ]. The T cells thus obtained with high catalase, 
expression were able to better overcome the hydrogen peroxide (H 2 O 2 )-mediated 
oxidative stress and retain functionality (Fig.  14.4 ). We foresee that combining TCR 
transductions with molecules that could rescue CTLs from cell death and increase 
persistence could improve immunotherapy.   

14.5.2     TCR Gene Transfer for the Immunotherapy of Cancer 

 The ultimate goal of cancer immunotherapy is to manipulate the immune system of 
cancer patients to eliminate malignant cells. Research has mainly focused on the 
generation of effective, antigen-specifi c T-cell responses because of the general 
belief that T-cell immunity is essential in controlling tumor growth and protection 
against viral infections. However, the isolation of antigen-specifi c T cells for thera-
peutic application is laborious, and it is often impossible to isolate and expand 
autologous, tumor-specifi c T cells for adoptive immunotherapy. Therefore, strate-
gies are being developed to genetically transfer tumor-specifi c immune  receptors 
into patients’ T cells. This alternative gene therapy approach that can provide anti- 
tumor immunity to any cancer patient, regardless of their immune status, has been 
described in the literature [ 243 ]. Since TAAs are recognized by the TCR on the T 
lymphocyte surface, which is composed of the TCR α and β chains, this approach 
involves identifying and cloning the TCR genes from tumor-reactive T cells, 
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constructing a vector capable of introducing these genes into normal T cells, thereby 
genetically modifying the patients T cells ex vivo, and returning these TCR gene- 
modifi ed T cells to the patient. The genes encoding the TCR that are specifi c for a 
variety of TAA have now been cloned, including the TCR-recognizing MART-1 and 
gp100 melanoma/melanocyte differentiation antigens, the NYESO-1 cancer-testis 
antigen that is present on many common epithelial cancers, and an epitope from the 
p53 molecule, which is expressed on the surface of approximately 50 % of cancers 
of common epithelial origin [ 244 ,  245 ]. 

 In each case, these antigens were detected by the TCR when they were presented 
as peptides by molecules encoded by the major histocompatibility complex (MHC) 
protein human lymphocyte antigen (HLA)-A2. Thus, initial studies validated this 
approach to use a TCR reactive with the HLA-A2-restricted MART-1 27–35  epitope 
and subsequently, TCR reactive to other tumor antigens as gp-100, p53, HCV, WT1 
were isolated, cloned and characterized in in vitro and in vivo models, which 
strengthened the case for their subsequent use in human trials [ 240 ,  246 – 248 ] .  With 
the development of retroviral gene transfer technology, it is now possible to 
 effi ciently endow T cells with antigen-specifi c receptors and use this powerful 
approach to rapidly generate large number of tumor-specifi c T lymphocytes for 
adoptive transfer to cancer patients. Recently, two clinical trials successfully used 
this approach of genetically engineering T cell specifi city by TCR gene transfer. 
Results from these studies proved that normal autologous T lymphocytes, trans-
duced ex vivo with anti-TAA–TCR genes and reinfused in cancer patients, can 
persist and express the transgene for a prolonged time in vivo and mediate durable 
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  Fig. 14.4    Engineering 
anti-oxidant overexpression 
in T cells reduces 
susceptibility to oxidative 
stress. ( a ) Catalase 
transduced Jurkat T cells 
(JE6.1) were exposed to 
hydrogen peroxide (H 2 O 2 ) at 
various concentration for 
48 h and viability was 
determined using Annexin/PI 
staining. ( b ) Catalase ELISA 
using Jurkat cells that were 
used in the A, confi rming the 
differences in catalase 
expression in T cells with or 
without transduction          
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regression of large established tumors. Although the response rate was lower than 
that achieved by the infusion of autologous tumor infi ltrating lymphocytes (TILs) 
(50 %) [ 68 ], this method has the potential for use in patients for whom TILs are 
not available. These trials also ameliorated toxicity concerns related to gene-mod-
ifi ed T cells—the multitude of divisions required to obtain a billion T cells does 
not lead to transformation of T cells that can possibly adversely affect patients. 
Thus, engineering PBLs to express high-affi nity TCRs enables in vitro recognition 
of TAAs expressed on a variety of common cancers, even in immuno-compro-
mised individuals. 

14.5.2.1     Strategies for Improving TCR Gene Transfer 
for Immunotherapy 

 Various investigators are now improving this new technological advancement by 
focusing on a common goal of either increased TCR surface expression or increas-
ing TCR affi nity to enhance the biological responses (that translates functionally as 
tumor regression). To this end, adding a single cysteine on each receptor chain to 
promote the formation of an additional inter-chain disulfi de bond has been recently 
shown to improve TCR gene transfer [ 249 ]. This approach overcomes a major limi-
tation resulting from mispairing of the introduced chains with the endogenous TCR 
subunits, which leads to reduced TCR surface expression and subsequently, to lower 
biological activity. The expression of cysteine-modifi ed receptors was higher on the 
surface of human lymphocytes compared with their wild-type counterparts and 
showed larger amounts of cytokine secretion and specifi c lysis when cocultured 
with specifi c tumor cell lines. Enhanced anti-tumor activity associated with 
improved pairing and TCR/CD3 stability has also been found in human lympho-
cytes, when transduced with murine-human hybrid TCR created by swapping the 
original constant regions with either human or mouse ones, respectively [ 250 ]. 
Furthermore, it has also been shown that high-affi nity, peptide-specifi c TCR can be 
generated by mutations in CDR1, CDR2, or CDR3 without altering T-cell specifi c-
ity [ 251 ,  252 ]. A recent study has compared the response of high- and low-affi nity 
TCRs towards a comprehensive set of peptides containing single substitutions at 
each TCR contact residue, and this specifi city analysis suggested that the increase 
in affi nity also results in a dramatic increase in the number of stimulatory peptides 
[ 75 ]. Thus, efforts are directed at either improving TCR affi nity of already existing 
low-affi nity TCR or isolating naturally occurring, high-affi nity TCRs to improve 
TCR gene transfer immunotherapy.  

14.5.2.2     Strategies to Improve Tumor Targeting by T Cells 
for Immunotherapy 

 Apart from different strategies to improve tumor antigen recognition by T cells and 
expression of high affi nity TCRs, researchers have been developing methodologies 
for improving TCR independent tumor recognition by T cells. These include 
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 molecules such as chimeric antigen receptors (CARs) and bi-specifi c antibody 
T cell engager (BiTE). CARs are artifi cial T cell receptors that are recombinant 
proteins consisting of an extracellular domain conferring antibody-like specifi city 
to tumor cell-surface antigen and an intracellular domain for amplifying TCR sig-
nals [ 253 ]. Different iterations of CARs have been generated, each enhancing the 
signal strength and downstream functionality of T cells. The fi rst generation CAR 
incorporated the intracellular domain of CD3ξ chain, thus amplifying the TCR sig-
nal. Second generation CARs provide for the intracellular domain of co-stimulatory 
molecules like CD28 [ 254 ], 4-1BB [ 255 ,  256 ], OX-40 [ 257 ] or ICOS [ 258 ], to name 
a few. The more recent third generation CAR includes intracellular domains for 
both CD3ξ as well as co-stimulatory molecules to further increase the potency of 
therapy. Expression of this molecule on the T cell surface reduces off target effect 
as well as improves the specifi city of T cell activity. Also signaling through the co- 
stimulatory, CARs lead to improved functionality and persistence of the transferred 
T cells [ 254 – 258 ]. Further signaling through the CAR has also been shown to 
reduce AIED in T cells [ 259 – 262 ], thereby, further enhancing the ability of T cell to 
persist in the host. 

 Another modality for treatment that has been promising is the use of monoclonal 
bi-specifi c antibodies along with T cell therapy to improve tumor targeting by 
T cells. Bi-specifi c T cell engagers or BiTEs mediate stronger interactions between 
T cell and target cells by binding both to the CD3 on T cells and tumor-specifi c 
epitope on the tumor cell [ 263 ]. When BiTEs are used along with T cell therapy, there 
is no requirement for T cell to engage MHC on tumor cell and, therefore, BiTEs 
mediate MHC independent but TCR signaling dependent activation of T cells in 
close proximity of the tumor cells. Treatment of B cell malignancies by using CD3–
CD19 BiTE has shown to improve the effi cacy of T cells in clearing tumor B cells. 
Further, it has also been shown to be better than the use of to tandem antibodies 
[ 264 – 266 ]. Similar approaches have also been used along with NK cell therapy and 
the antibody used therein is called bi-specifi c killer cell engager (BiKE). These 
BiKEs have a CD16 binding antibody domain along with the antibody domain 
binding to specifi c tumors, thus, leading to the activation of NK cells and mediating 
tumor killing [ 267 ,  268 ]. Further, with the increased understanding of the molecular 
regulators of T cells at the level of microRNAs (miRNAs), which small endoge-
nously processed RNAs regulating key gene expression and controlling cellular 
functioning, several novel strategies to improve CTL response by targeting miRNA 
(or other coding and non-coding RNA, RNA binding proteins) could be envisioned. 
Several thousands of miRNAs exist in the human genome and each has more than 
one mRNA target [ 269 ]. In T cells, miRNAs play a crucial role in differentiation of 
various effector T cells subtypes and, thus, maintain the balance between effector 
and regulatory T cells [ 270 ,  271 ]. Recent evidence suggests that miRNAs can 
 regulate the activation of mTOR signaling in T cells resulting in the determination 
of the effector function of the T cells. It has been shown that miRNAs can be of 
potential targets to override anergy induction in T cells and, thus, would be very 
useful in T cells therapy of cancer. Recent combinatorial approach with CAR-
transduced T cells with co-transduction of miRNA-17-92 have shown improved 
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therapeutic potency in patients with glioblastoma [ 272 ]. It is evident from these 
studies that miRNAs would be an important area to investigate in order to improve 
the effi cacy of T cells immunotherapy of cancer. Therefore, with the evolution of 
gene engineering techniques, improvements in T cell therapy would eventually lead 
to a better future for cancer patients.    

14.6     Conclusion 

 Cancer therapies based on stimulating the patient’s immune system represent an 
important treatment modality, but much remains to be discovered to optimize their 
use. Naive T lymphocytes, following activation with antigen (Ag), differentiate into 
short-lived effector cells and long-lived memory T cells [ 12 ]. Vaccine effi cacy 
might be improved by strategies that are designed to modulate the expansion and 
contraction of the effector T-cell response [ 273 ]. A careful evaluation of the immu-
notherapeutic protocols and innovative strategies that would help the persistence of 
T cell subsets are needed [ 274 ]. The multiplicity of cell death pathways, targeting 
positive and negative co-stimulation, cytokines, metabolic commitment and rele-
vant proteins in CTL provides additional opportunities to develop new strategies for 
therapeutically increasing effector T cell persistence and function (Fig.  14.5 ).      

  Fig. 14.5    A summary of multiple approaches and the factors that could result in differences in 
quality of the CTL employed for adoptive T cell therapy of cancer. Skewing any of the marked 
conditions is likely to integrate and infl uence other listed parameters and modulate the eventual 
outcome of CTL function or persistence in immunotherapy       
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In Chapter 4 Opener page and also in bottom of page 73, it should read as Stephanie 
Corgnac.

In page 74, line 21: The phrase “a still are elevated fraction of patients does not 
respond” should be “a still elevated fraction of patients does not respond”

In page 79, line 1: the sentence “The cell–cell and cell-ECM adhesion proprieties of 
integrins are responsible for tumor cell migration and invasion.” Should be “The 
cell–cell and cell-ECM adhesion properties of integrins are responsible for tumor 
cell migration and invasion”.
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