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Abstract Kernel selection is a main factor in the designing of support vector
machines. Evolutionary techniques have been applied to select the fittest kernel for
specific classification problems. However, technical issues emerge when attempting
to apply this methodology to deal with large datasets. On the other hand, a new
method for improving the training time of support vector machines was recently
developed. In this chapter, the new method is integrated in a kernel evolution
scheme. Ten benchmark datasets are tested. Results indicate that the new method
speeds up the evolution process when datasets are greater than 1000 instances.

1 Introduction

Support Vector Machines (SVMs) have been widely used for pattern classification.
Key design aspects for achieving high performance rates in SVM classification
involve: selection of the quadratic programming solver, kernel parameter tuning
and kernel selection [1–3].
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Kernel selection is useful when training an SVM with non-linearly separable
data. The reason is that a kernel is generally a non-linear function that maps the
original input space into a high-dimensional dot-product feature space in order to
enhance linear separability [4]. Until now, there not exists a systematic way to
choose the fittest kernel for a given dataset [5].

Furthermore, one single kernel could be not enough to reach good generalization
rates. A current trend consists in combining two or more kernels with the intention
to increase the generalization capability of an SVM [6]. This strategy is called
Multiple Kernel SVM [2].

Recent approaches had considered evolutionary strategies to automatically
choose a multiple kernel that best fit to a specific dataset [1, 7]. Approximate
methods such as evolutionary strategies are needed since the problem of finding the
best multiple kernel for a specific dataset is NP-complete [8]. However, these
strategies involve prohibitive computational costs as the size of the dataset increases.

It is known that training a standard SVM has a complexity between Oðn2Þ and
Oðn3Þ where n is the number of input vectors [3, 9]. Furthermore, the size of the
associated Gram matrix is n� n (see Sect. 2.2), therefore, the cost in time and space
that should be paid in every evaluation of the fitness function when evolving
kernels is high.

In this chapter a new method is integrated into an evolutionary scheme in order
to prove the hypothesis that, by applying it to a dataset, is possible to reduce the
computational burden inherent to the evolution process and, in consequence, to
accelerate the evolution of kernels for large datasets.

Section 2 provides fundamental definitions and a brief description of the tech-
niques applied in this work. The evolutionary scheme integrating the new method,
the materials and configurations used to carry out experiments are established in
Sect. 3. Finally, a discussion about main results, future research guidelines and
conclusions are provided in Sect. 4.

2 Theoretical Basis

In this section three methods are briefly described, namely, C-SVM, Genetic
Programming (GP) and Decision Tree Support Vector Machines (DTSVM). In
addition, some fundamental concepts are given in logical order.

2.1 Support Vector Machines

SVMs are non-probabilistic binary classifiers that can be used to construct a
hyperplane to separate data into one of two classes. Its formulation is as follows [4,
10]:
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Given a training dataset D ¼ xi; yif gmi¼1 where xi 2 X;X � Rn; yi 2 þ1;�1f g,
SVM classifies with an optimal separating hyperplane, which is given by:

h xð Þ ¼ wTxþ b ð1Þ

When working with data non-linearly separable, this hyperplane is obtained by
solving the following quadratic programming problem:

min
1
2
wTwþ C

Xm
i¼1

ni

 !

s:t: yiðwTxi þ bÞ� 1� ni; ni [ 0 for i ¼ 1; . . .;m

ð2Þ

where ni are slack variables to tolerate miss classifications and C[ 0 is a regu-
larization parameter. Introducing the nonnegative Lagrange multipliers a and b and
following the Karush-Kuhn-Tucker conditions:

rwL ¼ w�
Xm
i¼1

aiyixi ¼ 0 ð3Þ

rbL ¼ �
Xm
i¼1

aiyi ¼ 0 ð4Þ

rnnL ¼ C � ai � bi ¼ 0 ð5Þ

the problem (2) can be proved to be equivalent to the following dual problem

Max L að Þ ¼
XM
i¼1

ai � 1
2

Xm
i¼1

Xm
j¼1

yiyjaiajkðxi; xjÞ

s:t: C� ai � 0 8i ¼ 1; . . .;m

and
Xm
i¼1

aiyi ¼ 0

ð6Þ

This expression is considered the standard version of an SVM and is called C-
SVM.

2.2 Kernel, Multiple Kernel and Gram Matrix

Kernel A function K x; x0ð Þ defined on Rn � Rn is called a kernel on Rn � Rn or
kernel briefly if there exists a map / from the space Rn to the Hilbert space
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/ : Rn ! H such that K x; x0ð Þ ¼ /ðxÞ � /ðx0Þð Þ where (·) denotes the inner product
of space H [11]. Some common kernel functions are shown in Table 1 [12].

Multiple Kernel Is denoted as Kg xi; xj
� � ¼ fg Km xmi ; x

m
j

� �n oP

m¼1

� �
where the

combination function fg:RP ! R, can be a linear or a nonlinear function and g
parameterizes the combination function. The more common implementation is:

Kg xi; xj
� � ¼ fg Km xmi ; x

m
j

� �n oP

m¼1
jg

� �
ð7Þ

where the parameters are used to combine a set of predefined kernels (i.e., the
kernel functions and corresponding kernel parameters are known before training)
[2]. To implement a multiple kernel in an SVM, the requirement is that it fulfills the
Mercer conditions [13]:

K x; x0ð Þ ¼
X1
i

aiui xð Þui x
0ð Þ; ai [ 0

Zb

a

Zb

a

K x; x0ð Þg xð Þg x0ð Þdxdx0 [ 0

ð8Þ

where the variables x and x0 are defined in the closed square a� x� b, a� x0 � b
and gðxÞ and gðx0Þ are any function continuous in ða; bÞ.
Gram Matrix For a function K x; x0ð Þ:Rn � Rn ! R and l points x1; . . .; xl 2 Rn, the
l� lmatrixG, of which the i-th row and the j-th column element is Gij ¼ K xi; xj

� �
, is

called the Gram matrix of the function K x; x0ð Þ with respect to x1; . . .; xl [11].

2.3 Genetic Programming

This paradigm can search the space of possible computer programs for an indi-
vidual computer program that is highly fit in solving the problem at hand. Genetic

Table 1 Some common kernel functions

Kernel K x; x0ð Þ ¼ Kernel K x; x0ð Þ ¼
Lineal xTx0 Powered �jjx� x0jjb 0\b� 1

Polynomial r� xTx0 þ rð Þd Log � log 1þ x� x0jjb
� �

0\b� 1

RBF
e �jjx�x0 jj2

r2

� �
Generalized
Gaussian

e� x�x0ð ÞTA x�x0ð Þ

where A is a symmetric PD matrix

Sigmoid tanh r� xTx0 þ rð Þ Hybrid
e�

jjx�x0 jj2
r2 � sþ xTx0ð Þd
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Programming (GP) has been shown to be capable of inducing programs for fields as
optimal control, planning, symbolic regression, automatic programming, and pat-
tern classification among others. The induction is a result of the combination of an
efficient learning procedure and expressive symbolic representations [14].

The program structure is closely related to a fitness function that guides certain
evolution process. In the case of kernel evolution, tree data structures are commonly
used for encoding programs as chromosomes. GP has been applied to find opti-
mized kernel functions for SVM classification [1, 7]. In Fig. 1 a multiple kernel
encoded as a tree is exemplified and correspond to the expression:

Kg xi; xj
� � ¼ KS xi; xj

� �þ KL xi; xj
� �� �

2� KL xi; xj
� �� K2

S xi; xj
� �� � ð9Þ

where S ¼ KS xi; xj
� �

and L ¼ KL xi; xj
� �

are the Sigmoid and Linear Kernel,
respectively.

For kernel construction the next three steps are suggested: find out basic kernels,
find out the operations keeping kernels and construct kernels from basic kernels
applying operations [11]. In this work, the basic kernels are four: Linear, RBF,
Sigmoid and Polynomial. Two keeping kernels operations are considered, addition
þð Þ and multiplication �ð Þ. GP is used to construct kernels from basic kernels
applying operations.

2.4 Decision Tree Support Vector Machine

Decision Tree Support Vector Machine (DTSVM) is a method for data reduction
and was recently proposed in [3]. DTSVM aims to build a subset (XR) of original
set (X) such that XR be much smaller than X, i.e., XR � X: XRj j � Xj j. To obtain
such a subset, the C4.5 algorithm is used to derive a Decision Tree (DT) which
partitions the input space into regions with low entropy. Then, adjacent regions with
opposite class label are detected. Finally, a Fisher Linear Discriminant (FLD) is
applied to choose a proportion of elements nearest to the decision boundary whose
could be support vectors. Figure 2 shows an illustration of the method.

Fig. 1 Multiple kernel
represented as a tree
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In Fig. 2, a two class problem in R2 space is presented. The original dataset Xð Þ
involves 18 instances, ten positives and eight negatives. C4.5 algorithm is applied
to X and a DT is obtained as a result. Each leave Lið Þ of the induced DT represents
one of the regions in which R2 space has been divided. Each region is labeled with
the majority class in order to detect regions with opposite label. Finally a FLD is
applied to each pair of opposite regions to select a subset XR whose elements are
supposed to be support vectors. For deeper insight refer to the original work [3].

3 Methodology and Experiments

In this section, a kernel evolution process is described. Materials and experiments
settings are specified.

3.1 General Overview for Kernel Evolution

Figure 3 illustrates the phases into which the kernel evolution process is split. First,
a random population is created and genetically modified. Kernels obtained with
genetic operators are used for training an SVM classifier. The classifier is training
for a specific dataset by means of the libsvm method [15]. Accuracy is considered

Fig. 2 Numerical example of DTSVM method. a Original dataset. b Induced decision tree from
dataset. c Partition derived from DT. d Opposite regions to consider in FLD
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as a quality measure. The kernel with the best quality is passed to the population for
the next generation replacing the worst individual.

In order to keep the evolution process as simple as possible, the accuracy rate for
each candidate solution was calculated over the original data.

3.2 Datasets

Ten datasets with different number of instances and attributes were used in
experiments. Table 2 provides relevant information about each dataset. The dataset
sources are: the UCI machine learning [16], libsvm and delve [15] repositories.

Fig. 3 Multiple kernel evolution. a Without data reduction. b Using data reduction

Table 2 Datasets for experiments

Dataset Instances Attributes Number of positives Number of negatives Source

Haberman 306 3 225 81 UCI

Ionosphere 351 34 124 217 UCI

Breast 683 10 444 239 UCI

Pima 768 8 500 268 UCI

Fourclass 862 2 307 555 libsvm

Splice 1000 60 517 483 delve

a4a 4781 123 1188 3593 UCI

a5a 6414 123 1284 5130 UCI

a6a 11,220 123 2692 8528 UCI

cod-rna 59,535 8 19,845 39,690 libsvm
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Table 3 lists the settings for the evolution process. Replications are the times a
whole evolution process was run for a specific dataset. Population size indicates the
number of multiple kernels randomly generated. Tree depth specifies the maximum
number of levels a tree can reach.

Generations stablishes the times the whole kernel population is genetically
modified and evaluated. � stands for the tolerance error in accuracy rate. C repre-
sents the SVM error penalty. d; r and r are kernel parameters. CL is the number of

classes. p ijtð Þ ¼ yi¼tj j
Xj j is the probability of example i to be in class t.

Parameters were chosen to construct a context in which the evolution process
could be fully measured using a small amount of time. It is important to point out that
any other parameter configuration could have been used without loss of expression
since the main goal is to observe if the evolution process implementing the DTSVM
method is finished faster than without implementing it under the same scenario.

All experiments were run in a computer with the next features: i7 core 3.2 GHz
processor, 8 GB RAM, 100 GB SSD. Java 8 SE was the programming language
and Windows 7 ultimate the operating system. The random number generator for
tests was the one implemented by Random java class. For each replication the
current time was considered as initial seed.

4 Results and Discussion

In Fig. 4 it is shown the time required for evolving kernels with and without using
DTSVM. The vertical axis measures the time in log10 tð Þ scale, where t is in sec-
onds. The horizontal axis measures the number of instances a dataset contains.

Table 3 Configuration of algorithms for kernel evolution

Parameters for
genetic programming

Value Parameters for
SVM and DTSVM

Value

Replications 50 C 2

Population size 5 d (degree) 2

Tree depth 3 r (scale) 1

Generations 2 r (offset) 0

� (Stop criterion) �\10�3 DT algorithm C4.5

Mutation rate 0.2 Impurity measure.
Entropy (t) � PCL�1

i¼0
p ijtð Þ log2 pðijtÞCrossover rate 0.8

Operator set �;þf g DT pruning Post pruning

Terminal set {Linear, sigmoid,
polynomial, RBF}

DT stop splitting
criterion

10 % of dataset
in one leaf

Initialization method Grow Proportion of
support vectors
candidates

10 % of closest
element to the FLD
threshold

Mutation method One point

Selection method Binary selection
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Fig. 4 Box plot of time for evolving kernels with genetic programming

Table 4 Numerical results for kernel evolution

Dataset Instances Method Max. Avg. Med Min Std. dvt.

Haberman 306 libsvm 5.75 2.31 2.03 0.70 1.10

DTSVM 7.38 3.08 2.83 0.66 1.63

Ionosphere 351 libsvm 0.13 0.05 0.05 0.01 0.03

DTSVM 0.19 0.05 0.04 0.01 0.04

Breast 683 libsvm 0.03 0.02 0.02 0.01 0.01

DTSVM 0.05 0.02 0.02 0.01 0.01

Pima 768 libsvm 20.48 3.83 3.11 0.16 3.33

DTSVM 12.10 2.61 1.74 0.52 2.79

Fourclass 862 libsvm 12.83 3.28 3.28 0.19 2.05

DTSVM 11.37 2.07 1.53 0.05 1.92

Splice 1000 libsvm 4.85 2.47 2.46 0.89 0.90

DTSVM 4.10 1.25 1.10 0.40 0.74

a4a 4781 libsvm 124.19 55.63 56.81 13.08 22.62

DTSVM 47.25 19.63 17.51 4.23 9.71

a5a 6414 libsvm 163.15 82.42 73.97 27.85 32.46

DTSVM 111.58 46.87 44.01 19.03 22.53

a6a 11,220 libsvm 1570.51 486.55 386.66 33.67 355.86

DTSVM 292.68 100.87 71.96 20.41 82.93

cod-rna 59,535 libsvm 5857.27 3321.75 2680.18 2069.38 1725.03

DTSVM 1138.75 808.94 814.31 468.38 274.86

Times are presented in minutes
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In each pair, the first box and the second box represents the behavior of training an
SVM with or without using DTSVM respectively.

It can be observed from the chart that the bigger the dataset is, the more benefit
from the new method is obtained. With small datasets (less than 1000 instances) the
method has random behavior and the time required for evolving kernels is more
likely to be dependent on the dataset complexity or any other variable rather than
the dataset size.

Table 4 summarizes the statistics of training time (in minutes). For each dataset
the first row represents the results of training only with libsvm. The second row
shows results of applying data reduction DTSVM and then training with libsvm.
Large datasets are notoriously benefited from data reduction.

5 Conclusion and Future Directions

In this chapter the DTSVM method was tested for kernel evolution on large
datasets. Results indicate that evolutionary strategies could take advantage from the
data reduction method when datasets are greater than 1000 instances. For smaller
datasets, variations in time make explicit the need to carry out further research in
order to determine if a correlation exists between the dataset size and the time
required for evolving kernels with DTSVM.

Based on the fact that kernel evolution has been recently analyzed only with
small datasets, and considering that methods for training SVMs faster are emerging
as a current trend, authors believe that this is, likely, the first work that focus the
kernel evolution for large datasets.

Results motivate to explore future directions. Authors suggest: to analyze the
effect of more methods for fast training of SVM in kernel evolution; to extend the
diversity of datasets to increase the confidence training time results; to study how
the new method impacts in the algorithmic complexity for training an SVM.
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