
Chapter 8
Balancing of a 3-DOFs Parallel Manipulator

D. Cafolla, G. Carbone, and M. Ceccarelli

Abstract This chapter gives an overview on static and dynamic balancing. Basic
approaches are discussed for achieving the design of mechanisms having a fully
balanced behavior under different operation conditions. A formulation is proposed
to address the effects of balancing on mass distributions and dynamic performance.
The proposed formulation is applied for the dynamic balancing of a three DOFs
(degrees-of-freedom) spatial parallel manipulator, namely CaPaMan 2bis (Cassino
Parallel Manipulator 2bis). This parallel manipulator has three identical legs, where
each leg is composed by a four-bar mechanism, an orthogonal revolute joint, and
a spherical joint that is attached on the mobile platform. The proposed solution
for achieving the balancing of CaPaMan 2bis is based on the use of counter-
rotary counterweights. The obtained results are validated by simulations by using
a general-purpose software for multi-body dynamics analysis.
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8.1 Introduction

Inertia forces exist wherever parts having mass are accelerated [1]. A careful
attention to inertia forces must be given, since the first design steps. In fact, each
moving part must be designed to perform satisfactorily under all combinations of
inertia, payloads, and externally acting forces. Inertia forces are also important,
since any resulting external or shaking force becomes a disturbing force on the
supporting frame and associated parts. In both cases varying forces acting on elastic
bodies can produce serious, even destructive, vibrations of the parts or complete
machine and adjacent structures and equipments, as outlined for example in [1, 2].
The presence of vibration and the accompanying noise can provide serious problems
to other machines and to human operators as discussed for example in [3].

D. Cafolla (�) • G. Carbone • M. Ceccarelli
LARM: laboratory of Robotics and Mechatronics, DICEM, University
of Cassino and South Latium Cassino, Cassino, Italy
e-mail: cafolla@unicas.it; carbone@unicas.it; ceccarelli@unicas.it

© Springer International Publishing Switzerland 2016
D. Zhang, B. Wei (eds.), Dynamic Balancing of Mechanisms and Synthesizing
of Parallel Robots, DOI 10.1007/978-3-319-17683-3_8

173

mailto:cafolla@unicas.it
mailto:carbone@unicas.it
mailto:ceccarelli@unicas.it


174 D. Cafolla et al.

Several applications in many different fields can get significant advantages from
balancing. Very well known is, for example, the balancing of rotors or tyres that
has been even coded in international standards such as [4, 5]. In the robotic field
the balancing of manipulators with large payloads is often considered for the static
and/or dynamic balancing of industrial robots with high payloads, since it may
significantly reduce the power consumption [6, 7]. Balancing is also important to
reduce wear for machine tools or to improve the operation comfort (by reducing
vibrations) such as reported for example in [8]. The operation comfort is a key issue
in applications such as flight simulators [9] or in any application requiring human-
robot interaction, such as the rehabilitation of patients as proposed in [10]. Careful
attention to dynamic balancing is usually addressed, for example, when designing
and operating single-wheel robots such as in [11] or biped and humanoid robots
such as reported in [12].

A general approach for minimization of the magnitude of the inertial shaking
forces can be formulated by introducing another shaking force that is equal in
magnitude and opposite in direction to the original shaking force. This process is
called balancing [1–6]. Based on this concept, several balancing techniques have
been developed and they can be found in a very rich literature such as reported
in [13–23]. Further investigations are still undergoing for identifying balancing
techniques that can better fit to specific applications such as reported in [24–33]
or for implementing specific optimal design procedures such as proposed by
[34, 35].

In this chapter we propose a formulation to address the effects of balancing on
mass distributions and dynamic performance. The proposed formulation can be seen
as a tool for designers in selecting the most appropriate solution(s) according to
the expected operation conditions. The proposed formulation can be conveniently
applied for the balancing of parallel manipulators. A specific case of study has
been developed by referring to a three-degrees-of-freedom (3-DOFs) spatial parallel
manipulator by designing proper counter-rotary counterweights (CRCW).

8.2 Problems and Requirement for Balancing

8.2.1 Static Balancing

A mechanism is statically balanced if its potential energy is constant for all possible
configurations. Static balance of a body occurs when the center of gravity of the
object is laying on its axis of rotation and the object can remain stationary without
the application of any force [1].

A simple example of static balancing can be made by referring to a disk as shown
in the schemes of Fig. 8.1. In particular, Fig. 8.1a shows a disk having an irregular
shape. Due to this shape the center of mass of the disk is not laying on the axis of
rotation. The disk is not statically balanced and it has a tendency to rotate due to the
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Fig. 8.1 Schemes of a disk:
(a) The lack of static
balancing lets the disk turn to
the force of gravity;
(b) a counterweight mass m is
added to balance the disk

m

a) b)

force of gravity. Static balancing is usually achieved by using additional mechanical
elements like elastic components or counterweight masses, either directly mounted
on the links of the mechanism or by using auxiliary components [1, 6, 7].

The static balancing of the disk in Fig. 8.1a can be easily achieved by using a
counterweight mass m as shown in Fig. 8.1b. This counterweight mass will move
the center of mass to let it coincide with the axis of rotation. Accordingly, the disk
will no more have a tendency to rotate about its axis of rotation.

The calculation of the counterweight mass and location is made by considering
the centrifugal force Fc of the disk in the form

Fc D M !2 r (8.1)

where M is the mass of the disk, ! is the angular speed of rotation of the disk, and
r is the radial distance of the center of mass from the rotation axis.

One can add a mass m at a radius rm to the disk so that the resulting centrifugal
force will become zero such as shown in the scheme of Fig. 8.1b. Accordingly one
can write Eq. (8.1) in the forms

Fc D 0 D M !2 r � m!2 rm (8.2)

M !2 r D m !2 rm (8.3)

If the angular speed ! is nonzero, one can divide both sides of Eq. (8.3) by ! so
that one can obtain the following expression of the required mass for letting the
centrifugal force become zero as

m D M r=rm (8.4)

8.2.2 Dynamic Balancing

A rotating system of mass is in dynamic balance when the rotation does not produce
any resultant centrifugal force or couple. Thus, the system rotates without requiring
the application of any external force or couple, other than that required to support its
weight [1]. Statically balanced disks such as in Fig. 8.1b may still be dynamically
unbalanced due to the presence of centrifugal effects.



176 D. Cafolla et al.

Fig. 8.2 Schemes of a disk:
(a) The lack of dynamic
balancing produces a couple
acting on the rotating axis;
(b) counterweight masses m1

and m2 are added to
dynamically balance the disk

m1m2

a) b)

Dynamically unbalanced rotating shafts are usually balanced by adding two
identical weights m1 and m2, as shown in the schemes of Fig. 8.2.

The two masses m1 and m2 will not modify the static balancing while they
will produce a counterclockwise centrifugal effect that will achieve the dynamic
balancing.

Several approaches can be used for dynamic balancing of mechanisms. The
classical method to obtain statically and dynamically balanced mechanisms consists
on adding mass and inertia elements to the system so that the center of mass remains
unchanged (statically balanced) while the angular momentum becomes zero for
any motion. The dynamic balancing can be achieved using several methods or
“principles.” For example, [19, 20] propose the following methods:

• Using counter-rotary counter-masses
• Using separate counter-rotations
• Using idler loops
• Using a duplicated mechanism

Similarly, [14, 15] propose the following methods:

• Balancing by counterweights mounted on the movable links
• Harmonic balancing by two counter-rotating masses
• Balancing by opposite movements

The balancing by counterweights is based on adding counterweight masses that
can have the same weight and opposite dynamic effects of the links being part of
the mechanism to be balanced. In the case of complete shaking force balancing this
approach is generally limited to simple mechanisms having only revolute joints.

The harmonic balancing by two counter-rotating masses is based on harmonic
analysis. The reduction of inertia effects is accomplished by the balancing only
of certain harmonics of the shaking forces and shaking moments. Unbalanced
forces and moments are approximated by Fourier series (or Gaussian least-square
formulation) and then each frequency component is studied. This approach has been
used successfully for engine balancing. For example, the balancing shafts are used
for balancing of a second harmonic of the shaking force.

The balancing by opposite movements requires the addition of an axially
symmetric duplicate mechanism that will produce opposite motions and dynamic
effects as compared with the mechanism to be balanced. In this case, shaking force
and shaking moment can become both zero.
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The balancing by added dyads is achieved when adding links (dyads) to a
mechanism to make a parallelogram chain (consisting of the initial links of the
mechanism and the added dyad). In this way, the dyad transfers the motion of the
coupler link to a shaft on the frame, where it is connected to a counterweight of
considerably reduced mass as reported for example in [28]. In this way, it is possible
to create an additional balancing moment for reducing the shaking moment while
maintaining the static balance of the mechanism.

The major drawback of most of the abovementioned approaches is that a
considerable amount of mass and inertia is added to the system, and: “The price paid
for shaking force and shaking moment balancing is discouraging” [16]. Another
possible approach is to generate trajectories which minimize or eliminate reaction
forces and torques [32]. This approach is however quite restrictive and applicable
only for special cases.

8.2.3 A Procedure for Balancing

In Fig. 8.3 a general procedure is outlined for solving a problem of balancing.
The first step of the procedure is the definition of proper kinematic and dynamic.

It is to note that identifying general formulations for the solution of kinematic

Start

Set kinematic/dynamic models

Set design variables

Solve kinematic/dynamic equations

Calculate center of mass, 
shaking forces, shaking moments

Identify balancing method
Are balancing 

performances statisfactory?

Modify design variables 
or kinematic/dynamic models

End

Yes

No

Fig. 8.3 The proposed procedure for balancing
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and dynamic models of parallel manipulators is a quite hard task. This topic is
widely addressed in the literature as mentioned for example in [36–40]. Close-
form solutions of kinematics/dynamics have been identified only for a subset of the
feasible kinematic architectures of parallel manipulators. In other cases, simplified
and/or approximate and/or iterative approaches should be considered. Then, it is
necessary to identify the main characteristics of the system under investigation
including masses and inertia properties. The key design variables and sizes should
be identified with proper numerical values. Among the design variables special care
should be given to the expected input/output motions as function of time.

The solution of kinematics and dynamics equations allows the calculation of the
coordinates of center of mass as well as the values of shaking forces and shaking
moments. The obtained values depend on the robot architecture but also on the
expected input/output motions. Accordingly, coordinates of center of mass as well
as the values of shaking forces and shaking moments will be numerically calculated
as function of time. The results of these calculations will provide direct information
on the fulfilling of static and dynamic balancing conditions.

In general, a mechanism will be statically and dynamically balanced only if—
in any operating condition—the calculated coordinates of center of mass coincide
with the axis of rotation and the value of shaking forces and shaking moments
are zero. However, a designer may desire that a mechanism is just statically
balanced or that a mechanism is dynamically balanced only for a specific set of
input/output motions. Specific conditions may lead a designer to tolerate a certain
amount of unbalancing or even to consider not necessary a static/dynamic balancing.
The desired balancing performances should be carefully defined in a case-by-
case manner by considering specific design constraints such as construction cost
limitations, complexity limitations, size limitations, lightweight requirements, and
power consumption improvements.

If the balancing performances are not satisfactory, the procedure will search
for a suitable method for fulfilling the desired static/dynamic balancing among
those identified in the previous section. Design variables and kinematic/dynamic
models should be updated accordingly. Often, it can be necessary to repeat the
above procedure in an iterative manner until the desired performances are achieved.
A suitable iterative search of proper design variables can be achieved by means of
optimal search algorithms while the choice of different balancing methods usually
requires a reengineering process.

8.3 A Case of Study for Balancing

A case of study is herewith proposed in order to show the key steps of a balancing
design process as referring to a parallel manipulator having three active DOFs.

At LARM in Cassino significant research activity has been devoted to the design
of parallel manipulators such as the CaPaMan (Cassino Parallel Manipulator) series.
A prototype of CaPaMan 2bis built at LARM is shown in Fig. 8.4. It has been
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Fig. 8.4 A photo of
CaPaMan 2bis

Fig. 8.5 A kinematic scheme
of CaPaMan 2bis
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implemented as a part of a hybrid robotic architecture for surgical tasks in the work,
as well as a trunk module in a humanoid robot design named as CALUMA (CAssino
Low-cost hUMAnoid robot) [41–44].

8.3.1 Definition of a Kinematic Model

A kinematic scheme of CaPaMan 2bis is shown in Fig. 8.5. It is composed
of a movable platform (MP) connected to a fixed base (FP) through three leg
mechanisms. Each leg mechanism is composed of an articulated parallelogram (AP)
whose coupler carries a revolute joint (RJ), a connecting bar (CB) that transmits the
motion from AP to MP through RJ, and a spherical joint (BJ), which is installed
on MP at point J. Revolute joint RJ installed on the coupler of AP has the rotation
axis coinciding with the parallelogram plane. Each leg mechanism is rotated 2� /3
with respect to the neighboring one so that the leg planes lie along two vertices of
an equilateral triangle, giving symmetry properties to the mechanism. They can be
identified for the k-th leg mechanism (k D 1, 2, 3) as ak is the length of the frame
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link; bk is the length of the input crank; ck is the length of the coupler link; dk is the
length of the follower crank; and hk is the length of the connecting bar. The sizes of
movable platform MP and fixed base FP are given by distances rp and rf, as shown
in Fig. 8.1b. Points H and O are the center points of MP and FP, respectively. Points
Ok are the middle point of frame link ak, Jk are the connecting points between. An
inertial frame O-XYZ has been assumed to be fixed to base FP. A moving frame
HXPYPZP has been attached to platform MP. O-XYZ has been fixed with Z-axis
orthogonal to the FP plane and X-axis as coincident with the line joining O to O1.
Moving frame HXPYPZP has been fixed to platform MP with ZP orthogonal to the
MP plane and XP-axis as coincident to the line joining H to J and YP to give a
Cartesian frame. Angle •k is the structure rotation angle between OX1 and OXk as
well as between HJ1 and HJk. They are equal to ı1 D 0, ı2 D 2� /3, and ı3 D 4� /3,
the k-th leg mechanism, and platform MP. The design parameters of the CaPaMan
2bis are listed in Table 8.1.

8.3.2 Definition of a Dynamic Model

The CaPaMan 2bis parallel manipulator has been modeled using mixed coordinates.
So in general terms for a given kinematic chain, the position of each body is
described by a set of coordinates that combines reference-point coordinates defined
at the center of mass of each body and relative coordinates defined at each joint. In
this way a set of dependent coordinates p was defined to describe the manipulator as

p D

0
BBBBB@

g1

e1

:::

gn

en

1
CCCCCA

(8.5)

Table 8.1 Mechanical design parameters and inertial properties of CaPaMan 2bis

ak D ck (mm) bk D dk (mm) rp (mm) rf (mm) hk (mm) Icxy D Icxy D Icy (kg mm2)

100 100 65 65 50 0
˛k (deg) ˇk (deg) m (kg) � (N/m) Iczz (Kg mm2) Icxx D Icxy (kg mm2)
45–135 30–120 2.3 2 24,600 12,400
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where gi are the positions of the center of mass of the body i defined as

gT
i D �

xi yi zi

�
(8.6)

and ei are the Euler angles of body i defined in the form

eT
i D �

˛i ˇi �i

�
(8.7)

In particular for CaPaMan 2bis, 13 bodies were modeled and described by the
corresponding set of coordinates, giving a total of 78 coordinates in vector p.

The dynamic equations for parallel architectures are generally difficult to
formulate in closed form because of the high nonlinearity existing in the kinematics.
A simplification in the dynamic analysis consists of neglecting the inertia of leg
mechanisms in comparison with the inertia of the movable plate. This neglecting
can be justified when you consider that the leg motion is smoother than that one
correspondingly obtained for the movable plate. In fact, the motion and mass of the
movable plate are more significant with respect to the corresponding leg properties
in most cases. Further details on this matter can be found in [43, 44].

The mobile platform has been transformed in an equivalent model. The equiva-
lence is obtained with three identical point masses arranged symmetrically, shown
in Fig. 15, with

m1 D m2 D m3 D 1
3 m (8.8)

where m is the original total mass of the mobile platform. The only solution to this
equivalence is to have

y2 D y3; x2 D �x3; y1 D �2y2 (8.9)

Ixx D 1

2
mrpm; Iyy D Ixx; Izz D 1

2
mrpm; Ixy D 0 (8.10)

The distance between the center of the mobile platform and the point of attachment
to each leg (at the spherical joint) is 65 mm. This means that rpm D 65 mm and
using Eq. (8.10), the circular platform results with a diameter of 183.848 mm.

Focusing on the dynamic balancing of CaPaMan 2bis these three point masses
are located at the corresponding spherical joints, the points attaching to the legs, so
these legs can be balanced independently as shown in Fig. 8.6.

8.3.3 Selection of Design Variables

A 3D CAD model has been built as shown in Fig. 8.7. The model has been simplified
so that the mass coming from the equivalence of the moving plate is concentrated at
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Fig. 8.6 Dynamic equivalence of the mobile platform with three point masses

Fig. 8.7 Basic architecture
of CaPaMan 2bis indicating
the two subsystems that have
been used

Fig. 8.8 A scheme of a
connecting bar CB with main
design variables

the spherical joints. Main attention for the balancing will be given to the connecting
bars CB (one of them is shown in yellow in Fig. 8.7) and to the coupler-link in the
four-bar mechanism (one of them is shown in blue in Fig. 8.7).

The desired balancing condition can be defined so that one can achieve a
stationary center of mass. The parameters taken in consideration for the balancing
study are shown in Fig. 8.8. The design variables are listed with their properties in
Table 8.2.
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Table 8.2 The considered
feasible ranges of the main
design variables

Name Values Units

L Min:10 Max:30 mm
Dp Min:2 Max:30 mm
d Min:2 Max:30 mm

Fig. 8.9 A design for the dynamic balancer: (a) Mechanical design layout. (b) Design parameters

8.3.4 Choice of Balancing Method

Considering the characteristics of CaPaMan 2bis it can be convenient to select the
balancing method that is based on CRCW and counterweights. Given the architec-
ture of CaPaMan 2bis one can use a total of six CRCW and three counterweights.

Once the mobile platform has been split into three point masses, it is possible
to balance each leg independently. The original vertical pendulum is modified to
become a dynamic balancer. All the geometry of the elements has been simplified,
as shown in Fig. 8.9a, in order to facilitate the generation of the balancing equations.
The pendulum is a bar with rectangular cross section and thickness t D 4 mm. The

pinion and CRCW have been considered as solid disks of steel
�
� D 7; 800 kg�

m3

�
.

The CRCW and the pinion has a thickness of 8.355 mm and are considered of

aluminum
�
� D 2; 740 kg�

m3

�
. The dynamic balancer is designed in such a way

that linear and angular momentum are conserved, getting zero shaking force and
zero shaking moment and obtaining a reactionless system.
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A constant linear momentum can be obtained if the total center of mass is
stationary. Considering r as the position vector of the global center of mass one
can write

dr
dt

D 0 (8.11)

that can be expressed as

r D 1

M

nX
iD1

miriI M D
nX

iD1

mi (8.11)

where mi is the mass of the ith body, ri is the position vector of the center of mass
of the ith body, and M is the total mass of the system.

For the dynamic balancer shown in Fig. 8.9b the global position of the center of
mass can be calculated as

r D 1

M

�
1

3
mMPl C 1

2
mVPl � 1

2
mSBd � mPd � mCWd

�
(8.12)

where mVP D �aatl is the mass of the vertical pendulum, mSB D �abtl is the mass
of the supporting bar, mP D �s� tR2

P is the mass of the pinion, and mCW D �s� tR2
CW

is the mass of the CRCW. A point mass of mPM D 1:2123 g, corresponding to one-
third of the total mass of the mobile platform, is taken into account.

To impose a stationary center of mass, Eq. (8.12) can be written as

r D 1

M

�
1:2123.l/ C 1

2
at .l � d/ � � 1

2
� td�R2

P � 3

2
� td�R2

CW

�
D 0 (8.13)

Considering ! as the angular velocity of the bar and !CW the angular velocity of the
pinion-CRCW set, and noting that !CW D � .d=RP/ !, the total angular momentum
Htot of the system can be calculated as

Htot D

2
664

1:2123
�
l2

� C 1

3
a�t

�
l3 C d3

� C ��td2

	
1

2
R2

P C 3

2
R2

CW




C1

4
��td

	
RP C 3

R2
CW

RP




3
775 ! D 0

(8.14)

where the general equation to calculate the moment of inertia of a bar (I D 1
12 ml2)

and the general equation to calculate the moment of inertia of a disk (I D 1
2 mR2)

have been used.
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Table 8.3 Results from the solution to get a valid dynamic balancer

l (mm) a (mm) b (mm) t (mm) Tc (mm) d (mm) RP (mm) RCW (mm)

64 3 8 4 8.355 40 0.332 7.066

Fig. 8.10 Articulated
parallelogram balanced by a
single dynamic balancer

Equations (8.13 and 8.14) can be solved simultaneously to obtain a valid dynamic
balancer, using an ordinary Newton–Raphson method. The parameters l and a are
already determined as they define the pendulum to be balanced, and b has been
chosen equal to a (in fact the geometry and dimensions of this part of the dynamic
balancer could be a topic to investigate). Different values of d may be chosen,
leaving RP and as unknowns. Table 8.3 shows representative results choosing
d D 40 mm, as this value warranties enough distance between the CRCW and the
coupler axes of rotation.

The obtained dynamic balancer has been mounted on the coupler of the four-bar
linkage (the articulated parallelogram) of the limb, next balanced following a similar
procedure as the one used for the vertical pendulum.

The articulated parallelogram can be balanced by a single dynamic balancer and a
single counterweight, as in Fig. 8.10, to preserve the linear and angular momentums,
obtaining a reactionless system.

The conservation of the linear momentum L can be obtained by keeping it
constant (zero). Linear momentum can be calculated as in Eq. (8.15); two densities
are used: �1 is associated to all the elements of the four-bar mechanism, and �2

is associated to the CRCW and to the counterweight. The thickness (t) has been
considered the same for all the elements. Additionally take note that a point mass of
0.00121 g is considered, and added to the coupler of the four-bar mechanism.
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This point mass comes by considering the basic balancer obtained from the
balancing of the vertical pendulum in the form

L D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

! sin .�/

0
@

��2tR3 C �d�2tR2
P C �d�2tR2

CW

�2al2t�1 � .0:07844/l C 1

2
ad2�t

1
A

! cos .�/

0
@

���2tR3 � �d�2tR2
P � �d�2tR2

CW

C2al2t�1 C .0:07844/l � 1

2
ad2�t

1
A

9>>>>>>>=
>>>>>>>;

D const: (8.15)

Constant linear momentum can be achieved if the sum of terms in the parenthesis of
Eq. 8.15 is zero; this is the necessary condition to get null shaking force. Therefore,
one can write

��2tR3 C �d�2tR2
P C �d�2tR2

CW

� 2al2t�1 � .0:07844/l C 1

2
ad2�t D 0 (8.16)

On the other hand to get a null shaking moment it is necessary to make the total
angular momentum of the system constant or zero. For the articulated parallelogram
shown in Fig. 20 the total angular momentum can be calculated as

HZ D !

0
B@

3

2
��2tR4 � 1

2
�d�2tR3

P C �d2�2tR2
P � 1

2

�d�2tR4
CW

RP

C�d2�2tR2
CW C 5

3
al3t�1 C 1

3
ad3t�1 C .0:07844/l2

1
CA

C ! cos .�/

0
B@

1

2
� l�2tR3 � 1

2
�dl�2tR2

P

�1

2
�dl�2tR2

CW � 1

4
d2lt�1

1
CA D 0 (8.17)

! is the angular velocity of both cranks (the coupler never rotates); it has also been
considered that !CW D � .d=RP/ ! is the angular velocity of the CRCW-pinion
set, just as in the vertical pendulum case. To get a constant angular momentum
both terms in parenthesis in Eq. (8.17) must be zero, and then the conditions to
accomplish can be summarized as

3

2
��2tR4 � 1

2
�d�2tR3

P C �d2�2tR2
P � 1

2

�d�2tR4
CW

RP

C �d2�2tR2
CW C 5

3
al3t�1 C 1

3
ad3t�1 C .0:07844/l2 D 0 (8.18)

1

2
� l�2tR3 � 1

2
�dl�2tR2

P � 1

2
�dl�2tR2

CW � 1

4
d2lt�1 D 0 (8.19)
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Table 8.4 Balancing results

l (mm) a (mm) t (mm) RP (mm) d (mm) R (mm) RCW (mm)

70 5 10 5 2.5 17.2 44.2

Fig. 8.11 Modified
CaPaMan 2bis concept with
counter-rotary counterweights
and counterweights [28]

The latter can be solved simultaneously using the Newton–Raphson algorithm for
a set of nonlinear equations. In this case the length (l) of both cranks and the

coupler (considered made of aluminum with �1 D 2740 kg�
m3 ) of the articulated

parallelogram is known, l D 70 mm, and the width and the thickness are set to
a D 10 mm and t D 10 mm, respectively, for all elements. The CRCW and the

counterweight are considered made of steel, with �2 D 7; 800 kg�
m3 . Finally the

radius of the pinion is set to RP D 5 mm, even though it is possible to choose any
other value, taking into account that the lesser value the bigger the radius of the
CRCW. Solutions are shown in Table 8.4. The final design with the modified parts
is shown in Fig. 8.11.

8.3.5 Numerical Validation of Balancing

The balancing computation verified has been with a dynamic simulation using MSC
ADAMS imposing some general motions to the DOFs associated to the cranks in the
articulated parallelograms. Three generic cubic functions have been used to guide
the 3-DOFs in the form

˛i D ˛i0 C 3�˛i

t2if
t2 � 2�˛i

t3if
t3I �˛i D ˛if � ˛i0 (8.20)
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Fig. 8.12 Computed results from the simulation of the ADAMS non-balanced model: (a) Shaking
forces, (b) shaking moments

Fig. 8.13 Computed results from the simulation of the ADAMS balanced model: (a) Shaking
forces, (b) shaking moments

Fig. 8.14 Needed motor torque

Applying the function in Eq. 39 to one leg and keeping the other ones fixed the
results obtained in the non-balanced mechanism are presented in Fig. 8.12, while
the results obtained in the balanced mechanism are presented in Fig. 8.13. With the
balancing procedure shaking forces in X and Y drop by an order of magnitude and
shaking forces in Z remain constantly zero. A significant improvement is noticed in
the shaking moments especially in Y and Z, the most important axis concerning
vibrations due to the nature of the model motion. Analyzing the motor torques
shown in Fig. 8.14 it can be noticed that also if more mass has been added the
needed torque to move the manipulator is very low.

The application of CRCW to the dynamic balancing of a spatial 3-DOFs parallel
manipulator, given the special architecture of the mechanism, shows that this
procedure leads to very good results in shaking force and to an interesting reduction
in shaking moment.
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8.4 Conclusions

This chapter has addressed the key issues for achieving static and dynamic balancing
of a robotic system. A general procedure has been outlined in order to clarify
the main steps that should be considered in the design process for achieving
suitable balancing performances. The proposed procedure has been considered
specifically for manipulators having parallel architecture. A case of study has
been reported in full details in order to show the feasibility and effectiveness
of the proposed procedure. In particular, the proposed case of study refers to a
3-DOFs parallel manipulator, whose name is CaPaMan 2bis. The main result of the
proposed balancing procedure has been the improvement of CaPaMan 2bis design
for dynamically balanced operation. A numerical simulation has been carried out in
MSC.ADAMS environment for validating the expected dynamic performances of
the improved CaPaMan 2bis design.

Acknowledgements Authors wish to acknowledge the significant contribution and inspiration to
this chapter given by Prof. Mario Acevedo, Universidad Panamericana, Mexico City.
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