
Chapter 7
Synthesizing of Parallel Robots Using Adjusting
Kinematic Parameters Method

P.R. Ouyang, W.J. Zhang, and J. Huang

Abstract Force balancing is a very important issue in mechanism design and
has only recently been introduced to the design of robotic mechanisms. In this
chapter, a force balancing method called adjusting kinematic parameters (AKP)
for robotic mechanisms or real-time controllable (RTC) mechanisms is proposed,
as opposed to existing force balancing methods, e.g., the counterweights (CW)
method. Both the working principle of the AKP method and the design equation
are described in detail. A particular implementation of the AKP method for the
RTC mechanisms where two pivots on a link are adjustable is presented. After that,
a hybrid approach to force balancing of robotic mechanisms is proposed, and this
hybrid approach is to combine AKP and counterweights (CW) approaches, called
AKPCCW in short. The main motivation of the AKPCCW approach is that CW and
AKP each has its own advantage and disadvantage, and thus a combined one may
strengthen both. This chapter presents the force balancing principles and equations
for the AKPCCW approach. Software called ADAMS is employed as a tool for
the simulated experiment to verify the effectiveness of the proposed approach.
The joint forces and torques are calculated for the trajectory tracking of the RTC
mechanisms. The implication of the work to the balancing of mechanisms in general
is that many different force balancing methods may be combined based on the
hybridization principle proposed in this chapter to become a novel one. Simulation
results show that the AKP method and AKPCCW method are consistently better
than the CW method in terms of the reduction of the joint forces and the torques in
the servomotors, and the smoothing of the fluctuation of the joint force.
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7.1 Introduction

Mechanisms driven by real-time controllable (RTC) motors, or servomotors, are
called RTC mechanisms. In general, RTC mechanisms are multi-degrees of freedom
systems. RTC mechanisms are also called mechatronic mechanisms. A generic task
of an RTC mechanism is to generate trajectory tracking motion. RTC mechanisms
are fundamental building blocks in many machine tools and advanced robots due
to their flexibility in terms of adapting to different applications without the need
of redesign of their physical structures. Since there is no well-developed guidance
available to design an RTC mechanism system with consideration of both control
structures and mechanical structure designs, it is therefore significant to develop
methodologies for this purpose.

For an RTC mechanism, the mechanical properties, such as shaking force
balancing, shaking moment balancing, machine cooling, and vibration, are highly
coupled with the characteristics of the controller. One challenging issue in the RTC
mechanism design is that in order to achieve the optimal performance from the
overall system viewpoint, both the controller design and the mechanical structure
design need to be considered simultaneously. This chapter only takes the property
of force balancing into consideration in addressing this issue. Force balancing can
be categorized into static balancing problem and dynamic balancing problem. Static
balancing is defined as a set of conditions under which the weight of the links of
a mechanism does not produce any torque or force at the actuators under static
conditions for any configuration of the manipulator or mechanism [1]. This is
a mechanical solution which does not include solution by control method. This
chapter focuses on static balancing. In this chapter, a parallel robot with two degrees
of freedom is used as an example for the force balancing.

Many studies on force balancing of spatial mechanisms, i.e., robots, are per-
formed at Laval University. These studies are limited within the scope of mechanical
structure design only. When attached with a controller and programmed to follow
different trajectories, however, mechanisms designed with complete force balancing
property in this manner may not generate satisfactory dynamic performance. This
consequence was revealed by the recent studies carried out at the Advanced
Engineering Design Laboratory (AEDL) of the University of Saskatchewan [2] and
other research [3].

At AEDL, a novel method called the adjusting kinematic parameters (AKP)
method for force balancing of real-time controllable RTC mechanisms was devel-
oped [2]. This method suggests that adjusting the kinematic parameters can achieve
force balancing of RTC mechanisms. Although showing advantages, there are some
problems with this method. First, the initial development assumed that the center of
mass of each link in a mechanism was in line with its axis; see Fig. 7.1a. However,
in general, the center of mass of a link is likely off-line with its axis; see Fig. 7.1b.
In mechanisms, a link may also take the ternary form instead of the binary form; see
Fig. 7.1c. Second, the physical implementation was not considered in Wang’s study.
It should be noted that when adjusting the kinematic parameters of a link, extra
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Fig. 7.1 Different situations of mass centers and different forms of links

masses are included in the system, and adjustment of kinematic parameters related
to these masses may involve a change of the mass distribution of the system. Third,
the exploration of how control methods affect trajectory tracking performance with
respect to different force balancing methods was not well addressed. In particular,
the control method used was a simple PD law with gains selected in a trial-and-error
manner. Finally, trajectory planning was not well studied in spite of its importance
in the AKP method. In fact, whenever the kinematic parameters are adjusted, the
geometry of the mechanism may be varied; hence the trajectory must be re-planned
to achieve the desired motion task.

7.2 Principles for Complete Force Balancing

There are two principles for complete force balancing: (1) making the total mass
center of a mechanism stationary [4, 5], and (2) making the total potential energy of
a mechanism stationary [1, 6]. Principle (1) is explained as follows.

Consider a mechanism that transmits forces to its base at point O. Let f0 stand for
the sum of the reacting forces the mechanism imposes on the base. The application
of the Newton’s second law leads to

f0 D � d

dt
fMPrcg C Mg (7.1)

where M is the total mass of a mechanism, g the gravitational acceleration, and
Prc the velocity of the mass center (MC) of the mechanism. It can be seen from
Eq. (7.1) that the undesired shaking force results from changes in the system’s
linear momentum. This dynamic component becomes zero if the system MC does
not change in any configuration, i.e., rc D constant, during a period of motion.
Therefore, Principle (1) can be stated as follows: to transmit zero shaking force, the
mechanism’s MC has to be stationary or configuration invariant. The property of
configuration invariance of MC can be obtained in several ways, depending on the
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Fig. 7.2 A 2 DOF parallel robotic mechanism with arbitrary mass distribution

types of the mechanisms. For instance, for any mechanism containing only revolute
kinematic pairs, the mass distribution of the mechanism to achieve the force balance
can be obtained by using the linearly independent vector (LIV) approach [4].

The LIV approach is explained by taking a 2 DOF parallel robotic mechanism
as an example; see Fig. 7.2. This mechanism consists of two kinematic chains
connecting the fixed base and the end effector of the mechanism. The two kinematic
chains are O1, O2, O3, P and O5, O4, O3, P, respectively. Two revolute actuators are
mounted at joints O1 and O5 and described by joint variables q1 and q4, respectively.
Joints O2, O3, and O4 are passive revolute joints. Point P (overlapping with O3) is
the position of the end effector of the mechanism.

The stationary total mass center condition can be expressed by the following
equation:

rc D 1

M

4X

iD1

miri D constant (7.2)

where mi and ri are the mass and the position vector of mass center of link i,

respectively, and M D
4X

iD1

mi. According to the LIV approach, the position vector

ri in Eq. (7.2) can be expressed as
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8
ˆ̂<

ˆ̂:

r1 D r1ei.q1C�1/

r2 D l1eiq1 C r2ei.q2C�2/

r3 D l5eiq5 C l4eiq4 C r3ei.q3C�3/

r4 D l5eiq5 C r4ei.q4C�4/

(7.3)

Substituting Eq. (7.3) into Eq. (7.2) leads to

Mrc D �
m3l5eiq5 C m4l5eiq5

� C �
m1r1ei�1 C m2l1

�
eiq1 C �

m2r2ei�2
�

eiq2

C �
m3r3ei�3

�
eiq3 C �

m4r4ei�4 C m3l4
�

eiq4 (7.4)

The unit vectors eiq1 , eiq2 , eiq3 , and eiq4 are constrained by the kinematic closed-
loop equation, i.e., l1eiq1 C l2eiq2 � l3eiq3 � l4eiq4 � l5eiq5 D 0. Substituting this
constraint equation into Eq. (7.4) leads to

Mrc D �
m3l5eiq5 C m4l5eiq5 C �25m2r2ei�2eiq5

�

C �
m1r1ei�1 C m2l1 � �21m2r2ei�2

�
eiq1 C �

m3r3ei�3 C �23m2r2ei�2
�

eiq3

C �
m4r4ei�4 C m3l4 C �24m2r2ei�2

�
eiq4 (7.5)

where �ij D lj
.

li
; i; j D 1; : : : ; 5. In order to make the total mass center stationary,

all the terms with the time-varying quantities (q1, q3 and q4) in Eq. (7.5) should
vanish. This will result in the following equations:

m1r1ei�1 C m2l1 � �21m2r2ei�2 D 0 (7.6)

m3r3ei�3 C �23m2r2ei�2 D 0 (7.7)

m4r4ei�4 C m3l4 C �24m2r2ei�2 D 0 (7.8)

As long as Eqs. (7.6) to (7.8) are satisfied in the design process, the shaking force
of the parallel robotic mechanism is cancelled. Such a mechanism is called a force
balanced mechanism.

Principle (2) is that if the total potential energy of a mechanism in any
configuration is kept constant (i.e., the weight of the mechanism has no effect on
the actuators), then the mechanism is force balanced. The expression of the total
potential energy of the mechanism can be written as

V D Vw C Vs (7.9)

where Vw and Vs are, respectively, the gravitational potential energy and the elastic
potential energy stored in the springs. The way of implementing this principle is to
eliminate the effect of the potential energy through properly adding springs into the
original mechanism [1].
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As shown in Fig. 7.1, two relationships r2ei�2 D l2 C r0
2ei� 0

2 and r3ei�3 D l3 C
r0
3ei� 0

3 can be readily obtained. By using these relationships, Eqs. (7.6)–(7.8) can be
rewritten as

m1r1l2 D l1m2r0
2 and �1 D � 0

2 (7.10)

m3r3l2 D l3m2r2 and �3 D � C �2 (7.11)

m4r4l3 D l4m3r0
3 and �4 D � 0

3 (7.12)

From the above three equations, it can be seen that whenever the mass distribu-
tion of one of the links is given, the mass distributions of the remaining three links
can be determined. The equations to calculate the additional masses can be derived
as (assume that link 2 is unchanged)

m�
i r�

i ei��

i D mirie
i�1 � m0

i r0
i ei�0

i .i D 1; 3; 4/ (7.13)

where m0
i , r0

i , and �0
i are the parameters of the original link; m*

i , r*
i , and �*

i are the
parameters of the counterweights (CW); and mi, ri, and � i are the parameters after
adding or deducting the counterweights to the original mechanism.

Apparently, in general, either m*
i or r*

i is arbitrarily selected, then the other one
can be obtained from Eq. (7.13).

There are several problems associated with the CW method. The first problem
is that both joint forces and actuator output torques might increase. The second
problem is that the vibration behavior of the mechanism may be degraded [3].
The third problem is that the balanced mechanism may have a poor trajectory
tracking performance, and consume more energy when running at high speeds
[7, 8]. Although a careful design of the mass redistribution may help in solving
these problems to some degree, new methods are needed for further improvement.
It should be further noted that the CW method is only applicable to pivot joint
mechanisms.

7.3 New Force Balancing Condition Equations

When implementing the extended AKP method, the masses of sliding blocks, which
are used to adjust the pivots, must be taken into account in the force balancing
condition equations. The implementation of the pivot adjustment is illustrated in
Fig. 7.3 [7, 8]. When sliding block 3 is adjusted along link 1 or sliding block 4
adjusted along link 2, the mass distribution of this group of links will vary.
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Fig. 7.4 Scheme of parallel robotic mechanism with the point mass at the pivot

Assume that the sliding block is a point mass acting on the pivot, denoting mij as
the mass of the sliding block between link i and link j. The schematic diagram of the
parallel robotic mechanism with consideration of these point masses, mij, is shown
in Fig. 7.4.

The new force balancing condition equations can be derived by following the
LIV approach:

m1r1ei�1 C .m2 C m12/ l1 � l1m2r2ei�2=l2 D 0 (7.14)

m3r3ei�3 C m23l3 C l3m2r2ei�2=l2 D 0 (7.15)
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m4r4ei�4 C .m3 C m23 C m34/ l4 C l4m2r2ei�2=l2 D 0 (7.16)

Using the relationship r2ei�2 D l2 C r0
2ei� 0

2 , Eq. (7.14) can be rewritten as

l2m1r1ei�1 D l1m2Qr 0

2ei Q� 0

2 (7.17)

where Qr0
2 D

q�
r0
2 cos � 0

2 � m12l2=m2

�2 C �
r0
2 sin � 0

2

�2

Q� 0
2 D tan�1

�
r0
2 sin � 0

2

r0
2 cos � 0

2 � m12l2=m2

�

Similarly, Eq. (7.15) can be rewritten as

l2m3r3ei�3 C l3m2Qr2ei Q�2 D 0 (7.18)

where Qr2 D
q

.r2 cos �2 C m23l2=m2/2 C .r2 sin �2/2

Q�2 D tan�1

�
r2 sin �2

r2 cos �2 C m23l2=m2

�

Likewise, Eq. (7.16) can be rewritten as

l2m4r4ei�4 C l4m2br2eib�2 D 0 (7.19)

wherebr2 D
q

.r2 cos �2 C .m3 C m23 C m34/ l2=m2/2 C .r2 sin �2/2

b�2 D tan�1

�
r2 sin �2

r2 cos �2 C .m3 C m23 C m34/ l2=m2

�

Eqs. (7.17) to (7.19) are the new force balancing equations and can be rear-
ranged as

l2m1r1 D l1m2Qr0
2 and �1 D Q� 0

2 (7.20)

l2m3r3 D l3m2Qr2 and �3 D Q�2 C � (7.21)

l2m4r4 D l4m2br2 and �4 D b�2 C � (7.22)

Compared with the original force balancing Eqs. (7.10)–(7.12), it can be seen that
the effect due to the sliding blocks is reflected by the augmented parameters, i.e.,
(Qr2, Qr 0

2 ,br2) and ( Q�2, Q� 0

2 , b�2), which are only related to link 2, the masses of the sliding
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blocks, and link 3. The force balancing condition equations, i.e., Eqs. (7.20)–(7.22),
imply that the mass distribution of a force balanced mechanism should satisfy Eqs.
(7.20)–(7.22). It is noted that the force balancing condition equations above are
derived by following principle (1), and therefore, they are applicable to the AKP
method.

7.4 The Extended AKP Method

Examining the original and the new force balancing equations shown in Eqs. (7.10)
to (7.12) and Eqs. (7.20) to (7.22), respectively, it is clear that these equations can
also be satisfied by changing the kinematic parameters, li (i D 1, 2, 3, 4), whilst
maintaining the total mass of a mechanism unchanged. It should be noted that
when li is varied, the parameters ri and � i will be changed accordingly. Both the
original and the extended AKP method are developed based on this observation.
In particular, the derivation of the extended AKP method based on the new force
balancing equations is given as follows [9]. A general design case will be presented
first, followed by a special design case.

In the general design situation, assume that the mass centers of the links are
arbitrarily distributed, with �i ¤ 0 for i D 1 to 4, as shown in Fig. 7.5. Let l0i and (r0

i ,
�0

i ) represent the length and the mass center of link i, respectively, where superscript
“0” indicates the parameters prior to the adjustment of pivot o0

i . It is observed that
in order to satisfy the force balancing condition equations specified in Eqs. (7.20)
to (7.22), adjusting of only one pivot on a link is not sufficient; instead, two pivots
must be adjusted. The extended AKP method is thus accomplished in two steps. The
first step is to adjust a pivot from o0

i to oi so that the angle relationship between link
i and link i C 1 can be satisfied. The second step is to adjust o0

iC1 to oiC1 so that
all Eqs. (7.20) to (7.22) can be satisfied. Now, let li and (ri, � i) represent the new
length and the new mass center of link i, respectively, and let vi and wi represent
the adjusted amounts of the two pivots oi and oiC1, respectively. From Fig. 7.5, the
following equations can be obtained:

li D l0i � vi � wi (7.23)

r0
i cos �0

i D vi C ri cos �i (7.24)

r0
i sin �0

i D ri sin �i (7.25)

for i D 1, 2, 3, 4.
Equation (7.25) can be rewritten as

ri D r0
i sin �0

i

sin �i
(7.26)
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Fig. 7.5 Two-step kinematic
parameter adjustment in the
extended AKP method
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Substituting Eq. (7.26) into Eq. (7.24) yields

vi D r0
i sin

�
�i � �0

i

�
= sin �i (7.27)

Based on the force balancing condition equations given in Eqs. (7.20) to (7.22)
and the results given in Eqs. (7.23) to (7.27), the implementation of the extended
AKP method can be illustrated using the following example. Referring to Fig. 7.4,
assume that the pivots of link 2 are unchanged, and the force balancing conditions
can be achieved by adjusting the pivots of the other three links. The detailed
procedure is illustrated below.

For link 1:
Pivot O1 on link 1 is adjusted using the following equation derived from Eqs.

(7.27) and (7.20):

v1 D r0
1 sin

� Q� 0

2 � �0
1

�
= sin Q� 0

2 (7.28)

Pivot O2 on link 1 is adjusted using Eq. (7.20). To determine the amount of
adjustment for pivot O2 on link 1, i.e., w1, substituting Eq. (7.28) and Eqs. (7.23) to
(7.25) into Eq. (7.20) yields

w1 D l01 �
r0
1

�
m2Qr0

2 sin
� Q� 0

2 � �0
1

�
C m1l2 sin �0

1

�

m2Qr0
2 sin Q� 0

2

(7.29)
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For link 3:
Substituting Eq. (7.21) into Eq. (7.27) yields

v3 D r0
3 sin

� Q�2 � �0
3

�
= sin Q�2 (7.30)

Substituting Eq. (7.30) and Eqs. (7.23) to (7.25) into Eq. (7.21) yields

w3 D l03 �
r0
3

�
m2Qr2 sin

� Q�2 � �0
3

�
� m3l2 sin �0

3

�

m2Qr2 sin Q�2

(7.31)

For link 4:
Substituting Eq. (7.22) into Eq. (7.27) yields

v4 D r0
4 sin

�
b�2 � �0

4

�
= sinb�2 (7.32)

Substituting Eq. (7.32) and Eqs. (7.23) to (7.25) into Eq. (7.22) yields

w4 D l04 �
r0
4

�
m2br2 sin

�
b�2 � �0

4

�
� m4l2 sin �0

4

�

m2br2 sinb�2

(7.33)

For the special design case where mass distributions of all the links are in line
with their kinematic axes, adjusting of only one pivot for each link is sufficient.
In this case, since conditions �0

i D 0 and �i D 0 hold, Eq. (7.25) thus
becomes meaningless. Furthermore, if the sliding blocks are not considered in the
implementation, the force balancing equations given in Eqs. (7.23) to (7.25) are
simplified as the original ones given in Eqs. (7.10) to (7.12). Substituting Eqs. (7.23)
and (7.24) into Eqs. (7.10) to (7.12), the adjusting amounts for links 1, 3, and 4,
respectively, can be obtained as follows:

v1 D �
m2r0

2l01 cos �1 � m1r0
1l2 cos �0

1

�
=

�
m2r0

2 cos �1 � m1l2
�

(7.34)

v3 D �
m2r2l03 cos �3 � m3r0

3l2 cos �0
3

�
= .m2r2 cos �3 � m3l2/ (7.35)

v4 D �
kl04 cos �4 � m4r0

4 cos �0
4

�
= .k cos �4 � m4/ (7.36)

with k D
q

.m2r2=l2/2 C m2
3 C .2m2r2m3 cos �2=l2/.

Moreover, following the above discussion, if link 3 is selected to be unchanged,
the adjusting amounts for other three links can be determined as follows:

v1 D �
hl01 cos �1 � m1r0

1 cos �0
1

�
= .h cos �1 � m1/ (7.37)
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v2 D �
m3r3l02 cos �2 � m2r0

2l3 cos �0
2

�
= .m3r3 cos �2 � m2l3/ (7.38)

v4 D �
m3r0

3l04 cos �4 � m4r0
4l3 cos �0

4

�
=

�
m3r0

3 cos �4 � m4l3
�

(7.39)

with h D
q

.m3r3=l3/2 C m2
2 C .2m3r3m2 cos �3=l3/.

When designing an RTC mechanism, for a given task, i.e., a set of trajectory
points that the end effector should follow, through the inverse kinematics, the
corresponding joint angles are readily determined. However, if the extended AKP
method is adopted for force balancing design, the kinematic parameters of the
mechanism will vary. This will in turn change the inverse kinematics of the
mechanism. In order to enable the end effector of the mechanism to follow the same
trajectory, the motion profiles of the joints must be adjusted according to the new
inverse kinematics. This adjustment is only possible through the implementation
of programmable actuators, i.e., RTC actuators. Therefore, the application of the
extended AKP method is only limited to RTC mechanisms.

To verify the extended AKP method, a parallel robotic mechanism prototype was
built using LEGO blocks, as shown in Fig. 7.6. Figure 7.6a shows the unbalanced
system. After applying the extended AKP method, the kinematic parameters were
changed and the shaking force of the mechanism was cancelled. Figure 7.6b, c
illustrates two configurations of the force balanced mechanism. The mechanism was
stabilized at these two positions, and in fact, it was stable at any other positions as
well. That is, the mechanism is force balanced.

7.5 Comparison of the Extended AKP Method with the CW
Method: Joint Reaction Force

Two examples are used here to verify the effectiveness of the extended AKP method.
Comparison is made between the extended AKP method and the CW method in
terms of reduction of the joint forces.

Example 1 The kinematic parameters of the original mechanism without con-
sidering force balancing are listed in Table 7.1. Using the CW method and the
extended AKP method, the kinematic parameters of the force balanced mechanism
are computed and listed in the same table. In the CW case, assume that link 3 is
unchanged and the other three links are subject to additional masses. In the extended
AKP case, assume that all the movable links are subject to pivot adjustments.

The mechanism is supposed to fulfill the following task: the end effector is
requested to move from point A (0.3, 0.2) to point B (0.2, 0.3) within 1 s, and
subsequently to point C (0.1, 0.2) within 2 s. The unit of the coordinates is meter for
all examples. Furthermore, for each segment of the trajectories, (1) the velocities of
the end effector at these three points are zero, and (2) the accelerations of the end
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Fig. 7.6 (a) Unbalanced
mechanism. (b) Balanced
mechanism using the
extended AKP method (1).
(c) Balanced mechanism
using the extended AKP
method (2)
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Table 7.1 Parameters for different mechanisms (in-line case 1)

Parameters Unbalanced linkage CW linkage AKP linkage

l1 (m) 0.2 0.2 0.0977
l2 (m) 0.3 0.3 0.28
l3 (m) 0.4 0.4 0.2445
l4 (m) 0.3 0.3 0.1009
l5 (m) 0.3 0.3 0.3
r1 (m) 0.05 0.1758 0.0523
r2 (m) 0.15 0.0506 0.13
r3 (m) 0.08 0.08 0.0756
r4 (m) 0.1 0.103 0.0991
m1 (kg) 0.25 0.5912 0.25
m2 (kg) 0.25 0.4445 0.25
m3 (kg) 0.375 0.375 0.375
m4 (kg) 0.5 0.8742 0.5
I1

�
kg � m2

�
0.004 0.0133 0.004

I2

�
kg � m2

�
0.01 0.0229 0.01

I3

�
kg � m2

�
0.02 0.02 0.02

I4

�
kg � m2

�
0.02 0.0475 0.02

�1(rad) 0 � �

�2(rad) 0 � 0
�3(rad) 0 0 �

�4(rad) 0 � �

effector at the initial and final points are zero. The trajectories at the two actuators
can be determined based on the inverse kinematic and the motion planning method
that will be described in Chap. 4. In particular, the trajectories at the two actuators
for the unbalanced mechanism and the force balanced mechanism using the CW
method are, respectively, expressed as follows:

For actuator 1:

q1.t/ D 90:0 C 187:2701 � t3 � 261:4406 � t4 C 96:7905 � t5 if t � 1

q1.t/ D 112:6199 � 38:9289 � .t � 1/2 C 109:4122 � .t � 1/3

� 67:4608 � .t � 1/4 C 12:5189 � .t � 1/5 if 1 < t � 3

For actuator 2:

q4.t/ D �13:688 C 657:9647 � t3 � 894:1248 � t4 C 320:5211 � t5 if t � 1

q4.t/ D 27:5324 � 87:5649 � .t � 1/2 C 157:4044 � .t � 1/3

� 85:2165 � .t � 1/4 C 14:8542 � .t � 1/5 if 1 < t � 3

http://dx.doi.org/10.1007/978-3-319-17683-3_4
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As mentioned in Sect. 4, the trajectory of the force balanced mechanism using
the extended AKP method must be re-planned due to the change of the kinematic
parameters. After re-planning, the expressions of the new trajectories at the two
actuators are as follows:

For actuator 1:

q1.t/ D 63:4541 C 201:7492 � t3 � 290:3993 � t4 C 111:27 � t5 if t � 1

q1.t/ D 86:0739 � 24:4488 � .t � 1/2 C 152:8515 � .t � 1/3

� 105:4703 � .t � 1/4 C 20:4828 � .t � 1/5 if 1 < t � 3

For actuator 2:

q4.t/ D �13:688 C 657:9647 � t3 � 894:1248 � t4 C 320:5211 � t5 if t � 1

q4.t/ D 70:6729 � 185:6443 � .t � 1/2 C 286:676 � .t � 1/3

� 145:3904 � .t � 1/4 C 24:437 � .t � 1/5 if 1 < t � 3

Using the software called “Working Model 2D” (Knowledge Revolution, 1999),
the joint forces in the five pivots can be calculated. Figure 7.7 shows the joint forces
in the two actuators.

It can be seen from Fig. 7.7 that, when the mechanism runs at low speeds (about
5 rpm), the forces in the two actuators for the force balanced mechanism do not
change very much, and the extended AKP method insures smaller forces at both
the x-direction and the y-direction than the CW method. Furthermore, the joint
forces at the y-direction using the CW method are significantly larger than those
of the extended AKP method and the unbalanced mechanism. This phenomenon
agrees with one of the weaknesses associated with the CW method; that is, joint
forces will be increased. It is interesting to observe that the variations of joint forces
using both the CW and the extended AKP methods are small, while the joint forces
of the unbalanced mechanism vary considerably, especially in the x-direction. The
reason for this phenomenon can be explained as follows. After the shaking force is
balanced, the mass center of the system is stationary during operation. Furthermore,
the inertia term is small at low speeds. Therefore, the variation of the forces in
the two actuators is small. On the other hand, for the unbalanced mechanism, the
mass center of the mechanism changes with the system configurations. Therefore,
variation of the forces in the two actuators is large.

It should be noted that, for the force balanced mechanism, the total forces at
the two actuators should be zero in the x-direction and should be equal to the total
weight of the mechanism in the y-direction. This observation is confirmed with the
results shown in Fig. 7.7.

Figure 7.8 shows the results when the mechanism runs at high speeds (about
50 rpm). Performance totally different from the low-speed motion is observed.
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Fig. 7.7 Joint forces in the two actuators at low speeds

First, variations of the forces are very large for all three cases. Second, the CW
method generates the worst performance in the x-direction; although the total forces
in the two actuators in the x-direction are still maintained at zero, the sharp variation
of forces exhibits. Nevertheless, the extended AKP method remains to produce the
best performance.

The results above are expected. When the mechanism runs at high speeds, the
inertia forces becomes the dominant term in the dynamics. Since the CW method
adopts the adding mass approach for force balancing purpose, its inertia force
takes more weight. While with the extended AKP method, the total mass of the
system is unchanged; therefore the inertia force does not differ significantly from
the unbalanced mechanism.

To further illustrate the effectiveness of the extended AKP method, Table 7.2 lists
the minimum and maximum joint forces in the x-direction and the y-direction for the
cases of applying the AKP method and the CW method, respectively. It is observed
that the joint forces generated by using the extended AKP method have a smaller
variation range than those using the CW method. The reduction of the forces in the
x-direction is more remarkable by using the AKP method than by using the CW
method.

Example 2 In this example, a mechanism with the mass center off-line of the
kinematic axis is studied. The kinematic parameters of the original mechanism
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Fig. 7.8 Joint forces in the two actuators at high speeds

Table 7.2 Joint forces (min and max) using different force balancing methods

Joint forces in x-direction Joint forces in y-direction
AKP method CW method AKP method CW method

Speeds Pivot no. Min Max Min Max Min Max Min Max

Low speeds 1 �0.205 0.204 �0.405 1.130 3.640 3.930 10.70 11.10
2 �0.208 0.228 �1.210 0.338 �1.470 �1.200 �5.350 �4.870
3 �0.233 0.164 �1.130 0.387 0.930 1.320 �0.869 �0.595
4 �0.514 0.444 �1.140 0.487 4.320 5.300 2.430 3.420
5 �0.204 0.205 �1.130 0.405 9.560 9.840 11.30 11.70

High speeds 1 �22.80 21.60 �93.50 113.0 �10.50 21.40 �6.40 29.20
2 �21.30 25.00 �121.0 81.00 �18.10 11.80 �31.10 17.30
3 �24.20 18.30 �113.0 89.40 �21.90 22.30 �14.10 13.30
4 �56.90 42.10 �114.0 110.0 �50.10 60.70 �48.30 51.90
5 �21.60 22.80 �113.0 93.50 �7.870 23.90 �6.770 28.80

without force balancing and the modified mechanisms using the CW method and
the extended AKP method are listed in Table 7.3, respectively. In the redesign of the
mechanism, link 2 is assumed to be unchanged.

In this example, the mechanism is supposed to fulfill the following task: the
end effector is requested to move from point A (0.3, 0.25) to point C (0.1, 0.2)
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Table 7.3 Parameters for different mechanisms (off-line)

Parameters Unbalanced linkage CW linkage AKP linkage

l1 (m) 0.15 0.15 0.0866
l2 (m) 0.26 0.26 0.26
l3 (m) 0.26 0.26 0.2078
l4 (m) 0.14 0.14 0.08838
l5 (m) 0.30 0.30 0.30
r1 (m) 0.075 0.0866 0.10
r2 (m) 0.15 0.15 0.15
r3 (m) 0.08485 0.10 0.12
r4 (m) 0.115 0.1415 0.135
m1 (kg) 1 2 1
m2 (kg) 2 2 2
m3 (kg) 2 3 2
m4 (kg) 2 4 2
I1

�
kg � m2

�
0.01 0.03 0.01

I2

�
kg � m2

�
0.05 0.05 0.05

I3

�
kg � m2

�
0.04 0.06 0.04

I4

�
kg � m2

�
0.02 0.04 0.02

�1(deg) 90 150 150
�2(deg) 30 30 30
�3(deg) 225 210 210
�4(deg) 192.83 169.11 188.21

and intermediate point B (0.2, 0.2). The time duration between two neighboring
points is 2 s at low speeds (about 5 rpm) and 0.1 s at high speeds (about 100 rpm).
Furthermore, for each segment of the trajectories, (1) the velocity of the end effector
at the intermediate point B is determined by the method that will be discussed in
Chap. 4, and (2) the accelerations of the end effector at the initial and final tracking
points are zero.

Figures 7.9 and 7.10 show the total forces in the two actuators for the unbalanced
mechanism and the balanced mechanism using the extended AKP method and the
CW method at low speeds and high speeds, respectively. From these two figures, it
can be seen that the extended AKP method is the best in terms of the reduction of
forces at both low speeds and high speeds, and the CW method is the worst. So it
is demonstrated that the extended AKP method is better than the CW method in the
reduction of the joint forces for an off-line mechanism.

From the force profiles shown in these figures, it can be seen that, in order to
accomplish the same motion task, the extended AKP method needs the least amount
of forces at both low speeds and high speeds among all the three design cases.
The CW method, however, demands the highest forces. The extended AKP method
is thus demonstrated to be better than the CW method in terms of the joint force
reductions.

http://dx.doi.org/10.1007/978-3-319-17683-3_4
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Fig. 7.9 Total forces in the two actuators at low speeds
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Fig. 7.10 Total forces in the two actuators at high speeds

However, the adjustment of the kinematic parameters may not always work in
some applications. One case of the failure with the AKP approach is such that the
trajectory may be out of the new workspace which results from the change of the
kinematic parameters of the mechanism [9]. The other case is that a required change
in the kinematics parameter may be out of the physical region. Another shortcoming
with AKP is an increase in complexity of the mechanism structure. In the next
section, a new solution will be introduced, that is, the hybridization of AKP and
CW method.

7.6 Hybrid AKPCCW Method for Force Balancing

To overcome the limitations of both the CW method and the AKP method, we
propose a force balancing strategy which combines these two methods in the pursuit
of taking advantages of both the methods while alleviating their shortcomings.
The generalized one of this strategy is called “hybridization engineering” [10].
Through such a hybrid approach, it is possible that a good performance and a
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limited workspace modification of the designed RTC mechanism can be achieved.
The same configuration shown in Fig. 7.4 will be considered as an example for the
implementation of the hybrid AKPCCW method [11].

7.6.1 Hybrid AKPCCW Method

In the following discussion, we also consider that link 2 in Fig. 7.4 is unchanged
without the loss of generality. We use the following notation for the particular
schemes of the CWCAKP method: “1CWC3/4AKP” means CW is applied to link
1, and AKP is applied to link 3 and link 4, respectively. We consider two particular
hybrid schemes of the AKPCCW method and present their design equations
accordingly.

7.6.1.1 Hybrid 1: 1AKPC3/4CW Method

For this scheme, the AKP method will be applied to link 1 and the CW method
applied to links 3 and 4, respectively.

For link 1, following the AKP approach, we have

v1 D r0
1 sin

�
� 0

2 � �0
1

�
= sin � 0

2 (7.40)

w1 D l01 � r0
1

�
m2r0

2 sin
�
� 0

2 � �0
1

� C m1l2 sin �0
1

�

m2r0
2 sin � 0

2

(7.41)

For link 3, by using the CW method from Eq. (7.13), we get

�3 D �2 C � (7.42)

m3r3 D l3m2r2=l2 (7.43)

m3
�r3

�ei��

3 D m3r3ei�3 � m3
0r3

0ei�0
3 (7.44)

For link 4, following the same procedure as for link 3, we can obtain

r3
0ei� 0

3 D r3ei�3 � l3 (7.45)

m4r4 D l4m3r3
0=l3 (7.46)

�4 D �
0

3 (7.47)
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m4
�r4

�ei��

4 D m4r4ei�4 � m4
0r4

0ei�0
4 (7.48)

7.6.1.2 Hybrid 2: 1CWC3/4AKP Method

Following the same procedure as mentioned above, we can obtain the design
equations.

For link 1,

�1 D � 0
2 (7.49)

m1r1 D l1m2r2
0=l2 (7.50)

m1
�r1

�ei��

1 D m1r1ei�1 � m1
0r1

0ei�0
1 (7.51)

For link 3,

v3 D r0
3 sin

�
�2 � �0

3

�
= sin �2 (7.52)

w3 D l03 � r0
3

�
m2r2 sin

�
�2 � �0

3

� � m3l2 sin �0
3

�

m2r2 sin �2

(7.53)

For link 4,

r3
0ei� 0

3 D r3ei�3 � l3 (7.54)

v4 D r0
4 sin

�
� 0

3 � �0
4

�
= sin � 0

3 (7.55)

w4 D l04 � r0
4

�
m3r0

3 sin
�
� 0

3 � �0
4

� � m4l3 sin �0
4

�

m3r0
3 sin � 0

3

(7.56)

7.6.2 Design Examples and Illustrations

We used ADAMS for calculating all joint forces and torques in the motor. We
considered three situations for the motors: situation 1: both motors are regular
constant velocity (CV motor for short) motors; situation 2: both motors are
servomotors which have a prescribed trajectory; situation 3: one motor is a CV
motor and the other is a servomotor.

Table 7.4 gives the detailed designed parameters of the parallel robotic mecha-
nism of Fig. 7.4. The second column is associated with the original design, and the



164 P.R. Ouyang et al.

Table 7.4 Parameters of the designed mechanisms

Parameters Unbalanced CW AKP Hybrid 1 Hybrid 2

l1 (m) 0.15 0.15 0.13 0.15 0.13
l2 (m) 0.26 0.26 0.26 0.26 0.26
l3 (m) 0.26 0.26 0.208 0.208 0.26
l4 (m) 0.14 0.14 0.0884 0.0884 0.14
l5 (m) 0.3 0.3 0.3 0.3 0.3
r1 (m) 0.075 0.0866 0.15 0.0866 0.15
r2 (m) 0.15 0.15 0.15 0.15 0.15
r3 (m) 0.08485 0.1 0.12 0.12 0.1
r4 (m) 0.115 0.141 0.135 0.135 0.141
m1 (kg) 1 2 1 2 1
m2 (kg) 2 2 2 2 2
m3 (kg) 2 3 2 2 3
m4 (kg) 2 4 2 2 4
I1 (kg�m2) 0.01 0.0328 0.01 0.0328 0.01
I2 (kg�m2) 0.05 0.05 0.05 0.05 0.05
I3 (kg�m2) 0.04 0.0605 0.04 0.04 0.0605
I4 (kg�m2) 0.02 0.077 0.02 0.02 0.077
�1 (deg) 90 150 150 150 150
�2 (deg) 30 30 30 30 30
�3 (deg) 225 210 210 210 210
�4 (deg) 192.83 188.19 190.89 190.89 188.19

third is the modified design based on CW, and so forth for the remaining columns.
For situation 1, we further considered two cases: low speed (� /6 rad/s) and high
speed (10� /3 rad/s). The results are reported in the following.

7.6.2.1 Results for Situation 1

In all the figures, FX1 and FX2 represent the X-axis forces (horizontal here) on
two motors, respectively; FY1 and FY2 represent the Y-axis forces (vertical) on two
motors, respectively, and T1 and T2 represent torques on two motors, respectively.

Figures 7.11 and 7.12 show the fluctuation of the driving forces in two directions
and the control torques of the parallel robotic mechanism in two motors at a low
constant speed of � /6 rad/s (i.e., the period is 12 s). In Fig. 7.3, the big driving force
fluctuations of the unbalanced mechanism are clearly shown. As listed in Table 7.5,
the driving force for the unbalanced mechanism rises from the minimum 1.6187 N
at time 0.78 s to the maximum 4.957 N at time 8.06 s, followed by a sharp decline
to 1.86 N at the end of the period. At this point, a cycle has been completed and a
new one begins. Despite far less significant changes, similar trends are seen in all
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Table 7.5 Minimum and maximum driving forces of motors at low speed

Force Range Unbalanced CW AKP Hybrid 1 Hybrid 2

FX1 Min (N) 1:619 �0:007 0:005 �0:009 �0:001

Max (N) 4:957 0:214 0:146 0:272 0:167

FX2 Min (N) �5:030 �0:214 �0:146 �0:272 �0:167

Max (N) �1:625 0:007 �0:005 0:009 0:001

FY1 Min (N) �25:515 �29:611 �19:699 �19:877 �29:512

Max (N) �20:853 �29:186 �19:501 �19:293 �29:275

FY2 Min (N) �47:817 �78:687 �49:145 �78:774 �49:178

Max (N) �43:219 �78:262 �48:947 �78:190 �48:941

Table 7.6 Minimum and maximum control torques of motors (N mm) at low
speed

Force Range Unbalanced CW AKP Hybrid 1 Hybrid 2

T1 Min �1666:969 �4:135 �1:627 �3:203 �6:373

Max 2156:143 40:821 13:838 44:473 26:539

T2 Min �1693:543 �38:028 �10:568 �36:108 �14:020

Max 1190:208 7:094 �0:423 7:612 �0:644

the other balanced mechanisms, rising from a minimum to a maximum, followed
by a sharp decline at the end of the period. Table 7.5 summarizes the minimum and
maximum values of the forces for the unbalanced mechanism and the four balanced
mechanisms with different approaches at a low speed.

In general, at low-speed simulation, the unbalanced mechanism fluctuates further
more than the balanced mechanisms in terms of force and torque, as shown in
Table 7.6. Among the balanced mechanisms, the best performances go to AKP and
hybrid 2 (1CWC3/4AKP).

Figures 7.13 and 7.14 describe the fluctuation of the driving forces in the X
direction and control torques in two motors at a constant high speed of 10� /3 rad/s.
Tables 7.7 and 7.8 list the minimum and maximum driving forces and control
torques for two motors, respectively. Comparing Fig. 7.13 with Fig. 7.11, one can
see that the distributions of driving forces in the X direction are totally changed when
the system operated in a high speed. The differences of the fluctuations of driving
forces among all five designs become nonsignificant. The same change trends also
appeared for the control torques, as shown in Fig. 7.14 and Table 7.8.

Overall, at high speed, forces and torques considerably differ from those at low
speed. The forces nearly increase by 20 times and torques by 100 times. From the
simulation results, we can see that the most remarkable phenomenon is that CW and
1AKPC3/4CW are poorer even than the unbalanced mechanism, but still AKP and
hybrid 2 (1CWC3/4AKP) are the best.
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Fig. 7.13 Driving forces for two motors in the X direction at high speed
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Fig. 7.14 Control torques for two motors at high speed

Table 7.7 Minimum and maximum driving forces of the motors at high speed

Force Range Unbalanced CW AKP Hybrid 1 Hybrid 2

FX1 Min (N) 68:803 68:083 40:940 91:156 46:049

Max (N) �24:898 �20:328 �15:404 �21:143 �16:676

FX2 Min (N) �46:863 �67:926 �40:955 �91:127 �46:209

Max (N) 20:268 20:215 15:400 21:168 16:791

FY1 Min (N) �116:555 �102:772 �50:914 �122:878 �62:135

Max (N) 47:815 66:602 27:916 110:357 28:929

FY2 Min (N) �141:116 �174:532 �96:543 �208:603 �107:366

Max (N) 12:878 �5:260 �17:725 24:701 �16:160

7.6.2.2 Results for Situation 2

For situation 2, the operation duration is 4 s for a full rotation of both motors with
varying speeds, and the prescribed trajectories of two motors are defined as follows:

Motor 1:

q1d D q1d0 C �
6 � t5=45 � 15 � t4=44 C 10 � t3=43

� � 2� t 2 Œ0; 4�
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Table 7.8 Minimum and maximum torques of motors (N mm) at high speed

Force Range Unbalanced CW AKP Hybrid 1 Hybrid 2

T1 Min �1831:242 �546:258 �472:298 �1215:42 �1485:57

Max 11066:674 15604:21 6208:644 18605:1 8313:735

T2 Min �8406:293 �11073:7 �4660:89 �13051:9 �5791:45

Max �71:239 �607:81 �612:595 1807:899 �341:812

Motor 2:

q2d D q2d0 C �
6 � t5=45 � 15 � t4=44 C 10 � t3=43

� � 2� t 2 Œ0; 4�

Figure 7.15 shows the fluctuation of the driving forces and control torques
in two motors. From this figure, it demonstrated that the AKP and hybrid 2
(1CWC3/4AKP) are the best in terms of low driving forces and less fluctuation
of the control torques.

7.6.2.3 Results for Situation 3

For situation 3, the operation duration is 4 s and the trajectories of two motors are
different and defined as follows:

Motor 1:

q1d D 0:5� � t t 2 Œ0; 4�

Motor 2:

q2d D �
6 � t5=45 � 15 � t4=44 C 10 � t3=43

� � 2�; t 2 Œ0; 4�

Figure 7.16 shows the fluctuation of the driving forces and control torques in two
motors under different trajectories, respectively.

Based on these three situations where trajectories are given, AKP and hybrid
2 (1CWC3/4AKP) are the best in terms of less fluctuation of driving forces and
less control torques, and the unbalanced mechanism is the worst. However, CW and
hybrid 1 (1AKPC3/4CW) appear to be no better than the unbalanced mechanism at
high-speed situation.

7.7 Conclusions

The extended AKP method is developed in this chapter. One of the important
contributions of this extension lies in the new idea on the adjustment of two pivots
on each link. With this design method, the original AKP method was extended to
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Fig. 7.15 Driving forces and control torques for two motors for the same trajectories

any planar mechanism with “off-line” mass centers. The derived design equations of
the extended AKP method are in a general form, from which the special design case
with “in-line” mass centers can be readily derived. Two different configurations for
three cases: the force unbalanced mechanism, and the force balanced mechanism
using the extended AKP method and the CW method, respectively, are studied to
demonstrate the effectiveness of the extended AKP method. The joint forces of
the individual pivots are calculated at both low speeds and high speeds for these
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Fig. 7.16 Driving forces and control torques for two motors for different trajectories

configurations. All the results have shown that the extended AKP method is better
than the CW method in terms of the joint force reductions and the variation decrease
at high speeds.

It should be noticed that the static balancing solution has some demerit when
the mechanism runs at high speeds. In this case, the inertia forces becomes the
dominant term in the dynamics. Since the CW method adopts the adding mass
approach for force balancing purpose, its inertia force takes more weight. While
with the extended AKP method, the total mass of the system is unchanged; therefore
the inertia force does not differ significantly from the unbalanced mechanism.
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In addition, following the hybridization principle, the hybrid AKPCCW method
was proposed for the force balancing. Two different hybrid schemes are designed
for the parallel robotic mechanism and their performances are compared with AKP,
CW, and unbalanced mechanism. Simulation results show that AKP and hybrid 2
(1CWC3/4AKP) can achieve good performance in all situations. As the operating
speed increases, CW and hybrid 1 (1AKPC3/4CW) get worse. When the operating
speed goes up to 10� /3 s�1, CW and hybrid 1 (1AKPC3/4CW) are even worse than
the unbalanced mechanism.

It should be noted that, in the force balancing with the CWCAKP approach,
certain parameters need to be selected. In this study, the optimal selection of these
parameters has not been considered. The optimal selection of design parameters in
the CWCAKP approach will be addressed in future. Another work is planned in the
future on moment balancing and torque balancing with this hybrid approach.
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