
Chapter 6
Shaking Force and Shaking Moment Balancing
of Six- and Eight-Bar Planar Mechanisms

Peddinti Nehemiah

Abstract This chapter presents the dynamic balancing technique for shaking force
and shaking moment balancing of six- and eight-bar planar mechanisms. Shaking
force is balance by the method of redistribution of mass and shaking moment by
geared inertia elements. The planetary gears used to balance shaking moment of
links not directly connected to the frame in earlier methods are mounted on the base
of the mechanism which is constructively more efficient. The proposed method is
illustrated by numerical examples and it is observed that better results are obtained
than those of the previous method.

Keywords Shaking force • Shaking moment • Dynamic balancing • Watt mech-
anisms • Self-balanced Slider-crank mechanism

6.1 Introduction

Mechanisms, particularly those which run at high speeds, generate variable forces
on their foundations. These forces may cause noise, vibration, and unnecessary wear
and fatigue. If these devices were balanced they would run more smoothly due to a
reduction in these undesirable qualities. The balancing of a linkage would eliminate
the vibration and noise and maintains a peaceful and productive environment, and
it also minimizes the alternating components of the dynamic forces acting on the
frame of the mechanism and machine. Therefore, the problems of shaking force
and shaking moment balancing have attracted the attention of the machine and
mechanism designers for a long time. Balancing of shaking force and shaking
moment in high-speed mechanisms/machines reduces the forces transmitted to the
frame. In effect, this reduces the noise and wear, improves the dynamic performance,
and extends the fatigue life of the mechanisms. A considerable amount of research
on balancing of shaking force and shaking moment in planar mechanisms has been
carried out in the past.
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6.1.1 Shaking Force in a Mechanism

Of special interest to the designer are the forces transmitted to the frame or
foundation of the machine owing to the inertia of moving links and other machine
members. When these forces vary in magnitude or direction, they tend to shake
or vibrate the machine, and consequently they are called shaking forces. Thus the
shaking forces are the forces, which act upon the frame of a machine owing only
to the inertia forces of the moving parts. Shaking forces and shaking moments
are the unbalanced forces and moments generated when the planar and spatial
mechanisms are in motion. The study of these forces and moments is important
when they run at high speeds. These undesirable qualities of the mechanism reduce
the performance of the mechanism. The shaking force generated by the mechanism
can be determined as follows:

If a four-bar linkage is considered, as an example, with links 2, 3, and 4 as the
moving members and link 1 as the frame, then the inertia forces associated with
the moving members are �m2AG2 ; �m3AG3 ; �m4AG4 . Therefore, taking the moving
members as a free body, it can be immediately written as

X
F D F12 C F14 C .�m2AG2 / C .�m3AG3 / C .�m4AG4 / D 0

Using “FS” as a symbol for the resulting shaking force, it is defined as equal to
the resultant of all the reaction forces on the ground link 1,

FS D F21 C F41

Therefore, from the previous equation, it can be written as

FS D � .m2AG2 C m3AG3 C m4AG4 /

Thus a general equation for the shaking forces in any machine is

FS D �
nX

2

mnAGn

where it is understood that link 1 is always the frame and where “n” is the number
of members making up the machine.

6.1.2 Shaking Moment of the Mechanism

The shaking moment of a linkage can be described as the time rate of change of the
total angular momentum with respect to the reference origin “O.” It is

M D I˛, where M is the shaking moment w.r.t. point “O”; ˛ is the angular
acceleration; and I is the mass moment of inertia.
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6.1.3 Methods of Balancing

Balancing of linkages is an important step in the design of machinery. When shaking
forces and shaking moments of the whole mechanisms are to be balanced then
balancing of sub-linkages is considered. The linkages consist of different sub-
linkages; this study considers two sub-linkages as most of the mechanisms are
formed by them. Many methods [1–75] have been developed for the balancing of
shaking force and shaking moment of planar linkages:

1. Method of redistribution of mass [1–6]
2. Method of double crank with symmetrical properties [7]
3. Method of active balancing [8–16]
4. Methods of balancing by planetary systems attached to the coupler [17–30]
5. Method of balancing by minimizing vibration [31–41]
6. Computational methods of optimization for balancing [42–68]
7. Methods for the minimization of shaking moments [69–74]
8. Balancing by opposite movements [75]

This chapter deals with the shaking force and shaking moment balancing of
single degree of freedom planar mechanisms. Specifically, the author employs the
traditional technique of addition of counterweights and counter-rotating inertias in
order to balance six- and eight-bar linkages through the development of analytical
expressions. This chapter is the extension of the work carried out by the authors
[18–23].

6.2 Articulation Dyad

6.2.1 Complete Shaking Force and Shaking Moment
Balancing of an Articulation Dyad

An open kinematic chain of two binary links and one joint is called a dyad. When
two links are articulated by a joint so that movement is possible that arrangement of
links is known as articulation dyad. The well-known scheme of complete shaking
force and shaking moment balancing of an articulation dyad [18–23] is shown in
Fig. 6.1.

For shaking force balancing link 2 is dynamically replaced by two point masses.
A counterweight mCW2 D .m2lAS2 / =rCW2 is added to link 2 which permits the
displacement of the center of mass of link 2 to joint A. Then, by means of a
counterweight with mass mCW1 D Œ.m2 C mCW2 / lOA C m1lOS1 � =rCW1 a complete
balancing of shaking force is achieved. A complete shaking moment balance is
realized through four gear inertia counterweights 3–6, one of them being of the
planetary type and mounted on link 2.
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Fig. 6.1 Complete shaking
force and shaking moment
balancing of an articulation
dyad
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Fig. 6.2 Complete shaking
force and shaking moment
balancing of an articulation
dyad by gear inertia
counterweights mounted on
the base
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6.2.2 Complete Shaking Force and Shaking Moment
Balancing of an Articulation Dyad by Gear Inertia
Counterweights Mounted on the Base

The scheme used in this work (Fig. 6.2) is distinguished from the earlier scheme by
the fact that gear 3 is mounted on the base and is linked kinematically with link 2
through link 10.

To prove the merits of such a balancing, the application of the new system with
the mass of link 10 not taken into account is considered. In this case (compared to the
usual method in Fig. 6.1), the mass of the counterweight of link 1 will be reduced
by an amount
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ımcw1 D m3lOA
.

rcw1

(6.1)

where m3 is the mass of gear 3.
lOA is the distance between the centers of hinges O and A.
rcw1 is the rotation radius of the center of mass of the counterweight.
It is obvious that the moment of inertia of the links is correspondingly reduced.

If the gear inertias are made in the form of heavy rims in order to obtain a large
moment of inertia, the moments of inertia of the gear inertia counterweights may be
presented as

I D miD2
i

4
.i D 3 : : : 6/ :

Consequently, the mass of gear 6 will be reduced by an amount

ım6 D 4
�
m3l2OA C ımcw1r2

cw1

� T6

D2
6T5

(6.2)

where
T5 and T6 are the numbers of teeth of the corresponding gears. Thus, the total

mass of the system will be reduced by an amount

ım D ımcw1 C ım6 (6.3)

Here the complete shaking force and shaking moment balancing of the articulation
dyad with the mass and inertia of link 10 taken into account are considered. For this
purpose initially, statically replace mass m

0

1 of link 10 by two point masses mB and
mc at the centers of the hinges B and C:

mB D m10 lCS10
=lBC

mC D m10 lBS10
=lBC

(6.4)

where
lBC is the length of link 1.
lCS10

and lBS01
are the distances between the centers of joints C and B and the

center of mass S
0

1 of link 10, respectively.
After such an arrangement of masses the moment of inertia of link 10 will be

equal to

I�
S01

D IS01
� m10 lBS01

lCS01
(6.5)

where
IS01

is the moment of inertia of link 10 about the center of mass S
0

1 of the link.
Thus a new dynamic model of the system is obtained, where the link 10 is

represented by two point masses mB, mC and has a moment of inertia I�
S01

:
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This fact allows for an easy determination of the parameters of the balancing
elements as follows:

m�
CW2

D .m2lAS2 C mBlAB/ =rCW2 (6.6)

where
m2 is the mass of link 2.
lAB is the distance between the centers of the hinges A and B
lAS2 is the distance of the center of hinge A from the center mass of S2 of link 2.
rCW2 is the rotation radius of the center of mass of the counterweight with respect

to A and

m�
CW1

D Œ.m2 C mCW2 C mB/ lOA C m1lOS1
� =rCW1 (6.7)

where m1 is the mass of link 1.
lOS1 is the distance of the joint center O from the center of mass S1 of link 1.
Also,

mCW3 D mClOC=rCW3 (6.8)

where

lOC D lAB

rCW3 is the rotation radius of the center of mass of the counterweight.
Taking into account the mass of link 10 brings about the correction in Eq. (6.3) in

this case,

ım D ımCW1 C ım6 � ım0
1 (6.9)

where ım
0

1 is the value characterizing the change in the distribution of the masses of
the system links resulting from the addition of link 10.

6.3 Asymmetric Link with Three Rotational Pairs

A link with three nodes is called ternary link, where nodes are points for attachment
to other links. In previous work by Gao Feng [18] relating to balancing of linkages
with a dynamic substitution of the masses of the link by three rotational pairs shown
in Fig. 6.3 two replacement points A and B are considered. This results in the need
to increase the mass of the counterweight. However, such a solution may be avoided
by considering the problem of dynamic substitution of link masses by three point
masses. Usually the center of mass of such an asymmetric link is located inside a
triangle formed by these points.
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Fig. 6.3 Dynamic
substitution of the masses of
the link by three rotational
pairs
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The conditions for dynamic substitution of masses are the following:
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where mA, mB, and mC are point masses.
lA, lB and lC are the moduli of radius vectors of corresponding points.
�A, �B and �C are angular positions of radius vectors; mi is the mass of link.
ISi is the moment of inertia of the link about an axis through Si (axial moment of

inertia of link).
From this system of equations the masses are obtained:

mA D DA=DiI mB D DB=DiI mC D DC=Di (6.10)

where DA, DB, DC and Di are determinants of the third order obtained from the
above system of equations.

6.4 Summary

The complete shaking force is balanced by the method of redistribution of mass and
making the total mass center of the mechanism stationary. The complete shaking
moment is balanced by geared inertia counterweights. The planetary gears which
are mounted on the links not directly connected to the frame in earlier method are
mounted on the frame of the mechanism by connecting the planetary gear and the
corresponding link by a link of known mass, center of mass, and mass moment
of inertia. This arrangement makes the balanced mechanism constructively more
efficient and compact and yields better results over the Gao Feng method.
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6.5 Watt Mechanism with Three Fixed Points Linkage

Watt mechanism consists of six links; out of them two are ternary and the remaining
four are binary links. In Watt mechanism two ternary links are directly connected
to one another. This mechanism is obtained when one of the ternary links in the
basic Watt chain is fixed. This is a simple mechanism as the radii of path curvature
of all motion transfer points are known. This mechanism is used in steam engines
and is also used to oscillate the agitator in some washing machines. In the Watt
mechanism with three fixed points shown in Fig. 6.4, link 1 and 3 are ternary links
and all other links are binary links. The balanced Watt mechanism with three fixed
points is shown in Fig. 6.5.

6.5.1 Shaking Force Balancing of the Mechanism

For shaking force balancing link 3 is dynamically replaced by three point masses
mB3, mC3 and mD3 and then the problems of sub-linkages OAB and DEF are
considered.

Fig. 6.4 Watt mechanism with three fixed points

Fig. 6.5 Balanced Watt mechanism with three fixed points
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The dynamic conditions for link 3 to be replaced by three point masses are

2

4
1 1 1

lBei�B lCei�C lDei�D

l2B l2C l2D

3

5

2

4
mB3

mC3

mD3

3

5 D
2

4
m3

0

IS3

3

5

mB3 D DB
.

D3
I mC3 D DC

.
D3

I mD3 D DD
.

D3
(6.11)

where
lB, lC, lD are the moduli of radius vectors of corresponding points.
�B, �C, �D are the angular positions of radius vectors.
m3 is the mass of link 3.
IS3 is the mass moment of inertia link 3 about its center of mass.
DB, DC, DD and D3 are the third-order determinants obtained from the system of

equations.
For sub-linkage DEF link 4 is dynamically replaced by two point masses mD4

and mP4 and then kinematically linked link 4 and its corresponding gear inertia
counterweight 7 by link 50 and link 50 is statically replaced by two point masses mG

and mH and attached a counterweight mCW4 against link 4. Then link 5 has been
dynamically replaced by two point masses mE5, mP5 and attached a counterweight
mCW5 against it.

For link 4 to be dynamically replaced by two point masses the condition to be
satisfied is k2

4 D lDS4 lP4S4

where
k4 is the radius of gyration of link 4 about its center of mass.
lDS4 is arbitrarily fixed.
lP4S4 is obtained from the above condition:

mD4 D m4lP4S4

.
.lDS4 C lP4S4 /

mP4 D m4lDS4

.
.lDS4 C lP4S4 /

For link 5 to be dynamically replaced by two point masses the condition to be
satisfied is

k2
5 D lES5 lP5S5

where
k5 is the radius of gyration of link 5 about its center of mass.
lES5 is arbitrarily fixed.
lP5S5 is obtained from the above condition:

mE5 D m5lP5S5

.
.lES5 C lP5S5 /

mP5 D m5lES5

.
.lES5 C lP5S5 /
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and counterweight mass against “G” is equal to

mCW7 D mGlFG
.

rCW7

(6.12)

mG D m0
5lHS5

.
lGH

mH D m0
5lGS5

.
lGH

I0�
S5

D I0
S5

� m0
5lGS5 lHS5

mCW4 D .m4lES4 C mD3lDE C mHlEH/
.

rCW4

mCW5 D ..m4 C mD3 C mH C mCW4 / lEF C m5lFS5 /
.

rCW5

(6.13)

where rCW4 D .lP4S4 � lES4 / is the radius of rotation of counterweight mCW4 and
rCW5 D .lP5S5 � lFS5 / is the radius of rotation of counterweight mCW5 .

For sub-linkage OAB link 2 is dynamically replaced by two point masses
mB2, mP2 and then kinematically linked link 2 and its corresponding gear inertia
counterweight 11 by link 10 and link 10 is statically replaced by two point
masses mI, mJ and attached a counterweight mCW2 against link 2. Then link 1 is
dynamically replaced by two point masses mA1, mP1 and attached a counterweight
mCW1 against it.

For link 2 to be dynamically replaced by two point masses the condition to be
satisfied is k2

2 D lBS2 lP2S2

where k2 is the radius of gyration of link 2 about its center of mass.
lBS2 is arbitrarily fixed and lP2S2 is obtained from the above condition:

mB2 D m2lP2S2

.
.lBS2 C lP2S2 /

mP2 D m2lBS2

.
.lBS2 C lP2S2 /

For link 1 to be dynamically replaced by two point masses the condition to be
satisfied is

k2
1 D lAS1 lP1S1

where
k1 is the radius of gyration of link 1 about its center of mass.
lAS1 is arbitrarily fixed.
lP1S1 is obtained from the above condition:
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mA1 D m1rP1S1

.
.lAS1 C lP1S1 /

mP1 D m1lAS1

.
.lAS1 C lP1S1 /

mI D m0
1lIS5

.
lIJ

mJ D m0
1lJS5

.
lIJ

mCW11 D mIlOI
.

rCW11

I0�
S1

D I0
S1

� m0
1l0JS1

lIS1

mCW2 D .m2lAS2 C mB3lAB C mJlAJ/
.

rCW2

mCW1 D ..m2 C mB3 C mJ C mCW2
/ lOA C m1lOS1

/
.

rCW1

where mCW11 is the counterweight attached against point mass mI.
rCW2 D .lP2S2 � lAS2

/ is the radius of rotation of counterweight mCW2 , and
rCW1 D .lP1S1 � lOS1 / is the radius of rotation of counterweight mCW1 .

6.5.2 Shaking Moment Balancing of the Mechanism

The shaking moments generated by links 1, 2, 4, and 5 are given in Eq. (6.14).
The links 2 and 4 are not directly connected to the frame, and the geared inertia
counterweights required to balance the shaking moments of these two links are
mounted on the base of the mechanism, by kinematically linking them to the
corresponding links by links of known mass and center of mass.

The shaking moment generated by the linkage is determined by the sum

MintDMint
1 CMint

5 CMint
2 CMint

4

Mint
1 D �

IS1Cm1l2OS1
C .mCW2CmJCm2CmB3 / l2OACmCW1r2

CW1
CI0�

S1
Cm0

1l2OS1

�
˛1

Mint
5 D

�
IS5Cm5l2FS5

C .mCW4CmHCm4CmD3/ l2EFCmCW5r2
CW5

CI0�
S5

Cm0
5l02FS5

�
˛5

Mint
2 D �

2mIl2OI

�
˛2

Mint
4 D �

2mGl2FG

�
˛4

(6.14)
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where
Mint

1 , Mint
5 are the shaking moments of rotating links 1 and 5, respectively.

IS1 ; IS5 are mass moments of inertia of links 1 and 5 about their centers of masses,
respectively.

I0�
S1

; I0�
S5

are the changed moments of inertia of links 10, 50, respectively.
˛1, ˛2, ˛4,˛5 are the angular accelerations of links 1, 2, 4, and 5, respectively.
For shaking moment balancing eight gear inertia counterweights are used, four

at F and four at O.

6.6 Watt Mechanism with Two Fixed Points

The Watt mechanism with two fixed points is obtained when one of the binary links
in the basic Watt chain is fixed. This mechanism is generally used in steam engines.
In the Watt mechanism with two fixed points shown in Fig. 6.6, links 2 and 3 are
ternary links and all other links are binary links. The balanced Watt mechanism with
two fixed points is shown in Fig. 6.7.

Fig. 6.6 Watt mechanism
with two fixed points
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Fig. 6.7 Balanced Watt mechanism with two fixed points
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6.6.1 Shaking Force Balancing of the Mechanism

Here the link 2 is dynamically replaced by three point masses mA2 ; mB2 ; mO2 by
using the following conditions:

2

4
1 1 1

lO2ei�O2 lAei�A lBei�B

lO2

2 lA2 lB2

3

5

2

4
mO2

mA2

mB2

3

5 D
2

4
m2

0

IS2

3

5

mO2 D DO2

D2

; mA2 D DA2

D2

; mB2 D DB2

D2

where lO2 ; lA; lB are the moduli of radius vectors of corresponding points.
�O2 ; �A; �B are the angular positions of radius vectors.
m2 is the mass of link 2.
IS2 is the mass moment of inertia of link 2 about its center of mass.
DO2 ; DA2 ; DB2 and D2 are the third-order determinants obtained from the system

of equations.
For link 6 to be statically replaced by the point masses mC6 and mD6

mC6 D m6lDS6

lCD

mD6 D m6lCS6

lCD

Changed mass moment of inertia I
0�
S6

D I
0

S6
� m6lDS6 lCS6

For link 5 to be dynamically replaced by two point masses mC5 and mP5 the
condition to be satisfied is

k5
2 D lCS5 lP5S5

where lCS5 is arbitrarily taken and lP5S5 is obtained from the above condition:

mC5 D m5lP5S5

.lP5S5 C lCS5 /

mP5 D m5lCS5

.lP5S5 C lDS5 /

After link 5 is dynamically replaced by two point masses it is kinematically
connected to its corresponding gear inertia counterweight 8 by link 20; moreover
link 20 is statically replaced by two point masses mG and mF:

mG D m
0

2l0FS2

lFG
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mF D m0
2l0GS2

lFG

Counterweight mCW5 can be obtained as

mCW5 D .mC6lBC C mFlBF C m5 lBS5
/

rCW5

(6.15)

where rCW5 D lP5S5 � lCS5 is radius of rotation of counterweight mCW5 .
Link 3 is dynamically replaced by three point masses mA3, mD3, mE3 by using the

following conditions:

2

4
1 1 1

lAei�A3 lAei�D lBei�E

lA2 lD2 lE2

3

5

2

4
mA3

mD3

mE3

3

5 D
2

4
m3

0

IS3

3

5

mA3 D DA3

D3

; mD3 D DD3

D3

; mE3 D DE3

D3

(6.16)

where lA, lD, lE are the moduli of radius vectors of corresponding points.
�A3, �D, �E are the angular positions of radius vectors.
m3 is the mass of link 3.
IS3 is the mass moment of inertia of link 2 about its center of mass.
DA3, DD3, DE3 and D2 are the third-order determinants obtained from the system

of equations.
Counterweight against point B of link 2 can be obtained as

m0
B D .mCW5 C mF C m5 C mC6/ lO2B

�

l0O2B

where l
0

O2B is arbitrarily fixed.
Counterweight against point A of link 3 can be obtained as

m0
A D .mA2 C mA3/ lO2A

�

l0O2A

where l0O2A is arbitrarily chosen.
Counterweight against point D of link 3 can be obtained as t

m0
D D .mD3 C mD6/ lDE

.
l0DE

where l
0

DE is arbitrarily chosen.
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For link 4 to be dynamically replaced by two point masses mE4, mP4 the condition
to be satisfied is k2

4 D lES4 lP4S4 , where lES4 is arbitrarily is chosen and lP4S4 is
obtained from the above condition:

mE4 D m4lP4S4

.
.lP4S4 C lES4 /

I mP4 D m4lES4

.
.lP4S4 C lES4 /

Counterweight against link 4 can be obtained as

mCW4 D
�
mE3 C mD6 C m0

D

�
lO4E

rCW4

where rCW4 D lP4S4 � lO4S4 is the radius of rotation of counterweight mCW4 .

6.6.2 Shaking Moment Balancing of the Mechanism

The shaking moments generated by links 2, 4, and 5 are given in Eq. (6.17).
The shaking moment generated by the mechanism can be determined by the sum

Mint D Mint
2 C Mint

5 C Mint
4 (6.17)

where

Mint
2 D �

IS2CI0�
S2

Cm0
2l0GS2

l0FS2

C .mA2CmA3/ l2O2AC .mCW5CmFCm5CmC6/ l2O2BCm0
Bl02O2B

�
˛2

Mint
4 D �

IS4Cm4l2O4S4
CmCW4r2

CW4

�
m0

DCmD3CmD6CmE3

�
l2O4E

�
˛4

Mint
5 D �

2mGl2O2G

�
˛5

Mint
2 , Mint

4 , Mint
5 are the shaking moments of rotating links 2, 4, and 5, respectively.

IS2;IS4 are the mass moment of inertia of links 2 and 4, respectively.
˛2,, ˛4, ˛5 are the angular accelerations of links 2, 4, and 5, respectively.
For shaking moment balancing six gear inertia counterweights are used, four at

O2 and two at O4.
Shaking force of the mechanism by the proposed method:

FProposed D � �
m2AG2 C m3AG3 C m4AG4 C m5AG5 C m6AG6 C m0

2A0
G2

�

Shaking moment of the mechanism by the proposed method:

Mint
proposed D Mint

2 C Mint
4 C Mint

5
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Shaking force of the mechanism by Gao Feng’s method:

FGaofeng D � .m2AG2 C m3AG3 C m4AG4 C m5AG5 C m6AG6 C mG8AG8/

Shaking moment of the mechanism by Gao Feng’s method:

Mint
Gaofeng D Mint

2 C Mint
4 C Mint

5 C �
IS8 C 2mG8l2FG

�
˛2

Numerical example: The Watt mechanism with two fixed points shown in Fig. 6.6
has the following parameters:

m2 D 2 kg; k2 D 0:1198 m; m3 D 1:8 kg; k3 D 0:1178 m; m4 D 7 kg; k4 D 0:237m;

m5 D 2:8 kg; k5 D 0:934 m; m6 D 3 kg; k6 D 0:369 m; lA3 D 3:7 m; lE D 5:8

m; lD D 5:6 m; �A D 0ı; �B D 117ı; �O2 D 262ı; lO2 D 5 m; lA D 2:6 m; lB D 3:7;

lO2B D 5; lO2A D 2:3 m; lAB D 9 m; lBC D 8 m; lCD D 6 m; lBF D 2:1 m;

lO4E D 9 m; lDE D 7 m; lAE D 5 m; lAD D 2:5 m; �E D 0ı; �A# D 208ı; �D D 147ı;

m0
2 D 0:5 kg; !2 D 10 rad=s; ˛2 D 10 rad=s2

6.6.3 Comparison Between the Results of Proposed
and Gao Feng Methods

The results of shaking force and shaking moment by proposed method and Gao
Feng method for Watt mechanism with two fixed points are shown in Tables 6.1
and 6.2.

The shaking forces in Watt mechanism with two fixed points are determined at
intervals of 90ı. At all positions better results are produced by proposed method.
Shaking force of the mechanism is maximum 2,726.43 N, at 0ı, and minimum
791.96 N, at 180ı in the proposed method. The shaking force gradually decreases
from maximum at 0ı to minimum at 180ı and again gradually increases to

Table 6.1 Shaking force comparison of Watt mechanism with two fixed
points

Crank angle(deg)
Shaking force generated
in proposed method (N)

Shaking force generated
in Gao Feng’s method (N)

0 2,726.43 15,285.24
90 1,840.32 14,399.16
180 791.96 13,350.82
270 923.45 13,482.31
360 2,726.43 15,285.22
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Table 6.2 Shaking moment comparison of Watt mechanism with two
fixed points

Crank angle(deg)

Shaking moment
generated in proposed
method � 105 N m

Shaking moment
generated in Gao Feng’s
method � 105 N m

0 �468.22 �468.19
90 �5.23 �5.18
180 33.17 33.23
270 39.41 39.46
360 �468.25 �468.19

maximum at 360ı. The shaking moment of Watt mechanism with two fixed points
is maximum 468.2 � 105 N m, at 0ı, and minimum �5.23 � 105 N m, at 90ı.
The shaking moment gradually decreases from 0ı to 90ı and again increases to
maximum at 360ı. It can be observed that shaking forces by proposed method are
very much less at all intervals of crank angle than those by Gao Feng’s method. As
there is only one planetary gear 8 to be mounted on the base of the mechanism,
there is a little improvement in the shaking moment balancing, but the shaking
forces have been substantially reduced. Though the results of a numerical example
are not available in the literature to make a comparison in Tables 6.1 and 6.2, the
balanced mechanisms of both the proposed and Gao Feng methods can be compared
construction-wise. It can be observed that the balanced mechanism of proposed
method is constructively more efficient and compact and occupies less space.

6.7 Self-Balanced Slider-Crank Mechanism

In the two identical slider-crank mechanism shaking forces are automatically
balanced as the movements of the two slider-crank mechanisms are opposite to each
other, so it is called as self-balanced slider-crank system. These mechanical systems
find successful applications in engines, agricultural machines, mills, and various
automatic machines (Fig. 6.8).

6.7.1 Self-Balanced Slider-Crank System with an Imagined
Articulation Dyad

Figure 6.9 shows a self-balanced slider-crank system with an imagined articulation
dyad B0D0E, which forms a pantograph with the initial system. The similarity factor

of the formed pantograph is k D lAD

.
lAB

D 1 and lBB0 D lDD0;lB0D0 D lAD C lAB:
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Fig. 6.9 Self-balanced slider-crank system with an imagined articulation dyad B0D0E

By substituting dynamically the mass m3 of the connecting coupler 3 by point
masses at the centers B, B0 and C and using the following condition

2

4
1 1 1

lBS3 �lCS3 lB0S3

lBS3

2 lCS3

2 lB00S3

2

3

5

2

4
mB

mC

mB0

3

5 D
2

4
m3

0

IS3

3

5

where lBS3 , lCS3 ; lB0S3
are the distances of joint centers B, C, and B0 from the centers

of masses S3 of the link 3.
IS3 is the axial moment of inertia of link 3; we determine the value of the point

masses

mB D DB=D3I mC D DC
.

D3
I mB0 D DB0=D3 (6.18)

where DB; DC; DB0;D3 are determinants of the third order obtained from the system
of equations.
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We now require imagined link B0D0 to be balanced about point G of the
pantograph, i.e.,

mD0 D mB0 lB0G=lD0G

The concentrated point masses mG,mC, mE to be balanced about center A, i.e.,

mE D .mGlBB0 C mClBC/ =lDE

where lBB0;lBC are the distances of joint centers B0, C from the joint center B, and
lDE is the distance of joint center D from the joint center E:

mG D mB0 C mD0 (6.19)

Finally the concentrated point masses mB, mD are also to be balanced about center
A, i.e.,

mD D mBlAB=lAD. Thus we obtain the values of three concentrated point masses
mD0 ; mD; mE which allow the determination of the mass and inertia parameters of
the connecting coupler 4

where l�DS4
D lDE � lES4 I lD0S4 D lD0E � lES4 .

6.7.2 Shaking Moment Balancing of the Mechanism

The shaking moment transmitted to the frame by links 2 and 7 is calculated using
the angular acceleration of link 2. The shaking moment transmitted to the frame by
connecting rods 3 and 4 is calculated using angular acceleration of link 8, as their
point masses are brought to link 8:

Mint
2 C Mint

7 D �
IS2 C m2l2AS2

C mBl2AB C mDl2AD C m7l2AS7
C IS7

�
˛2

Mint
8 D �

IS8 C m8l2GS8
C mD0 l2D0G C mB0 l2B0G

�
˛8 (6.20)

Total shaking moment generated by the mechanism:

Mint D Mint
2 C Mint

7 C Mint
8

(6.21)

The shaking moment generated by the mechanism is balanced by addition of gear
inertia counterweights 9 and 10.

For any mechanism with the given numerical values of link mass, length, mass
moment of inertia, and radius of gyration, the shaking force and shaking moment
can be calculated using the above equations. To balance the shaking moment
generated by the mechanism geared inertia counterweights with the equal amount
of inertia moment can be mounted on the frame of the mechanism.
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Numerical example:
The parameters of the self-balanced slider-crank system are the following:

lAB D lAD D 0:05mI lBC D lDE D 0:2mI lCS3 D lES4 D 0:1mI m3 D m4 D 0:35 kgI
m5 D m6 D 2 kgI IS3 D IS4 D 0:005 kg � m2I !AB D 30�=sI ˛AB D 15 rad=s2I
m2 D m7 D 0:3 kgI IS2 D IS7 D 0:003 kgI lAS2 D lAS7 D 0:025mI
IS8 D 0:006 kg � m2I m8 D 0:6 kg

Figure 6.10 shows the variations of the shaking moment of the initial mechanical
system. For cancellation of the shaking moment it is necessary to redistribute the
masses of the second connecting coupler. By dynamically substituting the mass
m3 of the connecting coupler 3 by point masses at centers B, B0, C and taking
into account conditions m

0

D; mE; mD, we calculate the mass and inertia parameters
of the connecting coupler 4. Figure 6.10 illustrates the obtained results. So by
mounting geared inertia counterweights the shaking moment is cancelled. The
shaking moment of initial mechanism was C0.168 N m at 90ı and �0.168 N m
at 270ı. It has been observed that the shaking moment of self-balanced slider-crank
mechanism has been zero at all angular positions of the crank.

If the driving torque and time are plotted for both the unbalanced and balanced
linkages then it can be observed that the driving torque is slightly higher for
the balanced mechanism, as the inertia elements are mounted on the base of the
mechanism for shaking moment balancing. On the other hand the performance of
the balanced mechanism improves considerably and it also increases the fatigue life
of the mechanism.
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6.8 Eight-Bar Mechanism with Three Fixed Points
and Three Ternary Links (Mechanism with Low
Degree of Complexity)

The eight-bar mechanism with three fixed points and three ternary links shown in
Fig. 6.11 has eight links, four ternary links and four binary links; one of the ternary
links is fixed. It has ten binary joints. The degree of freedom of this mechanism is
one. It is a mechanism with low degree of complexity as the path curvature of motion
transfer point “E” is not known. Links 2, 4, 6, and 7 are binary links and 1, 3, 5, and
8 are four ternary links; among them link 8 is fixed link. The links 2, 4, 6, and 7 are
not directly connected to the frame. The geared inertia counterweights required to
balance the shaking moments generated by links 2, 4, 6, and 7 are mounted on the
frame of the mechanism by kinematically linking geared inertia counterweights and
the corresponding links by links of known mass and center of mass. The balanced
eight-bar mechanism with three fixed points and three ternary links is shown in
Fig. 6.12.

Fig. 6.11 Eight-bar mechanism with three fixed points and three ternary links

Fig. 6.12 Balanced eight-bar mechanism with three fixed points and three ternary links
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6.8.1 Shaking Force Balancing of the Mechanism

Here link 1 is dynamically replaced by three point masses mO1 ; mA1 ; mB1 by using
the following conditions:

2

4
1 1 1

lO1ei�O1 lAei�A lBei�B

lO1

2 lA2 lB2

3

5

2

4
mO1

mA1

mB1

3

5 D
2

4
m1

0

IS1

3

5

mO1 D DO1

D1

; mA1 D DA1

D1

; mB1 D DB1

D1

(6.22)

where lO1; lA, lB are the moduli of radius vectors of corresponding points.
�O1 ; �A; �B; are the angular positions of radius vectors.
m1 is the mass of link 1.
IS1 is the mass moment of inertia of link 1 about its center of mass.
DO1 ; DA1 ; DB1 and D1 are the third-order determinants obtained from the system

of equations.
Link 2 is statically replaced by two point masses mB2 and mC2 :

mB2 D m2 lCS2

lBC
I mC2 D m2 lBS2

lBC

Changed mass moment of inertia I0�
S2

D IS2 � m2lCS2 lBS2 .
For link 6 to be dynamically replaced by two point masses mE6 and mP2 the

condition to be satisfied is

k6
2 D lES6 lP6S6

where k6 is the radius of gyration of link 6 about its center of mass.
lES6 is arbitrarily fixed and lP6S6 is obtained from the above condition:

mE6 D m6 lP6S6

.lES6 C lP6S6 /
I mP6 D m6 lES6

.lES6 C lP6S6 /

After dynamically replacing link 6 by two point masses, it is kinematically
connected to its corresponding gear 9 by link 10 and it is statically replaced by two
point masses mH and mI:

mH D
m0

1lIS01
lHI

I mI D
m0

1lHS
0

1

lHI
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Changed mass moment of inertia I0�
S1

D I0
S1

� m0
1l0IS1

l0HS1

where I
0

S1
is the original mass moment of inertia link 10.

Counterweight mCW6 against link 6 is calculated by using the formula

mCW6 D .m6lAS6 C mHlAH/

rCW6

(6.23)

where rCW6 D lP6S6 � lAS6 is the radius of rotation of counterweight mCW6 .
Counterweight against point mass B can be obtained as

mB0 D .mB1 C mB2/ lBO1

lB0O1

Counterweight against link 1 is calculated by using the formula

mCW1 D .mCW6 C mH C m6/

rCW1

(6.24)

where rCW1 is radius of rotation of counterweight against link 1 which is arbitrarily
taken.

For link 3 to be dynamically replaced by three point masses mC3 ; mD3 ; mO3 the
conditions to be satisfied are

2

4
1 1 1

lO3ei�O3 lCei�C lDei�D

lO3

2 lC2 lD2

3

5

2

4
mO3

mC3

mD3

3

5 D
2

4
m3

0

IS3

3

5

mO3 D DO3

D3

; mC3 D DC3

D3

; mD3 D DD3

D3

(6.25)

where lO3 ; lC; lD are the moduli of radius vectors of corresponding points.
�O3 ; �C; �D are the angular positions of radius vectors.
m3 is the mass of link 3.
IS3 is the mass moment of inertia of link 3 about its center of mass.
DO3 ; DC3 ; DD3 ; D3 are the third-order determinants obtained from the system of

equations.
Counterweight against point C can be obtained as

mC0 D .mC2 C mC3 / lO3c

lC0O3
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For link 4 to be statically replaced by two point masses mD4 and mG4 the
conditions to be satisfied are

mD4 D m4lGS4

lDG
I mG4 D m4lDS4

lDG

Changed mass moment of inertia of link 4 can be obtained as I0�
S4

D IS4 �
m4lDS4 lGS4

Counterweight against point D can be obtained as

mD0 D .mD3 C mD4 / lDO3

lD0O3

For link 5 to be dynamically replaced by three point masses mO5 ; mG5 ; mF5 the
conditions to be satisfied are

2

4
1 1 1

lO5ei�O5 lGei�G lFei�F

lO5

2 lG2 lF2

3

5

2

4
mO5

mG5

mF5

3

5 D
2

4
m5

0

IS5

3

5

mO5 D DO5

D5

; mG5 D DG5

D5

; mF5 D DF5

D5

(6.26)

where lO5 ; lG; lF are the moduli of radius vectors of corresponding points.
�O5 ; �G; �F are the angular positions of radius vectors.
m5 is the mass of link 5.
IS5 is the mass moment of inertia of link 5 about its center of mass.
DO5 ; DG5 ; DF5 ; D5 are the third-order determinants obtained from the system of

equations.
For link 7 to be dynamically replaced by two point masses mE7 and mP7 the

condition to be satisfied is

k7
2 D lFS7 lP7S7

where k7 is the radius of gyration of link 7 about its center of mass.
lFS7 is the arbitrarily fixed and lP7S7 is obtained from the above condition:

mE7 D m7lP7S7

lFS7 C lP7S7

I mP7 D m7lFS7

lFS7 C lP7S7

After link 7 is dynamically replaced by two point masses, it is kinematically
linked to its corresponding gear 13 by link 50 and moreover link 50 is statically
replaced by two point masses mM and mK:

mM D m0
5lKS0

5

lKM
I mK D m0

5lMS0
5

lKM
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Counterweight mCW7 against link 7 is calculated using the formula

mCW7 D .mMlFM C m7lFS7 /

rCW7

where rCW7 D lP7S7 � lFS7 is the radius of rotation counterweight.
Counterweight against point G can be obtained as

m0
G D .mG4 C mG5 / lO5G

lO5G0

where lO5G0 is arbitrarily taken.
Counterweight against point F can be obtained as

m0
F D .m7 C mCW7C/ lO5F

lO5F0

where lO5F0 is arbitrarily taken

6.8.2 Shaking Moment Balancing of the Mechanism

The shaking moments of links 1, 3, 5, 6, and 7 are given as follows:
The shaking moment generated by the linkage is determined by the sum

Mint D Mint
1 C Mint

6 C Mint
3 C Mint

5 C Mint
7 (6.27)

Mint
1 D

�
IS1 C m1l2O1S1

C I0�
S1

C m0
1l2

IS
0

1

C mB2l2O1B C m0
Bl2O1B0 C mCW1r2

CW1

�
˛1

Mint
6 D �

IS6 C mCW6r2
CW6

C m6l2AS6
C mHl2AH C 2mJl

2
O1J

�
˛6

Mint
3 D �

IS3 C m3l2O3S3
C mD4 l2O3D C m0

Dl2O3D0 C m0
Cl2O3C0

�
˛3

Mint
5 D �

IS5 C m5l2O5S5
C mG4l2o5G C m0

Gl2O5G0 C m0
Fl2O5F0 C Cm0

5l2KS0
5

�
˛5

Mint
7 D �

IS7 C m7l2FS7
C mCW7r2

CW7
C mMl2FM C 2mKl2O5K

�
˛7

where Mint
1 , Mint

3 , Mint
5 , Mint

6 , Mint
7 are the shaking moments generated by links 1, 3,

5, 6, and 7, respectively.
IS1 ; IS3 ; IS5 ; IS6 ; and IS7 are the mass moment of inertias of links 1, 3, 5, 6,

and 7, respectively.
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˛1, ˛3, ˛5, ˛6 and ˛7 are the angular accelerations of links 1, 3, 5, 6, and 7,
respectively.

For shaking moment balancing ten geared inertia counterweights are used, four
at O5, two at O3, and four at O1.

6.9 Summary

Self-balanced slider-crank mechanism has been studied with numerical example
and it is observed that shaking moment is completely balanced. Shaking force and
shaking moment balancing expressions are developed for eight-bar mechanism with
three fixed points and three ternary links.
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