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Design of Reactionless Mechanisms
with Counter-Rotary Counter-Masses

Mario Acevedo

Abstract In this chapter a new method to find the force and moment balancing
conditions based on Natural Coordinates is introduced. The method is simple
and can be highly automated, it is very prone to be used in combination with
a system for the manipulation of symbolic expressions. These conditions can be
interpreted and used for the creation of dynamic balanced linkages by design. The
application of the method is demonstrated through the dynamic balancing of a
simple pendulum (open-loop linkage) and a general four-bar mechanism (closed-
loop linkage), particularly by the design of counter-rotary counter-masses applying
optimization. The resulting designs are presented and their virtual prototypes
simulated using a general multibody dynamics simulation software (ADAMS),
specifying the resulting geometry (dimensions), shaking force, shaking moment,
and driving torque.

Keywords Dynamic balancing • Counter rotary counter-masses • Optimization •
Planar mechanisms • Natural coordinates

5.1 Introduction

Force and moment balancing (dynamic balancing) of rigid body linkages with
constant mass links is a traditional but still very active area of research in mechanical
engineering. Its benefits are well known as machine vibrations often occur due to
dynamic unbalance inducing noise, wear, fatigue problems [1], limiting the full
potential of many machines. Mechanisms that are dynamically balanced do not
transmit vibrations to the base, a useful property in hand tools, in objects and
vehicles moving in free space, and in robotics.

But dynamic balancing of linkages has some difficulties and drawbacks. First
finding the balancing conditions may be complicated [2] and second a substantial
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amount of mass and inertia must generally be added [3, 4]. A complete overview of
dynamic balancing techniques and methods can be found in [5–7].

An increment in mass or inertia implies more power to drive the mechanism,
so research has therefore been focused on reducing these disadvantages. A way to
reduce the necessary mass and inertia to balance the mechanisms can be to use the
counter-masses, necessary for the force balance of the linkage, also for balancing
the moment. This principle, compared with other balancing principles, has shown
effective in the reduction of the additional mass and inertia, see [4, 8], and used
effectively to synthesize different dynamic balanced mechanisms using the double
pendulum as building element [9].

In this work a completely new general method to find the dynamic balancing
conditions, based on the use of Natural Coordinates [10], is introduced. The method
is direct and very easy to automate, and can be used to obtain the shaking force
and the shaking moment balancing conditions for the linkages in the plane and
in space, although at this time is presented only for planar mechanisms. Once the
balancing conditions are found, these are used to the effective design of reactionless
mechanisms with counter-rotary counter-masses.

The chapter is organized as follows: in Sect. 5.2 the new method is introduced,
showing how Natural Coordinates are very useful to directly obtain the balancing
conditions. In Sects. 5.3 and 5.4, the application of the method to the dynamic
balancing of a single pendulum and of a four-bar mechanism are presented. In
Sect. 5.5 some numerical examples are solved to obtain specific mechanisms
designs, and the results obtained from dynamic simulations made with ADAMS
are presented. Finally some concluding remarks are made in Sect. 5.6.

5.2 Balancing Conditions Using Natural Coordinates

For the effective design of reactionless mechanisms with counter-rotary counter-
masses it is necessary first to obtain the dynamic balancing conditions. In this
section a new method based on Natural Coordinates is presented. The method is
straightforward and can be easily automated, mainly it has the advantage of being
suitable for the application of a computer algebra system.

A dynamic balanced mechanism must be completely force and moment balanced.
In fact the mechanism that is not balanced by force first, cannot be balanced by
moments.

A mechanism is force balanced if its linear momentum, lm, is conserved. This
condition in general can be expressed as:

lm D
nX

iD1

li D cnt: (5.1)

where n is the number of total moving elements in the linkage.
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When working in reference-point coordinates (Cartesian Coordinates) the linear
momentum of body i can be calculated as:

li D
nX

iD1

mivi (5.2)

where vi and mi are the velocity of the center of mass and the mass of the ith moving
body, respectively.

On the other hand, a mechanism is moment balanced if its angular momentum,
hm, is conserved. This condition is expressed by:

hm D
nX

iD1

ri � .li/ C hi D cnt: (5.3)

where ri is the position vector of the center of mass. Again when working in
reference-point coordinates the angular momentum of body i can be calculated as:

hi D Ii!i (5.4)

where Ii and !i are the inertia tensor with respect to the center of mass and the
angular velocity of the ith body, respectively.

So it is necessary to find equivalent expressions to Eqs. (5.2) and (5.4) in natural
coordinates to calculate the linear and angular momentum of the mechanism. In the
next subsections these expressions are developed.

5.2.1 Linear Momentum of a Body Using Natural Coordinates

Equations (5.1) and (5.3) are in general well recognized when using reference-point
coordinates (Cartesian Coordinates), but in this work we are interested on its form
in Natural Coordinates. So the first step to find this form is to develop each part of
the equations according to our goal.

When dealing with mechanical systems in the plain, Natural coordinates intro-
duce a set of points to define a body, the basic points, see [10] for a detailed
explanation. So a body can be modeled in Natural Coordinates with a pair of points,
i and j, as seen in Fig. 5.1. In this figure it can be noted an inertial fixed reference
frame XY, a local reference frame xy attached to the moving body at the basic
point i, .0; 0/. It is also noted that the second basic point j has its position in local
coordinates at .l; 0/, and that the center of mass of the body, point g, at .x; y/.

Using this pair of points and considering that the body has a total mass
concentrated at g equal to m, and a moment of inertia Ii with respect to the origin
of the local reference frame (point i), the constant mass matrix of a body can be
expressed as (see [10]):
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Fig. 5.1 A general model of
a body using Natural
Coordinates. Two basic
points, i and j, with a local
moving reference frame
attached to the body at point
i, the origin
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The pair of basic points introduce a vector of four coordinates represented by qk,
the positions, and its time derivative Pq, the velocities:

q D �
xi yi xj yj

�T
(5.6)

Pq D � Pxi Pyi Pxj Pyj

�T
(5.7)

So it is possible to calculate a set of the linear momentum vectors associated with
the basic points in the body as:

M Pq D

2

666664

m � 2mx
l C Ii

l2
0 mx

l � Ii
l2

� my
l

0 m � 2mx
l C Ii

l2
my
l

mx
l � Ii

l2

mx
l � Ii

l2
my
l

Ii
l2

0

� my
l

mx
l � Ii

l2
0 Ii

l2

3

777775

2

666664

Pxi

Pyi

Pxj

Pyj

3

777775
D

"
li

lj

#
(5.8)

where li and lj are the linear momentum associated with the points i and j,
respectively. They can be expressed as:

li D
2

4

� Ii
l2

� 2mx
l C m

� Pxi C �
mx
l � Ii

l2

� Pxj � my
l Pyj

� Ii
l2

� 2mx
l C m

� Pyi C my
l Pxj C �

mx
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� Pyj

3

5 (5.9)
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lj D
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4
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Then the total linear momentum of the body is:

l D li C lj D
2

4

�
m � mx

l

� Pxi C � my
l

� Pyi C �
mx
l

� Pxj � � my
l

� Pyj

� my
l

� Pxi C �
m � mx

l

� Pyi C � my
l

� Pxj � �
mx
l

� Pyj

3

5 (5.11)

5.2.2 Angular Momentum of a Body Using Natural
Coordinates

The angular momentum of the body, represented by a pair of masses on points i and
j, with respect to its center of mass g can be calculated as:

hg D rig � li C rjg � lj (5.12)

where rig D Œ�x � y�T and rjg D Œ.x � l/ � y�T are the position vector of points
i and j with respect to the center of mass of the body expressed in the global fixed
reference frame, and can be calculated by:

rig D ANrigI rjg D ANrjg (5.13)

where Nrig and Nrjg are the position vector of i and j expressed in local coordinates,
while A is the rotation matrix:

A D 1

l

2

4
.xj � xi/ .yi � yj/

.yj � yi/ .xj � xi/

3

5 (5.14)

So the general form of the angular momentum of the body with respect to the
global fixed reference frame can be calculated as:

h D rg � l C hg (5.15)

where rg D ri � rig.
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5.3 Dynamic Balancing of a Single Pendulum

5.3.1 Linear and Angular Momentum

As an example of the application of the previous developed equations consider a
general single pendulum, Fig. 5.2, rotating at constant angular velocity !.

In this case points A and B can be identified as basic points, so the linear
momentum of the system can be obtained substituting the corresponding values in
Eq. (5.11):

l D lA C lB D
2

4

�
m � mx

l

� PxA C � my
l

� PyA C �
mx
l

� PxB � � my
l

� PyB

� my
l

� PxA C �
m � mx

l

� PyA C � my
l

� PxB � �
mx
l

� PyB

3

5 (5.16)

But the point A is fixed, so its velocity is zero. Substituting this result in the
previous equation the linear momentum of the single pendulum expressed in natural
coordinates can be obtained:

l D
2

4

�
mx
l

� PxB � � my
l

� PyB

� my
l

� PxB � �
mx
l

� PyB

3

5 (5.17)

This result clearly indicates that to have a constant (invariant) linear momentum
for the pendulum, the location of the center of mass must be the origin of the
local reference system, point A, that coincides with the origin of the global fixed
coordinate system. This means .x; y/ D .0; 0/. In practice it is necessary to add a
counterweight.

Fig. 5.2 A general model of
a single pendulum rotating at
constant angular velocity
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On the other hand, the angular momentum of the pendulum can be obtained by
substituting the corresponding values in Eq. (5.15), considering that the point A is
fixed, so finally obtaining:

h D IA

l2
.PyB xB � PxB yB/ (5.18)

By substituting the corresponding values of the coordinates of point B and its
derivatives:

xB D l cos.�/

yB D l sin.�/

PxB D �! l sin.�/

PyB D ! l cos.�/

in Eq. (5.18) it is possible to obtain the angular momentum of the single pendulum
expressed in reference-point coordinates. For example, in the case of a uniform bar
with its center of mass at the middle of its length:

h D ! IA (5.19)

but IA D Ig C m
�

l
2

�2
so:

h D !

"
Ig C m

�
l

2

�2
#

(5.20)

This last results can indicate that to obtain a moment balanced pendulum, it is
necessary to add a counter-inertia moving with an opposite angular velocity.

It can also be seen that the equations of linear momentum and angular momentum
in Natural Coordinates have very simple forms and, as should be expected, they are
correct only if the positions and velocities used are consistent with the kinematic
constraints of the system.

5.3.2 Dynamic Balancing

For the dynamic balancing of a single pendulum it is necessary the addition of a
counterweight, Eq. (5.17), and the addition of a counter-inertia, Eq. (5.18). Both the
counterweight and the counter-inertia can be added as single counter-rotary counter-
mass that rotates with an opposite angular velocity with respect to the angular
velocity of the pendulum, as can be seen in Fig. 5.3. In Fig. 5.3, body one is the
extended bar that works as the pendulum, defined by two basic points, A and B. The
counter-rotary counter-mass used to dynamic balance the pendulum is the second
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Fig. 5.3 A single pendulum, dynamic balanced by a counter-rotary counter-mass

body, defined by two basic points, C and D. It is important to note that points A and
C have the same position and velocity, so strictly they are the same point.

Using Eq. (5.1) and applying Eq. (5.11) for each body, the linear momentum of
the system in Fig. 5.3 can be calculated. The following result can be obtained, taking
into account that in a general solution, the center of mass of the system must be in
the line defined by points A and B (yg1 D 0):

lm D

2

664

�
� m1 xg1

lc1Cl1
C m2 C m1

	
PxA C m1 xg1

lc1Cl1
PxB

�
� m1 xg1

lc1Cl1
C m2 C m1

	
PyA C m1 xg1

lc1Cl1
PyB

3

775 (5.21)

where xg1 is the location of the center of mass of the bar with respect to the local
reference frame of body one, with the origin at A.

As mentioned before, Eq. (5.21) will be correct as long as the correct values of the
velocities are substituted. This velocities should come from the solution of velocities
problem, this means to solve the time derivative of the constraint equations of the
system (generally the closed-loop equations). Then in this case the corresponding
values of the velocities are:

PxA D lc1 !1 sin.�1/

PyA D �lc1 !1 cos.�1/

PxB D �l1 !1 sin.�1/

PyB D l1 !1 cos.�1/ (5.22)
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so the linear momentum of this system is:

lm D

2

664

f!1 sin.�1/g
n
lc1

�
� m1 xg1

lc1Cl1
C m2 C m1

	
� l1 m1 xg1

lc1Cl1

o

� f!1 cos.�1/g
n
lc1

�
� m1 xg1

lc1Cl1
C m2 C m1

	
� l1 m1 xg1

lc1Cl1

o

3

775 (5.23)

which is invariant if:

lc1

�
� m1 xg1

lc1 C l1
C m2 C m1

�
� l1 m1 xg1

lc1 C l1
D 0

meaning that the force balancing condition of the system is:

xg1 D lc1

�
m2

m1

C 1

�
(5.24)

On the other hand, using Eq. (5.3) and applying Eq. (5.18) for each body, the
angular momentum of the system can be formulated. And substituting the force
balancing condition, Eq. (5.24), the velocities at Eq. (5.22), and the corresponding
positions:

xA D �lc1 cos.�1/

yA D �lc1 sin.�1/

xB D l1 cos.�1/

yB D l1 sin.�1/ (5.25)

the final form of the angular momentum can be obtained as:

hm D !1

�
I1 � lc2

1 .m1 C m2/
� C !2 I2 (5.26)

where I1 is the inertia moment with respect to the local coordinate system of body
one at point A, and I2 is the inertia moment with respect to the local coordinate
system of body two at point C. In this case:

I1 D Ig1 C lc2
1

�
m2

2

m1

C 2 m2 C m1

�

I2 D Ig2
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where Ig1 and Ig2 are the moments of inertia with respect to the corresponding center
on mass of each body. Additionally it is known that:

!2 D �
�

lc1

R2

�
!1 (5.27)

so the angular momentum of the system is:

hm D !1



Ig1 C lc2

1

�
m2

2

m1

C m2

�
�

�
lc1

R2

�
Ig2

�
(5.28)

Then to obtain an invariant angular momentum the following moment balancing
condition must be maintained:



Ig1 C lc2

1

�
m2

2

m1

C m2

�
�

�
lc1

R2

�
Ig2

�
D 0 (5.29)

In this way Eqs. (5.24) and (5.29) are the design conditions to obtain a dynamic
balanced single pendulum.

5.4 Dynamic Balancing of a Four-Bar Mechanisms

Consider now a general four-bar mechanism as the one shown in Fig. 5.4, that is
modeled in Natural Coordinates. In this case body one is defined with points A and
B, body two is defined with points B and C, and body three is defined with points C
and D. The origin of the local reference frames is also indicated, being at A, B, and
C, respectively.

Fig. 5.4 A four-bar mechanism modeled in Natural Coordinates
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The total linear momentum of this mechanism can be obtained by calculating the
linear momentum of each body and then applying the Eq. (5.1) to get:

lm D
2

4
a PxB C b PyB C c PxC C d PyC

a PyB C b PxB C c PyC C d PxC

3

5 (5.30)

where:

a D
�

�m2 x2

l2
C m1 x1

l1
C m2

�

b D
�

m2 y2

l2
� m1 y1

l1

�

c D
�

�m3 x3

l3
C m2 x2

l2
C m3

�

d D
�

m3 y3

l3
� m2 y2

l2

�
(5.31)

The Eq. (5.31), equated to zero, are the force balancing conditions of the four-bar
mechanism:

�
�m2 x2

l2
C m1 x1

l1
C m2

�
D 0

�
m2 y2

l2
� m1 y1

l1

�
D 0

�
�m3 x3

l3
C m2 x2

l2
C m3

�
D 0

�
m3 y3

l3
� m2 y2

l2

�
D 0 (5.32)

This result is exactly the same as the one obtained in [11].
On the other hand, the angular momentum of the mechanisms can be obtained

using Eq. (5.3), calculating previously the angular momentum of each body
applying Eq. (5.15). In this case the angular momentum of the system is:

hm D PxB .�e yB � h xC C f yC/

C PyB .e xB C f xC � h yC/

C PxC

�
h xB C f yB � g yC � l4

l3
m3 y3

�

C PyC

�
e xB C h yB C g xC � l4

l23
I3 C l4

l3
m3 x3

�
(5.33)
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where

e D
�

I2

l22
C I1

l21
� 2 m2 x2

l2
C m2

�
(5.34)

f D
�

I2

l22
� m2 x2

l2

�
(5.35)

g D
�

I3

l23
C I2

l22
� 2 m3 x3

l3
C m3

�
(5.36)

h D
�

m2 y2

l2

�
(5.37)

5.4.1 Dynamic Balancing of the Parallel Mechanism

A special case of a four-bar mechanisms is when the crank and the rocker have the
same length and move parallel to each other, a parallel four-bar mechanisms, as the
one in Fig. 5.5.

Fig. 5.5 A parallel four-bar mechanism
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This is an inline1 four-bar mechanism, and some of its geometric characteristics
can be used to simplify force and moment balancing conditions to get an efficient
design for the dynamic balanced system.

Considering that in a parallel inline four-bar mechanism y1 D y2 D y3 D 0 and
l1 D l2 D l3 D l, the linear momentum equation, Eq. (5.30), can be expressed as:

lm D
2

4
PxB

�� m2 x2

l C m1 x1

l C m2

� C PxC
�� m3 x3

l C m2 x2

l C m3

�

PyB
�� m2 x2

l C m1 x1

l C m2

� C PyC
�� m3 x3

l C m2 x2

l C m3

�

3

5 (5.38)

but PxB D PxC and PyB D PyC, so Eq. (5.38) can be expressed in terms of the velocity of
point C as:

lm D
2

4
PxC

� m1 x1

l � m3 x3

l C m2 C m3

�

PyC
� m1 x1

l � m3 x3

l C m2 C m3

�

3

5 (5.39)

This equation indicates that this system can be force balanced by a single
counterweight at body three (body one could be chosen in the same way), and the
balancing condition is:

m1 x1

l
� m3 x3

l
C m2 C m3 D 0 (5.40)

On the other hand, taking into account the angular momentum of a four-bar
mechanism, Eq. (5.33), and considering that y1 D y2 D y3 D 0 and l1 D l2 D l3 D
l, as in the case of the linear momentum, and that xC D xB C l, yC D yB, PxC D PxB,
and PyC D PyB, the angular momentum of a parallel inline four-bar mechanism can be
expressed as:

hm D � PxB yB

�
I3

l2
C I1

l2
� 2 m3 x3

l
C m3 C m2

�

C PyB xB

�
I3

l2
C I1

l2
� 2 m3 x3

l
C m3 C m2

�

� m3 x3 C m2 x2 C l m3 (5.41)

Equations (5.40) and (5.41) can help us to the design of different dynamic
balanced parallel four-bar mechanisms. This can be done by assigning different
values to x1, x2, and x3, the location of the center of mass of each moving link.

1The term “inline” means that the centers of mass of the links must lie on the line connecting
the pivots (which can be extended beyond the pivots). The links need not be symmetrical in any
way [12].
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Fig. 5.6 A proposed design
of an inline parallel four-bar
mechanism with two
counter-masses and one
counter-rotary counter-mass

Consider first a mechanism with a counter-rotary counter-mass at the crank, a
counterweight at the coupler, and a counterweight at the rocker. Figure 5.6 is a
representation of this design, previously reported also in [13].

In this case x1 D 0 and x2 D l were chosen, meaning that the center of mass of
link one is at joint A and the center of mass of link two is at joint C, see Fig. 5.5.
Substituting these values in Eq. (5.40), the corresponding value of x3 can be found:

x3 D l

�
m2

m3

C 1

�

Substituting the previous values for x1, x2, and x3, and considering that:

xB D l cos.�/

yB D l sin.�/

PxB D �l sin.�/!

PyB D l cos.�/! (5.42)

the angular momentum, Eq. (5.41), finally results in:

hm D
�

I3

l2
C I1

l2
� m3 l2 � m2 l2

�
!

where ! is the angular velocity of the crank and the rocker. Then for the shaking
moment balancing of the system it is necessary to add a counter-rotary counter-mass
with the same magnitude but in opposite direction to the value of hm.

An alternative more efficient design could be a mechanism with a counter-
rotary counter-mass at the crank and a counterweight at the rocker. Figure 5.7 is
a representation of this design, also reported in [14].
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Fig. 5.7 A proposed design
of an inline parallel four-bar
mechanism with one
counter-mass and one
counter-rotary counter-mass

In this case x1 D � l m2

2 m1
and x2 D l=2 were chosen. Substituting these values in

Eq. (5.40), the corresponding value of x3 can be found as:

x3 D l C l m2

2 m3

Substituting the previous values for x1, x2, and x3, and considering the positions
and velocities of point B, Eq. (5.42), the angular momentum, Eq. (5.41), finally
results in:

hm D
�

I3

l2
C I1

l2
� m3 l2

�
!

where ! is the angular velocity of the crank and the rocker. Again for the shaking
moment balancing of the system it is necessary to add a counter-rotary counter-mass
with the same magnitude but in opposite direction to the found value of hm.

5.4.2 Dynamic Balancing of the Inline Four-Bar Mechanism

Another special case is the inline four-bar mechanisms balanced by two counter-
rotary counter-masses. This case has been previously studied in detail in [12] and
the proposed design is similar to the one presented in Fig. 5.8.

In an inline four-bar mechanism y1 D y2 D y3 D 0, so the linear momentum
equation, Eq. (5.30), can be expressed as:
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Fig. 5.8 Design proposal for the dynamic balancing of an inline four-bar mechanism

lm D

2

664

PxB

�
� m2 x2

l2
C m1 x1
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C m2

	
C PxC

�
� m3 x3
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C m2 x2
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PyB

�
� m2 x2

l2
C m1 x1
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C m2

	
C PyC

�
� m3 x3

l3
C m2 x2

l2
C m3

	

3

775 (5.43)

If the coupler is left without change, this equation indicates that this system can
be force balanced by a two counterweights, one at body one and one at body three.
And their location can be determined by the following balancing conditions:

�
�m2 x2

l2
C m1 x1

l1
C m2

�
D 0

�
�m3 x3

l3
C m2 x2

l2
C m3

�
D 0 (5.44)

On the other hand taking into account the angular momentum of a four-bar
mechanism, Eq. (5.33), and considering that y1 D y2 D y3 D 0, the angular
momentum of an inline four-bar mechanism can be expressed as:
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hm D � PxB

�
yB

�
I2

l22
C I1

l21
� 2 m2 x2

l2
C m2

�
C yC

�
I2

l22
� 2 m2 x2

l2

�

C PyB

�
xB

�
I2

l22
C I1

l21
� 2 m2 x2

l2
C m2

�
C xC

�
I2

l22
� 2 m2 x2

l2

�

� PxC

�
yC

�
I3

l23
C I2

l22
� 2 m3 x3

l3
C m3

�
C yB

�
I2

l22
� 2 m2 x2

l2

�

C PyC

�
xB

�
I3

l23
C I2

l22
� 2 m3 x3

l3
C m3

�
C xC

�
I2

l22
� 2 m2 x2

l2

�

C PyC

�
� l4 I3

l23
C l4 m3 x3

l3

�
(5.45)

but if the coupler is considered a physical pendulum (as done in [12]) then x2 D l2=2

and I2 D l2 m2 x2, and substituting the force balancing conditions, Eq. (5.44), the
angular momentum of this system is:

hm D �PxByB

�
I1

l21
� m2

2

�
C PyBxB

�
I1

l21
� m2

2

�

�PxCyC

�
I3

l23
C m2

2
C m3

�
C PyCxC

�
I3

l23
C m2

2
C m3

�

CPyC

�
� l4 I3

l23
C l4 m2

2
C l4 m3

�
(5.46)

Finally considering the positions and velocities of the points B and C:

xB Dl1 cos.�1/I yB Dl1 sin.�1/

PxB D � l1 sin.�1/!1I PyB Dl1 sin.�1/!1

xC Dl3 cos.�3/ C l4I yC Dl3 sin.�3/

PxC D � l3 sin.�1/!3I PyC Dl3 sin.�3/!3

and substituting in Eq. (5.46), after some reductions the resulting expression for the
angular momentum is:

hm D
�

I1 C l21 m2

2

�
!1 C

�
I3 � l23 m2

2
� l23 m3

�
!3 (5.47)

This equations clearly show that an inline four-bar mechanism, with a physical
pendulum as coupler, can be dynamic balanced just with two counter-rotary counter-
masses, as reported in [12].
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5.5 Design Examples and Simulation Results

5.5.1 Dynamic Balancing of a Single Pendulum

Let us suppose that it is desired the dynamic balancing of a single pendulum as the
one shown in Fig. 5.9, using the results given in Eqs. (5.24) and (5.29).

The pendulum is made of aluminum with density, mass, and moment of inertia
as indicated in Fig. 5.9. The force balancing of this system implies to comply with
the balancing condition, the Eq. (5.24).

Applying a solution similar to the one proposed in Fig. 5.3, the bar OB is
modified to get the bar AB, made also of aluminum. Setting lc1 D 15 cm, xg1 D
32:5 cm, both with respect to the local reference frame of the pendulum at point O.
Then this new bar has a total mass m1 D 0:36467 kg and a moment of inertia
Ig1 D 0:013471 kg m2. Substituting this values at Eq. (5.24) the corresponding value
of m2 can be found:

m2 D m1

�
xg1

lc1

� 1

�

m2 D 0:36467

�
0:325

0:15
� 1

�

m2 D 0:425445 kg (5.48)

Note that this change implies an increment of near 1:8 times the original mass.
The resulting mass, m2, has to be distributed between the gear and the disk that

form the counter-rotary counter-mass, maintaining the moment balancing condition
in Eq. (5.29).

The gear material (the density), diameter, and thickness depend on the mechan-
ical design rules, while the physical characteristics of the disk depend on the
convenience of the designer. On the other hand, a high value for the angular velocity

Fig. 5.9 A general single
pendulum. In the equation of
� , t stands for time
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!2, see Eq. (5.27), helps to reduce the inertia required in the counter-rotary counter-
mass. Taking these factors into account and using a modulus m D 2, a gear with 20
teeth and R2 D 2 cm is chosen. A 170 teeth crown gear results.

All previous values are substituted in Eq. (5.29) to obtain an appropriate value
for Ig2 :



Ig1 C lc2

1

�
m2

2

m1

C m2

�
�

�
lc1

R2

�
Ig2

�
D 0



0:013471 C 0:15

�
.0:425445/2

0:36467
C 0:425445

�
�

�
0:15

0:02

�
Ig2

�
D 0

then,

Ig2 D 0:004562 kg m2

This inertia moment corresponds to both the gear and the disk, so:

Ig2 D Ig C Id (5.49)

where Ig is the moment of inertia of the gear and Id is the moment of inertia of the
disk. In the same way the mass of the counter-rotary counter-mass should be:

m2 D mg C md (5.50)

where mg and md are the mass of the gear and the disk, respectively.
The gear is chosen made of steel, and its moment of inertia determined by its

design, in this case mg D 0:09803 kg and Ig D 0:00001961 kg m2. On the other
hand, the mass and the moment of inertia of the disk can be calculated by:

md D � R2
d td �d

Id D 1

2
mdR2

d

where Rd, td, and �d are the radius, the thickness, and the density of the disk,
respectively.

Substituting the previous values in Eqs. (5.50) and (5.50), considering that the
disk is made of brass (8;545 kg m2), the following two equations are obtained:

m2 D 0:09803 C 8545 � td R2
d

0:425445 D 0:09803 C 8545 � td R2
d (5.51)



102 M. Acevedo

Fig. 5.10 Resulting design in the dynamic balancing of a pendulum

Fig. 5.11 Resulting shaking force and shaking moment in the dynamic balancing of a pendulum

and

Ig2 D 1

2
8545 � td R4

d

0:004562 D 1

2
8545 � td R4

d (5.52)

that can be solved simultaneously to get Rd D 166:566 mm and td D 0:43961 mm.
The final design is shown in Fig. 5.10. The resulting shaking force and shaking

moment are shown in Fig. 5.11. In Fig. 5.12 the shaking force of the not balanced
pendulum is shown, additionally the driving torque required to move the original
pendulum and the driving torque necessary to move the balanced pendulum are
compared.
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Fig. 5.12 Resulting reaction force and driving torque in the non-balanced pendulum. The driving
torque of the balanced system is also included for comparison

5.5.2 Dynamic Balancing of a Four-Bar Mechanism

Frequently, when designing a dynamic balanced mechanism, it is important to
maintain the counterweights near to the fixed joints (fixed pivots) attached to ground.
This practice reduces the total additional inertia introduced in the balancing process
and helps to reduce the increment in the driving torque.

In this example the dynamic balancing of a four-bar mechanisms is solved,
by applying the design proposed in Fig. 5.8, an inline four-bar mechanism. This
solution complies with the conditions exposed in the previous paragraph and works
fine with the application of two counter-rotary counter-masses near the base, one at
the crank and one at the rocker.

Consider the mechanism in Fig. 5.13. All elements are made of aluminum and
their cross section is equal for all (2 � 1 cm), the values for the corresponding
mass and moment of inertia are indicated in the figure. Its motion is defined by
the function specified for angle �1.

To get the full dynamic balancing of this mechanism it is necessary first
to balance it by forces, imposing the force balancing conditions expressed by
Eq. (5.44). These conditions assure that the center of mass of the system will be
stationary at the origin of the fixed reference frame, point A. Note that in this case the
coupler of the mechanism (element 2) will be changed to be a physical pendulum,
so x2 and m2 are completely determined.

On the other hand, at the same time it is necessary to impose the moment
balancing condition. This can be obtained by taking into account the total angular
momentum of the system, Eq. (5.47). Meaning that in order to moment balancing
this system it is necessary to make the total angular momentum equal to zero. This
clearly can be done by adding two counter-rotary counter-masses, one at the crank
and one at the rocker.
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Fig. 5.13 Original four-bar mechanism to be dynamic balanced

In this way the four dynamic balancing conditions are:

�
�m2 x2

l2
C m1 x1

l1
C m2

�
D 0 (5.53)

�
�m3 x3

l3
C m2 x2

l2
C m3

�
D 0 (5.54)

�
I1 C l21 m2

2

�
!1 � IPC1 .k1!1/ D 0 (5.55)

�
I3 � l23 m2

2
� l23 m3

�
!3 � IPC3 .k3!3/ D 0 (5.56)

where Ic1 and Ic3 are the moment of inertia of the counter-rotary counter-masses
attached to the crank and the rocker, respectively. As can be noted these counter-
rotary counter-masses must rotate with an angular velocity in the opposite direction
with respect to their associated elements. The counter-rotation can be achieved by
introducing gears, belts, etc., in this case a set of gears are chosen, giving a design
similar to the one presented in Fig. 5.13, so

k1 D d1

RP1

I k3 D d3

RP3



5 Design of Reactionless Mechanisms with Counter-Rotary Counter-Masses 105

Fig. 5.14 Rectangular bar predesigned to be a physical pendulum

It can also be seen from the figure that the coupler has been changed to be a
physical pendulum. So the original coupler has been modified to have its moment
of inertia with respect to its center of mass equal to the moment of inertia generated
by two equal punctual masses located at points B and C, respectively:

ICM2 D m2

l22
2

In this case the physical pendulum is made by extending the original rectangular
bar satisfying the following equation, [12], (see Fig. 5.14):

e

h
D 1

2

r
3

�a

h

	2 � 1 � a

2h

In this case the original coupler has a D 400 mm and h D 20 mm, then e D
146:266 mm, and the new coupler will have a total length l D 692:532 mm, and
a mass m2 D 0:3795 kg.

The new coupler is dynamically equivalent to a pair of masses located at B and
at C, then the crank and the rocker can be balanced independently.

5.5.2.1 Balancing of the Crank

For the dynamic balancing of the crank, Eqs. (5.54) and (5.56) must be solved
simultaneously to find the appropriate counter-rotary counter-mass that balance for
forces and moments.

The counter-rotary counter-mass, IC1 , is made by a gear (the pinion) with radius
RP1 and thickness tP1 , and a disk with radius RC1 and thickness tC1 . On the other
hand, the length of the crank should be increased by a distance d1 to connect to these
new elements, as seen in Fig. 5.15. All these variables form a set of five unknowns,
so three of them must be set by election.

From the mechanical design point of view the pinion diameter and its thickness
are determined by the general design rules for the gears. So choosing a modulus for
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Fig. 5.15 Proposed design for an inline dynamic balanced four-bar mechanism

the crown-pinion set automatically sets the radius, thickness, and number of teeth.
In this case a modulus m D 2 has been chosen, RP1 D 14 mm, and tP1 D 10 mm.

To determine the remaining variables: d1, RC1 , and tC1 , an optimization problem
is solved. It has been chosen to minimize Eq. (5.56) subject to the following
constraints: Eq. (5.54), RC1 > 0, tC1 > 0 and d1 > 0. But to do this the
corresponding values for lengths, masses, and moments of inertia were substituted:

m2 D 0:3795 kgI l2 D 400 mm

m1 D mc C md1 C mP1 C mC1

I1 D Ic C 1

4
mc l21 C Id1 C 1

4
md1 d2

1 C IP1 C mP1 d2
1 C IC1 C mC1 d2

1

IPC1 D IP1 C IC1

where mc, md1 , mP1 , and mC1 are the corresponding mass of the crank, the added
piece of bar, the pinion, and the disk at the crank, respectively. In similar way Ic,
Id1 , IP1 , and IC1 are the moments of inertia of the crank, the added piece of bar, the
pinion, and the disk, respectively. IPC1 is precisely the counter-inertia at the crank.

All these masses and moments of inertia are determined by the geometry
and density of the bodies. In this case the bar is considered made of aluminum
(�a D 2;740 kg=m3 ), the pinion of steel (�s D 7;801 kg=m3 ), and the disk of brass
(�b D 8;545 kg=m3 ), so:
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mc D htl1�aI Ic D 1

12
ht�al31

md1 D htd1�aI Id1 D 1

12
ht�ad3

1

mP1 D �R2
P1

tP1�sI IP1 D 1

2
�R4

P1
tP1�s

mC1 D �R2
C1

tC1�bI IC1 D 1

2
�R4

C1
tC1�b

where h D 20 mm and t D 10 mm as specified in Fig. 5.13.
Substituting all values in Eqs. (5.54) and (5.56), the force and moment balancing

conditions finally are:

�8545 � d1 RC1

2 tC1 � 0:274 d2
1 � 0:01529 � d1 C 0:048911 D 0 (5.57)

� 305178:57 � d Rc4 tc C 8545 � d2 Rc2 tc C 0:1827 d3

C 0:01529 � d2 � 1:0702972 � 10�4 � d C 0:0090515 D 0 (5.58)

Finally solving the optimization problem, using an open source code implemen-
tation of the method introduced in [15], the following results are obtained:

RC1 D 76:59 mm; tC1 D 15:191 mm; d1 D 20:0 mm

5.5.2.2 Balancing of the Rocker

For the dynamic balancing of the rocker, Eqs. (5.55) and (5.56) must be solved
simultaneously to find the appropriate counter-rotary counter-mass that balance for
forces and moments.

The counter-rotary counter-mass, IC3 , is made by a gear (the pinion) with radius
RP3 and thickness tP3 , and a disk with radius RC3 and thickness tC3 . On the other
hand, the length of the crank should be increased by a distance d3 to connect to these
new elements, as seen in Fig. 5.15. All these variables form a set of five unknowns,
so three of them must be set by election.

From the mechanical design point of view the pinion diameter and its thickness
are determined by the general design rules for the gears. So choosing a modulus for
the crown-pinion set automatically sets the radius, thickness, and number of teeth.
In this case a modulus m D 2 has been chosen, RP3 D 14 mm, and tP3 D 10 mm.

To determine the remaining variables: d3, RC3 , and tC3 , an optimization problem
is solved. It has been chosen to minimize Eq. (5.56) subject to the following
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constraints: Eq. (5.55), RC3 > 0, tC3 > 0 and d3 > 0. But to do this the
corresponding values for lengths, masses, and moments of inertia were substituted:

m2 D 0:3795 kgI l2 D 400 mm

m3 D mr C md3 C mP3 C mC3

I1 D Ir C 1

4
mr l21 C Id3 C 1

4
md3 d2

3 C IP3 C mP3 d2
3 C IC3 C mC3 d2

3

IPC3 D IP3 C IC3

where mr, md3 , mP3 , and mC3 are the corresponding mass of the rocker, the added
piece of bar, the pinion, and the disk at the rocker, respectively. In similar way Ir,
Id3 , IP3 , and IC3 are the moments of inertia of the rocker, the added piece of bar, the
pinion, and the disk, respectively. IPC3 is precisely the counter-inertia at the rocker.

All these masses and moments of inertia are determined by the geometry and
density of the bodies. The bar is considered made of aluminum(�a D 2; 740 kg=m3 ),
the pinion of steel(�s D 7; 801 kg=m3 ), and the disk of brass (�b D 8; 545 kg=m3 ), so:

mr D htl3�aI Ir D 1

12
ht�al33

md3 D htd3�aI Id3 D 1

12
ht�ad3

3

mP3 D �R2
P3

tP3�sI IP3 D 1

2
�R4

P3
tP3�s

mC3 D �R2
C3

tC3�bI IC3 D 1

2
�R4

C3
tC3�b

where h D 20 mm and t D 10 mm as specified in Fig. 5.13.
Substituting all values in Eqs. (5.55) and (5.56), noting that the origin of the local

reference frame of the rocker is at point C, so all distances have to be taken with
respect to this point, the force and moment balancing conditions finally are:

�21362:5 � d3 R2
C3

tC3 � 0:685 d2
3 � 0:038225 � d3 C 0:2994 D 0 (5.59)

� 305178:57 � d3 Rc4 tc C 8545:0 � d2
3 Rc2 tc

C 6836:0 � d Rc2 tc C 0:1827 d3
3 C 0:01529 � d2

3

C 0:2192 d2
3 C 0:012125 � d3 � 0:05374192 D 0 (5.60)
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Fig. 5.16 Resulting design for an inline dynamic balanced four-bar mechanism. All measures
in mm

Finally solving the optimization problem, using an open source code implemen-
tation of the method introduced in [15], the following results are obtained:

RC3 D 106:43 mm; tC3 D 8:66 mm; d3 D 44:47 mm

5.5.2.3 Resulting Inline Four-Bar Mechanism

The final design of the proposed inline four-bar mechanisms can be seen at Fig. 5.16.
This results in an increment of 9.7 times the original mass of the system.

The comparison of the shaking force, the shaking moment and the driving torque,
can be seen in Figs. 5.17, 5.18, and 5.19, respectively.

5.6 Concluding Remarks

In this chapter a completely new general method to find the dynamic balancing
conditions based on the use of Natural Coordinates has been introduced. The method
can be used for linkages in the plane and in space, although it is presented for planar
mechanisms.
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Fig. 5.17 Resulting shaking force in the inline dynamic balanced four-bar mechanism

Fig. 5.18 Resulting shaking moment in the inline dynamic balanced four-bar mechanism

Fig. 5.19 Resulting driving torque in the inline dynamic balanced four-bar mechanism

The method is simple and can be highly automated, and it has been shown
in its application to the design of dynamic balanced planar mechanisms using
counter-rotary counter-masses. In particular the resulting equations of a general
simple pendulum and of a general four-bar mechanism are presented. It is shown
that these equations must be solved simultaneously in order to obtain a feasible
design, and that in a more general case the use of optimization could be better from
the mechanical design point of view. Detailed results obtained from the dynamic
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simulations made using virtual prototypes defined in ADAMS are included, showing
the validity and applicability of the method, and helping the reader to deeply
understand the concepts, maybe repeating the examples and proposing variations
of the presented designs.
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