
Chapter 2
Design of Reactionless Mechanisms
Without Counter-rotations

Vlastimil Votrubec

Abstract This chapter presents methods and principles used for balancing of
planar mechanisms without counter-rotations. The fundamentals of balancing are
described at first. Balancing only by counterweights provides only the force
balance of mechanisms. Several basic methods which balance linkages by internal
mass redistribution or adding of counterweights are introduced. These methods
are the principal vector method, linearly independent vector method, complex
mass method, and linear momentum method. The principles of these methods are
explained in the example of the four-bar linkage and some extensions and important
outcomes of these methods are added.
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2.1 Principles of Balancing

During the working process of mechanisms, inertia forces and inertia torques are
generated which are exerted to the base as reaction forces and moments. These
reactions cause vibrations, inducing noise, wear, fatigue, poor product quality, and
other undesired effects. Vibration suppression is usually achieved by applications
of damping or other means. However, these solutions do not prevent the origin
of vibrations. The balancing compared with, for example, damping eliminates or
reduces the inertia forces and moments that cause the vibrations.

The sum of inertia forces that exert on the base of the mechanism is named
shaking force and the sum of inertia torques is named shaking moment. The
elimination of the shaking force acting on the base for any motion of the mechanism
is called force balancing. The elimination of shaking moment is called moment
balancing. The combination of force and moment balancing is called dynamic
balancing which is synonymous to the terms complete balancing or reactionless.
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The research on balancing is very extensive and many principles and methods
were described in literature. One of the basic ideas and the most general approach
to the dynamic balancing resulted from the conservation of linear momentum law
and the conservation of angular momentum law. The first law states that linear
momentum p is conserved if the resultant force F is zero, and the second law states
that angular momentum h is conserved if the resultant moment M is zero:

dp

dt
D F D 0 (2.1)

dh

dt
D M D 0 (2.2)

The opposites of the terms on the left-hand side of Eqs. (2.1) and (2.2) are the
shaking force and shaking moment of the system. The shaking force and the shaking
moment of the mechanism will vanish if the linear momentum p and the angular
momentum h of a mechanism remain constant for any motion at all times. The
linear and angular momentum of a completely balanced mechanism can be written
as follows:

p D
nX

iD1

miPri D const (2.3)

h D
nX

iD1

.Ii P'i C ri � miPri/ D const (2.4)

with i being the number of the link of the mechanism, mi the mass of the link,
ri the position vector of its center of mass, Ii the moment of inertia, and ®i the
angle of rotation. These two constraints are necessary and sufficient conditions for
a reactionless mechanism.

From Eq. (2.3), it implies that the center of mass of the force balanced mechanism
performs a constant velocity motion or it is stationary. In practical situations, the
second possibility is more convenient and the right-hand side of Eq. (2.3) is then set
to zero. Similarly, the angular momentum in Eq. (2.4) is usually set to zero.

Constant linear momentum and angular momentum of the system also mean that
there are no forces and moments between the system of moving links and the base.
Internal forces and moments act within the mechanisms. They include the reaction
forces and moments between the links, internal collisions, internal springs, friction,
and other. External forces and moments act from outside of the mechanism, for
example, gravity force, magnetic force, external springs, and collisions. The sum of
all internal forces and moments is zero; therefore, they do not affect the linear and
angular momentum and also the dynamic balancing.

The term static balancing is not the same as force balancing. The static balancing
implies that the mechanism is in static equilibrium for any motion at all times,
which means that the potential energy of a statically balanced mechanism remains
constant. A forced balanced mechanism with a stationary center of mass has
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constant potential energy, so it is also statically balanced. The force balancing,
therefore, implies static balancing but the opposite is not true. Constant potential
energy can be achieved by using springs; however, there still exists a reaction force
and moment on the base.

The positive effects of dynamic balancing are elimination of shaking force
and moment and thus reducing vibrations and noise. Balancing has also some
undesirable effects that cannot be neglected. The drawbacks of balancing are mainly
addition of mass and inertia, influence on input torque, modification of machine
design, and costs. Because of these disadvantages, the balancing of mechanisms in
practical situations cannot be very often complete and is only partial. The shaking
force and shaking moment are then reduced to an acceptable level and the solution
is usually obtained by using an optimization procedure.

There are several methods for deriving the conditions for dynamic balancing.
The first method is based on calculation of the linear and angular momentum and
the conditions for which they are zero (constant). The next method calculates the
position of the center of mass of a mechanism and the conditions for which it
is stationary. Both methods are convenient for analytic solution of the problem,
however, the second only for the force balancing. The conditions for balancing
can also be derived using calculation of the shaking force and shaking moment for
which they are zero. This method is especially suitable for numeric computations
and partial balancing conditions.

There are many principles, methods, and practical solutions for designing
reactionless mechanisms. The choice of methods described in this chapter is limited
to methods which do not use counter-rotations and methods described in other
chapters, for example, duplicate mechanisms, counter-rotations, and input torque
balancing mechanisms. The stationary center of mass of a mechanism and thus
the force balancing are usually accomplished by the addition of counterweights
or redistribution of internal mass. Methods based on these principles are principal
vector method [1], method of linearly independent vectors [2], and complex mass
method [3]. Balancing of shaking moment without counter-rotations is still chal-
lenging. One solution is deriving balancing conditions from the angular momentum
equation of the center of mass. Direct balancing of shaking moment is achieved by
using noncircular gears or cam mechanisms.

2.2 Principal Vector Method

The principal vector method was published by O. Fisher in 1902 [1] and afterwards
it was extended many times. The motion of the center of mass of a mechanism is
described analytically and the parameters for which the center of mass is stationary
are determined. The position of the center of mass is given by a series of vectors
directed along the links of a mechanism. The magnitude of these vectors depends
on the mass of each link and its center of mass position. The principal vectors create
an augmented mechanism of parallelogram structure which contains the total center
of mass.
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The position of the total center of mass of the mechanism rt is given by

rt D 1

M

nX

iD1

mirti (2.5)

where mi is the mass of a moving link i, M is the total mass of n moving links, and
rti is the position vector of link center of mass. The position vectors of the first and
k center of mass rt1 and rtk can be expressed as

rt1 D b1e1; rtk D bkek C
k�1X

iD1

aiei (2.6)

with ei being the unit vector directed along the link i, ai the length of the link, and
bi the distance between the center of mass and the link joint.

This method is, for example, applied on the four-bar linkage as it is shown in
Fig. 2.1. The position of the center of mass according to Eqs. (2.5) and (2.6) of this
four-bar mechanism is

rt D 1

M
.m1b1 C m2a1 C m3a1/ e1 C 1

M
.m2b2 C m3a2/ e2 C 1

M
m3b3e3 (2.7)

This equation can be rewritten to the general formula

rt D
nX

iD1

hi D
nX

iD1

hiei (2.8)

where the vectors hi are the principal vectors. The absolute values hi of the last and
the kth link are

hn D 1

M
mnbn; hk D 1

M

 
mkbk C

nX

iDkC1

miak

!
(2.9)

Fig. 2.1 The principle of
principal vector method in the
example of four-bar linkage
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The end point T of the augmented mechanism performs motion of the center of
mass of the origin mechanism. This point remains stationary for force balanced
mechanisms. The conditions of force balancing are accomplished if the augmented
mechanism is geometrically similar to the origin mechanism and if the end point of
the augmented mechanism coincides with the fixed point of the origin mechanism.
Let œ be the coefficient of geometrical similarity; then the mathematical expression
of the first condition is equation

�ai D hi (2.10)

Equations for the four-bar linkage are

�a1 D 1

M
Œm1b1 C a1 .m2 C m3/� (2.11)

�a2 D 1

M
.m2b2 C m3a2/ (2.12)

�a3 D 1

M
m3b3 (2.13)

Excluding œ, the system of equation is reduced to n � 1 equation with 2n variables
which create the conditions of a force balanced mechanism. For the given geometry
ai, it is not possible to determine the variables mi and bi uniquely. This is
an advantage because n C 1 parameters can be generally chosen, for example,
according to the design options. This rule is valid only for an open kinematic chain
with revolute joints.

Finally, the conditions of a force balanced four-bar linkage are

m1

b1

a1

C m2 .a2 � b2/

a2

D 0 (2.14)

m2

b2

a2

C m3 .a3 � b3/

a3

D 0 (2.15)

The principal vector method is also usable for mechanisms with more degrees of
freedom and loops if the links are connected with revolute joints.

Extensions: The previous example of the force balancing is based on redistri-
bution of the mass of a mechanism. It is also possible to make the total center of
mass stationary and to balance the mechanism without changing its properties, using
counterweights or an additional mechanism. An augmented pantograph device is a
good example of direct balancing [4].

Principal vectors are useful also for the shaking moment balancing [5]. The
principal vector linkage is used as a tool for moment balance solutions. Balance
conditions are derived from the equation of angular momentum about the center of
mass and this equation is written with principal dimensions, total mass, and total
inertia radii.
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2.3 Linearly Independent Vector Method

An important method of force balance was published in 1969 [2] and it was
named the method of linearly independent vectors. It is based on redistribution
of link mass, so the total center of mass remains stationary. The total center of
mass is stationary when the coefficients of time-dependent terms of the equation
describing the position of the center of mass vanish. It is accomplished when the
time-dependent unit vectors within the previous equation are linearly independent.

The principle of this method is shown on the four-bar linkage; see Fig. 2.2. The
position of the total center of mass corresponds with Eq. (2.5). The position vectors
of the individual link centers of mass are expressed in a complex plane using the
unit vectors ei'j with the reference origin at point A as

rt1 D b1ei.'1C˛1/ (2.16)

rt2 D a1ei'1 C b2ei.'2C˛2/ (2.17)

rt3 D a4ei˛4 C b3ei.'3C˛3/ (2.18)

The total center of mass of the four-bar linkage is then

rt D 1

M

��
m1b1ei˛1 C m2a1

�
ei'1 C �

m2b2ei˛2
�

ei'2

C �
m3b3ei˛3

�
ei'3 C m3a4ei˛4

�
(2.19)

where M is the sum of link mass mi. The unit vectors form the loop equation

a1ei'1 C a2ei'2 � a3ei'3 � a4ei˛4 D 0 (2.20)

Fig. 2.2 The four-bar linkage
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It means that the time-dependent terms in Eq. (2.19) are linearly dependent. If one
of the unit vectors from Eq. (2.20) is derived and substituted to Eq. (2.19), then the
equation of total center of mass position with linearly independent time-dependent
terms is obtained:

rt D 1

M

��
m1b1ei˛1 C m2a1 � m2

a1

a2

b2ei˛2

�
ei'1

C
�

m3b3ei˛3 C m2

a3

a2

b2ei˛2

�
ei'3 C

�
m3a4 C m2

a4

a2

b2ei˛2

�
ei˛4

	
(2.21)

The third term of Eq. (2.21) is constant, so the total center of mass is stationary if
the coefficient of the first two time-dependent terms vanishes. The first term can be
simplified, using the kinematic identity

b2ei˛2 D a2 C bK
2ei˛K

2 (2.22)

which finally leads to the conditions of force balancing

m1b1 D m2bK
2

a1

a2

; ˛1 D ˛K
2 (2.23)

m3b3 D m2b2

a3

a2

; ˛3 D ˛2 C � (2.24)

If another unit vector is substituted to Eq. (2.21), equivalent conditions of balancing
would be found. These conditions are also similar to the conditions derived from
the principal vector method (Eqs. (2.14) and (2.15)). If the geometry of links is
prescribed and cannot be changed, the force balance can be achieved by addition of
counterweights which can be mounted on any of the two links. If the condition of
static replacement mi D m0

i C m�
i is satisfied, then the equations for calculation of

counterweight parameters are

m�
i b�

i D
q

.mibi/
2 C �

m0
i b0

i

�2 � 2mim0
i bib0

i cos
�
˛i � ˛0

i

�
(2.25)

tan ˛�
i D mibi sin ˛i � m0

i b0
i sin ˛0

i

mibi cos ˛i � m0
i b0

i cos ˛0
i

(2.26)

where m*
i , b*

i , ˛*
i are the parameters of counterweights, mi, bi, ˛i are the parameters

of balanced linkage resulting from Eqs. (2.23) and (2.24), and m0
i , b0

i , ˛0
i are the

parameters of the unbalanced linkage.
Extensions: Generalization of the method of linearly independent vectors

involves deriving the equation for the position of the total center of mass, eliminating
the time-dependent coefficients and equating these coefficients to zero. The solution
yields a relation between the link masses and the link geometries which must be
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fulfilled to obtain force balance. It does not depend on the method of how the
balancing conditions are satisfied if the counterweights are added or the links
are redesigned. A drawback of counterweight addition is that the other dynamic
properties of the mechanism—the input torque, bearing forces, and shaking
moment—are greater.

The generalization of this method yields important outcomes known as a contour
theorem [6]. The first states that a planar mechanism without axisymmetric link
groupings can always be fully force balanced by internal mass redistribution or
addition of counterweights if from each link there is a contour to the ground by
way of revolute joints only. This theorem is equivalent to stating that each equation
within a set of independent loop equations cannot contain more than one term with
a time-dependent coefficient. The second statement said that n-linked mechanism
with one degree of freedom can be fully force balanced with n/2 counterweights.

2.4 Complex Mass Method

The complex mass method is derived from the previous method of linearly
independent vectors and it was first presented by Walker and Oldham in 1978 [3].
The complex mass method simplifies the theory of linearly independent vectors and
it develops a set of general relationships for obtaining the force balancing conditions
of multi degrees of freedom, multi bar, and planar linkages. These conditions can
be written directly without extracting them from the kinematic equations.

Let a chain of n links connected by revolute joints be pivoted about a frame pivot
at one end (Fig. 2.3). The force balance is achieved by adding counterweights to
each link. The counterweight on the k-th link must satisfy the following condition:

Fig. 2.3 Chain of n links with a counterweight attached to link k (left), prismatic joint with a
counterweight attached to link k (above), and a dependent link i (below)
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mckbckeiˇk C mkbkei˛k C ak

k�1X

iD1

.mi C mci/ (2.27)

where i is a number of each link starting at the free end, mi and mci are the masses
of the links and counterweights, ai the length of a link, and bi, bci, ˛i, and ˇi are the
radial and angular coordinates of the mass centers with respect to their lower joint
and link.

Similarly, the condition for counterweight balancing of two links connected with
prismatic joint is derived. One counterweight for the force balance is sufficient if
the next condition is satisfied:

mcbceiˇ C mk�1bk�1ei˛k�1 C mkbkei.˛k��/ D 0 (2.28)

Only one prismatic joint in a loop can be contained if a linkage is to be force
balanced.

It is not necessary to balance each link to obtain a force balance. If a mechanism
contains a loop without prismatic joint, then one arbitrary link can be uncoun-
terweighted. A loop containing one prismatic joint can have one link connected
to the prismatic joint uncounterweighted. The loop is then divided into two
counterweighted chains. For that reason, the uncounterweighted link, often called
a dependent link, has to split its mass into both joints (see Fig. 2.3) according to
the rules

mA D m
aBS

a
ei.'KC�/ (2.29)

mB D m
aAS

a
ei' (2.30)

Generally a k-th link of a length ak which lies in a chain between joints k-1/k and
k/k C 1 can contain x masses mt assigned to a joint as a result of a dependent link
or another counterweighted chain being incident at or masses assigned to joint or
links higher up the chain. This link can also have u revolute joints with yq masses
md assigned to the q-th joint. The q-th joint is in offset from the ak link by an angle
ıq and in distance lk from the joint k/k C 1. The link has v other links attached by
prismatic joints. Masses mb are assigned to the joint k/k C 1 and they are in offset
from the ak link by an angle ˜p. The general force balance condition is

mkbkei˛k C mckbckeiˇk C ak

"
xX

tD1

mt C
nX

iD1

.mi C mci/

#

C
uX

qD1

 
lqeiıq C

yqX

dD1

md

!
C

vX

pD1

zX

bD1

mbei�p D 0 (2.31)

Eqs. (2.29) and (2.31) form a necessary and sufficient set for establishing the force
balance conditions of planar linkages.
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The extension of this method defines the minimum number of required counter-
weights and the most advantageous configuration of counterweights. In Ref. [7], the
minimum number of counterweights c required to fully force balance linkages with
n moving links and j simple joints is derived, which is given by

c D 2 .n � 1/ � j (2.32)

This expression applies to any general planar linkage that can be force balanced
irrespective of the number of degrees of freedom it has. However, some linkages
with special geometries or mass distributions can be balanced with a smaller
number of counterweights. If a planar linkage has only one degree of freedom, then
Eq. (2.32) is simplified to the expression

c D n

2
(2.33)

which is in agreement with the conclusion in [6].
It was said that the addition of counterweights increases the dynamic parameters

of mechanisms. For the given linkage, there can be many combinations of its links
which can be counterweighted to give a force balance. The best results with respect
to bearing forces, shaking moment, and driving torque are obtained if the chosen
counterweighted links are as near as possible to the ground pivots.

The complex mass method was further extended to balance spatial linkages. Ye
and Smith [8] developed an equivalence method for complete balancing of planar
linkages. By this method, a complex planar linkage can be converted into a number
of simple equivalent sub-linkages and cranks.

2.5 Linear Momentum Method

A very general method for deriving balancing conditions is based on equation of
linear momentum which is for the force balanced mechanism constant (Eq. (2.3)).
This method compared to the previous method requires calculation of derivatives
and can be difficult and long, but the equations and conditions can be obtained for
any linkage with a proposed balancing device. The principle of this method and
derivation of balancing condition are shown again on the four-bar linkage.

The linear momentum of the four-bar linkage with two counterweights (Fig. 2.4)
is given by

m1Prt1 C m2Prt2 C m3Prt3 C mc1Prtc1 C mc2Prtc2 D 0 (2.34)
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Fig. 2.4 The four-bar
linkage with two
counterweights attached to
the crank and the rocker

where rti are the velocities of the masses mi. The position vectors rti of individual
centers of mass with reference origin at point A are

rt1 D
�

b1 cos '1

b1 sin '1

�
(2.35)

rc1 D
� �bc1 cos '1

� bc1 sin '1

�
(2.36)

rt2 D
�

a1 cos '1 C b2 cos '2

a1 sin '1 C b2 sin '2

�
(2.37)

rt3 D
�

a4 cos ˛ C b3 cos '3

a4 sin ˛ C b3 sin '3

�
(2.38)

rc3 D
�

a4 cos ˛ � bc3 cos '3

a4 sin ˛ � bc3 sin '3

�
(2.39)

Derivatives of these equations are substituted to Eq. (2.34). After some modifica-
tions, the first component of this equation is written as

.m1b1 � mc1bc1/ sin '1 P'1 C m2 .a1 sin '1 P'1 C b2 sin '2 P'2/

C .m3b3 � mc3bc3/ sin '3 P'3 D 0 (2.40)

The second component differs from the first only in terms with function sin where
the second equation has function cos. The terms sin '2 P'2 are derived from the loop
equation

�
a1 cos '1 C a2 cos '2

a1 sin '1 C a2 sin '2

�
D
�

a4 cos ˛ C l3 cos '3

a4 sin ˛ C l3 sin '3

�
(2.41)



32 V. Votrubec

Eq. (2.40) is then expressed as

�
m1b1 C m2a1 � mc1bc1 � m2b2a1

a2

�
sin '1 P'1

C
�

m3b3 � mc3bc3 C m2b2a3

a2

�
sin '3 P'3 D 0 (2.42)

and the conditions of balancing are given by

m1b1

a1

C m2 .a2 � b2/

a2

� mc1bc1

a1

D 0 (2.43)

m3b3

a3

C m2b2

a2

� mc3bc3

a3

D 0 (2.44)

This method works well for other configurations of counterweights and other
linkages. The same approach can be applied for moment balancing, only the angular
momentum instead of linear momentum is used. Moment balancing usually requires
addition of counter-rotations or other balancing methods which are described in the
corresponding chapters.
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