
Chapter 19
Balancing Conditions of Planar and Spatial
Mechanisms in the Algebraic Form

Nguyen Van Khang and Nguyen Phong Dien

Abstract This chapter deals with an approach to formulate balancing conditions
for the shaking force and shaking moment of planar mechanisms and spatial
mechanisms. In the Mechanism Theory, every Mechanism has p moving members
and a non-moving frame. According to tradition, a planar 8R-eightbar mechanism
is a multibody system with 7 moving bodies.

Keywords Mechanism • Balancing condition • Shaking force • Shaking
moment

19.1 Introduction

Dynamic balancing of mechanisms is a classical problem of machine dynam-
ics [1–9]. Dynamic balancing of the moving links brings about a reduction of
the variable dynamic loads on the mechanism frame. In effect, this minimizes the
noise and wear, and improves the dynamic performance of the mechanism [3, 4].
The main objective of mass balancing is to completely eliminate or partially
reduce the resultant inertia force (shaking force) and the resultant inertia moment
with respect to the ground link (shaking moment) caused by all moving links
of a mechanism. Although different methods and solutions have been proposed
and reported, the balancing theory continues to develop and new approaches are
regularly being published. Summaries of much of the past work are given in refs.
[2–4]. Recently, the terminology “reactionless mechanism” has usually been used
in design and dynamic synthesis of mechanisms, e.g., [19, 20]. A mechanism is said
to be reactionless or dynamically balanced if the shaking force and the shaking
moment are completely eliminated for any arbitrary motion of the mechanism.
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In other words, no dynamic reaction forces and no dynamic reaction moments are
transmitted to the base during the motion.

In our opinion, the problem of shaking force and shaking moment balancing
consists of two aspects. The first is to find all feasible design solutions (mass
redistribution, using counterweights or adding supplementary members as cams,
gears, parallelogram chains, planetary gears, etc.) in order to compensate the
shaking force and shaking moment. For this purpose different approaches and
solutions have been developed and reported. Berkof [11] presented a review of the
methods based on the different movements of the counterweights for the shaking
force balancing. Feng [30] used the concept of inertia counterweight proposed
by Berkof [13] to carry out the dynamic balancing of a number of single degree
freedom mechanisms. The publications by Lowen et al. [7] and Kochev [16]
provide a critical review of the methods employing additional members for complete
shaking moment balancing. Arakelian and Smith [9] investigated the dynamic
balancing of single degree of freedom mechanisms by using the pantograph copying
properties. A number of other solutions for the complete shaking force and shaking
moment balancing can be found in the studies presented by Kochev [17], Wu and
Gosselin [21], Dresig et al. [14, 15], Arakelian [26–28], and Moore [32].

The second aspect is related to the formulation of balancing conditions which
are usually expressed in terms of the design variables (such as masses, moments
of inertia, and geometrical parameters of the links) of the mechanism. There are
several convenient ways to formulate balancing conditions of the shaking force.
For instance, the method of linearly independent vectors was proposed by Berkof
and Lowen [11] and later successfully employed by Kaufman and Sandor [12],
Feng [31] to obtain full force balancing conditions for linkages, the equivalence
method was proposed by Ye and Smith [18]. The method of principal vectors
was used by Shchepetilnikov [10] to investigate the static balancing conditions of
mechanisms. Because the shaking force is related to the first derivative of the total
linear momentum with respect to time, the linear momentum method can also be
used to establish balancing conditions of the shaking force [16, 31]. Conversely,
research on efficient methods for deriving balancing conditions of the shaking
moment has been less productive due to the complexity of the problem. It is well
known that the shaking moment of a mechanism is related to the first derivative
of the total angular momentum with respect to time. This relationship leads to
an approach for the formulation of balancing conditions of the shaking moment,
known as the angular momentum method. This method was used by several authors
such as Kochev [9, 10], Feng [31], and Nguyen [22–25]. Arakelian and Dahan [27]
formulated the moment balancing conditions of a multi-link planar mechanism by
minimizing the root-mean-square value of the resultant inertia moment. Another
recent approach to derive balancing conditions of planar multi-loop mechanisms
using the equivalent method is investigated by Chaudhary and Saha [6, 29].

In contrast to the rapid progress in balancing theory of planar mechanisms, the
development on the balancing theory of spatial mechanisms is still limited. Balanc-
ing methods of planar mechanisms cannot be directly applicable to spatial mecha-
nisms since kinematic and dynamic properties of spatial mechanisms are much more
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complicated. The literature on this respect therefore is little [22, 24, 33–41]. One of
the problems of the complete shaking force and shaking moment balancing of the
mechanism consist of the deriving the so-called balancing conditions. These bal-
ancing conditions will be used to determine the size and location of counterweights
or supplementary links which must be added to the initial mechanism, in order to
eliminate the shaking force and the shaking moment.

Using the methods of multibody dynamics, this chapter deals with an approach to
derive balancing conditions in the algebraic form for the shaking force and shaking
moment of planar and spatial multi-loop mechanisms. The developed methods are
suitable for the application of the widely accessible computer algebra systems such
as MAPLE

®
. In the examples, the conditions for complete shaking force and shaking

moment balancing of a planar multi-loop, multi-DOF mechanism and a spatial one-
DOF mechanism are given.

19.2 Balancing Theory of Constrained Multibody Systems

We consider a multibody system with holonomic and rheonomic constraints as a set
of p linked rigid bodies in a closed loop structure shown in Fig. 19.1.

The shaking force
�!
F

�
and the shaking moment

�!
M

�
O referred to a fixed point O

of the considered system, which are caused by all moving bodies, can be expressed
in the form [1, 2, 22, 24]

�!
F

� D �
RO d

dt

pX

iD1

mi
�!v Si; (19.1)
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Fig. 19.1 Coordinate frames and the center of mass of body i
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�!
M

�
O D �

RO d

dt

pX

iD1

 �!�!
I Si � �!! i C �!r Si � mi

�!v Si

!
: (19.2)

In Eqs. (19.1) and (19.2) the following symbols are used:

mi mass of body i.
p number of bodies.�!r Si position vector of center of mass Si of body i in the fixed coordinate frame

R0fx, y, zg.�!v Si velocity vector of center of mass Si in the coordinate frame R0.�!�!
I Si mass inertia tensor of body i referred to Si.�!! i angular velocity of body i with respect to the coordinate frame R0.

The multibody system is completely balanced if the shaking force and the
shaking moment vanish at every position [1, 2]

�!
F

� D 0;
�!
M

�
O D 0: (19.3)

It follows that

RO d

dt

pX

iD1

mi
�!v Si D 0; (19.4)

RO d

dt

pX

iD1

 �!�!
I Si � �!! i C �!r Si � m�!v Si

!
D 0: (19.5)

Equations (19.4) and (19.5) can be rewritten in the matrix form as follows:

d

dt

pX

iD1

mivSi D 0; (19.6)

d

dt

"
pX

iD1

.ISi¨i C mi QrSivSi/

#
D 0; (19.7)

where

rSi D
2

4
xSi

ySi

zSi

3

5 ; QrSi D
2

4
0 �zSi ySi

zSi 0 �xSi

�ySi xSi 0

3

5 : (19.8)

For a f -DOF stationary multibody system described by n generalized coordinates q1,
q2, : : : , qn and n � f , position vector rSi can be expressed in form of generalized
coordinates
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rSi D rSi .q1; q2; : : : ; qn/ ; .i D 1; 2; : : : ; p/ : (19.9)

Differentiating Eq. (19.9) with respect to time in the coordinate frame R0 yields

vSi D drSi

dt
D @rSi

@q
Pq D JTi .q/ Pq; (19.10)

where JTi(q) is the translation Jacobi matrix

JTi .q/ D @rSi

@q
D

2

666664

@xSi

@q1

@xSi

@q2

::::
@xSi

@qn
@ySi

@q1

@ySi

@q2

::::
@ySi

@qn
@zSi

@q1

@zSi

@q2

::::
@zSi

@qn

3

777775
; (19.11)

and q D Œq1; q2; : : : ; qn�T . By introducing ®i as the rotation vector of body i, the
angular velocity ¨i is defined by

¨i D d®i

dt
D @®i

@q
Pq D JRi .q/ Pq; (19.12)

where JRi(q) denotes the rotation Jacobi matrix

JRi D @®i

@q
D @¨i

@ Pq D

2

666664

@!ix

@Pq1

@!ix

@Pq2

::::
@!ix

@Pqn
@!iy

@Pq1

@!iy

@Pq2

::::
@!iy

@Pqn
@!iz

@Pq1

@!iz

@Pq2

::::
@!iz

@Pqn

3

777775
: (19.13)

Substitution of Eq. (19.10) into Eq. (19.6) yields

d

dt

("
pX

iD1

miJTi .q/

#
Pq
)

D 0: (19.14)

Substituting Eqs. (19.10) and (19.12) into Eq. (19.7), one obtains

d

dt

("
pX

iD1

�
ISiJRi .q/ C mi QrSiJTi

�
q
�#

Pq
)

D 0: (19.15)

Note that the inertia matrix ISi with respect to the fixed frame R0 can be written
in term of the matrix I(i)

Si using the formula
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ISi D AiI
.i/
Si AT

i ; (19.16)

where Ai denotes the direction cosine matrix of body i referred to the fixed frame
R0, I(i)

Si is the matrix of the mass inertia tensor relative to the axes of the body-fixed
coordinate system Rif� i, �i, � ig (see Fig. 19.1).

It follows that

ISiJRi .q/ D AiI
.i/
Si AT

i JRi .q/ : (19.17)

Since Ai D Ai .q/ and @Ai
@Pq D 0, it follows

JRi .q/ D @¨i

@ Pq D
@
�

Ai¨
.i/
i

�

@ Pq D Ai .q/
@¨

.i/
i

@ Pq D AiJ
.i/
Ri ; (19.18)

where matrix J(i)
Ri(q) is defined by

J.i/
Ri .q/ D @¨

.i/
i

@ Pq : (19.19)

Substitution of Eqs. (19.18) and (19.19) into Eq. (19.15) yields

d

dt

("
pX

iD1

AiI
.i/
Si J.i/

Ri .q/ C mi QrSiJTi .q/

#
Pq
)

D 0: (19.20)

It follows from Eqs. (19.14) and (19.20) the general balancing conditions of a
multibody system

pX

iD1

miJTi .q/ D 0; (19.21)

pX

iD1

h
AiI

.i/
Si J.i/

Ri .q/ C mi QrSiJTi .q/
i

D 0: (19.22)
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19.3 Balancing Conditions of Planar Mechanisms

19.3.1 Theory and Procedure for Deriving Dynamic
Balancing Conditions

19.3.1.1 General Balancing Conditions

We consider an arbitrary link of a multi DOF planar mechanism as depicted in
Fig. 19.2. The mechanism consists of a set of p moving links in a closed loop
structure with revolute joints. Parameters xSi, ySi are the coordinates of the center
of mass Si of link i in the ground-fixed coordinate frame fOxyg, ®i is the rotation
angle, �Si, �Si are coordinates of Si in the link-fixed coordinate frame fOi� i�ig.

From Eqs. (19.1) and (19.2) the shaking force and the shaking moment transmit-
ted to the base from all moving links can be expressed in the form [15]

F�
x D � d

dt

 
pX

iD1

mi PxSi

!
; F�

y D � d

dt

 
pX

iD1

mi PySi

!
(19.23)

M�
O D d

dt

(
pX

iD1

Œmi .xSi PySi � ySi PxSi/ C JSi P'i�

)
(19.24)

where mi denotes the mass and ISi the moment of inertia of the link about the axis
passing through Si and perpendicular to the plane of motion.

The planar mechanism can then be completely balanced if the shaking force and
the shaking moment vanish. This yields the following sufficient conditions

pX

iD1

mi Pri D 0; (19.25)

pX

iD1

Œmi .xSi PySi � ySi PxSi/ C ISi P'i� D 0; (19.26)
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where ri D ŒxSi; ySi�
T and Pri D ŒPxSi; PySi�

T . Based on the general condition (19.25)
for the shaking force balancing, there are some ways to derive the balancing
conditions in form of algebraic expressions of parameters mi, ISi, �Si and �Si as
mentioned in the previous section. Conversely, it is more difficult to formulate the
dynamic balancing conditions of the shaking moment due to the presence of the
term ISi P'i in Eq. (19.26).

19.3.1.2 Generalized Coordinates of the Second Type

Since the considered mechanism has only revolute joints, rotation angles
'i .i D 1; 2; : : : p/ can be chosen as generalized coordinates which describe the
motion of particular links. Angle ®i is known as “the generalized coordinates of the
first type.” Now we introduce vector u

u D �
cos '1; sin '1; : : : ; cos 'p; sin 'p

�T
; (19.27)

where elements uk .k D 1; 2; : : : ; 2p/ are trigonometric functions of ®i. Logically,
elements uk are called “the generalized coordinates of the second type.” As can be
seen later, vector u can be used as the basis for developing a systematic procedure
for deriving balancing conditions of the shaking force and moment.

19.3.1.3 Procedure to Derive Balancing Conditions of the Shaking Force

Generally, the position vector of the center of mass Si can always be expressed in
term of vector u as

ri D eu
i C Ciu; (19.28)

where i D 1, 2, : : : , p and eu
i is a vector of constants. The elements of matrix Ci (2�

2p) are geometrical parameters and independent of u. Similarly, the loop equations
of the mechanism can be expressed in the compact matrix form

f .u/ D d: (19.29)

In the cases of planar mechanisms articulated by revolute joints, Eq. (19.7) can be
rewritten in linear form with vector u

D u D d; (19.30)

where the elements of matrix D are geometrical parameters of the mechanism and
independent of u, vector d is constant. It follows that Eq. (19.28) can then be
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rewritten in term of a minimal set of elements uk of u. The following partitioning of
u from Eq. (19.30)

u D
�

v
w

�
; (19.31)

leads to the following relationship

Dvv C Dww D d: (19.32)

where vector v consists of elements from this set, and the dimension of vector w is
equal to the number of the loop equations. Matrix Dw is chosen so that it is a square
and nonsingular matrix. When vectors v and w are assigned, an easily way to obtain
matrices Dv and Dw is by taking the partial derivatives

Dv D @f
@v

; Dw D @f
@w

: (19.33)

From Eq. (19.32) we find

w D .Dw/�1 .d � Dvv/ D b � Gv; (19.34)

where

G D .Dw/�1Dv; b D .Dw/�1d: (19.35)

Differentiating Eq. (19.34) with respect to time yields

Pw D �GPv: (19.36)

Using Eq. (19.31) one can rewrite Eq. (19.28) in the following form

ri D eu
i C Cv

i v C Cw
i w; (19.37)

where matrices Cv
i , Cw

i are given by

Cv
i D @ri

@v
; Cw

i D @ri

@w
; (19.38)

and the vector of constant parameters eu
i is the remaining term from Eq. (19.15).

Substitution of Eq. (19.34) into Eq. (19.37) yields

ri D eu
i C Cw

i b C �
Cv

i � Cw
i G
	

v: (19.39)

This can be written as
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ri D ei C Biv; (19.40)

where

ei D eu
i C Cw

i b; (19.41)

Bi D Cv
i � Cw

i G: (19.42)

Note that the elements of vector ei and matrix Bi are geometrical parameters of the
mechanism and independent of v. Differentiating Eq. (19.40) with respect to time
yields

Pri D Bi Pv: (19.43)

Substituting Eq. (19.43) into Eq. (19.25) leads to

pX

iD1

miBi Pv D 0: (19.44)

As a result, the balancing conditions for the shaking force reduce to the algebraic
form

pX

iD1

miBi D 0: (19.45)

If the mechanism has p moving links and r loop equations, then vector w contains
r elements whereas matrix Bi has the dimension of 2 � .2p � r/. From Eq. (19.45)
we obtain 2 .2p � r/ balancing conditions in form of algebraic expressions of inertia
and geometrical parameters.

19.3.1.4 Procedure to Derive Balancing Conditions
of the Shaking Moment

The general balancing condition of the shaking moment according to Eq. (19.4)
contains two terms. The first term is

h1 D
pX

iD1

mi .xSi PySi � ySi PxSi/: (19.46)

We note that

xSi PySi � ySi PxSi D rT
i I� Pri; (19.47)
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where I� D
�

0 1

�1 0

�
. With the use of this relationship, Eq. (19.46) leads to

h1 D
pX

iD1

mirT
i I� Pri: (19.48)

Substitution of Eqs. (19.40) and (19.43) into Eq. (19.48) yields

h1 D
pX

iD1

mi.ei C Biv/TI� Bi Pv

D vT

 
pX

iD1

miBT
i I� Bi

!
Pv C

 
pX

iD1

mieT
i I� Bi

!
Pv

D vTS1 Pv C kT
1 Pv; (19.49)

where

S1 D
pX

iD1

miBT
i I� Bi; kT

1 D
pX

iD1

mieT
i I� Bi: (19.50)

Now we consider the second term of Eq. (19.26)

h2 D
pX

iD1

ISi P'i: (19.51)

One can verify that

P'i D u.i/
1 Pu.i/

2 � u.i/
2 Pu.i/

1 ; (19.52)

where u.i/
1 D cos 'i and u.i/

2 D sin 'i. Equation (19.52) can also rewritten in the
matrix form as

P'i D
"

u.i/
1

u.i/
2

#T �
0 1

�1 0

�" Pu.i/
1

Pu.i/
2

#
: (19.53)

Substitution of Eq. (19.53) into Eq. (19.51) yields

h2 D
pX

iD1

"
u.i/

1

u.i/
2

#T �
0 ISi

�ISi 0

�" Pu.i/
1

Pu.i/
2

#
D uTH Pu; (19.54)

where H is a 2p � 2p matrix defined by
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H D

2

66666666664

0 IS1 0 0 : : : 0 0

�IS1 0 0 0 : : : 0 0

0 0 0 IS2 : : : 0 0

0 0 �IS2 0 : : : 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 : : : 0 ISp

0 0 0 0 : : : �ISp 0

3

77777777775

(19.55)

Matrix H can be partitioned in four sub-matrices corresponding to vectors v und w
as follows:

H D
�

H1

H3

H2

H4

;

�
(19.56)

where H1 is a .2p � r/� .2p � r/ matrix, H2 is a .2p � r/� r matrix of zero, H3 is a
r � .2p � r/ matrix of zeros and H4 a r � r matrix. Then Eq. (19.54) takes the form

h2 D �
VT WT

� �H1

0
0

H4

�" PV
PW

#
D VTH1

PV C WTH4
PW: (19.57)

Substitution of Eqs. (19.34) and (19.35) into Eq. (19.57) yields

h2 D vTH1 Pv C .b � Gv/TH4 .�GPv/

D vT
�
H1 C GTH4G

	 Pv � �
bTH4G

	 Pv
D vTS2 Pv C kT

2 Pv: (19.58)

where matrix S2 and vector k2 are defined by

S2 D H1 C GTH4G; (19.59)

kT
2 D �bTH4G: (19.60)

Using Eqs. (19.49) and (19.58), the general balancing condition of the shaking
moment can be written in the matrix form as

vT .S1 C S2/ Pv C �
kT

1 C kT
2

	 Pv D 0: (19.61)

Finally, the balancing conditions for the shaking moment reduce to the algebraic
form

S1 C S2 D 0; k1 C k2 D 0: (19.62)
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where matrices S1 and S2 have the dimension of .2p � r/ � .2p � r/ and k1, k2 are
vectors of 2p � r elements. With the use of Eq. (19.40) we obtain a set of balancing
conditions for the shaking moment in term of inertia and geometrical parameters
of the mechanism, such as mi, �Si, �Si and ISi. In summary, the following steps are
required to realize the proposed procedure:

– Formulating r loop equations and p position vectors of the mass centers of
moving links according to Eqs. (19.28) and (19.30).

– Selecting the elements of vector w from elements of vector u based on the
following rule: The number of elements in w is equal to r, and matrix Dw must
be a square and nonsingular matrix.

– Calculating matrices Dv and Dw using Eq. (19.33), Cv
i , Cw

i using Eq. (19.38),
Matrix G and vector b using Eq. (19.35), matrices Bi and vectors ei (i D 1, 2,
: : : , p) using Eqs. (19.41) and (19.42).

– Substituting the expressions of matrices Bi into Eq. (19.45) to obtain the
balancing conditions for the shaking force.

– Determining the elements of matrices H1 and H4 according to Eqs. (19.55) and
(19.56).

– Calculating matrix S1 and vector k1 using Eq. (19.50), matrix S2 using Eq.
(19.59) and vector k2 using Eq. (19.60).

– Substituting the expressions of S1,S2, k1 and k2 into Eq. (19.62) to get the
balancing conditions for the shaking moment.

19.3.2 Application Example

A planar 8R-eightbar mechanism depicted in Fig. 19.3 is a multi degrees-of-freedom
and multi-loop planar mechanism with seven moving links, where links 1, 4, and 6
are the driving links.

x

y

S1

S3

S4 S6

S2
S5

S7

O≡O1
O4≡A O6≡B

l31

O2

h3

j3

j6

j5

j4

j2

j1

j7

x3

O3

O5
O7

Fig. 19.3 Kinematic diagram of a planar 8R-eightbar mechanism
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19.3.2.1 Formulation of Loop Equations

As shown in Fig. 19.2, the origin of the ground-fixed coordinate frame coincides
with joint O of pivot link 1, and Oi denotes the origin of the link-fixed coordinate
frame of link i. The loop equations of the mechanism can be written in the form

l1 cos '1 C l2 cos '2 C l31 cos '3 � l4 cos '4 � l5 cos '5 D xA

l1 sin '1 C l2 sin '2 C l31 sin '3 � l4 sin '4 � l5 sin '5 D yA

l1 cos '1 C l2 cos '2 C l3 cos '3 � l6 cos '6 � l7 cos '7 D xB

l1 sin '1 C l2 sin '2 C l3 sin '3 � l6 sin '6 � l7 sin '7 D yB

(19.63)

where li denotes the length of link i, xA, yA and xB, yB are coordinates of the fixed
points A and B in the fixed coordinate frame fOxyg respectively. According to Eq.
(19.27), vector u is given by

u D Œcos '1; sin '1; cos '2; sin '2; : : : ; cos '7; sin '7�T (19.64)

According to Eq. (19.30), vector d are then determined from Eq. (19.63)

d D ŒxA; yA; xB; yB�T (19.65)

Vector w and v is selected from the original vector u as follows:

w D Œcos '4; sin '4; cos '6; sin '6�T (19.66)

v D Œcos '1; : : : ; sin '3; cos '5; sin '5; cos '7; sin '7�T (19.67)

Note that there are other possibilities to choose the elements of w in order to obtain
a nonsingular matrix Dw. With vectors v and w given by Eqs. (19.66) and (19.67),
matrices Dv and Dw are calculated from Eq. (19.63) by using Eq. (19.33)

Dv D

2

664

l1 0 l2 0 l31 0 �l5 0 0 0

0 l1 0 l2 0 l31 0 �l5 0 0

l1 0 l2 0 l3 0 0 0 �l7 0

0 l1 0 l2 0 l3 0 0 0 �l7

3

775 (19.68)

Dw D

2

664

�l4 0 0 0

0 �l4 0 0

0 0 �l6 0

0 0 0 �l6

3

775 : (19.69)

From Eq. (19.69) we get
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.Dw/�1 D

2

664

�1=l4 0 0 0

0 �1=l4 0 0

0 0 �1=l6 0

0 0 0 �1=l6

3

775 (19.70)

19.3.2.2 Balancing Conditions of the Shaking Force

Matrix G and vector b are calculated using the obtained matrices Dv, Dw and vector
d as follows:

G D

2

6664

� l1
l4

0 � l2
l4

0 � l31

l4
0 l5

l4
0 0 0

0 � l1
l4

0 � l2
l4

0 � l31

l4
0 l5

l4
0 0

� l1
l6

0 � l2
l6

0 � l3
l6

0 0 0 l7
l6

0

0 � l1
l6

0 � l2
l6

0 � l3
l6

0 0 0 l7
l6

3

7775 ; b D
h

� xA
l4

� yA
l4

� xB
l6

� yB
l6

iT
:

(19.71)

Now we can determine matrices Cv
i , Cw

i and vector eu
i related to vector ri using

Eq. (19.28). For example, for i D 1:

r1 D
�

�S1 cos '1 � �S1 sin '1

�S1 sin '1 C �S1 cos '1

�
; Cv

1 D
�

�S1 ��S1 0 0 0 0 0 0 0 0

�S1 �S1 0 0 0 0 0 0 0 0

�
;

Cw
1 D

�
0 0 0 0

0 0 0 0

�
eu

1 D
�

0

0

�
:

For i D 7 we get

r7 D
�

xB C l6 cos '6 C �S7 cos '7 � �S7 sin '7

yB C l6 sin '6 C �S7 sin '7 C �S7 cos '7

�
;

Cv
7 D

�
0 0 0 0 0 0 0 0 �S7 ��S7

0 0 0 0 0 0 0 0 �S7 �S7

�
; Cw

7 D
�

0 0 l6 0

0 0 0 l6

�
; eu

7 D
�

xB

yB

�
:

Then, matrices Bi (i D 1, 2, : : : , 7) are calculated using Eq. (19.42). Finally, by
substituting matrices Bi into Eq. (19.45), we find balancing conditions of the shaking
force as follows:

m1

�S1

l1
C m2 C m3 C m4

�S4

l4
C m5 C m6

�S6

l6
C m7 D 0 (19.72)

m2

�S2

l2
C m3 C m4

�S4

l4
C m5 C m6

�S6

l6
C m7 D 0 (19.73)
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m3

�S3

l3
C m4

l31

l3

�S4

l4
C m5

l31

l3
C m6

�S6

l6
C m7 D 0 (19.74)

m4

�S4

l4
C m5



1 � �S5

l5

�
D 0 (19.75)

m6

�S6

l6
C m7



1 � �S7

l7

�
D 0 (19.76)

m1

�S1

l1
C m4

�S4

l4
C m6

�S6

l6
D 0 (19.77)

m2

�S2

l2
C m4

�S4

l4
C m6

�S6

l6
D 0 (19.78)

m3

�S3

l3
C m4

l31

l3

�S4

l4
C m6

�S6

l6
D 0 (19.79)

m4

�S4

l4
� m5

�S5

l5
D 0 (19.80)

m6

�S6

l6
� m7

�S7

l7
D 0: (19.81)

19.3.2.3 Balancing Conditions of the Shaking Moment

Since matrices Bi (i D 1, 2, : : : , 7) are known and vectors of constants ei are given
by Eq. (19.41), matrix S1 and vector k1 can be easily calculated using Eq. (19.50).
Matrix H takes the same form as Eq. (19.55) for p D 7. By partitioning of matrix
H related to Eq. (19.56), we obtain sub-matrices H1 and H4. Then, matrix S2 and
vector k2 are calculated using Eqs. (19.59) and (19.60). By substituting the obtained
expressions of S1,S2, k1,k2 into Eq. (19.62), the balancing conditions of the shaking
moment are then derived in the following form

m1�2
1 C IS1

l21
C m2 C m3 C m4�2

4 C IS4

l24
C m5 C m6�2

6 C IS6

l26
C m7 D 0 (19.82)

m2�2 C m3 C m4�2
4 C IS4

l24
C m5 C m6�2

6 C IS6

l26
C m7 D 0 (19.83)

m3�3 C l31

l3



m4�2

4 C IS4

l24
C m5

�
C m6�2

6 C IS6

l26
C m7 D 0 (19.84)

m4�2
4 C IS4

l24
C m5 .1 � �5/ D 0 (19.85)
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m6�2
6 C IS6

l26
C m7 .1 � �7/ D 0 (19.86)

m2�2
2 C IS2

l22
C m3 C m4�2

4 C IS4

l24
C m5 C m6�2

6 C IS6

l26
C m7 D 0 (19.87)

m3�2
3 C IS3

l23
C l231

l23



m4�2

4 C IS4

l24
C m5

�
C m6�2

6 C IS6

l26
C m7 D 0 (19.88)

m4�2
4 C IS4

l24
C m5�2

5 C IS5

l25
C m5 .1 � 2�5/ D 0 (19.89)

m6�2
6 C IS6

l26
C m7�2

7 C IS7

l27
C m7 .1 � 2�7/ D 0 (19.90)

m4�2
4 C IS4

l24
� m4�4 D 0 (19.91)

m6�2
6 C IS6

l26
� m6�6 D 0 (19.92)

�S1 D �S2 D �S3 D �S4 D �S5 D �S6 D �S7 D 0 (19.93)

where �i D �Si
li

for i D 1; 2; : : : ; 7.
In the case that Si is positioned along the link line, that is, �Si D 0 for i D

1; 2; : : : ; 7, the balancing conditions for the shaking force and shaking moment of
the 8R-eightbar mechanism, Eqs. (19.72)–(19.93), are reduced into the following
set of equations

m1�1 C m2 .1 � �2/ D 0; (19.94)

m2�2 C m3 C m5�5 C m7�7 D 0; (19.95)

m3�3 C m5�5

l31

l3
C m7�7 D 0; (19.96)

m4�4 C m5 .1 � �5/ D 0; (19.97)

m6�6 C m7 .1 � �7/ D 0; (19.98)

mi�
2
i C ISi

l2i
� mi�i D 0 for i D 1; 2; 4; 5; 6; 7; (19.99)
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Table 19.1 Initial
parameters of the 8R-eightbar
mechanism

Link i li (m) �0
Si (m) �0

Si (m) m0
i (kg) �0

i

1 0.08 0.04 0.01 2.4 0.5
2 0.20 0.07 0.025 3.5 0.35
3 0.35 0.15 0.035 3.6 0.428
4 0.12 0.05 0.015 2.2 0.4167
5 0.15 0.08 0.01 2.4 0.5333
6 0.12 0.06 0.02 2.0 0.5
7 0.15 0.1 0.02 2.7 0.6667

m3�2
3 C IS3

l23
� m3�3 � l31

l3
m5�5



1 � l31

l3

�
D 0; (19.100)

where Eqs. (19.94)–(19.98) are the balancing conditions of the shaking force and
Eqs. (19.99)–(19.100) are the balancing conditions of the shaking moment of the
fully force balanced mechanism.

19.3.2.4 Numerical Study

A numerical calculation is implemented to verify the correctness of the obtained
balancing conditions. The geometry and mass distribution parameters of the links
are given in Table 19.1, where m0

i , �0
Si, �0

Si and �0
i D �0

Si=li denote the initial
parameters. The other geometry parameters are: xA D 0:17 .m/, xB D 0:3 .m/,
yA D yB D 0:03 .m/and l31 D 0:07 (m).

Upon assuming that parameter �Si D 0 for i D 1; 2; : : : ; 7, the remaining five
conditions (19.94)–(19.98) contain a set of 14 variables mi and �i. We can establish
a balancing scheme with counterweights by keeping the parameters of links 3 and
5, i.e., m3�3 D m0

3�0
3, m5�5 D m0

5�0
5, and solving parameters of the other links from

these conditions as follows:

m1�1 D �m0
3

�
1 � �0

3

	 � m0
5�0

5



1 � l31

l3

�
� m2;

m2�2 D �m0
3

�
1 � �0

3

	 � m0
5�0

5



1 � l31

l3

�
;

m4�4 D �m0
5

�
1 � �0

5

	
; m6�6 D �



m0

3�0
3 C m0

5�0
5

l31

l3

�
� m7;

m7�7 D �



m0
3�0

3 C m0
5�0

5

l31

l3

�
:

It follows that parameters �1, �2, �4, �6 and �7 will take negative values since
0 < �0

3 < 1 and 0 < �0
5 < 1. As a result, the centers of mass S1, S2, S4, S6 and S7

must be positioned at the other side of joints O1, O2, O4, O6 and O7 respectively.
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C2

C1
C4 C6

C7

x 0s2

x 0s4

e*4

x 0s5

x 0s6

x 0s7

x 0s3

x 0s1

Fig. 19.4 A balancing scheme using five counterweights for the full force balancing

Table 19.2 Parameters of the force balanced the 8R-eightbar mechanism with
counterweights

Counterweights
Link i �Si (m) �Si (m) mi (kg) (with counterweight) e*

i (m) m*
i (kg)

1 �0.0891 0.0 10.4 0.128 8.0
2 �0.0725 0.0 8.5 0.172 5.0
3 0.15 0.0 3.6 0.0 0.0
4 �0.0187 0.0 7.2 0.049 5.0
5 0.080 0.0 2.4 0.0 0.0
6 �0.1425 0.0 8.0 0.210 6.0
7 �0.0350 0.0 7.7 0.108 5.0

For this purpose, a balancing scheme with five counterweights attached to the
corresponding links as shown in Fig. 19.4 is suggested. Using the same way, we can
establish other force balancing schema by assigning the parameters of two arbitrary
links and calculating parameters of the other links from Eqs. (19.94)–(19.98).

The mass m*
i and the distance e*

i of the counterweight Ci attached to link i

can then be easily calculated by applying the relationship mi�i D m0
i �0

i � m�
i

e�

i
li

.
The mass distribution parameters of the links and counterweights of the fully force
balanced mechanism are given in Table 19.2.

Figure 19.5 shows two components of the shaking force produced by the initial
mechanism and the force balanced mechanism. The numerical results verified that
the shaking force is completely eliminated during the motion of the force balanced
mechanism.

In the next step, the moment balancing conditions, Eqs. (19.99) and (19.100),
will be taken into account for canceling the shaking moment of the fully force
balanced mechanism. The moments of inertia of links of the full force balanced
mechanism are as follows: I0

S1 D 0:2, I0
S2 D 0:35, I0

S3 D 0:11, I0
S4 D 0:09,

I0
S5 D 0:08, I0

S6 D 0:41, I0
S7 D 0:15

�
kg m2

	
. A number of balancing schema using

additional members were applied to balance the shaking moment at any rotating
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balanced

unbalanced

balanced

unbalanced

Fig. 19.5 Shaking forces of the unbalanced mechanism and the fully force balanced mechanism.
(Rotating speeds of the cranks 1, 4 and 6 are assumed to be the same value of 300 rpm)

2
5

7

8

9

10

18

16

11

12

13

14

15

17

19

3

Fig. 19.6 A balancing scheme of the shaking moment of the fully force balanced mechanism

speed of the driving links, e.g., [12, 14, 15]. A well-known balancing scheme
with counter-rotating balancers in Fig. 19.6 is used to verify the correctness of
the conditions of moment balancing. The required moment of inertia of link 3 is
calculated using Eq. (19.100) with the parameters given in Table 19.2, that yields
IS3 D 0:133

�
kg m2

	
. This value can be attained by mass redistribution for link 3.

As shown in Fig. 19.6, gears 11, 15, and 19 are mounted on the rotation axis
of the input cranks 1, 4, and 6, respectively. They mesh with planetary gears 10,
14, and 18 mounted on links 2, 5 and 7 respectively. Using this balancing scheme,
the additional balancing moments will be produced to balance correspondingly the
inertia moments of all links. In other words, the shaking moment can be balanced,
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while the shaking force is still fully balanced. For brevity, the transmission ratios of
the gear-pairs of the considered balancing scheme are chosen as follows:

r8

r9

D r12

r13

D r16

r17

D 1;
r10

r11

D r14

r15

D r18

r19

D 1

2
:

According to Fig. 19.6, the kinematic relationship of gear-pair 10–11 is

r10 P'10 C r11 P'11 � .r10 C r11/ P'1 D 0; P'10 D P'2; (19.101)

where ri is the rolling circle radius of ith gear. Using Eq. (19.101) we obtain

IS11'11 D IS11



r10

r11

C 1

�
'1 � IS11

r10

r11

'2; (19.102)

IS10 P'10 D IS10 P'2; (19.103)

where ISi is the moment of inertia of ith gear. Using Eqs. (19.102), (19.103) and the
balancing condition (19.99) we obtain the following balancing condition for link 2
with the additional planetary gear

m2�2
2 C 1

l22



IS2 C IS10 � r10

r11

JS11

�
� m2�2 D 0: (19.104)

By the same way, the balancing conditions with the additional gears for links 5 and
7 can be formulated as follows:

m5�2
5 C 1

l25



IS5 C JS14 � r14

r15

JS15

�
� m5�5 D 0; (19.105)

m7�2
7 C 1

l27



IS7 C JS18 � r18

r19

JS19

�
� m7�7 D 0: (19.106)

The moment of inertia of gear-pairs 10–11, 14–15, and 18–19 can then be chosen in
order to satisfy Eqs. (19.104)–(19.106). Using Eq. (19.99), the moment of inertia of
the gear-pairs 8–9, 12–13, and 16–17 can be determined by the similar way. Their
values are given in Table 19.3.

Figure 19.7 shows the numerical results for the shaking moment of the fully
moment balanced mechanism, where the input speeds of cranks 1, 4 and 6 are P'1 D

Table 19.3 Moments of inertia of the gears

Gear i 8 9 10 11 12 13 14 15 16 17 18 19
ISi (kg m2) 0.02 1.0 0.05 0.42 0.05 0.51 0.05 0.23 0.1 1.56 0.05 0.5
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3
2

1

Fig. 19.7 The shaking moment (curve 1) of the fully moment balanced mechanism as a sum of
the first term (curve 2) and the second term (curve 3)

unbalanced

balanced

Fig. 19.8 Shaking moments of the unbalanced and the fully moment balanced mechanism

P'4 D P'6 D 31:4 .rad=s/. The results shown in Fig. 19.8 demonstrated that the
shaking moment of the 8R-eightbar mechanism is eliminated after balancing.

19.4 Balancing Conditions of Spatial One-DOF Mechanisms

19.4.1 Theory and Procedure for Deriving Balancing
Conditions

19.4.1.1 The General Balancing Conditions of Spatial One-DOF
Mechanisms

This section presents a method to algebraically derive the balancing conditions for
shaking force and shaking moment of spatial one-degree-of freedom mechanisms.
Let q be the independent generalized coordinate which describes the position of the
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mechanism. According to Eqs. (19.10) and (19.12), the velocity vSi and the angular
velocity ¨i are given by

vSi D JTi.q/Pq.t/; (19.107)

¨i D JRi.q/Pq.t/; (19.108)

where JTi(q) and JRi(q) are 3 � 1 Jacobian matrices and can be written in the form

JTi D �
x0

Si y0
Si z0

Si

�T
; JRi D

h
s0

ix s0
iy s0

iz

iT
; (19.109)

where the prime represents the derivative with respect to the generalized coordinate
q and six, siy, siz are three components of rotational vector ®i for link i (see
Sect. 19.2).

We recall that the inertia matrix ISi is defined with respect to the fixed coordinate
frame fOxyzg as shown in Fig. 19.9. The elements of matrix ISi are time dependent

ISi D
2

4
Iixx Iixy Iixz

Iiyx Iiyy Iiyz

Iizx Iizy Iizz

3

5 : (19.110)

Using Eqs. (19.107) and (19.108), Eqs. (19.6) and (19.7) take the following form

d

dt

("
pX

iD1

mi JTi.q/

#
Pq
)

D 0; (19.111)

link i+1

y

z

Si
Oi

O

link i

link i-1

zSi zSi

zi

hSi

hi

xSi

xi

xSi

x

ySi

Fig. 19.9 Definition of coordinates
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d

dt

("
pX

iD1

ISiJRi.q/ C mi QrSi JTi.q/

#
Pq
)

D 0: (19.112)

The use of Eqs. (19.109)–(19.112) yields



Rq C Pq2 d

dq

� nX

iD1

mix
0
Si D 0; (19.113)



Rq C Pq2 d

dq

� nX

iD1

miy
0
Si D 0; (19.114)



Rq C Pq2 d

dq

� nX

iD1

miz
0
Si D 0 (19.115)



Rq C Pq2 d

dq

� nX

iD1

�
mi
�
ySiz

0
Si � zSiy

0
Si

	C Iixxs0
ix C Iixys0

iy C Iixzs
0
iz

� D 0; (19.116)



Rq C Pq2 d

dq

� nX

iD1

�
mi
�
zSix

0
Si � xSiz

0
Si

	C Iiyxs0
ix C Iiyys0

iy C Iiyzs
0
iz

� D 0; (19.117)



Rq C Pq2 d

dq

� nX

iD1

�
mi
�
xSiy

0
Si � ySix

0
Si

	C Iizxs0
ix C Iizys0

iy C Iizzs
0
iz

� D 0: (19.118)

This yields the general conditions for complete balancing of spatial mechanisms

nX

iD1

mix
0
Si D 0;

nX

iD1

miy
0
Si D 0;

nX

iD1

miz
0
Si D 0; (19.119)

nX

iD1

�
mi
�
ySiz

0
Si � zSiy

0
Si

	C Iixxs0
ix C Iixys0

iy C Iixzs
0
iz

� D 0 (19.120)

nX

iD1

�
mi
�
zSix

0
Si � xSiz

0
Si

	C Iiyxs0
ix C Iiyys0

iy C Iiyzs
0
iz

� D 0 (19.121)

nX

iD1

�
mi
�
xSiy

0
Si � ySix

0
Si

	C Iizxs0
ix C Iizys0

iy C Iizzs
0
iz

� D 0 (19.122)

19.4.1.2 Algebraic Balancing Conditions of the Shaking Force

The position vector rSi with respect to the fixed coordinate frame is given by

rSi D rOi C Air
.i/
Si ; (19.123)
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where rOi is position vector of origin Oi in the fixed coordinate frame fOxyzg and r(i)
i

is position vector of Si in the moving coordinate frame fOi� i�i� ig shown in Fig. 19.9.

r.i/
Si D �

�Si �Si �Si

�T
: (19.124)

The coordinates of the center of mass Si, rSi D �
xSi ySi zSi

�T
, can be rewritten as

[14, 15]

xSi D e�
xi C aT

i z; ySi D e�
yi C bT

i z; zSi D e�
zi C cT

i z; i D 1; 2; ::; n (19.125)

where the vectors ai, bi and ci consist of components which are independent of q,
the elements of vector z are functions of the generalized coordinates which describe
the motion of particular links, e*

xi, e*
yi and e*

zi are constant values.
Analog to Eq. (19.125), the loop equations of the mechanism may be written in

the matrix form

D z D f; D D ŒDI; DII� : (19.126)

Here the matrix D and the vector f include the components which are geometrical
parameters and independent of q. A partitioning of vector z from Eq. (19.126)

z D
�

v
w

�
; (19.127)

leads to the following relation

DIv C DIIw D f: (19.128)

The matrix DII is chosen so that it must be a square matrix and nonsingular. The
dimension of vector w and the number of the loop equations are equal. By solving
Eq. (19.128) with the vector of variables w, we get

w D D�1
II . f�DIv/ : (19.129)

Using Eqs. (19.127) and (19.129), the coordinates of the center of mass Si and their
derivatives can be expressed in terms of the reduced vector of variables v as

xSi D exi C gT
i v; ySi D eyi C hT

i v; zSi D eyi C kT
i v (19.130)

x0
Si D gT

i

dv
dq

; y0
Si D hT

i

dv
dq

; z0
Si D kT

i

dv
dq

; (19.131)
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where

gT
i D aT

i I � aT
i II D�1

II DI; hT
i D bT

i I � bT
i II D�1

II DI; kT
i D cT

i I � cT
i II D�1

II DI

exi D e�
xi C aT

i II D�1
II f; eyi D e�

yi C bT
i II D�1

II f; ezi D e�
zi C cT

i II D�1
II f;

(19.132)

where vectors aiI, aiII, biI, biII, ciI, ciII include elements which are independent of q.
Substituting Eq. (19.131) into balancing conditions (19.119), we obtain

 
nX

iD1

migT
i

!
dv
dq

D 0 ;

 
nX

iD1

mihT
i

!
dv
dq

D 0;

 
nX

iD1

mikT
i

!
dv
dq

D 0 : (19.133)

Finally, the algebraic balancing conditions for shaking force take the compact matrix
form

nX

iD1

migT
i D 0;

nX

iD1

mihT
i D 0;

nX

iD1

mikT
i D 0: (19.134)

19.4.1.3 Algebraic Balancing Conditions of the Shaking Moment

To extract the conditions for the shaking moment balancing, some additional
transformations are required. The substitution of Eqs. (19.130) and (19.131) into
Eqs. (19.120)–(19.122) yields

uT
1

dv
dq

C vTS1

dv
dq

C
nX

iD1

�
Iixxs0

ix C Iixys0
iy C Iixzs

0
iz

	 D 0; (19.135)

uT
2

dv
dq

C vTS2

dv
dq

C
nX

iD1

�
Iiyxs0

ix C Iiyys0
iy C Iiyzs

0
iz

	 D 0; (19.136)

uT
3

dv
dq

C vTS3

dv
dq

C
nX

iD1

�
Iizxs0

ix C Iizys0
iy C Iizzs

0
iz

	 D 0; (19.137)

where

uT
1 D

nX

iD1

mi
�
eyikT

i � ezihT
i

	
; uT

2 D
nX

iD1

mi
�
ezigT

i � exikT
i

	
;

uT
3 D

nX

iD1

mi
�
exihT

i � eyigT
i

	
; (19.138)

and skew-symmetric matrices
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S1 D
nX

iD1

mi
�
hikT

i � kihT
i

	
; S2 D

nX

iD1

mi
�
kigT

i � gikT
i

	
;

S3 D
nX

iD1

mi
�
gihT

i � higT
i

	
: (19.139)

Analog to Eq. (19.125), the elements of the rotational vector ®i can be rewritten as
[14, 15]

six D s�
ix C rT

1iz; siy D s�
iy C rT

2iz; siz D s�
iz C rT

3iz; (19.140)

where the vectors r1i, r2i and r3iinclude components which are independent of q, the
values s*

ix, s*
iy and s*

iz are constant. The corresponding derivatives are given by

s0
ix D rT

1i

dz
dq

; s0
iy D rT

2i

dz
dq

; s0
iz D rT

3i

dz
dq

: (19.141)

With the vector of variables z, the elements of the inertia matrix Ii may be rewritten
in the matrix form as

Iixx D zTdixx; Iixy D zTdixy; Iixz D zTdixz;

Iiyx D zTdiyx; Iiyy D zTdiyy; Iiyz D zTdiyz;

Iizx D zTdizx; Iizy D zTdizy; Iizz D zTdizz;

(19.142)

where all elements in the vectors dixx, dixy, dixz, diyx, diyy, diyz, dizx, dizy, dizz are inde-
pendent of the generalized coordinate q. By using Eqs. (19.141), (19.142) and
introducing the new matrices

H1 D dixxrT
1i C dixyrT

2i C dixzrT
3i;

H2 D diyxrT
1i C diyyrT

2i C diyzrT
3i;

H3 D dizxrT
1i C dizyrT

2i C dizzrT
3i;

(19.143)

the third term in Eqs. (19.135)–(19.137) may be expressed in the matrix form as

nX

iD1

�
Iixxs0

ix C Iixys0
iy C Iixzs

0
iz

	 DzTH1

dz
dq

; (19.144)

nX

iD1

�
Iiyxs0

ix C Iiyys0
iy C Iiyzs

0
iz

	 D zTH2

dz
dq

; (19.145)

nX

iD1

�
Iizxs0

ix C Iizys0
iy C Iizzs

0
iz

	 D zTH3

dz
dq

: (19.146)
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The matrix Hj can be partitioned in four sub-matrices corresponding to the vector
of variables v und w in Eq. (19.128) as follows:

Hj D
�

Hj1 Hj2

Hj3 Hj4

�
; j D 1; 2; 3: (19.147)

By using Eqs. (19.129) and (19.147), the following relation is found from Eqs.
(19.144)–(19.146)

zTHj
dz
dq D

�
v
w

�T �
Hj1 Hj2

Hj3 Hj4

�" dv
dq
dw
dq

#

D vT
h
Hj1 C �

D�1
II DI

	T �
Hj4D�1

II DI � Hj3
	 � Hj2D�1

II DI

i
dv
dq

C�D�1
II f
	T �

Hj3 � Hj4D�1
II DI

	
dv
dq :

(19.148)

By introducing the vector u�
j

�
u�

j

	T D �
D�1

II f
	T �

Hj3 � Hj4D�1
II DI

	
; j D 1; 2; 3 (19.149)

and the matrices S�
j (j D 1, 2, 3)

S�
j D Hj1 C �

D�1
II DI

	T �
Hj4D�1

II DI � Hj3
	 � Hj2D�1

II DI; (19.150)

Equations (19.135)–(19.137) take the compact form

�
uj C u�

j

	T dv
dq

C vT
�
Sj C S�

j

	 dv
dq

D 0; j D 1; 2; 3: (19.151)

Finally, the following algebraic balancing conditions for shaking moment are found
from Eq. (19.151)

uj C u�
j D 0; Sj C S�

j D 0; j D 1; 2; 3: (19.152)

Equations (19.134) and (19.152) can be used to derive the dynamic balancing
conditions in form of algebraic expressions for spatial one-DOF mechanisms.

19.4.2 Application Example

In the following example we introduce the application of the balancing theory
described above to a spatial slider crank mechanism shown in Fig. 19.10. The
configuration of the mechanism is also prescribed by rotation angles �, ˇ and � .
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z

h1

h2

h3
hS1 xS1

xS2x1

x3

x2

z2

z1

a

a

b

g

j

x

y

S1

h

O

d S3

S2

Fig. 19.10 A spatial slider crank mechanism

The angle ® is chosen as the independent generalized coordinates q D ®. The loop
equations of the mechanism can be expressed in the form

h C l1 cos � � l2 cos � D 0;

�l1 sin � cos ˛ C l2 sin � sin ˇ � d D 0;
(19.153)

where li denotes the length of link i.
The direction cosine matrix Ai of link i referred to the fixed coordinate frame

fOxyzg are given by

A1 D
2

4
sin ' sin ˛ � cos ' sin ˛ � cos ˛

sin ' cos ˛ cos ' cos ˛ � sin ˛

cos ' sin ' 0

3

5 (19.154)

A2 D
2

4
sin � cos ˇ cos � cos ˇ sin ˇ

sin � sin ˇ cos � sin ˇ � cos ˇ

� cos � sin � 0

3

5 (19.155)

According to the elements of matrices A1,A2, we choose the vector z with the
following form

z D
h

cos '; cos ˇ; cos �; sin '; sin ˇ; sin �; sin � cos ˇ;

sin � sin ˇ; cos � cos ˇ; cos � sin ˇ; 1
i

T

D Œz1; z2; z3; z4; z5; z6; z7; z8; z9; z10; z11�T

(19.156)
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For brevity, we assume that the center of mass S2 of link 2 is positioned along the
link line, the center of mass S1 is positioned in the plane of axes �2 and �2. Then,
�S2 D 0; �S1 D �S2 D 0. The coordinates of the center of mass Si (i D 1, 2, 3) are
expressed in term of the vector z as

xS1 D ���S1 sin ˛ 0 0 �S1 sin ˛ 0 0 0 0 0 0 0
�

z
yS1 D �

�S1 cos ˛ 0 0 ��S1 cos ˛ 0 0 0 0 0 0 0
�

z
zS1 D h C �

�S1 0 0 �S1 0 0 0 0 0 0 0
�

z
xS2 D �

0 0 0 l1 sin ˛ 0 0 �S2 0 0 0 0
�

z
yS2 D �

0 0 0 �l1 cos ˛ 0 0 0 �S2 0 0 0
�

z
zS2 D h C �

l1 0 ��S2 0 0 0 0 0 0 0 0
�

z
xS3 D �

0 0 0 l1 sin ˛ 0 0 l2 0 0 0 0
�

z
yS3 D �

0 0 0 �l1 cos ˛ 0 0 0 l2 0 0 0
�

z
zS3 D h C �

l1 0 �l2 0 0 0 0 0 0 0 0
�

z

(19.157)

It can be shown that the loop equations in Eq. (19.153) have the form

�
l1 0 �l2 0 0 0 0 0 0 0 0

0 0 0 l1 cos ˛ 0 0 0 �l2 0 0 0

�
z D �

�
d
h

�
(19.158)

The reduced vector of variables v and the vector of eliminated variables w are
selected from the original vector z as follows:

v D Œcos �; cos ˇ; sin �; sin ˇ; sin �; sin � cos ˇ; cos � cos ˇ; cos � sin ˇ; 1�T

(19.159)

w D Œcos �; sin � sin ˇ�T (19.160)

The matrices DI, DII and D�1
II in Eq. (19.128) are given by

DI D
�

l1
0

0

0

0

l1 cos ˛

0

0

0

0

0

0

0

0

0

0

0

0

�
; DII D

��l2 0

0 �l2

�
; D�1

II D � 1

l2

�
1 0

0 1

�

(19.161)

19.4.2.1 Conditions of the Shaking Force Balancing

With the known coordinates of the center of masses from Eq. (19.157) and matrices
DI, D�1

II from Eq. (19.161), vectors gi, hi, and ki can be determined according to
Eq. (19.132) without any difficulty. Then, by substituting all these results into Eq.
(19.134), we get the following conditions for the complete shaking force balancing
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�m1�S1 sin ˛ D 0

.m1�S1 C m2l1 C m3l1/ sin ˛ D 0

m2�S2 C m3l2 D 0

m1�S1 cos ˛ D 0

m1�S1 C m2l1
�
1 � �S2

l2

�
D 0

m1�S1 cos ˛ C m2l1
�
1 � �S2

l2

�
cos ˛ D 0

(19.162)

By simplifying the expressions in Eq. (19.162), the balancing conditions for shaking
force of the mechanism are reduced into three equations f1 D 0, f2 D 0, f3 D 0, in
which

f1 D �S1; f2 D m1�S1 C m2l1 C m3l1; f3 D m2�S2 C m3l2: (19.163)

These conditions may be satisfied by internal mass redistribution or adding counter-
weights mounted on the links as shown in Fig. 19.11.

A simple numerical simulation is implemented in order to verify the correctness
of these conditions for the static balancing. Parameters of the initial mechanism
are given as follows: m1 D 7.0 (kg), m2 D 12.5 (kg), m3 D 10.5 (kg), l1 D 0.1 (m),
l2 D 0.3 (m), h D 0.1 (m), d D 0.15 (m), �S1 D 0.01 (m), �S1 D 0.02 (m), �S2 D 0.05
(m), �S2 D 0 (m). Using the conditions according to Eq. (19.163) we can determine
the size and the location of the counterweights (see also Fig. 19.11): m�

1 ��
S1 D 4:77

(kg m), m�
2 ��

S2 D 3:78 (kg m). Figure 19.12 simultaneously shows three components
of the shaking force produced by the unbalanced mechanism and the full force
balanced mechanism. The results verified that the shaking force of the force
balanced mechanism is completely eliminated and there is no forces transmitted
to the base during the motion of the mechanism.

Fig. 19.11 Full force
balanced mechanism with
counterweights

z

x

y

O

x *S2

x *S1

m*2

m*1
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Fx
* [N]

Fy
* [N]F*

z  [N]

j [rad.]

j [rad.] j [rad.]

unbalanced mechanism

balanced 

unbalanced 

balanced 

Fig. 19.12 Comparing shaking forces between the unbalanced mechanism and the full force
balanced mechanism

19.4.2.2 Conditions of the Shaking Moment Balancing

To derive the conditions for the shaking moment balancing, the angular velocities
of the links with respect to the fixed coordinate frame must be determined. Based
on theory of multibody kinematics, these angular velocities can be calculated from
the known matrices of the direction cosines Ai as follows:

Q̈ i D PAiAT
i ; i D 1; 2; 3: (19.164)

Using Eq. (19.164), we get

¨1 D
2

4
w1x

w1y

w1z

3

5 D
2

4
cos ˛

sin ˛

0

3

5 P'; ¨2 D
2

4
!2x

!2y

!2z

3

5 D
2

4
� 0 sin ˇ

� 0 cos ˇ

ˇ0

3

5 P';

¨2 D
2

4
!3x

!3y

!3z

3

5 D
2

4
0

0

0

3

5 P' (19.165)

where � 0 D d�

d'
; ˇ0 D dˇ

d'
:
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Upon assuming that axes � i, �i, � i of the link-fixed coordinate frame are principal
axes. The inertia matrix I(i)

Si of link i about the center of mass Si, referred to these
principal axes, can be written in the simplified form

I.i/
Si D

2

4
Ii�� 0 0

0 Ii�� 0

0 0 Ii��

3

5 ; i D 1; 2; 3 (19.166)

By comparing elements of ¨i in Eq. (19.165) with elements of JRi in Eq. (19.109),
we obtain

s0
1x D cos ˛;

s0
1y D sin ˛;

s0
1z D 0;

s0
2x D � 0 sin ˇ;

s0
2y D �� 0 cos ˇ;

s0
2z D ˇ0:

s0
3x D 0;

s0
3y D 0;

s0
3z D 0:

(19.167)

So, the expressions in the left-hand side of Eqs. (19.144)–(19.146) can be estab-
lished. With vector z according to Eq. (19.156) we find that

z1z0
4 � z4z0

1 D 1; z2z0
5 � z5z0

2 D ˇ0;
z11z0

1 D � sin �; z11z0
4 D cos �;

(19.168)

Now we can determine matrices H1 D
h
h.1/

i;j

i
, H2 D

h
h.2/

i;j

i
, and H3 D

h
h.3/

i;j

i
as

follows:

h.1/
1;1 D �h.1/

4;1 D I1�� cos ˛; h.1/
3;8 D �h.1/

8;3 D 1
2

�
I2�� C I2�� � I2��

	
;

h.1/
6;10 D �h.1/

10;6 D 1
2

�
I2�� � I2�� � I2��

	
; every other h.1/

i;j D 0 :

h.2/
1;1 D �h.2/

4;1 D I1�� sin ˛; h.2/
3;7 D �h.2/

7;3 D 1
2

�
I2�� � I2�� � I2��

	
;

h.2/
6;9 D �h.2/

9;6 D 1
2

�
I2�� � I2�� C I2��

	
; every other h.2/

i;j D 0

h.3/
2;5 D �h.3/

5;2 D I2�� ; h.3/
7;8 D �h.2/

8;7 D I2�� � I2�� ; every other h.3/
i;j D 0 :

By partitioning of matrix Hj related to Eq. (19.147), we obtain sub-matrices Hj1,
Hj2, Hj3, Hj4. Then, vectors uj and u�

j , the matrices Sj and S�
j can be formulated by

using Eqs. (19.138), (19.139), (19.149), and (19.150), for example

u2 D
�
�m1h�S1 sin ˛; 0; m1h�S1 sin ˛ C m2hl1



1 � �S2

l2

�

sin ˛; 0; 0; m2h�2



1 � �S2

l2

�
; 0; 0; 0

�T
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u�
2 D

�
0; 0; 0; 0; 0;

h

2l2

�
I2�� � I2�� � I2��

	
; 0; 0; 0

�T

:

Finally, according to Eq. (19.152) we obtain the non-zero elements of vectors ujCu�
j

and matrices Sj C S�
j in the form

k1 D m1h�S1 cos ˛ � m2dl1
�S2

l2

�
1 � �S2

l2

�
� dl1

2l22

�
I2�� � I2�� � I2��

	

k2 D
�

m1h�S1 C m2hl1
�
1 � �S2

l2

�2 � hl1
2l22

�
I2�� � I2�� � I2��

	�
cos ˛

k3 D
h
m1h�S1 C m2hl1

�
1 � �S2

l2

�i
sin ˛

k4 D m2h�S2

�
1 � �S2

l2

�
C h

2l2

�
I2�� � I2�� � I2&&

	

k5 D m2dl1
�S2

l2
sin ˛ C m3dl sin ˛; k6 D m2d

�2
S2

l2
C m3dl2 � d

l2

�
I2�� � I2��

	

k7 D
h
m1

�
�2

S1 C �2
S1

	C m2l21

�
1 � �S2

l2

�
� l21

2l22

�
I2�� � I2�� � I2&&

	C I1&&

i
cos ˛

k8 D
h
m1

�
�2

S1 C �2
S1

	C m2l21

�
1 � �S2

l2

�
C I1&&

i
sin ˛

k9 D m2l1�S2

�
1 � �S2

l2

�
C l1

2l2

�
I2�� � I2�� � I2&&

	

k10 D
h
m2l1�S2

�
1 � �S2

l2

�
l1
l2

�
I2�� � I2��

	i
cos ˛

k11 D I2�� � I2�� C I2&& ; k12 D m1h�S1 sin ˛; k13 D I2��

(19.169)

Note that the above obtained expressions are original and can be further simplified.
Now we choose ˛ D 	=2; �S1 D 0 and let I2�� D I2&& , the expressions ki in Eq.
(19.169) are reduced as follows:

f4 D m2l2�S2 � m2�2
S2 � I2&& ; f5 D m1�S1 C m2l1

�
1 � �S2

l2

�

f6 D m2�S2l1
l2

C m3l1; f7 D m1�2
S1 C m2l21

�
1 � �S2

l2

�
C I1&& ; f8 D I2�� :

(19.170)

The shaking moment is completely balanced if the values of fi . i D 4; 5; : : : ; 8/ in
Eq. (19.170) vanish simultaneously. It is clearly shown that these conditions cannot
be completely satisfied by adding counterweights, since the values of f8 are not equal
to zero in any case. These conditions are mainly of theoretical interest. However, Eq.
(19.170) provide the necessary tool for the minimization of the shaking moment.
Another way for solving the problem is the simultaneous minimization of the
shaking force and shaking moment based on Eqs. (19.163) and (19.170). From the
conditions

fi ! min . i D 1; 2; : : : ; 8/

one can choose a set of optimizing values for geometrical and inertia parameters of
the links: m1, m2, m3, �S1, �S2, I1−−, I2�� , I2��, I2−−. This problem will be considered
in the future investigation.
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19.5 Conclusions

This chapter provided an approach to derive the dynamic balancing conditions of
planar and spatial mechanisms. The following conclusions have been reached:

– Based on theory of multibody dynamics, the algebraic balancing conditions for
the shaking force and shaking moment of planar and spatial mechanisms have
been established.

– A specialized code has been developed on the MAPLE
®

environment for this
study. It can be concluded that the proposed method is suitable for the application
of the widely accessible computer algebra systems such as MAPLE

®
.

– The proposed method is illustrated for a planar 8R-eightbar mechanism having
multi degrees-of-freedom and multi-links is an appropriate object to demonstrate
the suggested procedure. Based on the obtained balancing conditions of the
shaking force, a number of balancing schema with counterweights can be
established by assigning the parameters of two arbitrary links and determining
parameters of the other links.

– The proposed method is illustrated by using a spatial slider crank mechanism. In
the application of balancing techniques using counterweights and supplementary
links [35–37] for spatial mechanisms, the proposed method may provide a helpful
tool to obtain exactly the balancing conditions and therefore we can get better
balancing results. This will be the subject of future work.

Acknowledgment The work discussed in this chapter was completed with the financial support
given by the National Foundation for Science and Technology Development of Vietnam.
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