
Chapter 11
Design of Reactionless Mechanisms Based
on Constrained Optimization Procedure
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Abstract This chapter presents an optimization technique to dynamically balance
planar mechanisms by minimizing the shaking forces and shaking moments due
to inertia-induced forces. Dynamically equivalent systems of point masses which
represent rigid links and counterweights are useful for developing optimization tech-
nique. The point-mass parameters are explicitly identified as the design variables.
The balancing problem is formulated as both single-objective and multi-objective
optimization problem and solved using genetic algorithm which produces better
results as compared to the conventional optimization algorithm. Also, for the multi-
objective optimization problem, multiple optimal solutions are created as a Pareto
front using the genetic algorithm. The reduction of shaking force and shaking
moment is obtained by optimizing the link mass distribution and counterweight of
their point masses. The inertial properties of balanced mechanism are then computed
in reverse by applying dynamical equivalent conditions from the optimized design
variables. The effectiveness of the methodology is shown by applying it to problems
of planar four-bar, slider-crank, and Stephenson six-bar mechanisms.

Keywords Dynamic balancing • Equimomental system • Genetic algorithm •
Optimization • Shaking force and shaking moment

The design of reactionless mechanisms is important in order to (1) reduce the
amplitude of vibration of the frame on which the mechanism is mounted due
to transmission of shaking forces and (2) smoothen highly fluctuating driving
torque/force needed to obtain nearly constant drive speed. Since any vibration
leads to noise, wear, fatigue, etc., in the mechanism, its reduction improves several
aspects of mechanical design as well. Design a reactionless mechanism means the
balancing of shaking force, shaking moment, and input-torque fluctuations together.
The shaking force can be eliminated completely by attaching counterweights
and/or redistributing masses of the moving links. This will increase overall mass

H. Chaudhary (�) • K. Chaudhary
Department of Mechanical Engineering, Malaviya National Institute of Technology Jaipur,
JLN Marg, Jaipur 302017, India
e-mail: hchaudhary.mech@mnit.ac.in

© Springer International Publishing Switzerland 2016
D. Zhang, B. Wei (eds.), Dynamic Balancing of Mechanisms and Synthesizing
of Parallel Robots, DOI 10.1007/978-3-319-17683-3_11

273

mailto:hchaudhary.mech@mnit.ac.in


274 H. Chaudhary and K. Chaudhary

and moment of inertia of the mechanism. As a result, shaking moment, driving
torque, and reactions in the joints will increase significantly. Therefore, to design
a mechanism with minimum reaction forces transmitted to the frame, it is required
to reduce all the competing dynamic quantities, namely the shaking force, shaking
moment, driving torque/force, and bearing reactions simultaneously. This means
that design of reactionless mechanism problem can be treated as an optimization
problem, whose formulation needs the following:

1. An efficient dynamic algorithm to compute the dynamic quantities
2. Identification of the design variables, and the formulation of the constraints on

them that define the design space of the feasible solutions
3. An objective function to evaluate the performance of a mechanism at hand

This chapter presents a constrained optimization procedure to balance the
planar mechanisms dynamically. This will minimize the shaking force and shaking
moment by optimally distributing the link masses. The concept of equimomental
system of point masses is used to identify the design variables and to define the
constraints for the optimization problem formulation.

11.1 Equimomental Systems for Planar Motion

A study on an equimomental system of rigidly connected point masses undergoing
planar motion is discussed in this section. Inertia-induced dynamic quantities, e.g.,
shaking force, shaking moment, and input-torque, of a mechanical system depend
on the mass and inertia of its each link, and the corresponding mass center location.
These inertia properties can be represented more conveniently using the dynamically
equivalent system of point masses referred to as equimomental system [1–3].

A point mass is an idealized concept, and defined as a mass that is concentrated
at a point. Two rigid systems are equimomental if their dynamic behaviors are
identical; that is, they have the same mass, the same center of mass, and the same
inertia tensor with respect to a common point [1]. Referring to the ith rigid link,
Fig. 11.1a, of a planar mechanism, the location of its mass center, Ci, is defined by
the vector, di, at an angle, � i, from the axis OiXi of the local frame, OiXiYi, fixed
to the link. The axis OiXi is set along the vector from Oi to OiC1, that is, at an angle
˛i from the axis, OX, of the fixed inertial frame, OXY, Fig. 11.1a. The points, Oi

and OiC1, on the link are chosen as the points where the ith link is coupled to its
neighboring links, whereas link’s mass and the mass moment of inertia about Oi are
mi and Ii, respectively. A system of p point masses, which is equimomental to the ith
link, is shown in Fig. 11.1b. The point masses, mij, for j D 1, : : : , p, are fixed in the
local frame, OiXiYi, and their distances from the origin, Oi, are lij. The angles, � ij,
are defined between the line joining the point masses from Oi, and the axis, OiXi.
In this section, all the vectors are represented in the fixed frame, OXY, unless stated
otherwise.
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Fig. 11.1 Parameters for rigid link and its equimomental system. (a) The ith rigid link,
(b) equimomental system of the ith link

If the p point masses are equimomental to the ith link, then they must satisfy the
conditions of dynamic equivalence with reference to the fixed frame, OXY, given as

pX

jD1

mij D mi (11.1)

pX

jD1

mijlij cos
�
�ij C ˛i

� D midi cos .�i C ˛i/ (11.2)

pX

jD1

mijlij sin
�
�ij C ˛i

� D midi sin .�i C ˛i/ (11.3)

pX

jD1

mijl
2
ij D Ii (11.4)

The first subscript i denotes the link number, and the second one, i.e., j D 1, : : : ,
p, represents the point masses corresponding to the ith link. Since each mass requires
three parameters, (mij, lij, � ij), to identify it, a total of 3p parameters are necessary
to completely define the equimomental system of p point masses. However, there
are four constraints, namely Eqs. (11.1–11.4), that need to be satisfied. Hence,
an infinite number of solutions exist for p � 2, as the resultant system of
equations is underdeterminate; that is, the number of unknowns is more than the
equations [2]. If p D 1, there is only one point mass with three unknown parameters,
which cannot satisfy all the four conditions, Eqs. (11.1–11.4), unless they are
consistent. This is because the resulting system of equations is overdeterminate with
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more equations than the number of unknowns. Typically, such system of equations
does not yield any solution unless the equations are consistent. As a consequence, an
equimomental system of a rigid link moving in a plane cannot be represented using
one point mass, which is obvious from the fundamental knowledge of mechanics.
Clearly, the minimum number of point masses is then two giving six unknown
parameters, of which two need to be assigned arbitrarily. If three point masses are
taken, five parameters are to be assigned arbitrarily. In general, (3p � 4) parameters
need to be assigned arbitrarily so that the remaining four are determinate. Note here
that it is not always possible to get all the point masses positive. This, however, does
not hinder the process of representing the rigid link as long as the total mass and the
moment of inertia about the mass center give positive values [4].

11.1.1 Two-Point-Mass Model

As explained in the previous section, an equimomental system of point masses of a
rigid link moving in a plane requires at least two point masses. The representation
of the link by the equimomental system of two point masses is referred to as two-
point-mass model. Similarly, equimomental system of three point masses is called
three-point-mass model, and so on. In this section, the conversion of a rigid link
into the two-point-mass model is illustrated. Let a two-point-mass model for ith
rigid link is moving in the XY plane. The polar coordinates of the point masses are
(lij, � ij), for j D 1, 2. Note that the point masses are rigidly fixed in the local frame.
The system of two point masses is then equimomental to the rigid link if it satisfies
the conditions given by Eqs. (11.1–11.4).

For the rigid link of given mass, its center location, and inertia, one can convert
the link into an appropriate two point masses. Since the four equations are nonlinear
in six unknown parameters of the two point masses, a judicious selection is required
to choose for the arbitrary assigned parameters. Assuming � i1 D 0 and � i1 D � /2
[5], the four parameters of the two point masses, namely mi1, mi2, li1, and li2, are
determined from Eqs. (11.1–11.4) as

mi1 D
�
m2

i x2
i � m2

i y2
i C miIi

�˙
q�

m2
i x2

i � m2
i y2

i C miIi
�2 � 4miIix2

i

2Ii
(11.5)

mi2 D mi � mi1 (11.6)

li1 D mixi

mi1
(11.7)

li2 D miyi

mi2
(11.8)
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where the Cartesian coordinates of the mass center of ith rigid link are xi D di cos �i

and yi D di sin �i. Hence, each point mass has two solutions. If � i1 D 0, i.e., the mass
center of the rigid link lies on the X-axis, two sets of the solutions are as follows:

mi1 D
(

m2
i d2

i
Ii

mi

I mi2 D
(

mi � m2
i d2

i
Ii

0
I li1 D

(
midi
mi1

di
I and li2 D

�
0

0
(11.9)

Thus, one can convert a given rigid link into a suitable two-point-mass model
assuming any two-point-mass parameters.

11.1.2 Three-Point-Mass Model

In this section, the procedure of finding a three-point-mass model is illustrated.
Consider a three-point-mass model for ith rigid link moving in the XY plane. The
polar coordinates of the point masses are (lij, � ij), for j D 1, 2, and 3. Similar to two-
point-mass model, the three-point-mass model would then be equimomental to the
original rigid link if Eqs. (11.1–11.4) are satisfied.

Note that there are nine unknown parameters of point masses, namely mij, lij, and
� ij, for j D 1, 2, and 3, in the four equimomental equations. Hence, it is important to
decide which five parameters should be chosen so that the remaining four become
determinate. It is advisable to choose lij and � ij, so that the dynamic equivalence
conditions become linear in point masses. Assuming li2 D li3 D li1 and substituting
them in Eq. (11.4) yield

0

@
3X

jD1

mij

1

A l2i1 D mik
2
i (11.10)

where mik2
i D Ic

i Cmid2
i , ki being the radius of gyration about the point, Oi. Equation

(11.10) gives li1 D ˙ki. Taking the positive value for li1, which is physically
possible, Eqs. (11.1–11.3) are then written in a compact form as

Km D b (11.11)

where the 3 � 3 matrix, K, and the three vectors, m and b, are as follows:

K D
2

4
1 1 1

ki cos �i1 ki cos �i2 ki cos �i3

ki sin �i1 ki sin �i2 ki sin �i3

3

5 I m D
2

4
mi1

mi2

mi3

3

5 I b D
2

4
mi

midi cos �i

midi sin �i

3

5 (11.12)

The magnitudes of three point masses are then solved from Eq. (11.11) by
assuming suitable values for � ij, j D 1, 2, and 3. It is clear that the solution for m
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exists if det .K/ ¤ 0, i.e., � i1 ¤ � i2, � i1 ¤ � i3, and � i2 ¤ � i3. It means that any two
point masses should not lie on the same radial line emanating from the origin, Oi.
The vector m is obtained as

m D K�1b (11.13)

where K�1 is evaluated as

K�1 D ki

det .K/

2

4
ki sin .�i3 � �i2/ .sin �i2 � sin �i3/ .cos �i3 � cos �i2/

� ki sin .�i3 � �i1/ .sin �i3 � sin �i1/ .cos �i1 � cos �i3/

� ki sin .�i1 � �i2/ .sin �i1 � sin �i2/ .cos �i2 � cos �i1/

3

5

in which det .K/ D k2
i Œsin .�i3 � �i2/ C sin .�i2 � �i1/ C sin .�i1 � �i3/�. It is evident

from the solution, Eq. (11.13), that the sum of the point masses is equal to mass of
the link for any values of angles except � i1 ¤ � i2, � i1 ¤ � i3, and � i2 ¤ � i3. Note here
that there is a possibility that some point masses are negative. It does not hinder
the process of representing the rigid link as long as its mass, m, and inertia, Ic, are
positive and real, as pointed out earlier. As an example, if � i1 D 0, � i2 D 2� /3, and
� i3 D 4� /3, the point masses are calculated as

mi1 D mi

3

�
1 C 2di cos �i

ki

�
(11.14)

mi2 D mi

3

 
1 � di cos �i

ki
C

p
3di sin �i

ki

!
(11.15)

mi3 D mi

3

 
1 � di cos �i

ki
�

p
3di sin �i

ki

!
(11.16)

which take simpler form if the origin, Oi, coincides with the mass center of the
link, Ci; that is, di D 0. Substituting di D 0 in Eqs. (11.14–11.16), one obtains
mi1 D mi2 D mi3 D mi/3. It means that the point masses of the link are distributed
equally, and located on the circumference of a circle having radius ki.

It is pointed out here that in mechanism analysis, links are often considered as
one dimensional, e.g., a straight rod, in which its diameter or width and thickness
are very small in comparison to the length. Considering that the mass lying along the
X-axis of the local frame, the dynamical equivalence conditions, Eqs. (11.1–11.4),
reduce to

pX

jD1

mij D mi (11.17)
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pX

jD1

mijxij D mixi (11.18)

pX

jD1

mijx
2
ij D Ic

i C mix
2
i (11.19)

It is evident from Eqs. (11.17–11.19) that a minimum of two point masses is also
required to represent a one-dimensional link, introducing a total of four variables,
i.e., mi1, mi2, xi1, and xi2. Specifying any one of the variables, the other three
variables can be found uniquely. It is pointed out here that a common practice in
the dynamics study of reciprocating engine is to replace the connecting rod by two
point masses, where the masses are placed at the ends of the connecting rod. This
does not provide a true equivalent system unless the three equations, Eqs. (11.17–
11.19), in two unknowns, mi1 and mi2, leading to an overdetermined system are
consistent.

Using the concept of equimomental system, Sherwood and Hokey [4] presented
the optimization of mass distribution in mechanisms. Hockey [6] discussed the
input-torque fluctuations of mechanisms subject to external loads by means of
properly distributing the link masses. Using the two-point-mass model, momen-
tum balancing of four-bar linkages was presented in [7]. Optimum balancing of
combined shaking force, shaking moment, and torque fluctuations in high-speed
linkages was reported in Lee and Cheng [5] where a two-point-mass model was
used. The concept can also be applied for the kinematic and dynamic analyses of
mechanisms [8]. Simultaneous minimization of shaking force, shaking moment, and
other quantities using the dynamical equivalent system of point masses and optimum
mass distribution has been attempted in [9, 10]. However, the results do not show
significant improvement in the performances.

11.2 Balancing of Planar Mechanisms

Balancing of shaking force and shaking moment in the mechanisms is important
in order to obtain reactionless mechanisms. Several methods are developed to
eliminate the shaking force and shaking moment in planar mechanisms. The
methods to completely eliminate the shaking force are generally based on two
principles: (1) making the total potential energy of a mechanism constant [11], and
(2) making the total mass center of a mechanism stationary [12, 13]. Studies based
on potential energy use elastic elements like springs to balance the force. On the
other hand, the methods based on making total mass center stationary use mass
redistribution/counterweights. Different techniques are used for tracing and making
the total mass center stationary. For example, the method of principal vectors [14]
describes the position of the mass center by a series of vectors that are directed along
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the links. These vectors trace the mass center of the mechanism at hand, and the
conditions are derived to make the system mass center stationary. A more referred
method in the literature is the method of linearly independent vectors [12] where the
stationary condition was achieved by redistributing the link masses in such a manner
that the coefficients of the time-dependent terms of the equations describing the total
center of the mass trajectory vanish. Kochev [15] presented a general method using
ordinary vector algebra instead of the complex number representation of the vectors
[12] for full force balance of the planar linkages. One of the attractive features of a
force-balanced linkage is that the shaking force vanishes, and the shaking moment
reduces to a pure torque which is independent of reference point. However, only
shaking force balancing is not effective in the balancing of mechanisms, as (1) it
mostly increases the total mass of the mechanism, (2) it needs some arrangement
like counterweights that increase the total mass, and (3) it increases the other
dynamic characteristics, like shaking moment, driving torque, and bearing reactions.
The influence of the complete shaking force balancing is thoughtfully investigated
by Lowen et al. [16] on the bearing reactions, input-torque, and shaking moment
for a family of crank-rocker four-bar linkages. This study shows that these dynamic
quantities increase, and in some cases their values rise up to five times.

Several authors attempted to treat the balancing problem as a complete shaking
force and shaking moment balancing. Elliot et al. [17] developed a theory to
balance torque, shaking force, and shaking moment by extending the method of
linearly independent vectors. Similarly, the analytical conditions are presented
for complete balancing of shaking force and shaking moment in [18]. Complete
moment balancing is also achieved by a cam-actuated oscillating counterweight
[19], inertia counterweight [20], physical pendulum [21], geared counterweights,
and inertia flywheel [22, 23]. More information on complete shaking moment
balancing can be obtained in a critical review by Lowen et al. [24], Kochev [25],
and Arakelian and Smith [26]. Practically, these methods not only increase the mass
of the system but also increase its complexity.

An alternate way to reduce the shaking force and shaking moment along with
other dynamic quantities such as input-torque and bearing reactions is to optimize all
the dynamic quantities. Since shaking moment reduces to a pure torque in a force-
balanced linkage, many researchers used the fact to develop their theory of shaking
moment optimization. Berkof and Lowen [27] proposed an optimization method to
minimize the root-mean-square (RMS) value of the shaking moment in a fully force-
balanced in-line four-bar linkage whose input link rotates at a constant speed. As an
extension of this method, Carson and Stephens [7] highlighted the need to consider
feasibility limits of the link parameters. A different approach for the optimization of
shaking moment in a force-balanced four-bar linkage is proposed by Hains [28].
Using the principle of the independence of the static balancing properties of a
linkage from the axis of rotation of the counterweights, partial shaking moment
balancing is suggested by Arakelian and Dahan [29]. The principle of momentum
conservation is also used by Wiederich and Roth [30] to reduce the shaking moment
in a fully force-balanced four-bar linkage.
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11.2.1 Problem Formulation

The problem of mechanism balancing is formulated here as an optimization
problem. In order to identify the design variables and the associated constraints,
a set of equimomental point masses is defined for each link of a mechanism at hand.
To calculate the shaking force and shaking moment dynamic equations of motion in
the minimal set are derived in the parameters of the point masses. These parameters
are then treated as design variables to redistribute the link masses to minimize the
force transmitted to the frame.

11.2.2 Equations of Motion in Terms of Point-Mass System

The Newton-Euler (NE) equations of motion for the ith rigid link moving in a plane
(Fig. 11.1) are given as [31]

MiPti C Citi D wi (11.20)

where the three vectors, ti, Pti, and wi, are defined as the twist, twist rate, and wrench
of the ith link with respect to the origin, Oi; that is,

ti D
�

!i

vi

�
I Pti D

� P!i

Pvi

�
and wi D

�
ni

fi

�
(11.21)

in which ! i and vi are the scalar angular velocity about the axis perpendicular to
the plane of motion, and the two-vector of linear velocity of point Oi of the ith
link, respectively. Accordingly, P!i and Pvi are the time derivatives of ! i and vi,
respectively. Also, the scalar, ni, and the two-vector, fi, are the resultant moment
about Oi and the resultant force at Oi, respectively. Moreover, the 3 � 3 matrices,
Mi and Ci, are given as

Mi D
�

Ii �midT
i E

miEdi mi1

�
and Ci D

�
0 0T

� mi!idi O

�
(11.22)

where 1 and O are the 2 � 2 identity and zero matrices, respectively, and 0 is the
two-vector of zeros, and the 2 � 2 matrix, Ē, is defined by

E D
�

0 �1

1 0

�

Upon substitution of the expressions for the scalar, Ii, and the two-vector, midi,
from Eqs. (11.1–11.4), the 3 � 3 matrices, Mi and Ci, of Eq. (11.22) are obtained as
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Mi D

2

6666664

X

j

mijl
2
ij �

X

j

mijlij sin
�
�ij C ˛i

� X

j

mijlij cos
�
�ij C ˛i

�

�
X

j

mijlij cos
�
�ij C ˛i

� X

j

mij 0

X

j

mijlij sin
�
�ij C ˛i

�
0

X

j

mij

3

7777775

Ci D

2

66664
�

0 0 0

!i

X

j

mijlij cos
�
�ij C ˛i

�
0 0

� !i

X

j

mijlij sin
�
�ij C ˛i

�
0 0

3

77775
(11.23)

Equations (11.20) and (11.23) are the equations of motion for the ith link in terms
of its 3p point-mass parameters, namely mij, � ij, and lij, for j D 1, : : : , p. Now, all
or some of the point-mass parameters can be used as design variables based on their
influence on the objective function of an optimization problem.

In some research papers, namely by Lee and Cheng [5] and Wiederrich and Roth
[30], two-point-mass model was considered to represent the mass and inertia of the
links. They assumed that �i1 D 0 and �i2 D �=2, amongst the six parameters mi1,
mi2, � i1, � i2, li1, and li2. The remaining parameters were then considered as design
variables, and used for the optimization of four-bar mechanisms. In three-point-
mass model the following five parameters can be assigned arbitrarily:

�i1 D 0 I �i2 D 2�=3 I �i3 D 4�=3 I and li2 D li3 D li1 (11.24)

The other four parameters, namely mi1, mi2, mi3, and li1, are then treated as the
design variables for each link.

11.2.3 Definition of Shaking Force and Shaking Moment

Figure 11.2 shows n moving links in a multiloop mechanism where the fixed link,
#0, is detached from the other links. The appropriate reaction forces and moments
due to the fixed link are indicated on the moving links to maintain the dynamic
equilibrium.

The shaking force is now defined as the reaction of the vector sum of all the
inertia forces of moving links associated with the mechanism, and the shaking
moment is the reaction of the resultant of the inertia moment and the moment of
the inertia forces [5]. By the above definitions, the shaking force and the shaking
moment with respect to O1, transmitted to the fixed link, are given by
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Fig. 11.2 A multiloop mechanism

fsh D �
nX

iD1

f�
i (11.25)

nsh D �
nX

iD1

	
n�

i � aT
1;iEf�

i



(11.26)

where n*
i and f*

i are the inertia moment and the two-vector of inertia force,
respectively, acting at and about the origin, Oi, of the ith link. Moreover, the two-
vector, a1,i, is defined from O1 to the origin of the ith link, as shown in Fig. 11.2.
Substituting the resultant force and moment in terms of the external force and
moment, and the reactions due to the adjoining joints, the force and moment balance
expressions for the ith link are written as

f�
i D fe

i C
nX

kD0

fk; i (11.27)

n�
i D ne

i C
nX

kD0

	
nk; i � aT

i;kEfk; i



(11.28)

where fk, i and nk, i are the bearing reaction force and moment on the ith link by the
kth link, respectively. Note that fk; i D 0 and nk; i D 0 if kth link is not directly
connected to the ith link. Furthermore, fe

i and ne
i are the external force and moment

acting at and about the origin, Oi, respectively. Note that the origin for the ith link
is defined at the joint where it is coupled with previous link, whereas vector, ai, k, is
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defined from the origin of the ith link to the joint where the kth link is connected.
Upon substitution of Eqs. (11.27 and 11.28) into Eqs. (11.25 and 11.26), the shaking
force and the shaking moment with respect to O1 transmitted to the fixed link, #0,
are obtained as

fsh D �
nfX

jD1

f0;j �
nX

iD1

fe
i (11.29)

nsh D �
nfX

jD1

	
n0;j � aT

1;jEf0; j



�

nX

iD1

	
ne

i � aT
1;iEfe

i



(11.30)

where f0, j represents the reaction force on the jth link by the fixed link, for j D 1,
: : : , nf, nf being the number of links connected to the fixed link. Hence, using Eqs.
(11.29 and 11.30), the computation of the reactions at all the joints is not necessary
to compute the shaking force and shaking moment. Note that the dynamic quantities,
e.g., the shaking force, shaking moment, and bearing reactions, have different units
and magnitudes. In order to harmonize them, the force and moment are normalized
as [32]

f D jfj =
�
mo

mam!2
in

�
(11.31)

n D n=
�
mo

ma2
m!2

in

�
(11.32)

where am and mo
m are the length and mass of the reference link for the normalization,

whereas ! in is any input angular velocity. Superscript “o” is used for those parame-
ters of the original mechanism, which will be changing during the optimization.

11.2.4 Optimality Criterion

There are many possible criteria by which the shaking force and shaking moment
transmitted to the fixed link of the mechanism can be minimized. For example,
one criterion could be based on the RMS values of the shaking force, shaking
moment, and required driving torque for a given motion, and/or the combination
of these. Besides the RMS values, there are other ways to specify the dynamic
quantities also, namely by the maximum values, by the amplitude of the specified
harmonics, or by the amplitudes at certain point during the motion cycle. Here, the
RMS value is preferred over others as it gives equal emphasis on the results of every
time instances, and every harmonic component. The RMS values of the normalized
shaking force, f sh, and the normalized shaking moment, nsh, at ı discrete positions
of the mechanism are defined as
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Qfsh D
rX

f
2

sh=ıI and Qnsh D
rX

n2
sh=ı (11.33)

where Qfsh and ñsh are the RMS values of the normalized shaking force and the
normalized shaking moment, respectively. Considering the RMS values, Qfsh and ñsh,
an optimality criterion can be posed as

z D w1
Qfsh C w2 Qnsh (11.34)

where w1 and w2 are the weighting factors whose values may vary depending on
an application. For example, w1 D 1.0 and w2 D 0 if the objective is to minimize
the shaking force only. The design variables and constraints depend upon whether
the balancing is done through the redistribution of link masses or counterweighting
the links.

11.2.4.1 Mass Redistribution Method

Consider a mechanism having n moving links, i.e., i D 1, : : : , n, and each link is
modeled by a system of p equimomental point masses; then the 3p-vector of point-
mass parameters for the ith link is defined as

xi D �
mi1 : : : mip li1 : : : lip �i1 : : : �ip

�T
(11.35)

Accordingly, the 3np-vector of the point-mass parameters for the whole mechanism
is given by

x D �
xT

i : : : xT
n

�T
(11.36)

If three-point-mass model is used then the dimensions of the vectors, xi and x, are
9 and 9n, respectively. If five parameters per link are assigned arbitrarily according
to Eq. (11.24), the remaining four parameters, namely mi1, mi2, mi3, and li1, per link
can be treated as the design variables (DV). Finally the 4n-vector, x, of the DVs
using three-point-mass model is defined as

x D Œm11; m12; m13; l11; : : : ; mn1; mn2; mn3; ln1�T (11.37)

The constraints on the DVs depend on the allowable minimum and maximum
values of the DVs, say, mass and inertia, etc. The minimum mass, mi,min, of the
ith link and its mass distribution can be decided by the strength of its material.
Furthermore, the maximum mass, mi,max, can be taken into account according to
what extent the shaking force and shaking moment are eliminated. Similarly, the
limits on parameters, li1, can be determined based on the limiting values of the
moment of inertia. The optimization problem is finally posed as
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Minimize z .x/ D w1
Qfsh C w2 Qnsh .single objective/ OR

Minimize z .x/ D �Qfsh; Qnsh
�

.multi-objective/ (11.38a)

Subject to mi;min � mi � mi;max (11.38b)

li1;min � li1 � li1;max (11.38c)

di;min � di � di;max (11.38d)

mid
2
i � Ii (11.38e)

for i D 1, : : : , n, where mi,min, mi,max, li1,min, and li1,max are the lower and upper
bounds on mi and li1, respectively, and mi D mi1 C mi2 C mi3. The feasibility of the
mass center location and the moment of inertia of the ith link can be achieved using
constraints, Eqs. (11.38d and 11.38e), where Ii D Ic

i C mid2
i , which implies that the

term mid2
i must be less than or equal to the moment of inertia, Ii.

11.2.4.2 Counterweighting Method

In the case of counterweight balancing, counterweights are attached to the moving
links such that the shaking force and shaking moment transmitted to the frame of
the mechanism are minimum. Assume that the counterweight of mass, mb

i , with its
mass center location,

�
xb

i ; yb
i

�
, is attached to the ith link as shown in Fig. 11.3a.

The equimomental system of the resulting link is shown in Fig. 11.3b, where it
is assumed that the point masses of the counterweight mass, mb

ij, are placed at the
location of the point masses of original link, mo

ij. Then the counterweight mass, its
mass center location, and inertia are defined as

mb
i D

3X

jD1

mb
ij (11.39)

mb
i db

i D
3X

jD1

mb
ijl

o
ij (11.40)

Ib
i D

3X

jD1

mb
ij

	
loij



2 (11.41)
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Fig. 11.3 Counterweight
balancing. (a) Counterweight
to the ith link,
(b) equimomental point
masses of the counterweight
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Now, for a mechanism having n moving links, the 3n-vector of the design
variables, xb, is

xb D
h
mb

1

T
; : : : ; mb

n
T
iT

(11.42)

where the three-vector, mb
i , is as follows:

mb
i D �

mb
i1 mb

i2 mb
i3

�T
; for i D 1; : : : ; n

Note that mb
ij is the jth point mass of the counterweight attached to the ith link. The

minimum and maximum mass of counterweight, mb
i,min and mb

i,max, their locations,
and the moment of inertia depend on an application. However, the counterweight
balancing problem is stated to determine the mass, mb

i , its mass center location,�
xb

i ; yb
i

�
, and the inertia, Ib

i , such that the combined effect of shaking force and
shaking moment is going to be minimum; that is,
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Table 11.1 Definition of normalized parameters

aij D ˇ̌
aij

ˇ̌
=am Normalized distance between joints i and j

di D jdij =am Normalized distance of the mass center
mi D mi=mo

m Normalized mass of the ith link
Ii D Ii=

�
mo

ma2
m

�
Normalized moment of inertia of the ith link

The variables, am and mo
m, are defined after Eq. (11.32)

Minimize z
�
xb
� D w1

Qfsh C w2 Qnsh (11.43a)

Subject to mb
i;min � mb

i � mb
i;max (11.43b)

db
i;min � db

i � db
i;max (11.43c)

mb
i

�
db

i

�2 � Ib
i (11.43d)

for i D 1, : : : , n, where db
i D

q
xb

i
2 C yb

i
2
. Similar to the constraints in the mass

redistribution method, the mass center location and the moment of inertia of the
counterweight attached to the ith link are constraints using inequalities of Eqs.
(11.43c and 11.43d), respectively.

The optimization methodology using either the mass redistribution or counter-
weight methods is summarized in the following steps:

1. To harmonize the values of the link parameters, the parameters of the unbalanced
mechanism are made dimensionless as explained in Table 11.1.

2. Given mass, its mass center location, and the inertia of each link: mi, xi, yi, Ii,
of the normalized unbalanced mechanism, find the set of equimomental point
masses for each rigid link.

3. Define design variable for the mechanism having n moving links, as in Eqs.
(11.37) and (11.42), for the redistribution and counterweight balancing methods,
respectively.

4. Define objective function and constraints on the link masses and inertias,
i.e., Eqs. (11.38a–11.38e) or (11.43a–11.43d), where the normalized shaking
force and shaking moment are defined according to Eqs. (11.31) and (11.32),
respectively. For the normalized mechanism operating at !in D 1 rad=s, the
shaking force and shaking moment are the normalized shaking force and shaking
moment.

5. Solve the optimization problem posed in the above step (4) using any standard
optimization solver, say, the optimization toolbox of MATLAB [33]. The
optimization process can be started with the parameters of the given unbalanced
mechanism as the initial design vector.

6. From the optimized parameters, m*
i1, m*

i2, m*
i3, l*i1, in redistribution method,

the optimized mass, m*
i , the location of the mass center, (x�

i ; y�
i ), and the
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inertia of each link, I*
i , of the balanced mechanism are determined using the

equimomental conditions, i.e., Eqs. (11.1–11.4). Similarly, in counterweight
method the optimized total mass, mb *

i , the location of the mass center (xb�
i ; yb�

i ),
and the inertia of counterweight attached to each link, Ib *

i , of the balanced
mechanism are determined using the equimomental conditions, i.e., Eqs. (11.39–
11.41), from optimized point masses, mb *

i1 , mb *
i2 , and mb *

i3 .
7. Actual values of link masses or counterweights, their mass center location, and

moments of inertia are obtained by multiplying the optimized values with the
corresponding normalizing factors, namely mo

m, am, and mo
ma2

m, respectively.

11.3 Numerical Examples

In this section, the effectiveness of the optimization methodology is shown by
applying it to some planar mechanisms. The balancing problems can be framed
as single-objective or multi-objective optimization problems to simultaneously
minimize the shaking force and shaking moment. To solve these problems using
conventional optimization algorithms, “fmincon” function in Optimization Toolbox
of MATLAB is used. Alternatively, the genetic algorithm is also used as solver. Two
functions “ga” and “gamultiobj” in Genetic Algorithm and Direct Search Toolbox of
MATLAB are used for this purpose. It was observed that GA produces better results
as compared to conventional optimization algorithms.

11.3.1 Planar Four-Bar Mechanism

A numerical example of standard four-bar mechanism [5, 31, 34] is solved using
the methodology developed in this chapter. The minimization of inertia forces is
obtained by redistributing the link masses [35]. The parameters of standard and
balanced mechanisms are shown in Table 11.2 whereas the variation of shaking
force, shaking moment, and driving torque for complete cycle is shown in Figs. 11.4
and 11.5.

Table 11.2 Dimensionless parameters of standard and balanced mechanism

Standard mechanism Balanced mechanism

Link Length ai Mass mi

Moment of
inertia I c

i;zz di � i Mass mi

Moment of
inertia I c

i;zz di � i

1 1 1.0000 0.3300 0.5 0 2.0725 6.9383 0.6688 187.50
2 2 1.1597 1.0186 1.0 0 1.4979 0.5688 0.2685 309.25
3 3 1.4399 2.2880 1.5 0 1.9095 1.3829 0.3630 098.86
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Fig. 11.4 Variations of shaking force and shaking moment for complete cycle

Fig. 11.5 Variations of
driving torque for complete
cycle
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Two different approaches were used to solve this multi-objective optimization
problem using GA. In a priori approach, a composite objective function is formed
using equal weighting factors to both the objectives, i.e., shaking force and shaking
moment as explained in Eq. (11.34). As the shaking force and the shaking moment
are of different units, these quantities are made dimensionless with respect to the
parameters of the driving link for adding them in a composite objective function for
which the results are shown in Table 11.3. The values in the parenthesis denote the
percentage increment/decrement with respect to the corresponding RMS values of
the standard mechanism.

For the given problem, the genetic algorithm produced better results as compared
to the results obtained using conventional optimization technique. With equal
weighting to shaking force and shaking moment, about 96 %, 89 %, and 84 %
reductions are achieved in shaking force, shaking moment, and driving torque,
respectively.

In posterior approach, a set of optimal solutions, known as Pareto front, is found
by considering both the objectives separately. Each solution in the Pareto front is
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Table 11.3 RMS values of dynamic quantities of standard and optimized mechanisms

RMS values of dimensionless dynamic quantities
Balancing method Shaking force Shaking moment Driving torque

Standard mechanism 2.0582 1.1593 0.8613
Conventional algorithm [31]
w1 D 0.5; w2 D 0.5

3.78 � 10�6 (�100) 0.1882 (�84) 0.2051 (�76)

Genetic algorithm w1 D 0.5;
w2 D 0.5

0.0868 (�96) 0.1233 (�89) 0.1398 (�84)
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Fig. 11.6 Pareto front for four-bar mechanism problem

an optimum solution as no single solution minimizes both the objectives when
compared to other solutions in the set (Fig. 11.6). The results obtained using two
approaches are also compared in Fig. 11.6.

11.3.2 Planar Slider-Crank Mechanism

The optimization method presented in this chapter can be effectively used to balance
the mechanisms having revolute and prismatic joints while most of the methods
available in the literature are for the mechanisms with revolute joints only. A
slider-crank mechanism is balanced here by optimally distributing the link masses
[36] while a cam mechanism with counterweight was used to balance the same
mechanism in [37].



292 H. Chaudhary and K. Chaudhary

Table 11.4 Dimensionless parameters of standard and balanced slider-crank mechanism

Standard mechanism Balanced mechanism

Link Length ai Mass mi

Moment of
inertia I c

i;zz di � i Mass mi

Moment of
inertia I c

i;zz di � i

1 1.0000 1.0 0.1759 0.5000 0 1.5226 2.5204 1.6171 171.94
2 1.4623 1.5 0.8210 0.7329 0 1.5015 0.4222 0.1842 357.65
3 – 2.0 – – 0 2.0011 – 0.3750 269.12
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Fig. 11.7 Variations of shaking force and shaking moment for different cases

Table 11.5 RMS values of
dynamic quantities of
normalized standard and
optimized mechanisms

Balancing method Shaking force Shaking moment

Standard mechanism 3.6877 1.0047
Conventional algorithm 2.9132 (�21) 0.1883 (�81)
Genetic algorithm 2.0051 (�46) 0.0105 (�99)

The problem is considered here to balance it using optimization procedure
described in the chapter. The parameters of standard and balanced slider-crank
mechanisms are shown in Table 11.4 whereas Fig. 11.7 shows the variation of
shaking force and shaking moment over the complete cycle.

The results corresponding to different combinations of the weighting factors
using conventional optimization algorithm are shown in Fig. 11.7. The case 1 is
complete shaking force balancing in which the RMS value of shaking moment
increases to four times that of the unbalanced mechanism. Similarly, in case 3,
shaking force increases while shaking moment reduces substantially. Reductions
in both the quantities occur in case 2, in which equal weights are assigned to them.

Then the same problem is solved using GA with equal weighting factors for
both the quantities. The comparison of the original RMS values with the optimum
RMS values of the shaking force and shaking moment obtained using conventional
and genetic algorithm is presented in Table 11.5 and Fig. 11.8. The optimized link
parameters are then found by using the equimomental conditions corresponding to
GA solution and shown in Table 11.4.



11 Design of Reactionless Mechanisms Based on Constrained Optimization Procedure 293

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Time (sec)

Original value
fmincon value
GA value

0 0.2 0.4 0.6 0.8 1
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Time (sec)

Original value
fmincon value
GA value

N
or

m
al

is
ed

 S
ha

ki
ng

 F
or

ce

N
or

m
al

is
ed

 S
ha

ki
ng

 M
om

en
t

Fig. 11.8 Variations in shaking force and shaking moment for complete cycle

Note that the reductions of 21 % and 81 % in the RMS values of shaking force
and shaking moment, respectively, are achieved in the conventional method. The
application of the genetic algorithm results in reduction of 46 % and 99 % in the
shaking force and shaking moment, respectively. The moment of inertia of slider
about CG doesn’t affect the values of shaking force and shaking moment and hence
it is not provided in Table 11.4.

11.3.3 Planar Six-Bar Mechanism

The optimization methodology can also be used to minimize the shaking force and
shaking moment in multiloop planar mechanisms. A Stephenson six-bar mechanism
[12] shown in Fig. 11.9 is optimally balanced using counterweighting method [38].
First, the force balancing is achieved by optimizing the point-mass parameters
of the counterweights. Next, the balancing problem is formulated as a multi-
objective optimization problem which minimizes the shaking force and shaking
moment simultaneously. The parameters of original unbalanced Stephenson six-
bar mechanism are given in Table 11.6 whereas Fig. 11.10 shows the variation of
shaking force and shaking moment over the complete cycle.

The kinematic simulation was carried out using the MotionView and Motion-
Solve of Altair HyperWorks 11.0 software [39]. For the problem considered, the
standard and optimized values of the shaking force and shaking moment for different
combinations of weighting factors using conventional optimization algorithm are
presented in Table 11.7 and shown in Fig. 11.10.

For only the shaking force balancing case, results show 63.87 % reduction in the
shaking force whereas 190.93 % increment in shaking moment occurred. For only
the shaking moment balancing case, reduction of 39 % was found in the shaking
moment while the shaking force is increased by 127 %. These two cases support the
fact that the reduction in one dynamic quantity increases the other. Thus a trade-off
is necessary to reduce both the shaking force and shaking moment. To reduce both
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Table 11.6 Parameters of unbalanced Stephenson six-bar mechanism

Link i 1 2 3 4 5 6

ai (m) 0.0559 0.1206 0:0032 0:1397 0.0444 0:1238

bi (m) 0.0584 – 0:0030 – – –
� i (deg) 6 – 16 – – –
� i (deg) 3 0 5 19 0 11

di (m) 0.0286 0.0630 0:0031 0:0836 0.0197 –
mi (kg) 0.0608 0.0825 0:0757 0:1732 0.0395 –
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Fig. 11.10 Variations in shaking force and shaking moment for complete cycle
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Table 11.7 RMS values of shaking force and shaking moment in Stephenson six-bar
mechanism

Shaking force Shaking moment

Original value 0.0450 3.7332
Only shaking force
Case (1) w1 D 1.0; w2 D 0.0

0.0164 (�63.87 %) 10.8610 (C190.93 %)

Both shaking force and shaking moment
Case (2) w1 D 0.5; w2 D 0.5

0.0192 (�57.7 %) 2.2651 (�39.32 %)

Only shaking moment
Case (3) w1 D 0.0; w2 D 1.0

0.1031 (C127.09 %) 2.2516 (�39.68 %)
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Fig. 11.11 Pareto front for six-bar mechanism problem

the shaking force and shaking moment simultaneously in the given mechanism, both
the quantities are assigned equal weighting factor value, i.e., 0.5 in the objective
function (Case 2). The result shows 57.7 % and 39 % reduction in the shaking force
and shaking moment, respectively.

The optimum design variables obtained for case 2 are then taken as the
initial population and the genetic algorithm was used to find the solution of this
optimization problem. The genetic algorithm produces multiple optimal solutions
(Pareto front) as shown in Fig. 11.11.

This plot shows the trade-off between the two objective functions, i.e., the
shaking force and shaking moment. Thus it is advantageous to use GA for finding
multiple optimal solutions without running the traditional algorithm many times.
Figure 11.11 shows that the GA results are better than the results obtained using
traditional optimization algorithm. The values of the shaking force and shaking
moment corresponding to the best solution among available Pareto optimal solutions
are given in Table 11.8.
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Table 11.8 Results from GA
algorithm

Shaking force Shaking moment

Original value 0.0450 3.7332
Optimized value 0.0069 (�84 %) 1.1260 (�69.83 %)

Table 11.9 Optimum counterweight parameters using GA algorithm

Counterweights CW 1 CW 2 CW 3 CW 4 CW 5

Mass (kg) 0:3046 0:1124 0:0570 0:0116 0:0144

d (m) 0:0750 0:2318 0:0132 0:3336 0:2209

� (deg) 200:55 250:13 136 144:68 214:21

The counterweight parameters for optimum design variables are calculated using
the equimomental conditions and are presented in Table 11.9.

11.4 Summary

In this chapter, balancing problem of planar mechanisms is formulated as an
optimization problem. The main focus of the chapter is to reduce the shaking force
and shaking moment. The design variables and the constraints on them are identified
by introducing the equimomental system of point masses. Using the equimomental
three point masses, equations of motion are reformulated to determine the shaking
force, shaking moment, and other dynamic quantities. Three planar mechanisms,
namely four-bar, slider-crank, and Stephenson six-bar mechanism, are optimally
balanced using the methodology given in this chapter.
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