
Chapter 10
Dynamic Balancing and Flexible Task Execution
for Dynamic Bipedal Walking Machines

Andreas Hofmann

Abstract Effective use of robots in unstructured environments requires that they
have sufficient autonomy and agility to execute task-level commands with temporal
constraints successfully. A challenging example of such a robot is a bipedal walking
machine, particularly one of humanoid form. Key features of the human morphology
include a variable base of support and a high center of mass. The high center of mass
supports the ability to support a high “sensor package”; when standing erect, the
head can see over obstacles. The variable base of support allows both for operation
in tight spaces, by keeping the feet close together, and stability against disturbances,
by keeping the feet further apart to widen the support base. The feet can also be
placed in specific locations when there are constraints due to challenging terrain.
Thus, the human morphology supports a range of capabilities, and is important for
operating in unstructured environments as humans do. A bipedal robot with human
morphology should be able to walk to a particular location within a particular time,
while observing foot placement constraints, and avoiding a fall, if this is physically
possible. This is a challenging problem because a biped is highly nonlinear and
has limited actuation due to its limited base of support. This chapter describes a
novel approach to solving this problem that incorporates three key components: (1)
a robust controller that is able to use angular momentum to enhance controllability
beyond the limits imposed by the support base; (2) a plan specification where
task requirements are expressed in a qualitative form that provides for spatial and
temporal execution flexibility; and (3) a task executive that compiles the plan into
a form that makes the dynamic limitations explicit, and then executes the compiled
form using the robust controller.
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10.1 Introduction

Effective use of autonomous robots in unstructured human environments requires
that they have sufficient autonomy to perform useful tasks independently, have suffi-
cient size, strength, and speed to accomplish these tasks in a timely manner, and that
they operate robustly and safely in the presence of disturbances. These requirements
are more challenging than the ones for today’s factory robots, which are stationary,
work in very restricted environments, and have very limited autonomy.

A particularly challenging example of an autonomous robot in an unstructured
environment is a bipedal walking machine, as shown in Fig. 10.1. An example task
for such a system is to walk to a moving soccer ball and kick it, as shown in Fig. 10.2.
Stepping movement must be synchronized with ball movement so that the kick

Fig. 10.1 A humanoid biped performing a walking task

Fig. 10.2 Kicking soccer ball task, interrupted by trip disturbance. In (a), the goal is to kick a
possibly moving soccer ball; the biped must be in an acceptable location at an acceptable time in
order to perform the kick. In (b), the task is interrupted by a trip; the biped should try to recover, if
this is physically possible
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happens when the ball is close enough. More generally, such tasks require that the
biped be in the right location at an acceptable time. This implies spatial and temporal
constraints for such tasks. There are also important dynamic balance constraints that
limit the kinds of movements the biped may make without falling down.

If the system encounters a disturbance while performing a task, it will have
to compensate in some way in order to satisfy these constraints. The disturbance
may cause a delay, allowing another player to kick the ball, or it may interfere
with movement synchronization. For example, a trip, shown in Fig. 10.2b causes
disruption of synchronization between the stepping foot, and the overall forward
movement of the system’s center of mass.

Another example task is walking on a constrained foot path, such as stones across
a brook, or on a balance beam. As with the soccer ball example, this task has spatial,
temporal, and dynamic constraints, but in this case, the spatial constraints are more
stringent; the biped must reach its goal using foot placements that are precisely
constrained.

Figure 10.3 shows a biped walking over blocks that constrain foot placement in
a similar manner. When foot placement is constrained, the stepping pattern can’t be
changed arbitrarily to compensate for a disturbance. For example, if a lateral push
disturbance occurs, rather than stepping the leg out to the side, other compensating
techniques, such as angular movement of the body and swing leg must be used, as
shown in Fig. 10.4.

In these examples, and others like them, the key challenge is to move a complex,
dynamic system to the right place, at the right time, despite actuation limits, and
despite disturbances. The system should be able to recover from disturbances such
as slips, trips, pushes, and ground contact instability due to soft terrain, even when
foot placement is constrained.

This chapter addresses the class of problems that require movement of a dynamic
bipedal system according to stringent state-space and temporal requirements,
despite actuation limits and disturbances. Additionally, we consider how the use
of flexible link structures changes the problem and the solution. This additional

Fig. 10.3 Dynamic walking with foot placement constraints
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Fig. 10.4 Compensating for lateral push disturbance using angular movement of torso and
swing leg

consideration is significant given the importance of using lightweight structures in
mobile robots, in order to maximize energy efficiency. Use of lightweight materials
for the links implies less rigidity than is the norm in industrial factory manipulators.

The remainder of this introduction describes, in more detail, the motivation
for studying this class of problems, a statement of the problem being solved, and
associated challenges, and an overview of the approach and innovations used to
solve it.

10.1.1 Significance and Motivation

Humanoid bipedal morphologies have unique characteristics that provide significant
advantages (and also some disadvantages) over quadruped or wheeled robots. Key
functional features of the humanoid morphology include a variable base of support
and a high center of mass. Because bipeds have only two legs, their support base
is naturally constrained, allowing them to operate in environments where support
base space is limited. Many human environments require this (a crowded elevator,
for example). The legs can also be placed in wide stances, when space permits,
enhancing stability against disturbances. The feet can also be placed in specific
locations, allowing for traversal over terrain where foot placement is constrained due
to obstacles. Thus, a key advantage of the humanoid morphology is that the variable
base of support allows both for operation in constrained spaces, and stability against
disturbances, Humanoid bipeds also have a high center of mass. This has the
advantage that an elevated “sensor package” can be supported; when standing erect,
the head can see over obstacles. Thus, the humanoid biped morphology supports a
range of capabilities that are important for operating in unstructured environments,
particularly when collaborating with humans.
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Solving the problem of balance control, and task-level control of humanoid biped
devices is of significant importance, in that it will be necessary for deployment
of autonomous humanoid robots that can provide assistance to humans in human
environments such as the home, office, construction sites, loading docks, and many
others. Additionally, solution of this problem will permit the deployment of powered
exoskeletons that can provide locomotion capability to disabled humans.

10.1.2 Problem Statement and Challenges

We seek to develop a robust plan execution system capable of guiding a robotic
biped through a series of walking task goals, in the presence of disturbances. The
system must understand commands at the task level; it must take as input a high-
level specification of where it should be, and by what time, and then automatically
figure out the details of how to move to accomplish these goals. It should also be
able to automatically detect whether a task that it is given can be accomplished in
the allotted time, and should warn the human operator when this is not the case.
If a disturbance occurs during execution of the task, the system should attempt to
compensate in order to avoid a fall, and should still try to complete the task on time.
If this is not possible, the system should alert the user, or a higher-level control
authority.

There are significant challenges to solving this problem.
First, the specification of the walking task itself should represent the true spatial

and temporal constraints of the task, rather than arbitrarily setting tight, artificial
constraints. For example, if the task is allowed to complete with a duration of 5–10 s,
the specification should not restrict the duration any further than this. Similarly, if
the goal is properly represented as a set of possible states, the specification should
not restrict the goal to a single state. It is important for the specification of the
task to not artificially constrain operation. This gives the control system maximum
flexibility in selecting actions that maximize robustness and performance. Second,
the combination of limited support base and high center of mass presents a challenge
in terms of balance control in that such a system is inherently less stable (more
sensitive to disturbances) than a quadrupedal or four-wheeled configuration with
relatively low center of mass. The limited support base and high center of mass
imply that the biped is under-actuated and has significant inertia, so future state
evolution is coupled to current state through dynamics that limit acceleration. The
control system must consider how current state and actions may limit achievement
of future desired state. Third, a biped is a high-dimensional, highly nonlinear,
tightly coupled system, so computing control actions that achieve a desired state
is a challenging problem. This is complicated by the incorporation of temporal con-
straints, and the limits that the dynamic system imposes on temporal performance.
Fourth, this type of system, because it operates in human environments, must have
stringent safety requirements. Balance control is essential both for autonomous
legged assistive robots and for a variety of assistive devices, including powered
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exoskeletons that provide locomotion to the disabled. For such systems, preventing
a fall is of paramount importance. An autonomous robot that falls may damage
itself, or may hurt a human in its environment. In the case of an exoskeleton, a fall
implies that the human wearer of the exoskeleton has fallen. Thus, a bipedal walking
machine should avoid falling, if at all physically possible, even if it encounters
a significant disturbance. If a fall is inevitable, the system should recognize this
sufficiently early to alert users and surrounding humans.

Addressing these challenges requires investigation of a number of questions,
including:

• How should walking task goals be expressed?
• What are the fundamental requirements for achieving these goals?
• What kinds of disturbances may occur while executing walking tasks?
• What fundamental balance strategies can bipeds use?

The following discussion introduces approaches to addressing these challenges,
and answering these questions.

10.1.3 Approach and Innovations

We address these challenges with three key innovative techniques.
To address the first challenge (representation of task goals), we use a specification

of state-space and temporal requirements called a Qualitative State Plan (QSP)
[9, 10]. A QSP consists of a set of Qualitative States, where each Qualitative State
is a region of state space in which all states have a uniform property with respect
to the task at hand [23]. For a biped, qualitative states are defined by foot ground
contact state. The biped may be in a double-support state, where both feet are in
contact with the ground, a single-support state, where either the left or the right foot
is on the ground, or a jumping state, where neither foot is on the ground.

Each qualitative state may specify valid operating regions for particular state vari-
ables. Foot placement constraints are examples of such operating region constraints.
Each qualitative state may also specify goal regions that particular state variables
must attain. For example, it may be a requirement that the biped center of mass be
in a particular region in order for the biped to kick a soccer ball. Thus, a qualitative
state is hybrid in that it is defined by continuous state regions, like allowable regions
for the center of mass position, as well as by discrete state, like which feet are in
contact with the ground. Transitions from one qualitative state to another are defined
by events. For example, the transition from double to single support is defined by
a toe-off event, which is the point where the swing foot lifts off the ground. The
transition from single to double support is defined by a heel-strike event, which
is the point where the swing foot touches the ground after taking a step. Events
represent temporal boundaries that can be restricted by temporal constraints. Thus,
a QSP permits the representation of a task’s true constraints, providing maximum
flexibility to the control system in selecting actions to maximize robustness and
performance.
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To address the third challenge (nonlinearity, high dimensionality, and tight
coupling), the biped system is linearized and decoupled into a set of independent,
linear systems, resulting in an abstraction of the biped that is easier to control. This
is accomplished through a Dynamic Virtual Model Controller (DVMC) [11]. The
linearization and decoupling provided by this controller allows reaction points on
the biped to be controlled directly, in a manner similar to the way that a puppeteer
controls a marionette. This controller also provides a novel means of using angular
momentum to enhance stability. Angular momentum balance techniques are used,
for example, by tight-rope walkers in order to achieve balance on a very limited
support base.

To address the second challenge (future state evolution given actuation limits),
a Task Executive, [13, 24], capable of predicting future state is used. The Task
Executive utilizes the abstraction provided by the DVMC. It implements a control
policy for this abstraction by pre-compiling Flow Tubes that define valid operating
regions for the state variables and control parameters in the abstracted biped. The
Flow Tubes represent bundles of state trajectories that take into account dynamic
limitations due to under-actuation, and that also satisfy plan requirements. Off-line
generation of these Flow Tubes represents a pruning of infeasible trajectories, so
that the on-line controller can focus on executing the plan by using only trajectories
in the Flow Tubes.

The Task Executive also uses the Flow Tubes to predict whether the plan will
succeed or fail. In particular, if a disturbance occurs that pushes the system into a
state where no suitable Flow Tube trajectory can be found, then the Task Executive
knows that the plan will fail. In this case, it alerts a higher-level control authority,
such as a human user. The ability to predict failure ahead of time in this way is
important since it provides some time to change the plan, or take other compensating
action. For example, a soccer player chasing a ball will abort if it becomes clear that
another player will get to the ball first. Similarly, if a person trips while walking and
a fall is inevitable, he will put out his hands to mitigate the effects of the fall. In this
way, the Task Executive and Flow Tubes also address the fourth challenge (safety
of operation in human environments).

To summarize, the Task Executive interprets plan goals, as specified by an input
QSP, monitors biped state, and computes control actions for the biped, as shown
in Fig. 10.5. The executive computes a sequence of joint torques for the biped that
results in achievement of each successive qualitative state goal in the sequence, as
shown in Fig. 10.6.

The rest of this chapter provides details of this approach. We begin with a
review of biped balance mechanics in Sect. 10.2. This is followed, in Sect. 10.3
by a description of the DVMC, which utilizes the balance mechanics principles.
Next, Sect. 10.4 presents the QSP in detail, and Sect. 10.5 describes the Task
Executive, which interprets the QSP and utilizes the abstraction provided by the
DVMC. Finally, Sect. 10.6 describes experimental results, and Sect. 10.7 provides a
discussion of the results and contributions.
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Fig. 10.5 A model-based executive computes a sequence of joint commands for the biped that
results in the achievement of the successive qualitative state goals

Fig. 10.6 Execution of a sequence in the qualitative state plan

10.2 Analysis of Balance Mechanics and Constraints

Balance control requires the ability to adjust the biped’s linear and angular momen-
tum. Due to conservation of momentum laws, such adjustment can only be achieved
through force interaction with the environment. For a biped, this force interaction
is comprised of gravity and the ground reaction force, the net force exerted by
the ground against the biped. The following analysis of physical constraints and
requirements for balancing leads to a simple, comprehensive model of balance
control that specifies coordination of control actions that adjust the ground reaction



10 Dynamic Balancing and Flexible Task Execution for Dynamic Bipedal. . . 237

force, and therefore, the momentum of the biped. Similar models have been used
previously in a number of gait planning algorithms [12, 15, 19, 25]. These models
utilize analysis of inverted pendulum dynamics [5]. A key difference in the model
presented here is its ability to purposely sacrifice angular momentum control goals
in order to achieve linear control goals when both cannot be met.

The model makes use of a number of physical points that summarize the system’s
balance state. These points are the center of mass (CM), the zero-moment point
(ZMP) [21], and the centroidal-moment point (CMP) [16]. The ZMP is a point
on the ground that represents the combined force interaction of all ground contact
points. The CMP is the point on the ground from which the ground reaction force
would have to emanate if it were to produce no torque about the CM. These points
will be defined more formally in the following discussion.

A biped’s support base [7] is defined as the smallest convex polygon that includes
all points where the feet are in contact with the ground. When in single support, that
is, where one foot, the stance foot, is on the ground and the other is stepping, the
support base is the outline of the part of the stance foot that is in contact with the
ground. When in double support, that is, where both feet are on the ground, the base
of support is the smallest convex polygon that includes all points where the two feet
are in contact with the ground.

The ground reaction force vector, Fgr, is defined as the integral, over the base
of support, of the incremental ground reaction forces emanating from each point of
contact with the ground:

Fgr D
“

BOS

Fgr .x; y/ dxdy (10.1)

where Fgr .x; y/ is the incremental force at point x; y on the ground, and BOS refers
to the base of support region.

The CM is the weighted mean of the positions of all points in the system, where
the weight applied to each point is the point’s mass. Thus, for a discrete distribution
of masses mi, located at positions ri, the position of the center of mass is given by

CM D
P

i miriP
i mi

(10.2)

A bipedal mechanism consists of a set of articulated links, each of which is a rigid
body with mass mi. Each rigid body has its own CM at a point ri.

The CM represents the effective mass of the system, concentrated at a single
point. This is valuable because it allows for simplifying the balance control problem
to one of keeping the CM in the right place at the right time. Furthermore, the control
dynamics of this point is expressed, simply, by Newton’s law, Fgr D ma, where m
is the total mass of the system, and a is the resulting acceleration of the CM.

Vukobratovic and Stepanenko defined the ZMP as the point of resulting reaction
forces at the contact surface between the extremity and the ground [22]; it is the
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point from which the ground reaction force vector, defined by (10.1), emanates. The
ZMP may be defined as the point on the ground surface about which the horizontal
component of the moment of ground reaction force is zero [1, 20]. Because the base
of support is defined by the convex polygon of points in contact with the ground,
and because the ZMP represents the average force contribution of these points, the
ZMP is always inside the biped’s base of support [6].

We designate the horizontal axes as x and y, where x represents the anterior–
posterior direction, and y the medio-lateral direction. We designate the vertical axis
as z (positive direction is upwards). The position of the ZMP along these axes, xZMP

and yZMP can be expressed in terms of CM position, force, and moment as

xZMP D xCM � Fgrx

Fgrz
zCM � �y

Fgrz
(10.3)

yZMP D yCM � Fgry

Fgrz
zCM C �x

Fgrz
(10.4)

where xcm, ycm, and zcm are the x, y, and z positions of the CM, Fgrx, Fgry, and Fgrz

are the ground reaction forces in the x, y, and z directions, and �x and �y are the CM
moments about the x and y axes, respectively.

Because the gravitational force is purely vertical, Fgrx and Fgry are the net
horizontal forces on the CM. The net vertical CM force, Fz, is Fz D Fgrz�Mg, where
g is the gravitational acceleration and M is the total mass. The ZMP is always inside
the support base [16]. If the moments in Eq. (10.2) are zero, the ground reaction
force vector points directly at the CM, as shown in Fig. 10.7a.

The CMP is the point on the ground, not necessarily within the support base, from
which the observed net ground reaction force vector would have to act in order to
generate no torque about the CM [for �x and �y in (10.4) to be 0]. Thus, it is that point

Fig. 10.7 As shown in (a), if there is no moment about the CM, the ground reaction force points
from the ZMP to the CM position. As shown in (b), if there is a moment about the CM, the ZMP
and CMP diverge, where the separation distance is the moment arm associated with the vertical
force, Fgrz (©IEEE, 2009, reprinted with permission)
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where a line parallel to the ground reaction force vector, passing through the CM,
intersects with the ground, as shown in Fig. 10.7b. The CMP can be expressed as

.rCMP � rCM/ � Fgr D 0: (10.5)

Expanding this cross product yields

xCMP D xCM � Fgrx

Fgrz
zCM (10.6)

yCMP D yCM � Fgry

Fgrz
zCM (10.7)

Note that because Fgrx and Fgry are the net horizontal forces on the CM, this relation
can be used to compute horizontal CM force as a function of CM position, CMP
point location, and vertical ground reaction force. Such horizontal forces are critical
for maintaining bipedal stability since they can be applied to change CM state to
desired values.

By combining Eqs. (10.4) and (10.7), we obtain a relation between ZMP
and CMP:

xCMP D xZMP C �y

Fgrz
(10.8)

yCMP D yZMP � �x

Fgrz
(10.9)

Equation (10.9) shows that when there is no horizontal moment about the CM,
the CMP and ZMP points coincide. In this case, the ground reaction force vector
points directly to the CM, as shown in Fig. 10.7a. Conversely, when there is a
horizontal moment about the CM, the CMP and ZMP diverge. The horizontal
separation distance between these points is the moment arm for the CM moment
due to vertical force, Fgrz, as shown in Fig. 10.7b. Note that as the CMP and ZMP
diverge, the ZMP must remain within the support base, but the CMP may leave the
region of support.

The relationship between the CM and CMP indicates the specific effect that
the net ground reaction force has on CM translation. Because the observed net
ground reaction force always operates at the ZMP which is within the support base,
whenever the net ground reaction force generates no torque about the CM, then the
ZMP and CMP coincide. If the net ground reaction force generates torque, however,
then the CMP and ZMP differ in location, and, in particular, the CMP may be outside
the support base.

It is sometimes desirable to have the CMP and ZMP diverge as shown in
Fig. 10.8b so that horizontal CM forces can be more effectively controlled. In this
case the CMP can be displaced from the ZMP which reflects the increased ability
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Fig. 10.8 Recovery from a lateral disturbance using CMP. In (a), the biped is disturbed by a
lateral force. In (b), the use of angular momentum to recover from the disturbance is indicated by
the divergence of the CMP from the ZMP

of the net ground reaction force to affect translation of the CM. The associated
moment about the CM generally produces undesirable effects, such as loss of
upright orientation of the upper body. In many cases, these effects are temporary,
can be managed, and are well worth the overall positive effect on CM position and
velocity. For example, a tightrope walker will tolerate temporary angular instability
if this means that he won’t fall off the tightrope.

Use of the CMP is demonstrated in Fig. 10.8, which depicts recovery from a
lateral disturbance. This sequence shows an initial disturbance that pushes the biped
to the right. To compensate, the system takes control actions involving rotation of the
body and swing leg, that move its CMP to the right, creating a lateral compensating
force to the left. Because the disturbance is significant, the CMP moves beyond
the edge of the support polygon, and thus, it does not coincide with the ZMP. This
compensating action corresponds to a clockwise torque about the CM, which is
manifested by clockwise rotation of the torso and right leg.

The model of balance control presented here, where requirements for balance
are expressed in terms of CM, ZMP, CMP, and the support base is extremely useful
for planning and control, due to its simplicity. Balance control is then reduced to
a problem of adjusting the base of support, adjusting the ZMP within the base of
support, and, if necessary, performing motions that generate angular momentum, so
that the CMP can be moved, temporarily, outside the base of support, in order to
exert additional compensating force on the CM.
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10.3 Dynamic Virtual Model Controller

10.3.1 Biped Model

Consider the three-dimensional humanoid biped model, shown in Fig. 10.9. The
model has seven segments: two feet, two lower leg segments, two upper leg
segments, and a body segment that lumps the torso, head, and arms. The leg
and body segments are modeled as cylinders, whereas the feet are modeled as
rectangular blocks. Segment dimensions and masses are given in Tables 10.1
and 10.2. Twelve degrees of freedom correspond to joints (six in each leg), and
six degrees of freedom correspond to upper body position and orientation. Each
leg is modeled with a ball-and-socket hip joint (three degrees of freedom), a pin
knee joint (one degree of freedom), and a saddle-type ankle joint (two degrees of
freedom). Note that although the humanoid model presented here does not include
independently moving arms, the model, and the DVMC control architecture can be
easily extended to include them.

Fig. 10.9 Virtual linear
spring-damper elements,
attached to reaction points,
allow the mechanism to be
controlled as if it were a
puppet. The coordinate frame
is as follows: x is the
anterior–posterior axis, y is
the medio-lateral axis, and z
is the vertical axis (©IEEE,
2009, reprinted with
permission)

Table 10.1 Model segment
masses

Model segment Mass (kg)

Foot 1.56

Lower leg 4.48

Upper leg 10.73

Upper body 70.65

Table 10.2 Model segment
dimensions

Model segment Length (m) Radius (m)

Upper body 0.64 0.18

Upper leg 0.46 0.08

Lower leg 0.48 0.05

Hip spacing 0.25
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Table 10.3 Outputs to be
controlled

Index Output

1 Posterior-anterior CM position

2 Medio-lateral CM position

3 Vertical CM position

4 Upper body roll angle

5 Upper body pitch angle

6 Upper body yaw angle

7 Posterior-anterior swing foot position

8 Medio-lateral swing foot position

9 Vertical swing foot position

10 Swing foot roll angle

11 Swing foot pitch angle

12 Swing foot yaw angle

For single-support case, in the global coordi-
nate frame. For double-support, outputs 7–12
(the ones associated with the swing foot) are
omitted

The outputs to be controlled are listed in Table 10.3. These outputs are values
relevant to balance control and locomotion, such as CM position, upper body
orientation, and stepping foot position. Thus, the purpose of the DVMC is to move
the joints so that the desired motion for the outputs is achieved.

10.3.2 Controller Architecture

Desired motion behavior for the outputs is specified in a simple, straightforward
way, using a linear proportional-differential (PD) law:

Ry D ks .ys � y/ C kd .Pys � Py/ ; (10.10)

where y is the vector of outputs to be controlled, ys and Pys are position and velocity
setpoint vectors, and ks and kd are spring and damping gain vectors. Such a control
law can be represented as a set of virtual spring-damper elements attached to the
output points being controlled, as shown in Fig. 10.9, so that the controlled outputs
move as if they were point masses attached to these spring-damper systems.

The difficulty with this is that the robot is not a linear system; the accelerations
of the controlled outputs are nonlinear functions of the joint torque actuation inputs.
The DVMC solves this problem by providing an abstraction of the plant, shown in
Fig. 10.10, which makes it appear linear, and therefore, allows it to follow control
laws in the form of Eq. (10.10).

This use of virtual elements is similar, in concept, to the one used in a
virtual model controller [17]. However, unlike [17], the DVMC accounts for plant
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Fig. 10.10 Linear virtual element abstraction consisting of a set of SISO systems with associated
linear control laws

dynamics, resulting in a linear system where controlled points move as if they were
linear second order systems. Furthermore, through the use of a goal prioritization
technique, the DVMC is able to generate moments about the CM in order to generate
beneficial forces on the CM.

The DVMC uses a model-based input–output linearization algorithm [18] to
linearize and decouple the plant. The input–output linearization approach is aug-
mented with a slack variable relaxation technique to accommodate actuation
constraints and prioritize goals. This feature is important because it is not always
possible to achieve all control goals simultaneously. Actuation constraints, such
as the requirement that the ZMP must remain well inside the support base in the
case where foot roll is undesirable, may cause the overall system to become over-
constrained, in which case some goals must be deferred. To address this problem, the
controller incorporates a goal prioritization algorithm that automatically sacrifices
lower-priority goals when the system becomes over-constrained in this way. For
example, the system may temporarily sacrifice goals of maintaining upright posture
in order to achieve CM state goals. We now describe the linearization and goal
prioritization components of the controller in more detail.

10.3.3 Linear Virtual Element Abstraction

A geometric transform, h, is used to convert from the joint state to the workspace
(output) state representation, according to

y D h .q/ (10.11)

where q is the joint position vector, and y is the output vector. Thus, h is the
kinematic transform. The controller uses a feedback linearizing transformation
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Fig. 10.11 Two-stage linearization

to convert desired workspace variable accelerations, Ry, into corresponding joint
torques. Application of these torques results in a new joint state, and associated
workspace state. Use of the linearizing transformation makes the nonlinear plant
appear to be a set of decoupled SISO linear second-order systems, as shown in
Fig. 10.10. Each SISO system can then be controlled by a proportional-differential
(PD) law, as discussed previously, resulting in a linear virtual element abstraction.

The linearization is accomplished using a two-stage process, as shown in
Fig. 10.11. Given a desired output acceleration vector, Rydes, which is computed
by the PD law, we first compute the corresponding joint acceleration vector, Rqdes,
using a geometric transformation. Then, we compute the joint torque vector, � , that
achieves Rqdes, using an inverse dynamics transformation [3].

The inverse dynamics computation is of the form

H .q/ Rq C C .q; Pq/ C g .q/ D � (10.12)

where H .q/ is a matrix of inertial terms, C .q; Pq/ is a matrix of velocity-related
terms, and g .q/ is a vector of gravitational terms. Hence, for a particular joint state�
qT ; PqT

�
, Eq. (10.12) represents a linear relation between � and Rq. Note also that

because � and Rq are both 12-element vectors (corresponding to the 12 actuators),
H .q/ is a 12 � 12 square matrix, so Eq. (10.12) is fully constrained.

In order to obtain a relation between Rydes and Rqdes, we differentiate Eq. (10.11)
twice to obtain

Py D @h
@q

Pq D J Pq (10.13)

Ry D J Rq C PJ Pq D J Rq C ‰ (10.14)

where J is the Jacobian matrix. The matrix J and the vector ‰ are functions of
joint state. Therefore, for a particular joint state

�
qT ; PqT

�
, Eq. (10.14) represents a
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linear relation between Rq and Ry. Note also that because q and y are both 12-element
vectors, Eq. (10.14) represents a fully constrained system.

To achieve the linearization shown in Fig. 10.11, we combine Eqs. (10.12)
and (10.14):

2
4I12�12 012�12 012�12

I12�12 �J 012�12

012�12 H �I12�12

3
5

2
4 Ry

Rq
�

3
5 D

2
4Rydes

‰

�C

3
5 (10.15)

Note that this is a fully constrained, linear system.

10.3.4 Multivariable Optimal Controller

The linearization of the square system represented by Eq. (10.15) is subverted
if inequality constraints are introduced, and these constraints become active; the
system represented by Eq. (10.15) becomes over-constrained in this case. Inequality
constraints are used to represent actuation limits. An important constraint of this
type is the requirement to keep the stance foot flat on the ground during single
support; while balancing on one leg it is undesirable for the stance foot to roll,
particularly on its lateral edge. This particular constraint is accomplished by
requiring the ZMP to be inside the edge of the support envelope. Note that this
constraint is distinct from the physical constraint that the ZMP not be outside the
support base. If the ZMP is on the edge of the support envelope, the foot will begin to
roll [16]. Hence, in order to avoid foot roll, we employ linear inequality constraints
to keep the ZMP inside the edge of the support envelope.

For the humanoid model, the ZMP is given by expanding Eq. (10.4), or

xZMP D
P7

iD2 mirxi .Rrzi C g/ � P7
iD2 mirziRrxi � P7

iD2 �yiP7
iD2 mi .Rrzi C g/

(10.16)

yZMP D
P7

iD2 miryi .Rrzi C g/ � P7
iD2 mirziRryi C P7

iD2 �xiP7
iD2 mi .Rrzi C g/

(10.17)

�xi D IGi P!xi (10.18)

�yi D IGi P!yi (10.19)

where i is the segment index, rxi, ryi, and rzi denote the CM position of segment i,
IGi is the inertia matrix of segment i, and !xi and !yi are the angular velocities of
segment i about the x and y axes, respectively. The moments, �xi and �yi, are about
the segment i CM in the x and y axes, respectively.
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Equation (10.19) is transformed into a set of linear inequality constraints by
replacing xZMP and yZMP with min and max terms, reflecting the bounds, so that
these become constants:

Hr Ryr � Kr (10.20)

where

Hr D

2
6664

�mT � rT
z 01�6

��xmax C mT � rT
x

�
01�6 �Iy

mT � rT
z 01�6

�
xmin � mT � rT

x

�
01�6 Iy

01�6 �mT � rT
z

��ymax C mT � rT
y

�
Ix 01�6

01�6 mT � rT
z

�
ymin � mT � rT

y

� �Ix 01�6

3
7775 (10.21)

Ryr D
h
RrT

x RrT
y RrT

z P!T
x P!T

y

iT
(10.22)

Kr D

2
6664

g
�
mtotxzmpmax � mT � rT

x

�T

�g
�
mtotxzmpmin � mT � rT

x

�T

g
�
mtotyzmpmax � mT � rT

y

�T

�g
�
mtotyzmpmin � mT � rT

y

�T

3
7775 (10.23)

xmax D xzmpmaxmT (10.24)

xmin D xzmpminmT (10.25)

ymax D yzmpmaxmT (10.26)

ymin D yzmpminmT (10.27)

where m is a six-element vector of masses for segments 2–7, rx, ry, and rz are
six-element vectors of the segments’ CM x, y, and z positions, Ix and Iy are six-
element vectors of the segments’ inertias about the x and y axes, and xzmpmin, xzmpmax,
yzmpmin, and yzmpmax are the ZMP limits. The operator � represents element-wise
multiplication.

Now, rx, ry, rz, Ix and Iy are kinematic functions of q, and m is a constant.
Therefore, Eq. (10.20) is linear with respect to the current joint state. Furthermore,
Ryr is related to the joint acceleration vector through a linear function similar to
Eq. (10.15):

Ryr D Jr Rq C ‰r (10.28)

Therefore, if we combine the inequality constraints of Eq. (10.28) with (10.20), we
have an overall system that is either fully constrained or over constrained (because
Ryr is fully dependent on Rq, it does not add any flexibility). If none of the constraints
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in Eq. (10.20) are active, the system is fully constrained. However, if one of these
constraints is active, the system becomes over constrained, and there is no feasible
solution. Consequently, if the controller does not take the constraints in Eq. (10.20)
into consideration, it could generate values for Rydes that are infeasible.

One way to avoid this type of infeasibility is to use “slack” variables that provide
flexibility to the overall system. Thus, the controller output, Rycontout, is given by

Rydes D Rycontout C Ryslack (10.29)

where Ryslack is the vector of slack variables. The goal of the overall control system is
then to minimize Ryslack, taking into account the relative importance of each element.

This minimization is accomplished by formulating the control problem as a
quadratic program (QP), and then using a QP optimizer to solve it. The relative
importance of the slack variables is expressed in the cost function for the QP. This
causes the optimizer to prioritize goals by first minimizing the slack variables for
the most important outputs, and therefore, setting Rycontout to be as close as possible
to Rydes for these outputs. For example, slack variables associated with the CM
position output are given higher cost than those associated with trunk and swing
leg orientation. The slack variable costs were determined empirically. Their precise
value is not crucial; as long as the slack costs for CM position are higher than the
slack costs for the other outputs, desired behavior is achieved.

The QP formulation is under-constrained, due to the use of the slacks. The QP
optimizer explores the null space of the formulation, choosing the solution that
minimizes the cost function. This cost function is of the form w � Ryslack where w
is a vector of weights reflecting the importance of minimizing the associated slack
variable [11].

10.4 QSP and Problem Specification

We seek to guide a bipedal mechanism so that it accomplishes a particular motion
task, such as walking at a specified speed, region, walking on a set of irregularly
placed stones, or walking to a soccer ball in time to kick it. Motion tasks are
specified by a QSP, which is executed by a Model-based Executive [9, 14]. The
executive uses a Plant Model combined with current state estimates to generate
control inputs. The flexibility provided by state and temporal constraints in the QSP
allows the executive to consider multiple possible state and control input sequences,
and to choose the most appropriate one given the situation. Sections 10.4.1 and 10.4
formally define the Plant Model and QSP representations and Sect. 10.4.3 defines
the problem solved by the executive, based on these inputs.
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10.4.1 Plant Model

We assume that the plant can be modeled as a set of subsystems whose dynamics
are linear and decoupled, within specified discrete modes. The linearization and
decoupling are provided by the DVMC, described previously, which is a component
of the Model-based Executive. Thus, the Plant Model provides the Model-based
Executive an abstraction of the actual system, which is easier to control. Each
discrete mode, for example, single support or double support, has its own set of
linearized dynamics. Such a plant model, which incorporates all discrete modes and
associated continuous linearized dynamics is called a hybrid (discrete/continuous)
model. We now define a plant model more formally.

Definition 1 (Plant Model). A Plant Model is a Hybrid Concurrent Constraint
Automaton (HCCA) [8], which consists of a set of hybrid automata. Each automaton
is defined by the tuple Aa D hma; La; Tai, where ma is the discrete mode of
the automaton, La maps each mode to a Linearized Subsystem that defines the
continuous dynamic behavior of the mode, and Ta is a set of transition functions.
A Linearized Subsystem is a tuple hx; u; A; B; cci, where x 2 <n is the state vector,
u 2 <m is the input vector of the subsystem, and A 2 <n�n; B 2 <m�n are matrices
that represent the plant dynamics according to Px D Ax C Bu. Additionally, cc is

a set of actuation constraints of the form Hc
�

x u
�T � Kc. Given a current mode

assignment and guard condition ga, each transition function �a .ma; ga/ specifies a
target mode that the automaton will transition into, if the guard is satisfied. A guard
condition is associated with a Linearized Subsystem, and is represented by a set of
(convex) linear algebraic equality and inequality constraints over the state vector
of the Linearized Subsystem: f .x/ D c1, g .x/ � c2 where c1 and c2 are vectors of
constants.

One requirement for successful plan execution is that the state trajectory satisfies
the dynamics and actuation constraints of the linearized subsystems, and that it
corresponds to valid mode transitions of the automata in the plant. We call such
a trajectory a Plant-feasible Trajectory. We develop this concept by first defining
a Mode Feasible Trajectory, for a particular mode of a particular automaton in the
HCCA, and then generalizing.

Definition 2 (Mode Feasible Trajectory). Given a Plant Model, an automaton,
A in the model, and a mode, M, for the automaton, imply a particular Linearized
Subsystem L D L.A; M/. We call a state and input trajectory, hx .t/ ; u .t/i, a Mode
Feasible Trajectory with respect to M if it satisfies the dynamics and actuation
constraints of L, as specified in Definition 1.

We now utilize this definition as a basis for defining feasible trajectories for a
mode sequence in an automaton, and for automata in a plant.

Definition 10.1 (Automaton Feasible Trajectory). Given a Plant Model, and a
particular automaton, A in the model, suppose we have a sequence of trajectories
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fT0; T1; : : : ; Tng, where Ti D< xi.t/; ui.t/ >; t 2 Œtsi; tfi�. Suppose, further, that
each trajectory, Ti, in the sequence is a Mode Feasible Trajectory with respect
to a mode Mi in A. We call the sequence of trajectories an Automaton Feasible
Trajectory if for every trajectory, Ti, in the sequence, the final continuous state,
xi.tfi/, in the trajectory satisfies the guard condition for transition to mode MiC1,
and xi.tfi/ D xiC1.tsiC1/.

Definition 10.2 (Plant Feasible Trajectory). Given a Plant Model, a Plant Feasi-
ble Trajectory is a set of Automaton Feasible Trajectories, one for each automaton
in the plant, where the start and finish times of all Automaton Feasible Trajectories
in the set are the same.

10.4.2 Qualitative State Plan

In this sub-section, we begin with an informal description of a QSP, and provide an
example of such a plan. We follow this with a formal definition of a QSP, and in the
following sub-section, a formal definition of the problem solved by the Model-based
Executive.

A QSP provides a loose, flexible specification of desired performance, in terms
of state space regions and temporal ranges. This flexibility may be exploited, for
example, to improve optimality or to adapt to disturbances (improve robustness).

Reaching a goal location may require the biped to take a sequence of steps.
Such steps represent transitions through a sequence of qualitatively different states,
defined by which feet are in contact with the ground. Thus, a stepping sequence
consists of alternating between double support phases, where both feet are on the
ground, and single support phases, where one foot (the stance foot) is in contact
with the ground, and the other foot (the swing foot) is taking the step. These
phases represent qualitatively different system states, with correspondingly different
behaviors.

We formalize the concept of a Qualitative State as a set of constraints on state
and temporal behavior. For example, a Qualitative State may contain constraints on
which feet of a legged robot are on the ground, and may include constraints on the
position of each foot. It may also include state constraints on quantities like center
of mass, and temporal constraints specifying time ranges by which the state goals
must be achieved. Thus, a qualitative state is a loose, partial specification of desired
behavior for a specific maneuver, like taking a step.

For example, a plan for a biped divides the walking cycle into a sequence of
Qualitative States representing single and double support gait phases. Such a plan is
shown in Fig. 10.12. In this plan, the first Qualitative State represents double support
with the left foot in front, the second, left single support, the third, double support
with the right foot in front, and the fourth, right single support. The fifth Qualitative
State repeats the first, but is one gait cycle forward.
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Fig. 10.12 Example QSP for walking gait cycle. Circles represent events, and horizontal arrows
between events represent activities. For example, the activity “left foot ground 1” indicates that
the left foot is on the ground from the event “start” to the event "left toe off”. The activity “left
foot step 1” indicates that the left foot is stepping (system is in right single support) from the event
“left toe off” to the event “left heel strike”. Similar activities for the right foot indicate when the
right foot is on the ground, and when it is stepping. Activities may have associated state space
constraints, such as the goal region constraint CM 2 r1, which specifies a goal for CM (center of
mass) position and velocity. Foot placement constraints are indicated at the bottom; for example,
rectangle r1 represents constraints on the first right foot position on the ground, and rectangle l1 on
the first left foot position. The lines between the rectangles define the polygon of support when in
double support

The QSP in Fig. 10.12 has a temporal constraint between the start and finish
events. This constraint specifies a lower and upper bound, Œl; u�, on the time between
these events. It is a constraint on the time to complete the gait cycle, and thus, can
be used to specify walking speed.

In addition to temporal constraints, QSPs include state constraints that specify
valid initial, operating, and goal regions for an activity. If an initial region is
specified for an activity, then the trajectory must be within this initial region, in order
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for the activity to begin. If an operating region is specified, then the trajectory must
stay within this region for the duration of the activity. If a goal region is specified,
then the trajectory must be within this region in order for the activity to end. In
Fig. 10.12, the goal region constraint CM 2 r1 represents the requirement that
the CM trajectory must be in region r1 for the CM movement activity to finish
successfully.

We now provide formal definitions for Events and Activities, and then use these
components to define a QSP.

Definition 10.3 (Event). An event, e, represents a point in time. For a schedule, T ,
the specific time of e is given by T .e/.

Definition 10.4 (Activity). An activity is a tuple
˝
es; ef ; Rinput; Rop; Rinit; Rgoal; si

˛
,

where es is an event representing the start of the activity, ef is an event representing
its finish, si is a Linearized Subsystem associated with the activity, Rinput is a set of
constraints on the inputs, u, of si, Rop is a set of operational constraints on the state,
x, of si that must hold for the duration of the activity, Rinit is a set of constraints on
the state that must hold for the activity to begin, and Rgoal is a set of constraints on
the state that must hold for the activity to finish. The state constraints, Rop, Rinit, and
Rgoal, are each of the form Hx � K, where H 2 <q�n and K 2 <q�1, and q is the
number of linear inequalities in the set. The input constraints, Rinput, are of the form

H
�
xT uT

�T � K.

Definition 10.5 (QSP). A QSP is a tuple hE; A; Ci, where E is a set of Events, A
is a set of Activities, and C is a set of externally imposed temporal constraints on
the start and finish times of the activities. For example, the QSP shown in Fig. 10.12
has five Events (“start,” “right toe-off,” “right heel-strike,” “left toe-off,” “left heel-
strike”), nine activities (“Left foot ground 1,” “Left foot step 1,” “CM1,” “CM2,”
“CM3,” “CM4,” “Right foot ground 1,” “Right foot step 1,” “Right foot ground 2”),
and one temporal constraint.

Definition 10.6 (Temporal Constraint). A temporal constraint is a tuple
he1; e2; l; ui, where e1 and e2 are events, and l and u represent lower and upper
bounds on the time between these events. Thus, l 2 < [ f�1g, and u 2 < [ f1g,
such that l � t .e2/ � t .e1/ � u. In the QSP of Fig. 10.12, the temporal constraint
restricts the time between the start and finish events. Events are used to represent
start and finish times of an activity.

10.4.3 Plan Execution: The Problem Solved
by the Model-Based Executive

Having formally defined a Plant and a QSP, we are now in a position to define the
problem solved by the Model-based Executive in terms of a successful execution
of a QSP. Successful execution can be expressed in terms of satisfaction of the
individual activities in the QSP, and a consistent schedule, which combined, define
satisfaction of a QSP.
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Definition 10.7 (Schedule and Consistent Schedule). Given a QSP, Q, a Sched-
ule, T , is an assignment of a specific time to each Event in Q. T is consistent with
Q if it satisfies all Temporal Constraints in Q, that is, for each Temporal Constraint,
c 2 C .Q/, then a schedule assigns t .e1 .c// D T1, t .e2 .c// D T2 such that
l .c/ � T2 � T1 � u .c/, where e1; e2; l; u are the elements of c from Definition 10.8.

Definition 10.8 (Satisfaction of an Activity). Given an activity, a (Defini-
tion 10.6), with associated Linearized Subsystem si, a plant-feasible trajectory
hx .t/ ; t .t/i for si, and a schedule T , then a is satisfied by x .t/ and T if the following
conditions hold:

(1) x .t/ must satisfy the initial and goal region state constraints of a. Let ts D
T .es .a// be the start time of a under schedule T , and tf D T

�
ef .a/

�
be the

finish time. Then, x .t/ satisfies the initial and goal region constraints if x .ts/ 2
Rinit .a/ and if x

�
tf

� 2 Rgoal .a/.
(2) x .t/ must satisfy the operating state constraints of a. That is, it must be the case

that x .t/ 2 Rop .a/ 8t W ts � t � tf .

Definition 10.9 (Satisfaction of a QSP). Given a QSP, Q, plant-feasible trajectory
hX .t/ ; U .t/i, and a schedule, T , then Q is satisfied by hX .t/ ; U .t/ ; Ti if T is
consistent with Q (Definition 10.7), and hX .t/ ; U .t/ ; Ti satisfies all activities in
Q (Definition 10.8).

We now formally define the problem solved by the Model-Based Executive.

Definition 10.10 (Problem Solved by the Model-Based Executive). Given a
QSP, Q, and a Plant Model, M, the Model-Based Executive must find a plant-
feasible trajectory and schedule that satisfy the QSP (Definition 10.9), and then
execute that trajectory and schedule. If no such trajectory and schedule exist, the
executive will abort and indicate a plan infeasibility error. If a disturbance occurs
during execution, then the Model-Based Executive must find a new plant-feasible
trajectory and schedule, and continue execution. If no such trajectory and schedule
exist, the executive will abort and indicate a plan infeasibility error.

The next section describes the Model-based Executive, and how it solves this
problem.

10.5 Task Executive

The Task Executive (Model-based Executive) is responsible for attempting to
execute a QSP, according to Definition 10.10. It does this using a two-part approach.
The first part is an off-line component in which the QSP is compiled into a form
that can be executed more efficiently. The second part is an on-line component that
performs this execution.
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10.5.1 Plan Compilation

In order to reduce runtime computational load, we construct, at compile time, a
Qualitative Control Plan (QCP), which uses Flow Tubes to represent all trajectories
that satisfy the QSP and the plant dynamics (see also [10]). Using the QCP, the
executive achieves efficiency by selecting an appropriate trajectory, within each flow
tube, that begins at the current system state. We first define the QCP, and present
theorems that define conditions under which the problem is solvable by the Model-
Based Executive. We then describe the algorithm for compiling a QCP, given a QSP
and Plant Model.

10.5.1.1 Qualitative Control Plan

A key concept in plan feasibility for a hybrid system is Temporal Feasibility of
individual activities in the plan. Temporal feasibility implies that the set of plant
feasible trajectories includes ones that go from Rinit to Rgoal over the entire duration
range Œl; u�. More specifically, if a trajectory starting anywhere in the initial region,
Rinit, of the activity and ending somewhere in the goal region, Rgoal, at any duration
d such that l � d � u, is Plant Feasible, then the activity is temporally feasible in
the duration range. This implies that the actuation limits imposed by the plant, and
the operating constraints of the activity allow for actuation commands that can be
used to control the linearized subsystem to the goal region from the initial region, at
any duration in the duration range.

We now introduce the concept of a control policy for an activity, and use this,
along with the previous definition, to define a Temporally Controllable Activity.
A control policy maps a state, x, associated with an activity’s plant, to an actuation
command u for the plant. A Valid Control Policy must provide the mapping for all
states (all x) that satisfy the operating constraints of the plant and the activity.

Definition 10.11 (Temporally Controllable Activity). Given an activity and asso-
ciated plant, and given a Valid Control Policy, P, for the activity, the activity is
Temporally Controllable by P in the duration range Œl; u� if the activity is Temporally
Feasible in this range, and if all trajectories for the activity are consistent with
(generated by) P. A trajectory is consistent with, or generated by P if for every
state x.k/ in the trajectory, the subsequent state x.k C 1/ results from applying P
to x.k/.

We next use the concept of a Temporally Controllable Activity to state the
conditions under which a QSP can be satisfied. Given a Plant Model and a QSP,
suppose that each activity ai in the QSP is Temporally Controllable over the
duration range Œli; ui�. Let N be the Simple Temporal Network formed by combining
the temporal constraints explicitly specified in the QSP, with the duration range
temporal constraints Œli; ui�. If N is dispatchable [14], then a trajectory and schedule
exist that satisfy the QSP (see Definition 10.11). Under these conditions, the plan
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is feasible with respect to the plant and control policy. This extends the notion of
dispatchability, first introduced by Muscettola for discrete activity systems [14] , to
general hybrid system.

In order to support efficient execution, the flow tube representation must allow the
dispatcher to: (1) quickly determine whether a feasible state trajectory exists from
the current state, and (2) if such a trajectory exists, what the control commands
should be (based on a control policy) that achieve the trajectory. In order to
leverage the advantages of dispatchable representations for discrete activity systems
[4, 14], we require that the QCP temporal constraints be represented in minimum
dispatchable form. This should include the temporal constraints specified in the
QSP, and those implied by the dynamic limitations of the plant.

A variety of approaches are possible for the Flow Tube implementation. These
include explicit sets (bundles) of trajectories with associated control policies, and
discrete time sequences of polytope cross sections that define the feasible state space
and associated control policies [2]. Regardless of the implementation, the Flow Tube
representation must support in its API the following three functions.

Given a current plant state, x, a goal region to achieve, Rg, and an allowed
duration range, Œl; u�, the function
Œu; d� D ComputeControlAction

�
x; Rg; Œl; u�

�
must determine whether a feasible trajectory exists that will reach the goal from the
current state within the allowed duration range. If so, it returns the next control
action, u, consistent with moving the state along the trajectory, along with a
prediction d of the remaining duration until the goal is achieved. If no feasible
trajectory exists, ComputeControlAction returns an error indicating that this is the
case. The goal region is represented as a convex polytope: Rg D Hx � K, where
x 2 <n is the state vector of the plant. This function is used by the Model-based
Executive to generate commands to the biped, at each control step.

The function
Œl; u� D ComputeControllableDuration

�
x; Rg

�
computes the range of feasible (controllable) durations in which the state can
be moved from the current state to the goal set. If no such duration range
exists, ComputeControllableDuration returns an error indicating that this is the
case. This function is used by the Model-based Executive to schedule activities
consistently at runtime.

Given an initial region in state space, Ri, the function
Œl; u� D ComputeControllableDuration

�
Ri; Rg

�
computes the range of feasible (controllable) durations in which the state can be
moved from any state in the initial set to the goal set. If no such duration range exists,
ComputeControllableDuration returns an error indicating that this is the case.
This function is used by the Model-based Executive at compile time to generate
QCPs that can be scheduled at runtime.

Now, consider two QSP activities, A1 and A2, that share the same linearized sub-
system, si. Suppose that the finish event of A1 is the start event of A2. We call A2 the
Successor Activity of A1. Consider feasible trajectories for A1 and A2 as shown in
Fig. 10.13.
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Fig. 10.13 Feasible trajectory segments for A1 and A2

Because A2 is the successor of A1, any feasible trajectory segment for A1 must
be part of a trajectory that has a feasible trajectory segment for A2. Therefore, it is
a requirement that the goal region for the flow tube for A1 be a subset of the initial
cross section of the flow tube for A2.

We now formally define a QCP in terms of Control Activities, and what it means
for a QCP to be executed successfully. A QCP has a structure similar to that
of a QSP, but augments this with flow tube cross-sections representing feasible
state trajectories and corresponding control policies. A control activity includes
the information of the corresponding activity in the QSP, augmented with flow
tubes specifying the activity’s feasible state trajectories and corresponding control
policies.

Definition 10.12. A Control Activity is a tuple < A; F >, where A is an activity
(Definition 10.6), and F is a corresponding Flow Tube that implements the
ComputeControlAction and ComputeControllableDuration functions.

Definition 10.13. A QCP is a triple < E; Ac; Ct >, where E is a set of events
(Definition 10.5), Ct is a set of temporal constraints on the events (Definition 10.8),
and Ac is a set of control activities (Definition 10.12). Each event is either a start
event or finish event of a Control Activity.

Having specified the structure of a QCP, we now specify properties of a valid
QCP. We begin with a Lemma that specifies requirements for activity succession.

Lemma 10.1. Given a control activity, A2, with predecessor activity A1, for any
specified duration range Œldes; udes�, if
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Œl; u� D ComputeControllableDuration
�
Rgoal .A1/ \ Rinit .A2/ ; Rgoal .A2/

�
returns an error (no duration, Œl; u�), then no valid trajectories exist for the activity.
Further, if a duration, Œl; u� exists, but Œl; u� \ Œldes; udes� is empty, then no valid
trajectories exist for the activity in the desired duration range Œldes; udes�.

Note that the elimination of feasible durations for activities due to this Lemma
will result in a tightening of the temporal bounds for such activities, beyond the [l, u]
bounds specified in the QSP. In the extreme case, there are no feasible durations for
the activity at all, leading to the following Lemma.

Lemma 10.2. If there are no feasible durations according to Lemma 10.1 within
the Œl; u� bounds specified for the control activity in the QCP, then there are no
feasible trajectories for the activity, or for the QSP as a whole. Conversely, if a
feasible duration exists, then a feasible trajectory exists for the activity that satisfies
all initial, goal, operational, and actuation constraints.

The tightening of temporal constraints due to Lemma 10.1 can cause a QCP
to become infeasible, even if the individual activities are all feasible according to
Lemma 10.2. This is expressed in the following theorem.

Theorem 10.1. If a minimum dispatchable graph based on the temporal con-
straints specified in a QCP (Definitions 10.7 and 10.8), and possibly tightened
according to Lemma 10.1, has a negative loop, then the QCP is infeasible.

Proof. A minimum dispatchable graph represents a network of temporal
constraints. If this graph has a negative loop, then there is an inconsistency
in the temporal constraints [14]. If the minimum dispatchable graph is based
on the temporal constraints explicitly specified for the QSP, as well as the
additional temporal constraints implied by Lemmas 1, then a negative loop
indicates an inconsistency in the overall set of temporal constraints, and the QCP is
infeasible. ut

A temporal inconsistency may result if the explicitly specified temporal con-
straints are inconsistent, or if they are inconsistent with the overall set of temporal
constraints due to Lemma 10.1. The concepts presented here are useful for
recognizing cases where the problem formulation, as represented by the QSP and
Plant Model, is infeasible.

10.5.1.2 Plan Compilation Algorithm

The purpose of the plan compiler is to generate a QCP from a QSP. The main
compilation steps are shown in Algorithm 1. The algorithm iterates over each
activity in the QSP, calling ComputeFlowTubeForActivity. If the result is a flow
tube with no valid trajectories, then the algorithm stops and indicates an error;
the QSP is infeasible. If the flow tube is non-empty (has valid trajectories), then
these trajectories are feasible in terms of plant dynamics, but not necessarily other
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Algorithm 1: CompileQSP

Input: A QSP, Q, a plant model, M
Output: A QCP

1 foreach activity in the QSP do

2 flow tube ComputeFlowTubeForActivity.activity/;
3 if ŠValidTrajectories.flow tube/ then

4 Error (Activity goal, operational, and temporal constraints are incompatible with
plant dynamics and actuation constraints.)

5 PruneInfeasibleTrajectories .flow tube; activity; QSP/;
6 UpdateFeasibleDuration .flow tube; activity/;

7 STN ComputeMinimumDispatchableGraph.QSP/;
8 if STNInfeasible.STN/ then

9 Error (Temporal constraints, and plant dynamics and actuation constraints are
inconsistent.)

aspects of the QSP. Therefore, the algorithm calls PruneInfeasibleTrajectories,
which performs the intersection of initial region, predecessor goal region, and
durations specified in Lemma 10.1. The consistency of temporal constraints is
checked using a minimum dispatchable graph algorithm [14].

10.5.2 Plan Execution

To execute a QCP, the Dispatcher (online component of the Task Executive) must
successfully execute each control activity. The dispatcher accomplishes this by,
in real time, monitoring plant state, and generating plant control inputs based on
the appropriate QCP control policy for the current state and time. In this way, the
dispatcher indirectly schedules start and finish events so that they are consistent with
the temporal constraints of the QCP. This is a key difference between the dispatcher
described here, and those of discrete activity execution systems [14], in which event
times are set directly by the dispatcher.

The Dispatcher performs three key functions in executing a control activity: ini-
tialization, monitoring, and transition. During initialization, the dispatcher chooses
a goal duration for the control activity that is consistent with its execution window,
and computes an initial control input. This control input is consistent with an optimal
trajectory that will reach the activity’s goal region in the chosen duration, if there
are no disturbances.

After initializing an activity, the dispatcher begins monitoring its execution by
obtaining an updated state estimate at each time increment, and checking whether
the state is within the flow tube. If this is not the case, then a disturbance has
occurred, and the dispatcher must determine the type of disturbance, and react
accordingly.
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As part of the monitoring function, the dispatcher also checks whether the state
trajectory has achieved the activity’s goal region in an acceptable time. If this is the
case, it checks whether the activity’s end event has occurred. This involves checking
if the state trajectories of other activities whose completion must be synchronized
are in their respective goal regions. If all completion conditions for a control activity
are satisfied, the dispatcher switches to the transition function. If the control activity
has a successor, the transition function invokes the initialization function for this
new activity. As part of this transition, the dispatcher notes the time of the transition
event and propagates this through the temporal constraints.

For each executing activity, the Dispatcher maintains a target completion time.
The concept of a target completion time represents a key distinction between this
system, and discrete activity execution systems [14]. This concept is needed here
because activity completion is controlled indirectly, by applying control inputs.
Thus, activity completion event times cannot simply be set, but rather occur as a
consequence of the plant dynamics. If there are disturbances, the target completion
time may have to be adjusted.

The dispatcher chooses a target activity completion time, and then selects an
appropriate control policy that is predicted to complete the activity at the desired
time. Because multiple activities are typically executing in parallel, achieving
a desired event execution time requires synchronization of these activities. The
Dispatcher uses a data structure called the Event Horizon to provide a mechanism
for ensuring this consistency.

Definition 10.14 (Event Horizon). An Event Horizon is a set of Event Paths, each
of which is a list of events and associated target execution windows. Hence, each
element of an Event Path is a tuple he; l; ui where e is the event, and l and u represent
lower and upper bounds on times for the event.

The Event Paths represent events whose target execution windows have to be
propagated in order to properly set target completion times for current activities
in the Runtime Activity State. This propagation is a special kind of tightening of
execution windows, distinct from the execution window tightening that is performed
when events occur. This special propagation is necessary in order to ensure that
target activity completion times are temporally consistent. This is a unique feature
of our dispatcher; it is not used in discrete activity execution systems.

The algorithm for determining the event horizon involves starting at the target
events of current activities, and searching back along outgoing negative arcs in
the minimum dispatchable graph until executed events are reached. Consider the
example QSP shown in Fig. 10.14. Activity a11 is for linearized sub-system 1, and
activities a21, a22, and a23 are for linearized sub-system 2. Suppose that event
ev1 has just occurred, and activities a11 and a21 are about to start executing. The
dispatcher must choose target completion times for each activity. However, it cannot
just choose target completion times that fit inside the event execution windows
that were propagated when ev1 occurred; the Event Horizon must be taken into
account. For example, suppose that the duration constraints on a11 are [3, 15], and
the duration constraints on a21, a22, and a23 are [1, 5]. If event ev1 occurs at time
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Fig. 10.14 Example event horizon. Circles represent events, and horizontal arrows between
events represent activities

Fig. 10.15 Example Event
Horizon. Circles represent
events, and horizontal arrows
between events represent
activities.

0, then the execution window for ev4 is [3, 15], and the execution window for event
ev2 is [1, 5]. If the dispatcher were to base its decisions about target completion
times solely on these execution windows, it could choose a target execution time of
4 for a21, and 4 for a11. This would cause a future temporal infeasibility, because
a22 and a23 would have to be executed in 0 time, which violates their duration
constraints.

To solve this problem, the dispatcher considers the event horizon, which, in this
case, is ev1, ev2, ev3, ev4. In this case, if the dispatcher chooses duration range
midpoints as target durations, then the target completion times for a21, a22, and a23
are 3, 6, and 9, respectively, and the target completion time for a11 is 9 as well.

Algorithm 2 shows the top-level dispatch loop of the executive. This algorithm
is based on the one for discrete activity execution systems [14], but has some key
extensions, which are highlighted.

InitializeActivities sets target execution times for the initial activities in the QCP.
UpdateCurrentActivities iterates over each currently executing activity, checking if
the event that has just occurred, ExecutableEvent?, is the finish event for the activity.
If this is the case, it transitions the activity to the subsequent activity for the plant.
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Algorithm 2: Executive Dispatcher algorithm

Input: A Qualitative Control Plan, QCP, and a plant model, P
Output: Actuation commands, u

1 t = 0 ; // Initialize current time.
2 InitializeActivities(QCP, P);
3 ExecutableEvent? = StartEvent(QCP);
4 EnabledEvents = f ExecutableEvent? g;
5 InitializeExecutionWindows ();
6 while EnabledEvents not empty do
7 if ExecutableEvent? exists then
8 ExecuteEvent (ExecutableEvent?) ;
9 PropagateExecutionWindows (QCP, ExecutableEvent?) ;

10 EnabledEvents = UpdateEnabledEvents (QCP, ExecutableEvent?) ;
11 UpdateCurrentActivities(ExecutableEvent?, QCP) ;
12 EventHorizon = UpdateEventHorizon(EventHorizon, ExecutableEvent?,

QCP) ;
13 UpdateTargetExecutionTimes(EventHorizon, QCP) ;

14 UpdateCurrentState(P) ;
15 UpdateControlInputs(P) ;
16 t = t + dt ; // Increment current time.
17 ExecutableEvent? = EventOccurred(t, EnabledEvents);

UpdateEventHorizon is used to update the event horizon after an event has
occurred. To perform the update, the algorithm first removes any paths from the
event horizon that contain the executed event. The algorithm then iterates over each
currently executing activity, obtaining the target event for the activity. If the target
event is not already in the event horizon, a search back from this event is started.
This depth-first search proceeds back from the target event along negative out-going
arcs in the minimum dispatchable graph. The search proceeds back along events that
have not been executed. When an event that has been executed is encountered, the
search branch stops, and search proceeds along the next branch. When there are no
more branches, the path is added to the event horizon. For Fig. 10.14, this algorithm
computes an event horizon ffev1; ev2; ev3; ev4gg.

UpdateTargetExecutionTimes uses the event horizon to decide target completion
times for activities. The algorithm first initializes target execution windows of all
events in the event horizon to be identical to the execution windows computed
by InitializeExecutionWindows and PropagateExecutionWindows. It then iterates
over every path in the event horizon, retrieving the activity corresponding to the
beginning of the path. This is always a currently executing activity. The algorithm
sets the target completion time for the activity to be the midpoint of the execution
window, and then propagates this decision to future events in the path. This can
result in a tightening of target execution windows for these events.

The function UpdateCurrentState updates the estimate of plant state. The func-
tion UpdateControlInputs iterates over each currently executing activity, and com-
putes new plant control inputs by accessing flow tube control policies based on



10 Dynamic Balancing and Flexible Task Execution for Dynamic Bipedal. . . 261

Fig. 10.16 Example Event Horizon. Circles represent events, and horizontal arrows between
events represent activities.

the remaining execution time for the activity. The function EventOccurred checks
whether an event has occurred, and if so, returns this as an executable event,
whose occurrence must be propagated in the next iteration of the main loop in
DispatchQCP.

10.6 Experiments

This section describes two types of experiments. The first type involves balancing
on one leg. This type of experiment is used to evaluate the DVMC controller. The
second type involves more general walking tasks. This type of experiment is used
to evaluate the Model-based Executive as a whole, which the DVMC controller is a
part of.

10.6.1 Single Support Leg Balance Experiments

A series of tests was performed to test the DVMC controller’s ability to restore
balance after a disturbance. This series of tests was performed with the humanoid
model in single support. Initial conditions were such that the ground projection
of the CM was outside the support polygon, and all velocities were set to zero.
For such initial conditions, the CM cannot be stabilized by stance ankle torques
alone without the foot rolling and the model going unstable. Simple reference
trajectories consisting of single, time invariant setpoints were selected for the
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Fig. 10.17 Lateral disturbance recovery. In (a), several frames of the model are shown, starting
from the maximally displaced CM posture (left most image) to the final static equilibrium posture
(right most image). From the perspective of the model, the right leg is the swing leg and the left the
stance leg. In (b), the lateral direction CM (dotted line) and the ZMP (solid line) are plotted versus
time. In (c), the desired CM acceleration (solid line), the actual CM acceleration (heavy dashed
line), and the slack value (dotted line) are plotted, showing the stabilization of the model’s CM.
Finally the body roll is plotted in (d), showing the corrective measures taken by the controller

controller. These setpoints specified the desired equilibrium positions and velocities
of the model’s COM and swing leg foot. Because the desired final equilibrium
posture was to stand on one leg assuming a static pose, all setpoint velocities were
set to zero.

Figure 10.15 shows the system’s recovery from an initial displacement in the
lateral (positive y) direction. From the model’s perspective, the left most edge of the
foot support polygon is at 0.05 m. As is shown in B, the ZMP remains within the foot
support polygon, while the laterally displaced CM position begins outside the stance
foot, but is brought quickly to zero by the controller. Part C shows the desired, actual,
and slack values for the lateral CM acceleration in the DVMC optimal controller.
Note how the slack goes to zero quickly, due to its high penalty. Part D shows the
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Fig. 10.18 Forward disturbance recovery. In (a), several frames of the model are shown, starting
from the maximally displaced CM posture (left most image) to the final static equilibrium posture
(right most image). From the perspective of the model, the right leg is the swing leg, left is stance
leg. In (b), the forward direction CM (dotted line) and the ZMP (solid line) are plotted. In (c), the
desired CM acceleration (solid line), the actual CM acceleration (heavy dashed line), and the slack
value (dotted line) are plotted, showing the stabilization of the model’s CM. Finally, in (d), body
pitch is plotted

roll angle of the body. Because roll angle is less tightly controlled (penalty on slack
variable is less than for CM position), the angle converges, but more slowly than the
lateral CM position.

Figure 10.17 shows the system’s recovery from a forward initial displacement.
The front most edge of the foot support polygon is at 0.22 m. As is shown in B,
the ZMP remains within the foot support polygon, while the forward CM position
begins outside the foot, but is brought quickly to zero by the controller. Part C shows
the desired, actual, and slack values for forward COM acceleration. Note how the
slack goes to zero quickly, due to its high penalty. Part D shows the pitch angle of
the body. Pitch converges, but more slowly than forward CM position because it is
less tightly controlled (Fig. 10.18).

Figure 10.17 shows the system’s recovery from a combined forward and lateral
displacement,
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Fig. 10.19 Forward and lateral disturbance recovery. In (a), several frames of the model are
shown, starting from the maximally displaced CM posture (left most image) to the equilibrium
posture. In (b), the forward direction CM (dotted line) and the ZMP (solid line) are plotted. (c)
shows lateral COM and ZMP

The results show that the controller makes appropriate use of non-contact limbs
and stance leg ankle torques to stabilize the system. The non-contact limbs are used
in two ways: to shift the ZMP, and to shift the CM. Consider, for example, the
experiment shown in Fig. 10.17. From the model’s perspective, the model stands
on its left foot, leaning to the left (positive y direction). If the controller were to
take no action, it would tip further to the left and fall down. Due to the action of
the controller, the upper body leans further to the left, and the swing leg swings
out to the right. Both of these actions correspond, initially, to a negative angular
acceleration about the x axis.

The negative angular acceleration about the x axis allows a linear acceleration
of the CM to the right (in the negative y direction) while not requiring the ZMP
to shift further to the left (positive y direction). This is important since, as shown
in Fig. 10.17, the ZMP begins up against the left-most edge of the foot support
polygon. As the CM approaches the desired position, the ZMP moves away from
the edge and towards the center of the foot support polygon. At this point, the swing
leg and body are able to return to their nominal neutral positions.

The lateral acceleration of the swing leg to the right (negative y direction) is also
beneficial in that it moves part of the model’s mass to the right, and so, helps move
the CM in the right direction. The net effect of the swing leg and body movements is
an overall angular acceleration at the ankle joint that, together with the action of the
stance ankle torque, moves the CM back to the center of the foot support polygon.
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The extreme case of non-contact limb movement occurs when the support
polygon becomes very small, as is the case for a tight-rope walker. A tight-rope
walker’s support polygon is very narrow, and therefore, little stance ankle torque can
be exerted. Lateral forces by the foot against the tight-rope move the CM, but also
create torques of the CM about the contact point. This must be countered by spin
angular accelerations (angular accelerations about the CM), so that overall angular
momentum is conserved. The spin angular accelerations are generated by movement
of the non-contact limbs. Thus, a tight-rope walker extends his arms, and moves his
arms, body, and non-contact leg to generate appropriate spin angular accelerations.

An important feature of the controller is that the coordinated behavior of the
stance leg and non-contact limbs is not controlled explicitly, but rather, emerges
indirectly from a high-level specification of desired behavior. This specification is
given in terms of setpoints and PD gains for the CM, body orientation, and swing
leg control outputs, in terms of constraints such as the one on the ZMP, and in terms
of penalties for slacks and torques in the optimization cost function.

Another important feature of the controller is that, due to its extended range of
operation, it can reject significant disturbances more easily than simpler controllers.
This feature also means that reference trajectories for the new controller need not be
as detailed as those for simpler controllers. The reference “trajectories” for the above
tests were single, time invariant setpoints for CM, body orientation, and swing leg
outputs. Simpler controllers require more detailed reference trajectories, with more
waypoints as a function of time. This extra level of detail puts significant computa-
tional burden on the motion planning component of an integrated motion planning
and control system. The motion planner has to be executed more frequently, when
there are disturbances, and it must produce more detailed reference trajectories.

10.6.2 Biped Walking Tasks

We now present test results of execution of a variety of QCPs for bipedal walking
with foot placement and temporal constraints, and with disturbances. Test results
for nominal walking at different speeds are provided in [9].

To perform these tests, we used a high-fidelity, 20 degree-of-freedom humanoid
simulation to represent the plant being controlled [9, 11]. This simulation accurately
models gravity, ground reaction forces and joint torques, and the resulting link
acceleration dynamics. In particular, just as with a real biped robot (or a human),
this simulated humanoid will fall if inappropriate control commands are provided.

The hybrid plant model (Definition 1) has four modes: left foot single support,
double support right foot in front, right single support, double support left foot in
front. The mode transition guard conditions are based on toe-off and heel-strike
events. The linearized plant abstraction, for each mode, is provided by a feedback
linearizing controller [9, 11]. This produces linearized decoupled models for the
forward, lateral, and vertical center of mass (CM) components, and stepping foot
components. Thus, performing walking tasks involves synchronization of the 3
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CM and the 3 stepping foot components when in single support, and the 3 CM
components when in double support. For example, when the mode is left foot single
support, 6 parallel activities are in the Runtime Activity State, all with right heel
strike as the finish event. Each activity must be in its goal region when right heel
strike occurs in order for execution to proceed successfully. The event horizon in
this case is simple since the parallel activities all share the same finish event.

10.6.2.1 Irregular Foot Placement

Figure 10.20 shows dynamic walking, but with an irregular stepping pattern, which
is necessary due to the blocks the biped is walking on. These blocks move slowly,
so the timing of foot placement, as well as the positioning is important. At this
speed, the biped can’t just balance statically on each block. Instead, the moderately
fast speed requires dynamic balancing and coordination of the center of mass
trajectory. Figure 10.21 shows the CM trajectory and foot placements for this test.
The dynamic nature is indicated by the fact that the CM trajectory barely touches
the foot placement polygons, and in one case, is 0.1 m away. This indicates that the
system is not statically stable in this pose, and is relying on the subsequent foot
placement sequence to maintain balance.

10.6.2.2 Lateral Push Disturbances

A biped is especially sensitive to lateral push disturbances when in single support,
due to the limited support base provided by one foot. In particular, a biped is most
sensitive to lateral push disturbances when there are foot placement constraints,
and when the push disturbance results in acceleration towards the outer edge of the
stance foot.

Figure 10.22 shows recovery from a lateral push disturbance, while walking
on a balance beam. The push occurs from the right side of the biped during left
single support. Thus, the push results in an acceleration of the CM to the biped’s
left. Because foot placement is constrained by the narrowness of the balance beam,
compensation by stepping is not an option. Instead, the system compensates for the
disturbance by exerting a restoring torque at the ankle. This torque has a significant
actuation limit; the lateral center of pressure must not get too close to the outer
edge of the foot, or the foot will roll. Because the foot is relatively narrow, this
presents a severe actuation limit. Additional (but also limited) compensation is
accomplished through the angular movement of the torso and right leg, as shown in
the third frame of the sequence [9, 11]. In particular, as shown in Fig. 10.22, the torso
rotates clockwise, from the viewer’s perspective, which induces a counterclockwise
rotation of the stance leg, which, in turn, engenders an acceleration of the biped’s
CM toward the biped’s right.

Due to joint acceleration limits, there is a limit to the angular acceleration that
can be produced by the torso and the right leg. Therefore, recovery of lateral balance
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Fig. 10.20 Walking by stepping on slowly moving blocks: (a) biped starts on long, narrow path;
(b) steps with left foot onto the brown block; (c) steps with right foot onto the other brown block;
(d) steps with left foot onto the green block; (e, f) steps with right foot onto the other green block;
(g) steps with left foot onto blue block; (h) finished

takes some time; the right leg is out for a significantly longer time (about 2 s) than it
would be if it were just taking a normal step. This means that the forward center of
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Fig. 10.21 CM trajectory and foot placements for irregular stepping task

Fig. 10.22 Recovery from lateral push while walking on a balance beam

mass velocity must be reduced while the lateral compensation movement is taking
place. This forward velocity reduction must be accomplished by the left (stance)
foot alone. Due to support base limitations, there is a limit on the force that can be
applied in this way, and therefore a limit to the negative forward acceleration that
can be produced. Thus, the biped must be walking relatively slowly, in the first place,
for this sort of maneuver to work at all. If this is the case, then forward movement
of the CM can be slowed while the right leg is out, and then sped up again after the
lateral compensation maneuver is completed. Thus, the forward CM position and
the forward stepping position remain synchronized. This is one reason why people
tend to walk slowly on tightropes or balance beams.
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10.6.2.3 Kicking a Soccer Ball

The problem of moving a biped to kick a soccer ball (Fig. 10.2) requires synchro-
nization of the forward and lateral components of the CM with the step movement,
and with the movement of the kicking foot. Figure 10.23a, b show flow tubes and
nominal trajectories for the forward and lateral CM components. The flow tubes
correspond to CM movement for taking three steps before kicking a soccer ball.
Figure 10.23c, d show flow tube cross sections (in the position-velocity plane)
for the first activity. The intersection of the initial state with the cross sections
determines the duration (temporal) controllability. If the initial state intersects all
cross sections, as shown in the figure, then the executive is free to choose any
duration in the range covered by the cross sections. This is important for adjusting
timing of task completion when kicking a moving soccer ball. Disturbances from
the nominal trajectory may restrict the controllable duration range. For example,
suppose the system is subjected to a lateral push disturbance at the beginning of the
task. This may cause the initial state to deviate from the nominal initial state. If the
initial state intersects all cross sections for forward movement, but only a subset for
lateral movement, then the overall temporal controllability is limited by the latter
set of cross sections.

10.7 Discussion

10.7.1 Scientific Contributions

The techniques described in this chapter extend previously developed temporally
flexible execution systems for discrete activity plans to work with hybrid dis-
crete/continuous systems such as bipedal walking mechanisms. This is achieved by
first developing a representation for temporally and spatially flexible tasks for hybrid
systems, called a QSP, then developing a plan compiler that transforms the QSP to a
QCP, which is easier to execute, and then developing a plan dispatcher that executes
the QCP. The QCP produced by the plan compiler represents the set of feasible
trajectories in an easily executable form. The dispatcher is based on ones developed
for discrete activity systems [14], but extends these to allow for indirect scheduling
of events through control actions applied to a dynamic system, thus allowing the
approach to be used for hybrid systems.

An important attractive property of this approach is that it clearly represents
the boundaries between feasible and infeasible states and times with respect to
successful plan execution. This allows the system to detect that a plan will fail,
sooner rather than later.

It is interesting that traditional control theory does not explicitly address the issue
of temporal flexibility. Traditional control theory deals with two basic kinds of prob-
lems: stabilization, and trajectory following [18]. Stabilization is an infinite-time
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Fig. 10.23 Flow tubes for
CM corresponding to taking
three steps before kicking a
soccer ball: (a) flow tubes and
nominal trajectory for
forward CM component;
(b) flow tubes and nominal
trajectory for lateral CM
component; (c) flow tube
cross sections corresponding
to different durations,
superimposed, for forward
CM component, first step;
(d) flow tube cross sections
for lateral CM component,
first step
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concept; a system is stable if it converges to an equilibrium point at some time
in the future, possibly, infinity. Thus, stabilization has infinite temporal flexibility.
Reference trajectory following, on the other hand, has no temporal flexibility. If the
control system tracks the reference trajectory exactly, it will reach a goal state at
a specific time. We believe that this is a significant omission. Temporal flexibility
exists in most task specifications, and should be taken advantage of to achieve robust
and efficient plan execution.

To summarize, the system described here takes full advantage of plan specifi-
cation flexibility, both temporal and spatial, in order to maximize robustness to
disturbances. Key contributions are: (1) a plan specification that represents task
flexibility; (2) a DVMC that decomposes a complex nonlinear system into a set of
loosely coupled linear systems; (3) a plan compiler that transforms the plan, using
the abstraction provided by the DVMC, into a form that can be easily executed
(QCP); and (4) a model-based executive that uses the flexibility in the QCP to reject
disturbances, and to detect when a disturbance is so severe that the plan will fail.

10.7.2 Applications and Impact

The approach described here is intended for inherently under-actuated systems,
such as bipeds or aerial vehicles, where there are more degrees of freedom to be
controlled than actuators to control them. However, even systems that are fully
actuated, such as most robot manipulators, can have actuation limits that become
relevant for demanding tasks. For example, moving a robot manipulator at high
speeds so that it can perform tasks quickly exposes the velocity and acceleration
limits of the joints. Such limits are potentially in conflict with temporal constraints
imposed on tasks by the user. Thus, the techniques described here are potentially
applicable to any physical system that has velocity and/or acceleration actuation
limits, and temporal constraints associated with tasks it is to perform.
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