
Analyzing Industrial Architectural Models
by Simulation and Model-Checking

Raluca Marinescu1(B), Henrik Kaijser2, Marius Mikučionis3,
Cristina Seceleanu1, Henrik Lönn2, and Alexandre David3

1 Mälardalen University, Väster̊as, Sweden
{raluca.marinescu,cristina.seceleanu}@mdh.se

2 Volvo Group Trucks Technology, Gothenburg, Sweden
{henrik.kaijser,henrik.lonn}@volvo.com

3 Aalborg University, Aalborg, Denmark
{marius,adavid}@cs.aau.dk

Abstract. The software architecture of any automotive system has to
be decided well in advance of production, so it is very desirable to assess
its quality in order to obtain quick indications of errors at early design
phases. In this paper, we present a constellation of analysis techniques for
architectural models described in EAST-ADL. The methods are comple-
mentary in terms of covering EAST-ADL model analysis against a rich
set of requirements, and in terms of the varying degree of confidence
in the provided guarantees. Based on the needs of the current model-
driven development in a chosen automotive context, we propose three
analysis techniques of EAST-ADL architectural models, in an attempt
to tackle some of the exposed design needs: simulation of EAST-ADL
functions in Simulink, model-checking EAST-ADL models with timed
automata semantics, and statistical model-checking in UPPAAL, applied
on an automatically generated network of timed automata. An indus-
trial Brake-by-Wire prototype is the case study on which we show the
potential of simulating EAST-ADL models in Simulink, model-checking
downscale EAST-ADL models, as well statistical model-checking of full
model versions, in order to tame verification scalability problems.

1 Introduction

Mechanical and hydraulic systems in current vehicles are being replaced by elec-
trical/electronic systems that can implement highly complex functions like cruise
control and automatic braking. In order to deal with this complexity, the automo-
tive industry hasmoved towards amodel-based development process, during which
high-level system models are designed and analyzed against requirements. Since
many automotive systems are safety-critical, new standards such as ISO26262 place
requirements on the quality of software. Consequently, companies that wish to
adopt such standards will need to use methods and tools fit for guaranteeing such
quality on each level of design abstraction.

Simulink [2], a model-based tool for design, simulation, and code generation
of embedded systems, is already a well-established practice in the automotive
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 189–205, 2015.
DOI: 10.1007/978-3-319-17581-2 13



190 R. Marinescu et al.

domain. Simulink is typically used to define and assess system behavior in an
early phase, or to create a detailed behavioral behavioral definition of the system
in order to automatically generate the corresponding code. Architectural descrip-
tion languages, on the other hand, can be introduced earlier in the development,
to provide models that could handle the complex software architecture of automo-
tive systems. Compared to the current state-of-practice, architectural models offer
a well-defined and standardized structure that deals with all the related informa-
tion (e.g. functions, timing, triggering) of safety-critical systems [8]. A candidate
for this task is EAST-ADL [7], an architectural description language dedicated to
the modeling and development of automotive embedded systems. The use of such
modeling notations enables the application of verification techniques early in the
industrial development process, in an attempt to gain early-phase indications of
possible functional and timing errors.

In this paper, we propose a constellation of complementary verification tech-
niques that can be applied on EAST-ADL models to deliver various types of
model correctness assurance. We start by briefly presenting the EAST-ADL
architectural language and the tools involved in the verification process (see
Sect. 2), and we discuss the current state-of-practice in the development of auto-
motive systems as used nowadays by the automotive industry (see Sect. 3). Next,
we present our simulation and model-checking methodology (see Sect. 4), and
we show the verification techniques based on the: (i) simulation of EAST-ADL
models from a set of predefined verification cases with Simulink (see Sect. 6),
(ii) symbolic simulation and formal verification of EAST-ADL with UPPAAL,
and (iii) statistical model-checking of the architectural model with UPPAAL
SMC (see Sect. 8). In order to enable the verification of architectural models in
EAST-ADL, we also contribute with a timed automata (TA) semantics that we
propose for the EAST-ADL components (see Sect. 7). We show how the formal
techniques underlying the tools complement each other, by applying the EAST-
ADL to Simulink, and EAST-ADL to UPPAAL-TA transformations to analyze
the Brake-by-Wire (BBW) industrial system (see Sect. 5). Such an endeavor
exposes also the advantages and limitations of each framework, when used on
an industrial system model, which can serve as a guiding result especially if
safety standards such as ISO26262 are to be adopted. We end this paper by
discussing similar related works (see Sect. 9), and by presenting our conclusions
(see Sect. 10). The actual contribution of this paper consists of introducing two
new transformations, one from EAST-ADL models to Simulink models, and one
from EAST-ADL models to EAST-ADL models, together with the application
of simulation, model-checking and statistical model-checking on an industrial
architectural model.

2 Brief Overview of the EAST-ADL Language

EAST-ADL [7] is an AUTOSAR [4] compatible architectural description lan-
guage for automotive electronic systems. The functionality of the system is
defined at four levels of abstraction, as follows. The Vehicle Level is the highest



Analyzing Industrial Architectural Models 191

level of abstraction and describes the electronic features as they are perceived
externally. Next, the Analysis Level allows an abstract functional representa-
tion of the architecture without prescribing a specific hardware topology. The
Design Level presents a detailed functional representation of the architecture,
plus the allocation of these elements on to the hardware platform. Last,
the Implementation Level describes the implementation of the system using
AUTOSAR elements. At each abstraction level, the system model relies on
the definition of a set of FunctionTypes representing components that describe
the functional structure of the system. Each of these FunctionTypes has: (i) a
set of FlowPorts that provide and receive data, (ii) a FunctionTrigger that
can be either time-based or event-based, and (iii) a FunctionBehavior . The
system is modeled as a set of interconnected FunctionPrototypes, where each
FunctionPrototype is an instantiation of the corresponding FunctionType. The
execution of each FunctionPrototype is based on the “read-execute-write” seman-
tics, which enables semantically sound analysis and behavioral composition, and
makes the function execution independent of the notation used, when defining its
internal behavior. The FunctionBehavior is defined using different notations and
tools, e.g., Simulink or UPPAAL PORT timed automata (TA) [13]. At each level
of abstraction, the above structural elements of the system can be extended with
annotations for orthogonal aspects like requirements, timing properties, generic
constraints. etc. EAST-ADL also provides means to describe different validation
and verification activities as VVCases for different levels of abstraction.

In the following section, we present a typical automotive development process
and we try to identify different needs and gaps that need to be addressed.

3 The Current Development Process in an Automotive
Context

We have identified four main groups of actors who are involved in a typical auto-
motive development process: the Client , the System Engineers , the Software
Developers, and the Verification Engineers . As depicted in Fig. 1, the Client
compiles a set of informal, natural language requirements describing the new
system that needs to be implemented. The System Engineers break down these
requirements in incremental steps, passing the current requirement set from one
engineer to the other for further decomposition. The Software Developers decom-
pose further these requirements while considering implementation elements like

Fig. 1. A typical automotive development process.



192 R. Marinescu et al.

the system architecture. This new set of requirements, consisting of one require-
ment document per system component, is divided among the Software Developers,
who create a model-based implementation of the components in the system. The
components may be modeled using the Simulink tool, and the code is automat-
ically generated based on these models. This code is integrated as the behavior
of an AUTOSAR software component and, where necessary, adjusted by the
Software Developers. In order to ensure correct behavior, model-in-the-loop and
software-in-the-loop analysis are used. Once a software component has been
implemented, it can be deployed on an electronic control unit (ECU) for compo-
nent testing. Finally, the Verification Engineers perform testing at the system
level directly on the platform, using manually written tests. Any bugs discovered
in the implementation or any problems in the requirements are reported back
to the person responsible for the implementation or requirement, respectively.
Since models start to be included in the industrial development process, there
is also an increased need of stronger evidence of model correctness with respect
to functional or timing requirements.

For the development process described above, different state-of-the-art tech-
niques could facilitate model integration and verification, as follows:

– Introducing architectural languages (like EAST-ADL) will keep track of requi-
rements, features, functions, and hardware topology in an integrated model,
making the design decisions consistent and traceable.

– Providing the behavior for architectural components based on formal defini-
tions like TA, together with typical Simulink definitions, will enable alternative
representations of the same function, hence providing a more comprehensive
assessment of the system.

– Applying formal verification techniques, like model-checking, on the system’s
formalized structural and behavioral model will provide correctness assurances
regarding important properties.

In order to adopt these steps, an integrated system model is needed, such
that different verification techniques can be applied consistently, on the same
system description, at various levels of abstraction.

4 Our Methodology for Analyzing Architectural Models

In this section, we propose a methodology for simulation and model-checking of
EAST-ADL models, which is depicted in Fig. 2. Our verification methodology
consists of the following steps:

– Create the EAST-ADL model and provide the behavior of each FunctionType
as a FMU1 [3] or a Simulink model;

1 The Functional Mock-up Interface (FMI) is a tool-independent standard to support
behavior models using a combination of xml-files and compiled C-code. The standard
defines the concept of a Functional Mock-up Unit (FMU), as a software component
that implements the FMI standard.



Analyzing Industrial Architectural Models 193

Fig. 2. Our simulation and model-checking methodology.

– Select the verification method:
1. Simulation: by implementing an automatic transformation from the archi-

tectural model to a Simulink model and calling the Simulink tool, we can
provide verification through simulation;

2. Model-checking: by implementing an automatic transformation from the
architectural model to a network of TA, we can use the UPPAAL or
UPPAAL SMC model-checker to formally verify the system;

– Return the verification results back to the EAST-ADL model for possible
improvements of the design.

There are several differences between the two frameworks. The simulation
method requires the EAST-ADL model to be extended with verification and
validation elements as VVCases, which describe the part of the model to be
analyzed, together with the definition of monitor FunctionTypes, stimuli data,
and the requirements to be verified. The behavioral model of the monitor is
provided as an FMU or a Simulink model. The transformation to the network
of TA provides formal semantics for the architectural model in terms of timed
transition systems [5]. In order to preserve the informal semantics of the archi-
tectural language, the transformation produces a network of two synchronized
TA for each EAST-ADL FunctionPrototype: an Interface TA with the elements
provided in the architectural model and a Behavior TA.

The parts represented with a dotted line in Fig. 2 have not been implemented
in the current version of the transformation. By extending our methodology to
include an automatic transformation from the Simulink component model to



194 R. Marinescu et al.

the corresponding Behavior TA, the two models would be consistent and the
verification results of the both frameworks would truly complement each other.
However, information would be lost in such a transformation and the TA model
would require manual refinements, such that the TA could represent the key
behavior of the component that is largely consistent with the corresponding
Simulink model.

5 An Example from Industry: Brake-by-Wire Case Study

In this section, we introduce the Brake-by-Wire (BBW) system that will be
used through the paper as the running example to illustrate our techniques. The
BBW system is a braking system equipped with an ABS function, and without
any mechanical connectors between the brake pedal and the brake actuators.
A sensor attached to the brake pedal reads its position, which is used to compute
the desired global brake torque. For vehicles with stability control, the torque is
influenced by the wheel speed and the desired torque for each wheel is calculated
based on the following equation:

torque = (pos/100) × maxBrakeTorque × distribution (1)

where pos is the pedal position with values ∈ [0,100], maxBrakeTorque is the
maximum global brake torque, and distribution is the static distribution factor.
The ABS algorithm computes the slip rate s based on the following equation:

s = (v − w × R)/v (2)

where v is the speed of the vehicle, w is the speed of the wheel, and R is the
radius of the wheel. The friction coefficient has a nonlinear relationship with
the slip rate: when s starts increasing, the friction coefficient also increases, and
its value reaches the peak when s is around 0.2. After that, further increase in
s reduces the friction coefficient of the wheel. For this reason, if s is greater
than 0.2 the brake actuator is released and no brake is applied, otherwise the
requested brake torque is used.

Figure 3 presents the EAST-ADL model of the BBW system at the Design
Level , and a set of requirements has been provided (to describe the functionality
of this system at this level), as follows:

D1 The torque on the wheel shall be defined as: (pos/100 ) × maxBrakeTorque×
distribution.

D2 IfVehicleSpeedIn > ABSVehicleSpeedThrsh and s > ABSSlipRateThrsh, then
ABSBrakeTorqueOut shall be set to 0Nm.

D3 If s <= ABSSlipRateThrsh or VehicleSpeedIn <= ABSVehicleSpeedThrsh,
then ABSBrakeTorqueOut shall be set to RequestedTorqueIn.

D4 Investigate the latency between the wheel sensor and the brake pedal actuator.

The goal of this work is to show how one can verify the above requirements
on the EAST-ADL description, using various verification techniques that we
present in the following.



Analyzing Industrial Architectural Models 195

Fig. 3. The EAST-ADL model of the BBW system at design level.

6 Simulation of EAST-ADL Functional Architecture
in Simulink

In this section we describe the simulation method proposed in Sect. 4, which has
been implemented as an EATOP [1] plug-in called FMUSim that synthesizes
a Simulink model and configures it according to the properties in the EAST-
ADL model. The model transformation preserves the compositional hierarchy of
the EAST-ADL model in EATOP, and is implemented as a one-to-one mapping
between EAST-ADL elements and Simulink elements, as depicted in Table 1.

In order to simulate a time-trigged EAST-ADL function, the FMU block
needs to be sampled once per period. However, the FMU blocks provided by
the FMI Toolbox are continuous and cannot be sampled directly. As depicted in
Fig. 4, the solution chosen in this implementation is to add a pulse generator and
a subsystem InputData that is acting as a flip-flop clocked on the positive flank of
the pulse. Since the execution of a Simulink block is instantaneous, another flip-
flop OutputData is added, which is clocked on the negative flank of the pulse,
such that the execution time of the FMU becomes equal to the pulse width.
Similarly, in order to simulate an event-trigged EAST-ADL function, we reuse
the negative flank of the trigger pulse from another time-triggered function that
acts as the event source. The negative flank of EventTriggerIn is used to clock a



196 R. Marinescu et al.

Table 1. Mapping rules for the EAST-ADL to Simulink transformation.

EAST-ADL element Simulink element(s)

composed FunctionType Subsystem

FunctionConnector Line

non-top-level FunctionFlowPortIn Inport

non-top-level FunctionFlowPortOut Outport

top-level FunctionFlowPortIn Repeating sequence interpolated

top-level FunctionFlowPortOut Scope

time-trigged leaf FunctionType with Pattern with several elements

FMU behavior

event-trigged leaf FunctionType with Pattern with several elements

FMU behavior

continuous leaf FunctionType with FMU block

FMU behavior

leaf FunctionType with Simulink Same pattern as in the FMU cases above,

behavior but a copy of the behavior model is

inserted instead of the FMU block

flip-flop InputData to control execution start, as depicted in Fig. 5. The execution
period of the function is then simulated by adding a flip-flop OutputData, which
is clocked on a step down that is generated at a time equal to the worst-case
execution time (WCET) after the function starts executing. The clock signal is
exported as EventTriggerOut for the pattern to be repeatable. This means that
it is possible to simulate a chain of event-trigged functions with the pattern.

In this transformation, we have not addressed the nondeterminism or the
possible interleavings of the FunctionPrototypes’s execution. Since we are per-
forming simulations on the transformed model, the current execution pattern is
one of infinitely many interleavings and event sequences, which means that some
errors may be overlooked. To represent deviating clock speeds and arbitrary
start-up time, an arbitrary component could be added by the transformation
to the offset and period times, and a deterministic yet random sequence would
secure repeatability of the simulation runs. Multiple runs with randomized para-
metrization would increase confidence through the extended state space covered.
However, these extensions to the method are not in the scope of this paper.

Application on the BBW Case Study. We have applied the transformation
described above on the BBW case study. The resulting model contains one FMU
for each leaf EAST-ADL FunctionPrototype, plus the required monitors for the
VVCase specified in the EAST-ADL model.

As depicted in Fig. 6, pBrakeTorqueRRMonitor is a complex monitor despite
the fact that it verifies a simple linear function like requirement D1 for the
rear right wheel. The time until a new pedal position has propagated through
the system and has given rise to a new torque value GBC TorqueReq RR varies



Analyzing Industrial Architectural Models 197

Fig. 4. Simulink pattern for modeling time-trigged execution of an EAST-ADL func-
tion with execution time. The block pLDM Brake FL represents the FMU.

Fig. 5. Simulink pattern for modeling event-trigged execution of an EAST-ADL func-
tion with execution time. The block FMU Function F represents the FMU.

between delay min and delay max [ms]. As shown in Fig. 7, the torque requested
by the brake controller on the rear right wheel is a linear scaling of the pedal
position delayed by the propagation time. The boolean monitor function “looks
back” in time according to the delay interval, and is able to find a pedal position
corresponding to the requested torque at all evaluated time points. The result
shows that requirement D1 is satisfied to the extent guaranteed by the simulation
technique.

7 Formal Semantics of EAST-ADL as a Network
of Timed Automata

To formally verify that the architectural model meets its requirements, we need
to exhaustively explore all the function blocks in the model. In this context, we



198 R. Marinescu et al.

Fig. 6. Implementation of the pBrakeTorqueRRMonitor . The lower half of the figure
shows the contents of the block named for each subsystem in the upper half.

Fig. 7. Simulation results provided by the pBrakeTorqueRRMonitor .

need to represent the execution semantics of the EAST-ADL function blocks
using a network of TA (see Fig. 2), which has a well-defined formal semantics in
terms of timed transition systems [5]. We have developed an automatic trans-
formation, considering a subset of the EAST-ADL elements, which we define as
a tuple:

EAST − ADLDesignLevel � 〈FP , Con,DP, Trigg, TC〉,

where FP is the set of FunctionPrototypes, Con is the set of connectors between
the FP , DP is the set of data ports, defined as the union of input ports and
output ports, Trigg is the set of triggering elements, defined as the union of
events and periodic triggers, and TC the set of the model’s timing constraints.



Analyzing Industrial Architectural Models 199

In a similar manner, the TA is defined as a tuple:

TA � 〈L, l0, C,A,E, I〉,

where L is a finite set of locations, l0 ∈ L is the initial location, C is a set of
clocks, A is a set of possible actions, E is a set of edges between two locations,
and I is a set of invariants attached to the locations.

The transformation is a one-to-one function π : EAST-ADLDesignLevel→ TA,
which maps each element in the EAST-ADLDesignLevel to a TA element. The
mapping rules are:

– Each function FP is defined in terms of a network of two TA, as shown in
Fig. 8. To preserve the “read-execute-write” semantics of EAST-ADL, the
Interface TA (see Fig. 8a) has four locations: (i) Idle, (ii) a Read location
that allows the update of the variables according to the values on the input
ports, independent of other computations, (iii) an Exec location that triggers
the Behavior TA (see Fig. 8b) that models the desired behavior of FP , and
(iv) a Write location that allows the update of the output ports according
to the values of the computed internal variables, respectively, independent of
other computations.

– Each input and output port DP is mapped to a global variable in the TA
network, respectively.

– Each connector Con from output port Portout1 of FP1 to input port Portin2
of FP2 is transformed into an assignment Portin2 := Portout1 , along the edge
from Idle to Read ;

– The triggering of each interface TA is based on the triggering Trigg associated
to the EAST-ADL FP . Concretely, this creates two possible instantiations of
the Interface TA: (i) for timed-triggered FP the transformation produces a
local clock, plus invariants and guards on TA (see Fig. 9a), and (ii) for event-
triggered FP the transformation produces a set of dedicated variables that
need to be constantly updated and reset, respectively (see Fig. 10a).

– Other timing annotations TC , e.g., the execution time, can be included in the
timing behavior of the TA model.

Once we obtain the network of TA corresponding to the EAST-ADL model,
one manually edits the Behavior TA to match the desired behavior of the cor-
responding FunctionPrototype. Formal analysis techniques like model-checking
and statistical model-checking are then applied to verify the resulting model. In
the next section we apply such transformation on the BBW EAST-ADL model,
to enable the latter’s verification.

8 Analysis of EAST-ADL Models Using Model-Checking
and Statistical Model Checking

We have applied our method on the BBW architecture, and generated a network
of 50 TA, by transforming each of the 25 FP of Fig. 3 into a network of two



200 R. Marinescu et al.

Fig. 8. The generic TA semantics of an EAST-ADL FP .

synchronized TA, respectively. In Figs. 9 and 10, we exemplify the transformation
of two FP as follows: Fig. 9a presents the interface of the time-triggered pABS FL
FP , automatically generated from the EAST-ADL model, Fig. 9b presents the
behavior of the pABS FL FP obtained after manually editing the dedicated
TA template (see Fig. 8b); Fig. 10a shows the interface of the event-triggered
pVehicleSpeedEstimator FP , whereas Fig. 10b shows the behavior of the pVehicle
SpeedEstimator FP , after manually editing the dedicated TA template. On this
formal model, we have applied model-checking and statistical model-checking
techniques to validate the original EAST-ADL model against the requirements
introduced in Sect. 5.

Model-checking with UPPAAL. With UPPAAL, we have simulated and
we have attempted to verify the previously described network of TA. However,
the size of the model has lead to a state space explosion. On a computer with
1.8 Ghz Intel processor and 8 GB memory, the verifier could explore only 10 962
377 states before it had run out of memory. This is not surprising, since the BBW
system is subject to an enormous state-space explosion due to large number to
TA in the network, each with its clock and its set of variable created based o
the ports of the corresponding FunctionPrototype.

Consequently, we have used UPPAAL to verify a simplified version of the
BBW system with one wheel only. Properties D2 and D3 are formalized as
TCTL properties [5], as follows:

D2 A[] pABS FL VehicleSpeedIn > speed thrshld and pABS FL s == true
imply pABS FL ABSBrakeTorqueOut == 0 .

D3 A[] pABS FL VehicleSpeedIn <= speed thrshld or pABS FL s == false
imply pABS FL ABSBrakeTorqueOut == pABS FL RequestedTorqueIn.

Both properties have been verified and hold on the model. For property D2

the verification took 13,7 s and used 26 900 KB of memory. For property D3 the
verification took 9,1 s and used 26 916 KB of memory.

Statistical Model-Checking with UPPAAL SMC. TA is a suitable formal-
ism for analyzing architectural models like EAST-ADL, and enables symbolic
model-checking techniques to provide a rigorous proof of verifying or refuting a
TCTL property. However, such techniques suffer from state-space explosion in
terms of number of parallel components in the model, which is the case with
complex, industrial systems. One possible solution is the use of a statistical



Analyzing Industrial Architectural Models 201

(a) Interface TA

(b) Behavior TA

Fig. 9. The TA model for the pABS FL EAST-ADL FP .

model-checking engine to generate stochastic simulations and employ statistical
methods to estimate probabilities and probability distributions over time with
given confidence levels. The UPPAAL modeling language has been extended
with probabilistic and dynamical constructs, given a stochastic semantics of
timed automata networks [9], and the tool has been equipped with statistical
model-checking (SMC) algorithms [10] to decide qualitative properties in terms
of probabilities and cost. The symbolic and statistical techniques complement
each other: SMC can show results only up to a specified level of confidence and
never for certain like symbolic techniques, but it is a cheap way to generate and
confirm safety counter-examples where symbolic techniques may employ expen-
sive over-approximation [11]. Here, we attempt to analyze requirement D4 .

Since UPPAAL SMC works on stochastic models, we have manually added
probabilistic extensions to the four-wheels BBW model that contains the timed
behavior. Figure 11a and b show exponential rates added to locations Idle and
Exec of one Encoder component of Fig. 3. The rate of 1 means that the com-
ponent may potentially stay in the location forever, but it will stay there for 1
time unit on average which is consistent with the timed behavior. Further, we
are interested in latency between pressing the pedal and applying the brakes,
hence we added a monitoring stop-watch automaton shown in Fig. 11c. The
monitoring automaton has a stop-watch L that is stopped originally in loca-
tion Wait by specifying that the derivative is zero: L′ == 0 . The stop-watch
is started when synchronization pBrakePedalSensor beh start? is received (the
derivativeL′ == 1 is implicit in timed automata). The stop-watch is stopped
again when any of the wheels receive the synchronization braking signal, like
pHW Brake FL beh start? or pHW Brake FR beh start? (the synchronizations



202 R. Marinescu et al.

(a) Interface TA

(b) Behavior TA

Fig. 10. The TA model for the pVehicleSpeedEstimator EAST-ADL FP .

are on different edges that are drawn on top of each other to minimize cluttering).
The latency can be estimated by the following query: Pr [bm.L <= 1000 ](<>
bm.Done) that asks what is the probability that the brake monitor process bm
will end up in location Done in terms of the stop-watch L value. The result is
shown in Fig. 11d. The average latency is 5 time units but it tends to be high even
though our added stochastic delay assumptions are decreasing towards infinity,
which is a worrying behavior. The good news is that it seems to be strictly
limited by 6 time units and no simulation has been observed greater or equal
than 6 time units, which is on the other hand surprising, as the model contains
components with unlimited delays.

9 Related Work

Several researchers have looked into the formal analysis and verification of EAST-
ADL models. Kang et al. [13] propose a component-based analysis framework
for the EAST-ADL models extended with TA semantics based on the UPPAAL
PORT model-checker. Mallet et al. [14] describe the use of UML MARTE profile
for the timing analysis of EAST-ADL. In addition, Feng et al. [12] propose a
translation of EAST-ADL activity diagrams into the input language of SPIN for
formal verification. More recently, Qureshi et al. [15] describe a model-to-model



Analyzing Industrial Architectural Models 203

(a) pHW Encoder FL CTRL
component.

(b) pHW Encoder FL BEH
component.

(c) Stop-watch automaton
bm measuring latency.

(d) Estimated latency of 5.01 ± 0.05 time units
(99.9% CI).

Fig. 11. The components decorated with stochastic extensions and estimated latency
between pressing the pedal and applying brakes.

transformation from’ EAST-ADL to timed automata towards formal verification
based on timing constraints using UPPAAL. Closely related to our work, in the
context of model-driven development, Biehl et al. [6] propose a modular app-
roach for data integration, together with their experiences from applying this
approach for the verification of EAST-ADL models. The latter is focused on
introducing a systematic solution for model-based tool integration, whereas our
work is focused on the analysis of industrial systems through complementary
methodologies that provide various degrees of assurance.

10 Conclusions and Discussion

In this paper, we have presented a set of analysis techniques dedicated to the sim-
ulation and verification of automotive embedded systems specified in the EAST-
ADL architectural language. In order to provide different correctness guarantees,
we present three techniques that enable the transformation in, and analysis of
EAST-ADL models with: (i) Simulink, a design and simulation tool used exten-
sively in industry, (ii) UPPAAL for model-checking purposes, and (iii) UPPAAL
SMC, a new extension of UPPAAL with statistical model-checking capabilities.
We report our analysis results by applying all these frameworks on the indus-
trial BBW case study. As future work, we intend to investigate the possible
integration and application of these frameworks into the large-vehicle industrial
development process.



204 R. Marinescu et al.

Limitations. Our current transformation to Simulink does not support jittering
of the execution start time and period times. The coverage of the state space in
terms of different function execution orders and phasings is thus very low, but
sufficient to detect the fundamental problems.

The model transformation from EAST-ADL to the network of TA and to
the Simulink model rely on the execution semantics of East-adl. However, the
TA used to define FunctionBehavior is difficult to make fully consistent with
the richer representation of the Simulink model or the FMU that is used by the
FMUSim tool. The verifications are thus complementary, and will not in general
verify the same properties.

Lessons Learned. Both transformations presented in the paper are concep-
tually simple, making them easy to implement and fast to execute. The two
model transformations preserve the structure of the architecture, which simpli-
fies the understanding and the debugging of the model. In our transformation
to Simulink, it is possible to define useful transformation patterns for time and
event triggered functions based on the FMI Toolbox and legacy Simulink blocks
only, so additional commercial toolboxes are not required. The EAST-ADL mod-
els with feedback loops require that the loops are broken before they can be
simulated in Simulink. This can be achieved either by adding a memory block
somewhere in each loop or latching the subsystem ports of at least one subsys-
tem in each loop. Moreover, the network of TA can be easily used for statistical
model-checking with UPPAAL SMC, ensuring formal verification of the model
even if the analysis with UPPAAL leads to a state-space explosion.

Acknowledgment. The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement number 269335, and from
VINNOVA, the Swedish Governmental Agency for Innovation Systems, within the
MBAT project.

References

1. Eclipse. The EAST-ADL Tool Platform (EATOP) Editor Tool (2014). http://
www.eclipse.org/proposals/modeling.eatop/

2. Mathworks. The MATLAB Simulink Design Tool (2014). http://www.mathworks.
se/products/simulink/

3. Modelica Association Project. The Functional Mock-up Interface (FMI) Standard
(2014). http://www.fmi-standard.org/

4. The AUTomotive Open System ARchitecture (AUTOSAR) (2014). http://www.
autosar.org/

5. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

6. Biehl, M., Sjöstedt, C.-J., Törngren, M.: A modular tool integration approach-
experiences from two case studies. In: 3rd Workshop on Model-Driven Tool &
Process Integration at the European Conference on Modelling Foundations and
Applications (2010)

http://www.eclipse.org/proposals/modeling.eatop/
http://www.eclipse.org/proposals/modeling.eatop/
http://www.mathworks.se/products/simulink/
http://www.mathworks.se/products/simulink/
http://www.fmi-standard.org/
http://www.autosar.org/
http://www.autosar.org/


Analyzing Industrial Architectural Models 205

7. Blom, H., Lönn, H., Hagl, F., Papadopoulos, Y., Reiser, M.-O., Sjöstedt, C.-J.,
Chen, D.J., Tagliabò, F., Torchiaro, S., Tucci, S.: EAST-ADL: An architec-
ture description language for automotive software-intensive systems. EAST-ADL
WhitePaper, vol. 1 (2013)

8. Cuenot, P., Chen, D., Gerard, S., Lonn, H., Reiser, M.-O., Servat, D.,
Sjostedt, C.-J., Kolagari, R.T., Torngren, M., Weber, M.: Managing complexity
of automotive electronics using the EAST-ADL. In: 12th IEEE International Con-
ference on Engineering Complex Computer Systems, pp. 353–358. IEEE (2007)

9. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

10. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

11. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of herschel-
planck revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012)

12. Feng, L., Chen, D., Lönn, H., Torngren, M.: Verifying system behaviors in EAST-
ADL2 with the SPIN model checker. In: International Conference on Mechatronics
and Automation, pp. 144–149 (2010)

13. Kang, E.-Y., Enoiu, E.P., Marinescu, R., Seceleanu, C., Schobbens, P.-Y.,
Pettersson, P.: A methodology for formal analysis and verification of EAST-ADL
models. Reliab. Eng. Syst. Saf. Int. J. 120, 127–138 (2013)

14. Mallet, F., Peraldi-Frati, M.-A., André, C.: Marte CCSL to execute EAST-ADL
timing requirements. In: International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, pp. 249–253. IEEE (2009)

15. Qureshi, T.N., Chen, D.-J., Persson, M., Trngren, M.: On integrating EAST-
ADL and UPPAAL for embedded system architecture verification. In:
Sangiovanni-Vincentelli, A. (ed.) Embedded Systems Development, vol. 20. Sprin-
ger, New York (2014)


	Analyzing Industrial Architectural Models by Simulation and Model-Checking
	1 Introduction
	2 Brief Overview of the EAST-ADL Language
	3 The Current Development Process in an Automotive Context
	4 Our Methodology for Analyzing Architectural Models
	5 An Example from Industry: Brake-by-Wire Case Study
	6 Simulation of EAST-ADL Functional Architecture in Simulink
	7 Formal Semantics of EAST-ADL as a Network of Timed Automata
	8 Analysis of EAST-ADL Models Using Model-Checking and Statistical Model Checking
	9 Related Work
	10 Conclusions and Discussion
	References


