
123

Cyrille Artho
Peter Csaba Ölveczky (Eds.)

Third International Workshop, FTSCS 2014
Luxembourg, November 6–7, 2014
Revised Selected Papers

Formal Techniques for
Safety-Critical Systems

Communications in Computer and Information Science 476

Communications
in Computer and Information Science 476

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro,
Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Cosenza, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian Academy
of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Dominik Ślęzak
University of Warsaw and Infobright, Warsaw, Poland

Takashi Washio
Osaka University, Osaka, Japan

Xiaokang Yang
Shanghai Jiao Tong University, Shangai, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Cyrille Artho • Peter Csaba Ölveczky (Eds.)

Formal Techniques for
Safety-Critical Systems
Third International Workshop, FTSCS 2014
Luxembourg, November 6–7, 2014
Revised Selected Papers

123

Editors
Cyrille Artho
National Institute of Advanced Industrial
Science and Technology
Amagasaki
Japan

Peter Csaba Ölveczky
University of Oslo
Oslo
Norway

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-17580-5 ISBN 978-3-319-17581-2 (eBook)
DOI 10.1007/978-3-319-17581-2

Library of Congress Control Number: 2015937953

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the proceedings of the Third International Workshop on Formal
Techniques for Safety-Critical Systems (FTSCS 2014), held in Luxembourg on
November 6–7, 2014, as a satellite event of the ICFEM conference.

The aim of FTSCS is to bring together researchers and engineers who are interested
in the application of formal and semi-formal methods to improve the quality of safety-
critical computer systems. FTSCS strives to promote research and development of
formal methods and tools for industrial applications, and is particularly interested in
industrial applications of formal methods. Specific topics of the workshop include, but
are not limited to:

– case studies and experience reports on the use of formal methods for analyzing
safety-critical systems, including avionics, automotive, medical, and other kinds of
safety-critical and QoS-critical systems;

– methods, techniques, and tools to support automated analysis, certification, debug-
ging, etc., of complex safety/QoS-critical systems;

– analysis methods that address the limitations of formal methods in industry
(usability, scalability, etc.);

– formal analysis support for modeling languages used in industry, such as AADL,
Ptolemy, SysML, SCADE, Modelica, etc.; and

– code generation from validated models.

FTSCS 2014 received 40 regular paper submissions and two position/work-in-
progress paper submissions. Each submission was reviewed by at least three reviewers;
based on the reviews and extensive discussions, the program committee selected 14
of these regular papers and both position/work-in-progress papers for presentation at the
workshop. This volume contains revised versions of those 14 regular papers, as well as
invited papers by Klaus Havelund and Thomas Noll. As was the case for FTSCS 2012
and FTSCS 2013, a special issue of the Science of Computer Programming journal is
devoted to extended versions of selected papers from FTSCS 2014.

Many colleagues and friends contributed to FTSCS 2014. We thank Klaus Havelund
and Thomas Noll for accepting our invitations to give invited talks and the authors who
submitted their work to FTSCS 2014 and who made this workshop an interesting event
attracting more than 30 participants. We are particularly grateful to the members of the
program committee, who all provided timely, insightful, and detailed reviews.

We also thank the editors of Springer’s Communications in Computer and Infor-
mation Science (CCIS) series for publishing the proceedings of FTSCS 2014, Bas van
Vlijmen for accepting our proposal to devote a special issue of Science of Computer
Programming to extended versions of selected papers from FTSCS 2014, Jun Pang and
Magali Martin for their help with local arrangements, and Andrei Voronkov for the
excellent EasyChair conference systems.

January 2015 Cyrille Artho
Peter Csaba Ölveczky

Organization

Workshop Chair

Hitoshi Ohsaki AIST, Japan

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Musab AlTurki King Fahd University of Petroleum and Minerals,

Saudi Arabia
Toshiaki Aoki JAIST, Japan
Farhad Arbab Leiden University and CWI, The Netherlands
Cyrille Artho (Chair) AIST, Japan
Kyungmin Bae Carnegie Mellon University, USA
Saddek Bensalem Verimag, France
Armin Biere Johannes Kepler University of Linz, Austria
Ansgar Fehnker University of the South Pacific, Fiji
Mamoun Filali IRIT, France
Bernd Fischer Stellenbosch University, South Africa
Klaus Havelund NASA JPL, USA
Marieke Huisman University of Twente, The Netherlands
Ralf Huuck NICTA, Australia
Fuyuki Ishikawa National Institute of Informatics, Japan
Takashi Kitamura AIST, Japan
Alexander Knapp Augsburg University, Germany
Yang Liu Nanyang Technological University, Singapore
Robi Malik University of Waikato, New Zealand
Frédéric Mallet Université Nice Sophia Antipolis, France
César Muñoz NASA Langley, USA
Thomas Noll RWTH Aachen University, Germany
Peter Csaba Ölveczky (Chair) University of Oslo, Norway
Charles Pecheur Université catholique de Louvain, Belgium
Paul Pettersson Mälardalen University, Sweden
Camilo Rocha Escuela Colombiana de Ingeniería, Colombia
Ralf Sasse ETH Zürich, Switzerland
Oleg Sokolsky University of Pennsylvania, USA
Sofiène Tahar Concordia University, Canada
Carolyn Talcott SRI International, USA
Tatsuhiro Tsuchiya Osaka University, Japan
Chen-Wei Wang McMaster University, Canada

Mike Whalen University of Minnesota, USA
Huibiao Zhu East China Normal University, China

Additional Reviewers

Dunchev, Cvetan
Enoiu, Eduard Paul
Fang, Huixing
Gao, Sa
Hatvani, Leo
Huang, Yanhong

Hung, Dang Van
Jansen, Christina
Jansen, Nils
Johnsen, Andreas
Kremer, Gereon
Li, Qin

Limbrée, Christophe
Mentis, Anakreon
Mu, Chunyan
Siddique, Umair
Soualhia, Mbarka
Wu, Xi

VIII Organization

Contents

Experience with Rule-Based Analysis of Spacecraft Logs. 1
Klaus Havelund and Rajeev Joshi

Safety, Dependability and Performance Analysis of Aerospace Systems 17
Thomas Noll

Formal Verification of Distributed Task Migration for Thermal Management
in On-Chip Multi-core Systems Using nuXmv . 32

Syed Ali Asadullah Bukhari, Faiq Khalid Lodhi, Osman Hasan,
Muhammad Shafique, and Jörg Henkel

Expression-Based Aliasing for OO–languages. 47
Georgiana Caltais

Checking Integral Real-Time Automata for Extended Linear
Duration Invariants . 62

Changil Choe, Univan Ahn, and Song Han

A Normalized Form for FIFO Protocols Traces, Application to the Replay
of Mode-based Protocols . 76

Mamoun Filali, Meriem Ouederni, and Jean-Baptiste Raclet

Dynamic State Machines for Formalizing Railway Control
System Specifications . 93

Roberto Nardone, Ugo Gentile, Adriano Peron, Massimo Benerecetti,
Valeria Vittorini, Stefano Marrone, Renato De Guglielmo,
Nicola Mazzocca, and Luigi Velardi

Checking the Conformance of a Promela Design to its Formal Specification
in Event-B . 110

Dieu-Huong Vu, Yuki Chiba, Kenro Yatake, and Toshiaki Aoki

A Formal Model of SysML Blocks Using CSP for Assured
Systems Engineering . 127

Jaco Jacobs and Andrew Simpson

Parallelism Analysis: Precise WCET Values for Complex
Multi-Core Systems. 142

Timon Kelter and Peter Marwedel

Key-Secrecy of PACE with OTS/CafeOBJ . 159
Dominik Klein

http://dx.doi.org/10.1007/978-3-319-17581-2_1
http://dx.doi.org/10.1007/978-3-319-17581-2_2
http://dx.doi.org/10.1007/978-3-319-17581-2_3
http://dx.doi.org/10.1007/978-3-319-17581-2_3
http://dx.doi.org/10.1007/978-3-319-17581-2_4
http://dx.doi.org/10.1007/978-3-319-17581-2_5
http://dx.doi.org/10.1007/978-3-319-17581-2_5
http://dx.doi.org/10.1007/978-3-319-17581-2_6
http://dx.doi.org/10.1007/978-3-319-17581-2_6
http://dx.doi.org/10.1007/978-3-319-17581-2_7
http://dx.doi.org/10.1007/978-3-319-17581-2_7
http://dx.doi.org/10.1007/978-3-319-17581-2_8
http://dx.doi.org/10.1007/978-3-319-17581-2_8
http://dx.doi.org/10.1007/978-3-319-17581-2_9
http://dx.doi.org/10.1007/978-3-319-17581-2_9
http://dx.doi.org/10.1007/978-3-319-17581-2_10
http://dx.doi.org/10.1007/978-3-319-17581-2_10
http://dx.doi.org/10.1007/978-3-319-17581-2_11

Coalgebraic Semantic Model for the Clock Constraint
Specification Language . 174

Frédéric Mallet and Grygoriy Zholtkevych

Analyzing Industrial Architectural Models by Simulation
and Model-Checking . 189

Raluca Marinescu, Henrik Kaijser, Marius Mikučionis,
Cristina Seceleanu, Henrik Lönn, and Alexandre David

Specifying and Verifying Concurrent C Programs with TLA+ 206
Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia,
Serge Haddad, and Kamel Barkaoui

Formal Modeling and Verification of Interlocking Systems Featuring
Sequential Release . 223

Linh H. Vu, Anne E. Haxthausen, and Jan Peleska

A Spin-Based Approach for Checking OSEK/VDX Applications 239
Haitao Zhang, Toshiaki Aoki, and Yuki Chiba

Author Index . 257

X Contents

http://dx.doi.org/10.1007/978-3-319-17581-2_12
http://dx.doi.org/10.1007/978-3-319-17581-2_12
http://dx.doi.org/10.1007/978-3-319-17581-2_13
http://dx.doi.org/10.1007/978-3-319-17581-2_13
http://dx.doi.org/10.1007/978-3-319-17581-2_14
http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1007/978-3-319-17581-2_16

Experience with Rule-Based Analysis
of Spacecraft Logs

Klaus Havelund(B) and Rajeev Joshi

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
havelund@gmail.com

Abstract. One of the main challenges facing the software development
as well as the hardware communities is that of demonstrating the cor-
rectness of built artifacts with respect to separately stated requirements.
Runtime verification is a partial solution to this problem, consisting of
checking actual execution traces against formalized requirements. A rela-
ted activity is that of humans attempting to understand (or comprehend)
what the system does when it executes, for validation purposes, or for
simply operating the system optimally. For example, a key challenge in
operating remote spacecraft is that ground operators must rely on the
limited visibility available through spacecraft telemetry in order to assess
spacecraft health and operational status. In this paper we illustrate the
use of the rule-based runtime verification system LogFire for support-
ing such log comprehension. Specifically, LogFire is used for generating
abstract events from the concrete events in logs, followed by a visualiza-
tion of these abstract events using the D3 visualization framework.

1 Introduction

1.1 Motivation

Demonstrating the correctness of a software or hardware artifact is a challenging
problem. In the ideal case we want to prove the artifact correct for all possible
input. Unfortunately, full verification is still cost-prohibitive for complex sys-
tems (especially those with tight deadlines), so practitioners typically use less
formal, but cheaper, alternatives to build confidence in their systems. One such
alternative is runtime verification, which checks a particular execution against a
formal specification, which in this case becomes the test oracle. However, run-
time verification systems can be used during deployment as well, to monitor the
actual execution of the system in the field. Such monitoring can happen online,
as the system executes, or offline by analyzing log files generated by the running
system. Violations of the formal specification can be flagged by the runtime ver-
ification system, either leading to automated behavior modification in the case

The work described in this publication was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 1–16, 2015.
DOI: 10.1007/978-3-319-17581-2 1

2 K. Havelund and R. Joshi

of online monitoring, or human driven systems modification in the case of offline
monitoring (as examples).

In this paper we suggest yet a slightly different use of a runtime verifica-
tion system: namely that of system comprehension. One of the key challenges in
operating remote spacecraft is that the only knowledge ground operators have
of the spacecraft behavior is the telemetry sent down to earth. Such teleme-
try typically consists of logs of system events and sensor measurements (such
as battery voltage or probe temperature). A log may be viewed as a sequence
of time-stamped records with named fields. Current practice at NASA’s Jet
Propulsion Laboratory (JPL) is to develop ad-hoc tools using various scripting
languages, resulting in a growing collection of scripts that are hard to main-
tain and modify, which becomes a concern for long-running missions that last
many years. A more desirable solution is a specification-based approach where
comprehension rules are formulated in a human readable DSL (Domain Specific
Language). In this paper, we present such an approach applied to the telemetry
received from the Curiosity rover currently on Mars, and part of the MSL (Mars
Science Laboratory) mission [31].

1.2 Contribution

More concretely, we illustrate the application of the LogFire runtime verifica-
tion system [25] and the D3 visualization system [14] to support human com-
prehension of logs sent down to earth from Curiosity. Although illustrated on
such logs, the approach is fully general. LogFire is a rule-based monitoring
framework, a concept extensively studied within the artificial intelligence com-
munity. It is implemented in the Scala programming language as an internal
DSL (essentially an API), and its core algorithm is a modification of the Rete

algorithm [19], to support event processing as well as fast indexing, as described
in [25]. Rete is one of the original algorithms for rule-based systems, optimizing
rule-evaluation, and known for its complexity.

Rules have the form: condition1, . . . , conditionn ⇒ action. The state of a
rule-system can abstractly be considered as consisting of a set of facts, referred
to as the fact memory, where a fact is a mapping from field names to values.
A condition in a rule’s left-hand side can check for the presence or absence of
a particular fact. A left-hand side matching against the fact memory usually
requires unification of variables occurring in conditions. In the case that all
conditions on a rule’s left-hand side match (become true), the right-hand side
action is executed, which can be any Scala code, including adding and deleting
facts, or generating error messages. The DSL allows domain specific constructs to
be mixed with Scala code, making the notation very expressive and convenient
for practical purposes, one of the reasons that LogFire is used daily on the
MSL mission.

LogFire was originally developed for verifying execution traces against for-
mal specifications. A main focus was monitoring of events carrying data, what is
also sometimes referred to as data parameterized monitoring. The purpose was
to understand how well rule-based systems fare for this form of task. In the work

Experience with Rule-Based Analysis of Spacecraft Logs 3

presented here, we instead use LogFire for generating abstract facts from low
level events occurring in a log. Such facts are generated as a result of executing
actions of rules triggered by lower-level events and facts. The rule-based app-
roach is particularly suited for this form of fact generation, compared to other
forms of runtime verification logics, such as temporal logics, regular expressions
or state machines. The collection of facts built in this manner is then fed into
a visualization tool implemented using the D3 library. The system is currently
in use by the Curiosity operations team. A main core message of this work is
that runtime verification as a field should embrace a wide range of technologies
for not only verifying systems but also for learning and comprehending their
behavior.

1.3 Related Work

In [26] we describe an attempt to build a DSL on top of LogFire in order to
make it even easier to formulate abstraction rules for log comprehension and
visualization. That work, however, is still a research prototype, and not (yet)
used in mission operations, as is the case with the work presented here.

Numerous systems have been developed over the last decade for support-
ing monitoring of parameterized events, using various formalisms, such as state
machines [2,5,11,21,32], regular expressions [1,32], variations over the µ-calculus
[4], temporal logics [4,5,8,9,15,22,32], grammars [32], and rule-based systems
[7,25]. LogFire itself was in part inspired by the Ruler system [7]. Other rule-
based systems include Drools [17], Jess [27] and Clips [13]. Standard rule
systems usually enable processing of facts, which have a life span. In contrast,
LogFire additionally implements events, which are instantaneous. Drools

supports a notion of events, which are facts with a limited life span, inspired
by the concept of Complex Event Processing (CEP), described by David Luck-
ham in [28].

Two other rule-based internal DSLs for Scala exist: Hammurabi [20] and
Rooscaloo [33]. Hammurabi, which is not Rete-based, achieves efficient eval-
uation of rules by evaluating these in parallel, assigning each rule to a different
Scala actor. Rooscaloo [33] is Rete based, but is not documented in any
form other than experimental code. The Drools project has an effort ongo-
ing, defining functional programming extensions to Drools [18]. In contrast, by
embedding a rule system in an object-oriented and functional language, as done
in LogFire, we can leverage the already existing host language features.

TraceContract [5] and Daut (Data automata) [23,24] are internal Scala
DSLs for trace analysis based on state machines. They allow for multi-transitions
without explicitly naming the intermediate states, which allows for temporal logic
like specifications, in addition to data parameterized state machines.TraceCon-

tract was deployed throughout the LADEE mission [29], checking command
sequences (similar format as logs) sent to the spacecraft, as documented in [6] at
an early stage of that project.

4 K. Havelund and R. Joshi

1.4 Contents

The paper is organized as follows. Section 2 introduces the rule-based system
LogFire, illustrating how it can be used for verifying the correctness of pro-
gram/system executions. The example is that of general deadlock potential
detection between any number of tasks, chosen since it illustrates the expres-
sive power of rules. Section 3 presents the application of LogFire to abstract
and visualize telemetry from the Curiosity rover. Finally, Sect. 4 concludes the
paper.

2 The LogFire Runtime Verification System

LogFire [25] is an API in the Scala programming language, also here referred
to as an internal DSL, created for writing rule-based runtime monitors. A mon-
itor is specified as a set of rules, each of the form: lhs ⇒ rhs, which operate
on a database of facts, called the fact memory. Rule left-hand sides test on
incoming events, as well as presence or absence of facts in the fact memory.
Right-hand sides (actions) can add facts to the fact memory, delete facts, issue
error messages, and generally execute any Scala code. A monitor takes as input
a sequence of events, consumed one at a time, and for each event executes the
actions of those rules whose left-hand sides evaluate to true. Monitors can be
used to analyze the execution of a program as it executes or to analyze logs pro-
duced by the program. LogFire is an implementation of the Rete algorithm
[19], specifically as it is described in [16], modified to process instantaneous
events (in addition to facts that have a life span), and to perform faster lookups
in the fact memory. We will illustrate LogFire using the example of detecting
deadlock potentials [10] in a program by just analyzing a single execution trace
generated by an instrumented version of the program. This example illustrates
the flexibility of using a rule-based system. The reader is referred to [25] for more
details about the implementation of LogFire.

2.1 The Deadlock Potential Detection Problem

Deadlock potentials in a program can very easily be detected by analyzing single
execution traces generated by an appropriately instrumented program. We con-
sider traces that only contain two kinds of events: lock(t, l), representing that
task t takes the lock l; and unlock(t, l), representing that task t releases lock l.
As described in [10], the standard technique for detecting deadlock potentials is
to build a lock graph, where nodes are locks and where there is an edge between
two nodes (locks) l1 and l2, labelled with task id t, if task t at some point holds
lock l1 while taking lock l2. Nodes and edges are only added to the graph (never
deleted). If at some point the graph contains a cycle it indicates the potential
for deadlock, although not necessarily an actual deadlock. The algorithm can
typically be made efficient in practice since it only needs to check for deadlock
potentials, in contrast to, say, a model checker, which typically has to search the
reachable state space for actual deadlocks.

Experience with Rule-Based Analysis of Spacecraft Logs 5

T1 : lock(l1); lock(l2);
critical section 1

unlock(l2); unlock(l1)

T2 : lock(l2); lock(l3);
critical section 2

unlock(l3); unlock(l2)

T3 : lock(l3); lock(l1);
critical section 3

unlock(l1); unlock(l3)

1

T1

l2

T2

l3

T3

l

Fig. 1. Example illustrating three tasks T1, T2, and T3, taking three locks l1, l2, and
l3 in a cyclic manner, opening for a deadlock potential. This is detected as a cycle in
the corresponding lock graph

Figure 1 shows an example illustrating how the algorithm works. The left-
hand side shows three tasks (say, threads in a multi-threaded program), each
taking two locks, then entering a critical section, and then releasing the locks.
The locks are taken in a circular manner: a deadlock can occur if the tasks are
scheduled such that each gets to take their first lock, but not the second. After
that point none of the tasks can take the second lock since it is already held by
one of the other tasks. Testing may not reveal this deadlock which only happens
with certain schedules. For example, if we run these tasks in a sequential manner
(first task T1, then T2, and then T3), no deadlocks will occur. However, we can
record the lockings and unlockings in a graph, as shown on the right of Fig. 1.
Each node is a lock, and an edge is drawn from a lock lx to a lock ly, labelled
with task Tz if task Tz at some point holds lock lx while taking lock ly. If this
graph ends up containing a cycle, as in this case, we have detected the potential
for a deadlock.

Traditional implementations of such deadlock-potential checkers are coded as
algorithms in a programming language [10]. An alternative is to formulate such
a checker in a logic as a monitor specification, expressing that there must be no
such cycles. The general case involves a cycle between any number n of tasks.
It turns out, however, that traditional temporal logic is not expressive enough
for the case where n is unknown (it can vary at execution time). Temporal logic
solutions for exactly two tasks are shown in [3,34]. For example, the solution
provided in [34] has the following form (with some minor changes for presentation
purposes) expressed in linear temporal logic (Ltl) extended with data, and
stating the property that no cycles should exist between two tasks and locks:

∀t1, t2 : Task, l1, l2 : Lock •
G (

¬lock(t1, l2) U (lock(t1, l1) ∧ (¬unlock(t1, l1) U lock(t1, l2)))
→
G ¬(¬lock(t2, l1) U (lock(t2, l2) ∧ (¬unlock(t2, l2) U lock(t2, l1))))

)

6 K. Havelund and R. Joshi

This formula can be read as follows: always (G), if task t1 does not take lock l2
until (U) it takes lock l1, and from then on does not release l1 until (U) it takes
l2, then always (G), it is not the case that task t2 follows the opposite pattern.
Besides being cumbersome to read, it only captures the situation for two tasks
and two locks. As we show in the next section, using a rule-based logic makes it
possible to express the property for an arbitrary number of tasks.

2.2 Formulating Deadlock Detection in LogFire

Assume that our traces contain the two events: lock(t,l) and unlock(t,l). The
cycle detection property (that no cycles should exist) is shown in Fig. 2. The
main component of LogFire is the trait1 Monitor, which any user-defined
monitor must extend to get access to the constants and methods provided by the
rule DSL. The events lock and unlock are short-lived instantaneous observations
about the system being monitored, those submitted to the monitor. In contrast,
facts, in this case Locked and Edge, are long-lived pieces of information stored
in the fact memory of the rule system, generated and deleted explicitly by the
rules. The monitor contains five rules. Each rule has the form:

name -- condition1 & . . .& conditionn �−→ action

Event and fact names, as well as parameter names are values of the Scala

type Symbol, which contains quoted identifiers such as ’t. The rules read as
follows. The first rule, named lock, states that on observation of a lock(’t, ’l)
event we insert a Locked(’t, ’l) fact in the fact memory, representing the fact that
task t holds the lock l. The second rule, named unlock, states that if a task t holds
a lock l (represented by Locked(’t, ’l)), and an unlock(’t, ’l) event is observed,
then that Locked fact is removed from the fact memory. The third rule, named
edge, states that if a task t holds a lock l1 (represented by Locked(’t, ’l1), and
a lock(’t, ’l2) event is observed, then an edge from l1 to l2 is drawn. The fourth
rule, named close, performs the transitive closure of the edge-relation. Note
that LogFire for each event first evaluates all left-hand sides, recording which
evaluate to true. Then it deletes the event from the fact memory, evaluates all
the corresponding right-hand sides, and continues evaluating rules until a fixed
point is reached (infinite loops are possible to program by a mistake). Only
hereafter is the next event is consumed. This special handling of events is one
difference wrt. the original Rete algorithm described in [16,19]. The last rule,
named cycle, detects cycles in the graph. It states that if there is an edge from
a lock to itself then it is considered a deadlock potential. Symbols representing
bindings of parameter values must be accessed with special get functions.

A monitor can be applied as shown in Fig. 3. Since the trace exposes a dead-
lock potential, an error trace is produced as shown in Fig. 4. Each entry in the
error trace shows the number of the event, the event, the fact that it causes to
be generated, and the rule that triggers.
1 A trait in Scala is a module concept closely related to the notion of an abstract
class, as for example found in Java.

Experience with Rule-Based Analysis of Spacecraft Logs 7

class NoLockCycles extends Monitor {
val lock , unlock = event
val Locked, Edge = fact

"lock" −− lock(’t,’ l) −→ insert(Locked(’t ,’ l))

"unlock" −− Locked(’t,’l) & unlock(’t ,’ l) −→ remove(Locked)

"edge" −− Locked(’t,’l1) & lock(’t ,’ l2) −→ insert(Edge(’l1 ,’ l2))

"close" −− Edge(’l1,’l2) & Edge(’l2 ,’ l3) & not(Edge(’l1 ,’ l3)) −→
insert (Edge(’l1 ,’ l3))

"cycle" −− Edge(’l1,’l2) −→ {
if (get (’ l1) == get(’l2)) fail ("cycle detected on " + get(’l1))

}
}

Fig. 2. No-lock-cycles property in LogFire

2.3 Improving the Specification

The deadlock potential detection specification shown in Fig. 2 can be improved
in three ways. Firstly, it can yield false positives. It will for example report
a deadlock potential for a single task that accesses locks in a cyclic manner,
although a single task cannot deadlock on its own (assuming reentrant locks).
In order to exclude such false positives (although it can be argued that any
cycles should be avoided), edges in the lock graph should be labelled with task
ids, and a cycle is only reported in case all the task ids on the edges of the
cycle are different. Secondly, the monitor will report the same deadlock potential
multiple times due to the fact that different cycles (starting in different locks)
represent the same problem. Thirdly, lock(t,l) and unlock(t,l) events are assumed
to have exactly two arguments. Events in general may have many arguments,
and instead of referring to them in a positional style as shown, we may want
to pick out those arguments we are interested in by name, as for example with
the notation unlock(’task → ’t, ’lock → ’l). The alternative specification shown
in Fig. 5 is an attempt to make these improvements and to illustrate additional
features of LogFire.

As can be seen, event arguments are referred to by name, as in unlock(’task
→ ’t,’lock → ’l). Each edge now also includes a set of task ids, namely those
involved in forming the edge. A check in rule close is now performed that two
edges can only be composed (transitive closure) if their task ids differ. We see
here the use of set operations and sets as arguments to facts. Finally, in order
to avoid a deadlock between a set of tasks to be reported multiple times, a

8 K. Havelund and R. Joshi

object ApplyMonitor {
def main(args: Array[String]) {
val m = new NoLockCycles

m.addEvent(’lock)(1, "l1")
m.addEvent(’lock)(1, "l2")
m.addEvent(’unlock)(1, "l2")
m.addEvent(’unlock)(1, "l1")

m.addEvent(’lock)(2, "l2")
m.addEvent(’lock)(2, "l3")
m.addEvent(’unlock)(2, "l3")
m.addEvent(’unlock)(2, "l2")

m.addEvent(’lock)(3, "l3")
m.addEvent(’lock)(3, "l1")
m.addEvent(’unlock)(3, "l1")
m.addEvent(’unlock)(3, "l3")

}
}

Fig. 3. Applying the lock pattern monitor to a trace corresponding to executing the
three tasks in Fig. 1 in sequential order

variable is declared in the monitor, storing the sets of tasks that have so far
been reported being involved in a deadlock potential. The rule cycle avoids to
report a deadlock potential between a set of tasks in case a such has already been
reported for those tasks. This illustrates how rules can be mixed with Scala

code, including declaration of variables and methods.

3 Analyzing Telemetry from the Curiosity Rover

In this section, we describe how we have used LogFire to process telemetry
received from the Curiosity rover on Mars. Our focus here is on building tools
based on LogFire for processing telemetry in order to generate summaries that
can be used for creating effective visualizations for use by the daily operations
team. Our tools are integrated into the mission ground data system, and receive
and automatically process telemetry from the rover several times a day. As this
telemetry is processed, the tools generate summary files, typically in comma sepa-
rated values (CSV) format. These summary files are in turn used by visualizations
built using the D3 library [12]; these visualizations are used as part of a “dash-
board” that is regularly monitored by mission operators and science planners.

Experience with Rule-Based Analysis of Spacecraft Logs 9

[1] ’ lock (1,"l1") =⇒ ’Locked(1,"l1")
rule : "lock" −− ’lock(’t,’ l) −→ {...}

[2] ’ lock (1,"l2") =⇒ ’Edge("l1","l2")
rule : "edge" −− ’Locked(’t,’l1) & ’lock (’ t ,’ l2) −→ {...}

[5] ’ lock (2,"l2") =⇒ ’Locked(2,"l2")
rule : "lock" −− ’lock(’t,’ l) −→ {...}

[6] ’ lock (2,"l3") =⇒ ’Edge("l1","l3")
rule : "close" −− ’Edge(’l1,’l2) & ’Edge(’l2 ,’ l3) & not(’Edge(’l1 ,’ l3)) −→

{ ... }

[6] ’ lock (2,"l3") =⇒ ’Edge("l2","l3")
rule : "edge" −− ’Locked(’t,’l1) & ’lock (’ t ,’ l2) −→ {...}

[9] ’ lock (3,"l3") =⇒ ’Locked(3,"l3")
rule : "lock" −− ’lock(’t,’ l) −→ {...}

[10] ’ lock (3,"l1") =⇒ ’Edge("l3","l1")
rule : "edge" −− ’Locked(’t,’l1) & ’lock (’ t ,’ l2) −→ {...}

[10] ’ lock (3,"l1") =⇒ ’Edge("l1","l1")
rule : "close" −− ’Edge(’l1,’l2) & ’Edge(’l2 ,’ l3) & not(’Edge(’l1 ,’ l3)) −→

{ ... }

[10] ’ lock (3,"l1") =⇒ ’Fail("ERROR cycle detected on l1")
rule : "cycle" −− ’Edge(’l1,’l2) −→ {...}

Fig. 4. An error trace representing a lock cycle

In the following subsections, we give two examples of telemetry processing tools
and show how they are used in building useful visualizations.2

3.1 Monitoring Sequence Execution Status

The first example shows a tool that monitors execution of spacecraft sequences.
A sequence is a list of commands that perform specific spacecraft actions such as
taking an image, or deleting a file, or possibly even invoking another sequence.
The operations team typically uplinks a list of sequences every other day con-
taining the commands that the rover should perform over the next two days.

2 In the interests of readability, and to comply with NASA restrictions on publishing
mission data, we have simplified the examples and modified the actual names and
times from actual telemetry.

10 K. Havelund and R. Joshi

class NoLockCyclesImproved extends Monitor {
val lock , unlock = event
val Locked, Edge = fact

def getset (s : Symbol) = get[Set[Int]](s)

var cycles : Set[Set[Int]] = Set()

"lock" −− lock(’task → ’t ,’ lock → ’ l) −→ insert(Locked(’t ,’ l))

"unlock" −− Locked(’t,’l) & unlock(’task → ’ t ,’ lock → ’ l) −→
remove(Locked)

"edge" −− Locked(’t,’l1) & lock(’task → ’ t ,’ lock → ’ l2) −→
insert (Edge(Set(get[Int](’ t)),’ l1 ,’ l2))

"close" −− Edge(’s1,’l1,’l2) & Edge(’s2,’ l2 ,’ l3) & not(Edge(’ ,’l1 ,’ l3)) −→
{

if (getset (’ s1). intersect (getset (’ s2)). isEmpty)
insert (Edge(getset (’ s1).union(getset (’ s2)),’ l1 ,’ l3))

}

"cycle" −− Edge(’s,’l1,’ l2) −→
{

if (get (’ l1) == get(’l2) & !cycles . contains(getset (’ s)))
fail ("cycle detected between tasks" + get(’s))

cycles += getset(’s)
}

}

Fig. 5. Improved no-lock-cycles property in LogFire

This includes mobility requests (such as driving to a specific location), science
requests (such as taking a panorama or firing a laser), as well as engineering
requests (such as deleting old data files to free up space on flash memory).

Figure 6 shows the rules for processing telemetry related to sequence execu-
tion. These rules rely on processing an event log which is generated on board and
sent to the ground periodically. The event log consists of a list of EVRs (short
for “event reports”); each EVR has an associated timestamp (indicating the sclk,
or spacecraft clock time when the event occurred), a unique identifier, and a text
message describing the event. The SeqMonitor class extends the trait EvrMonitor,
which itself extends trait Monitor, and in addition defines various utilities, such as
the EVR event. The rule start seq is triggered by the log event EVR SEQ START
and adds a fact SeqStart to the fact memory, recording the name and start time

Experience with Rule-Based Analysis of Spacecraft Logs 11

class SeqMonitor extends EvrMonitor {
val SeqStart, SeqDone = fact
def seq name(s:String) = words(s)(2) // Helper function

"start_seq" −− EVR(’id → "EVR_SEQ_START", ’sclk → ’S, ’msg → ’M) −→ {
val w = words(’M.s)
val seq name = w(15).slice(1, w(15).length−2)
insert (SeqStart(seq name, ’S.d))

}

"end_seq_ok" −− EVR(’id → "EVR_SEQ_SUCCESS", ’sclk → ’E, ’msg → ’M)
& ’SeqStart(’name, ’S) −→ {

if (seq name(’M.s) == ’sname.s) {
replace (SeqStart)(SeqDone(’name.s, ’S.d, ’E.d, "OK"))

}
}

"end_seq_fail" −− EVR(’id → "EVR_SEQ_FAILURE", ’sclk → ’F, ’msg → ’M)
& ’SeqStart(’name, ’S) −→ {

if (seq name(’M.s) == ’name.s) {
replace (SeqStart)(SeqDone(’name.s, ’S.d, ’F.d, "FAIL"))

}
}

"print" −− SeqDone(’name, ’S, ’E, ’stat) −→ {
updateCSV(’name.s, ’S.d, ’E.d, ’ stat . s)
remove(SeqDone)

}
}

Fig. 6. Rules for sequence execution

of the sequence. A sequence may terminate either successfully or unsuccessfully.
A successful termination is denoted by the event EVR SEQ SUCCESS, which results
in the SeqStart fact being replaced by a fact SeqDone, which records the name,
start and end times of the sequence, along with the status OK, indicating that the
sequence completed successfully. A sequence that terminates with failure results
in the SeqStart fact being replaced by a fact SeqDone, which records the name,
start and end times as before, along with the status FAIL. Finally, the print
rule updates a CSV file containing a row for each sequence invocation, recording
the start and end times and execution status.

This CSV file is useful for building various visualizations that track how
ground commands are being performed by the rover. As an example, Fig. 7 shows
a visualization used by the data management operations team to compare the

12 K. Havelund and R. Joshi

Fig. 7. Visualization showing actual vs predicted sequence run times

actual onboard execution times across multiple days (shown on the x-axis) for
two sequences (dmx 00103 and dmx 00105) against the times predicted by ground
tools. As the figure shows, such a visualization makes it easy to see that the pre-
dictions for the dmx 00103 sequence are much more accurate than the predictions
for the dmx 00105 sequence. This observation can then be used to further refine
the models used by the ground tools to improve prediction times.

3.2 Monitoring Communication Windows

Figure 8 shows the rules used for monitoring Curiosity’s communication win-
dows [30]. A communication window defines the periods when the spacecraft
communicates either directly with Earth, or with one of several relay orbiting
spacecraft. Due to the importance of communication, monitoring rover perfor-
mance during a window is of great interest to the operations team. To aid this
monitoring, we developed a set of rules that are used to generate summaries from
rover telemetry; these summaries are in turn used to build useful visualizations
that help the operational team monitor window performance.

A communication window consists of 3 phases – a prep phase, when on-board
software configures the rover for the communication window (for instance, by
turning on appropriate radios and retrieving from various cameras the images
that will be sent to Earth); an active phase, during which the communica-
tion takes place; and a cleanup phase, for performing any cleanup actions (for
instance, turning the radios off). Figure 8 shows four rules for processing teleme-
try for a communication window. The prep rule is triggered by the event
EVR BEGINS PREP that indicates the start of a communication window; it adds
the fact Prep(w, p) to the fact memory. Here w is the (unique) integer identi-
fier associated with the window (this identifier is reported in the event message,
and is extracted by the helper wid function shown in the example), and p is

Experience with Rule-Based Analysis of Spacecraft Logs 13

class CommWindowMonitor extends EvrMonitor {
def wid(s : String ,k: Int=5) = { val w = words(s)(k) ; w. slice (1,w.length). toInt }

"prep" −− EVR(’id → "EVR_BEGIN_PREP", ’sclk → ’P, ’msg → ’M) −→ {
insert (’Prep(wid(’M.s,4), ’P.d))

}

"active" −− EVR(’id → "EVR_BEGIN_ACTIVE", ’sclk → ’A, ’msg → ’M)
& ’Prep(’W, ’P) −→ {

if (wid(’M.s,2) == ’W.i) {
insert (’ Active (’W.i, ’A.d))

}
}

"cleanup" −− EVR(’id → "EVR_CLEANUP", ’sclk → ’C, ’msg → ’M)
& ’Active (’W, ’A) −→ {

if (wid(’M.s,1) == ’W.i) {
insert (’Cleanup(’W.i, ’C.d)

}
}

"print" −− ’Prep(’W, ’P) & ’Active(’W, ’A) & ’Cleanup(’W, ’C) −→ {
updateCSV(’W.i, ’P.d, ’A.d, ’C.d)
remove(’Prep)
remove(’Active)
remove(’Cleanup)

}
}

Fig. 8. Rules for communication windows

the event timestamp (which indicates the time when prep started). Next, the
active rule is used to detect when the active window begins; it is triggered by
the EVR BEGINS ACTIVE event, and adds the fact Active(w, a) to the fact mem-
ory, where w is the window identifier and a is the event timestamp. In a similar
fashion, the cleanup rule is triggered by the EVR CLEANUP event, and adds the
Cleanup fact to the memory. Finally, the print rule updates a CSV file that
defines all windows that have been performed on the rover; each row of this
CSV file contains the window identifier and times when the prep, active and
cleanup phases started.

The CSV files are used to build the visualization shown in Fig. 9. This visu-
alization uses the window definitions in the CSV file to provide context for
assessing window performance. The top graph in the figure shows the percent-
age of CPU time taken up by various tasks, including the DMS and PDP tasks

14 K. Havelund and R. Joshi

Fig. 9. Visualization showing communication window performance

which respectively read files from flash memory and generate data packets for
downlink. The middle graph shows the volume of data sent through the radio
to an overhead orbiter; as the figure shows, the downlink rate varies over time,
reaching a maximum rate when the orbiter is directly overhead (approximately
halfway into the active session). Finally, the bottom graph shows the number of
images fetched from each of the four cameras during window prep; in the exam-
ple shown, the software fetched 13 images from the MHLI camera and 10 images
from the MRDI camera (and no images from the other two cameras). Such visu-
alizations are useful to the operations team, which can use them to determine, for
instance, that the PDP task needs 40 % of the CPU for packet generation when
the radio is communicating at its highest rates. This knowledge helps guide deci-
sions on whether or not to schedule other processor-intensive activities during
communication windows.

4 Conclusion and Future Work

We have described the use of a rule-based engine, the LogFire Scala library, in
building applications for processing telemetry. The applications are not limited
to checking specific logical or temporal properties (as is common in runtime
verification), but in addition generate summaries that are used to build effective
visualizations supporting systems comprehension. We have described how these
telemetry analysis applications are being deployed to process telemetry and build
visualizations illustrating various aspects of the behavior of the Curiosity rover.
The rule-based notation is shown to be sufficiently expressive and convenient for
the task. The combination of a monitoring logic with a high-level programming
language, in this case Scala, has turned out to be a crucial advantage.

Experience with Rule-Based Analysis of Spacecraft Logs 15

Future work includes studying alternatives for defining the internal LogFire
DSL. LogFire is a deep embedding, meaning that we have defined the abstract
syntax for rules in Scala, in contrast to a shallow embedding as in [23], where
we would have used Scala’s own language constructs for writing rules. This
again means that as a default there is no type checking of rules beyond what we
program it to be. Another consequence is that user-defined names must be either
strings or symbols (of the Scala class Symbol), and to get to their values, in
case they represent event/fact parameters, the user has to apply get functions.
A more elegant solution could potentially be achieved by defining the DSL as a
syntactic extension of Scala, for example using the SugarScala tool available
at [35] (part of SugarJ). Finally, the intention is to deploy LogFire more
broadly, within MSL, as well as within other missions, as a general approach to
log analysis and comprehension at JPL.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittamplan, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: OOPSLA 2005. ACM Press (2005)

2. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan-
tified event automata: towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012)

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring with LTL
in eagle. In: Parallel and Distributed Systems: Testing and Debugging (PADTAD
2004), Santa Fee, New Mexico, USA, vol. 17. IEEE Computer Society, April 2004

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

5. Barringer, H., Havelund, K.: TraceContract: A scala dsl for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

6. Barringer, H., Havelund, K., Kurklu, E., Morris, R.: Checking flight rules with
TraceContract: application of a scala DSL for trace analysis. In: Scala Days 2011,
Stanford University, California (2011)

7. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

8. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010)

9. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013)

10. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-
grams. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp.
208–223. Springer, Heidelberg (2006)

11. Bodden, E.: MOPBox: a library approach to runtime verification. In: Khurshid, S.,
Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 365–369. Springer, Heidelberg (2012)

16 K. Havelund and R. Joshi

12. Bostock, M., Ogievetsky, V., Heer, J.: D3: Data-driven documents. IEEE Trans.
Vis. Comput. Graph. 17, 2301–2309 (2011)

13. Clips website. http://clipsrules.sourceforge.net
14. D3 website. http://d3js.org
15. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Ábrahám,

E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 341–356. Springer,
Heidelberg (2014)

16. Doorenbos, R.B.: Production matching for large learning systems, Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA (1995)

17. Drools website. http://www.jboss.org/drools
18. Drools functional programming extensions website. https://community.jboss.org/

wiki/FunctionalProgrammingInDrools
19. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match

problem. Artif. Intell. 19, 17–37 (1982)
20. Fusco, M.: Hammurabi - a Scala rule engine. In: Scala Days 2011, Stanford Uni-

versity, California (2011)
21. Goubault-Larrecq, J., Olivain, J.: A smell of Orchids. In: Leucker, M. (ed.) RV

2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008)
22. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts

with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)
23. Havelund, K.: Data automata in Scala. In: Leucker, M., Wang, J., (eds.) Proceed-

ings of the 8th International Symposium on Theoretical Aspects of Software Engi-
neering, TASE 2014, Changsha, China, 1–3 September. IEEE Computer Society
Press (2014)

24. Havelund, K.: Monitoring with data automata. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part II. LNCS, vol. 8803, pp. 254–273. Springer, Heidelberg (2014)

25. Havelund, K.: Rule-based runtime verification revisited. Softw. Tools Technol.
Transf. (STTT) 17(2), 143–170 (2015)

26. Havelund, K., Joshi, R.: Comprehension of spacecraft telemetry using hierarchical
specifications of behavior. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol.
8829, pp. 187–202. Springer, Heidelberg (2014)

27. Jess website. http://www.jessrules.com/jess
28. Luckham, D. (ed.): The Power of Events: An Introduction to Complex Event

Processing in Distributed Enterprise Systems. Addison-Wesley, Reading (2002)
29. Lunar Atmosphere Dust Environment Explorer (LADEE) mission website. http://

www.nasa.gov/mission pages/LADEE/main
30. Makovsky, A., Ilott, P., Taylor, J.: Mars science laboratory telecommunications sys-

tem design. Descanso Design and Performance Summary Series, Article 14 (2009)
31. Mars Science Laboratory (MSL) mission website. http://mars.jpl.nasa.gov/msl
32. Meredith, P., Jin, D., Griffith, D., Chen, F., Rou, G.: An overview of the MOP

runtime verification framework. Softw. Tools Technol. Transf. (STTT) 14(3), 249–
289 (2012)

33. Rooscaloo website. http://code.google.com/p/rooscaloo
34. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Proceedings of the

5th International Workshop on Runtime Verification (RV 2005), vol. 144, no. 4,
ENTCS, pp. 109–124. Elsevier (2006)

35. SugarJ website. http://www.student.informatik.tu-darmstadt.de/∼xx00seba/
projects/sugarj

http://clipsrules.sourceforge.net
http://d3js.org
http://www.jboss.org/drools
https://community.jboss.org/wiki/
https://community.jboss.org/wiki/
http://www.jessrules.com/jess
http://www.nasa.gov/mission_pages/LADEE/main
http://www.nasa.gov/mission_pages/LADEE/main
http://mars.jpl.nasa.gov/msl
http://code.google.com/p/rooscaloo
http://www.student.informatik.tu-darmstadt.de/~xx00seba/projects/sugarj
http://www.student.informatik.tu-darmstadt.de/~xx00seba/projects/sugarj

Safety, Dependability and Performance Analysis
of Aerospace Systems

Thomas Noll(B)

Software Modeling and Verification Group,
RWTH Aachen University, Aachen, Germany

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/

Abstract. The size and complexity of software in spacecraft is increas-
ing exponentially, and this trend complicates its validation within the
context of the overall spacecraft system. Current validation methods
are labour-intensive as they rely on manual analysis, review and inspec-
tion. In this paper we give an overview of an integrated system-software
co-engineering approach focusing on a coherent set of specification and
analysis techniques for evaluation of system-level correctness, safety,
dependability and performability of on-board computer-based aerospace
systems. It features both a tailored modelling language and toolset for
supporting (semi-)automated validation activities. Our modelling lan-
guage is a dialect of the Architecture Analysis and Design Language,
AADL, and enables engineers to specify the system, the software, and
their reliability aspects. The COMPASS toolset employs state-of-the-art
model checking techniques, both qualitative and probabilistic, for the
analysis of requirements related to functional correctness, safety, depend-
ability and performance.

1 Introduction

Building modern aerospace systems is highly demanding. They should be
extremely dependable, offering service without interruption (i.e., without fail-
ure) for a very long time – typically years or decades. Whereas “five nines”
dependability, i.e., a 99.999 % availability, is satisfactory for most safety-critical
systems, for aerospace on-board systems it is not. Faults are costly and may
severely damage reputations. Dramatic examples are known. Fatal defects in
the control software of the Ariane-5 rocket and the Mars Pathfinder have led to
headlines in newspapers all over the world. Rigorous design support and analy-
sis techniques are called for. Bugs must be found as early as possible in the
design process while performance and reliability guarantees need to be checked

We thank all co-workers in the COMPASS project for their contributions, including
the groups of Alessandro Cimatti (FBK, Trento, IT), Xavier Olive (Thales Ale-
nia Space, FR), David Lesens (Airbus Defence and Space, FR) and Yuri Yushtein
(ESA/ESTEC, NL). This research has been funded by the European Space Agency
via several grants.

c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 17–31, 2015.
DOI: 10.1007/978-3-319-17581-2 2

18 T. Noll

whenever possible. The effect of fault diagnosis, isolation and recovery must be
quantifiable.

Tailored effective techniques exist for specific system-level aspects. Peer review-
ing and extensive testing detect most of the software bugs, performance is checked
using queueing networks or simulation, and hardware safety levels are analysed
using a profiled Failure Modes and Effects Analysis (FMEA) approach. Fine. But
how is the consistency between the analysis results ensured? What is the relevance
of a zero-bug confirmation if its analysis is based on a system view that ignores
critical performance bottlenecks? There is a clear need for an integrated, coher-
ent approach! This is easier said than done: the inherent heterogeneous character
of on-board systems involving software, sensors, actuators, hydraulics, electrical
components, etc., each with its own specific development approach, severely com-
plicates this.

The COMPASS project [15] advances the system-software perspective by
providing means for its validation in the early design phases, such that system
architecture, software architecture, and their interfacing requirements are aligned
with the overall functional intents and risk tolerances. Validation in the current
practice is labour-intensive and consists mostly of manual analysis, review and
inspection. We improve upon this by adopting a model-based approach using
formal methods. In COMPASS, the system, the software and its reliability mod-
els are expressed in a single modelling language. This language originated from
the need for a language with a rigorous formal semantics, and it is a dialect of
the Architecture Analysis & Design Language (AADL). Models expressed in our
AADL dialect are processed by the COMPASS toolset that automates analyses
which are currently done manually. The automated analyses allow studying func-
tional correctness of discrete, real-time and hybrid aspects under degraded modes
of operation, generating safety & dependability validation artefacts, performing
probabilistic risk assessments, and evaluating effectiveness of fault management.
The analyses are mapped onto discrete, symbolic and probabilistic model check-
ers, but all of them are completely hidden away from the user by appropriate
model-transformations. The COMPASS toolset is thus providing an easy-to-use
push-button analysis technology.

The first ideas and concepts for the development of the COMPASS toolset
emerged in 2007, due to a series of significant advances in model checking [2], and
especially in its probabilistic counterpart [1]. These advances opened prospects
for an integrated model-based approach towards system-software correctness val-
idation, safety & dependability assessment and performance evaluation during
the design phase. Its technology readiness level was estimated at level 1, i.e.
basic principles were observed and reported. The European Space Agency (ESA)
issued a statement of work to improve system-software co-engineering and this
was commissioned to the COMPASS consortium consisting of RWTH Aachen
University, Fondazione Bruno Kessler and Thales Alenia Space. Development
started soon after, and in 2009 a COMPASS toolset prototype was delivered
to the European space industry. Maturation was followed by subsystem-level

Safety, Dependability and Performance Analysis of Aerospace Systems 19

case studies performed by Thales Alenia Space [10]. As of 2012, two large pilot
projects took place in ESA for a spacecraft in development. This marked the
maturation of the COMPASS toolset to early level 4, namely laboratory-tested.
This paper summarises the background work. Altogether, it describes the cur-
rent state of the art in system-software spacecraft co-engineering, ranging from
the used techniques, to the tools and the conducted industrial projects.

The remainder is organised as follows. An introduction to the developed
modelling language is given in Sect. 2, followed by an overview of the toolset
and its supported analyses in Sect. 3. Section 4 draws a conclusion about the
evaluation activities.

2 Modelling Using an AADL Dialect

The Architecture Analysis and Design Language (AADL) [24,35] is an indus-
try standard for modelling safety-critical system architectures and it is devel-
oped and governed by the Society of Automotive Engineers (SAE). Although
standardized by the SAE, it is backed by the aerospace community as well.
AADL provides a cohesive and uniform approach to model heterogeneous sys-
tems, consisting of software (e.g., processes and threads) and hardware (e.g.,
processors and buses) components, and their interactions. Our variant of AADL
was designed to meet the needs of the European space industry. It extends a
core fragment of AADL 1.0 [32] by supporting the following essential features:

– Modelling both the system’s nominal and faulty behaviour. To this aim, AADL
provides primitives to describe software and hardware faults, error propaga-
tion (i.e., turning fault occurrences into failure events), sporadic (transient)
and permanent faults, and degraded operation modes (by mapping failures
from architectural to service level).

– Modelling (partial) observability and the associated observability requirements.
These notions are essential to deal with diagnosability and Fault Detection, Iso-
lation and Recovery (FDIR) analyses.

– Specifying timed and hybrid behaviour. In particular, to analyze continu-
ous physical systems such as mechanics and hydraulics, our modelling lan-
guage supports continuous real-valued variables with (linear) time-dependent
dynamics.

– Modelling probabilistic aspects. These are important to specify random faults
and systems repairs with stochastic timing.

In the following, we present the capabilities of our AADL dialect using a
running example. A complete AADL specification consists of three parts, namely
a description of the nominal behaviour, a description of the error behaviour and
a fault injection specification that describes how the error behaviour influences
the nominal behaviour. These three parts are discussed below. Due to space
constraints, we refer the interested reader to [12] for a description of the formal
semantics.

20 T. Noll

2.1 Nominal Behaviour

An AADL model is hierarchically organized into components, distinguished into
software (processes, threads, data), hardware (processors, memories, devices,
buses), and composite components (called systems). Components are defined
by their type (specifying the functional interfaces as seen by the environment)
and their implementation (representing the internal structure). An example of
a component’s type and implementation for a simple battery device [8] is shown
in Fig. 1.

The component type describes the ports through which the component com-
municates. For example, the type interface of Fig. 1 features three ports, namely
an outgoing event port empty which indicates that the battery is about to become
discharged, an incoming data port tryReset which indicates that the battery
device should (attempt to) reset, and an outgoing data port voltage which
makes its current voltage level accessible to the environment.

A component implementation defines its subcomponents, their interaction
through (event and data) port connections, the (physical) bindings at runtime,
the operational behaviour via modes, the transitions between them, which are
spontaneous or triggered by events arriving at the ports, and the timing and
hybrid behaviour of the component. For example, the implementation of Fig. 1
specifies the battery to be in the charged mode whenever activated, with an
energy level of 100 % as indicated by the default value of 1.0. This level is
continuously decreased by 2 % (of the initial amount) per time unit (energy’
denotes the first derivative of energy) until a threshold value of 20 % is reached,
upon which the battery changes to the depleted mode. This mode transition
triggers the empty output event, and the loss rate of energy is increased to
3 %. Moreover, the voltage value is regularly computed from the energy level
(ranging between 6.0 and 4.0 [volts]) and made accessible to the environment
via the corresponding outgoing data port. In addition, the battery reacts to
the tryReset port to decide when a reset operation should be performed in
reaction to faulty behaviour (see the description of error models below).

In general, the mode transition system—basically a finite-state automaton—
describes how the component evolves from mode to mode while performing
events. Invariants on the values of data components (such as “energy >= 0.2”
in mode charged) restrict the residence time in a mode. Trajectory equations
(such as those associated with energy’) specify how continuous variables evolve
while residing in a mode. This is akin to timed and hybrid automata [28]. Here
we assume that all invariants are linear. Moreover we constrain the derivatives
occurring in trajectory equations to real constants, i.e., the evolution of contin-
uous variables is described by simple linear functions.

A mode transition is given by m − [e when g then f]− > m′. It asserts
that the component can evolve from mode m to mode m′ upon occurrence of
event e (the trigger event) provided that guard g, a Boolean expression that
may depend on the component’s (discrete and continuous) data elements, holds.
Here “data elements” refers to (both incoming and outgoing) data ports and

Safety, Dependability and Performance Analysis of Aerospace Systems 21

Battery

empty: ;

tryReset: ;

voltage: 6.0;

Battery;

Battery.Imp

energy: 1.0;

charged: energy’ = -0.02 energy >= 0.2;

depleted: energy’ = -0.03 energy >= 0.0;

charged -[voltage := 2.0*energy+4.0]-> charged;

charged -[tryReset]-> charged;

charged -[empty energy = 0.2]-> depleted;

depleted -[voltage := 2.0*energy+4.0]-> depleted;

depleted -[tryReset]-> depleted;

Battery.Imp;

Fig. 1. Specification of a battery component.

Power

alert: ;

Power;

Power.Imp

batt1: Battery (primary);

batt2: Battery (backup);

mon: Monitor;

batt1.voltage -> mon.voltage (primary);

batt2.voltage -> mon.voltage (backup);

mon.alert -> alert;

mon.alert -> batt1.tryReset (primary);

mon.alert -> batt2.tryReset (backup);

primary: ;

backup: ;

primary -[batt1.empty]-> backup;

backup -[batt2.empty]-> primary;

Power.Imp;

Fig. 2. The complete power system.

22 T. Noll

Monitor

voltage: ;

alert: ;

Monitor;

Monitor.Imp

alert := (voltage < 4.5);

Monitor.Imp;

Fig. 3. Specification of the monitor.

data subcomponents of the respective component. On transiting, the effect f
which may update data subcomponents or outgoing data ports (like voltage)
is applied. The presence of event e, guard when g and effect then f is optional.
If absent, e defaults to an internal event, g to true, and f to the empty effect.

Mode transitions may give rise to modifications of a component’s configu-
ration: subcomponents can become (de-)activated and port connections can be
(de-)established. This depends on the in modes clause, which can be declared
along with port connections and subcomponents. This is demonstrated by the
specification in Fig. 2, which shows the usage of the battery component in the
context of a redundant power system. It contains two instances of the battery
device, namely batt1 and batt2, being respectively active in the primary and
the backup mode. The mode switch that initiates reconfiguration is triggered by
an empty event arriving from the battery that is currently active. The data ports
are reconfigured too in this example. The voltage port of batt2 is connected
to the overall power system once switched to the backup mode.

A similar reconfiguration is also performed for the alerts from the monitor
component, which checks the current voltage level and raises an alarm if it falls
below a critical threshold of 4.5 [volts]. Its specification is shown in Fig. 3; it
employs another modelling concept, a so-called flow. A flow establishes a direct
dependency between an outgoing data port of a component and (some of) its
incoming data ports, meaning that a value update of one of the given incoming
data ports immediately causes a corresponding update of the outgoing data port.

2.2 Error Behaviour

Error models are an extension to the specification of nominal models [34] and
are used to conduct safety and dependability analyses. For modularity, they are
defined separately from nominal specifications. Akin to nominal models, an error
model is defined by its type and its associated implementation.

An error model type defines an interface in terms of error states and (incoming
and outgoing) error propagations. Error states are employed to represent the
current configuration of the component with respect to the occurrence of errors.
Error propagations are used to exchange error information between components.
They are similar to input and output event ports, but differ in that error events

Safety, Dependability and Performance Analysis of Aerospace Systems 23

BatteryFailure

ok: ;

dead: ;

resetting: ;

batteryDied: ;

BatteryFailure;

BatteryFailure.Imp

fault: 0.001;

works: 0.2;

fails: 0.8;

ok -[fault]-> dead;

dead -[batteryDied]-> dead;

dead -[]-> resetting;

resetting -[works]-> ok;

resetting -[fails]-> dead;

BatteryFailure.Imp;

Fig. 4. Specification of the battery error model.

are matched by identifier rather than by an explicit declaration of an event port
connection.

An error model implementation provides the structural details of the error
model. It is defined by a (probabilistic) machine over the error states declared
in the error model type. Transitions between states can be triggered by error
events, reset events, and error propagations.

Figure 4 presents a basic error model for the battery device. It defines a
probabilistic error event, fault, which occurs once every 1000 time units on
average. Whenever this happens, the error model changes into the dead state.
In the latter, the battery failure is signalled to the environment by means of the
outgoing error propagation batteryDied. Moreover, the battery is enabled to
receive a reset event from the nominal model to which the error behaviour is
attached. It causes a transition to the resetting state, from which the battery
recovers with a probability of 20 %, and returns to the dead state otherwise.

2.3 Fault Injection

As error models bear no relation with nominal models, an error model does not
influence the nominal model unless they are linked through fault injection.

A fault injection describes the effect of the occurrence of an error on the
nominal behaviour of the system. More concretely, it specifies the value update
that a data element of a component implementation undergoes when its associ-
ated error model enters a specific error state. To this aim, each fault injection
has to be given by the user by specifying three parts: a state s in the error model

24 T. Noll

(such as dead in Fig. 4), an outgoing data port or subcomponent d in the nominal
model (such as voltage in Fig. 1), and the fault effect given by the expression a
(such as the value 0, indicating the collapse of power). Multiple fault injections
between error models and nominal models are possible.

The automatic procedure that integrates both models and the given fault
injections, the so-called model extension, works as follows. The principal idea is
that the nominal and error models are running concurrently. That is, the state
space of the extended model consists of pairs of nominal modes and error states,
and each transition in the extended model is due to a nominal mode transition,
an error state transition, or a combination of both (in case of a reset operation).
The aforementioned fault injection becomes enabled whenever the error model
enters state s. In this case the assignment d := a is carried out, i.e., the data
subcomponent d is assigned with the fault effect a. This error effect is maintained
as long as the error model stays in state s, overriding possible assignments to
d in the nominal model. When s is left, the fault injection is disabled (though
another one may be enabled). An example of an extended model can be found
in [12].

3 The COMPASS Toolset

The COMPASS toolset is the result of a significant implementation effort car-
ried out by the COMPASS Consortium. The GUI and most subcomponents
are implemented in Python, using the PyGTK library. Pre-existing components,
such as the NuSMV and MRMC model checker, are instead written in C. Overall,
the core of the toolset consists of about 100,000 lines of Python code. Figure 5
shows the functionality of the toolset.

COMPASS takes as input one or more AADL models, and a set of properties.
The latter are provided in the form of instantiated property patterns [17,25],
which are templates containing placeholders that have to be filled in by the
user. The COMPASS toolset provides templates for the most frequently used
patterns, that ease property specifications by non-experts through hiding the
details of the underlying temporal logic. The tool generates several outputs,
such as traces, fault trees and FMEA tables, diagnosability and performability
measures.

The toolset builds upon the following main components. NuSMV [14,23]
(New Symbolic Model Verifier) is a symbolic model checker that supports state-
of-the-art verification techniques such as BDD-based and SAT-based verifica-
tion for CTL and LTL [2]. MRMC [30,31] (Markov Reward Model Checker) is
a probabilistic model checker that supports the analysis of discrete-time and
continuous-time Markov reward models. Specifications are written in PCTL
(Probabilistic Computation Tree Logic) and CSL (Continuous Stochastic Logic
[1], a probabilistic real-time version of CTL). SigRef [37] is used to minimize,
amongst others, Interactive Markov Chains (IMC) [29] based on various notions
of bisimulation. It is a symbolic tool using multi-terminal BDD representations of
IMCs and applies signature-based minimization algorithms. A walkthrough of
the toolset in terms of its screenshots in shown in Fig. 6.

Safety, Dependability and Performance Analysis of Aerospace Systems 25

Requirements
Model

ExtendedModel
Extension

Traces
(Counterex.)

Trees
Fault

Tables
FMEA

Requirements
Observability

Effectiveness
FDIR

Measures
Performability

Counterex.
Witnesses/

Fault
Injections

Input

Nominal
Model

Model
Error

Model
Checking

Validation

Tool

Output

Fig. 5. Functional view of the COMPASS platform.

The tool also supports a graphical notation of our AADL dialect, that is
a derivation of the AADL graphical notation [33]. We developed a graphical
drawing editor enabling engineers to construct models visually using the adopted
graphical notation. The editor is called the COMPASS Graphical Modeller and
is part of the COMPASS toolset.

3.1 Functional Correctness

COMPASS supports random and guided model-based simulation of AADL mod-
els. Guided simulation can be performed by choosing either the next transition
to be taken, or a target value for one or more variables. The generated traces
can be inspected using a trace manager that displays the values of the model
variables of interest (filtering is possible) for each step.

Property verification is based on model checking [2], an automated technique
that verifies whether a property expressed in temporal logic, holds for a given
model. Symbolic techniques [3,4,27] are used to tackle the problem of state space
explosion. COMPASS relies on the NuSMV model checker, which supports both
BDD-based and SAT-based verification for finite-state systems, and SMT-based
verification techniques for timed and hybrid systems, based on the MathSAT
solver [7,22]. On refutation of a property, a counterexample is generated, showing
an execution trace of the model violating the property. An example of this is
shown in Fig. 6(d). Finally, it is possible to run deadlock checking, in order to
pinpoint deadlocks (i.e., states with no outgoing transitions) in the model.

26 T. Noll

(a) Adding a fault injection. (b) Adding a property.

(c) A generated fault tree. (d) A model-checking counterexample.

Fig. 6. Walkthrough of the COMPASS toolset.

3.2 Safety Assessment

COMPASS implements model-based safety assessment techniques, based on sym-
bolic model checking [9,21], and supports traditional techniques such as Failure
Mode and Effects Analysis (FMEA) [19] and Fault Tree Analysis (FTA) [18].
FMEA is an inductive technique that starts by identifying a set of (combina-
tions of) failure modes and, using forward reasoning, assesses their impact on
a set of system properties. The results are summarised in an FMEA table. It is
also possible to generate dynamic FMEA tables, namely to enforce an order of
occurrence between failure modes. FTA is a deductive technique, which, given a
top-level event (TLE), i.e., the specification of an undesired condition, constructs
all possible chains of basic faults that contribute to its occurrence. Pictorially,
these chains are organized in a fault tree with a two-layer logical structure, corre-
sponding to the disjunction of its minimal cut sets [9] (MCSs), where each MCS is
a conjunction of basic faults. COMPASS also supports the generation of dynamic
fault trees [6], where ordering constraints between basic faults are represented
using priority AND (PAND) gates. Figure 6c depicts a simple fault tree for the

Safety, Dependability and Performance Analysis of Aerospace Systems 27

power system model of Sect. 2, where the top level event is “batt1.voltage <
4.0 and batt2.voltage < 4.0”. The tree shows that the only cause that can
lead to the occurrence of TLE is when both batteries die.

3.3 Diagnosability and FDIR Analysis

The COMPASS toolset supports diagnosability and FDIR (Fault Detection,
Isolation and Recovery) effectiveness analysis. These analyses work under the
hypothesis of partial observability. Variables and ports in our AADL dialect can
be declared to be observable (see, e.g., the data port alert in Fig. 2).

Diagnosability analysis investigates the possibility for an ideal diagnosis sys-
tem to infer accurate and sufficient run-time information on the behaviour of
the observed system. The COMPASS toolset follows the approach described in
[13], where the violation of a diagnosability condition is reduced to the search
of critical pairs in the so-called twin plant model, i.e., a pair of executions that
are observationally indistinguishable but hide conditions that should be distin-
guished. As an example, property “batt1.voltage < 4.0 and batt2.voltage
< 4.0” is not diagnosable, as the alert observable does not allow to distin-
guish the case where the batteries’ voltages are low from the case where they are
depleted through use. If we add the observable “alert2 := (voltage < 4.0)”,
then the property becomes diagnosable. Using techniques similar to those used
for computing MCSs, it is also possible to automatically synthesize a set of
observables that ensure diagnosability of a given model [5].

FDIR effectiveness analysis is a set of analyses carried out on an existing fault
management subsystem. Fault detection is concerned with detecting whether a
given system is malfunctioning, namely searching for observable signals such
that every occurrence of the fault will eventually make them true. As an exam-
ple, observable alert is a detection means for property “batt1.voltage< 4.0
and batt2.voltage < 4.0”. Fault isolation analysis aims at identifying the spe-
cific cause of malfunctioning. It generates a fault tree that contains the minimal
explanations that are compatible with the observable being true. As an example,
observable alert has two possible failure explanations: either batt1 has died, or
batt2 has died. The latter failure, that batt2 has died, is not dependent on the
death of batt1, since the switch-over to the second battery can also occur by
natural depletion of the first battery. Finally, fault recovery analysis is used to
check whether a user-specified recoverability property holds. For instance, prop-
erty “always (batt1.voltage < 4.4 implies eventually batt1.voltage >
5.5)” is true in the nominal model, but it is false when error behaviour is taken
into account, as a battery may die.

3.4 Performability Analysis

We use probabilistic model checking techniques [2, Ch. 10] for analyzing a model
on its performance. The COMPASS toolset in particular supports performance
properties expressed in the probabilistic pattern system by [25]. It allows for

28 T. Noll

the formal specification of steady-state, transient probabilities, timed reachabil-
ity probabilities and more intricate performance measures such as combinations
thereof. Examples of typical performance parameters are “the probability that
the first battery dies within 100 h” or “the probability that both batteries die
within the mission duration”. These properties have a direct mapping to Con-
tinuous Stochastic Logic (CSL) [1] and are input to the underlying probabilistic
model checker.

The probabilistic model checker furthermore requires a Markov model as
input. This is obtained from the extended model through several steps. First,
the extended model’s reachable state space is generated through an exhaustive
symbolic exploration. Second, the probabilistic rates as specified in the error
models (cf. Sect. 2.2) are interwoven through the state space by replacing the
transition label with the associated probabilistic rate. The resulting state space
is a symbolic representation of an Interactive Markov Chain, i.e., a Continuous-
Time Markov Chain (CTMC) that may exhibit non-determinism [29]. This IMC
is passed through the third phase, in which its size is reduced using weak bisim-
ulation minimization [16,36]. In this last step, the IMC may turn into a CTMC.
In the final phase the CSL formulae are extracted from the performance require-
ments and then together with the CTMC are fed to the MRMC probabilistic
model checker, to compute the desired probabilities. The result is a graph show-
ing the cumulative distribution function over the time horizon specified in the
performance requirement. In case the resulting IMC from the model does not
yield a CTMC after bisimulation minimization, new analysis techniques using
real-time stochastic games can be used [26]. These techniques are planned to be
integrated into the toolset. Similar techniques are also used for fault tree eval-
uation, i.e., computing the probability of the top-level event in dynamic fault
trees [6].

4 Industrial Evaluation

The COMPASS approach and toolset was intensively tested on serious industrial
cases by Thales Alenia Space in Cannes (France). These cases include thermal
regulation in satellites and satellite mode management with its associated FDIR
strategy. It was concluded that the modelling approach based on AADL pro-
vides sufficient expressiveness to model all hardware and software subsystems in
satellite avionics. The hierarchical structure of specifications and the component-
based paradigm enables the reuse of models. Also incremental modelling is very
well supported. The Reliability, Availability, Maintainability and Safety (RAMS)
analyses as provided by the toolset were found to be mature enough to be
adopted by industry, indicating that the integrated COMPASS approach sig-
nificantly reduces the time and cost for safety analysis compared to traditional
on-board design processes [38]. Those findings were confirmed by applying our
formal modelling and analysis techniques on a regular industrial-size design of a
modern satellite platform in parallel with the conventional software development
of the platform [11,20].

Safety, Dependability and Performance Analysis of Aerospace Systems 29

References

1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Log. Methods Comput. Sci. 2(5), 1–64 (2006)

5. Bittner, B., Bozzano, M., Cimatti, A., Olive, X.: Symbolic synthesis of observ-
ability requirements for diagnosability. In: Proceedings of 11th Symposium on
Advanced Space Technologies in Robotics and Automation (ASTRA 2011),
ESA/ESTEC (2011) http://robotics.estec.esa.int/ASTRA/Astra2011/Astra2011
Proceedings.zip

6. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional and extensible
framework for dynamic fault tree analysis. In: Dependable and Secure Computing,
pp. 128–143. IEEE (2010)

7. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz,
S., Sebastiani, R.: Mathsat: tight integration of SAT and mathematical decision
procedures. J. Autom. Reasoning 35, 265–293 (2005)

8. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009)

9. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic fault tree analysis for reactive
systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007)

10. Bozzano, M., Cavada, R., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Olive,
X.: Formal verification and validation of aadl models. In: Embedded Real Time
Software and Systems Conference, AAAF & SEE (2010)

11. Bozzano, M., Cimatti, A., Katoen, J.P., Katsaros, P., Mokos, K., Nguyen, V.Y.,
Noll, T., Postma, B., Roveri, M.: Spacecraft early design validation using formal
methods. Reliab. Eng. Syst. Saf. 132, 20–35 (2014)

12. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability, and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011)

13. Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via sym-
bolic model checking. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp. 363–369. Morgan Kaufmann (2003)

14. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

15. COMPASS Consortium: The COMPASS project web site. http://compass.
informatik.rwth-aachen.de/

16. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309–315 (2003)

http://robotics.estec.esa.int/ASTRA/Astra2011/Astra2011_Proceedings.zip
http://robotics.estec.esa.int/ASTRA/Astra2011/Astra2011_Proceedings.zip
http://compass.informatik.rwth-aachen.de/
http://compass.informatik.rwth-aachen.de/

30 T. Noll

17. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-
state verification. In: International Conference on Software Engineering (ICSE),
pp. 411–420. IEEE CS Press (1999)

18. ECSS: Space product assurance: Fault tree analysis - adoption notice ECSS/IEC
61025. ECSS Standard Q-ST-40-12C, European Cooperation for Space Standard-
ization, July 2008

19. ECSS: Space product assurance: Failure modes, effects (and criticality) analysis
(FMEA/FMECA). ECSS Standard Q-ST-30-02C, European Cooperation for Space
Standardization, March 2009

20. Esteve, M.A., Katoen, J.P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal cor-
rectness, safety, dependability and performance analysis of a satellite. In: 34th
International Conference on Software Engineering (ICSE 2012), pp. 1022–1031.
ACM and IEEE CS Press (2012)

21. FBK: FSAP: The formal safety analysis platform. http://fsap.fbk.eu/
22. FBK: MathSAT. http://mathsat.fbk.eu
23. FBK: NuSMV: A new symbolic model checker. http://nusmv.fbk.eu
24. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: an introduction

to the sae architecture analysis & design language. Addison-Wesley Professional,
Boston (2012)

25. Grunske, L.: Specification patterns for probabilistic quality properties. In: Inter-
national Conference on Software Engineering (ICSE), pp. 31–40. ACM (2008)

26. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 8–23. Springer, Heidelberg (2012)

27. Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model
checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 98–111. Springer, Heidelberg (2005)

28. Henzinger, T.: The theory of hybrid automata. In: IEEE Symposium on Logic in
Computer Science (LICS), pp. 278–292. IEEE CS Press (1996)

29. Hermanns, H.: Interactive Markov chains in practice. In: Hermanns, H. (ed.) Inter-
active Markov Chains. LNCS, vol. 2428, p. 129. Springer, Heidelberg (2002)

30. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

31. MRMC Consortium: MRMC – The Markov Reward Model Checker. http://www.
mrmc-tool.org/

32. SAE: Architecture Analysis and Design Language (AADL). SAE Standard AS5506,
International Society of Automotive Engineers, May 2004

33. SAE: Architecture Analysis and Design Language (AADL) Annex, Volume 1,
Annex A: Graphical AADL Notation. SAE Standard AS5506/1, International Soci-
ety of Automotive Engineers, June 2006

34. SAE: Architecture Analysis and Design Language Annex (AADL), Volume 1,
Annex E: Error Model Annex. SAE Standard AS5506/1, International Society
of Automotive Engineers, June 2006

35. SAE: Architecture Analysis and Design Language (AADL) Rev. B. SAE Standard
AS5506B, International Society of Automotive Engineers, September 2012

36. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010)

http://fsap.fbk.eu/
http://mathsat.fbk.eu
http://nusmv.fbk.eu
http://www.mrmc-tool.org/
http://www.mrmc-tool.org/

Safety, Dependability and Performance Analysis of Aerospace Systems 31

37. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref – a
symbolic bisimulation tool box. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 477–492. Springer, Heidelberg (2006)

38. Yushtein, Y., Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V., Noll, T., Olive,
X., Roveri, M.: System-software co-engineering: dependability and safety perspec-
tive. In: Proceedings of the 4th IEEE International Conference on Space Mission
Challenges for Information Technology (SMC-IT 2011), pp. 18–25. IEEE CS Press
(2011)

Formal Verification of Distributed Task
Migration for Thermal Management in On-Chip

Multi-core Systems Using nuXmv

Syed Ali Asadullah Bukhari1, Faiq Khalid Lodhi1(B), Osman Hasan1,
Muhammad Shafique2, and Jörg Henkel2

1 School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{ali.asadullah,faiq.khalid,osman.hasan}@seecs.nust.edu.pk
2 Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT),

Karlsruhe, Germany
{muhammad.shafique,henkel}@kit.edu

Abstract. With the growing interest in using distributed task migration
algorithms for dynamic thermal management (DTM) in multi-core chips
comes the challenge of their rigorous verification. Traditional analysis
techniques, like simulation and emulation, cannot cope with the design
complexity and distributed nature of such algorithms and thus compro-
mise on the rigor and accuracy of the analysis results. Formal methods,
especially model checking, can play a vital role in alleviating these issues.
Due to the presence of continuous elements, such as temperatures, and
the large number of cores running the distributed algorithms in this
analysis, we propose to use the nuXmv model checker to analyze distrib-
uted task migration algorithms for DTM. The main motivations behind
this choice include the ability to handle the real numbers and the scal-
able SMT-based bounded model checking capabilities in nuXmv that
perfectly fit the stability and deadlock analysis requirements of the dis-
tributed DTM algorithms. The paper presents the detailed analysis of a
state-of-the-art task migration algorithm of distributed DTM for many-
core systems. The functional and timing verification is done on a larger
grid size of 9×9 cores, which is thermally managed by the selected DTM
approach. The results indicate the usefulness of the proposed approach,
as we have been able to catch a couple of discrepancies in the original
model and gain many new insights about the behavior of the algorithm.

Keywords: Model checking · Thermal management · Task migration ·
Multi-core architectures

1 Introduction

The ever-increasing need of the computing power and technological advances
have led to many cores on a chip [33,39]. This accelerated increase, accom-
panied by higher power densities, has opened up the challenge of coping with
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 32–46, 2015.
DOI: 10.1007/978-3-319-17581-2 3

Formal Verification of dDTM using nuXmv 33

the elevated chip temperatures, which pose serious threats to the reliability of
the computing systems. Various Thermal Management (TM) techniques [1,8,21]
have recently been proposed to overcome these issues. In particular, the Dynamic
Thermal management (DTM) [27,40] for multi-core systems via the task migra-
tion mechanism has been identified as a very promising solution to the heating
problems in many-core systems with high core integration by the ITRS roadmap
of 2013 [18].

The DTM techniques can be broadly classified into two categories: central
and distributed [19]. Central DTM (cDTM) is done by a central controller, which
is responsible for the overall thermal management of the chip and thus, has the
visibility of all the global parameters, such as the core temperatures, of the
system [7]. This approach has the inherent issue of scalability as the cDTM
often encounters performance degradation while dealing with many-core sys-
tems [12,34,36]. On the other hand, Distributed DTM (dDTM) manages the
heating issues of the chip by employing several thermal management agents as
opposed to a single controller [19,34]. An agent in a distributed system perceives
the environment through communication with other agents and can take deci-
sions on its own to a certain extent [37]. The obvious gain in this method is
that the need of global knowledge is no longer necessary and thus it resolves
the above-mentioned scalability issue of cDTM. Since the dDTM agents are
not aware of the overall thermal scenario of the complete chip, it is customary
to approximate the required data by information exchange among the neigh-
boring agents only. Based on this information, some dDTM techniques develop
an overall thermal model of the system for predicting the core temperatures
[28,32,41]. If this estimate is above a certain threshold then the task migration
is activated. Other dDTM techniques, like [11,13,23], make the task migration
decisions based on certain algorithms that manipulate the temperature values
obtained from the neighboring cores only. For example, a recent task migration
technique [23], estimates the average temperature of the complete chip by taking
the inputs of the neighboring cores using the distributed signal average tracking
algorithm [4,5].

The need for a thorough analysis of these thermal management techniques
is of vital importance as an inefficient task migration decision may lead to the
creation of hot spots (regions with excessive temperatures within the chip) and
thus endanger the reliability of the chip. Traditionally, the dDTM techniques
are analyzed using either simulations or by running on real hardware systems.
Both of these methods compromise on the accuracy of the analysis results by
analyzing a subset of the possible scenarios only due to their large design-space,
which is in turn caused by the distributed nature of DTM techniques and the
presence of 100 s of cores in the present-age systems where the distrusted DTM
techniques are employed. Moreover, choosing the sample set is another major
issue while analyzing the dDTM techniques due to the enormous amount of
possible options, like the possible temperature values for all the cores are actually
infinite due to the continuous nature of temperature. This non-exhaustiveness
and incompleteness of the analysis may lead to unwanted scenarios, like the
delayed release of the Montecito chip using the Foxton DTM algorithm [10].

34 S.A.A. Bukhari et al.

Formal verification [9] can overcome the above-mentioned inaccuracy limi-
tations of simulation-based verification due to its inherent soundness and com-
pleteness. Given the reactive nature of DTM techniques, model checking has
been used for their analysis [25,29,35]. Moreover, the SPIN model checker [16]
has been recently used in conjunction with Lamport timestamps [22] to analyze
the functional and timing properties of the Thermal-aware Agent-based Power
Economy (TAPE) [17], which is a state-of-the-art agent-based dDTM scheme.
However, this analysis is only done for a 9 core, i.e., 3× 3, core system and
the continuous values of algorithm parameters and the temperature have been
abstracted by discrete values in order to cope with the state-space explosion
problem of model checking [6]. These abstractions limit the usefulness of apply-
ing model checking for analyzing dDTM techniques as the exhaustiveness of the
analysis is compromised to a certain degree.

The main focus of the current paper is to alleviate the above-mentioned
issues encountered in [17]. For this purpose, we propose to use the recently
released nuXmv model checker [3] to analyze dDTM systems. The distinguishing
features of the nuXmv model checker include the ability to handle real numbers
and implicit handling of state counters. Thus, the continuous values in dDTM
approaches can be modeled more appropriately and the timing properties of
the DTM approached can be analyzed without using the Lamport timestamps
explicitly. Moreover, the SAT and SMT based engines of the nuXmv model
checker facilitate analyzing larger models and we can thus analyze large grids of
multi-core systems.

In order to illustrate the usefulness of the proposed approach, this paper pres-
ents the formal analysis of a recently proposed task migration algorithm for hot
spot reduction in many-core systems [23]. The algorithm executes the task migra-
tion based on a simple criterion of comparing the temperature of the core(s) with
the neighboring cores and the average temperature of the chip. The average tem-
perature of the chip in turn is computed using the recently proposed technique of
distributed average estimation for time-varying signals [4]. Besides the generic and
simplistic nature of this algorithm (as it just manipulates the temperature values
from its neighbor to make decision for task migration), another main motivation
for choosing this as our case study is its close relationship with other advanced
task migration algorithms, such as [24]. Moreover, model checking is not suitable
for dDTM techniques like [28,32,41], due to their predictive nature.

2 Preliminaries

In this section, we give a brief introduction to the nuXmv model checker and
the task migration algorithm for many-core systems [23], which we have for-
mally verified in this paper. The intent is to facilitate the understanding of the
rest of the paper for both the dDTM technique design and the formal methods
communities.

Formal Verification of dDTM using nuXmv 35

2.1 nuXmv Model Checker

The nuXmv symbolic model checker [3,31] is a very recent formal verification
tool that extends the NuSMV model checker [30], which in turn is a finite state
transitions model checker. nuXmv extends the capabilities of the NuSMV by
complementing NuSMV’s verification techniques by SAT algorithms for finite
state systems. For infinite state systems, it introduces new data types of Integers
and Reals and also provides the support of Satisfiability Modulo Theories (SMT),
using MathSAT [26], for verification.

The system that needs to be modeled is expressed in the nuXmv language,
which supports the modular programming approach where the overall system is
divided into several modules that interact with one another in the MAIN mod-
ule. The properties to be verified can be specified in nuXmv using the Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL). The LTL specifica-
tions are written in nuXmv with the help of logical operations like, AND (&),
OR (|), Exclusive OR (xor), Exclusive NOR (xnor), implication (->) and equal-
ity (<->), and temporal operators, like Globally (G), Finally (F), next (X) and
until (U). Similarly, the CTL specifications can be written by combining logical
operations with quantified temporal operators, like exists globally (EG), exists
next state (EX) and forall finally (AF). In case a property turns out to be false,
a counterexample in the execution trace of the FSM is provided.

2.2 Task Migration Algorithm for Hot Spot Reduction

The main goal of any dynamic DTM technique is to maintain an acceptable
average temperature across all the cores. This reduction in the temperature does
not always guarantee a balanced distribution that is actually required for the
reduction of thermal hot spots. The algorithm proposed in [23], which is under
consideration in this paper, overcomes this limitation by performing distributed
task migration with the primary goal of achieving thermal reliability and reduced
temperature variance across the chip. The algorithm makes use of the recently
proposed distributed average signal tracking algorithm [4,5], which shows that
the states of all the distributed agents converge to the average value of the
time-varying reference signals. The following equation is used to estimate the
average:

żi(t) = α
∑

j∈Ni

sgn[xj(t) − xi(t)]

xi(t) = zi(t) + ri(t) (1)

where sgn(x) is the signum function defined as:

sgn(x) =

⎧
⎪⎨

⎪⎩

−1 if x < 0
0 if x = 0

1 if x > 0
(2)

36 S.A.A. Bukhari et al.

and zi(t) is the estimated average signal, xi(t) and Ni are the states of the
distributed agent i and its neighborhood, respectively, ri(t) is the reference signal
with bounded derivatives in a finite time and α is a constant value greater than 0.
The task migration algorithm makes use of this fact to estimate the average
temperature of a core, without the need of global knowledge of the temperature
of every core. The task migration policy is then executed only on the cores having
a temperature greater than the estimated average temperature Tavg. As a result,
a considerable amount of data exchange is avoided among the cores and only
necessary task migration is done for effectively reducing the temperature. If a
core has a temperature greater than the estimated Tavg, then the following task
migration criterion is used to check if the task can be migrated from the current
core to some destination core among the neighbors:

1. Tdestination < Tcurrent, where Tdestination and Tcurrent are the temperatures
of the destination and current cores, respectively.

2. Pdestination < Pcurrent, where Pdestination is the task load of the destined core
and Pcurrent is the counterpart of the current core.

3. TNPdestination < TNPcurrent, where TNPdestination and TNPcurrent are the
workloads of the destination and current cores, respectively.

If the temperature T of the core is less than the Tavg, then the task migration
policy is not activated and the core retains its temperature, otherwise the above
mentioned conditions are checked to decide if the task migration is done for a
core or not. All the 4 neighbors are passed through the criterion and tasks are
exchanged if the conditions are met and then checked with the next neighbor.
By the end of the algorithm execution, the most appropriate core is found for
task exchange. The pseudo-code for this algorithm is given in Algorithm 1 [23],
and Fig. 1 presents a typical execution of the algorithm to illustrate the above-
mentioned behavior. The node 0, in Fig. 1, represents the current core and the
neighboring cores are denoted by 1, 2, 3 and 4. Each core is checked for the
satisfiability of the task migration conditions and the right core (shown black)
is chosen. The results from MATLAB implementation of this DTM technique
on a 6× 6 grid show a 30 percent hot spot reduction and smaller temperature
variance [23].

3 Modeling the DTM Algorithm in nuXmv

In this section, we explain the FSM for Algorithm 1 and its modeling in the
language of the nuXmv model checker.

3.1 Our Refinements to the Original Task Migration Algorithm

While modeling Algorithm 1 in the nuXmv language, we had to handle some
of the scenarios that were not mentioned in the paper [23] where the original
algorithm was published. Before going into the implementation details of the
model, we find it appropriate to point out the discrepancies in the existing
algorithm and our proposed solutions.

Formal Verification of dDTM using nuXmv 37

T > Tavg

T1 < Tcurr
P1 < Pcurr

TNP1 < TNPcurr

Core1 <= destined core
T1 <= Tcurr
P1 <= Pcurr

TNP1 <= TNPcurr

Check with Core 2

Check with Core 3

Check with Core 4

Find the core to exchange
tasks

Check with Core 1

Y

Y

N

N

4

0

2

31

(a)
(applicable to any arbitrary core)

4

0

2

31

4

0

2

31

4

0

2

31

4

0

2

31

(b) A graphic example
(the right core is chosen)

Task migration method flow

Fig. 1. A typical execution of the selected algorithm [23].

1. Since the migration algorithm executes concurrently on all the nodes, it may
happen that two different nodes node A and B want to migrate their task to
the same name node C at the same time. The algorithm proposed in [23] does
not resolve this conflict. In our model, we have resolved this conflict by giving
priority to the node that has a lower value of estimated Tavg. This means that
all the nodes not only need to know the temperatures of their neighboring
nodes, but also of the nodes that could possibly migrate tasks with their
neighbors. This revision caters for the conflict resolution but increases the
complexity of the algorithm.

2. Another conflict of a similar nature arises when any node A desires to retain
its value, because its current temperature is lesser than the estimated Tavg,
while one of its neighboring nodes wants to exchange the tasks, based on
the execution of its task migration policy. This situation is also resolved by
priority assignment based on Tavg in our refinement.

38 S.A.A. Bukhari et al.

Algorithm 1. Distributed thermal management algorithm for avoiding hot
spots [23]
Require: Task loads, many-core processor configuration
Ensure: Optimized temperature distribution

Start simulation at room temperature
for each execution cycle do

1. Simulate power traces under different task loads
2. Obtain temperature responses of the many-core microprocessor, and estimate
average temperature using distributed state tracking algorithm
if migration criteria is met then

Perform distributed task migration using the proposed scheme in Fig. 1 core by
core.

end if
end for

3.2 FSM for the Revised Algorithm

The FSM, depicted in Fig. 2, details the working of the refined algorithm for core
0. The temperature, task load, workloads including the neighboring cores and esti-
mated average temperature by each core are represented by Ts, Ps, TNPs and
Tavg, respectively. The temperature of the core is compared with the estimated
average temperature, i.e., Tavg. If the core temperature is greater then the task
migration policy is activated and the migration criterion is executed on the neigh-
boring cores one by one to select the core for the migration. Once, the destination
core is selected, the improved condition for the task migration is checked to finalize
the core selection. The respective conditions are shown in the FSM.

Task
Retention

T0 > Tavg0
T0 > T1
P0 > P1

TNP0 > TNP1

T0 <-> T1
P0 <-> P1

TNP0<->TNP1

T0 > T2
P0 > P2

TNP0 > TNP2

T0 <-> T2
P0 <-> P2

TNP0 <-> TNP2

T0 > T3
P0 > P3

TNP0 > TNP3

T0 <-> T3
P0 <-> P3

TNP0 <-> TNP3

T0 > T4
P0 > P4

TNP0 > TNP4

T0 <-> T4
P0 <-> P4

TNP0 <-> TNP4

Core x. n = Selected Core &
Tavg0 > Tavg of Selected Core
T (sel. core) < Tavg (sel. core)

Neighbor 4

Neighbor 1

Neighbor 3

N
eighbor 2

TRUE

TRUETRUE

T
R

U
E

FALSEFALSE

F
A

L
SEF

A
L

SE

FALSE

TRUE

Task
Migration

FALSE

TRUE

Fig. 2. Finite state machine showing the working of the algorithm for core 0.

Formal Verification of dDTM using nuXmv 39

3.3 Modeling the Average Estimation Algorithm

In order to model Eq. 1, we have to first take the integral of the żi(t), The integral
of a signum function is given as [38]:

∫
sign(x) dx = |x| (3)

and ∫
żi(t) dt =

∫
α

∑

j∈Ni

sgn[xj(t) − xi(t)] dt

Thus, the equation for zi(t) becomes

zi(t) = α
∑

j∈Ni

|xj(t) − xi(t)|

and we have
xi(t) = α

∑

j∈Ni

|xj(t) − xi(t)| + ri(t) (4)

In our modeling, xi(t) becomes equivalent to Tavg that a core i estimates,
and ri becomes the core i’s temperature.

3.4 Model for the 9 × 9 Grid

The algorithm under verification allows its nodes to exchange information with
a maximum of four neighbors, i.e., north, south, east and west. Information
exchange with the diagonal neighboring nodes is not allowed. In order to con-
struct the model of any arbitrary n × n grid, which supports the originally
proposed algorithm of [23], we need three distinct types of nodes, i.e., nodes
that can communicate with 2, 3 and 4 neighbors, depending on their location
in the grid. However, our refinement of the original algorithm requires 6 differ-
ent types of nodes, as a node with 3 neighbors may need information of 4 or 5
second-level neighboring nodes depending on its location in the grid. We have
defined second level neighbors of a core x as the cores that can communicate
with the neighbors of that core x. Similarly, a four-neighbor node may require
information of 4, 5 or 6 second level neighboring nodes depending on its location
in the grid. Therefore, we have modeled the 9×9 grid using six different modules:
n2 3, n3 4, n3 5, n4 6, n4 7 and n4 8 as shown in Fig. 3. The name of these
modules nx y show that the cores modeled by this module have x immediate
neighbors and y other second-level neighbors that can exchange tasks with this
core or its neighbors. The MAIN module calls the instances of these six distinct
modules to complete the overall model of a 9 × 9 grid. This model is then used
forverifying both functional and timing properties of the given algorithm in the

40 S.A.A. Bukhari et al.

n4_8

np_q:
p: number of direct neighbors
q: number of in direct neighbors

0 1 2 3 4

9 10 11 12 13

18 19 20 21 22

27 28 29 30 31

36 37 38 39 40

(a) Neighbors of a sample core

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80

n2_3

n3_4

n3_5

n4_6

n4_7

n4_8

(b) Cores arrangement in the grid

Fig. 3. Categorization of cores based on the amount of information exchange.

next section. The code listing for the these modules and more implementation
details are available at [2].

4 Verification of the DTM Algorithm

4.1 Experimental Setup

We used the version 1.0 of the nuXmv model checker along with the Windows
8.1 Professional OS running on a i3 processor, 2.93 GHz(4 CPUs), with 4 GB
memory for our experiments. In order to assume realistic values of temperatures
for our experimentation, we used the temperature range between 41 ◦C and 56 ◦C
for a single core as has been reported in [14]. The verification is done for a 9 × 9
grid of nodes (cores) with all of them running processes as described in the
previous section. The complete model contains 81 processes.

4.2 Functional Verification

We have done the functional verification of the DTM algorithm by verifying the
following properties using the nuXmv’s bounded model checking (BMC) support
for real numbers:

Deadlock. A deadlock state in a system leads to an undesired cyclic behavior.
In case of DTM, deadlock happens if the temperature of some core x is greater
than the estimated temperature and it is unable to exchange its load with some

Formal Verification of dDTM using nuXmv 41

other core. This behavior could result in the creation of thermal hot spots across
the chip. In order to make sure that the DTM algorithm is free of deadlocks, the
following property needs to be satisfied:

G(corex.T0 > corex.Tavg → F (corex.T0 <= corek.T0))

This property checks that any core having temperature greater than the average
temperature will eventually get a reduction in temperature.

Liveliness. The liveliness property in a system makes sure that the system
returns to its good working or desired state. In our verification, we have defined
liveliness using the following specification:

G(corex.T0 < corex.Tavg → X(corex.n = x))

This property states that if the temperature of a core is less than the estimated
average temperature of the core, then in the very next state, the core does not
need to migrate tasks to its neighbors.

Stability. Stability is one of the most important properties for any DTM algo-
rithm. In the given algorithm, stability is attained when the temperature of all
the cores will eventually be less than or equal to the estimated average temper-
ature of the chip.

GF ((core0.T0 <= core0.Tavg)&(core1.T0 <= core1.Tavg)........&(core80.T0 <= core80.Tavg))

The stability condition, coren.T0 <= coren.Tavg, for a core n is defined using the
fact that the algorithm tries to achieve stability by executing the task migration
until the core has a temperature equal to or less than the estimated average
as shown in Fig. 1. Also, the GF operator is used to ensure that our stability
property holds true (some where in future or eventually) across any execution
path (globally) of the algorithm. For our 9 × 9 grid, it means that eventually,
there would be a state where all the cores of the system have a temperature that
does not exceed the estimated average temperature.

Verification of Temperature Estimation Algorithm. An interesting obser-
vation is the estimation of the average chip temperature using Eq. 1. The graphs
in Fig. 4 show the average chip temperature estimation behavior of six cores,
each corresponding to one of the six different neighbor configurations in our grid.

Initially, each core sees the initial value of the Tavg as the average temper-
ature of the core. The cores then estimate the temperature of the chip with

42 S.A.A. Bukhari et al.

35

40

45

50

55

60

65

0 50 100 150 200

Te
m

pe
ra

tu
re

bmc Bound

Core 0 Estimated Average Temprature of Grid

35

40

45

50

55

60

65

0 50 100 150 200

Te
m

pe
ra

tu
re

bmc Bound

Core 1 Estimated Average Temprature of Grid

35

40

45

50

55

60

65

0 50 100 150 200

Te
m

pe
ra

tu
re

bmc Bound

Core 2 Estimated Average Temprature of Grid

35

40

45

50

55

60

65

0 50 100 150 200

Te
m

pe
ra

tu
re

bmc Bound

Core 10 Estimated Average Temprature of Grid

35

40

45

50

55

60

65

0 50 100 150 200

Te
m

pe
ra

tu
re

bmc Bound

Core 11 Estimated Average Temprature of Grid

35

40

45

50

55

60

65

0 50 100 150 200

Te
m

pe
ra

tu
re

bmc Bound

Core 20 Estimated Average Temprature of Grid

Fig. 4. Temperature estimation in ◦C

the help of underlying average tracking algorithm in the DTM. For illustration
purposes, we have shown the actual average temperature of the grid, and the
estimated temperature of the selected cores on the same plot. It shows that the
average estimation algorithm making use of the temperature information form
the neighboring node gives a good average estimate of the overall chip tempera-
ture, confirming the functionality of the average estimation algorithm. Moreover
the estimated average by different cores is also following a similar pattern.

The verification times and the memory consumption for some of the func-
tional properties, verified in this work, are given in Table 1. The time measure-
ments in Table 1 is done by using nuXmv function time.

Formal Verification of dDTM using nuXmv 43

Table 1. Timing and memory resources for some of the properties verified.

Properties Core Module Memory usage (MBs) Time (s)

Liveliness property 0 n2 3 1015.69 745.67

Liveliness property 1 n3 4 1051.71 751.25

Liveliness property 2 n3 5 1025.64 749.65

Liveliness property 10 n4 6 1041.52 758.75

Liveliness property 11 n4 7 1031.74 781.85

Liveliness property 20 n4 8 1033.85 790.65

Deadlock property 0 n2 3 1351.41 1245.59

Deadlock property 1 n3 4 1325.35 1235.61

Deadlock property 2 n3 5 1315.63 1241.91

Deadlock property 10 n4 6 1359.54 1249.71

Deadlock property 11 n4 7 1359.54 1239.41

Deadlock property 20 n4 8 1343.51 1251.11

Stability property - 2051.51 2253.56

Table 2. Number of transitions required to achieve stability.

4.3 Timing Verification

The functional properties, presented in the previous section, have been verified
for the initial temperature values taken randomly from the allowable range given
in [14]. In this section, we verified various timing related properties for specific
scenarios, with particular initial temperatures. In order to measure the time

44 S.A.A. Bukhari et al.

stamps between the states transition, we have used built-in nuXmv commands
execute trace and execute partial trace. Table 2 shows the time to stability
for different selected cores (one from each module) under 16 possible conditions.
Here, n2 3, n3 4, n3 5, n4 6, n4 7 and n4 8 represents different modules. T0

represents the temperature of the tested core and T1, T2, T3 and T4 represent
the temperature of neighbors of the tested core. The first case nb0 in Table 2,
represents the case when the temperature of all the neighbor cores is less than
the threshold. Similarly, the nb1234 represents the case when the temperature
of all neighbor cores, i.e., 1, 2, 3 and 4, exceed the threshold. Whereas, the other
cases represent the intermediate possibilities between these extreme scenarios. It
can be seen from Table 2 that a maximum of 141 state transitions are required
to reach stability when the given core, of type n4 8, and three of its neighbors
are at a temperature of 56 ◦C.

5 Conclusion

This paper presents the formal verification of both functional and timing prop-
erties of a recent dDTM technique [23] for on-chip many-core systems using the
nuXmv model checker. Due to the ability to handle real numbers and the pow-
erful verification methods, based on SAT and SMT solvers, in nuXmv, we have
been able to gain many new insights into the given algorithm. While modeling
the selected task migration algorithm [23] in nuXmv, we identified a couple of
ambiguities in the original algorithm [23] that have been fixed in our implemen-
tation of the algorithm using the nuXmv language. The analyzed model has 81
cores and the analysis is done within the range of 41 to 56 ◦C. To the best of our
knowledge, such a big model cannot be handled rigorously by simulation-based
testing. We plan to extend this work by proposing a common ground to analyze
and compare dDTM schemes, such as [11,15,20,34], both in terms of functional
and timing properties.

Acknowledgement. This work is supported in parts by the DAAD “Deutsch-
Pakistanische Forschungskooperationen” project.

References

1. Brooks, D., Martonosi, M.: Dynamic thermal management for high-performance
microprocessors. In: High-Performance Computer Architecture, pp. 171–182. IEEE
(2001)

2. Bukhari, S.A.A., Lodhi, F.K.: Formal verification of distributed task migration for
thermal management in on-chip multi-core systems using nuXmv, National Uni-
versity of Sciences and Technology (2014). http://save.seecs.nust.edu.pk/projects/
fdDTM/fdDTM.html

3. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg
(2014)

http://save.seecs.nust.edu.pk/projects/fdDTM/fdDTM.html
http://save.seecs.nust.edu.pk/projects/fdDTM/fdDTM.html

Formal Verification of dDTM using nuXmv 45

4. Chen, F., Cao, Y., Ren, W.: Distributed computation of the average of multiple
time-varying reference signals. In: American Control Conference, pp. 1650–1655
(2011)

5. Chen, F., Cao, Y., Ren, W.: Distributed average tracking of multiple time-varying
reference signals with bounded derivatives. IEEE Trans. Autom. Control 57(12),
3169–3174 (2012)

6. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

7. Donald, J., Martonosi, M.: Techniques for multicore thermal management: classi-
fication and new exploration. In: Computer Architecture, pp. 78–88 (2006)

8. Donald, J., Martonosi, M.: Techniques for multicore thermal management: Classi-
fication and new exploration. In: ACM SIGARCH Computer Architecture News.
vol. 34, pp. 78–88. IEEE Computer Society (2006)

9. Drechsler, R.: Advanced Formal Verification. Falk Symposium Series. Springer,
Boston (2004)

10. Dunn, D.: Intel delays Montecito in roadmap shakeup. EE Times, Manufacturing/
Packaging, October 2005

11. Ebi, T., Faruque, M., Henkel, J.: Tape: thermal-aware agent-based power econom
multi/many-core architectures. In: Computer-Aided Design. pp. 302–309 (2009)

12. Ebi, T., Kramer, D., Karl, W., Henkel, J.: Economic learning for thermal-aware
power budgeting in many-core architectures. In: Hardware/Software Codesign and
System Synthesis.pp. 189–196, ACM (2011)

13. Ge, Y., Malani, P., Qiu, Q.: Distributed task migration for thermal management in
many-core systems. In: Design Automation Conference, pp. 579–584. ACM (2010)

14. Glocker, E., Schmitt-Landsiedel, D.: Modeling of temperature scenarios in a mul-
ticore processor system. Adv. Radio Sci. 11, 219–225 (2013)

15. Henkel, J., Ebi, T., Amrouch, H., Khdr, H.: Thermal management for dependable
on-chip systems. In: Asia and South Pacific Design Automation Conference, pp.
113–118 (2013)

16. Holzmann, G.J.: The model checker SPIN. IEEE Trans. softw. eng. 23(5), 279–295
(1997)

17. Ismail, M., Hasan, O., Ebi, T., Shafique, M., Henkel, J.: Formal verification of
distributed dynamic thermal management. In: Computer-Aided Design, pp. 248–
255. IEEE (2013)

18. ITRS: (2014). http://www.itrs.net/Links/2013ITRS/2013Chapters/2013Overview.
pdf

19. Kadin, M., Reda, S., Uht, A.: Central vs. distributed dynamic thermal management
for multi-core processors: which one is better? In: Great Lakes Symposium on VLSI,
pp. 137–140. ACM (2009)

20. Khdr, H., Ebi, T., Shafique, M., Amrouch, H., Henkel, J.: mDTM: multi-objective
dynamic thermal management for on-chip systems. In: Design, Automation Test
in Europe, p. 330 (2014)

21. Kong, J., Chung, S.W., Skadron, K.: Recent thermal management techniques for
microprocessors. ACM Comput. Surv. 44(3), 13:1–13:42 (2012)

22. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

23. Liu, Z., Huang, X., Tan, S.D., Wang, H., Tang, H.: Distributed task migration for
thermal hot spot reduction in many-core microprocessors. In: ASIC, pp. 1–4 (2013)

24. Liu, Z., Xu, T., Tan, S.D., Wang, H.: Dynamic thermal management for multi-
core microprocessors considering transient thermal effects. In: Design Automation
Conference, pp. 473–478 (2013)

http://www.itrs.net/Links/2013ITRS/2013Chapters/2013Overview.pdf
http://www.itrs.net/Links/2013ITRS/2013Chapters/2013Overview.pdf

46 S.A.A. Bukhari et al.

25. Lungu, A., Bose, P., Sorin, D.J., German, S., Janssen, G.: Multicore power manage-
ment: Ensuring robustness via early-stage formal verification. In: Formal Methods
and Models for Codesign, pp. 78–87. IEEE (2009)

26. MathSAT 5: (2014). http://mathsat.fbk.eu/
27. Mukherjee, R., Memik, S.O.: Physical aware frequency selection for dynamic ther-

mal management in multi-core systems. In: Computer-aided Design, pp. 547–552.
ACM (2006)

28. Nath, R., Carmean, D., Rosing, T.S.: Power modeling and thermal management
techniques for manycores. In: Computers and Communications. pp. 740–746. IEEE
(2013)

29. Norman, G., Parker, D., Kwiatkowska, M., Shukla, E., Gupta, R.: Using proba-
bilistic model checking for dynamic power management. Formal Aspects Comput.
17, 202–215 (2003)

30. nuSMV: (2014). http://nusmv.fbk.eu/
31. nuXmv: (2014). https://nuxmv.fbk.eu/
32. Salami, B., Baharani, M., Noori, H.: An adaptive temperature threshold schema for

dynamic thermal management of multi-core processors. In: Computer Architecture
and Digital Systems, pp. 119–120 (2013)

33. Schauer, B.: Multicore processors-a necessity. In: ProQuest discovery guides, pp.
1–14 (2008)

34. Shafique, M., Henkel, J.: Agent-based distributed power management for kilo-core
processors. In: Computer-Aided Design, pp. 153–160. IEEE (2013)

35. Shukla, S., Gupta, R.: A model checking approach to evaluating system level
dynamic power management policies for embedded systems. In: High-Level Design
Validation and Test Workshop, pp. 53–57. IEEE (2001)

36. Singh, A., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core sys-
tems: Survey of current and emerging trends. In: Design Automation Conference
(DAC), ACM/EDAC/IEEE.pp. 1–10 (2013)

37. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT Press, Cambridge (1999)

38. Wolfram: (2014). http://functions.wolfram.com/ComplexComponents/Sign/21/
01/01/

39. Wyngaard, J., Inggs, M., Collins, J., Farrimond, B.: Towards a many-core archi-
tecture for HPC. In: Field Programmable Logic and Applications, pp. 1–4 (2013)

40. Yang, J., Zhou, X., Chrobak, M., Zhang, Y., Jin, L.: Dynamic thermal management
through task scheduling. In: Performance Analysis of Systems and software, pp.
191–201 (2008)

41. Yun, B., Shin, K.G., Wang, S.: Predicting thermal behavior for temperature man-
agement in time-critical multicore systems. In: IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 185–194 (2013)

http://mathsat.fbk.eu/
http://nusmv.fbk.eu/
https://nuxmv.fbk.eu/
http://functions.wolfram.com/ComplexComponents/Sign/21/01/01/
http://functions.wolfram.com/ComplexComponents/Sign/21/01/01/

Expression-Based Aliasing for OO–languages

Georgiana Caltais(B)

Department of Computer Science, ETH Zürich, Zürich, Switzerland
georgiana.caltais@inf.ethz.ch

Abstract. Alias analysis has been an interesting research topic in verifi-
cation and optimization of programs. The undecidability of determining
whether two expressions in a program may reference to the same object
is the main source of the challenges raised in alias analysis. In this paper
we propose an extension of a previously introduced alias calculus based
on program expressions, to the setting of unbounded program execu-
tions such as infinite loops and recursive calls. Moreover, we devise a
corresponding executable specification in the K-framework. An impor-
tant property of our extension is that, in a non-concurrent setting, the
corresponding alias expressions can be over-approximated in terms of a
notion of regular expressions. This further enables us to show that the
associated K-machinery implements an algorithm that always stops and
provides a sound over-approximation of the “may aliasing” information,
where soundness stands for the lack of false negatives. As a case study,
we analyze the integration and further applications of the alias calculus
in SCOOP. The latter is an object-oriented programming model for con-
currency, recently formalized in Maude; K definitions can be compiled
into Maude for execution.

1 Introduction

A research direction of interest in Computer Science is the application of alias
analysis in verification and optimization of programs. One of the challenges
along this line of research has been the undecidability of determining whether
two expressions in a program may reference the same object. A rich suite of
approaches aiming at providing a satisfactory balance between scalability and
precision has already been developed in this regard. Examples include: (i) intra-
procedural frameworks [16,17] that handle isolated functions only, and their
inter-procedural counterparts [12,16,23] that consider the interactions between
function calls; (ii) type-based techniques [9]; (iii) flow-based techniques [4,7]
that establish aliases depending on the control-flow information of a procedure;
(iv) context-(in)sensitive approaches [10,30] that depend on whether the call-
ing context of a function is taken into account or not; (v) field-(in)sensitive
approaches [1,21] that depend on whether the individual fields of objects in a
program are traced or not. More details on such classifications can be found
in [26], for instance. For a comprehensive survey on alias analyses for object-
oriented programs, corresponding issues and remaining open problems, we refer
the interested reader to the works in [11,29].
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 47–61, 2015.
DOI: 10.1007/978-3-319-17581-2 4

48 G. Caltais

Of particular interest for the work in this paper is the untyped, flow-sensitive,
field sensitive, inter-procedural and context-sensitive calculus for may aliasing,
introduced in [15]. The aforementioned calculus covers most of the aspects of a
modern object-oriented language, namely: object creation and deletion, condi-
tionals, assignments, loops and (possibly recursive) function calls. The approach
in [15] abstracts the aliasing information in terms of explicit access paths [18]
referred to as alias expressions. Consider, for an example, the code

x := y;
loop x := x.next end (1)

The corresponding execution causes x to become aliased to y.next.next. . . ., with
a possibly infinite number of occurrences of the field next. The set of associated
alias expressions can be equivalently written as:

{[x, y.nextk] | k ≥ 0}. (2)

The sources of imprecision introduced by the calculus in [15] are limited to
ignoring tests in conditionals, and to “cutting at length L”, for the case of pos-
sibly infinite alias relation as in (2). Intuitively, the cutting technique considers
sequences longer than a given length L as aliased to all expressions.

There is a huge literature on heap analysis for aliasing [11], but hardly any
paper that presents a calculus as in [15] allowing the derivation of alias relations
as the result of applying various instructions of a programming language.

Our focus is two folded. First, we want extend the framework in [15] to the
setting of unbounded program executions such as infinite loops and recursive
calls. In accordance, the goal is to provide a way to shift from “finite” to “infi-
nite behaviours”. This can be achieved in a rather straightforward manner, by
redefining the construct loop p end in [15] according to the informal semantics:
“execute p repeatedly any number of times, including zero”. However, developing
a corresponding mechanism for reasoning on “may aliasing” in a finite number of
steps is not trivial. The key observation that paves the way to a possible (finite
state-based) modeling in a non-concurrent setting is that the alias expressions
and a back-tracking stack corresponding to loops and recursive calls grow in a
regular fashion. Hence, they are finitely representable, as it is easy to see in (2),
for instance. Such regularities cannot be exploited in concurrent contexts, due
to the “non-determinism” of process interaction.

A similar technique exploiting regular behaviour of (non-concurrent) pro-
grams, in order to reason on “may aliasing”, was previously introduced in [2]. In
short, the results in [2] utilize abstract representations of programs in terms of
finite pushdown systems, for which infinite execution paths have a regular struc-
ture (or are “lasso shaped”) [3]. Then, in the style of abstract interpretation [8],
the collecting semantics is applied over the (finite state) pushdown systems to
obtain the alias analysis itself. In short, the main difference with the results
in [2] consists in how the abstract memory addresses corresponding to pointer
variables are represented. In [2] these range over a finite set of natural numbers.
In this paper we consider alias expressions build according to the calculus in [15].

Expression-Based Aliasing for OO–languages 49

The work in [2] also proposes an implementation of pushdown systems in
the K-framework [27]. The latter is an executable semantic framework based on
Rewriting Logic (RL) [19], and has successfully been used for defining program-
ming languages and corresponding formal analysis tools. Moreover, K definitions
have a direct implementation in K-Maude [28].

We agree that it could be worth presenting our analysis as an abstract inter-
pretation (AI) [8]. A modelling exploiting the machinery of AI (based on abstract
domains, abstraction and concretization functions, Galois connections, fixed-
points, etc.) is an interesting, but different research topic per se.

Our second interest w.r.t. may aliasing is its integration in SCOOP [22] – a
simple object oriented programming model for concurrency; thus an operational
based approach on handling the alias calculus is more appropriate. The basis
of a RL-based framework for the design and analysis of the SCOOP model was
recently set in [22]. The reference implementation of SCOOP is Eiffel [20]. The
integration of alias analysis belongs to a more ambitious goal, namely, the con-
struction of a RL-based toolbox for the analysis of SCOOP programs (examples
include a deadlock detector and a type checker).

Our Contribution. By drawing inspiration from, and building on top of the
results in [2,15], in this paper we propose:

– an extension of the (finite) alias calculus in [15] to the setting of unbounded
program executions, and a sound over-approximation technique based on “reg-
ular alias expressions”, for non-concurrent settings;

– a RL-based specification of the extended calculus;
– an algorithm that always terminates and provides a sound over-approximation

of “may aliasing” by exploiting a notion of regular (finitely representable)
aliases, for non-concurrent settings.

Moreover, we analyze the integration, implementation and further applications
of the alias calculus in SCOOP.

We refer the interested reader to [5] for the extended version of the current
paper including: the full specification of the RL-based machinery, two examples
emphasizing the naturalness of applying the executable aliasing framework and a
case study exploiting the corresponding implementation in SCOOP, respectively,
together with the detailed proofs of the formal results.

Paper Structure. The paper is organized as follows. In Sect. 2 we introduce the
extension of the alias calculus in [15] to unbounded executions. In Sect. 3 we
provide the RL-based executable specification of the calculus in the K semantic
framework. The implementation in SCOOP, and further applications are dis-
cussed in Sect. 4. In Sect. 5 we draw the conclusions and provide pointers to
future work.

2 The Alias Calculus

In this section we define an extension of the calculus in [15], to unbounded
program executions. Moreover, based on the idea behind the pumping lemma for

50 G. Caltais

regular languages [25], we devise a corresponding sound over-approximation of
“may aliasing” in terms of regular expressions, applicable in sequential contexts.
This paves the way to developing an algorithm for the aliasing problem, as
presented in Sect. 3, in the formal setting of the K semantic framework [27].

Preliminaries. We proceed by briefly recalling the notion of alias relation and
a series of associated notations and basic operations, as introduced in [15].

We call an expression a (possibly infinite) path of shape x.y.z. . . ., where x
is a local variable, class attribute or Current, and y, z, . . . are attributes. Here,
Current, also known as this or self, stands for the current object. For an arbitrary
alias expression e, it holds that e.Current = Current.e = e. Let E represent
the set of all expressions of a program. An alias relation is a symmetric and
irreflexive binary relation over E × E.

Given an alias relation r and an expression e, we define

r/e = {e} ∪ {x : E | [x, e] ∈ r}
denoting the set consisting of all elements in r which are aliased to e, plus e
itself.

Let x be an expression; we write r − x to represent r without the pairs with
one element of shape x.e.

We say that an alias relation is dot complete whenever for any t, u, v and
a it holds that if [t, u] and [t.a, v] are alias pairs, then [u.a, v] is an alias pair
and, moreover, if a is in the domain of t, then [t.a, u.a] is an alias pair. By
the “domain of t” we refer to a method or a field in the class corresponding
to the object referred by the expression associated to t. For instance, given a
class NODE with a field next of type NODE, and a NODE object x, we say
that next is in the domain of t = x.next.next. For the sake of brevity, we write
dot-complete(r) for the closure under dot-completeness of a relation r.

The notation r[x = u] represents the relation r augmented with pairs [x, y]
and made dot complete, where y is an element of u.

2.1 Extension to Unbounded Executions

We further introduce an extension of the alias calculus in [15] to infinite alias
relations corresponding to unbounded executions such as infinite loops or recur-
sive calls. The main difference in our approach is reflected by the definition of
loops, which now complies to the usual fixed-point denotational semantics.

The alias calculus is defined by a set of axioms “describing” how the execution
a program affects the aliasing between expressions. As in [15], the calculus ignores
tests in conditionals and loops. The program instructions are defined as follows:

p : := p ; p | then p else p end |
create x | forget x | t := s |
loop p end | call f(l) | x.call f(l). (3)

In short, we write r » p to represent the alias information obtained by executing
p when starting with the initial alias relation r.

Expression-Based Aliasing for OO–languages 51

The axiom for sequential composition is defined in the obvious way:

r » (p ; q) = (r » p) » q. (4)

Conditionals are handled by considering the union of the alias pairs resulted
from the execution of the instructions corresponding to each of the two branches,
when starting with the same initial relation:

r » (then p else q end) = r » p ∪ r » q. (5)

As previously mentioned, we define r » loop p end according to its informal
semantics: “execute p repeatedly any number of times, including zero”. The
corresponding rule is:

r » (loop p end) =
⋃

n∈N

(r » pn) (6)

where ∪ stands for the union of alias relations, as above. This way, our calculus is
extended to infinite alias relations. This is the main difference with the approach
in [15] that proposes a “cutting” technique restricting the model to a maximum
length L. In [15], sequences longer than L are considered as aliased to all expres-
sions. Orthogonally, for sequential settings, we provide finite representations of
infinite alias relations based on over-approximating regular expressions, as we
shall see in Sect. 2.2.

Both the creation and the deletion of an object x eliminate from the current
alias relation all the pairs having one element prefixed by x:

r » (create x) = r − x

r » (forget x) = r − x. (7)

The (qualified) function calls comply to their initial definitions in [15]:

r » (call f(l)) = (r[f• : l]) » | f |
r » (x.call f(l)) = x.((x′.r) » call f(x′.l)). (8)

Here f• and | f | stand for the formal argument list and the body of f , respec-
tively, whereas r[u : v] is the relation r in which every element of the list v is
replaced by its counterpart in u. Intuitively, the negative variable x′ is meant
to transpose the context of the qualified call to the context of the caller. Note
that “.” (i.e., the constructor for alias expressions) is generalized to distribute
over lists and relations: x.[a, b, . . .] = [x.a, x.b, . . .].

For an example, consider a class C in an OO-language, and an associated
procedure f that assigns a local variable y, defined as: f(x) { y := x }. Then,
for instance, the aliasing for a.call f(a) computes as follows:

∅ » a.call f(a) =
a.(a′.∅ » y := a′.a) =

a.(∅ » y := Current) =
dot-complete({[a.y, a]}).

52 G. Caltais

Recursive function calls can lead to infinite alias relations. In sequential
settings, as for the case of loops, the mechanism exploiting sound regular over-
approximations in order to derive finite representations of such relations is pre-
sented in the subsequent sections.

The axiom for assignment is as well in accordance with its original counter-
part in [15]:

r » (t := s) =given r1 = r[ot = t]
then (r1 − t)[t = (r1/s − t)] − ot end (9)

where ot is a fresh variable (that stands for “old t”). Intuitively, the aliasing
information w.r.t. the initial value of t is “saved” by associating t and ot in r
and closing the new relation under dot-completeness, in r1. Then, the initial t
is “forgotten” by computing r1 − t and the new aliasing information is added in
a consistent way. Namely, we add all pairs (t, s′), where s′ ranges over r1/s − t
representing all expressions already aliased with s in r1, including s itself, but
without t. Recall that alias relations are not reflexive, thus by eliminating t we
make sure we do not include pairs of shape [t, t]. Then, we consider again the
closure under dot-completeness and forget the aliasing information w.r.t. the
initial value of t, by removing ot.

Remark 1. It is worth discussing the reason behind not considering transitive
alias relations. Assume the following program:

then x := y else y := z end

Based on the Eqs. (5) and (9) handling conditionals and assignments, respec-
tively, the calculus correctly identifies the alias set: {[x, y], [y, z]}. Including [x, z]
would be semantically equivalent to the execution of the two branches in the con-
ditional at the same time, which is not what we want.

2.2 A Sound Over-Approximation

In a sequential setting, the challenge of computing the alias information in the
context of (infinite) loops and recursive calls reduces to evaluating their corre-
sponding “unfoldings”, captured by expressions of shape

r » pω,

with ω ranging over naturals plus infinity, r an (initial) alias relation (r = ∅),
and p a basic control block defined by:

p :: = p ; p | then p else p end |
create x | forget x |
t := s. (10)

Expression-Based Aliasing for OO–languages 53

The value r » pω refers to the alias relation obtained by recursively executing the
control block p, and it is calculated in the expected way:

r » p0 = r
r » pk+1 = (r » pk) » p.

Consider again the code in (1):

x := y;
loop x := x.next end.

Its execution generates the alias relation

(((∅ » (x := y)) » (x := x.next)) » (x := x.next) . . .

including an infinite number of pairs of shape:

[x, y.next], [x, y.next.next], [x, y.next.next.next] (11)

A similar reasoning does not hold for concurrent applications, where process
interaction is not “regular”.

In what follows we provide a way to compute finite representations of infinite
alias relations in sequential settings. The key observation is that alias expressions
corresponding to unbounded program executions grow in a regular fashion. See,
for instance, the aliases in (11), which are pairs of type [x, y.nextk≥1].

Regular expressions are defined similarly to the regular languages over an
alphabet. We say that an expression is regular if it is a local variable, class
attribute or Current. Moreover, the concatenation e1 . e2 of two regular expres-
sions e1 and e2 is also regular. Given a regular alias expression e, the expression
e∗ is also regular; here (−)∗ denotes the Kleene star [14]. We call an alias relation
regular if it consists of pairs of regular expressions.

Lemma 1. Assume p a program built according to the rules in (3). Then, in a
sequential setting, the relation ∅ » p is regular.

Proof. The result follows by induction on the structure of p.

Inspired by the idea behind the pumping lemma for regular languages [25], we
define a lasso property for alias relations, which identifies the repetitive patterns
within the structure of the corresponding alias expressions. The intuition is that
such patterns will occur for an infinite number of times due to the execution of
loops or recursive function calls. Then, we supply sound over-approximations of
“lasso” relations, based on regular alias expressions.

In the context of alias relations, we say that the lasso property is satisfied
by r and r′ whenever the following two conditions hold: (1) r behaves like a
lasso base of r′. Namely, all the pairs [e1, e2] ∈ r are used to generate elements
[e′

1, e
′
2] ∈ r′, by repeating tails of prefixes of e1 and e2, respectively, and (2) r′ is

a lasso extension of r. Namely, all the pairs in r′ are generated from elements of

54 G. Caltais

r by repeating tails of their prefixes. For example, if e1 above is an expression
of shape x.y.z.w, then e′

1 can be x.y.y.z.w if we consider the tail y of the prefix
x.y, or x.y.z.y.z.w if we take the tail y.z of the prefix x.y.z.

Formally, consider r and r′ two alias relations, and xi, yi and zi a set of
(possibly empty) expressions, for i ∈ {1, 2}. Then:

lasso(r, r′) = ([x1y1z1, x2y2z2] ∈ r iff [x1y1y1z1, x2y2y2z2] ∈ r′). (12)

For the simplicity of notation we sometimes omit the dot-separators between
expressions. For instance, we write x y z in lieu of x.y.z.

Assuming a lasso over r and r′, we compute a relation consisting of regular
expressions over-approximating r and r′ as:

reg(r, r′) ={[x1y
∗
1z1, x2y

∗
2z2] |

[x1y1z1, x2y2z2] ∈ r ∧
[x1y1y1z1, x2y2y2z2] ∈ r′} (13)

where xi, yi and zi are possibly empty expressions, for i ∈ {1, 2}. As previously
indicated, the over-approximation is sound w.r.t. the repeated application of a
basic control block as in (10), in the way that it does not introduce any false
negatives:

Lemma 2. Consider r and r′ two alias relations, and p a basic control block in
a sequential setting. If r » p = r′ and lasso(r, r′) = true, then the following holds
for all n ≥ 1:

r » pn ∈ reg(r, r′).

Proof. The reasoning is by induction on n. The base case follows immediately,
whereas the induction step is proved by “reductio ad absurdum”. ��

3 A K-Machinery for Collecting Aliases

In this section we provide the specification of a RL-based mechanism collecting
the alias information in the K semantic framework [27]. We choose K more as a
notational convention to enable compact and modular definitions. In reality, the
K-rules in this section are implemented in Maude, as rewriting theories, on top
of the formalization of SCOOP [22] (we refer to Sect. 4 for more details on our
approach).

In short, our strategy is to start with a program built on top of the control
structures in (3), then to apply the corresponding K-rules in order to get the
“may aliasing” information in a designated K-cell (〈 − 〉al). Independently of
the setting (sequential or concurrent) one can exploit this approach in order to
evaluate the aliases of a given finite length L. We also show that for sequential
contexts, the application of the K-rules is finite and the aliases in the final
configuration soundly over-approximate the (infinite) “may alias” relations of
the calculus.

Expression-Based Aliasing for OO–languages 55

Brief Overview of K. K [27] is an executable semantic framework based
on Rewriting Logic [19]. It is suitable for defining (concurrent) languages and
corresponding formal analysis tools, with straightforward implementation in
K-Maude [28]. K-definitions make use of the so-called cells, which are labelled
and can be nested, and (rewriting) rules describing the intended (operational)
semantics.

A cell is denoted by 〈 − 〉[name], where [name] stands for the name of the
cell. A construction 〈 . 〉n stands for an empty cell named n. We use “pattern
matching” and write 〈 c . . .〉n for a cell with content c at the top, followed by
an arbitrary content (. . .). Orthogonally, we can utilize cells of shape 〈. . . c 〉n
and 〈 . . . c . . . 〉n, defined in the obvious way.

Of particular interest is 〈 − 〉k – the continuation cell, or the k-cell, holding
the stack of program instructions (associated to one processor), in the context
of a programming language formalization. We write

〈 i1 � i2 . . .〉k
for a set of instructions to be “executed”, starting with instruction i1, followed
by i2. The associative operation � is the instruction sequencing.

A K-rewrite rule

〈 c . . .〉n1〈 c′ 〉n2 ⇒ 〈 c′ . . .〉n1〈. . . c′ 〉n3 (14)

reads as: if cell n1 has c at the top and cell n2 contains value c′, then c is replaced
by c′ in n1 and c′ is added at the end of the cell n3. The content of n2 remains
unchanged. In short, (14) is written in a K-like syntax as:

〈 c . . .〉n1

c′ 〈 c′ 〉n2

〈. . . . 〉n3

c′ .

We further provide the details behind the K-specification of the alias calcu-
lus. As expected, the k-cell retains the instruction stack of the object-oriented
program. We utilize cells 〈−〉al to enclose the current alias information, and the
so-called back-tracking cells 〈−〉bkt−... enabling the sound computation of aliases
for the case of then−else−end and, in non-concurrent contexts, for loops and
(possibly recursive) function calls. As a convention, we mark with (♣) the rules
that are sound only for non-concurrent applications, based on Lemma 2. Due
to space limitations, in what follows we introduce only the K-rules for handling
assignments and loops. The entire specification can be found in [5].

As expected, the assignment rule simply restores the current alias relation
according to its axiom in (9), and removes the assignment instruction from the
top of the k-cell:

〈 r 〉al
(r1 − t)[t = (r1/s − t)] − ot

〈 t := s . . .〉k
.

with r1 = r[ot = t] (15)

For loop p end, we utilize a meta-construction p l loop p end simulat-
ing the unfolding corresponding to (6), and a back-tracking stack 〈−〉bkt-l col-
lecting the alias information obtained after each execution of p. Moreover, the

56 G. Caltais

K-implementation exploits the result in Lemma 2. Whenever a “lasso” is reached,
the infinite rewriting is prevented by resuming the infinite application of p in
terms of a sound over-approximating alias relation. The K-rules are as follows.

First, the aforementioned unfolding is performed, and the alias relation before
p is stored in the back-tracking cell as 〈r〉al−o〈p〉l:

〈 r 〉al
〈 loop p end . . .〉k
p l loop p end

〈〉bkt-l
〈 r 〉al-o〈 p 〉l (16)

If the alias relation r′ obtained after the successful execution of p (marked
by l at the top of the continuation) is not a lasso of the aliasing r before
p (previously stored in 〈−〉bkt−l) then p is constrained to a new execution by
becoming the top of the k-cell, and r′ is memorized for back-tracking:

〈 r′ 〉al 〈 l loop p end . . .〉k
p l loop p end

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l
〈 r′ 〉al-o〈 p 〉l if not lasso(r, r′) (♣) (17)

Last, if a lasso is reached after the execution of p, then the current aliasing is
soundly replaced by a “regular” over-approximation reg(r, r′), the corresponding
back-tracking information is removed from 〈−〉bkt−l and the loop instruction is
eliminated from the k-cell:

〈 r′ 〉al
reg(r, r′)

〈 l loop p end . . .〉k
.

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l
.

if lasso(r, r′) (♣) (18)

In a non-concurrent setting, the machinery orchestrating the K-rules intro-
duced in this section implements an algorithm that always terminates and pro-
vides a sound over-approximation of “may aliasing”.

Theorem 1. Consider p a program built on top of the control structures in (3),
that executes in a sequential setting. Then, the application of the corresponding
K-rules when starting with p and an empty alias relation, is a finite rewriting of
shape

〈 ∅ 〉al〈 p 〉k (∗)
=⇒ 〈 r 〉al〈 . 〉k,

with r a sound over-approximation of the aliasing information corresponding to
the execution of p.

Proof. The key observation is that, due to the execution of loops and/or recursive
calls, expressions can infinitely grow in a regular fashion. Hence, a lasso is always
reached. Consequently, the control structure generating the infinite behaviour is
removed from the k-cell, according to the associated K-specification for loops
and/or recursive calls. This guarantees termination. Moreover, recall that the
regular expressions replacing the current alias information are a sound over-
approximation, according to Lemma 2. ��
Observe that the RL-based machinery can simulate precisely the “cutting at
length L” technique in [15]. It suffices to disable the rules (♣) and stop the
rewriting after L steps.

Expression-Based Aliasing for OO–languages 57

4 Integration in SCOOP

In this section we provide a brief overview on the integration and applicability
of the alias calculus in SCOOP [22] – a simple object-oriented programming
model for concurrency. Two main characteristics make SCOOP simple: (1) just
one keyword programmers have to learn and use in order to enable concurrent
executions, namely, separate and (2) the burden of orchestrating concurrent exe-
cutions is handled within the model, therefore reducing the risk of correctness
issues.

In short, the key idea of SCOOP is to associate to each object a processor,
or handler (that can be a CPU, or it can also be implemented in software, as a
process or thread). Assume a processor p that performs a call o.f() on an object
o. If o is declared as “separate”, then p sends a request for executing f() to q –
the handler of o (note that p and q can coincide). Meanwhile, p can continue.
Processors communicate via channels.

The Maude semantics of SCOOP in [22] is defined over tuples of shape

〈p1: : St1 | . . . | pn : :Stn, σ〉

where, pi denotes a processor (for i ∈ {1, . . . , n}), Sti is the call stack of pi

and σ is the state of the system. States hold the information about the heap
(which is a mapping of references to objects) and the store (which includes
formal arguments, local variables, etc..).

The assignment instruction, for instance, is formally specified as the transi-
tion rule:

a is fresh
Γ � 〈p : : t := s; St, σ〉 → 〈p : : eval(a, s); wait(a); write(t, a.data); St, σ〉

(19)
where, intuitively, “eval(a, s)” evaluates s and puts the result on channel a,
“wait(a)” enables processor p to use the evaluation result, “write(t, a.data)” sets
the value of t to a.data, St is a call stack, and Γ is a typing environment [24]
containing the class hierarchy of a program and all the type definitions.

At this point it is easy to understand that the K-rule for assignments

〈 r 〉al
(r1 − t)[t = (r1/s − t)] − ot

〈 t := s . . .〉k
.

with r1 = r[ot = t] (15)

can be straightforwardly integrated in (19) by enriching the state structure with
a new field encapsulating the alias information, and considering instead the tran-
sition Γ � 〈p : : t :=s; St, σ〉 → 〈p : : eval(a, s); wait(a); write(t, a.data); St, σ′〉
where

σ.aliases = r σ′.aliases = (r1 − t)[t = (r1/s − t)] − ot

with r and r1 as in [20]. The integration of all the K-rules of the alias calculus
on top of the Maude formalization of SCOOP can be achieved by following a
similar approach.

58 G. Caltais

For a case study, one can download the SCOOP formalization at: https://
dl.dropboxusercontent.com/u/1356725/SCOOP.zip and run. The command >
maude SCOOP.maude ..\examples\aliasing-linked list.maude
corresponding to the code in (1):

x := y; loop x := x.next end.

The console outputs the aliased expressions for a rewriting of depth 100 which
include, as expected, pairs of shape [x, y.nextk]. (The over-approximating mech-
anism for sequential settings is still to be implemented.)

As can be observed based on the code in aliasing-linked list.maude, in order
to implement our applications in Maude, we use intermediate (still intuitive)
representations. For instance, the class structure defining a node in a simple
linked list, with filed next is declared as:

class ’NODE

create {’make}

(attribute { ’ANY } ’next : [?, . , ’NODE] ;)

[...]

end ;

where ’next : [?, . , ’NODE] stands for an object of type NODE, that is han-
dled by the current processor (.) and that can be Void (?), and ’make plays the
role of a constructor. The intermediate representation of the instruction block
in (1) is:

assign (’x, ’y);

until False loop (assign (’x, ’x . ’next(nil)) ;) end ;

For a detailed description of SCOOP and its Maude formalization we refer
the interested reader to the work in [22].

4.1 Further Applications of the Alias Calculus

Apart from providing an alias analysis tool, the alias calculus can be exploited
in order to build an abstract semantics of SCOOP. For example, an abstraction
of the assignment rule (15) would omit the evaluation of the right-hand side of
the assignment t := s and the associated message passing between channels:

·
Γ � 〈p : : t := s; St, σ〉 → 〈p : : St, σ′〉

where

σ.aliases = r σ′.aliases = (r1 − t)[t = (r1/s − t)] − ot

with r and r1 as in (15). This way one derives a simplified, reduced seman-
tics of SCOOP, more appropriate for model checking, for instance; the current
SCOOP formalization in Maude is often too large for this purpose. A survey on
abstracting techniques on top of Maude executable semantics is provided in [19].

https://dl.dropboxusercontent.com/u/1356725/SCOOP.zip
https://dl.dropboxusercontent.com/u/1356725/SCOOP.zip

Expression-Based Aliasing for OO–languages 59

Furthermore, the aliasing information could be used for the so-called “dead-
locking” problem, where two or more executing threads are each waiting for
the other to finish. In the context of SCOOP, this is equivalent to identifying
whether a set of processors reserve each other circularly (i.e., there is a Coffman
deadlock). This situation might occur, for instance, in a Dinning Philosophers
scenario, where both philosophers and forks are objects residing on their own
processors. The difficulty of identifying such deadlocks stems from the fact that
SCOOP processors are known from object references, which may be aliased.

5 Conclusions

In this paper we provide an extension of the alias calculus in [15] from finite alias
relations to infinite ones corresponding to loops and recursive calls. Moreover, we
devise an associated executable specification in the K semantic framework [27].
In Theorem 1 we show that the RL-based machinery implements an algorithm
that always terminates with a sound over-approximation of “may aliasing”, in
non-concurrent settings. This is achieved based on the sound (finitely repre-
sentable) over-approximation of (“lasso shaped”) alias expressions in terms of
regular expressions, as in Lemma 2. We also discuss the integration and applica-
bility of the alias calculus on top of the Maude formalization of SCOOP [22].

An immediate direction for future work is to identify interesting (industrial)
case studies to be analyzed using the framework developed in this paper. We
are also interested in devising heuristics comparing the efficiency and the preci-
sion (e.g., the number of false positives introduced by the alias approximations)
between our approach and other aliasing techniques. In this respect, we antici-
pate that the rewriting modulo associativity, together with the pattern matching
capabilities of Maude will accelerate the identification of the “lasso” proper-
ties and the corresponding over-approximating regular alias expressions. This
could eventually provide an effective reasoning apparatus for the “may aliasing”
problem.

Another research direction is to derive alias-based abstractions for analyzing
concurrent programs. We foresee possible connections with the work in [13] on
concurrent Kleene algebra formalizing choice, iteration, sequential and concur-
rent composition of programs. The corresponding definitions exploit abstractions
of programs in terms of traces of events that can depend on each other. Thus,
obvious challenges in this respect include: (i) defining notions of dependence
for all the program constructs in this paper, (ii) relating the concurrent Kleene
operators to the semantics of the SCOOP concurrency model and (iii) checking
whether fixed-points approximating the aliasing information can be identified
via fixed-point theorems.

Furthermore, it would be worth investigating whether the graph-based model
of alias relations introduced in [15] can be exploited in order to derive finite K

specifications of the extended alias calculus. In case of a positive answer, the
general aim is to study whether this type of representation increases the speed
of the reasoning mechanism, and why not – its accuracy. With the same purpose,

60 G. Caltais

we refer to a possible integration with the technique in [6] that handles point-to
graphs via a stack-based algorithm for fixed-point computations.

We are also interested to what extent an abstract semantics based on aliases
for SCOOP can be exploited for building more efficient analysis tools such as
deadlock detectors, for instance. A survey on similar techniques that abstract
away from possibly irrelevant information w.r.t. the problem under consideration
is provided in [19].

Acknowledgements. We are grateful for valuable comments to the anonymous
reviewers, Măriuca Asăvoae, Alexander Kogtenkov, José Meseguer, Bertrand Meyer,
Benjamin Morandi and Sergey Velder. The research leading to these results has received
funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007–2013) / ERC Grant agreement no. 291389.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Field-sensitive value analysis by
field-insensitive analysis. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 370–386. Springer, Heidelberg (2009)

2. Asavoae, I.M.: Abstract semantics for alias analysis in K. Electr. Notes Theor.
Comput. Sci. 304, 97–110 (2014)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

4. Burke, M., Carini, P., Choi, J.-D., Hind, M.: Flow-insensitive interprocedural alias
analysis in the presence of pointers. In: Pingali, K., Banerjee, U., Gelernter, D.,
Nicolau, A., Padua, D. (eds.) Languages and Compilers for Parallel Computing.
LNCS, vol. 892, pp. 234–250. Springer, Berlin Heidelberg (1995)

5. Caltais, G.: Expression-based aliasing for OO-languages. CoRR, abs/1409.7509
(2014)

6. Chase, D.R.., Wegman, M.N., Zadeck, F.K.: Analysis of pointers and structures.
In: PLDI, pp. 296–310 (1990)

7. Choi, J.-D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1993, pp. 232–245. ACM, New York, NY, USA (1993)

8. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
J. Log. Program. 13(2&3), 103–179 (1992)

9. Diwan, A., McKinley, K.S., Moss, J.E.B.: Type-based alias analysis. SIGPLAN
Not. 33(5), 106–117 (1998)

10. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, PLDI
1994, pp. 242–256. ACM, New York, NY, USA (1994)

11. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: PASTE,
pp. 54–61 (2001)

12. Hind, M., Burke, M., Carini, P., Choi, J.-D.: Interprocedural pointer alias analysis.
ACM Trans. Program. Lang. Syst. 21(4), 848–894 (1999)

Expression-Based Aliasing for OO–languages 61

13. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–
414. Springer, Heidelberg (2009)

14. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton Uni-
versity Press, Princeton (1956)

15. Kogtenkov, A., Meyer, B., Velder, S.: Alias and change calculi, applied to frame
inference. CoRR, abs/1307.3189 (2013)

16. Landi, W.: Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1(4),
323–337 (1992)

17. Landi, W., Ryder, B.G:. Pointer-induced aliasing: a problem classification. In: Pro-
ceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1991, pp. 93–103. ACM, New York, NY, USA (1991)

18. Larus, J.R., Hilfinger, P.N.: Detecting conflicts between structure accesses. In:
PLDI, pp. 21–34. ACM, New York (1988)

19. Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report.
In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 1–37.
Springer, Heidelberg (2011)

20. Meyer, B.: Eiffel: The Language. Prentice-Hall, Englewood Cliffs (1991)
21. Miné, A.: Field-sensitive value analysis of embedded C programs with union types

and pointer arithmetics. In: Proceedings of the 2006 ACM SIGPLAN/SIGBED
Conference on Language, Compilers, and Tool Support for Embedded Systems,
LCTES 2006, pp. 54–63. ACM, New York, NY, USA (2006)

22. Morandi, B., Schill, M., Nanz, S., Meyer, B.: Prototyping a concurrency model. In:
ACSD, pp. 170–179 (2013)

23. Myers. E.M.: A precise inter-procedural data flow algorithm. In: Proceedings of
the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1981, pp. 219–230. ACM, New York, NY, USA (1981)

24. Nienaltowski, P.: Practical Framework for Contract-based Concurrent Object-
oriented Programming, ETH (2007)

25. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959)

26. Robert, V., Leroy, X.: A formally-verified alias analysis. In: Hawblitzel, C., Miller,
D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 11–26. Springer, Heidelberg (2012)

27. Rosu, G., Serbanuta, T.F.: K overview and SIMPLE case study. In Proceedings of
International K Workshop (K 2011), ENTCS. Elsevier (2013) (to appear)

28. Şerbănuţă, T.F., Roşu, G.: K-Maude: a rewriting based tool for semantics of
programming languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381,
pp. 104–122. Springer, Heidelberg (2010)

29. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., Yahav, E.: Alias analysis for
object-oriented programs. In: Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in
Object-Oriented Programming. LNCS, vol. 7850, pp. 196–232. Springer, Heidelberg
(2013)

30. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C pro-
grams. In: Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, PLDI 1995, pp. 1–12. ACM, New York,
NY, USA (1995)

Checking Integral Real-Time Automata
for Extended Linear Duration Invariants

Changil Choe1(B), Univan Ahn2, and Song Han1

1 Faculty of Mathematics, Kim Il Sung University, Pyongyang,
Democratic People’s Republic of Korea
{mathcci,mathsonghan}@yahoo.com

2 Faculty of Physics, Kim Il Sung University, Pyongyang,
Democratic People’s Republic of Korea

univan.ahn@gmail.com

Abstract. Linear duration invariants are important safety properties
of real-time systems. They are represented as linear inequalities of inte-
grated durations of system states and form a decidable subclass of
Duration Calculus formulas. The problem of whether a real-time automa-
ton satisfies a linear duration invariant can be transformed into a finite
number of linear programming problems. In this paper, extended linear
duration invariants, which are linear inequalities of integrals of physi-
cal quantities that characterize real-time systems, are introduced. The
semantics of extended linear duration invariants is defined by introducing
integral real-time automata whose states are labeled with a finite num-
ber of integrable functions. The problem of checking an integral real-time
automaton for an extended linear duration invariant is transformed into
a finite number of nonlinear programming problems which can be solved
easily. A case study of a reaction tank is discussed to demonstrate the
effectiveness of the technique introduced in the paper.

Keywords: Real-time system · Real-time automaton · Linear dura-
tion invariant · Integral real-time automaton · Extended linear duration
invariant

1 Introduction

Duration Calculus (abbreviated to DC) represents a logical approach to the
formal design of real-time systems [1]. DC uses durations of states over time
intervals to specify and reason about real-time behavior of embedded systems.
The duration of a state in a time interval is the total presence time of the state
in the interval. Linear constraints on the durations of system states form a class
of important properties of real-time systems. This class was given the name
linear duration invariants and was first introduced in [2].

A linear duration invariant is a DC formula of the form

cmin ≤ � ≤ cmax →
n∑

i=1

ci ∫ si ≤ C,

c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 62–75, 2015.
DOI: 10.1007/978-3-319-17581-2 5

Checking Integral Real-Time Automata for ELDI 63

where cmin , cmax, ci (1 ≤ i ≤ n) and C are real numbers, and si (1 ≤ i ≤ n) are
states of the system. A linear duration invariant means that for any observation
time intervals, if the length � of the interval satisfies the constraint cmin ≤ � ≤
cmax then the durations of the system states over that interval should satisfy the
constraint

∑n
i=1 ci

∫
si ≤ C. Many desired properties of real-time systems can

be represented as linear duration invariants.
In [2], Zhou also defined a satisfaction problem of a linear duration invariant

for a real-time automaton and proved that the problem of checking satisfaction
of a linear duration invariant by a real-time automaton can be transformed into
a finite number of linear programming problems. After the publication of [2],
much work has been devoted to extending this satisfaction problem to timed
automata and checking timed automata for linear duration invariants, e.g. [3–7].

In this paper, we introduce extended linear duration invariants that are rep-
resented as linear constraints on the accumulated physical quantities in the obser-
vation intervals. An extended linear duration invariant has the form

cmin ≤ � ≤ cmax →
m∑

i=1

ci ∫ fi ≤ C.

Here, cmin , cmax , ci (1 ≤ i ≤ m) and C are real numbers, and fi (1 ≤ i ≤ m)
are integrable functions assigned to the states of the system.

∫
fi (1 ≤ i ≤ m)

stand for the integrals of fi (1 ≤ i ≤ m) in the observation intervals. The formal
definition of

∫
f is given in Sect. 2.

To define the semantics of extended linear duration invariants, we introduce
a variant of real-time automata called integral real-time automata. An integral
real-time automaton is a real-time automaton whose states are labeled with a
finite number of integrable functions. The semantics of extended linear duration
invariants with respect to integral real-time automata is defined as a conservative
extension of the semantics of linear duration invariants with respect to real-time
automata.

Then we prove that the problem of checking an integral real-time automaton
for an extended linear duration invariant can be reduced to a finite number of
nonlinear programming problems. (In [2], the problem of checking a real-time
automaton for a linear duration invariant was reduced to a finite number of linear
programming problems.) The constraints of these nonlinear programming prob-
lems constitute convex polyhedra in Euclidean spaces and the objective functions
are separable. Nonlinear programming problems of this type have already been
well studied and any algorithm for solving these problems can be used for decid-
ing our satisfaction problem.

As a case study, we represent a reaction tank as an integral real-time automa-
ton, specify its safety requirement using an extended linear duration invariant,
and prove that the model satisfies the specification. The reaction tank is a very
small two-state system which seems to be considered for the first time in this
paper. It motivated us to extend the real-time automata approach for systems
verificationto nonlinear programming. It will be useful if we have a verification

64 C. Choe et al.

technique for dealing with nonlinear accumulations of physical quantities using
DC, since rough linearization of nonlinear behaviors may weaken confidence in
the verification.

The paper is organized as follows. In the next section we introduce integral
real-time automata and extended linear duration invariants. In Sect. 3 we define
the semantics of extended linear duration invariants with respect to integral
real-time automata. In Sect. 4 we present a technique for checking integral real-
time automata against extended linear duration invariants. The reaction tank
is discussed throughout the paper to validate the technique introduced in the
paper.

2 Integral Real-Time Automata and Extended Linear
Duration Invariants

In this section, we introduce integral real-time automata and extended linear
duration invariants, and define the semantics of extended linear duration invari-
ants with respect to integral real-time automata.

2.1 Integral Real-Time Automata

Before introducing integral real-time automata, we recall the definition of real-
time automata and consider a real-time automaton for a gas burner [2,8,9].

Definition 1. A real-time automaton A is a tuple < S, T, low,up > which sat-
isfies the following conditions [2]:

– S is a finite set of states {s1, s2, . . . , sn}.
– T ⊆ S × S is a finite set of transitions.
– The functions low : T → R and up : T → (R ∪ {∞}) denote the lower- and

upper-bound timing constraints on the transitions, where 0 ≤ low(ρ) ≤ up(ρ)
and low(ρ) = 0 → up(ρ) > 0 for any ρ ∈ T .

Every state of a real-time automaton is both an initial and an accepting state.
The set of real-time automata is a subclass of the timed automata of [10], where
each automaton has one clock that is reset after every transition.

Let us consider an example of real-time system that is represented as a real-
time automaton, a gas burner first investigated in [11]. A gas burner works by
repeating heating and idling. When it moves from idling to heating, gas flows
for a little time before it is ignited. And when it fails to ignite the gas, gas still
flows until the flame failure is detected and the gas valve is closed. To prevent
a dangerous accumulation of gas, the time intervals where gas is leaking should
not become too long.

The real-time requirement of the gas burner is that in any observation interval
not smaller than one minute, the proportion of total time of gas leaks should
not be more than one-twentieth of the interval. This requirement can be refined
into the following two design decisions.

Checking Integral Real-Time Automata for ELDI 65

Fig. 1. Left: A real-time automaton for the gas burner. Right: An integral real-time
automation for the reaction tank.

Des1 : Any gas leak should be stoppable within one second.
Des2 : The time between two gas leaks should not be less than thirty seconds.

Des1 and Des2 can be represented by the real-time automaton in Fig. 1,
which has two states of Leak and Nonleak .

The timing constraint on transition (Leak ,Nonleak) is a bounded and closed
interval [0, 1]. This denotes that the automaton can stay in the Leak state for
at most one time unit before a transition to the Nonleak state takes place.
The timing constraint on transition (Nonleak ,Leak) is a left closed, unbounded
interval [30,∞). This denotes that the automaton must stay in the Nonleak state
for at least 30 time units before a transition to the Leak state can take place,
and it can even stay in the Nonleak state forever.

We now introduce integral real-time automata and consider an integral real-
time automaton model of a safety critical system. R+ denotes the set of nonneg-
ative real numbers. Intg(R+) denotes the set of integrable functions over R+.

Definition 2. An integral real-time automaton D is a tuple < S, T, low,up, L >
which satisfies the following conditions:

– < S, T, low,up > is a real-time automaton.
– L : S → 2Intg(R

+) assigns a finite set of integrable functions to each state
s ∈ S.

A function which is assigned to a state represents the generation process of a
certain physical quantity, which progresses during the continuous presence of
that state. What we are interested in this paper is an inequality which is related
to the integrals of such generation processes. So no other conditions are given
to the functions which are assigned to the states other than the integrability
condition. Integrability is needed to make the model checking decidable. Every
state of an integral real-time automaton is both an initial and an accepting state.

The reason for defining integral real-time automata might be questioned
because there is a possibility that integral real-time automata can be trans-
formed into the hybrid automata of [12]. Such a question will be solved after we
introduce extended linear duration invariants and define their semantics using
integral real-time automata in Sect. 3. It is enough to represent the system as a
simple integral real-time automaton for the model checking of an extended linear
duration invariant. If necessary, we can consider the model checking of hybrid
automata for extended linear duration invariants.

Let us consider an example of a safety critical system which can be repre-
sented as an integral real-time automaton.

66 C. Choe et al.

Reaction tank. A chemical reaction which involves a harmful gas release is
repeated indefinitely inside a reaction tank. Each reaction cycle takes from 3 to
4 h. The products are taken out of the tank and waste liquid is sent to the next
process after the reaction cycle is finished. The reaction can be repeated after
2 h from the end of the preceding reaction, or it may never be resumed. An air
cleaner is installed and works constantly to neutralize the released harmful gas.

The left function of Fig. 2, denoted by ftox , shows the variation of the amount
of harmful gas which is released during the reaction. The right function of Fig. 2,
denoted by fdetox , shows the neutralization ability of the air cleaner.

Fig. 2. Left: The harmful gas release characteristic during the reaction. Right: The
neutralization ability of the air cleaner.

The analytic expressions of ftox and fdetox are as follows.

ftox (x) = 0.35x3 − 3.23x2 + 7.53x 0 ≤ x ≤ 4
fdetox (x) = 2.4 x ≥ 0

Air pollution of the working environment will be caused if the air cleaner
fails to neutralize harmful gas in real time. This imposes a safety requirement
on the reaction tank; in any observation interval not smaller than 12 h, the air
cleaner should be completely capable of neutralizing the released harmful gas.

Figure 1 shows an integral real-time automaton model of the reaction tank.
The automaton has two states of reaction and idling . Two functions ftox and
fdetox are assigned to the reaction state. This denotes that harmful gas release
and its neutralization occur together in the reaction state. A function fdetox is
assigned to the idling state. This denotes that already released harmful gas is
neutralized in the idling state without extra release of harmful gas.

A real-time automaton can be considered as an integral real-time automaton
whose states are labeled with one constant function f(x) = 1. In that sense,
the notion of integral real-time automata is an extension of the notion of real-
time automata. It is possible to represent an integral real-time automaton as
a weighted timed automaton [17,18], if the functions which are assigned to the
states of the integral real-time automaton are constant or piecewise constant.

Remark 1. We assumed that the domains of the functions which are assigned
to the states are R

+ when we defined integral real-time automata. However,
readers may notice that the domain of the function ftox assigned to the reaction
state in Fig. 1 is [0, 4]. The reason we confine the domain of ftox to [0, 4] is that
the system can stay in the reaction state at most 4 h. We can easily extend the
domain of ftox to R

+ by assigning 0 to every x greater than 4.

Checking Integral Real-Time Automata for ELDI 67

2.2 Extended Linear Duration Invariants

Before defining extended linear duration invariants, we recall the definition of
linear duration invariants and consider an example of linear duration invari-
ant specifications of real-time requirements. Linear duration invariants form a
decidable subclass of DC. The syntax, semantics and proof system of DC were
summarized in the monograph [13].

DC is effective in expressing various patterns of real-time requirements, but
its formulas are highly undecidable. Only a very small class of chop free formulas
including linear duration invariants is decidable [14]. Because linear duration
invariants are important properties of real-time systems, model checking of linear
duration invariants has attracted great deal of attention since the introduction
of DC.

Definition 3. A linear duration invariant for the real-time automaton A is a
DC formula of the form

cmin ≤ � ≤ cmax →
n∑

i=1

ci ∫ si ≤ C.

Here, cmin , cmax , ci (1 ≤ i ≤ n) and C are real numbers, and si (1 ≤ i ≤ n)
are states of A. � is a term which takes the length of the interval for each
observation interval.

∫
s is a term which takes the integrated duration of s for

each observation interval. The real-time requirement of the gas burner mentioned
in Sect. 2.1 is represented as � ≥ 60 → (19

∫
Leak − ∫

Nonleak) ≤ 0 [11]. If it is
obvious from the context, we call the linear duration invariants for a real-time
automaton simply the linear duration invariants. LDI will be used to denote a
linear duration invariant.

Now we define extended linear duration invariants and consider an example
of extended linear duration invariant specifications.

Definition 4. An extended linear duration invariant for the integral real-time
automaton D is a formula of the form

cmin ≤ � ≤ cmax →
m∑

i=1

ci ∫ fi ≤ C.

Here, cmin , cmax , ci (1 ≤ i ≤ m) and C are real numbers, and fi (1 ≤ i ≤ m)
are functions assigned to the states of D. � is a term which takes the length of
the interval for each observation interval.

∫
fi is a term which takes the integral

of fi for each observation interval. If it is obvious from the context, we call the
extended linear duration invariants for an integral real-time automaton simply
the extended linear duration invariants. ELDI will be used to denote an extended
linear duration invariant.

An essential difference between linear duration invariants and extended linear
duration invariants comes from the difference of the calculations of

∫
s and

∫
f .

We use an example to show this.

68 C. Choe et al.

The left side of the above diagram is a behavior of a real-time automaton. For
this behavior,

∫
s1 and

∫
s2 are calculated as

∫
s1 = 3 +1 = 4 and

∫
s2 = 2.5. The

right side of the above diagram is a behavior of an integral real-time automaton.
For this behavior,

∫
f and

∫
g are calculated as

∫
f =

∫ 3

0
f(x)dx +

∫ 1

0
f(x)dx

and
∫

g =
∫ 3

0
g(x)dx +

∫ 2.5

0
g(x)dx +

∫ 1

0
g(x)dx.

The linear duration invariants and the extended linear duration invariants
also have a difference in the structures of their linear terms. The linear term∑n

i=1 ci

∫
si of a linear duration invariant for the real-time automaton A consists

of subterms c1
∫

s1, . . . , cn−1

∫
sn−1 and cn

∫
sn, whose number is equal to the

number of states of A. (Note that some ci could be 0.) But the linear term∑m
i=1 ci

∫
fi of an extended linear duration invariant for the integral real-time

automaton D consists of subterms c1
∫

f1, . . . , cm−1

∫
fm−1 and cm

∫
fm, whose

number is equal to the number of different functions assigned to the states of D.
(Note that some ci could also be 0.)

For example, the number of different functions assigned to the states of the
integral real-time automaton in Fig. 1 is 2. Hence, the linear term of any extended
linear duration invariant for this integral real-time automaton consists of two
subterms c1

∫
ftox and c2

∫
fdetox .

Readers who are familiar with DC can easily find that extended linear dura-
tion invariants are not formulas of DC, because there is no term

∫
f in the

syntax of DC. To define extended linear duration invariants strictly, we first
should extend DC by adding the term

∫
f to the syntax of DC and then define

extended linear duration invariants as the formulas of the extended DC. In this
paper, we do not consider the extension of DC and define extended linear dura-
tion invariants by directly extending linear duration invariants. That is why we
called extended linear duration invariants in Definition 4 simply formulas rather
than DC formulas.

It is possible to extend the syntax of DC to be allowed to include the real val-
ued term

∫
f . The early paper of Zhou Chaochen et al. [15] would be helpful for

this work, where the authors extended DC by introducing real valued term dt to
capture properties of piecewise continuous states. The semantics of the term dt in
[15] is different from the one of the term

∫
f in this paper, however. And the main

concern of the authors in [15] was to introduce a proof theory for the extended DC,
rather than developing a model checking technique. Nevertheless, [15] provides a
good approach for extending DC by introducing the real valued term

∫
f .

Returning to the reaction tank, the safety requirement which was already
considered in Sect. 2.1 can be specified as the extended linear duration invariant

12 ≤ � → ∫ ftox − ∫ fdetox ≤ 0.

Here,
∫

ftox represents the total amount of gas released in each observation
interval and

∫
fdetox represents the total amount of gas which can be neutralized

in that interval. It is impossible to specify this real-time requirement as a linear
duration invariant.

Checking Integral Real-Time Automata for ELDI 69

From the above discussion, readers will understand the motivation of intro-
ducing integral real-time automata and extended linear duration invariants. In
the next section, we define the semantics of extended linear duration invariants
with respect to integral real-time automata.

3 Semantics of Extended Linear Duration Invariants

We define the semantics of extended linear duration invariants with respect to
integral real-time automata by conservatively extending the semantics of linear
duration invariants with respect to real-time automata.

Given an integral real-time automaton D =< S, T, low,up, L >, ρ is used to
denote a transition of D, i.e. an element of T . For a transition ρ = (s, s′), the
notations ←−ρ = s and −→ρ = s′ are used.

ρ1ρ2 . . . ρn is called a behavior if −→ρi = ←−−ρi+1 for every i (1 ≤ i ≤ n − 1).
Beh is used to denote a behavior. TBeh = (ρ1, t1)(ρ2, t2) . . . (ρn, tn) is called
a time-stamped behavior obtained from Beh = ρ1ρ2 . . . ρn, where low(ρi) ≤
ti ≤ up(ρi) for every i (1 ≤ i ≤ n). For example, Beh = ρ1ρ2ρ1 is a behavior
of the integral real-time automaton in Fig. 1, where ρ1 = (reaction, idling) and
ρ2 = (idling , reaction). TBeh = (ρ1, 3.5)(ρ2, 3)(ρ1, 4) is a time-stamped behavior
obtained from Beh = ρ1ρ2ρ1.

ρ1ρ2 . . . ρn is called a sequence. A sequence may violate transition consec-
utivity of the automaton. Seq is used to denote a sequence. Given a sequence
Seq = ρ1ρ2 . . . ρn, TSeq = (ρ1, t1)(ρ2, t2) . . . (ρn, tn) is called a time-stamped
sequence obtained from Seq = ρ1ρ2 . . . ρn, where −→ρi = ←−−ρi+1 for every i (1 ≤ i ≤
n−1). For example, Seq = ρ1ρ1ρ2 is a sequence of the integral real-time automa-
ton in Fig. 1. TSeq = (ρ1, 3.5)(ρ1, 4)(ρ2, 3) is a time-stamped sequence obtained
from Seq = ρ1ρ1ρ2. ρ1ρ1ρ2 is a sequence, but it is not a behavior. A behavior is
a sequence and a time-stamped behavior is a time-stamped sequence.

LD denotes the set of behaviors of the integral real-time automaton D. LD is
a regular language over the alphabet T , as it is accepted by a finite automaton
where every state is both an initial and an accepting state.

For a time-stamped sequence TSeq = (ρ1, t1)(ρ2, t2) . . . (ρn, tn) of D, �(TSeq)
is defined as

�(TSeq) =
n∑

i=1

ti.

For example, the value of � for TSeq = (ρ1, 3.5)(ρ1, 4)(ρ2, 3) is �(TSeq) =
3.5 + 4 + 3 = 10.5.

Let f be a function assigned to a state of D. For the time-stamped sequence
TSeq = (ρ1, t1)(ρ2, t2) . . . (ρn, tn) of D,

∫
f(TSeq) is defined as

∫ f(TSeq) =
n∑

i=1

⎧
⎨

⎩

∫ ti
0

f(x)dx f ∈ L(←−ρi)

0 otherwise

⎫
⎬

⎭ .

70 C. Choe et al.

For example, the value of
∫

ftox for the time-stamped sequence TSeq =
(ρ1, 3.5)(ρ2, 3)(ρ1, 4) in Fig. 1 is

∫
ftox (TSeq) =

∫ 3.5

0
ftox (x)dx +

∫ 4

0
ftox (x)dx,

since ftox is only assigned to ←−ρ1.
We denote the linear term

∑m
i=1 ci

∫
fi of ELDI by LF . For a time-stamped

sequence TSeq = (ρ1, t1)(ρ2, t2) . . . (ρn, tn) of D, LF (TSeq) is defined as

LF (TSeq) =
m∑

i=1

ci ∫ fi(TSeq).

Lemma 1. LF (TSeq1 ·TSeq2) = LF (TSeq2 ·TSeq1) = LF (TSeq1)+LF (TSeq2)
for any time-stamped sequences TSeq1 and TSeq2 .

Here, TSeq1 · TSeq2 is the concatenation of TSeq1 and TSeq2 . The proof of the
lemma is a straightforward from the definition of LF (TSeq).

We can now move to the semantics of extended linear duration invariants
using the functions defined above.

Definition 5. The satisfaction of ELDI by D is definied as follows.

– ELDI is satisfied by a time-stamped sequence TSeq of D iff cmin ≤ �(TSeq)
≤ cmax implies LF (TSeq) ≤ C. Otherwise ELDI is said to be violated by
TSeq.

– ELDI is satisfied by a sequence Seq, denoted by Seq |= ELDI , iff ELDI is
satisfied by every time-stamped sequence obtained from Seq. Otherwise ELDI
is said to be violated by Seq.

– Let L be a language over T . ELDI is satisfied by L, denoted by L |= ELDI , iff
Seq |= ELDI for every Seq ∈ L.Otherwise ELDI is said to be violated by L.

– ELDI is satisfied by D, denoted by D |= ELDI , iff LD |= ELDI . Otherwise
ELDI is said to be violated by D.

Remark 2. In [2], the meaning of the term
∫

s of a linear duration invariant was
defined as

∫ s(TSeq) =
n∑

i=1

⎧
⎨

⎩

ti
←−ρi = s

0 otherwise

⎫
⎬

⎭ .

That is,
∫

s(TSeq) calculates the total duration of the state s. However,∫
f(TSeq) calculates the total accumulation of the physical quantity f for the

duration of the states labeled with f .

4 Checking Algorithm

In this section, we present an algorithm for checking whether an integral real-
time automaton satisfies an extended linear duration invariant. Our algorithm is
an extension of the technique developed in [2] to check if a real-time automaton

Checking Integral Real-Time Automata for ELDI 71

satisfies a linear duration invariant. We first show the main idea of the algorithm
through an example of checking the reaction tank for its safety requirement. We
then formalize our algorithm which reduces the checking task to a finite set of
nonlinear programming problems which can be easily solved.

4.1 Verification of the Reaction Tank: Main Idea of the Checking
Algorithm

We denote the integral real-time automaton of the reaction tank (Fig. 1) by D
and its real-time requirement 12 ≤ � → ∫ ftox − ∫ fdetox ≤ 0 by ELDID . The
problem LD |= ELDID must be solved for the verification of the reaction tank.

D has two transitions ρ1 = (reaction, idling) and ρ2 = (idling , reaction), but
it can produce infinitely many behaviors. They (namely LD) can be expressed in
terms of regular language as (ρ1ρ2)∗ ∪ (ρ1ρ2)∗ρ1 ∪ (ρ2ρ1)∗ ∪ (ρ2ρ1)∗ρ2, where ∗
stands for repetition and ∪ for union. Note that both reaction and idling are initial
states of D. Then the problem LD |= ELDID can be divided into four problems
(ρ1ρ2)∗ |= ELDID , (ρ1ρ2)∗ρ1 |= ELDID , (ρ2ρ1)∗ |= ELDID and (ρ2ρ1)∗ρ2 |=
ELDID by considering (ρ1ρ2)∗, (ρ1ρ2)∗ρ1, (ρ2ρ1)∗ and (ρ2ρ1)∗ρ2 individually.

Recalling the definition of the extended linear duration invariants, we can eas-
ily deduce that the problem (ρ1ρ2)∗ |= ELDID and (ρ2ρ1)∗ |= ELDID are equiv-
alent with respect to the satisfaction. Thus, three problems (ρ1ρ2)∗ |= ELDID ,
(ρ1ρ2)∗ρ1 |= ELDID and (ρ2ρ1)∗ρ2 |= ELDID must be solved for the verification
of the reaction tank.

Let us first consider the problem (ρ1ρ2)∗ |= ELDID . For any time-stamped
sequence TSeq1 = (ρ1, t1)(ρ2, t2) obtained from Seq1 = (ρ1ρ2)1, LF (TSeq1) is
calculated as follows.

LF (TSeq1) =∫ t1
0

ftox (x)dx − ∫ t1
0

fdetox (x)dx − ∫ t2
0

fdetox (x)dx =∫ t1
0

(0.35x3 − 3.23x2 + 7.53x)dx − ∫ t1
0

2.4dx − ∫ t2
0

2.4dx =
0.09t41 − 1.08t31 + 3.76t21 − 2.4t1 − 2.4t2.

The value of 0.09t41 − 1.08t31 +3.76t21 − 2.4t1 − 2.4t2 is smaller than 0 for each
(t1, t2) which ranges over [3, 4] × [2,∞). From this fact and Lemma 1, the value
of LF (TSeqk) is smaller than 0 for each time-stamped sequence TSeqk obtained
from Seqk = (ρ1ρ2)k. Then, ELDID is satisfied by (ρ1ρ2)∗ from the definition of
the satisfaction.

Let us next consider the problem (ρ1ρ2)∗ρ1 |= ELDID . (ρ1ρ2)∗ρ1 can be
unfolded as ρ1∪(ρ1ρ2)ρ1∪(ρ1ρ2)2ρ1∪. . .. Then, the problem (ρ1ρ2)∗ρ1 |= ELDID
is divided into infinite number of problems: (ρ1ρ2)kρ1 |= ELDID (k ≥ 0). For
every time-stamped sequence TSeq obtained from (ρ1ρ2)kρ1 (k ≥ 2), the value
of �(TSeq) is greater than 12 and the value of LF (TSeq) is smaller than 0. This
implies that ELDID is satisfied by every (ρ1ρ2)kρ1 (k ≥ 2). Thus, it is enough
to solve the problems ρ1 |= ELDID and ρ1ρ2ρ1 |= ELDID to decide the problem
(ρ1ρ2)∗ρ1 |= ELDID .

It is obvious that ELDID is satisfied by ρ1 because �(TSeq) is smaller than
12 for every time-stamped sequence obtained from ρ1. The problem ρ1ρ2ρ1 |=
ELDID is transformed into a nonlinear programming problem as follows.

72 C. Choe et al.

Every time-stamped sequence (ρ1, t1)(ρ2, t2)(ρ1, t3) which is obtained from
ρ1ρ2ρ1 must satisfy the constraints 3 ≤ t1 ≤ 4, t2 ≥ 2 and 3 ≤ t3 ≤ 4. For
this time-stamped sequence, the value of � is t1 + t2 + t3 and the value of LF is∫ t1
0

ftox (x)dx +
∫ t3
0

ftox (x)dx − ∫ t1
0

fdetox (x)dx − ∫ t2
0

fdetox (x)dx − ∫ t3
0

fdetox (x)
dx = 0.09t41 − 1.08t31 + 3.76t21 − 2.4t1 − 2.4t2 + 0.09t43 − 1.08t33 + 3.76t23 − 2.4t3.

Therefore, we can decide the problem ρ1ρ2ρ1 |= ELDID by solving the fol-
lowing nonlinear programming problem.

Constraints:

3 ≤ t1 ≤ 4, t2 ≥ 2, 3 ≤ t3 ≤ 4 and t1 + t2 + t3 ≥ 12.

Objective function:

0.09t41 − 1.08t31 + 3.76t21 − 2.4t1 − 2.4t2 + 0.09t43 − 1.08t33 + 3.76t23 − 2.4t3.

If the maximal value of the objective function is less than or equal to 0, then
ELDID is satisfied by ρ1ρ2ρ1. And if the maximal value of the objective function
is greater than 0, then ELDID is violated by ρ1ρ2ρ1. By solving the problem,
we can easily know that the maximal value of this objective function is -0.64.
Therefore, ELDID is satisfied by ρ1ρ2ρ1.

The third problem (ρ2ρ1)∗ρ2 |= ELDID can also be solved in the way used
above and we skip it.

4.2 Algorithm

In this subsection, we formalize the technique shown above. We confine ourselves
to the subclass of integral real-time automata which satisfy low(ρ) > 0 for each
transition ρ. Let D =< S, T, low,up, L > be an integral real-time automaton
which satisfies the above constraint.

We first consider the extended linear duration invariants which have the form

cmin ≤ � →
m∑

i=1

ci ∫ fi ≤ C.

For convenience, we denote an extended linear duration invariant of this form
by ELDI .

Definition 6. Two languages L1 and L2 over T are called equivalent with respect
to ELDI , denoted by L1 ≡ L2, if L1 |= ELDI iff L2 |= ELDI .

The equivalence of two languages in this paper is slightly different from the one
in [2], but the two equivalences have the same meaning. We identify a regular
expression with the language it denotes.

LD can be transformed into an equivalent finite union of regular expressions
of the form ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗. The procedure which was used in [2] to
transform LA (where A is a real-time automaton) into an equivalent finite union
of regular expressions of the form ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗ can also be used in
our case without any modification. We do not repeat it in this paper.

Thus, we can decide the problem LD |= ELDI if we have a technique for
solving the problem ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗ |= ELDI .

Checking Integral Real-Time Automata for ELDI 73

Given a sequence Seq = ρ1ρ2 . . . ρm, we let �min =
∑m

i=1 low(ρi) and ρ1ρ2 . . .
ρm

min = (ρ1, low(ρ1))(ρ2, low(ρ2)) . . . (ρm, low(ρm)). And by solving the follow-
ing nonlinear programming problem, we can obtain the time-stamped sequence
TSeqmax = (ρ1, t01)(ρ2, t

0
2) . . . (ρm, t0m) which has the maximal value of LF among

all time-stamped sequences obtained from Seq , where we accept x < ∞ for x ∈ R,
and ∞ > 0.

Constraints:

low(ρ1) ≤ t1 ≤ up(ρ1), . . . , low(ρm) ≤ tm ≤ up(ρm) and t1 + . . .+ tm ≥ cmin .

Objective function:

LT (TSeq).

We formulate the following three theorems and give sketches of the construc-
tive proofs which reduces the problem ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗ |= ELDI to a
finite set of nonlinear programming problems.

Theorem 1. ELDI is violated by ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗ if LF (TSeqimax) > 0
for some i (1 ≤ i ≤ k).

Proof. Let t0 = t01 + . . . t0m. We set n1 = cmin−�min

t0 �, n2 = C−LF(ρ1ρ2...ρm
min)

LF(TSeqimax) �
and n = max{n1, n2}. Then, ELDI is violated by ρ1 . . . ρm

min(TSeqimax)n which
is an element of ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗.

Theorem 2. ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗ is equivalent to a finite union of sequences
if LF (TSeqimax) ≤ 0 for every i (1 ≤ i ≤ k).

Proof. Seq∗ is equivalent to
⋃n

i=1(Seq)i for some n (> 0), if LF (TSeqmax) ≤ 0.
To prove it, we consider the case C < LF (TSeqmax) < 0. Other cases can
be considered in a similar way. We set n1 = cmin

�min
�, n2 = C

LF(TSeqmax)� and
n = max{n1, n2}. For this n, Seq∗ ≡ ⋃n

i=1(Seq)i

Then, ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗ ≡ ρ1 . . . ρm

⋃n1
i=1(Seq)i . . .

⋃nk

i=1(Seq)i. There-
fore, ρ1 . . . ρmSeq1 ∗ . . .Seqk ∗ is equivalent to a finite union of sequences from the
distribution law for the concatenation over the union.

Theorem 3. For any Seq = ρ1 . . . ρn, the problem Seq |= ELDI is solvable
using nonlinear programming.

Proof. Consider the timed sequence TSeq = (ρ1, t1)(ρ2, t2) . . . (ρn, tn). The con-
straints of the nonlinear programming problem are obtained from the timing
constraints of D and from the left-hand side of the implication in the definition
of ELDI . That is,

low(ρ1) ≤ t1 ≤ up(ρ1), . . . , low(ρn) ≤ tn ≤ up(ρn) and cmin ≤ �(TSeq).

The objective function of the nonlinear programming problem is

LF (TSeq) (=
m∑

i=1

ci ∫ fi(TSeq)).

74 C. Choe et al.

If the maximal value of the objective function is smaller than or equal to C,
ELDI is satisfied by Seq . Otherwise, ELDI is violated by Seq .

The algorithm presented above can be easily generalized to the decision proce-
dure for the satisfaction problem of extended linear duration invariants which
have the form cmin ≤ � ≤ cmax → ∑m

i=1 ci ∫ fi ≤ C. We do not discuss this
generalization further in this paper.

In this section, we have confined ourselves to the integral real-time automata
whose lower-bound timing constraints on the transitions are not 0. The algo-
rithm, however, can also be used in other cases of integral real-time automata
by replacing each 0 with a sufficiently small positive number. For a better under-
standing of the algorithm presented in this section, readers are referred to [2].

4.3 Solvability of the Nonlinear Programming Problems

Fortunately, the nonlinear programming problems which are generated as a result
of applying the above checking algorithm are solvable.

Let P be the nonlinear programming problem generated from the problem
Seq |= ELDI , where Seq = ρ1ρ2 . . . ρn. The feasible set of P is a simple con-
vex polyhedron of R

n. (See Theorem 3.) The objective function of P has the
structure

F (t1) + F (t2) + . . . + F (tn).

Here ti ∈ [low(ρi),up(ρi)] and F (ti) = ±∫ ti
0 fi1(x)dx ± ∫ ti

0 fi2(x)dx + . . . +
±∫ ti

0 fini
(x)dx. fi1 , fi2 , . . . , fini−1

and fini
are functions assigned to ←−ρi . ± denotes

+ or −. That is, the objective function of P is a separable function. The methods
for solving nonlinear programming problems of this type have already been studied
well, e.g. [16].

5 Conclusion

The case study of the reaction tank demonstrates that extended linear duration
invariants introduced in the paper represent a practical pattern of safety proper-
ties of real-time systems. The semantics of extended linear duration invariants is
defined using integral real-time automata. By introducing extended linear dura-
tion invariants and integral real-time automata, we could extend the real-time
automata approach for systems verification to the nonlinear programming.

References

1. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991)

2. Zhou, C.: Linear duration invariants. In: Langmaack, H., de Roever, W.-P., Vytopil,
J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 86–109. Springer,
Heidelberg (1994)

Checking Integral Real-Time Automata for ELDI 75

3. Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Integration graphs: a class of decid-
able hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.)
HS 1991 and HS 1992. LNCS, vol. 736, pp. 179–208. Springer, Heidelberg (1993)

4. Braberman, V.A., Van Hung, D.: On checking timed automata for linear duration
invariants. In: Proceedings of the 19th Real-Time Systems Symposium RTSS 1998,
pp. 264–273. IEEE Computer Society Press, Los Alamitos (1998)

5. Zhang, M., Van Hung, D., Liu, Z.: Verification of linear duration invariants by
model checking CTL properties. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun,
H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 395–409. Springer, Heidelberg (2008)

6. Zhang, M., Liu, Z., Zhan, N.: Model checking linear duration invariants of networks
of automata. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp.
244–259. Springer, Heidelberg (2010)

7. Thai, P.H., Van Hung, D.: Verifying linear duration constraints of timed automata.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 295–309. Springer,
Heidelberg (2005)

8. Ravn, A.P., Rischel, H., Hansen, K.M.: Specifying and verifying requirements of
real-time systems. IEEE Trans. Softw. Eng. 19(1), 41–55 (1993)

9. Chaochen, Z., Xiaoshan, L.: A mean-value duration calculus. In: Roscoe, A.W.
(ed.) A Classical Mind, Essays in Honour of C. A. R. Hoare, pp. 431–451. Prentice
Hall International, Englewood Cliffs (1994)

10. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

11. Sφrensen, E.V., Ravn A.P., Rischel H.: Control Program for a Gas Burner: Part
1: Informal Requirements, ProCoS Case Study 1. ProCoS I, ESPRIT BRA 3104,
Report No. ID/DTH EVS2, Department of Computer Science, Technical University
of Denmark, Lyngby (1990)

12. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992.
LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

13. Chaochen, Z., Hansen, M.R.: Duration Calculus. A Formal Approach to Real-Time
Systems. Springer, Heidelberg (2004)

14. Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results
for duration calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) (STACS
93). LNCS, vol. 665, pp. 58–68. Springer-Verlag, Heidelberg (1993)

15. Chaochen, Z., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid
real-time systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.)
Hybrid Systems. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993)

16. Zhang, H., Wang, S.: Global optimization of separable objective functions on con-
vex polyhedra via piecewise-linear approximation. J. Comput. Appl. Math. 197,
212–217 (2006)

17. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: algorithms
and applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2004. LNCS, vol. 3657, pp. 162–182. Springer, Heidelberg (2005)

18. Bouyer, P.: Weighted timed automata: model-checking and games. In: Brookes,
S., Mislove (eds.) Proceedings of the 22nd Annual Conference on Mathematical
Foundations of Programming Semantics, Electronic Notes in Theoretical Computer
Science, vol. 158, pp. 3–17 (2006)

A Normalized Form for FIFO Protocols
Traces, Application to the Replay

of Mode-based Protocols

Mamoun Filali (B), Meriem Ouederni, and Jean-Baptiste Raclet

IRIT CNRS, Université de Toulouse, Toulouse, France
{filali,Jean-Baptiste.Raclet}@irit.fr,

meriem.ouederni@enseeiht.fr

Abstract. The traditional concern of runtime verification is the ability
to detect an incorrect system behavior and maybe to act on such systems
whenever incorrect behavior of a software system is detected [20]. In this
paper, our concern is to provide a system observation through which
the system behavior could for instance be diagnosed, e.g., to resolve
unexpected bugs. Such a system observation is elaborated from a partial
observation. Our work is at the protocol level: given a distributed appli-
cation relying on a FIFO protocol for message passing, our concern is to
reconstruct a full execution given by its observable send events.

1 Introduction

The availability of a web-based infrastructure, e.g., internet, has popularized
worldwide distributed applications. Nowadays, commercial transactions and sev-
eral administrative procedures, e.g., eGovernment, are often executed in a dis-
tributed setting. The interpretation of data produced by such applications is very
useful and of utmost importance. For instance, it enable programme diagnosis
in order to understand the executed traces. In addition, if an unexpected bug
occurs at execution time, the interpretation allows us to replay, i.e., reconstruct,
the traces leading to the fault. Thus, one may be able to debug the program and
find the root cause of the bug. In this paper, we address the following problem:
how can we faithfully make an interpretation of data available at runtime? Run-
time verification [20] can be identified as one domain addressing such a topic.
Actually, the traditional concern of runtime verification is the ability to detect an
incorrect system behavior and maybe to act on such systems whenever incorrect
behavior of a software system is detected. In this paper, our aim is to provide
a system observation through which the system behavior could for instance be
diagnosed. Such a system observation is elaborated from a partial observation.
Our work is at the protocol level: given a distributed application relying on a
FIFO protocol for message passing, our concern is to reconstruct a full execution
given by its observable send events. We motivate the use of send events as fol-
lows: first, the decision to receive is usually considered as an internal or private
decision; moreover, sends are seen over the network while the receipts are not.
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 76–92, 2015.
DOI: 10.1007/978-3-319-17581-2 6

A Normalized Form for FIFO Protocols Traces 77

The rest of the paper is organized as follows. After the definition of basic
semantics notions in Sect. 2, we illustrate and motivate the studied model in
Sect. 3. Section 4 introduces a normal form of executions. A replay algorithm
based upon this normal form is studied in Sect. 5. Before concluding, we review
some related works in Sect. 6.

2 FIFO Protocols Semantics

In this section, we present the semantics of the studied model: FIFO protocols.
After presenting the notations used throughout the paper, we recall the basic
semantic notions used in the sequel. Transition systems [2] together with runs
and traces, the basic notions for observing a transition system, are first defined.
After defining syntactically send-receive protocols systems, their semantics is
given as transition systems.

2.1 Notations

Finite Sequences (lists). Let S be a set, S∗ is the set of finite sequences over
S. An element x1 . . . xn of S is also denoted x(i). [] is the empty sequence,
[e] is a one element (e) list, given a non empty sequence l: x1 . . . xn, hd(l) is
the first element of l: x1, tl(l) is the sequence resulting from the suppression
of x1: x2 . . . xn, last(l) is the last element of l: xn, butlast(l) is the sequence
resulting from the suppression of xn: x1 . . . xn−1. set(l) is the set of the elements
of the list l: {x1 . . . xn}. By abuse of notation, we write ∀ e ∈ l. . . . instead
of ∀ e ∈ set(l). Given a set H, l\H is the sequence resulting from the
suppression of the elements of H within l. The concatenation of two lists l, l′ is
denoted l@l′. Given a sequence L of sequences over S, concat(L) is the sequence
resulting from the concatenation of the elements of L.

Updates. Given a structured datatype, e.g., an array, a record, . . . , := denotes
its update. For instance, given an array A where s is a valid index, A[s := v] is
the array resulting from the update by v of the element of A at index s, given a
record R with a field named f , R[f := v] is the record resulting from the update
by v of the field named f .

2.2 Transition Systems

Definition 1 (Labelled Transition Systems). A labelled transition system
defined over a set of states S and a set of labels Σ is a couple Sys = (I,→)
where I: the set of initial states is a subset of S and →: the labelled transition
relation is a subset of S × Σ × S.

In the following, given a transition tr = (s, l, s′), its label l, will be denoted
Lab(tr). s the initial state is denoted Src(tr), s′ the destination state is denoted
Dst(tr).

78 M. Filali et al.

Definition 2 (Runs). Given a labelled transition system Sys = (I,→) over S
and Σ, a run is an element of (S × Σ × S)∗: s0l0s

′
0 . . . snlns′

n such that n ∈ N,
s0 ∈ I and ∀ i ≤ n. (si, li, s′

i) ∈ → ∧∀i < n. s′
i = si+1. Its set of runs is

denoted RSys.

A run is a sequence of interleaved states and labels obtained through the execu-
tion of the algorithm or protocol modelled as a transition system.

Notations. Given an initital state s and a run r, R(s) is the set of runs starting
at s. Given a non empty run r = s0l0s

′
0 . . . snlns′

n, ends(r) denotes the pair
(s0, s′

n).

Definition 3 (Traces). Given a labelled transition system Sys = (I,→) over
S and Σ, E ⊆ Σ called the espilon set, a trace is an element of Σ∗ obtained as
a projection of a run where letters of the epsilon set E have been suppressed.

Traces(Sys, E) =
⋃

s(i),s
′
(i)

{l0 . . . ln\E . (s0, l0, s′
0) . . . (sn, ln, s′

n) ∈ RSys}

Intuitively, a trace is a sequence of labels that can be observed through the execu-
tion of the algorithm or protocol modelled as a transition system: Trace((s0, l0, s′

0)
. . . (sn, ln, s′

n), E) = l0 . . . ln\E .1

2.3 FIFO Protocols Systems

Definition 4 (Send-receive protocols). A Send receive protocol is defined
as a tuple (St, δ) over a set P of peers, a set L of locations2 and M a set of
messages. To each peer p is assigned an automaton (Stp, δp) where Stp, a location
of L, is the initial state of the peer p and δp is the set of transitions of the peer p.
A transition is one of:

– a send transition denoted (st, q!m, st′) : in state st, the peer p sends the message
m to the peer q through the input queue of peer q ∈ P and moves to state st′.

– a receive transition denoted (st, ?m, st′) : in state st, the peer p receives (or
consumes) the message m through its own input queue and moves to state st′.

– (st, ε, st′) is an epsilon transition (internal transition).

In the following, we consider deterministic send-receive protocols, that is, we
omit ε transitions and consider only deterministic transitions; we then use δ
transitions as partial functions: the state resulting when moving from state st
through a δ transition is denoted δ(st).

Definition 5 (FIFO Send-Receive Systems). Given a send-receive protocol
(St, δ) defined over (P,L,M), we define its FIFO labelled transition system
FIFO LTS((P,L,M, St, δ)) as the following tuple:

1 We write Trace(r) when E is clear in the context.
2 The location has to be understood here as the local, or internal state of a peer.

A Normalized Form for FIFO Protocols Traces 79

S the set of global states is a mapping giving for each peer its local state and its
FIFO queue: P → L × M∗. We represent a global state as an array of records
indexed by the set of peers:

array P of record state : L, queue : list of M end

Σ its set of labels as the (disjoint) union of:

• its send labels: P ×M×P, where an element is denoted sS
m
d where s is the

source peer, d the destination peer and m the sent message from s to d.
• its receive labels: P × M, where an element is denoted Rm

p where p is the
receiving peer and m the received message.
– The set of initial states is the singleton {p �→ {state := {Stp, queue := []}}
→ its transition relation as the union S ∪ R where:

• S is the set of send transitions:3

S =
⋃

s Ss

Ss =
⋃

r,m{(St,s Sm
r , St′).

s
= r ∧ (St[s], r!m,St′[s]) ∈ δs
∧ St′ = St[s := St[s][state := St′[s].state]

r := St[r][queue := St[r].queue@[m]]]}
• R is the set of receive transitions:

R =
⋃

r Rr

Rr =
⋃

m{(St,Rm
r , St′).

(St[r], ?m,St′[r]) ∈ δr
∧ St[r].queue
= [] ∧ m = hd(St[r].queue)
∧ St′ = St[r := St[r][state := St′[r].state,

queue := tl(St[r].queue)]]}
Intuitively, each peer p has a FIFO queue that contains the sequence of data
items that have been sent to peer p but not yet received by p. Each receive
transition removes a data item from the queue of the receiving peer and each
send transition adds a data item to the queue of the destination peer. Moreover,
we note that FIFO queues are unbounded. It follows that our transition systems
are infinite.

Notations. Given a label l (an element of Σ):

– The predicate isSend, resp. isReceive, denotes if l is a send label, resp. a receive
label.

– The function On denotes its peer: On(sSm
d) = s,On(Rm

r) = r.

In the following, we consider a fixed FIFO protocol so we will omit the tuple
(P,L,M, St, δ).

3 Note that the definition although circular, the state field of the structure is con-
strained through δs.

80 M. Filali et al.

Definition 6 (FIFO Protocols Traces). The traces of a FIFO protocol sys-
tem are defined as the projection of the set of its runs over Send labels.

FIFO Traces(P,L,M, St, δ) = Traces(FIFO LTS(P,L,M, St, δ),
⋃

r,m

{Rm
r },)

Remark. FIFO automata differ from what could be called a “Fifo channel
automata” [21] where peers communicate through FIFO communication chan-
nels: FIFO automata define for every peer a unique FIFO on which the peer
receives all the messages the other peers have sent to it. Operationally, such a
protocol is similar to that of JMS [15].

The FIFO automata, considered in this paper, define the usual send-receive order
over the basic send receive events of a distributed system computation but they
also introduce a compatible total order over the sends to a given peer. In the
domain of embedded systems, one can usually rely on such a semantics. Actually
it is weaker than the instantaneous broadcast which is common in synchronous
languages.

3 An Illustrative Example

As an illustrative example, we consider one of the folklore algorithms for the
distributed spanning tree construction [12]. Given a network of peers PEERS
knowing initially their respective local neighborhood as a set of peers, we have to
construct a spanning tree where the root ROOT is a priori designated, e.g., peer 0.
At the end, each peer (but peer 0) has to know its father and its sons with respect
to the constructed spanning tree. As a working example, we shall consider the
network topology illustrated in Fig. 1. Figure 2 suggests one spanning tree that
would be possible to construct given the supposed underlying topology (Fig. 1).

0

1

2

3

Fig. 1. Underlying network topology

0

1

2

3

Fig. 2. Spanning tree

3.1 A Distributed Spanning Tree Construction Algorithm

A so called diffusing computation [10] can be used for building a spanning tree.
Peer 0 initiates the computation by sending the message BeMySon to each of its
neighbours. When a peer receives its first BeMySon message, it takes the sender

A Normalized Form for FIFO Protocols Traces 81

as its father and sends to each neighbor peer,4 but its father, a BeMySon message.
It then waits for an acknowledgement for each of the sent messages. Its set of
sons consists of the peers that have acknowledged positively by an OK message.
When a peer (but the root) has received all the acknowledgments, in turn, he
acknowledges its father by an OK message. While waiting for an acknowledgment,
a peer can receive a BeMySon message, in that case, it acknowledges it negatively
by a NO message. The computation is terminated once the root has received all
its awaited acknowledgments.

In the following, we suppose that communication is FIFO: each peer has a
queue where it receives the messages sent to him. The Figs. 3 and 4 illustrate
respectively the automaton of the root peer and a not root peer.5 We have mod-
eled the algorithm in the language PusCal [18](based on the semantics formalism:
TLA+ [17]).

{d}

Fig. 3. Root peer automaton

3.2 Replaying a Trace

Replay consists in synthesizing a run where epsilon transitions, i.e., receive tran-
sitions have been guessed and interleaved with given send transitions of an actual
4 We have supposed that each peers knows initially its local neighborhood.
5 These automata differ with respect to the initial and terminal transitions

(from the idle state and to the term state).

82 M. Filali et al.

idlestart ask

collect

term

ref

?(f,BeMySon)

;

d ∈ rem; d ! BeMySon; rem := rem - {d}

?(s,OK)
sons := sons ∪ {s}
rem := rem - {s}

?(n,NO)
rem := rem - {n}

rem = ∅
father ! OK

?(r,BeMySon)

r!NO

Fig. 4. Not Root peer automaton

trace (see the Table 2). For that purpose, we suppose given the modes of the pro-
tocol: modes give for each peer and state if it is ready to receive or ready to send.
The considered algorithm assumes that a peer cannot be both ready to receive
and ready to send. With respect to our example, modes are given by the Table 1.

Table 1. Protocol modes

4 A Normal Form for FIFO Protocols Traces

In this section, we propose a normal form for FIFO protocol traces. Given a
trace, a normal form is a run which can be seen as the representant of all the
runs with the same trace. In fact, given a trace, we do not reconstruct the actual
run which led to the trace in question but a run with the same trace. Such a run

A Normalized Form for FIFO Protocols Traces 83

Table 2. Replay of the protocol from an actual trace

is called the normalized run. Should such a run be replayed, it would produce
the same trace as the trace in question. In the following, we are concerned by
the correctness of the normalized run (re)construction.

4.1 Basic Operations

We introduce two basic operations that will be used for normalization. These
operations preserve runs and their semantics, i.e., traces.

– Unrolling consists in pushing to the front of a run, a given transition. Intu-
itively, we unroll the effect of such a transition from the end until the front is
reached. Intuitively, unroll expresses that a transition at the end of a run can
also occur at the beginning of such a run.

– Partitioning consists in splitting a run in two such that the first run contains
only transitions from a given peer and the other run contains the remaining
transitions issued by the other peers.

Unrolling. The parameters of the unroll operation are as follows: (sw1, sw2)
swaps a pair (t1, t2) as the pair (sw1(t1, t2), sw2(t1, t2)). r is the run over which
the unrolling occurs and e is the transition to be unrolled.

84 M. Filali et al.

unroll is described recursively by the following text:

unrollsw1,sw2(r, e) � if r = [] then [e]
else unrollsw1,sw2(butlast(r), sw1(last(r), e)))

@[sw2(last(r), e)]

Subsequently, we apply the unroll operation over runs. In order to preserve run
properties, we consider the following local properties:6 of the swap operation

– a swap preserves the adjacency of (run) elements.

Dst(tr) = Src(tr′) ⇒ Dst(sw1(tr, tr′)) = Src(sw2(tr, tr′))

– a swap preserves the ends of adjacent (run) elements.

Dst(tr) = Src(tr′) ⇒ Src(sw1(tr, tr′)) = Src(tr)
∧ Dst(sw2(tr, tr′)) = Dst(tr′)

– a swap preserves the trace of runs of 2 elements.

Dst(tr) = Src(tr′)
⇒ Trace([sw1(tr, tr′)]@[sw2(tr, tr′)]) = Trace([tr]@[tr′])

Theorem 1 (Unrolling a Receive over Receives). Unrolling a receive over
a receive run yields a new receive run with the same ends.

∀ r e. r@[e] ∈ R(i) ∧ (∀ tr ∈ r@[e]. isReceive(Lab(tr)))
⇒ unrollswR1 ,swR2

(r, e) ∈ R(i)
∧ Trace(unrollswR1 ,swR2

(r, e)) = Trace(r@[e])
∧ ends(unrollswR1 ,swR2

(r, e)) = ends(r@[e])

where swR1 and swR2 instantiate the generic swap:

swR1((S1, R
m′
p′ , S′

1), (S2, R
m
p , S′

2)) =
if p = p′ then (S1, R

m′
p′ , S′

1)
else (S1,

Rm
p ,

S1[p := [state := S′
2[p].state,

queue = tl(S1[p].queue)]])
| swR1(e1, e2) = e1

swR2((S1, R
m′
p′ , S′

1), (S2, R
m
p , S′

2)) =
if p = p′ then (S2, R

m
p , S′

2)
else (S1[p := [state := S′

2[p].state,
queue = tl(S1[p].queue)]]

,

Rm′
p′ ,

S′
2)

| swR2(e1, e2) = e2

6 They are local since they apply to two elements: tr, tr′ and not globally, e.g., to a
list of elements.

A Normalized Form for FIFO Protocols Traces 85

Remark. Intuitively, such a global swap expresses that receives of different peers
are independent: they can be swapped.

Theorem 2 (Unrolling a Send over Receives). Unrolling a send issued by
a node s over a receive run not issued by s yields a new run with the same initial
and end state.

∀ r e. r@[e] ∈ R(i)
∧ (∀ tr ∈ r. isReceive(Lab(tr))) ∧ On(Lab(tr))
= On(Lab(e))
∧ isSend(e)
⇒ unrollswS1 ,swS2

(r, e) ∈ R(i)

∧ Trace(unrollswS1 ,swS2
(r, e)) = Trace(r@[e])

∧ ends(unrollswS1 ,swS2
(r, e)) = ends(r@[e])

∧ isSend(Lab(hd(unrollswS1 ,swS2
(r, e))))

∧ ∀ tr ∈ tl(unrollswS1 ,swS2
(r, e)). isReceive(Lab(tr))

where swS1 , swS2 instantiate the generic swap:

swS1((S1, R
m1
r1 , S′

1), (S2,s2 Sm2
r2 , S′

2)) =
if s2
= r1 then

(S1,

s2S
m2
r2 ,

S1(s2 := ((S1′s2){state := state(S2′(s2))}),
r2 := ((S1′r2){queue := ((queue(S1r2))@[m2])})))

else (S1, R
m1
r1 , S′

1)
| swS1(e1, e2) = e1

swS2((S1, R
m1
r1 , S′

1), (S2,s2 Sm2
r2 , S′

2))
if s2
= r1 then

(S1(s2 := ((S′
1s2){state := state(S2′(s2))}),

r2 := ((S′
1r2){queue := ((queue(S1r2))@[m2])}))”

Rm1
r1 ,

S′
2)

else (S2,s2 Sm2
r2 , S′

2)
| swS2(e1, e2) = e2

Remark. Intuitively, if a send of a node s occurs in a run after a receive of node
s′ (s′
= s), it can also occur before. Such sends can be swapped.

Partitioning. The partition operation has two parameters: a peer p and a
run r. Partitioning divides a run into two complementary runs: the first contains
only transitions of peer p and the second contains transitions that do not belong
to p. In order to obtain runs, partitioning is done through the unroll operation:

86 M. Filali et al.

all the transitions of p are successively unrolled; hence transitions of p are pushed
to the front thus separating them from the transitions from peers other than p.

The partition operation is described recursively by the following text:

partition(p, r) � if r = [] then ([], [])
else let (o, n) = partition(p,butlast(r)) in

if On(Lab(last(r))) = p then
let a′ = unrollswR1 ,swR2

(last(r), n) in
(n@[hd(a′)], tl(a′))

else (o, n@[last(r)])
on(p, r) � fst(partition(p, r))
not on(p, r) � snd(partition(p, r))

Theorem 3 (Partitionning Receives). For any peer p, a run over receive
transitions is partitioned into two adjacent runs.

∀r. r ∈ R(i) ∧ (∀ tr ∈ r. isReceive(Lab(tr)))
⇒ on(p, r)@not on(p, r) ∈ R(i)

∧ Trace(on(p, r)@not on(p, r)) = Trace(r)
∧ ends(on(p, r)@not on(p, r)) = ends(r)

4.2 Normalization

Normalization splits a run into a sequence of packed runs and a trail run. Each
packed run has one send transition and preceding receive transitions from the
same peer. In the trail part, we have all the receive transitions that have not yet
been followed by a send of the same peer. The Fig. 5 illustrates normalization.
More precisely:

– the empty run is split into an empty sequence and an empty trail.
– Given a run split into a sequence packed runs and a trail run, adding a tran-

sition to this run yields the following: a receive transition (Ra
1 in the Fig. 6) is

added to the trail part leaving the packed runs unchanged. For a send transi-
tion (2Sd

3 in the Fig. 7), we partition the trail part into the on s part and the
not on s part. The new packed part is the concatenation of the on part and
the send transition, and the new trail part is the remaining not on part.

⎛
⎜⎜⎜⎝

packed runs sequence

1S
a
3 1S

a
2 3S

b
2 2S

a
1 1S

b
3 2S

c
3

Ra
3

Rb
3

3S
c
2

,

trail

Ra
2 Rb

2

⎞
⎟⎟⎟⎠

Fig. 5. Normalized run structure

A Normalized Form for FIFO Protocols Traces 87

⎛
⎜⎜⎜⎝

packed runs sequence

1S
a
3 1S

a
2 3S

b
2 2S

a
1 1S

b
3 2S

c
3

Ra
3

Rb
3

3S
c
2

,

trail

Ra
2 Rb

2 Ra
1

⎞
⎟⎟⎟⎠

Fig. 6. Normalized run structure (after a Receive wrt. Fig. 5)

Normalization is formalized as follows:

normalize(r) � if r = [] then ([], [])
else let (p, t) = normalize(butlast(r)) in

if isReceive(Lab(last(r))) then (p, t@[last(r)])
else
let s = On(Lab(last(r))) in
let u = unrollswS1 ,swS2

(not on(s, t), last(r)) in
(p@on(s, t)@[hd(u)], tl(u))

packed(r) � fst(normalize(r))
trail(r) � snd(normalize(r))

⎛
⎜⎜⎜⎝

packed runs sequence

1S
a
3 1S

a
2 3S

b
2 2S

a
1 1S

b
3 2S

c
3

Ra
3

Rb
3

3S
c
2

Ra
2

Rb
2

2S
d
3

,

trail

Ra
1

⎞
⎟⎟⎟⎠

Fig. 7. Normalized run structure (after a Send wrt. Fig. 5)

Theorem 4 (Normalization). Normalization splits a run to two adjacent runs
called the packed run and the trail run. A run and its packed run have the same
trace.

∀ r.r ∈ R(i) ⇒
packed(r)@trail(r) ∈ R(i)

∧ Trace(packed(r)) = Trace(r)
∧ ∀ tr ∈ trail(r). isReceive(Lab(tr))

Remark. We have packed(r) ∈ R(i). Moreover, since the trail contains only
receive transitions, its trace is empty.

5 Application to Trace-based Replay

In this section, we give the formal specification of a replay through a given obser-
vation. Note that we are not concerned by the construction of the observation
by itself but by the reconstruction of an execution from the observation of a run
and its correctness.

88 M. Filali et al.

5.1 Replay Definition

Intuitively, a replay function reconstructs a run which has a given trace supposed
to be obtained through an actual execution.

Definition 7 (Replay). Given a transition system Sys = (I,→), a replay
function rf takes as parameter an initial state i ∈ I and the trace tr of a run
starting at i and returns a run of Sys starting at I with the same trace.

replay((I,→), rf) �
∀i ∈ I. ∀r ∈ R(I,→)(i). rf(i,Trace(r)) ∈ R(I,→)(i)

∧ Trace(rf(i,Trace(r))) = Trace(r)

This definition deserves some comments:

– we do not reconstruct the actual execution that leads to the given trace but
an execution with the same trace.

– As said in Sect. 2, the construction of the observation relies on a total order on
the sends to a given peer. Such a total order can be established thanks to elab-
orated order mechanisms [16] or to highly precise network time protocols [19].

An interesting property of a replay function is to be incremental: runs can be
reconstructed through trace suffixes and corresponding starting states. Such a
property is formalized as follows:7

Property 1 (incremental replay).

replay((I,→), rf) ⇒
∀i ∈ I. ∀p s. p@s ∈ R(I,→)(i) ⇒ replay((p(I),→), rf)

The incremental replay property is interesting with respect to space saving:
provided that we do not have to reconstruct a run from the initial state, we
can store only a suffix of the trace and its corresponding starting state. Such a
property is also interesting with respect to the so called “right to be forgotten”;
actually, it allows to forget a prefix of a run and make henceforth the replay starts
after that prefix. Of course, it does not forbid to apply memoization. Without
surprise, this fact tells us the “right to be forgotten” and the “right to store”
are linked.

5.2 Mode Based FIFO Protocols

In mode based protocol, when ready to interact with the environment, a peer
is ready either in the receiving mode : it is ready to receive messages or in the
sending mode: it is ready to send messages. Such a mode can be represented
through a function defined over the product of peers and states as follows:

mode : peer × state → {Ready2Receive,Ready2Send}
The Table 1 details such a function for our illustrative example.
7 We use the functional overloading seen in Sect. 2: p(I) is the state reached after the

execution of the run prefix p.

A Normalized Form for FIFO Protocols Traces 89

5.3 A Replay Algorithm

The considered replay algorithm takes as input:

– a FIFO protocol recorded trace,
– the mode of the states of each peer through the function mode,
– and the automata of the peers through their respective δ transition function.

It reconstructs a run following the structure of a normalized run (see Fig. 5).
Actually, it builds recursively a sequence of packed runs. Each packed run is
built through the reconstruct run function and proceeds as follows: for each
sS

m
r label of the recorded trace, a pack of labels is reconstructed recursively

through the reconstruct pack function.

reconstruct pack(St,s Sm
r) �

if mode(s, St[s]) = Ready2Send then
let St′ = St [s := St[s][state := δs(St[s])],

r := St[r][queue := St[r].queue@[m]]]
in [(St,s Sm

r , St′)]
else if St[s].queue
= [] then
let m = hd(St[s].queue) in
let St′ = St[s := [state := δs(St[s]), queue := tl(St[s].queue)]
in [(St,Rm

s , St′)]@reconstruct pack(St′,s Sm
r)

else []

reconstruct run(St, tr) �
if tr = [] then []
else let p = reconstruct pack(St, hd(tr)) in
if p
= [] then
let (, , St′) = last(p) in

p@reconstruct run(St′, tl(tr))
else []

Remark. The reconstruct pack function returns an empty run for an initial
state.

Lemma 1 (reconstruct run).

∀r. r ∈ R(i) ⇒ reconstruct run(i,Trace(r)) = packed(r)

from this lemma and Theorem 4, we deduce

Theorem 5 (Replay Algorithm). The function reconstruct run defines a
replay algorithm.

replay(FIFO LTS, reconstruct run)

90 M. Filali et al.

6 Related Works

The seminal work related to our concerns is probably that of Mazurkiewicz [9].
Let us recall that basic trace theory is defined over an alphabet of actions Σ.
and a symmetric and reflexive relation I called the independence relation. Two
elements of Σ∗ are said to be equivalent if one can be obtained from the other
by commuting independent actions:

x � y ≡ ∃ u v. ∃ (a, b) ∈ I. x = uabv ∧ y = ubav

In fact, a trace is an equivalence class with respect to the transitive closure of
the previous relation(�). With respect to our model, such a commutation does
exist for receive transitions occurring on different nodes. Our normalization relies
on such a property. In addition, with respect to our model, we also use semi-
commutations [5,8](the independence relation is not symmetric). Actually, when
a receive is followed by a send on a different node, we can swap these actions (but
not the reverse, in general).This is the second property, our normalization relies
on.To the best of our knowledge, the use of such tools for the reconstruction
problem is new.

The basic references of FIFO protocols are [6,22]. As remarked in Sect. 2.3,
the model studied in this paper does not consider channels. First investigations
show that our algorithm can be extended to some variants of the basic model. We
are currently studying such extensions. With respect to recovery, our algorithm
is trace based: we rely on the observation of send events in order to reconstruct
of a full observation, while, for instance, the algorithm of [7,14] is basically state
based.

Last, we mention the work of [3] which deals with realizability and synchro-
nizability properties. Indeed, their work has been the starting point of our study:
we reuse the asynchronous communication model with fifo buffers as the seman-
tics model. They show that such a model can be used for important application
classes [1,11].

In the work given by [4], logged messages are needed to allow us deduce
the cause of failure (diagnosis) and recover by compensating the logged actions
(atomicity). However, only some messages are logged due to security and privacy
issues. This results in a partial log and the authors propose two heuristic-based
methods for computing the smallest number of messages needed to replay an exe-
cution, starting from a partial log. This work considers transactional properties
and leaves out of scope assumptions related to distributed systems in general,
e.g., does not deal with asynchronous communication semantics.

7 Conclusion

In this paper, we have studied how to rebuild a full distributed computation from
its partial observation. The study has been done at the semantic model level: first
we have formalized the underlying distributed system protocol as a transition
system, then we have proposed an algorithm for reconstructing a run given its

A Normalized Form for FIFO Protocols Traces 91

trace. The correctness of the algorithm has been established with respect to a
given definition of replay. Concerning the actual implementation context of the
algorithm, we have suggested some basic ideas.

For our future work, we envision two directions: first, it would be interesting
to study the replay problem in order to take into account other models of dis-
tributed systems. We are especially interested in real-time distributed systems.
Another direction that seems promising is to better understand the needs of
high level applications relying on run-time data [13] in order to provide them an
appropriate knowledge.

Acknowledgements. We thank the reviewers and the editors for enhancing the read-
ability of the paper.

References

1. Armstrong, J.: Getting Erlang to talk to the outside world. In: Proceedings of
the 2002 ACM SIGPLAN Workshop on Erlang, ERLANG 2002, pp. 64–72. ACM,
New York (2002)

2. Arnold, A.: Finite Transition Systems - Semantics of Communicating Systems.
Prentice Hall, Upper Saddle River (1994)

3. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Field,
J., Hicks, M.(eds.) POPL, pp. 191–202. ACM (2012)

4. Biswas, D., Gazagnaire, T., Genest, B.: Small logs for transactional services: Dis-
tinction is much more accurate than (positive) discrimination. In: HASE, pp. 97–
106. IEEE Computer Society (2008)

5. Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algorithmic
verification. Inf. Comput. 205(2), 199–224 (2007)

6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

7. Chandy, K., Misra, J.: Parallel Program Design. Addison-Wesley, Reading (1988)
8. Clerbout, M., Latteux, M.: Semi-commutations. Inf. Comput. 73(1), 59–74 (1987)
9. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore

(1995)
10. Dijkstra, E., Scholten, C.: Termination detection for diffusing computations. Inf.

Process. Lett. 11(1), 1–4 (1980)
11. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R.,

Levi, S.: Language support for fast and reliable message-based communication in
singularity OS. SIGOPS Oper. Syst. Rev. 40(4), 177–190 (2006)

12. Fokkink, W.: Distributed Algorithms: An Intuitive Approach. MIT Press,
Cambridge (2013)

13. Gößler, G., Le Métayer, D., Raclet, J.-B.: Causality analysis in contract violation.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.,
Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 270–
284. Springer, Heidelberg (2010)

14. Hélary, J.-M., Mostéfaoui, A., Netzer, R.H.B., Raynal, M.: Communication-based
prevention of useless checkpoints in fistributed computations. Distrib. Comput.
13(1), 29–43 (2000)

92 M. Filali et al.

15. Java message service. http://www.oracle.com/technetwork/java/index-jsp-142945.
html

16. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
CACM 21(7), 558–565 (1978)

17. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co. Inc, Boston
(2002)

18. Lamport, L.: Euclid writes an algorithm: a fairytale. Int. J. Softw. Inf. 5(1–2), 7–20
(2011)

19. Lee, E.A., Zhao, Y.: Reinventing computing for real time. In: Kordon, F.,
Sztipanovits, J. (eds.) Monterey Workshop 2005. LNCS, vol. 4322, pp. 1–25.
Springer, Heidelberg (2007)

20. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

21. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

22. von Bochmann, G.: Finite state description of communication protocols. Comput.
Netw. 2, 361–372 (1978)

http://www.oracle.com/technetwork/java/index-jsp-142945.html
http://www.oracle.com/technetwork/java/index-jsp-142945.html

Dynamic State Machines for Formalizing
Railway Control System Specifications

Roberto Nardone1(B), Ugo Gentile1, Adriano Peron1, Massimo Benerecetti1,
Valeria Vittorini1, Stefano Marrone3, Renato De Guglielmo2,

Nicola Mazzocca1, and Luigi Velardi2

1 Università di Napoli “Federico II”, Napoli, Italy
{ugo.gentile,roberto.nardone,adrperon,massimo.benerecetti,

valeria.vittorini,nicola.mazzocca}@unina.it
2 Ansaldo STS, Napoli, Italy

{renato.deguglielmo,luigi.velardi}@ansaldo-sts.com
3 Seconda Università di Napoli, Caserta, Italy

stefano.marrone@unina2.it

Abstract. activities regulated by international standards which explic-
itly recommend the usage of Finite State Machines (FSMs) to model the
specification of the system under test. Despite the great number of work
addressing the usage of FSMs and their extensions, actual model-driven
verification processes still lacks concise and expressive enough notations,
able to easily capture characteristic features of specific domains. This
paper introduces DSTM4Rail, a hierarchical state machines formalism
to be used in verification contexts, whose peculiarity mainly resides in
the semantics of fork-and-join which allows dynamic (bounded) instan-
tiation of machines (processes). The formalism described in this paper is
industry driven, as it raises from real industrial needs in the context of an
European project. Hence, the proposed semantics is motivated by illus-
trating concrete issues in modeling specific functionalities of the Radio
Block Centre, the vital core of the ERTMS/ETCS Control System.

Keywords: State machine · Dynamic instantiation · Railway control
system · Metamodel · Model driven · System testing · CRYSTAL

1 Introduction

One of the most critical components installed in modern railways is the signaling
system which aims at guaranteeing the complete control of the railway traffic
with a high-level of safety, essentially to prevent trains from colliding. These sys-
tems shall be validated against system requirements, given by the client and by
international standards, such as the CENELEC norms as for the European stan-
dards is concerned (i.e., EN50128 [6] and EN50126 [5]). The first step of the V&V
process is to describe the system behaviour and requirements by using a state-
based language (highly recommended by the standards during these phases of the
life cycle). The work described in this paper is part of a wider research activity
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 93–109, 2015.
DOI: 10.1007/978-3-319-17581-2 7

94 R. Nardone et al.

carried out within the ongoing ARTEMIS Joint Undertaking project CRYSTAL
(CRitical sYSTem engineering AcceLeration) [8] with the objective to alleviate
the high effort (in terms of costs and time) required by the V&V activities [3].
CRYSTAL is strongly industry-oriented and will provide ready-to-use integrated
tool chains having a mature technology-readiness level. To achieve technical inno-
vation, CRYSTAL developed a user-driven approach [20] by applying engineer-
ing methods to industrially relevant Use Cases from the automotive, aerospace,
rail and health sectors and aims at increasing the maturity of existing concepts
developed in previous projects on European and national level (e.g., CESAR [7]
and MBAT [17]). Our work is conducted in the railway domain, according to the
needs expressed by Ansaldo STS (ASTS), an international transportation leader
in the field of signaling and integrated transport systems for passenger traffic
(Railway/Mass Transit) and freight operation. Our ultimate goal in CRYSTAL
is to reduce the time needed for the definition of system level tests of railway
control systems. To meet this objective a model-driven approach for the auto-
mated generation of test cases is being developed. The starting point is the
definition of a domain specific formal state-based language (DSTM4Rail) to be
used for modeling the system behavior and formalize the requirements (from
which the test specifications are obtained). This paper specifically introduces
DSTM4Rail (Dynamic STate Machine for Railway control systems). The name
of the language says that its definition was driven by the specific needs expressed
by ASTS. At the state, DSTM4Rail has been developed to model the behavior
and the requirements of a railway control system for system testing purposes, but
it could be applied to model different critical control systems. The motivation
for a new language resides in the requirements expressed by the railway indus-
try: a formal language to be integrated into a model-driven process as simple
as possible and as rich as needed [10]. Consequently, the idea to extend existing
languages has been discarded in order to open to the effective usage of the lan-
guage in the industrial setting. The formalism metamodel we propose allows for
modeling the dynamic (bounded) instantiation of machines (processes) as well
as communications and timing constraints. The focus of the paper is on the con-
trol flow, hence here the semantics of fork-and-join is formally defined in order
to model discrete behaviors through finite state-transition systems. The paper
is organized as follows. Section 2 presents the application domain and states the
language requirements. Section 3 describes DSTM4Rail through its metamodel
and introduces its formal syntax and semantics. Section 4 gives some meaningful
examples of language application to real examples. Section 5 provides a discus-
sion about the related work and clarifies the motivation behind the introduction
of DSTM4Rail. Finally, Sect. 6 contains some closing remarks.

2 RBC Use Case and Language Requirements

The CRYSTAL Use Case from ASTS is the Radio Block Centre (RBC) system, a
computer-based system whose aim is to control the movement of the set of trains
on the track area that is under its supervision, in order to guarantee a safe inter-
train distance according to the ERTMS/ETCS specifications. ERTMS/ETCS

Formalizing Railway Control System Specifications 95

(European Rail Traffic Management System/European Train Control System)
is a standard for the interoperability of the European railway signaling systems
that ensures both technological compatibility among trans-European railway net-
works and integration of the new signalling systems with the existing national
train interlocking systems. The RBC system is in charge of timely transmitting
to the on-board system of each train its up-to-date Movement Authority (MA)
and the related speed profile, in addition it is responsible for the management of
the emergency situations within its own sub-track. The industrial needs regarding
the specification language can be summarized as follows: (a) it must have formal
syntax and formal semantics; (b) it must be easy to understand and use; (c) it must
suit for modeling domain specific behavior and requirements. In other words, the
language must provide primitives able to cope in a non-ambiguous and simple way
with specific modeling issues, and specifically:

R1 concurrent execution flows: concurrency shall be allowed as RBC manages
concurrent execution flows (e.g., it handles simultaneously several commu-
nications with other systems).

R2 instantiation/termination of machine: fork and join of control flows shall
be allowed as well as the possibility to instantiate synchronously and asyn-
chronously new machines. In addition, the preemption property should be
considered on joins, in order to force the termination of a machine.

R3 trigger and condition: a special trigger (say “any”) shall be defined in order to
help modelers when specifying a transition which is triggered by the occur-
rence of an event not belonging to a given set; similarly a special “any”
condition shall be allowed.

R4 broadcast communication: broadcasting communication between machines
shall be allowed in order to manage situations in which different machines
need to be triggered by the same event (e.g. in case of watchdog timers).

R5 timers: timers shall be considered as well as the trigger corresponding to their
expiration; activation/deactivation of timers shall be introduced as actions.

R6 variables: variables are necessary in order to store information and to enable
a concise representation of machines.

In order to contextualize DSTM4Rail we provide a general picture of the
model-driven test case generation approach we are currently developing within
the CRYSTAL project. Fig 1(b) shows the system level testing process adopted
by ASTS (instantiated on the RBC).

A set of Test Specifications is derived from the requirements. Then, Test
Cases are obtained from the Test Specifications and translated into executable
tests. These activities shall be conducted by the V&V team, which is inde-
pendent from the development team and should not know any information
about the development (mandatory, since CENELEC standards are applicable).
Fig 1(a) depicts the proposed test case generation approach: it has impact on
the part of the testing process enclosed in the dashed box in Fig. 1(b). Chains of
model transformations yield Test Cases by applying model checking techniques
from a state-based specification of the system behavior and the Test Specifi-
cations [2,18]. These models should be independent from the specific model

96 R. Nardone et al.

Fig. 1. Test case generation approach.

checker. Hence, besides the definition of a proper formal state-based language
(DSTM4Rail), the approach will require the development of a domain specific
modeling language (Intermediate DSML) both as the target language of model
transformation engines from the state-based models and as the source language
to different model checkers. The Test Specification Patterns will provide general
reusable models for recurrent classes of requirements [9].

3 DSTM4Rail

DSTM4Rail extends Hierarchical State Machines [1] by adding concepts of fork,
join and recursive execution of machines inside a box, allowing for the dynamic
instantiation of machines. The main advantages are: (1) each state machine may
be parametric over a finite set of dynamically evaluated parameters, and (2) the
same machine may be instantiated many times without explicitly replicating its
entire structure. From now on we refer to an executing state machine as a process.

3.1 Metamodel

An excerpt of the DSTM4Rail metamodel is shown in Fig. 2. An Ecore diagram
is used, according to the technology adopted to generate the model editor and
graphical interface [21]. As the focus of the paper is on the representation and
evolution of the control flow, the described portion of the metamodel introduces

Formalizing Railway Control System Specifications 97

Fig. 2. DSTM4Rail metamodel.

the syntactical elements aiming at covering the requirements R1, R2, R4 and R6
of Sect. 2. Concepts and relationships pertaining to data flow are just outlined.

The main class is Dynamic State Machine (DSTM), which represents the
entire specification model. It is characterized by the attribute max proc, which
indicates the maximum number of processes active in each instant of time (to
bound a DSTM being a FSM). A DSTM is composed of different Machines,
Channels and Variables. For the sake of simplicity, in this paper we consider
Channels and Variables with a global scope; they allow for communication
between machines. A single Machine is composed of Vertexes, Transitions and
Parameters.

The class Vertex is abstract since different kinds of vertexes (with different
features and constraints) may be present in a machine. The vertex types are:

– Node: node of a machine;
– Entering Node: PseudoNode, entry point of a machine;
– Initial Node: default entering node of a machine (at most one for each machine);
– Exiting Node: exit (or final) point of a machine (more than one if return

conditions are required);
– Box : encloses one or more state machines which are concurrently instantiated

when the box is entered;

98 R. Nardone et al.

– Fork : PseudoNode, splits an incoming transition into more outgoing transi-
tions; it allows for instantiating one or more processes either synchronously
or asynchronously with the currently executing process;

– Join: PseudoNode, merges outgoing transition from concurrently executing
processes; it synchronizes the termination of concurrently executing processes
or allows to force the termination when a process is able to perform a pre-
emptive exiting transition.

The classes Fork, Join and EnteringNode are inherited from the abstract class
PseudoNode which encompasses different types of transient vertexes in the mach-
ine. Entering and exiting nodes define the interface of each machine, in particu-
lar the first node of a process is either the initial node or an entering node (when
explicitly expressed in the higher level box instantiating the machine). The asso-
ciation between Box and Machine enables concurrent processes to be instan-
tiated entering the Box. Note that an entering node and/or exiting node and/or
values of parameters can be specified only if the box instantiates a single machine,
otherwise the default ones are considered. Two associations between Node and
Action say that entering and exiting actions could be specified for a node, indi-
cating the set of behaviours to be performed when entering (exiting) into (from)
the node.

A Transition is associated with a source and a destination vertex, and may
specify a Trigger, a Condition and an Action. Without loss of generality we can
assume that a Trigger is a freely built logical expression over standard logical
connectors on a suitable set of elementary triggers (basic events); Similarly a
Condition is a freely built logical expression over standard logical connectors
on a suitable set of atomic propositions which provides a fine-grained control
over the firing of the transition; finally the Action is a sequence of elementary
actions (operations), induced by the application domain, to be performed when
the transition fires. Triggers are related to the reception of messages on chan-
nels, hence an association with Channel is present. Similarly conditions may be
expressed on a set of variables (an association is present between Condition and
Variable). An action may cause the update of a variable or the transmission of
messages on channels, hence two associations with Channel and Variable have
been inserted. A Transition can specify also an entering node, if different from
the default one, of an activated machine (when entering a box), hence an associ-
ation with EnteringNode is present. Similarly it can specify a precise exit node,
when returning from a box, hence another association with ExitingNode is also
present.

A set of constraints are defined in order to forbid the definition of transi-
tions between any kind of vertexes, the introduction of triggers when exiting the
PseudoNodes, the truth of the attribute isPreemptive (of Transition) when the
destination of a transition is not a Join, the specification of entering or exiting
nodes for the set of transitions which not connect boxes. These constraints are
formally defined in the next Subsection.

Formalizing Railway Control System Specifications 99

3.2 Formal Syntax

In this Subsection we formally provide the fragment of the abstract syntax of
DSTM4Rail needed to represent the control flow (with respect to the metamodel
elements previously described).

Let T , C and A be the syntactical categories of triggers, conditions and
actions, respectively. An element of T (resp. C, A) is a trigger (resp. condi-
tion, action) expression. Assume that the symbol τ ∈ T represents the trigger
“always available” and the symbol α ∈ A represents the action “no action”. Let
X be a set of variables and let C a set of channels.

Definition 1 (Dynamic State Machine). A DSTM D over T , C and A is a
tuple 〈M1, . . . ,Mn,X,C,max proc,max inst〉 where:

– a machine Mi is a tuple 〈Ni,Eni, df i,Ex i,Bx i,Yi,Fk i, Jni, Ti,Srci,Deci,
Trgi〉, with i ∈ {1, ..., n}, where:

• Ni is a (finite) set of nodes and Ex i ⊆ Ni is a set of exiting nodes;
• Eni is a (finite) set of entering PseudoNodes;
• df i ∈ Eni is the initial node (default);
• Bx i is a (finite) set of boxes;
• Yi : Bx i → {1,. . . , n}� assigns to every box a sequence (list) of machine

indexes;
• Fk i is a (finite) set of fork PseudoNodes;
• Jni is a (finite) set of join PseudoNodes;
• Ti is a (finite) set of transition labels, where:

Sourcei = (Ni \Ex i)∪Eni ∪Bx i ∪ (Bx i ×Ex (D))∪Fk i ∪ (Fk i ×{↓})∪Jni

and Target i = Ni ∪ Bx i ∪ (Bx i × En(D)) ∪ Fk i ∪ Jni ∪ (Jni × {⊗}) are
the sets collecting all the possible sources and targets for the transitions of
machine Mi, respectively;
Srci : Ti → Sourcei maps each transition label into a sequence of source
(pseudo)nodes and boxes of Mi;
Deci : Ti → T × C × A associates each transition with its decoration,
namely the trigger, condition and action of t;
Trgi : Ti → Target i maps each transition into a sequence of target (pseudo)
nodes and boxes of Mi;

A transition t ∈ Ti must match one of the following cases (constraints):
* “implicit transition” whenever the Srci(t) ∈ Eni, Trgi(t) ∈ Ni and

the decoration Deci(t) = 〈τ , true, α〉 with α ∈ A, moreover for every
en ∈ Eni only one implicit transition exists;

* “internal transition” whenever both Srci(t) ∈ Ni and Trgi(t) ∈ Ni;
* “entering fork transition” whenever Srci(t)∩(Fk i ∪(Fk i ×{↓})∪Jni ∪

(Jni × {⊗})) = ∅ and the target Trgi(t) ∈ Fk i;
* “asynchronous fork” whenever the source Srci(t) ∈ (Fk i × {↓}) and

the target Trgi(t) ∈ Ni and decoration is Deci(t) = (τ , true, α) with
α ∈ A;

100 R. Nardone et al.

* “entering join”whenever the source Srci(t) ∈ Ni and the targetTrgi(t) ∈
Jni ∪ (Jni × {⊗});

* “exiting join transition” whenever the source Srci(t) ∈ Jni, Trgi(t) ∩
(Fk i ∪ (Fk i × {↓}) ∪ Jni ∪ (Jni × {⊗})) = ∅ and decoration Deci(t) =
(τ , true, α) with α ∈ A;

* “call by default” whenever the targetTrgi(t) ∈ Bx i; moreover if Srci(t) ∈
Fk i, then Y(Trgi(t)) = j for some j ∈ {1, ..., n}, the decoration is
Deci(t) = (τ , true, α) with α ∈ A;

* “call by entering” whenever the target Trgi(t) is of the form (bx , en)
where bx ∈ Bx i and en ∈ Enj with j = Yi(bx)1; if, in addition,
Srci(t) ∈ Fk i decoration is Deci(t) = (τ , true, α) with α ∈ A;

* “return by default” whenever Srci(t) ∈ Bx i and decoration Deci(t) =
(τ , true, α) with α ∈ A;

* “return by exiting” whenever Srci(t) is of the form (bx , ex), where
bx ∈ Bx i and ex ∈ Ex j with j = Yi(bx) and decoration is Deci(t) =
(τ , true, α) with α ∈ A;

* “return by interrupt” whenever Srci(t) ∈ Bx i and decoration is
Deci(t) = (τ, true, α) with τ ∈ T \ {τ} and α ∈ A.

– X (resp. C) is a (finite) set of variables (resp. channels);
– max proc is the maximum number of processes concurrently active in each

instant of time;
– max inst : {M1, . . . ,Mn} → {1,. . . ,max proc} assigns to each machine the

maximum number of instantiations.

Note that this definition constrains transitions to belong to a predefined set of
kinds, avoiding the possibility to freely connect vertexes of a machine; further-
more the decoration of transitions shall not have triggers or conditions in specific
cases.

3.3 Sketch of the Formal Semantics

In this Subsection we provide the formal semantics of DSTM. In order to improve
the paper readability, we give the definitions regarding the control flow evolution.
Other definitions, regarding data flow evolution, are hence not reported in this
paper.

The evolution of a DSTM is a sequence of instantaneous reactions (steps).
A step is a maximal set of transitions which are triggered by the current set of
available events, under the following constraints:

1. A node/box cannot be entered and exited simultaneously in a step (this is
instead possible for PseudoNodes); as a consequence, if a transition ti enters
into a node n (resp. box b) in a step, and a transition tj exits from n (resp.
b), then tj cannot fire in the same step;

1 In this case the box must contain a single machine.

Formalizing Railway Control System Specifications 101

2. The events generated by the firing of a transition (exit actions of the exited
node, actions of the transition and entry actions of the entered node) cannot
trigger other transitions in the same step but only in the next one.

As usual, formal semantics can be provided by means of a Labeled Transition
System (LTS) which is a 4-tuple L = 〈S,Σ,Δ, S0〉, where:

– S is a non-empty set of states;
– Σ is a non-empty alphabet of labels;
– Δ is a transition relation, i.e., a subset of S × Σ × S;
– S0 ⊆ S is a set of initial states.

With reference to a DSTM D (see Definition 1), s ∈ S represents the current
state of D including: (a) the current control locations, (b) the values of variables,
(c) the content of channels, (d) the set of events produced by actions.

In the following, some abbreviations are used: M(D) = {M1, . . . ,Mn},
N(D) =

⋃n
1 Ni and Bx (D) =

⋃n
1 Bx i.

A labelled tree T is a pair 〈T, λ〉, where T ⊆ N
� is a prefix closed set of

vertices (i.e. if n ∈ T and n′ ≺ n then n′ ∈ T with ≺ the usual prefix relation
between strings) and λ is a function labelling vertices over a suitable alphabet.
We denote Leaves(T) the set of leaves of T . A control tree is a tree labelled over
the set of machines, boxes and nodes.

Definition 2 (Control Tree). A Control Tree CT over a DSTM D is a pair
〈Tct, λ〉, where

– Tct is a tree;
– λ is a labeling function λ : Tct → M(D) ∪ N(D) ∪ Bx (D)

satisfying the following constraints for every n ∈ Tct :

1. λ(ε) = M1;
2. n ∈ Leaves(Tct) ⇔ λ(n) ∈ N(D);
3. n /∈ Leaves(Tct) ⇔ λ(n) ∈ M(D) ∪ B(D);
4. if n = n′.i (i.e., n′ is the parent of n) with i ∈ N:

– n ∈ Leaves(Tct) ⇒ λ(n) ∈ Nj and λ(n′) = Mj, for some j ∈ {1, . . . , n};
– n /∈ Leaves(Tct) and λ(n) = bx with bx ∈ Bx j ⇒ λ(n′) = Mj;
– n /∈ Leaves(Tct) and λ(n) = Mj ⇒ λ(n′) = bx ∈ Bxk and j occurs in

Yk(bx), for some k ∈ {1, . . . , n}.
This formalization defines the structure of a Control Tree: the root represents the
highest level process, the leaves represent specific nodes in which each process
is waiting, while internal vertices represent callers and callee processes. If a
vertex represents a node or a box of a machine, then its parent shall necessarily
represent that machine; if a vertex represents a machine, then its parent shall
necessarily represent the box used to instantiate that machine. Notice that a
vertex of a control tree cannot be labelled by a pseudostate in accordance with
the intuition that control cannot permanently stay in a pseudostate.

102 R. Nardone et al.

Definition 3 (DSTM State). The state of a DTSM is a tuple

〈CT , F r, ρ, η, η′, χ〉, where:

1. CT is a Control Tree of the DTSM, which describes the current state of the
control flow;

2. Fr, the frontier of CT, contains the vertices of CT that can be source of
transitions in the current step;

3. ρ : X → DX is the valuation function of the variables in X;
4. η : E → {0, 1} is a boolean valuation function of the events available in the

current step (i.e. tha characteristic function of the set of available events);
5. η′ : E → {0, 1} is a boolean valuation function (characteristic function) of

the set of events generated in the current step and available in the next one;
6. χ : C → DC is the valuation function of the channels content.

CT is a tree representing processes, (instances of) boxes and nodes of D currently
active in the DSTM. The frontier Fr is the subset of CT vertices, which can be
updated due to a transition firing in the LTS. The frontier is used to avoid the
firing of sequences of transitions in a step. In fact, in order to fire, a transition has
to exit only from vertices belonging to Fr . When a transition of the DSTM fires,
CT is updated and the vertices corresponding to the sources of the transition
are removed from Fr , in order to keep track of the portion of CT that has been
already updated.

Fig 3 exemplifies the Control Tree in the simplest case of transition firing
between vertices. Let us suppose that the process, instance of Mi in Fig. 3(a),
is in the node a; after the firing of the transition the Control Tree evolves as
indicated in Fig. 3(b): the root represents Mi. Its child is a before the firing, and
b after the firing. Fig 4 and 5 show the evolution of the Control Tree in case of
fork and join. The fork implies that other two branches are added to the process
Mi reporting the boxes bx 1 and bx 2 which have instantiated the processes Mj

(which is in a state a′) and Mk (which is in a state a′′) respectively. After the
firing, the processes Mi, Mj and Mk concurrently evolve. Similarly the join in
Fig. 5(a) merges the control flow into a single one when the flowing processes are
terminated (including the internal one): in fact, when processes Mj and Mk reach
their exit nodes (resp. ex j and exk) and Mi is in the node a, the Control Tree
evolves removing the branches representing instantiated processes; the process
Mi resumes from the node b.

4 Application to the RBC Use Case

This Section describes the application of DSTM4Rail to the modeling of some
RBC functionalities, chosen with the aim to highlight how this language solves
easily (natively with state machines) some key modeling issues of the railway
control systems. Specifically requirements R1 and R2 in Sect. 2 are covered
with these use cases.

Formalizing Railway Control System Specifications 103

Fig. 3. Transition
between nodes.

Fig. 4. fork PseudoNode. Fig. 5. join Pseudo-
Node.

Communication establishment. When a train is going to establish a safe
connection with an RBC, it sends a proper “initiation of communication ses-
sion” (CONN REQ) message to it. RBC may accept only connection requests
from a limited number of trains: this number is defined by the P MAX TRAIN
parameter and depends on physical features. Over this value, RBC refuses a
new connection sending to the train a proper message (CONN REF). This case
recalls the need of having variables and parameters inside a machine, as well as
a flexible mechanisms for dynamic instantiation and join of processes. Hence,
we have to model the process which accepts or refuses the requests by check-
ing the number of already accepted connections, stored in the cont variable, as
well as the dynamic instantiation of the processes in charge of managing the
communication with the specific train. Another difference with existing model-
ing languages is that the first process remains active to manage other commu-
nication requests after the instantiation of a lower level machine. Fig 7 shows
the modeling solution of this problem in DSTM4Rail where the main process
is called COMM EST and the lower level process are called TRAIN CONN.
A transition exits from the node idle, triggered by the CONN REQ reception
event and, if the number of already accepted connections cont is less than the
value of the parameter P MAX TRAIN, cont is incremented and the fork instan-
tiates a new process entering in the box connect. The state of the main process
proceeds to the node idle in order to manage other communication requests. Note
that the dynamic instantiation of this machine is constrained (by construction)
to be at maximum P MAX TRAIN. When a process TRAIN CONN terminates,
the control flow exiting from the box connect is joined with the control flow
coming from the idle node in order to capture this termination and decrement

104 R. Nardone et al.

the counter cont. This modeling solution is not allowed by widespread used lan-
guages as UML which requires that a machine is suspended when lower level
machines are activated. In UML [19] this situation can be managed by explicitly
realizing more replicas of the same machine. Fig 6 shows the evolution of the
ControlTree. When a new communication is established, a new TRAIN CONN
machine is instantiated by the connect box and a new branch is inserted in the
ControlTree. Hence, at a certain instant of time a set of parallel TRAIN CONN
machines can independently evolve. When a process reaches the exiting node,
then its corresponding branch is removed from the ControlTree and the process
is deallocated.

Fig. 6. Evolution of the ControlTree.

Fig. 7. Train registration management.

Establishment of communication session. Once the CONN REQ request
is accepted, the communication session between the train and RBC must be
established. If the procedure succeeds RBC authorizes the train to move (Start-
of-Mission, SoM). The Euroradio defines a protocol for safe communication
establishment. Ultimately, RBC sends the SYSTEM VERSION message to the
train; the train answers with an ACK and a SESSION ESTABLISHED mes-
sage. If the SESSION ESTABLISHED message is received by RBC before the
ACK, RBC sends the SYSTEM VERSION message again. After three attempts
or if other messages are received in the meanwhile, the procedure is aborted

Formalizing Railway Control System Specifications 105

and the SoM procedure cannot be performed. This scenario may be easily mod-
eled by providing a machine with multiple exit points: Fig. 8(a) shows how the
SOM PROCEDURE machine is instantiated only after the termination of the
SESSION ESTABLISHMENT process (whose model is depicted in Fig. 8(b))
through the ok exiting node.

Management of the train movement. During the movement of the train,
the RBC periodically sends the Movement Authority (MA) to the train (Sect. 2);
concurrently, RBC has to monitor the commands that come from the Centralized
Traffic Control (CTC) where a human operator may raise an alarm which require
the train to brake: in these case an Unconditional Emergency Stop (UES) mes-
sage is sent to the train. On the other hand, when the train successfully ends its
trip, RBC performs the “End of Mission” (EoM) procedure. This scenario needs
for representing concurrently executing machines one of whom may force the ter-
mination of the others. DSTM4Rail models this situstion by a preemptive join, as
shown in Fig. 9 where the processes CENTRAL CONTROL and PERIODIC MA
are executed concurrently but, when the first machine reaches the UES exiting
node, the join on the left preemptively forces the process PERIODIC MA to ter-
minate. In this case the machine EMERGENCY MANAGEMENT is instanti-
ated. On the contrary, if the process PERIODIC MA terminates in the EoM
exiting node, the join on the right preemptively forces the CENTRAL CONTROL
to terminate, and the END OF MISSION machine is instantiated.

Fig. 8. Establishment of communication session. Fig. 9. Management of the
train movement.

5 Discussion and Related Work

A number of formal methods and techniques have been developed by the scien-
tific community in the past decades and applied to the development of critical

106 R. Nardone et al.

systems, including railway applications [4]. Thought their usage is not largely
common in industrial settings, Finite State Machines (FSMs) are widely used
in modeling systems where control handling aspects are predominant. State-
charts [13] extend FSMs with hierarchy, concurrency and communication among
concurrent components. Hierarchy is achieved by injecting FSMs into states of
other FSMs. Concurrency is achieved by composing FSMs in parallel and by
letting them run synchronously.

Among different variants of Statecharts, those integrated in UML 2.0 [19]
are widespread used. UML State Machines admit parallel execution through the
usage of composite states and regions. In this formalism, the fork (and join) is
used in order to split (and merge) an incoming transition into two or more transi-
tions terminating on orthogonal target vertices (i.e., vertices in different regions
of a composite state). Recursive activation and dynamic instantiation is not
natively admitted. Communicating Hierarchical Machines (CHMs) are a variant
of Statecharts introduced for succinctness reasons. They introduced the idea to
have a collection of finite state machines (modules) having nodes and boxes.
A transition entering a box represents a call to one or more instances of another
module. In a Statechart there is no notion of module and instance. If multiple
instances of the same module are required by the specification, each instance has
to be explicitly defined. On the other way the introduction of modules allows
to define Recursive State Machines (RSMs) where a module can recursively call
itself [1]. Notice that, in the case of Recursive State Machines, we are not any-
more in the category of Finite State Machines. In [15] CHMs has been extended
introducing Dynamic Hierarchical Machines (DHMs) which allow the dynamic
activation of machines: any DHM M1 can send to a concurrent DHM M2 a third
DHM M3, which starts running either in parallel with M1 and M2, or inside M2,
depending on contextual information.

Among the commercial specification environments based on Statecharts, we
considered STATEMATE [14] and Stateflow. STATEMATE is the first specifi-
cation environment adopting Statecharts with the original semantics defined for
the formalism and revised in [14]. STATEMATE does not allow fork and join
PseudoNodes and do not consider dynamic activation of modules. Stateflow is a
component of a the Simulink graphical language used in Matlab. It allows hierar-
chical state machines to be combined with flow chart diagrams ad it is generally
used to specify the discrete controller in the model of a hybrid system (the con-
tinuous dynamics are specified by the capabilities of Simulink). Despite Stateflow
is syntactically similar to a Statecharts notation, from the semantic viewpoint
([11,12]) it avoids any form of non determinism and it imposes an explicit strict
scheduling in presence of concurrency, thus being in truth a graphical notation
for a sequential imperative language.

Differently from Statecharts we adopt, in the proposed formalism, the pos-
sibility of dynamically instantiate modules. The dynamic (possibly recursive)
activation of modules is obtained by the structural elements of fork and join
PseudoNodes (and not by message passing as in DHMs). Moreover, the non-
finiteness of RSMs and DHMs is cut off by bounding the number of simultaneous

Formalizing Railway Control System Specifications 107

possible instances of a module. Our work moves from the cited language, mainly
allowing for the dynamic instantiation of machines and removing the assump-
tions, implicitly intended in many languages, that control flows, exiting from a
fork, must be merged thorough a join operator. DSTM4Rail, in fact, allows for
recursive activation of the same machine by specifying a novel semantics for fork
and join operators. Moreover, the computational power of RSMs and DHMs is
cut off by bounding the number of simultaneous possible instances of a mod-
ule. In doing this we follow the approach adopted in many works; e.g., see [16],
where the proposed specification language is syntactically inspired by State-
charts (Requirements State Machines), but the semantics is revised and adapted
to cope with the needs of the specific application domain (avionic systems).

Specifically, with respect to the UML 2.0, the syntactical elements are similar
with the exception of the introduction of the box concept, the asynchronous char-
acterization of the fork and the additional notion of preemptive join. Some other
concepts have been removed, since considered redundant and easily realizable in
different ways: for example, regions inside composite states can be obtained with
the parallel instantiation of machines. The semantics of DSTM4Rail, instead, is
completely different for what concerning parallel execution. With respect to the
Hierarchical Machines, we assume a similar idea of hierarchy between machines
but we enrich this notion with recursive instantiation and parallel execution
of machines, through the introduction of syntactical concepts of fork and join,
muted from UML. Hence this formalism is substantially different, in syntax and
semantics, from Hierarchical Machine (which not permit recursion), from Recur-
sive Machine (which not permit parallelism) and from Communicating Machine
(which not permit recursion and dynamic instantiation).

6 Conclusions

This paper presented DSTM4Rail, a formal language for the specification of the
behavior of critical control systems extending the approach of Hierarchical State
Machine. The critical nature of the systems to model and the high level of usabil-
ity required by the application domain suggested: (1) a strong formalization of
the language; (2) the synthesis and the extension of some of the features of exist-
ing FSM-based languages, and (3) the capability to be integrated into modern
model-driven processes. The language has its main strengths in the extended
semantics of fork and join which allows for the dynamic instantiation and the
preemptive termination of machines. The modeling approach has been applied
to a modern railway control system in order to demonstrate its potentialities.

Acknowledgments. This paper is partially supported by research project CRYS-
TAL (Critical System Engineering Acceleration), funded from the ARTEMIS Joint
Undertaking under grant agreement n. 332830 and from ARTEMIS member states
Austria, Belgium, Czech Republic, France, Germany, Italy, Netherlands, Spain, Swe-
den, United Kingdom. The work of Dr. Nardone has been supported by MIUR under

108 R. Nardone et al.

project SVEVIA (PON02 00485 3487758) of the public-private laboratory COSMIC
(PON02 00669).

References

1. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines.
In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 169–178. Springer, Heidelberg (1999)

2. Ammann, P., Black, P., Majurski, W.: Using model checking to generate tests from
specifications. In: Proceedings of the 2nd IEEE Internernational Conference on
Formal Engineering Methods (ICFEM 1998), pp. 46–54. IEEE Computer Society
(1998)

3. Barberio, G., Di Martino, B., Mazzocca, N., Velardi, L., Amato, A., De Guglielmo,
R., Gentile, U., Marrone, S., Nardone, R., Peron, A., Vittorini, V.: An interoper-
able testing environment for ERTMS/ETCS control systems. In: Bondavalli, A.,
Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 147–
156. Springer, Heidelberg (2014)

4. Bjorner, D.: New results and trends in formal techniques and tools for the
development of software for transportation systems - A review. In: Tarnai, G.
and Schnieder, E. (eds.) Symposium on Formal Methods for Railway Operation
and Control Systems (FORMS 2003), L’Harmattan Hongrie, Budapest/Hungary,
Germany, May 2003

5. CENELEC, EN 50126:2012: Railway applications - Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS) - Part 1: Generic RAMS process

6. CENELEC, EN 50128:2011: Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems

7. CESAR: Cost-Efficient methods and proceses for SAfety Relevant embedded sys-
tems. http://www.cesarproject.eu/

8. CRYSTAL: CRitical sYSTem engineering AcceLeration. http://www.crystal-
artemis.eu/

9. Gentile, U., Marrone, S., Mele, G., Nardone, R., Peron, A.: Test specification pat-
terns for automatic generation of test sequences. In: Lang, F., Flammini, F. (eds.)
FMICS 2014. LNCS, vol. 8718, pp. 170–184. Springer, Heidelberg (2014)

10. Glinz, M.: Statecharts for requirements specification - as simple as possible, as rich
as needed. In: International Workshop on Scenarios and State Machines: Models
Algorithms and Tools (2002)

11. Hamon, G.: A denotational semantics for Stateflow. In: The Fifth ACM Interna-
tional Conference on Embedded Software, pp. 164–172. ACM Press (2005)

12. Hamon, G., Rushby, J.: An operational semantics for stateflow. In: Wermelinger,
M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 229–243. Springer,
Heidelberg (2004)

13. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274 (1987)

14. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans.
Softw. Eng. Methodol. 5(4), 333 (1996)

15. Lanotte, R., Maggiolo-Schettini, A., Peron, A., Tini, S.: Dynamical hierachical
machines. Fundamenta Informaticae 54, 237–252 (2003)

16. Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements specifi-
cation for process-control systems. IEEE Trans. Softw. Eng. 20(9), 684–707 (1994)

http://www.cesarproject.eu/
http://www.crystal-artemis.eu/
http://www.crystal-artemis.eu/

Formalizing Railway Control System Specifications 109

17. MBAT: Combined Model-based Analysis and Testing of Embedded Systems.
http://www.mbat-artemis.eu/

18. Mohalik, S., Gadkari, A.A., Yeolekar, A., Shashidhar, K.C., Ramesh, S.: Automatic
test case generation from simulink/stateflow models using model checking. Softw.
Test. Verif. Reliab. 24(2), 155–180 (2014)

19. OMG. Unified Modeling Language (UML), v2.4.1, Superstructure Specification
20. Pflügl, H., El-Salloum, C., Kundner, I.: CRYSTAL, CRitical sYSTem engineering

AcceLeration, a Truly European Dimension. ARTEMIS Magazine 14, 12–15 (2013)
21. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework. Addison-Wesley Professional (2009)

http://www.mbat-artemis.eu/

Checking the Conformance of a Promela Design
to its Formal Specification in Event-B

Dieu-Huong Vu(B), Yuki Chiba, Kenro Yatake, and Toshiaki Aoki

School of Information Science, Japan Advanced Institute of Science and Technology,
Kanazawa, Japan

{huongvd,chiba,k-yatake,toshiaki}@jaist.ac.jp

Abstract. Verification of a design with respect to its requirement spec-
ification is important to prevent errors before constructing an actual
implementation. Existing works focus on verification tasks where spec-
ifications are described using temporal logics or using the same lan-
guages as that used to describe designs. In this paper, we consider cases
where specifications and designs are described using different languages.
For verifying such cases, we propose a framework to check if a design
conforms to its specification based on their simulation relation. Specifi-
cally, we define the semantics of specifications and designs commonly as
labelled transition systems (LTS), and check if a design conforms to its
specification based on the simulation relation of their LTS. In this paper,
we present our framework for the verification of reactive systems, and
we present the case where specifications and the designs are described
in Event-B and Promela/Spin, respectively. As a case study, we show an
experiment of applying our framework to the conformance check of the
specification and the design of OSEK/VDX OS.

Keywords: Formal verification · Model checking · Formal specifica-
tion · Design · Simulation relation

1 Introduction

A software development process begins with informal requirements which the tar-
get software is expected to meet. The informal requirements are translated into
formal specifications to ensure their consistency. Then, system designs are devel-
oped as models for implementation. Finally, the implementation is done accord-
ing to the designs using programming languages. In this development process,
we should verify the fact that the designs satisfy the requirements described by
formal specifications since incorrect designs likely lead to significant costs caused
by back tracking of development steps.

We focus on the development of reactive systems. Most of them are consid-
ered as safety-critical because their failure may result in loss of lives and assets
(e.g., operating systems for mobile vehicles). Reactive systems do not execute by
themselves but in combination with their environments. Environments are the
external systems which invoke the services of the target systems, e.g., software
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 110–126, 2015.
DOI: 10.1007/978-3-319-17581-2 8

Checking the Conformance of a Promela Design 111

applications running on the operating systems. The specification of such a reac-
tive system represents its externally visible behavior. That is, the specification
represents what the system does in response to the invocations of its environ-
ments. Formal specification languages such as VDM [14], Z [16] and Event-B
[1] allow us to formally describe the specification. For example, it is straightfor-
ward to describe the effect of adding an item into a container using notions such
as sets, relations and functions in the formal specification languages. Generally,
important properties of the reactive systems, e.g., the properties regarding to
pre-conditions and post-conditions of the system services, could be straightfor-
wardly described in the formal specification languages. On the other hand, the
design represents the collaboration of internal components to realize observable
behaviors described in the specification. It usually contains implementable data
structures such as record types, flags, and hash tables. We consider that imper-
ative specification languages like Promela/Spin are appropriate to describe the
design since the data structures and behaviors based on them can be straight-
forwardly described. For example, an algorithm to search and retrieve a certain
item from the container could be straightforwardly described in Promela using
various control structures based on the data structures such as arrays, record
types, or hash tables. The problem is how to verify the designs with respect to
their specifications when they are described in different specification languages.

To verify the designs with respect to their specifications, existing works focus
on cases where the specifications are described using temporal logics [6,7] or
using the same languages as that used to describe the designs [5]. This paper pro-
poses a method to verify the designs against their formal specifications where the
specifications and the designs are described in different specification languages.
We adopt Event-B for the specification and Promela/Spin for the design. One
may say that some of the formal specification languages provide refinement and
automatic generation of codes. We can describe the specification in an appropri-
ate specification language; then, we derive the behaviors of the design from the
higher-level specification. However, deriving highly optimized behaviors of the
design from the highly abstracted specification is generally very hard. Therefore,
this approach is not appropriate to verify the systems with complex data struc-
tures and highly optimized behaviors like the operating systems. Our idea is to
describe the design in the specification language which is easy to represent the
design. Then, we verify the design against the specification. Our approach pro-
vides another way to ensure that the design is consistent with the specification.
Another question may arise here. The specification can be described in temporal
logic if we describe the design in Promela/Spin. However, it is well-known that
correctly describing properties in temporal logic is difficult [8]. Whereas, by using
the rich notions (e.g., sets and relations) in the formal specification languages
like Event-B, one could easily describe the properties to be checked against the
design. In addition, the tool of the formal specification languages provides a
function to verify the consistency and the correctness of the properties. Thus,
we think that dealing with the specification and the design based on the different
specification languages is appropriate for systems in which there exist a big gap
between the specification and the design like the operating systems.

112 D.-H. Vu et al.

Our approach to check the design against the specification is based on a sim-
ulation relation [11,13,18] between them. Firstly, we formally describe specifica-
tion in Event-B [20] to remove ambiguity and inconsistency in the specification
which is written in a natural language. Then, we generate an LTS from this
formal specification; and, from each state, verification conditions which must be
met by the corresponding state of the design are generated. Finally, we apply
model checking [3] to the design to check the verification conditions. In this way,
we can check the correspondence of state transitions, or the simulation relation,
between the specification and the design. This ensures that the design conforms
to the specification.

This paper presents a framework for the verification of reactive systems.
We present the formal definition of our framework, and as a case study, we
show an experiment of applying our framework to the conformance check of
the specification and the design of OSEK/VDX OS [17] (OSEK OS, for short).
Verification of OSEK OS is important because it is widely used in automotive
control softwares; its bugs may has devastating effects to the human life. The
paper is organized as follows: In Sects. 2 and 3, we present the definitions of
specifications and designs, respectively. In Sect. 4, we present the definition of
our verification framework. In Sects. 5 and 6, we present the case study with the
results of several experiments and discuss the effectiveness of our framework. In
Sect. 7, we cite the related works. In Sect. 8, we conclude this paper.

2 Specifications

In this section, we present notations of Event-B used in the specification and
formal model of the specification.

Specification in Event-B. A reactive system is a system that operates by
reacting to stimuli from its environment. Typically, operating systems are reac-
tive, because they react to the invocations from the software applications. A
reactive system is captured as a collection of services, which are triggered by the
invocations from the environment. We regard the specifications of the reactive
systems in Event-B as highly abstracted level descriptions: data structures are
represented using notion of sets, relations and functions; and system services are
represented in terms of events with guards and substitutions. When the guard
of an event is true, the event is fired and its substitution is executed atomically.
Figure 1 demonstrates the specification of OSEK OS in Event-B. The VARI-
ABLES enumerates the state variables; for example, tasks and res represent
all the created tasks and the managed hardware resources. The INVARIANTS
defines constraints on values of the state variables: it defines data types, e.g.,
TASK is an abstract data structure and tasks is a subset of TASK; and conditions
for the correctness of the behaviors, e.g., at any time only one task is in running
state. The EVENTS describes system services, e.g., ActivateTask activates a
task. The events modify values of the variables and make the corresponding state
transitions. The events must preserve the invariants to guarantee the consistency
of the specification.

Checking the Conformance of a Promela Design 113

Fig. 1. Specification of OSEK OS in Event-B

Formal Semantics. V is the set of variables. D is the domain, which is the set
of values. Exp is the set of expressions in the specifications. An expression may
contain variables in V, values in D, arithmetic operators, logical operators, and
set operators. BExp is the set of boolean expressions (BExp ⊂ Exp). A substitu-
tion a : V → Exp is a mapping from V to Exp. We note that value assignments
are also substitutions because D ⊆ Exp. ACT is the set of substitutions for spec-
ifications. A guard is a boolean expression. GRD is the set of guards. An event is
a pair 〈g, a〉 of a guard g and a substitution a. E is the set of events. If e = 〈g, a〉
then we write grd(e) = g and act(e) = a. A state is a value assignment. [exp]σ
denotes the interpretation of the value of an expression exp in a state σ. We say
a guard g holds in a state σ iff [g]σ = tt. Init is the set of special initialization
events that have no guard. We denote σ

e−→ σ′ for an event e = 〈g, a〉 and states
σ and σ′ if [g]σ = tt and σ′ = {v �→ [a(v)]σ | v ∈ V }.

Definition 1 (Specification Models). A specification model is a tuple S =
〈VS ,DS , ΣS , InitS , Inv〉 where VS ⊆ V is the set of variables used in S, DS ⊆ D
is the domain, ΣS ⊆ E is the set of events, InitS ∈ Init is the initialization of
S, and Inv ∈ BExp is the invariant of S. An LTS derived from the specification
model S is defined as MS = 〈QS , ΣS , δS , IS〉 where QS = {σ | σ : VS → DS} is
a non-empty set of states, δS = {σ

e−→ σ′ | σ, σ′ ∈ QS , e ∈ ΣS} is a transition
relation, and IS = {act(e) | e ∈ InitS} is a set of initial states.

In Event-B, a substitution can be deterministic or non-deterministic. We regard
a non-deterministic substitution as multiple deterministic substitutions. There-
fore, we assume that the LTS is deterministic.

3 Designs and Environments of the Target System

In this section, we present the design model of reactive systems described in
Promela. We assume that the design only defines a set of service functions,
it cannot operate by itself. To operate it, we need an environment which calls
functions of the reactive system. Therefore, the design needs to be verified in the
combination with their environments. We also present the environment model
and the combination model.

114 D.-H. Vu et al.

Fig. 2. Design model and environment model in Promela

Design in Promela. Promela allows us to describe the design with highly
optimized behaviors in an imperative manner. The abstract data structures in
Event-B are replaced by the implementable data structures. Design decisions
to realize the external behaviors are explicitly described using various control
structures. Service functions of reactive systems can be described by using inline
functions. Figure 2 (left) illustrates a design of OSEK OS. We call this model a
design model. It is described in about 2800 lines of Promela code, according to the
approach in [2]. It first defines data structures such as tsk and ready which rep-
resent an array of tasks and ready queues, respectively. They replace the abstract
data structures task and rdyQu in Event-B. Following these data structures, a
set of functions is defined. For example, ActivateTask and TerminateTask
are the functions to perform activation and termination of tasks, respectively.
The function signature contains a function name and some parameters (function
arguments). The functions are called from the environment. When a function
is invoked, its parameters are instantiated by values specified from the environ-
ment. The body of the function consists of substitutions.

Environment of Target System. Figure 2 (right) shows an example of an
environment for the OSEK OS. We call this model an environment model. It
first defines entities in the environment such as tasks and resources. Then, it
defines sequences of function calls to the OSEK OS. By combining the design
and the environment, we can make a closed system which can operate by itself.
We call this a combination model. In terms of Promela, a combination model
can be obtained by including the Promela code of the design into that of the
environment model. As we explain later, an environment model is constructed
from the specification model, and input to Spin to check the simulation relation.

Formal Semantics. P is the set of parameters (function arguments). In the
design, an expression may contain constants, variables, parameters and arith-
metic operators, therefore, a so-called parameterized expression. The set of para-
meterized expressions is denoted as PExp. A function body is defined as a
substitution. The substitution may contain the parameterized expressions. We
use p-substitution to denote the substitution in the design. p-substitution is a
mapping from V to PExp. The set of p-substitutions is denoted as PSubst. Id
is the set of identifiers (used as function names). For the simplicity, we assume

Checking the Conformance of a Promela Design 115

that functions have only one parameter. The design also includes an initializa-
tion function which assigns the initial values for the variables. Design models
are defined as follows.
Definition 2 (Design Model). A design model is a tuple D = 〈VD,DD,PD, F,
ΣD, ID〉 where VD ⊆ V is the set of variables used in D, DD ⊆ D is the domain of
D, PD ⊆ P is a finite set of parameters for D, F is a set of function signatures
defined as F = {id(p) | id ∈ Id, p ∈ PD}, ΣD is a relation such that ΣD ⊆
F × PSubst, and ID is a set of value assignments of the initialization function
such that ID ⊆ {σ | σ : VD → DD}.
We assume that the functions in the design are deterministic to have a unique
successor state for each current state and each called function. This assumption
is realistic for the implementation of the reactive systems like the automotive
operating systems. On the other hand, it is generally non-deterministic to select
a function applicable in each state. This is described in environment models.
Environment models are defined as follows.
Definition 3 (Environment Model). An environment model for a design model
D is a tuple E = 〈VE ,DE , ΣE , IE〉 where VE ⊆ V is a set of variables used in E,
DE = DD is the domain of E, ΣE is a set of invocations to D such that ΣE ⊆
{id(v) | id ∈ Id, v ∈ VE}, and IE is a set of value assignments from VE to DD.
A combination of a design and an environment describes the execution of the
design according to the environment. An expression in the combination contains
constants from D, variables in V, and arithmetic operators. The set of expressions
in combinations is denoted as Exp′. A substitution for combinations is a mapping
from V to Exp′. The set of substitutions for combinations is denoted as SubstDE.
For a mapping π from P to V and a parameterized expression pexp ∈ PExp,
pexpπ is the result of replacing each parameter p appearing in pexp by π(p).
In other words, if a(v) is an expression in D then a(v)π is an expression in the
combination obtained by replacing each parameter p appearing in a(v) by π(p).
Combination models are defined as LTSs as follows.
Definition 4 (Combination Model). Let D = 〈VD,DD,PD, F,ΣD, ID〉 be a de-
sign model and E = 〈VE ,DE , ΣE , IE〉 an environment model.

1. We denote σ
id(v)−→ σ′ for an invocation id(v) ∈ ΣE and states σ and σ′ if

there exist (id(p), a) ∈ ΣD and a mapping π : PD → VE such that π(p) = v
and σ′ = {v �→ [a(v)π]σ | v ∈ VD ∪ VE}.

2. The combination model of D and E (denoted as D·E) is an LTS 〈QD·E , ΣD·E ,
δD·E , ID·E〉 where QD·E = {σ | σ : VD ∪ VE → DD} is a set of states,

ΣD·E = ΣE, δD·E = {σ
id(v)−→ σ′ | σ, σ′ ∈ QD·E , id(v) ∈ ΣE} is a transition

relation, and ID·E = ID ∪ IE is a set of initial states of D and E.

4 Checking the Design Against its Formal Specification

In this section, we present a framework for checking a design against its formal
specification based on a simulation relation. We first present an overview, then,
we present formal definitions.

116 D.-H. Vu et al.

Fig. 3. Simulation relation

4.1 Overview

Suppose that M1 and M2 are two LTSs. We define M2 simulating M1 based
on semantics of LTSs by extending the given relation on the states. The states
are value assignments which are mappings from the variables to the values.
Therefore, the relation on states of M1 and those of M2 are established based
on mappings R and C where R is the mapping from variables of M1 to those in
M2, C is the mapping from values in M1 to those in M2. Figure 3 (left) shows
a relation between state p of M1 and state q of M2. p relates to q based on R
and C because u = sus in state p corresponds to v = 1 in state q with mappings
R(u) = v and C(sus) = 1. M2 simulates M1 if for each transition in M1 from
state p to state p′ and p relates to state q of M2, there exists state q′ and a
corresponding transition in M2 from q to q′ such that p′ relates to q′. In Fig. 3
(right), a line arrow connecting p to p′ represents a one-step transition from p to
p′, and a dashed arrow connecting q to q′ represents an n-step transition from
q to q′. To check whether M2 simulates M1, we check whether there exists a
reachable state q′ from q such that v = 2 corresponds to u = rdy in p′ with
mappings R(u) = v and C(rdy) = 2.

Figure 4 shows the steps to verify the simulation between a specification and
a design using the Spin model checker. Firstly, bounds for the verification are
given and an LTS is generated from the Event-B specification within the bounds.
Next, the LTS is in turn used to generate the environment, which exercises service
functions described in the design. The verification then amounts to checking the
validity of certain relations between variables of the Promela design and variables
of the Event-B specification in every reachable state. This is done using Spin
assertions which are generated from states of the LTS and the given relations
represented as mappings. In the end, the verification of the assertions ensures
that the design conforms to the specification.

Giving Bounds. As specified in Event-B, there may be infinitely many states
and transitions of target system because variables in Event-B obtain values in
unbounded domains. Model checking does an exhaustive check of the system.
It needs a representation of the system as a finite set of all possible states. So,
abstract types in Event-B must be replaced by concrete types, e.g., tasks⊆
TASK where TASK = {a, b, c, d}. Also, types having infinite ranges of values
like Int and Nat must be restricted as finite ranges by giving a minimum value
and a maximum value for the ranges. By such restriction, the state space and the
set of transitions explored from Event-B specification become finite sets. This

Checking the Conformance of a Promela Design 117

Fig. 4. Checking simulation relation of the design and its formal specification (steps)

makes the LTS explored from the specification finite. We define such restrictions
as bounds of the verification.

Generating an LTS from the Specification. In order to generate the LTS
from the specification and bounds, the LTS Generator computes all possible
transitions and reachable states. Every value used in the computation must be
within the bounds. Starting at the initialization, the generator enumerates all
possible values for the constants and variables of the specification that satisfy the
initialization and the invariant to compute the set of initial states. To compute
all possible transitions from a state, the generator finds all possible values for
event parameters of an individual event to evaluate the guard of that event. If
the guard holds in the given state, the generator computes the effect of the event
based on substitution of that event. When new states are generated, we repeat
this process to these states until no new state is generated.

Generating the Environment. In order to verify that designs satisfy their
formal specifications, environments of the target systems are constructed and
combined with the designs. Environments trigger the specific behaviors of the
designs by calling functions of the designs; we construct such comprehensive
environments that they represent all possible behavior described in their speci-
fications. In the previous step, we generated the LTS of the specification. In this
step, we generate the environment by translating the LTS into Promela such that
the enabled events in LTS are translated to the corresponding function calls in
Promela. This is performed by the Promela Code Generator.

Figure 5(a) demonstrates an LTS, which is generated from the specifica-
tion of OSEK OS. The LTS represents possible sequences of state transitions
within the bounds. Here, the rectangles represent the states and the labeled
arrows represent the events that are enabled in each state. For example, two
events AT(t1), AT(t2) are enabled in state s0, and two events TT(t1), AT(t2)
are enabled in state s1. In our framework, the states are defined as the value
assignments; however, we show them here as values, e.g., (sus, sus, sus),
for readability. The LTS is translated into Promela to generate the environ-
ment, e.g., from (a) to (b) of Fig. 5. For this generation, we give a mapping
from the events in the LTS to the function calls in the environment. It could
be one-to-one or one-to-many mapping. Figure 5 shows a sample case of one-
to-one mapping. Here, event AT(t1) in the LTS is mapped to function call
ActivateTask(task1.tid) in the environment; also, event TT(t1) is mapped
to function call TerminateTask(task1.tid). The states and transitions in the

118 D.-H. Vu et al.

Fig. 5. Generation of environment from LTS

LTS are represented by labels and if-statements in the environment. There
may be more than one function call applicable in each state. For example,
ActivateTask(task2.tid) and TerminateTask(task1.tid) are applicable in
state s1; which function call actually applied is non-deterministic. By combining
the design model and the environment model, we obtain the combination model,
which will be input to the model checker in the last step of the framework.

Generating the Assertions. Verification conditions, which represent con-
straints on the simulation relation between the specification and the design,
are encoded as assertions. They will be checked by Spin. From each reachable
state of the LTS, we generate an assertion that must be met by the correspond-
ing state of the design. This generation is based on the mappings R and C from
the variables, the values in the specification to those in the design. This is also
performed by the Promela Code Generator. In sample case of Fig. 3 (right), for
example, from state p′ where u = rdy at the top with mappings R(u) = v and
C(rdy) = 2, the generator outputs an assertion v = 2 to check whether there
exists corresponding state q′ at the bottom.

4.2 Formal Definitions

We now give formal definitions of the relation between states, the bounds, the
simulation relation of two LTSs within the bounds, and steps in the framework.

Definition 5 (Relation Between States). Let S = 〈VS ,DS , ΣS , InitS , Inv〉 be
a specification model, MS = 〈QS , ΣS , δS , IS〉 the LTS derived from S, D =
〈VD,DD,PD, F,ΣD, ID〉 a design model, E = 〈VE ,DE , ΣE , IE〉 an environment
model for D, and D·E = 〈QD·E , ΣD·E , δD·E , ID·E〉 the combination model of
D and E. We say a state σD·E ∈ QD·E relates to a state σS ∈ QS based on
mappings R : VS → VD and C : DS → DD (denoted σS
R,C σD·E), if for any
x ∈ VS and y ∈ VD, R(x) = y implies C(σS(x)) = σD·E(y).

We omit R,C from
R,C if they are clear from the context.
As mentioned earlier, the bounds are introduced to obtain a finite LTS from

the Event-B specification. A finite LTS is obtained from an infinite LTS when we

Checking the Conformance of a Promela Design 119

restrict the state space and the set of actions that trigger the state transitions.
The bounds are defined as follows:

Definition 6 (Bounds). Bounds for LTS 〈Q,Σ, δ, I〉 are defined as a pair B =
〈G,H〉 of mappings G and H where G : 2Q → 2Q, G(Q) ⊆ Q, and Q′ ⊆ Q′′

implies G(Q′) ⊆ G(Q′′) and H : Q × Σ → {tt, ff} and for any state p ∈ Q,
there exist finitely many actions a ∈ Σ such that H(p, a) = tt.

Definition 7 (Bounded LTS). An LTS obtained by restricting an LTS M =
〈Q,Σ, δ, I〉 within bounds B = 〈G,H〉 is defined as M↓B = 〈Q̂, Σ̂, δ̂, Î〉, where
Q̂ = G(Q), Σ̂ = {a | ∀p ∈ Q, a ∈ Σ,H(p, a) = tt}, δ̂ = {p

a−→ p′ ∈ δ | H(p, a) =
tt}, and Î = G(I).

To implement the bounds for LTS associated to the Event-B specification, we
restrict the range of the variable values. When every range of the variable values
has been restricted, the state space and set of actions of the LTS become finite
sets. We give a mapping X for implementing such bounds to generate the LTS.
X is a mapping from variables to finite sets of values that the variables may
obtain. We use ESX(σ) to denote the set of all events which are applicable to
state σ and satisfy restrictions defined by X.

Suppose S = 〈VS ,DS , ΣS , InitS , Inv〉 be a specification model and 〈QS , ΣS ,
δS , IS〉 an LTS derived from S. With the mapping X, we define mappings G and
H as follows: G(QS) = {σ ∈ QS | ∀v ∈ VS .σ(v) ∈ X(v))}, G(IS) ⊂ G(QS),
and H(σ, e) = tt iff e ∈ ESX(σ).

We now define a simulation relation between two LTSs. In general, a one-step
transition in the specification is followed by an n-step transition in the design.
In the definition, Σ+ denotes the set of non-empty strings of Σ, δ+ denotes an
n-step transition relation, and p

a1a2...an−→ p′ ∈ δ+ denotes an n-step transition
from state p to state p′.

Definition 8 (Simulation Relation). Let M1 = 〈Q1, Σ1, δ1, I1〉 and M2 = 〈Q2,
Σ2, δ2, I2〉 be LTSs, and f : Σ1 → Σ+

2 a function from Σ1 to Σ+
2 . Suppose a

relation
⊆ Q1 × Q2 is given. M2 simulates M1 with respect to
 if for all
q1, q

′
1 ∈ Q1, q2 ∈ Q2, a ∈ Σ1 such that q1
 q2 and q1

a→ q′
1 ∈ δ1, there exist

q′
2 ∈ Q2 such that q′

1
 q′
2 and q2

f(a)→ q′
2 ∈ δ+2 . If M2 simulates M1 with respect

to
, we denote M1
 M2.

Definition 9 (Simulation Relation of Two LTSs Within Bounds). Let M1 and
M2 be two LTSs, and B be bounds. The simulation relation of M1 and M2 within
bounds B is defined as M1
B M2 if M1↓B
 M2. If M1
B M2 holds, we say
M2 simulates M1 within B.

If an error is found when applying our framework to verify the design against
the bounded specification, there actually exists a state transition in the bounded
specification that is not followed by the design. It is obvious that this state
transition is also included in the original specification; thus, the design does not
conform to the original specification. Formally, M1 �B M2 ⇒ M1 � M2.

120 D.-H. Vu et al.

Generating the Environments. An environment is generated from the LTS
of the specification model. Let S = 〈VS ,DS , ΣS , InitS , Inv〉 be a specification
model and MS = 〈QS , ΣS , δS , IS〉 be the LTS derived from S. Based on the
given mapping f : ΣS → Σ+

D·E from the events in the LTS to the function calls
in the environment, mapping R′ : VS → VE and mapping C : DS → DD, the
environment model E = 〈VE ,DE , ΣE , IE〉 with DE = DD is generated such that
ΣE = {f(e) | e ∈ ΣS} and IE = {f(e) | e ∈ IS}.

Generating the Assertions. The relation on states of the specification and the
combination is given based on the mappings R : VS → VD and C : DS → DD;
verification conditions are generated as follows:

– For initial state, to check whether σ0
S
 σ0

D·E , an assertion is generated:∧
x∈VS ,y∈VD,y=R(x)

(σ0
D·E(y) = C(σ0

S(x))),

– For all (reachable) states σS , σ′
S ∈ QS and σD·E ∈ QD·E such that σS

e−→
σ′

S ∈ δS↓B
, and σS
 σD·E , in order to verify whether there exists state

σ′
D·E ∈ QD·E and transition σD·E

f(e)−→ σ′
D·E ∈ δ+D·E such that σ′

S
 σ′
D·E , an

assertion is generated:
∧

x∈VS ,y∈VD,y=R(x)

(σ′
D·E(y) = C(σ′

S(x)))

In the last step, we input the combination model and the assertions to Spin to
check the simulation relation of the specification and the design. The assertions
will be verified in every reachable state of the combination. This ensures that for
each state transition in the specification, there exists a corresponding transition
in the combination. Such kind of correspondence shows the consistency of the
functions in the design with the events in the specification. This is useful to check
properties relevant to the pre-conditions and the post-conditions of the service
functions of the reactive systems. The typical bugs caused by the computational
statements of the functions can be found by checking the relations between data
elements of the design and the specification in every reachable state. In the end,
the verification of simulation between the design and the specification has been
completed within the bounds.

5 Case Study

We implemented a generator that produces: the LTS of the bounded specifica-
tion; the environment in Promela; and the assertions. As an application of our
framework to a practical system, we conducted several experiments to verify
that a design of OSEK OS in Promela conforms to its formal specification in
Event-B. These two models are partially illustrated in Figs. 1 and 2.

In this framework, bounds are set for the verification to make sure that every
variable in the Event-B specification obtains values in finite ranges. As shown in
Fig. 1, variables tasks, res, evt, and inr define entities managed by OSEK OS
such as tasks, resources, events, and interrupt routines; variable pri defines the
priority assigned to tasks, resources, and interrupt routines; and variable tstate
defines the task state. The finite ranges of values for them must be introduced

Checking the Conformance of a Promela Design 121

in the experiments as bounds for the verification. By using various bounds, we
can separate the cases that deal with distinct groups of system services from
which check the relation between different groups. This helps us to avoid the
state explosion and keep important behaviors of the target system we want to
verify in the cases.

All experiments are conducted on an Intel(R) Core(TM) i7 Processor at
2.67 GHz running Linux. Verification results outputted by Spin are shown in
Table 1. Here, the first column (“No.”) represents experiment numbers. The next
column presents size of ranges for variables tasks, pri, res, evt, and inr. Val-
ues in this column express bounds of the verification. Column “LTS Generation”
shows statistics of the LTS generator. Here, columns “#State”, and “#Trans”
present the number of distinct states and that of transitions appearing in the
LTS; column “Time” presents the time taken (s) for the generation. Column
“Model Checking” presents statistics of the model checker including total actual
memory usage, the time taken (s), and the verification result in which “

√
” indi-

cates the verification has been completed. Groups of system services of OSEK
OS consist of task management, resource management, event mechanism, and
interruption management. In the table, experiments No.1-No.9 are performed
to check the task management independently from the other groups of system
services. In these cases, we show ranges for tasks and pri. Experiments No.10-
No.14 are performed to check relation between task management, resource man-
agement, event mechanism, and interruption management; therefore, we show
ranges for tasks, pri, res, evt, and inr.

From the experiment results, we can see that the time taken and the total
actual memory usage for the generation of the LTS from Event-B specification
and the verification of the simulation relation are reasonable. For the model
checking result, no errors were returned in all cases of experiments. Several
safety properties of OSEK OS have been confirmed by these experiments such
as “tasks and interrupt routines shall not terminate while occupying resources”
and “high-priority tasks such as life saving units must always be executed before
all low priority tasks”. This is because the design of OSEK OS has already been
reviewed carefully by many researchers and engineers. Still, this result offers
a confidence on the conformance of the OSEK OS design with respect to its
specification within input bounds.

6 Discussion

Generality of the Framework. OSEK OS is the operating system which is
widely used in the automotive systems. Our framework is applied to verify the
design of a practical system, that is, OSEK OS design. The framework directly
checks the design against its formal specification. Although we show the experi-
ments, when our framework is applied to the operating system, it is not limited
to this application. In the framework, the simulation relation is defined based on
semantic of LTS. In models, the states are interpreted as value assignments. The

122 D.-H. Vu et al.

Table 1. Experiment outputs

No Size of ranges LTS generation Model checking

tasks pri res evt inr #State #Trans Time(s) Memory(Mb) Time(s) Result

1 1 1 0 0 0 2 2 1.0 129.2 3
√

2 2 2 0 0 0 4 10 1.0 129.2 3.5
√

3 3 3 0 0 0 8 36 1.0 129.2 3.5
√

4 4 3 0 0 0 16 112 1.2 129.2 4.2
√

5 5 3 0 0 0 32 320 1.2 130.6 4.9
√

6 6 3 0 0 0 64 864 1.3 132.6 10.3
√

7 7 3 0 0 0 128 2240 1.3 324.5 26.1
√

8 8 3 0 0 0 256 5632 2.1 382.8 99.2
√

9 9 3 0 0 0 512 13824 3.0 430.8 362.1
√

10 5 7 0 0 2 128 1536 2.0 133.1 17.5
√

11 2 1 1 0 0 8 22 1.1 130.1 7.6
√

12 2 1 0 1 0 10 27 1.1 129.2 4.7
√

13 3 6 1 0 2 80 520 1.2 129.2 8.3
√

14 3 6 1 1 2 152 1036 2.0 132.3 14.1
√

design is described as a collection of functions which update the value assign-
ments. The environment is described as a collection of invocations. This style of
models is adopted not only for operating systems but also other reactive systems.

In our case study, Promela is used as a specification language to describe
the design and the environment; however, our framework can be applied for the
designs described in not only Promela but also other languages as long as they
can deal with a collection of functions for the design and sequences of invocations
for the environment.

Notion of Bounds. We introduce a formalization of the bounds for verifying
the simulation relation of the design and the formal specification with Event-B.
The bounds are used to obtain a finite LTS associated to Event-B model. This
bound can be applied generally to any design and its formal specification as long
as the formal models of the inputs are defined as LTSs. In Sect. 4, we present
the interpretation of the bound in a concrete model, that is, Event-B model.
In the first step of interpreting the bounds in the specification, we introduce
finite ranges of variable values in the specification. Next, we regard the typical
bugs that can be found in the verification with a large value domain. For finding
such bugs of the target system, in addition to restrict the range of values, one
can restrict system services of the target system. The intention of such addi-
tional restriction is to exclude transitions not relevant to the bugs and to reduce
size of model for which model checking is feasible. It is important to give the
appropriate restrictions or the proper bounds for the model. We could do this
by studying behavior scenarios for each property to be checked. Based on the
behavior scenarios, we could estimate the appropriate range of values for the

Checking the Conformance of a Promela Design 123

variables and determine what system services must be included in the bounded
model. Also, we could make sure that the critical scenarios are actually con-
tained in the bounded model by traversing the execution sequences of the LTS
accordingly with the scenarios. Consequently, the bounds need to be decided
depending on the properties to be checked.

Comprehensiveness of Environment. The behaviors of the target systems
depend on patterns of function calls from their environments. For the comprehen-
sive verification of reactive systems, we need to use the environments that cover
all possible patterns of invocations. Accordingly, an advantage of our framework
is that it is able to systematically generate all possible patterns of invocations
from the LTS of the specification in Event-B. This is essential to generate the
environments for the comprehensiveness of verification with respect to the spec-
ification.

7 Related Works

Verification of Systems Using Model Checking. Reference [6] presents a
case study on checking the operating systems compliant with OSEK/VDX. The
authors describe the specification in temporal logic formulas. Separately, we
describe the specification in Event-B. This improves the consistency of prop-
erties extracted from the specification and provides general environments for
comprehensive verifications.

Verification of Systems Based on Simulation Relations. FDR [5] is a
refinement checker for the process algebra CSP. Inputs of FDR are the specifi-
cations and the implementations written in the same language. Our framework
accepts the inputs written in different languages. References [19] and [9] present
approaches to verify the OS kernels based on theorem proving. Theorem proving
can be used to verify the infinite systems; however, it generally requires a lot
of interactive proofs. In our framework, we use model checking combining with
tools of Event-B. Although, ranges are bounded due to the limitation of model
checking; however, we are able to improve quality of the properties checked and
get completely automatic verification. Therefore, we have a high degree of con-
fidence in the verification results.

Generation of LTS from Event-B Model. Reference [10] presents the ProB
tool which supports interactively animating B models. Using ProB, users can see
the current state and set an upper limit on the number of ways that the same
operation can be executed. In our works, we firstly set finite ranges for types
in Event-B specification, then, explore all possible sequences of state transitions
within defined ranges. Reference [4] defines the semantic of Event-B model as
labeled transition systems to reason about behavioral aspects of specifications
in Event-B. We formally define the framework from scratch. We precisely define
finite ranges of variable values in Event-B specification as bounds of our verifica-
tion; then, we generate all possible behaviors from Event-B specification within
defined ranges.

124 D.-H. Vu et al.

Construction of the Environment of the Operating System. In previ-
ous works, we verified the OSEK OS by constructing a general model of the
environment from scratch [21]: it includes a class diagram and state diagrams
of objects in the environment. These diagrams are composed to generate the
environment scripts. In current work, the environment is generated from the
Event-B specification. Hence, by construction, it is comprehensive with respect
to the specification. The environment is used to exercise the design and check
the given relation between variables of the Promela design and variables of the
Event-B specification in every reachable state. This guarantees that the design
conforms to the specification. Also, the correctness of the specification is guar-
anteed by tools of Event-B; the quality of the environment is improved.

Combination of Event-B Model and Model Checking. For combination
of Event-B and model checking, tools like ProB [10] and Eboc [12] work as
model checkers for Event-B. As another approach, [15] translates Event-B model
into Promela model and use Spin to check the model. We consider that we
could obtain a skeleton of the design in Promela if we apply the mappings to
the Event-B specification; however, we still need to add design decisions into
the target model. We used Promela to describe the design. Our work has not
directly translated Event-B code into Promela but translate LTS of the Event-
B specification and assertions into Promela. Then, we use Spin to check the
simulation relation between the design model and LTS of the specification in
Promela.

8 Conclusion

We proposed an approach to verify designs against their formal specifications
which are described in different specification languages respectively. A primary
achievement of the approach is to make it possible to describe the specification
and the design in appropriate languages for a verification of the design. Formal
specification languages are intended to facilitate describing the specifications.
Promela is intended to analyze the designs. Our approach follows these inten-
tions faithfully. In fact, as mentioned in Sect. 1, it is natural for reactive systems
like operating systems to describe the designs in the imperative specification
languages. On the other hand, describing their detailed properties in temporal
logic is generally hard. It is easy to imagine that the temporal logic formulas
representing the specification shown in the case study become very complex and
prone to mistakes. Instead of the temporal logic, we provide a way to repre-
sent the specification in formal specification language Event-B and check the
design against it with the Spin model checker. Event-B is appropriate to rep-
resent the specification because it has rich notions such as sets and relations.
In addition, Event-B allows us to ensure the consistency and the correctness of
the specification by its verification facilities such as discharging proof obliga-
tions and refinement. That is, we can check the design against such consistent
and correct specification. This would drastically improve the reliability of model
checking results because the specification is reliable. There is a possibility that

Checking the Conformance of a Promela Design 125

our approach is applicable not only for Event-B and Promela but also the other
specification languages. We plan to extend the verification framework to accept
the additional choice of the specification languages.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

2. Aoki, T.: Model checking multi-task software on real-time operating systems. In:
The 11th IEEE International Symposium on Object Oriented Real-Time Distrib-
uted Computing, pp. 551–555 (2008)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. Representation and Mind
Series. The MIT Press, Cambridge (2008)

4. Bert, D., Potet, M.L., Stouls, N.: Genesyst: a tool to reason about behav-
ioralaspects of B event specifications. Application to security properties (2010)

5. Broadfoot, P., Roscoe, B.: Tutorial on FDR and its applications. In: Havelund,
K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, p. 322. Springer,
Heidelberg (2000)

6. Choi, Y.: Model checking trampoline OS: a case study on safety analysis for auto-
motive software. Softw. Test. Verif. Reliab. 24(1), 38–60 (2014)

7. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM, New York (1999)

9. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
seL4: formal verification of an operating-system kernel. Commun. ACM 53(6), 107–
115 (2010)

10. Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transfer 10(2), 185–203 (2008)

11. Lynch, N., Vaandrager, F.: Forward and backward simulations I.: Untimed systems.
Inf. Comput. 121(2), 214–233 (1995)

12. Matos, P.J., Fischer, B., Marques-Silva, J.: A Lazy Unbounded Model Checker for
Event-B. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 485–503. Springer, Heidelberg (2009)

13. Milner, R.: Communication and concurrency. PHI Series in computer science. Pren-
tice Hall, Upper Saddle River (1989)

14. Muller, A.: VDM the Vienna development method (2009)
15. Muller, T.: Formal methods, model-cheking and Rodin plugin development to link

Event-B and Spin (2009)
16. O’Regan, G.: Z formal specification language. In: O’Regan, G. (ed.) Mathematics

in Computing, pp. 109–122. Springer, London (2013)
17. OSEK/VDX Group: OSEK/VDX operating system specification 2.2.3. http://

portal.osek-vdx.org/
18. Reeves, S., Streader, D.: Guarded operations, refinement and simulation. Electron.

Notes Theor. Comput. Sci. 259, 177–191 (2009)
19. In der Rieden, T., Knapp, S.: An approach to the pervasive formal specification

and verification of an automotive system. In: Proceedings of the 10th International
Workshop on Formal Methods for Industrial Critical Systems, pp. 115–124 (2005)

http://portal.osek-vdx.org/
http://portal.osek-vdx.org/

126 D.-H. Vu et al.

20. Vu, D.H., Aoki, T.: Faithfully formalizing OSEK/VDX operating system specifi-
cation. In: Proceedings of the 3rd Symposium on Information and Communication
Technology, pp. 13–20 (2012)

21. Yatake, K., Aoki, T.: Model checking of OSEK/VDX OS design model based on
environment modeling. In: Roychoudhury, A., D’Souza, M. (eds.) ICTAC 2012.
LNCS, vol. 7521, pp. 183–197. Springer, Heidelberg (2012)

A Formal Model of SysML Blocks Using CSP
for Assured Systems Engineering

Jaco Jacobs(B) and Andrew Simpson

Department of Computer Science, University of Oxford, Wolfson Building,
Parks Road, Oxford OX1 3QD, UK

{jaco.jacobs,andrew.simpson}@cs.ox.ac.uk

Abstract. The Systems Modeling Language (SysML) is a semi-formal,
visual modelling language used in the specification and design of systems.
In this paper, we describe how Communicating Sequential Processes
(CSP) and its associated refinement checker, Failures Divergences Refine-
ment (FDR), gives rise to an approach that facilitates the refinement
checking of the behavioural consistency of SysML diagrams. We for-
malise the conjoined behaviour of key behavioural constructs — state
machines and activities — within the context of SysML. Furthermore,
blocks, the fundamental modelling construct of the SysML language, can
be combined in a compositional approach to system specification. The
use of a process-algebraic formalism enables us to explore the behaviour
of the resulting composition more rigorously. We demonstrate how CSP,
in conjunction with SysML, can be used in a formal top-down approach
to systems engineering. A small case study validates the contribution.

1 Introduction

Accidents associated with complex systems are frequently the result of unfore-
seen interactions amongst components that all satisfy their individual require-
ments [1]. These component interaction accidents are increasingly common: state
of the art systems are more interdependent on other technologically advanced
systems and interact in ways not foreseen or intended by the original designer.
The Mars Polar Lander accident is one example of such a failure: both the land-
ing legs and the control software of the descent engines functioned as specified
by their respective behavioural specifications. The systems engineers, however,
did not consider all the potential interactions between the landing legs and the
control software of the descent engines [1].

The OMG’s Systems Modeling Language (SysML) [2] is a graphical mod-
elling notation used in the specification and integration of complex, large-scale
systems. A keystone of this activity is ensuring that requirements, as imposed by
the various stakeholders, are adequately captured and subsequently addressed
when specifying a potential solution. The intention of SysML, thus, is to accu-
rately specify intended component behaviour with the expectation to minimise
interaction accidents. However, SysML is a semi-formal notation. If we are to
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 127–141, 2015.
DOI: 10.1007/978-3-319-17581-2 9

128 J. Jacobs and A. Simpson

carry out an extensive analysis of component interactions, more mathematical
rigour is indispensable.

Reasoning about behaviour — in particular, the myriad of interactions bet-
ween components — is a rather cumbersome activity for the human mind. In
addition, our cognitive ability to cope with multiple, separate descriptions of
behaviour, and ultimately fuse these into a unified interpretation, is rather lim-
ited. We need to augment our faculties with appropriate notations in order to
effectively reason about such behaviours. Moreover, if we are going to utilise
these notations in a meaningful fashion, we require mechanised tool support.
Communicating Sequential Processes (CSP) [3] is one such notation, backed up
by Failures Divergences Refinement (FDR) in the form of a refinement checker.

Activities and state machines are the core behavioural constructs used to
ascribe behaviour to SysML blocks. The aforementioned constructs are fre-
quently used in combination: activities are used to assign behavioural features
that ought to execute in a particular state, or on a given transition [2]. In this
paper, we provide a behavioural semantics for the conjoined behaviour of state
machines and activities. In the past, there have been several contributions where
the sole focus lied either with the formalisation of state machines, or activities.
To the best of our knowledge, this paper is the first contribution where the inten-
tion is on the provision of a behavioural semantics that encompasses both these
formalisms.

At the structural level, SysML takes a compositional stance with regards to
systems specification: a block can be comprised of other blocks, which, in turn,
might themselves consist of blocks. However, for the approach to be effective and
useful, the behavioural conduct of these blocks need to be specified in a consistent
manner. Moreover, the approach needs to enable the modeller to sufficiently
abstract away details irrelevant to a particular level of abstraction.

This paper is a companion of sorts to the work presented in [4]: it extends
the formalisation of state machines to encompass entry, exit, and do behaviours
modelled via activities. In doing so, a formal behavioural semantics is provided
for activities, in terms of CSP.

The structure of the remainder of this paper is as follows. In Sect. 2, we
provide a brief introduction to SysML. Section 3 outlines our process-algebraic
approach to formalise SysML activities, state machines, and blocks. We show
how CSP can be employed to analyse expositions composed of multiple, com-
municating state machine and activity constructs. In Sect. 4, we employ a small
case study to illuminate and validate the contribution. Section 5 summarises
the contributions of this paper, and places it in context with respect to other
research.

2 Background

In this section, we give a necessarily brief introduction to SysML. We assume
familiarity with CSP.

A Formal Model of SysML Blocks Using CSP 129

Blocks. Blocks are the fundamental modelling constructs of SysML and provide
the context in which behaviours execute. A block is often composed of other
blocks, termed parts, each of which has its own associated behaviour. The clas-
sifier behaviour of a block can serve as an abstraction of the behaviours of its
parts. Thus, the abstraction serves as a specification that the parts must realise:
the parts must interact in such a way that their combined behaviour conforms to
the abstraction. This interpretation also sits well with the concept of refinement
and abstraction in CSP.

The classifier behaviour is the main behaviour of a block, and executes from
the instant the instance is created until the point of destruction. The mod-
elling construct most frequently used to represent the classifier behaviour is a
state machine. In most systems engineering methodologies, activities are typi-
cally used as a complementary modelling notation to state machines: it is the
behavioural formalism normally associated with the effect component of a tran-
sition; alternatively, it is used to model behaviours related to a particular state.

Typically, two block instances communicate using signal events. The initiat-
ing block sends a signal event to a target block. This signal event is defined as
part of the supplementary behaviours — described using activities — associated
with the initiating state machine: the entry or exit behaviours of the active state;
or the effect component of the enabled transition. The receipt of the signal event
in the target block may subsequently trigger a transition in its state machine.
The approach described above is popular when modelling event-based systems.

A signal is a classifier that types the asynchronous messages that are commu-
nicated between blocks. Each signal optionally has an associated set of attributes
which correspond to the parameters that make up the content of the message.
A connector connects two or more parts or references. The connection formally
allows the connected components to interact, although the connector does not
characterise the nature of the interaction. Instead, the interaction is stipulated
by the behaviours of the connected blocks.

Activities. Activities allow the modeller to describe complex routes along which
actions execute. These routes are termed flows. In SysML activities there are two
types of flows: control flows and object flows.

Actions are the fundamental building blocks of activities and always execute
within the context of an activity. An action accepts inputs and produces outputs.
The flow of input and output items between actions are described using object
flows. Control flows, on the other hand, impose additional constraints on the
execution of actions. When a control flow connects one action to another, the
target action cannot start until the source action has completed. Control nodes
are used in the specification of control flow: they are used to impose control logic
on the execution of actions. The control nodes are the fork, join, decision, merge,
initial and final nodes.

Several types of actions exist: the send signal event action sends a signal
event; the receive signal event action waits on the receipt of a particular signal
event; and the value specification action allows the specification of a particular

130 J. Jacobs and A. Simpson

value to an input of an action. Opaque actions allow the specification of actions
in a language external to SysML.

State Machines. State machines graphically depict state-dependent behaviour
in terms of nodes and labelled edges: nodes represent states, whereas the edges
correspond to transitions between states.

In SysML, a state is an abstraction of the mode that the owning block finds
itself in. A change of state is effected by the arrival of a triggering event, causing
an appropriate transition to fire. A transition consists of a trigger, a guard and
an effect. The trigger denotes the event that serves as stimulus for the transition
to fire; the guard is a conditional expression used to decide whether the transition
is to fire at all; and the effect is a supplementary behaviour that executes on the
transition.

3 A CSP View of SysML Blocks

This section outlines an approach to integrate the semi-formal SysML notation
with the process algebra CSP. In order to define a formal semantics for blocks,
parts and state machines, we need a precise description of their syntax. To this
end, we define simple mathematical constructs that are closely related to the
syntactical structure of their corresponding SysML counterparts.

Activities. Broadly speaking, our approach maps every node and every edge
in an activity diagram to a CSP process. We restrict actions to either have
either a single outgoing control or object flow, but not both; our semantics
allows for simple forks and joins in the sense that a fork node splits control into
multiple flows that eventually all end in a corresponding join node. We present
the formalisation as it relates to a single activity A; A denotes the set containing
all activities in our universe of discourse.

An activity A ∈ A consists of a finite collection of nodes, denoted NA, and
edges between those nodes, denoted EA. We partition NA such that N I

A represents
the set of initial nodes, N F

A the set of final nodes, N FK
A the set of fork nodes, N JN

A

the set of join nodes, N SS
A the send signal event actions, NRS

A the receive signal
event actions, NO

A the opaque actions, and NPN
A the set of activity parameter

nodes. The edges are partitioned such that EOF
A represents the object flows, and

ECF
A represents the set of control flows.

We define the following functions, to return for a particular flow f ∈ EA:
the source node, source : EA → NA; and the target node, target : EA → NA.
Additionally, we define functions to return for a particular node n ∈ NA: the
set of outgoing control flows, outgoingcf : NA �→ PECF

A ; and the outgoing object
flow, outgoingof : NA �→ EOF

A . Assume that the construction name(n) returns
the name of the send or receive signal event, or opaque action for n ∈ N SS

A ∪
NRS

A ∪ NO
A .

The formalisation makes use of a mapping function F . In particular, F(A, c)
is the process modelling the construct c, either an edge or a node, of activity A.

A Formal Model of SysML Blocks Using CSP 131

Activity Parameter Node. An activity parameter node n ∈ NPN
A , models a para-

meter, p, that can be used within the context of the activity. In CSP, the node
is modelled as an argument to the process modelling the activity. Diagrammat-
ically, an object flow of ∈ EOF

A connects the parameter node with other nodes
that use this as a parameter. For the purpose of this paper we assume that a
single argument is represented by each activity parameter node that serve as
input to the activity. The activity’s behaviour starts as the process modelling
the initial node n0 ∈ N I

A

A(p) =
let

F(A,n0) = . . .
within

F(A,n0)

An activity without a parameter is modelled similarly, but the process parameter
p is elided.

Control Flow Edge. A control flow cf ∈ ECF
A can be thought of as a CSP process.

The behaviour of this process is dependent on the target node of the control flow,
given by target(cf). If the target is not a join node, i.e. target(cf) /∈ N JN

A , the
process simply designates its behaviour to be that of the target node.

F(A, cf) =
F(A, target(cf)) if target(cf) /∈ N JN

A

Join(cf) otherwise

In the case where target(cf) ∈ N JN
A , there will be, based on our assumption of

activities above, k −1 other control flows which terminate in the same join node.
Let the control flows be cf0 . . cfk−1. Exactly one of the control flows, cf0, will
exhibit the behaviour of the join node.

Join(e) =
join → Skip if e �= cf0
join → F(A, target(e)) otherwise

The above construction ensures that exactly one of the previously forked flows
continues after the join. Many interpretations of activity diagrams assume con-
trol flows to have associated guards, typically expressed in natural language.
Due to obvious reasons natural language guards are not suitable for a precise
behavioural semantics and are thus excluded.

Object Flow Edge. An object flow of ∈ EOF
A is used to model the passing of

parameters1 between activity parameter nodes, call behaviour actions or send
1 We restrict ourselves to signal parameters here, although in SysML these can be any

classifier that can serve as an input to an activity.

132 J. Jacobs and A. Simpson

and receive signal events. The behaviour of an object flow edge is a parametrised
process that takes as input the value of the argument, say p, passed along the
object flow. Throughout, process arguments are placed within square brackets
to denote them as such.

F(A, of)[p] = F(A, target(of))[p]

Initial Node. An initial node n ∈ N I
A has a single outgoing edge, a control flow

cf ∈ outgoingcf (n). The process behaves like the control flow edge emanating
from the initial node.

F(A,n) = F(A, cf)

Send Signal Event Action. A send signal event action n1 ∈ N SS
A has a single

outgoing control flow cf ∈ outgoingcf (n1).

F(A,n1) = name(n1) → F(A, cf)

Optionally, an incoming object flow of is possible, which serves as input to the
send signal event action, and models the parameters send as part of the send
signal event. In our semantics, the object flow of , if present, emanates from an
activity parameter node n2 ∈ NPN

A and terminates on send signal event2 node
n1

3. The construction par(n2) is the parameter available within the context of
the owing activity (defined within the let within construct).

F(A,n1) = name(n1).par(n2) → F(A, cf)

Alternatively, the send signal event has a single incoming object flow, but no
incoming control flow. In this case the process modelling the send signal event
action would have an input argument, p, passed from the process modelling
the object flow. The outgoing control flow is given by cf ∈ outgoingcf (n1). The
formalisation follows.

F(A,n1)[p] = name(n1).p → F(A, cf)

The above models the case where the parameter comes from: an object flow
emanating from a value specification action; the output of an opaque action; or
the output of a receive signal event action.

Receive Signal Event Action. A receive signal event action n ∈ NRS
A has a single

outgoing control flow cf ∈ outgoingcf (n). Note that it is not possible to have an
outgoing object flow if an outgoing control flow is present.

F(A,n) = name(n) → F(A, cf)

2 A value specification action, rather than an activity parameter node, connected via
an object flow, can be used for constants.

3 Note that an incoming control flow is still present and also terminates on n1.

A Formal Model of SysML Blocks Using CSP 133

Alternatively, the receive signal event may be passed a parameter as part of the
event. In this case it is conceivable that an object flow will exit the action. The
formalisation follows.

F(A,n) = name(n)?p → F(A, outgoingof (n))[p]

The input p on the CSP channel corresponds to the parameter passed as part
of the receive signal event.

Final Node. A final node n ∈ N F
A has no outgoing edges. It is trivially modelled

as the CSP Skip process.

F(A,n) = Skip

Fork Node. A fork node n ∈ N FK
A splits the control flow in k parallel flows

cf0 . . cfk−1.

F(A,n) = [|join |] j : outgoingcf (n) • F(A, j)

The above alphabetised indexed parallel construction ensures that all the differ-
ent threads of control only synchronise on the join event; all other events are
interleaved.

Join Node. A join node n ∈ N JN
A synchronises k parallel control flows and has

a single outgoing control flow cf = outgoingcf (n).

F(A,n) = F(A, cf)

State Machines. This paper is a companion of sorts to the work presented
in [4]: it extends the formalisation of state machines to encompass entry, exit, and
do behaviours modelled via activities. This hybrid approach is typical of most
systems engineering methodologies used in practice today. In addition, as the
activities execute within the context of an owing state machine, the run to com-
pletion execution semantics of state machines are applicable. We briefly reprise
the necessary mathematical structures and CSP descriptions of [4] to ensure this
paper is self-contained. We restrict ourselves to non-hierarchical state machines
and ignore guard conditions on transitions in order to simplify the presentation
here. The interested reader can refer to [4] for an account of more complex state
machines.

A state machine M ∈ M consists of a finite set of states, denoted SM , and
transitions between those states, denoted TM . We partition SM such that S I

M

represents the set of initial states, SF
M the set of final states, SS

M the set of simple
states. A function outgoing : SM → PTM returns the set of outgoing transitions
for a given state.

We define the following functions, to return for a transition t ∈ TM : the
source state, source : TM → SM ; the target state, target : TM → SM ; the
trigger, trigger : TM → S; and the effect, given by effect : TM → A. S is the set
of signals.

134 J. Jacobs and A. Simpson

The entry and exit behaviours of a particular state are given by the following
functions: entry : SM → A; and exit : SM → A. In each case, an activity
modelling the behaviour is returned.

A mapping function F is used to formalise the behaviour; F(M , s) is a process
that describes the behaviour of M in state s.

Initial State. An initial state s ∈ S I
M has a single outgoing transition t that

defines its unique starting point. Optionally, an effect component can be specified
for the transition using an activity A ∈ A. In the following: effect(t) returns a
behaviour specified via an activity; similarly, entry(target(t)) returns the entry
behaviour of the target state specified via an activity.

F(M , s) = effect(t) o
9 entry(target(t)) o

9 F(M , target(t))

Simple State. The CSP channel local is used for communicating with the event
queue of the state machine M . The arrival of a SysML signal event serves as
the trigger; consequently this is made available as a CSP event. If the signal
signature has a data component associated with it, this is made available as an
input along with the channel modelling the event4.

We need to consider the eventuality where the state machine receives a signal
event not expected in the current state s. Here, the state machine discards the
unexpected event. In the following, assume that unexpected(s) returns the set
of unexpected events for state s (receive signal events that are valid in other
states of SM but not in s). The components proc and disc denote the event
being processed and discarded, respectively. In both cases, it is removed from
the event queue.

F(M , s) =
� t : outgoing(s) • local .proc.trigger(t) →

exit(s) o
9 effect(t) o

9 entry(target(t)) o
9 F(M , target(t))

�

� t : unexpected(s) • local .disc.trigger(t) → F(M , s)

Final State. Consider a final state s ∈ SF
M . A final state has no outgoing transi-

tions and is trivially modelled as the deadlocked process.

F(M , s) = Skip

Event Queue. The state machine as a whole is modelled with a single process
that contains all the localised process descriptions defined above. The overall
structure is similar to that given by Davies and Crichton [5]. The state machine
receives all communications through an event queue, modelled as a CSP buffer
of size 1. It communicates with this buffer on a CSP channel, local . Each of the
4 Next, the guard (if it exists) is evaluated and if false the event is discarded without

effect. Conversely, if the guard evaluates to true the behavioural construct speci-
fied for the effect are executed before behaving as the process associated with the
destination state. Guards are omitted in this paper due to space restrictions.

A Formal Model of SysML Blocks Using CSP 135

localised processes has access to this channel in order to receive communications
from the event queue. The overall process M (queue, local) initially behaves as
the process associated with the initial state F(M , s0). Throughout, the state
machine behaves like the various processes until it possibly reaches a final state,
after which it behaves as F(M , sf). The local process EQ models the event queue.
Here, we assume a queue with a maximum capacity of 1; the queue blocks when
full. The datatype Dispatcthed , communicated along with the event on channel
local , models the dispatching of an event: an event can either be processed, proc
or, if the state machine is in a state where the dispatched event is not expected,
discarded, disc.

M (queue, local) =
let

F(M , s0) = . . .
. . .
F(M , sf) = Stop
EQ = queue?e → local?p!e → EQ

within
F(M , s0) [| {| in |} |] EQ

The state machine of a block Bi only receives (through its event queue)
the provided receptions. The required features are communicated across the
connectors linking parts. In our formalisation, the name of the part is used as
the channel name.

Blocks. The formalisation above additionally allows us to showcase how CSP
can be used in a compositional approach to specification and refinement within
the context of systems engineering.

Assume a block Bi ∈ B composed of K constituent blocks B0 . .BK−1, where
i ≥ K . We known that the aggregate behaviour exhibited by blocks B0 . .BK−1

must adhere to that of the composite block Bi ; Bi is an abstract specification
block that the more concrete implementation blocks B0 . .BK−1 must implement.
Stated in terms of CSP: the characteristic process of Bi serves as the specification
process and B0 . .BK−1, suitably combined using parallel composition, form the
implementation process.

Assume that classifier(B) represents the classifier behaviour of a SysML
block. Using CSP the conformance of the implementation process to that of the
specification can be stated thus.

classifier(Bi) � ‖P : {B0 . .BK−1} • classifier(P)

Events introduced at the lower level of implementation are excluded from the
above observation; the hiding operator of CSP can be used to conceal such events.

Using this approach, and assuming the refinement holds, Bi can be safely sub-
stituted for the concrete composition B0 . .BK−1. This stepwise, compositional
approach to systems specification and design sits well with CSP’s approach to

136 J. Jacobs and A. Simpson

refinement. This statement is not necessarily true for conventional model check-
ers that rely on temporal logics to assert safety or liveness properties. In a system
of systems, Bi , previously our system of interest, is now just a component block
representing one of the subsystems.

4 A Robotic Arm

In this section we apply the concepts central to our methodology to an illustra-
tive case study. We study a single component, a robotic arm, of a fully fledged
case study that is well known in the formal methods community. The production
cell is an industrial installation of a metal processing plant located in Karlsruhe,
Germany [6]. However, in the interest of brevity and clarity, we consider the arm
as our system of interest. The arm is one subsystem of the travelling crane, which
is yet another component of the much bigger system — the production cell.

A bidirectional motor can operate in two opposing directions. An electro-
magnet can activate or deactivate a magnetic field using an electric current.
A potentiometer provides a value within certain limits so as to indicate the
range of extension.

The arm is equipped with a bidirectional motor responsible for vertical exten-
sion. An electromagnet is placed at the front of the arm for handling metal
objects; a potentiometer is present to indicate the range of extension of the arm.

Arm

Controller Magnet

BDMotor

PDMeter

bdd Arm

pd0
pd1
pd2

PD

fwd
rev

Direction

bdd Enumerations

bdd Signals

d: Direction

BDMotorOn

OnPD

BDMotorOff

MagnetOn

MagnetOff

pd: PD

NotifyPD

pd: PD

Grasp

pd: PD

Drop

Ready

pd: PD

PickUp

pd: PD

PutDown

ibd Arm

: Controller

: Magnet

: PDMeter

: BDMotor

magnet

bdmotor

pdmeter

controller

controller controller

Fig. 1. The block definition and internal block diagrams of the arm system.

ready

PutDown(e)
PickUp(e)

stm Arm

onoff

stm Magnet

MagnetOn/ActivateMagnet

MagnetOff/DeactivateMagnet

senseidle

stm PDMeter

/OnSense

NotifyPD(d)

onoff

stm BDMotor

BDMotorOn(d)/TurnOnBDMotor(d)

BDMotorOff/TurnOffBDMotor

busy

/SetReady
idle

grasp

entry: Magnetise

drop

entry: Demagnetise

Grasp(e)/Extend(e) Drop(e)/Extend(e)

/Retract /Retract

stm Controller

Fig. 2. The state machine diagrams of the arm system.

A Formal Model of SysML Blocks Using CSP 137

Refer to Fig. 1. The structural aspects of the system are modelled using blocks
for the controller, bidirectional motor, electromagnet, and the potentiometer;
signals and enumeration definitions further illuminate the design by introducing
the messages and associated parameters communicated between state machines
and activities.

Figures 2 and 3 show the state machines and activities of the arm system.
The channels used by the state machine of the bidirectional motor can be

defined thus. The Direction enumeration of Fig. 1 can be represented with a CSP
datatype. Channel and datatype definitions for other state machines are similar.

datatypeDispatched = proc | disc
datatypeDirection = fwd | rev
datatypeBDMotorSignal =

BDMotorOn.Direction | BDMotorOff
channel bdmotor : BDMotorSignal
channel bdmotorlocal : Dispatched .BDMotorSignal

In the above, the channel bdmotor is used by other state machines to com-
municate with the state machine of the bidirectional motor via its associated
event queue; the channel bdmotorlocal is used by the event queue of the bidirec-
tional motor to dispatch events (to the bidirectional motor’s state machine) for
processing.

The CSP process modelling the characteristic behaviour of the Controller fol-
lows. The activity Extend is associated with the effect component of the transi-
tions emanating from the idle state; the activity Magnetise represents the entry
behaviour of the grasp state. CSP datatype definitions are used to type the pro-
vided receptions of the Controller block; these serve as triggers for the classifying
state machine. The name of the instance is used as the channel name when commu-
nicating with a state machine; a channel with the same name and the suffix local
is used to model the internal event queue of the corresponding state machine.

Controller(queue, local) =
let

I0 = IDLE
IDLE =

local .proc.Grasp?e →
Extend(local , e) o

9 Magnetise o
9 GRASP

�

local .proc.Drop?e →
Extend(local , e) o

9 Demagnetise o
9 DROP

�

local .disc?e : {| OnPD |} → IDLE
GRASP =

Retract(local) o
9 IDLE

�

local .disc?e : {| Grasp,Drop,OnPD |} → GRASP
DROP = . . .

138 J. Jacobs and A. Simpson

EQ = queue?e → local?p!e → EQ
within

I0 [| {| local |} |] EQ
CONTROLLER = Controller(controller , controllerlocal)
αCONTROLLER =

Union({{| controller , controllerlocal |},
αMagnetise, αDemagnetise, αExtend , αRetract})

The processes Magnetise and Extend , modelling the activities used in the
CONTROLLER process, follows. The event queue is passed in as the activity
executes within the context of its owing state machine.

Magnetise =
let

I0 = SS0

SS0 = magnet .magnetOn → F0

F0 = Skip
within

I0
αMagnetise = {| magnet .MagnetOn |}

Extend(local , pd) =
let

I0 = VS0

VS0 = SS0(fwd)
SS0(o) = bdmotor .BDMotorOn.o → SS1

SS1 = pdmeter .NotifyPD .pd → RS0

RS0 =
local .proc.OnPD → SS2

�

local .disc?ev : {| Grasp,Drop |} → RS0

SS2 = bdmotor .BDMotorOff → F0

F0 = Skip
within

I0
αExtend =

{| bdmotor .BDMotorOn.fwd , bdmotor .BDMotorOff ,
pdmeter .NotifyPD |}

The processes, along with their respective alphabets, denoting concrete parts
for the magnet, bidirectional motor and potentiometer can be similarly defined,
but are excluded here due to space constraints. Activities and alphabets used
within these state machines can also be similarly defined.

MAGNET = Magnet(magnet ,magnetlocal)
BDMOTOR = BDMotor(bdmotor , bdmotorlocal)
PDMETER = PDMeter(pdmeter , pdmeterlocal)

A Formal Model of SysML Blocks Using CSP 139

The definition of the process ARM , modelling the abstract block that serves
as the specification that the parts must realise, follows.

Arm(queue, local) =
let

I0 = READY
READY = . . .
BUSY =

SetReady o
9 READY

�

local .disc?e : {| PickUp,PutDown |} → BUSY
EQ = queue?e → local?p!e → EQ

within
I0 [| {| local |} |] EQ

ARM = Arm(arm, armlocal)
αARM =

Union({{| arm, armlocal |}, αSetReady})

Assuming that P = {CONTROLLER,MAGNET ,BDMOTOR,PDMETER}
we then have CONCRETE = ‖p : P • [αp]p. In the aforementioned, αp denotes
the set of events communicable by P . The set of processes P represent the
concrete implementation blocks whose conjoined behaviour must be that of the
block arm that serves as its specification. The similarity with CSP here is strik-
ing: refinement in CSP is expressed between specification and implementation
processes.

CONCRETER is the process with events suitably renamed to ensure com-
patible alphabets.

CONCRETER =
CONCRETE [controller .Grasp.pd0 ← arm.PickUp.pd0,

controller .Drop.pd0 ← arm.PutDown.pd0,
controller .Grasp.pd1 ← arm.PickUp.pd1 . . .]

The set Hidden are those events not present in the alphabet of the abstract
specification process ARM ; Σ denotes the set of all CSP events within the
context of the specification. Thus

Hidden = Σ \ {| arm.PickUp, arm.PutDown,
armlocal .proc.PickUp, armlocal .proc.PutDown,
armlocal .disc.PickUp, armlocal .disc.PutDown,
client |}

FDR verifies the assertion

ARM � CONCRETER \Hidden [� holds]

140 J. Jacobs and A. Simpson

fwd::Direction BDMotorOn

NotifyPD

OnPD

act Extend

d: PD

BDMotorOff

BDMotorOn

NotifyPD

OnPD

act Retract

rev::Direction

pd0

BDMotorOff

Ready

d: Direction

EngineFwd

EngineRev

act TurnOnBDMotor

[d=fwd]

[else]

MagnetOn

MagnetOff

act Magnetise

act Demagnetise

act ActivateMagnet

act DeactivateMagnet

EMFOn

EMFOff

act OnSense

OnPD

act TurnOffBDMotor

EngineOff

act S
etR

eady

R
eady

Fig. 3. The activity diagrams of the arm system.

Given that the refinement holds, ARM can be substituted for its parts in
the complete system: the behaviour of the concrete implementation processes,
denoted by CONCRETE , can neither refuse nor accept an event that ARM can.
Stated another way, the characteristic behaviour of CONCRETE is completely
contained within that of ARM . The compositional approach presented above
is effective in alleviating the state space explosion problem: subsystems can be
developed and formally verified in isolation and subsequently combined to form
an integrated system description.

5 Conclusions

There is a wealth of literature on the formalisation of activity and state machine
diagrams, primarily within the context of UML. In order to limit the scope we
only report on approaches that utilise CSP.

Ng and Butler [7] proposed the formalisation of UML state machine diagrams
using CSP as the semantic domain [7]. They define the translation in terms
of a mapping function from structural diagrammatic constructs to their CSP
counterparts. The work of Yeung and colleagues [8] built on that of Ng and
Butler by generalising inter-level transitions.

Xu et al. [9] formalised activity diagrams in CSP. A transformation function is
defined that maps the mathematical representation of an activity to the semantic
domain of CSP. The goal in [9] is on providing a formal semantics for activities
in terms of CSP, rather than checking behavioural conformance. Only a limited
number of diagrammatic constructs are considered and object flows are omitted.
Constructs such as send and receive event actions are not addressed.

Our work is different than the aforementioned contributions in a number of
ways. This paper presents a compositional approach to refinement and speci-
fication, evaluated within the context of SysML. In addition, we consider the
behaviour of several interacting state machines, supplemented with behaviours
described via activities. In contrast, previous approaches placed emphasis on the
formalisation of a single state machine (or activity); considering the execution

A Formal Model of SysML Blocks Using CSP 141

semantics in terms of interaction with other state machines (or activities) was
not their primary focus.

The choice of CSP is due to a number of factors. The behavioural aspects
of SysML can be modelled naturally by a process-algebraic formalism such as
CSP, resulting in a formal framework where assertions about requirements can
be proved or refuted with relative ease [4]. CSP’s approach to process com-
position, combined with the fact that refinement is preserved within context,
would allow us to decompose a complex design of a system (or system of sys-
tems) in such a way that the automated analysis is computationally feasible. In
particular, the decompositional approach to specification, as illuminated by the
case study in Sect. 4, allows us to substitute a collection of blocks with a sin-
gle block that depicts the intended behaviour of the whole. Furthermore, CSP’s
approach to establish refinement — by comparing the behaviour of a charac-
teristic specification process to that of a concrete implementation process —
coincides with SysML’s compositional outlook to specification and the notion
that a block can act as a specification of constituent blocks. In contrast, in con-
ventional model checking approaches where there is no concept of refinement,
this distinction is less clear. The above approach is mechanisable via a model-to-
model (SysML meta- model to CSP meta-model) and subsequent model-to-text
(machine-readable CSP) transformation. Details of an implementation have been
omitted due to space constraints.

References

1. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
MIT Press, Cambridge (2012)

2. Object Management Group: Systems Modeling Language Specification, version 1.3
(2012). http://www.omg.org/spec/SysML/1.3, March 2014

3. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, London (1985)
4. Jacobs, J., Simpson, A.: Towards a process algebra framework for supporting behav-

ioural consistency and requirements traceability in SysML. In: Groves, Lindsay, Sun,
Jing (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 265–280. Springer, Heidelberg (2013)

5. Davies, J.W.M., Crichton, C.R.: Concurrency and refinement in the unified modeling
language. Electron. Notes in Theoret. Comput. Sci. 70(3), 217–243 (2002)

6. Lewerentz, Claus, Lindner, Thomas (eds.): Formal Development of Reactive Sys-
tems. LNCS, vol. 891. Springer, Heidelberg (1995)

7. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Pro-
ceedings of the 1st International Conference on Software Engineering and Formal
Methods (SEFM 2003), pp. 138–147. IEEE (2003)

8. Yeung, W.L., Leung, K.R.P.H., Dong, W., Wang, J.: Improvements towards formal-
izing UML state diagrams in CSP. In: Proceedings of the 12th Asia-Pacific Software
Engineering Conference (APSEC 2005), pp. 176–182. IEEE (2005)

9. Xu, D., Philbert, N., Liu, Z., Liu, W.: Towards formalizing UML activity diagrams
in CSP. In: Proceedings of the 2008 International Symposium on Computer Science
and Computational Technology (ISCSCT 2008), pp. 450–453. IEEE (2008)

http://www.omg.org/spec/SysML/1.3

Parallelism Analysis: Precise WCET Values
for Complex Multi-Core Systems

Timon Kelter(B) and Peter Marwedel

Department of Computer Science, TU Dortmund, Otto-Hahn-Straße 16,
44227 Dortmund, Germany

{timon.kelter,peter.marwedel}@tu-dortmund.de

Abstract. In the verification of safety-critical real-time systems, the
problem of determining the worst-case execution time (WCET) of a task
is of utmost importance. Safe formal methods have been established for
solving the single-task, single-core WCET problem. The de-facto stan-
dard approach uses abstract interpretation to derive basic block execu-
tion times and a combinatorial path analysis which derives the longest
path through the program. WCET analyses for multi-core computers
have extended this methodology by assuming that shared resources are
partitioned in either time or space and that therefore each core can
still be analyzed separately. For real-world multi-cores this assumption
is often not true, making the classic WCET analysis approach either
inapplicable or highly pessimistic. To overcome this, we present a new
technique to explore the interleavings of a parallel task system as well
as an exclusion criterion to prove that certain interleavings can never
occur. We show how this technique can be integrated into existing WCET
analysis approaches and finally provide results for the application of this
new analysis type to a collection of real-time benchmarks, where average
WCET reductions of 32 % were observed.

Keywords: WCET · Multi-core · Parallelism · Shared resources

1 Introduction

WCET analysis is an important prerequisite for schedulability analysis and for
overall system validation of safety-critical real-time systems, i.e. systems in which
tasks must complete within a given deadline. The runtime of any task τ depends
on its inputs, on the system state at the start of τ and on the interference imposed
on τ by preempting tasks on the same core or by parallel tasks running on other
cores. To compute the WCET, first an abstract interpretation on the domain
of abstract system hardware states is run. With the resulting hardware state
overestimations a safe bound on the runtime of each basic block can be derived.
This procedure is called microarchitectural analysis (MA). As the last step, the
path analysis determines the longest path through the program with the help of
the basic block runtimes determined by the MA [19]. In this paper we propose

c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 142–158, 2015.
DOI: 10.1007/978-3-319-17581-2 10

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 143

an abstract interpretation of the system hardware state that is able to efficiently
explore all possible interactions between multiple concurrently running tasks.

As soon as multiple cores may access a shared hardware resource in parallel,
the runtimes of parallel tasks are no longer independent but they depend on

1. The order in which the requests arrive at the shared resource and
2. The policy with which requests to the shared resource are arbitrated.

Previous work has eliminated the first dependency by choosing a state-partitioned
arbitration strategy which guarantees that the actions of any core C cannot
modify the state of the shared resource as seen by cores Co �= C. This implies,
that the delay for any access from C is independent of the potential concurrent
accesses from all Co �= C. Therefore, we can still perform a per-core analysis
and the state space does not become much bigger than for the single-core case.
An example for such a state-partitioned strategy is time-division multiple access
(TDMA) [5]. However, state-partitioned arbitration increases the average access
delay compared to state-permeable strategies like fair arbitration (FAIR) and
fixed-priority arbitration (PRIO) [6]. WCET analysis for these types of arbitra-
tion has been nonexistent or pessimistic at best. Therefore our main goal in
this paper is to make a first step towards a precise WCET analysis for shared
state-permeable resources, since they are often found in real-world systems.

2 Related Work

WCET Analysis. There is an extensive body of work on single-core WCET
analysis as summarized in [19], which led to the standard approach of separating
the microarchitectural analysis from the path analysis. Our techniques also build
upon this concept by extending the former analysis to multi-cores.

The first known approach to multi-core WCET analysis is based on the Real-
Time Calculus (RTC) [14,15]. It uses “access curves” to strongly abstract from
the concrete system, which introduces strong pessimism in the results and is
restricted to timing-compositional architectures [4]. The only known, non-RTC-
based approach to the analysis of shared state-permeable resources is based on
parallel summaries [10]. For a shared cache, it precomputes worst-case inter-
ference summaries for each core which contain the effects that all program
points in all possibly concurrently running tasks can have on the state of the
shared resource, which also introduces considerable pessimism. The authors
of [1] combined the summary-based shared cache approach from [10] with a
safe abstraction for the analysis of TDMA buses [5], which results in a scal-
able but pessimistic WCET analysis for multi-core WCET estimation. Finally,
model-checkers have been used to determine multi-core WCETs [3] and these
could potentially also handle state-permeable resources. Unfortunately the app-
roach does not scale to bigger programs or realistic systems, since the generic
model checker has few possibilities of pruning the huge search space.

Parallel Program Analysis. Static analysis of the synchronization structure
of concurrent programs was first considered by [17] where the analysis of the

144 T. Kelter and P. Marwedel

“concurrency state” of the system and the notion of a parallel execution graph
was first established. We build our work on this, though the analysis in [17]
worked at a far more coarse-grained level. A reference approach to bit-vector-
based abstract interpretation on programs with explicit fork-join parallelism is
given in [9]. Unfortunately, the microarchitectural analysis that we are examin-
ing here is not a bit-vector problem. In reachability analysis for parallel programs
“stubborn sets” [18] can be used to prune the search space, but again the microar-
chitectural analysis differs significantly from reachability analysis. Finally, a
recent publication [12] examines the computation of feasible synchronization-
aware parallel interleavings. Their approach focuses on path analysis and is thus
orthogonal to ours.

3 System and Task Model

We assume a task set T containing only strictly periodic tasks, as often found in
hard real-time systems. In the following sections, we will need a common refer-
ence point in time for all running tasks, where times are measured in multiples
of the shortest clock cycle. Therefore we first require that all τi ∈ T are sharing
the same period pi = pT and that each task is executed non-preemptively on a
separate core. We will discuss how to lift these restrictions in Sect. 5. Each task
τi may have a different release time ri within the common period.

The analysis can be adapted to any topology, but for our experiments we
will use an example architecture with n = |T | ARM7TDMI cores,1 each having
a private cache and a scratchpad. The cores are connected to a shared bus which
is arbitrated under either TDMA, FAIR round-robin or fixed core priorities.
Behind the bus, shared instruction and data caches are located as well as non-
cached memories.

4 Parallelism Analysis

Before starting with the formal part of the framework, we briefly sketch the
intuition behind the analysis procedure. Our goal will be to efficiently explore
all feasible interleavings of multiple tasks running in parallel. As an example,
consider the execution of the tasks from Fig. 1 under the assumption that both
tasks start concurrently at time 0. For this assumption we can find all valid
parallel execution scenarios from the parallel execution graph (PEG) shown in
Fig. 2. The construction of this graph starts with nodes corresponding to the
initial system states, in this case with only the node AE (the δ-values will be
explained below). From these start nodes, we iteratively simulate cycle steps of
the system. To keep our example PEG from Fig. 2 sufficiently small, we assume
that every block will take one cycle to complete. Therefore, our initial block
AE is terminated after the first cycle and the execution must continue in one of
the nodes AE, BE, BF and AF. To generate these successors we simply follow all

1 The choice of ARM7TDMI cores is motivated by the fact that we already have an
implementation of the abstract pipeline model for these cores (compare Sect. 4.4).

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 145

Fig. 1. Two example
tasks with given loop
bounds.

Fig. 2. The final parallel execution graph for tasks τ1
and τ2 from Fig. 1, starting synchronously at time 0.

combinations of successor blocks in the task CFGs. The loop bounds are not
used here. If we continue the graph construction in this manner, we will end up
with a full product graph of the task CFGs. When every core has reached the
end of its task, indicated by the “�” sign in Fig. 2, we add a back-edge from ��
to AE to account for the repeated execution of the tasks in the cyclic schedule.
The purpose of this final PEG is, that it contains each basic block of each task
in all possible parallel execution scenarios. Thus we can derive the WCET of
each basic block from the PEG and use these to compute the task WCETs.

As visible, the PEG in Fig. 2 is not a full product graph of the graphs from
Fig. 1. The construction of the graph has been stopped at nodes BE, AG, BG, DF
and DG. To explain why this was done, and why it is correct, we need the δ-values
and the loop bounds. We define δ(i) as an interval containing all points in time,
measured from the beginning of the common period pT , at which a node may
be entered on core i. Initially we set δ(1) = δ(2) = [0, 0] for node AE, since core
1 (2) enters node A (E) at time 0. From here on, every time we visit a node X
in the analysis, we recompute its δ intervals with the help of a path analysis
which computes the length of the shortest and longest paths to the basic blocks
in X. As an example, when we visit node AE the second time, we have already
seen, that both block A and E complete within one cycle. Therefore, since A

146 T. Kelter and P. Marwedel

can be executed at most three times and E at most two times (see Fig. 1), the
path analysis can infer that any execution of block A must begin in the time
frame δ(1) = [0, 2] and similarly any execution of block E must begin within
δ(2) = [0, 1]. Thus, the path analysis always operates only on the CFGs of the
individual tasks, not on the PEG. The PEG is only used to compute the possible
runtimes of the basic blocks within the tasks.

The path analysis for node BE yields δ(1) = [2, 3] (due to the loop at A which
must complete before B) and δ(2) = [0, 1]. Here we can see the application of the
computed δ-values: We can exclude this node from the PEG and thus from the
analysis. Through the δ-values we know, that at this point blocks B and E cannot
be executed concurrently because their execution time windows do not overlap.
All blocks for which we can prove this can be removed from the PEG as long
as their δ-values stay unmodified. In Fig. 2 these removed blocks are marked by
a dotted border. If accesses to a shared resource, with a duration of one cycle,
would occur in B and E we would still obtain the same PEG which shows that
these accesses can never interfere with each other.

4.1 Framework

The phases of our WCET analysis framework are shown in Fig. 3. We are using
the same CFG reconstruction, value analysis and path analysis stages as the
classical WCET analysis [19]. These stages also work for each task in separation.
Only for the microarchitectural analysis, we first construct the initial PEG states,
based on the system schedule. Then we conduct a data-flow analysis on the PEG
until the PEG itself as well as the associated system states have reached a fix-
point. From this converged PEG we extract the basic block runtimes that are
finally used to compute the WCET and BCET in an IPET-based path analysis.

4.2 Prerequisites

To precisely define our analysis procedure we will need some terminology which
is introduced in the following.

Fig. 3. The analysis framework. The dashed parts are new contributions compared
to [19] and will be discussed in the next sections.

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 147

Given a set of tasks T together with CFGs Gτ = (Vτ , Eτ) for all τ ∈ T , a task
execution position ψτ is a tuple (v, i, c, d), where v ∈ Vτ is a basic block, i ∈ v
is an instruction within that basic block and c is the number of cycles that were
already spent on the processing of this instruction. Finally, d is the number of
cycles that the task must wait until its execution will begin. A system execution
position (SEP) Ψ on n cores is an n-tuple with Ψ ∈ Ψ̂ = ×n

i=1ψ̂τi
∪{�}, τi being

the task mapped to core i. The special token � indicates that the respective core
is currently running idle. Here and in the following we use Â to denote the set of
all tuples of type A. The motivation for this definition is, that other than in our
introductory example from Fig. 2, real basic blocks will contain more than one
instruction2 each of which may take multiple cycles to complete. Still we need
to be able to split the execution of each basic block into chunks which may be
as small as a single CPU cycle, as we will see in the following. We will use SEPs
to specify the point at which the execution is resumed in a PEG block, therefore
SEPs correspond to the block labels from Fig. 2 (e.g. AE, BE, AF, etc.).

An abstract parallel system state (APSS) Σ ∈ Σ̂ is a structure which models a
set of concrete states of an entire parallel system, including all cores and memory
hierarchy elements. Again, Σ̂ is the set of all possible APSSs. We give more detail
on how to form proper APSSs at a later point, for now we only require a cycle step
function ξΣ : Σ̂×Ψ̂×2{1,...,n} → ({0, 1}n×Σ̂). The invocation of ξΣ(Σ,Ψ, α) must
simulate all possible state transfers that may happen when a single clock cycle is
executed at position Ψ in system state Σ. However, only the cores in the set α ⊆
{1, . . . , |T |} may perform a cycle step, to be able to account for different release
times. For any instruction completion vector c ∈ {0, 1}n which may occur in this
cycle, it must specify the result state, where c defines for each core, whether it
has completed the execution of its current instruction (1) or not (0). The “current
instruction” is always given by the “program counter” register value.

The APSSs will be subject to a data-flow analysis, therefore we also require
a partial order � on Σ̂ such that (Σ̂,�) is a lattice [7], with a supremum or join
function 	 : Σ̂×Σ̂ → Σ̂. Intuitively, since APSSs represent sets of concrete states,
Σ1 � Σ2 specifies whether Σ2 completely contains Σ1. To ensure the termination
of the data-flow framework ξΣ must also be monotonic with respect to �.

A Parallel Execution Graph GP = (VP , EP) is a directed graph with node
set VP ⊆ Ψ̂ ∪ {⊥} and edge set EP ⊆ VP × VP . ⊥ is a special PEG node which
is exclusively used to model the situation that the execution of the parallel
system has not yet started. For any PEG we define a block time window function
δ : VP → În, an edge state function λ : EP → Σ̂ and a block length function
ωP : VP → N. Î = {[x, y] ⊂ 2N|x ≤ y} is the set of all execution time intervals,
measured in cycles from the last point where all cores were synchronized. The
time window function will be used to rule out infeasible SEPs as indicated in
Fig. 2, the edge state function is used to propagate the possible hardware states
from one PEG node to the other and the block length function specifies how
many cycles were spend on the execution of a PEG node. The three functions
are not defined a priori. They will be computed by the algorithms presented in
the following.

2 In the example we have not even differentiated between basic blocks and instructions.

148 T. Kelter and P. Marwedel

Algorithm 1. PEG-driven parallelism analysis
1: function ParallelismAnalysis(Σstart, Gτ1 , ..., Gτn)
2: ∀τ : ∀v ∈ Vτ : ωC(v) = ∅ � Initialize all context block runtimes to ∅
3: Q ← (vstart

τ1 , 0, 0, r1) × · · · × (vstart
τn

, 0, 0, rn) � Initialize start block
4: GP ← (Q ∪ {⊥}, ∅)
5: δ(⊥) ← [0, 0]n, ωP (⊥) ← ∞ � Initialize pre-execution state ⊥
6: ∀v ∈ Q : δ(v) ← ∅n, λ((⊥, v)) ← Σstart, ωP (v) = ∞ � Initialize start state
7: while Q 	= ∅ do
8: v = PopFront(Q) � Analyze next block
9: ωC ← GatherNewBBTraces(ψ, GP , ωP , ωC) � Update ωC

10: for i ∈ {1, . . . , n} do � Update δ-window for all cores
11: δ(v)(i) ← ⋃(u,v)∈EP

δ(u)(i) + ω(u)

12: if IsLoopHeadOrExit(v(i)) then
13: δ(v)(i) = ri + PathAnalysis(v(i), Gτi , ωC)

14: if ∀i∈{1,...,n}δ(v)(i) 	= ∅ ∧⋂n
i=1 δ(v)(i) = ∅ then � If BEC holds ...

15: continue � ... skip the current block v ...
16: else � ... else analyze v
17: λprev ← λ, GP,prev ← GP

18: (GP , λ, ωP) ← AnalyzeBlock(v, GP , λ, ωP)
19: if λprev 	= λ ∨ GP,prev 	= GP then � If graph or states were altered ...
20: ∀(v, z) ∈ EP : PushBack(Q, z) � ... propagate the changes.
21: if EP,prev 	= EP then � If edges were added ...
22: ∀v �GP z : PushBack(Q, z) � ... propagate δ-changes

23: return ωC

We denote by v1 �G v2 that there is a path in the directed graph G = (V,E)
from v1 ∈ V to v2 ∈ V , i.e. that v2 is reachable from v1.

Our goal in the parallelism analysis is to compute the CFG block lengths
ωC : Vτ → Î, which are then used by the path analysis. Note this these are not
identical to ωP . The block lengths in Fig. 1 are given by ωC , whereas the block
lengths in Fig. 2 are given by ωP .

4.3 Analysis Algorithm

The outline of the main analysis is shown in Algorithm1. It starts with an
initialization of the initial context block runtimes ωC in line 2 and of the work-
list Q in line 3. According to the system schedule, the SEP consists of the begin
of the start block of each task (vstart

τi
) with a delay of ri cycles. This SEP is

assigned a time window of [0, 0]. We also create a virtual edge (⊥, v) pointing
to it, which is assigned the initial APSS Σstart. The start block ⊥ itself has
a runtime of zero cycles and executes in the start window [0, 0] to mark that
the schedule starts here. Then we process items from the queue Q until it gets
empty (line 7). In the main loop, we extract the first block v from the queue and
check whether v models the end of a basic block vτ on any core in the call to
GatherNewBBTraces in line 9. For any such context block vτ , its runtime
ωC(vτ) is updated in GatherNewBBTraces as shown in Algorithm 2.

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 149

In line 11 we infer the block time window for all task positions v(i) ∈ v from
the windows and runtimes of its predecessors.3

If v is part of a sequential block chain, the δ-update in line 11 is sufficient. On
the other hand, if v is a loop head (like A in Fig. 1) or a loop exit (like B in Fig. 1),
then we have to take the loop bounds into account to determine the block time
window, like we have done in the computation of δ(1) in e.g. AE and BE in Fig. 2.
This is done in line 13, where the existing path analysis of our framework is used
to compute the shortest and the longest path from vstart

τi
to v(i). We currently

use an adapted IPET analysis based on Integer Linear Programming [11] here,
but advanced single-source all-sinks analyses would be even better suited [8]. It
follows the given loop bounds and uses ωC as the runtime of individual basic
blocks in Gτi

. If any block u ∈ Gτi
with u �Gτi

v(i) and ωC(u) = ∅ exists, the
path analysis will return ∅ for the path length to v(i), thus keeping δ(ψ)(i) = ∅.

The δ values are used in line 14, where we try to apply the block exclusion
criterion by intersecting all block time windows. However, this test can only be
applied if the time windows for each task could already be determined, i.e., if
they are not empty. If the intersection is empty, this SEP cannot be reached
from its current predecessors and we its analysis in line 15. This is exactly what
we have done with BE in Fig. 2. Still, we may need to analyze v in the future
when it becomes accessible via new edges. Then we will re-check whether our
exclusion criterion still holds. Thus, this skipping is effectively either postponing
or avoiding the graph growth at v.

If the exclusion criterion does not hold (line 16), we analyze the parallel
execution block (PEB) beginning at node v (line 18). This analysis will determine
a block runtime ωP (v), an output APPS for all out-edges of v and possibly
alter GP . If the output states or the graph are changed, we push the successors
of v into the work-list at line 20. By doing this, all changes to the block time
windows δ, edge states λ and block runtimes ωP will be propagated through the
graph. Finally, if we have added edges to the PEG, we also push all blocks z
which are reachable from v into Q (line 22), to ensure that a new attempt to
compute δ(z) is started, if z is a loop head or exit. The algorithm terminates
when no more edges are added and all edge states have converged.

All in all Algorithm1 is a standard data-flow analysis work-list algorithm,
with the difference that we are dynamically expanding (line 18) the underly-
ing graph. When ParallelismAnalysis has finished, all reachable blocks of
all tasks will have been visited in one or more parallel execution blocks and
BBRuntime will therefore yield valid runtimes for all basic blocks.

To complete the view on the analysis, Algorithm 3 shows the function Ana-

lyzeBlock which is tightly coupled with Algorithm1. First, the incoming
APSSs are joined in line 2. The current system execution position Ψrun is ini-
tialized to v (remember that VP ⊆ Ψ̂) and the block duration ωP (v) is set to
zero. Then we simulate the effect of successive system cycle steps on Ψrun and
Σrun, until on any core, either (a) the end of a basic block is reached or (b) the
successor SEP is ambiguous. The latter happens, when it is uncertain in APSS

3 Here and in the following we use ()(i) to access the i-th element of a tuple.

150 T. Kelter and P. Marwedel

Algorithm 2. Update of basic block runtimes
1: function GatherNewBBTraces(v, GP , ωP , ωC)
2: for i ∈ {1, . . . , n}, (u, v) ∈ EP do

3: if v(i)(1) �= u(i)(1) then � If v is context block start on core k, ...
4: uτ,pred = u(i)(1) � ... collect the length of all paths to starts of uτ,pred ∈ Vτ .

5: ωC(uτ,pred) ← ωC(uτ,pred) ∪ TraceToStarts(uτ,pred, u, i, GP , ωP)

6: return ωC

7: function TraceToStarts(vτ , v, i, GP , ωP)

8: if v(i) = (vτ , i0, 0, 0) then � If v(i) is a begin of vτ , ...
9: return ωP (v) � ... finish this trace.

10: else � Else continue with the recursion.

11: return
⋃

(u,v)∈EP
{ωP (v) + TraceToStarts(vτ , u, i, GP , ωP)}

Σrun whether the current instruction of at least one core will complete or not.
In this case we track all completion combinations in separate successor blocks.

The first step in each cycle is to invoke the APSS cycle step function ξΣ , which
is done in line 5, but only for those cores with zero delay cycles (set α). The APSS
cycle step function ξΣ returns a mapping κ ⊆ Î × Σ̂, i.e. it associates instruction
completion vectors to successor APSSs. Line 6 checks the two block termination
conditions (a) and (b) mentioned above. The helper function φα

c : Ψ̂ → Ψ̂ gen-
erates the successor SEP for a given SEP Ψ , instruction completion vector c and
active core set α. If neither a basic block end is reached, nor the successor SEP is
ambiguous, we take over the results of the cycle step as our new working SEP Ψrun

and APSS Σrun in line 7 and increment the cycle counter for this block in line 8.
Here, Ψ

(i)(1)
run is the basic block executed by core i, κ(1)(1) is the first instruction

completion vector and κ(1)(2) is its associated successor APSS.
If the block end is detected, we terminate the current block as shown from

line 9 on. It will be one invariant of our analysis that the length of a block
can only stay the same or be reduced in successive analyses of the same block.
Therefore we only check in line 10, whether the block has been shortened. This
may happen due to a newly joined-in APSS, that triggers an earlier ambiguous
successor SEP. In this case, we remove all previous out-edges of the current
block v (line 11). In any case, we add for each instruction completion vector c
an out-edge to φα

c (Σrun) which gets annotated with the respective out-state Σc

(lines 13–16). In the end, the modified graph, edge states and block lengths are
returned in line 18.

With Algorithm 3 we completed the macroscopic side of the analysis. In the
next subsection we will examine the microscopic perspective, namely how to
efficiently represent abstract parallel system states.

4.4 Parallel System State Models

An APSS must model the state of all microarchitectural components which are
relevant to the timing of the system, i.e. all cores and their pipelines and all
memory hierarchy elements (MHEs) like private and/or shared caches, buses and

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 151

Algorithm 3. PEG block analysis
1: function AnalyzeBlock(v, GP , λ, ωP)
2: Σrun ← ⊔

∀e=(u,v)∈EP
λ(e) � Join incoming states

3: Ψrun ← v, ωP,prev ← ωP , ωP (v) ← 0

4: while true do
5: κ ← ξΣ(Σrun, Ψrun, α = {i|Ψ (i)

run = (·, ·, ·, 0)}) � Simulate next cycle in block

6: if |κ| = 1 ∧ �i : (φα
κ(1)(1)(Ψrun))(i)(1) �= Ψ

(i)(1)
run then � Split/Basic block end?

7: Σrun ← κ(1)(2), Ψrun ← φα
κ(1)(1)(Ψrun) � If not, prepare next cycle

8: ωP (v) ← ωP (v) + 1
9: else � Else terminate the current block

10: if ωP (v) < ωP,prev(v) then � Remove old edges on block shrinking
11: EP ← EP \ {(v, w) ∈ EP }
12: for (c → Σc) ∈ κ do � Add new successors and out-states

13: VP ← VP ∪ {vnew = φα
c (Σrun)}

14: δ(vnew) ← ∅n, ωP (vnew) ← ∞
15: EP ← EP ∪ {enew = (v, vnew)}
16: λ(enew) ← Σc

17: break

18: return (GP , λ, ωP) � Return all modifications

memories. Here, state denotes an approximation of the relevant content of the
component as well as the operation that the component is currently performing.

Therefore we define an APSS Σ as a set of tuples, where each tuple contains
abstract states for each pipeline and memory hierarchy element in the system.
The rationale behind Σ being a set of tuples is, that we may have to split the
state, e.g. when two different paths in the pipeline must be considered. These
different execution paths may have identical instruction completion vectors, but
still we need to maintain them separately in a common Σ set, to trace the
different microarchitectural behaviors.

The driving force behind the microarchitectural simulation are the cores’ pipe-
lines, which are modeled as non-deterministic finite-state machines [19]. In each
cycle, the abstract pipeline states follow all transitions which are enabled accord-
ing to their current state which includes the currently executing instructions.
Multiple transitions may be enabled due to uncertainty in the analysis, e.g. due
to statically unknown memory access targets and register values. In such a case,
one successor state is generated for every possible transition. During the abstract
cycle step, the pipeline models issue memory transactions as dictated by the
machine specification. Completion of such transactions is signaled back from the
abstract MHE states to the affected pipeline state. Finally, the completion of inst-
ructions, known as the commit of an instruction, is communicated to our frame-
work via an entry in the instruction completion vector as introduced in Sect. 4.2.

In every cycle step, i.e. every invocation of ξΣ , we perform the cycle step
independently on each tuple σ ∈ Σ. The results are then sorted by completion
vector and returned to returned to the PEG block analysis (Algorithm3). Inside
the individual σ tuples we use established abstract domains, namely abstract
finite state machines for pipelines [19], cache block age maps for caches [19] and

152 T. Kelter and P. Marwedel

TDMA offset sets for TDMA busses [5]. For FAIR and PRIO arbitration no
suitable abstractions were found in the per-core analysis. Since we explicitly
track parallel interleavings in the PEG, we can analyze these protocols for the
first time by providing abstract arbitration functions as shown in the following.

Arbitration Functions. A simplified version of the bus state is illustrated
in Fig. 4, where a PEG block Ψ is shown. The state Σrun for this block (see
Algorithm 3) holds two sub-states, of which σ2 is presented in more detail. In this
sub-state the two cores in this example are currently performing a multiplication
and an instruction fetch. Bus B1 is a TDMA bus, from its state we know that we
currently are either at cycle 0 or 4 in the fixed-length, cyclic TDMA schedule.
The state for FAIR-arbitrated buses like B2 holds an overapproximation of the
cores which may have last accessed the bus. In the case of B2 this reveals that
the last access has definitely been carried out by core 2.

Fig. 4. An example PEG block Ψ with attached APSS Σrun.

With these state definitions we can easily define the abstract arbitration
functions which determine possible arbitration winners:

– TDMA: All cores whose grant window has a non-empty intersection with the
current TDMA offsets may be granted. If we assume a schedule of length 10
cycles, in which cycles [0–4] are assigned to core 1 (grant window of core 1)
and cycles [5–9] are assigned to core 2 (grant window of core 2), then in the
state from Fig. 4 a request to B1 would only be granted for core 1.

– FAIR: All cores which are the next in the core list for at least one previously
accessing core cp may be granted. In Fig. 4 if both cores request access to B2,
only the request from core 1 will be granted.

– PRIO: All requests with the highest priority may be granted. Thus for PRIO
we do not need to maintain any kind of state, since the arbitration can be
done solely based on the fixed priorities.

Different arbitration outcomes are then distributed to different result tuples σ.
Since the PEG already carries the burden of constructing all possible interleav-
ing scenarios, we can formulate the arbitration analysis in a rather simple man-
ner, here. By construction, this has not been possible for the standard per-core
WCET analysis approach.

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 153

4.5 Correctness

Formally complete proofs cannot be given here due to space constraints, but we
try to provide some intuition on why the analysis is correct. In the following, we
use Gi

P , λi, ωi
P and δi to denote the PEG and the values of the three functions

after i-th iteration of the main loop of Algorithm1. Also, we denote the PEG
node v that is analyzed in iteration i as vi. The special iteration number 0 is used
to denote the state before the first iteration of the main loop. First of all, through
the monotonicity of ξΣ , we can prove Lemma 1, which states that with rising
analysis iteration count, for each v ∈ VP the block runtime will only shrink, the
incoming APSS will only get more imprecise and the execution time intervals
for each task execution position will only become wider.

Lemma 1. For any iteration j of the main loop of the parallelism analysis
(line 7 in Algorithm1), any iteration i < j and any SEP v, the following invari-
ants hold:

1. ∀u ∈ V i
P : u �Gi

P
v =⇒ u �Gj

P
v,

2. λi
in(v) � λj

in(v) where λi
in(v) =

⊔
e=(u,v)∈Ei

P
λi(e),

3. ωi
P (v) ≥ ωj

P (v), and
4. ∀k ∈ {1, . . . , n} : δi(v)(k) ⊆ δj(v)(k).

For any possible task set execution, which we model as a sequence S of SEPs,
we can prove with Lemma 1, that the APSSs attached to the converged PEG are
safe over-approximations of the concrete system states with which S is traversed.
This yields Theorem 1.

Theorem 1. The basic block runtimes ωC as returned by Algorithm1 are safe
over-approximations of the concrete block runtimes in any possible parallel exe-
cution scenario.

5 Analysis Extensions

If the underlying architecture is guaranteed to be free of timing anomalies [4],
then in each block analysis (Algorithm3, line 5) we can skip all instruction
completion vectors c ∈ κ which are dominated by another vector, i.e. c1 ≺c c2 ⇔
∀i ∈ {1, . . . , n} : c

(i)
2 ⇒ c

(i)
1 . The dominated vectors correspond to an earlier

termination of an instruction and since in a timing-anomaly-free architecture
every local worst-case action is always also the global worst-case action, we can
assume that they are never part of the worst-case path. This can drastically
reduce the state space and the PEG size.

In task sets with explicit synchronization points we have to consider these
points in the path analysis as shown in [13]. In addition we can also use them
to prune the PEG as we have done in Sect. 4, since a task which is waiting
for synchronization cannot progress until a partner has arrived to complete the
rendez-vous. This idea has already been used in [17] and similar to there, it can
be used on top of the timing information to further prune the PEG.

154 T. Kelter and P. Marwedel

The extension of our framework to task sets with non-uniform periods is
also possible. With non-uniform task periods we can still compute the global
hyperperiod, i.e. the smallest common multiple of all task periods and build
a PEG for this hyperperiod. The problem that we face here is, that with the
current framework we cannot determine the absolute point in time at which we
are when a task instance has finished executing, since then we can no longer
compute the block time window on the basis of the local CFG and a task release
time. This means we would have to assume in every successive cycle step, that
the next task instance might start or not, which would drastically increase the
PEG size. However this can be limited if we take into account synchronization
structures or if timing-based approximations of the task instance spawn behavior
can be found.

6 Evaluation

We implemented the analysis algorithms inside the WCC compiler framework [2],
which was also used in [6]. We ran our evaluations on single-core tasks from the
MRTC and DSPStone real-time benchmark suites. Out of these single-core tasks
we formed packages of 2 to 4 tasks, all of which were assigned a release time
of 0. We analyzed the system topology from Sect. 3 with 2 or 4 cores, depending
on the task set. In the evaluation, we focus on analyzing state-permeable bus
arbitration methods (PRIO and FAIR) which were not analyzable (PRIO) or
not precisely analyzable (FAIR) without the presented parallelism analysis. The
bus which is arbitrated by these methods is the shared memory bus introduced
in Sect. 3.

In Fig. 5 the results of our block exclusion criterion (BEC) from Algorithm1,
line 14 are shown. Each mark represents one analysis run on one task set. The
circle marks indicate runs where the shared bus was configured for FAIR arbitra-
tion, the triangles correspond to fixed priority-based arbitration and the squares

Fig. 5. Efficiency of the block exclusion criterion on example benchmarks for varying
number of cores and arbitration policies. The solid line is a linear regression of the data
points.

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 155

Table 1. Average analysis time and PEG
sizes.

Schedule Analysis Duration #PEBs

FAIR C—N 4s 0

FAIR P—O—N 1,695s 2,177

FAIR P—B—N 583s 1,223

FAIR C—T 6s 0

FAIR P—O—T 2,065s 9,595

FAIR P—B—T 801s 7,828

PRIO P—O—N 1,438s 1,800

PRIO P—B—N 514s 1,175

PRIO P—O—T 1,971s 6,971

PRIO P—B—T 808s 5,118

Fig. 6. Relative WCET results.

correspond to TDMA. Non-filled (filled) marks are analysis runs with the 2-core
(4-core) system. The x-axis value is the number of PEG blocks that are gen-
erated during the analysis, when the BEC is used compared to the case when
it is not used (100%). On the y-axis the required analysis time is shown, also
compared to the case that the BEC was not used (100%). From the data points
and the solid regression curve it is visible that the analysis time scales roughly
linearly with the number of PEG blocks, which was expected, since the runtime
of the main loop in Algorithm1 depends on the total number of blocks. The
variations stem from the convergence behavior of the individual benchmarks,
i.e. how often loops have to be visited until the attached APSSs converge. More
importantly, we can see from Fig. 5 that the BEC is effective, as on average it
rules out 35.6% of all blocks and leads to a reduction in analysis time of 49.7%.

The average resulting analysis time is presented inTable 1.The column“Analy-
sis” shows which type of WCET analysis was tested. We compare the classical
multi-core WCET analysis [1] (abbr. “C”) to our new parallelism analysis with
(abbr. “P—B”) and without (abbr. “P—O”) usage of the block exclusion crite-
rion. As already seen in Fig. 5, “P—B” is always superior to “P—O” but both are
slower than the classical approach “C” by a factor of 130 on average. This is a
result of the more complex system state and of the thousands of parallel interleav-
ings that have to be explored, whereas the classical analysis only operates on the
CFG of a single task and the state of a single core. The last element of the “Analy-
sis” column shows whether the architecture was assumed to have timing anomalies
(abbr. “T”) or not (abbr. “N”). As presented in Sect. 5, this can be used to drasti-
cally reduce the PEG size, which is visible in Table 1 in column “#PEBs”, which
holds the average number of PEG blocks for this analysis scenario. The configu-
rations where absence of timing anomalies was assumed (“N”) produce far lower
PEG sizes and analysis times than their counterparts (“T”).

The benefits we get from the parallelism analysis (“P”-configurations) at the
price of increased analysis times are that we can analyze the PRIO arbitration

156 T. Kelter and P. Marwedel

for the first time and that we can significantly reduce the arbitration delay esti-
mations for FAIR arbitration.

Details on both aspects are presented in Fig. 6, where the average of the
quotient of WCET and measured runtime (MRT) is shown for different analysis
configurations from Table 1. Remember here, that we can only determine a safe
upper bound WCET est on the real WCET real in all of our analyses. Therefore the
above quotient is a bound on the WCET overestimation, since by WCET est ≥
WCET real ≥ MRT we have that WCET est ÷ MRT ≥ WCET est ÷ WCET real.
Each MRT was determined by simulating the task set execution for the given
system configuration on the cycle-true virtual prototyping IDE CoMET [16].

First of all, we can see in Fig. 6 that the PEG-based WCET analyses (all
configurations containing “P”) for a system with PRIO arbitration yield results
that are comparable to those for FAIR arbitration. The remaining overestimation
is mostly due to other unavoidable sources of imprecision, like loose loop bounds
and pipeline and value analysis overestimation. Also, we see that the restriction
to timing-anomaly free architectures (all configurations with “N”) enables not
only reduced analysis times (cf. Table 1) but also tighter WCET estimations.
The usage of the block exclusion criterion (configurations with “B”) also leads
to slightly decreased overestimation.

Finally, the “C”-configurations show the overestimation for the classical
WCET analysis framework, which can only assume the maximum possible delay
for every access in state-permeable arbitration policies. Our new parallelism-
based analysis is able to clearly outperform this approach, being 32% more
accurate on average, but of course at the expense of increased analysis times.

7 Conclusions

We have presented a new type of WCET analysis which can precisely bound the
runtime of safety-critical tasks running on complex multi-core systems. This is
achieved by exploring all possible execution interleavings of a parallel periodic
task set. A parallel execution graph (PEG) is employed to represent the inter-
leavings in compressed form, a concept that was already used in [17]. What is
genuine to the application of the PEG in WCET analysis is firstly that here we
must work at the granularity of single machine cycles which drastically increases
the graph size. But secondly and more importantly we can also use the timing
information that we are generating for pruning parts of the graph which we prove
to be not reachable in any real execution through the use of a new timing-based
block exclusion criterion.

We tested this analysis on a prototype implementation. For a shared bus
scheduled under a fair round-robin policy we observed WCET reductions of 32%
on average, compared to previous analysis approaches. For fixed priority-based
scheduling no previous individual-access analysis methods exist. Here we could
derive WCET values with a tightly bounded maximum overestimation of only
30–50% on average, which is comparable to the single-core WCET overestima-
tion ratio of our analyzer. In the future we plan to explore combinations of the

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 157

block exclusion criterion and synchronization-aware analysis to further reduce
the PEG size and lift the restriction that all tasks must have a uniform period.
We also seek to evaluate the performance of the PEG-based analysis for systems
with shared caches, for which up to now only pessimistic analyses existed.

Acknowledgments. This work was partially supported by EU COST Action IC1202:
Timing Analysis On Code-Level (TACLe). The authors would also like to thank Syn-
opsys for the provision of the virtual prototyping IDE CoMET.

References

1. Chattopadhyay, S., Kee, C., Roychoudhury, A., Kelter, T., Marwedel, P., Falk, H.:
A unified WCET analysis framework for multi-core platforms. In: Real-Time and
Embedded Technology and Applications Symposium (2012)

2. Falk, H., Lokuciejewski, P.: A compiler framework for the reduction of worst-case
execution times. J. Real-Time Syst. 46(2), 251–300 (2010)

3. Gustavsson, A.: Worst-case execution time analysis of parallel systems. In:
Nyström, D., Nolte, T. (eds.) Real Time in Sweden 2011, pp. 104–107. Dag Nyström
and Thomas Nolte, Sweden (2011)

4. Hahn, S., Reineke, J., Wilhelm, R.: Towards compositionality in execution time
analysis - definition and challenges. In: International Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems, December 2013

5. Kelter, T., Falk, H., Marwedel, P., Chattopadhyay, S., Roychoudhury, A.: Bus-
aware multicore WCET analysis through TDMA offset bounds. In: Euromicro
Conference on Real-Time Systems, pp. 3–12. Porto, Portugal, July 2011

6. Kelter, T., Harde, T., Marwedel, P., Falk, H.: Evaluation of resource arbitration
methods for multi-core real-time systems. In: International Workshop on Worst-
Case Execution Time Analysis, July 2013

7. Kildall, G.A.: A unified approach to global program optimization. In: Symposium
on Principles of Programming Languages, pp. 194–206. ACM, New York (1973)

8. Kleinsorge, J.C., Falk, H., Marwedel, P.: Simple analysis of partial worst-case exe-
cution paths on general control flow graphs. In: Proceedings of the International
Conference on Embedded Software, pp. 1–10, September 2013

9. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: efficient and optimal bitvec-
tor analyses for parallel programs. ACM Trans. Program. Lang. Syst. 18(3), 268–
299 (1996)

10. Li, Y., Suhendra, V., Liang, Y., Mitra, T., Roychoudhury, A.: Timing analysis of
concurrent programs running on shared cache multi-cores. In: IEEE Real-Time
Systems Symposium, pp. 57–67. IEEE Computer Society, Washington (2009)

11. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. In: Proceedings of the Annual ACM/IEEE Design Automation
Conference, pp. 456–461. ACM, New York (1995)

12. Mittermayr, R., Blieberger, J.: Timing analysis of concurrent programs. In: Inter-
national Workshop on Worst-Case Execution Time Analysis, pp. 59–68 (2012)

13. Potop-Butucaru, D., Puaut, I.: Integrated worst-case execution time estimation of
multicore applications. In: Maiza, C. (ed.) International Workshop on Worst-Case
Execution Time Analysis, pp. 21–31. Dagstuhl, Germany (2013)

158 T. Kelter and P. Marwedel

14. Schliecker, S., Negrean, M., Nicolescu, G., Paulin, P., Ernst, R.: Reliable per-
formance analysis of a multicore multithreaded system-on-chip. In: International
Conference on Hardware/Software Codesign and System Synthesis, pp. 161–166.
ACM, New York (2008)

15. Schranzhofer, A., Pellizzoni, R., Chen, J.J., Thiele, L., Caccamo, M.: Worst-case
response time analysis of resource access models in multi-core systems. In: Design
Automation Conference (2010)

16. Synopsys Inc.: CoMET System Engineering IDE. http://www.synopsys.com
17. Taylor, R.N.: A general-purpose algorithm for analyzing concurrent programs.

Commun. ACM 26(5), 361–376 (1983)
18. Valmari, A.: Eliminating redundant interleavings during concurrent program ver-

ification. In: Odijk, E., Rem, M., Syre, J.C. (eds.) Parallel Architectures and Lan-
guages Europe. LNCS, vol. 366, pp. 89–103. Springer, Heidelberg (1989)

19. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution time problem -
overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3),
1–53 (2008)

http://www.synopsys.com

Key-Secrecy of PACE with OTS/CafeOBJ

Dominik Klein(B)

Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Germany
dominik.klein@bsi.bund.de

Abstract. The ICAO-standardized Password Authenticated Connec-
tion Establishment (PACE) protocol is used all over the world to secure
access to electronic passports. Key-secrecy of PACE is proven by first
modeling it as an Observational Transition System (OTS) in CafeOBJ,
and then proving invariant properties by induction.

1 Introduction

Cryptographic primitives, such as encryption mechanisms, hash functions or
message authentication codes, undergo the scrutiny of a large community of
researchers. While their mathematical foundations might not yet be understood
in full detail, there have been few sudden groundbreaking attacks on them. Using
these primitives as building blocks to construct security protocols is, however,
another difficult challenge. In fact, despite using well-known cryptographic prim-
itives, erroneous protocol specifications and design decisions have often lead to
attacks. A famous example is [16], and the survey [7] contains an impressive list
of failed attempts to design secure protocols. Formally proving properties of a
protocol to exclude subtle attacks is one important step in the construction of
security protocols.

Password Authenticated Connection Establishment (PACE) [4,13] is a cryp-
tographic protocol used all over the world for electronic passports. PACE estab-
lishes a secure communication channel between a terminal (trying to access data
stored on the passport’s RFID chip) and the passport itself. Ensuring trust in
PACE is of uttermost importance due to several reasons: First, the predecessor of
PACE, called Basic Access Control (BAC), is plagued with security concerns due
to low-entropy passwords. Second, the contact-less RFID interface of electronic
passports raises concerns of citizens that passports enable secret tracking or that
criminals may remotely read out sensitive biometric information. Third, PACE
is used in national id-cards that enable secure authentication for e-commerce.

CafeOBJ is an algebraic specification and programming language [8]. After
specifying a formal model, e.g. of a cryptographic protocol such as PACE,
CafeOBJ can also be used as an interactive theorem prover to show invariant
properties of such a specified model: Mathematical proofs are written as proof
scores, and a proof can be established by executing its proof score. This approach
is used in this paper.

c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 159–173, 2015.
DOI: 10.1007/978-3-319-17581-2 11

160 D. Klein

The contribution of this paper is threefold. First, key secrecy of PACE itself
is shown, strengthening trust in the protocol. Second, while CafeOBJ has a
proven track-record in the verification of security protocols [17–21,23], the proof
serves once more as a case study to show that theorem proving in CafeOBJ
scales well beyond simple academic problems to real-world scenarios. Third, to
the author’s best knowledge, this proof is the first to model a protocol based
on a Diffie-Hellman key-exchange in such detail in CafeOBJ. This might serve
as a foundation for analyzing other DH-based protocols. The source code of the
proof is available at https://github.com/d-klein/ots-proof.

The structure of this paper is as follows: In Sect. 2, the PACE protocol is
introduced. A very brief recapitulation of modeling OTSs in CafeOBJ, and prov-
ing their invariants is given in Sect. 3. Section 4 provides an abstract version of
PACE and shows how to model it as an OTS. The proof of key secrecy of PACE
is shown in Sect. 5. Experiences and learned lessons are summarized in Sect. 6,
and related work is reviewed in Sect. 7. Finally, concluding remarks are given in
Sect. 8.

2 The PACE Key Agreement Protocol

To ensure compatibility with existing document formats and infrastructure, con-
tactless RFID chips were chosen for electronic passports. This introduces two
risks that need to be addressed: Skimming, i.e. an attacker reading out data from
the passport without authorization, and eavesdropping, i.e. intercepting commu-
nication data during transmission. Note that skimming requires an online con-
nection with the passport, whereas eavesdropped data can be analyzed offline
after interception.

To prevent skimming, a terminal accessing data on the passport should prove
that it is authorized to access the data. This can be done by e.g. reading infor-
mation printed on the passport by OCR, and sending this data to the chip.
The terminal thus demonstrates that it has physical access to the passport, and
a passport holder can control electronic access to his passport by controlling
physical access. Printed information on the passport often has low entropy. The
machine-readable zone (MRZ) for example can be read by OCR and has 88
digits, but the vast majority of digits are not unique w.r.t. each passport, or
can be easily guessed. Just hashing this printed data to directly derive a session
key does not prevent sufficiently against offline attacks on eavesdropped trans-
mission data, since the session key is the same for each session, and also has
low entropy. Instead, a strong session key unique to each session is required to
prevent (offline) analysis of eavesdropped transmission data.

The goal of the PACE key agreement protocol is to establish a secure, authen-
ticated connection with a strong session key between the chip inside a passport
and a corresponding terminal. PACE uses a pre-shared low entropy password
to derive a strong session key by using a Diffie-Hellman key exchange [9]. The
protocol is versatile in the sense that it allows to use either standard multiplica-
tive groups of integers modulo p or groups based on elliptic curves. The latter is
important in practice, since RFID chips have limited processing power.

https://github.com/d-klein/ots-proof

Key-Secrecy of PACE with OTS/CafeOBJ 161

The protocol works as follows: First, it is assumed that a common low entropy
password π is known both by the chip and the terminal. Depending on the doc-
ument type (international travel document, national id-card etc.) and use-case
(border control, e-commerce) three solutions exist in practice: (1) The password
is derived from the MRZ, (2) The password is derived from a Card Access Num-
ber (CAN) specifically printed on the document for this purpose or (3) The
password is derived from a secret personal identification number (PIN) known
only to the owner of the document. In all cases, the password is stored on the
chip in a protected way. To read out data on the chip, the MRZ is optically read
by the terminal, or the CAN or the PIN is entered manually.

In the next step, the chip sends both a random nonce s encrypted by a
symmetric cipher with the hash H of π and the domain parameter DPICC for
the group operation to the terminal. Using a mapping function and the domain
parameter, the nonce s is mapped to some generator g of the group 〈g〉. Both
the terminal and the chip chose another nonce x resp. y and compute exponents,
i.e. the group operation is applied with the nonce together with the generator
to derive gx resp. gy. These are then shared, and a key K = (gx)y = (gy)x and
MAC and session-keys are derived. Knowledge of the sent exponents and the
key is verified by exchanging MAC-tokens. See Fig. 1 for a brief overview of the
protocol. For more detailed specifications, see [4].

3 OTS, CafeOBJ and Invariant-Proving

The PACE protocol is modeled as an Observational Transition System (OTS).
For precise definitions and an introduction to OTSs, cf. [19]. Here, only a brief
recapitulation on how OTSs are modeled in CafeOBJ is provided in order to
give an intuition of the overall proof approach and proof structure. An OTS is a
triple of a set of observable values, a set of initial states, and a set of conditional
transition rules. A protocol can be modeled as an OTS, where in each state of
the protocol, observations on this state can be made. The effect of a state change
on the observations is described by transitions. An invariant is a property that
holds (is observable) in all states reachable from the initial ones.

CafeOBJ is based on equational reasoning. Algebraic data types and opera-
tions on them are described by conditional rewrite rules. Rewrite rules are called
equations in CafeOBJ, but they are applied directed from left to right. An OTS
is modeled in CafeOBJ as follows:

– The state space is modeled as a hidden sort H.
– A data type D is described in order-sorted algebra with visible sort V .
– An observation is modeled as a CafeOBJ behavioral operator:

bop o : H V1 V2 ... VN -> V

V1,...,VN and V are visible sorts corresponding to data types D1, . . . Dn,
and H is the hidden sort representing the state space. Intuitively, this equa-
tion describes that the observation V can be made in state H, where H is
characterized by V1 ... VN.

162 D. Klein

)DCP(lanimreT)CCIP(pihCtropssaP

shared password π

choose nonce s ← Zq

static domain parameter DPICC

z = enc(H(π), s)
DPICC,z−−−−−−→

s = dec(H(π), z)
g = map(DPICC, s) g = map(DPICC, s)
choose x ← Z

∗
q choose y ← Z

∗
q

h1 = gx h2 = gy

h1−→
h2←−

abort, if h2 g or h1
.
= h2 abort, if h2 g or h2

.
= h1

K = hx
2 = (gy)x K = hy

1 = (gx)y

KMAC = H(K||1) KMAC = H(K||1)
KENC = H(K||2) KENC = H(K||2)
TPICC = mac(KMAC, h2) TPCD = mac(KMAC, h1)

TPICC−−−−→
TPCD←−−−−

abort, if TPCD = mac(KMAC, h1) abort, if TPICC = mac(KMAC, h2)

Fig. 1. The PACE protocol.

– A transition is also modeled as a CafeOBJ behavioral operator:
bop t : H V1 V2 ... VM -> H

The first argument of t refers to the current state. The operator t — identified
by the indices V1 ... VM — maps the current state to another state in the
state space. How this transition operator affects the state space in particular,
is defined in CafeOBJ with conditional equations of the form:

ceq o(t(X,Y1,...,YM),Z1,...,ZN) = changeval(X,Y1,...,YM,Z1,...ZN)

if effective-condition(X,Y1,...,YM,Z1,...,ZN) .

ceq t(X,Y1,...,YM) = X

if not effective-condition(X,Y1,...,YM,Z1,...,ZN) .

Here changeval is the operation that changes values of the observation to the
ones of the successor state, and effective-condition evaluates whether the
condition to apply the transition is met in the current state. If the observed
values never change when applying the transition, one can combine the above
simply to: eq o(t(X,Y1,...,YM),Z1,...,ZN) = o(X,Y1,...,YM).

CafeOBJ uses proof scores to prove invariants that hold in a model that is spec-
ified as described above. Proof scores define the proof obligations and induction
hypothesis needed to proof invariants by induction.

Key-Secrecy of PACE with OTS/CafeOBJ 163

Proof Scores. A proof score of an invariant consists of two parts: First, the
induction hypothesis w.r.t. the predicate in the initial state is shown. Then the
induction step follows. For each invariant predi(s,x) a corresponding operator
and an equation is defined:

op invI : H V1 V2 ... VN -> Bool .

eq invI(S,X1,...,XN) =

In the definitions of visible sorts in the specification, also a constant init is
defined, denoting an arbitrary initial state. Then to prove predi(s,x), one fixes
arbitrary objects v1,...,vN for the visible sorts V1,...,VN and issues a reduce
command w.r.t. the initial state: red invI(init,v1,...,vN).

For the induction step one has to show that if predi(s,x) holds in state s,
then it also holds in any possible next state s′. For each predicate one fixes
arbitrary states s and s′ by ops s,s’ : -> H, defines an operator of form op
istepI : V1 V2 ... VN -> Bool and an equation for the induction step:

eq istepI(X1,X2,...,XN) = invI(s,X1,,...,XN) implies invI(s’,X1,...,XN).

Then one fixes arbitrary objects v1,...,vN for the visible sorts, defines how
s’ results from s by a transition t by eq s’ = t(s,...) ., and issue a reduce
command red istepI(v1,...,vN). The reduce command uses the equations to
obtain the equational normal form of an expression. If both for the initial state
and the induction step rewriting to normal form reaches the constant true, the
proof w.r.t. to transition t has succeeded. For a full proof, all defined transitions
have to be considered.

Lemmata. Quite often the induction step cannot be shown directly, since
the induction hypothesis is too weak. Then a lemma is needed. Let invJ be
a predicate with free variables of visible sorts E1,...,EK, and let e1,...,eK
denote either free variables of, or expressions (i.e. terms) of these sorts. One
can strengthen the induction hypothesis by augmenting invJ in state s, i.e. by
issuing red invJ(s,e1,...eK) implies istepI(v1,...,vN). One advantage
in OTS/CafeOBJ is that one can use invJ to strengthen the induction step in
the proof of invI and vice-versa.

Case Analysis. Another proof technique is case analysis. Suppose for example
that v1 is assumed to be of arbitrary form. For a constructor f, we can then
distinguish the case that either v1 is constructed by f applied to some arbitrary
vC, or that this is not the case. Then the induction step is split: One declares
v1 = f(vC), and reduces red istepI(v1,...). Then one does the same again,
but declares (v1 = f(vC)) = false before reducing. Clearly all possible cases
have been exhaustively considered, since it is always true that:

(v1 = f(vC)) or (not (v1 = f(vC)))

Of course it is possible to strengthen the induction hypothesis by more than one
predicate, and to combine lemma application with case analysis.

164 D. Klein

4 Modeling PACE in CafeOBJ

The system is modeled in a way such that an unbounded number of principals
interact with each other by sending messages. Honest principals behave according
to protocol. Malicious ones can fake and forge messages. The malicious principals
are modeled as the most general intruder according to the Dolev-Yao intruder
model [10]. Moreover the following assumption are made:

1. Cryptographic primitives are sound. Random nonces are unique and cannot
be guessed, encrypted messages can only be decoded by knowing the correct
key, hashes are one-way and there are no collisions, and two message authen-
tication codes are the same only if generated from the same message with the
same key.

2. The intruder can glean any public information (i.e. messages, ciphers etc.)
that is sent in the network.

3. The intruder can send two kinds of messages: He can use ciphers based on
cryptographic primitives from existing messages as black boxes to send new
fake messages, or he can use eavesdropped information to generate new mes-
sages from scratch. But, as noted above, he cannot eavesdrop information
from ciphers based on cryptographic primitives without knowing the corre-
sponding keys or passwords.

4.1 An Abstract Version of PACE

To abstract away from implementation-dependent information and those that
cannot be captured in the Dolev-Yao model anyway, the following abstract ver-
sion of the PACE protocol is used.

Message 1 : p → q : encπ(ns,D)
Message 2 : p → q : ∗(na, G)
Message 3 : q → p : ∗(nb, G)
Message 4 : p → q : mac(H(∗(na, ∗(nb, G))), ∗(nb, G),D)
Message 5 : q → p : mac(H(∗(nb, ∗(na, G))), ∗(na, G),D)

It is assumed that a run of PACE is conducted by exchanging five messages. In
the first step, a message is sent from a principal p to another one q. The message
encrypts a random nonce ns with the shared password π, with attached static
domain parameters D. Next, p maps the nonce ns from the first message with
the domain parameters to a group generator G. Then p chooses a random nonce
na, applies the operator ∗ to both na and G and sends the result ∗(na, G) to q.
In a similar manner, q chooses a random nonce nb and sends ∗(nb, G) to p. Next,
p computes the key H(∗(na, ∗(nb, G))). He then sends a message authentication
code — encoded with that key — with the received exponent ∗(nb, G) and domain
parameters D to q, in order to verify knowledge of both the received exponent
and the generated key. Principal q does the same in reverse, and the common key
H(∗(na, ∗(nb, G))) is used from now on to exchange encrypted messages.

Key-Secrecy of PACE with OTS/CafeOBJ 165

4.2 Basic Data Types

The following algebraic data types, i.e. visible sorts and corresponding construc-
tors are used:

– Principal denotes both honest and malicious principals in the network.
– Random denotes random nonces. Random nonces are supposed to be unique

and unguessable.
– Dompar denotes the static domain parameters of PACE. Used domain para-

meters are not secret and known to every principal.
– Mappoint denotes a group generator. The constructor maptopoint of data

type Mappoint takes as input a random nonce and static domain parameters
and returns a group generator. It is supposed that maptopoint is a one-way
function.

– Expo denotes an exponent of the form gx, where the group generator g is
generated by maptopoint using a random nonce and domain parameters as
input.

– Hash denotes keys — it is supposed that hashing is the key derivation function.
The constructor hash takes as input a random nonce and an exponent and
returns a key.

– Cipher1 denotes the cipher resulting from a symmetric encryption. Its con-
structor enc takes as input a random nonce and static domain parameters. It
is implicitly assumed that a Cipher1 is encoded with the shared password π
in the following way: Given a Cipher1, every principal is able reconstruct the
static domain parameters. But only if he knows the shared password π, he is
able to decode the random nonce.

– Cipher3 denotes message authentication codes. The constructor mac takes as
input a hash, an exponent and domain parameters.

Three sorts and data types are defined for the messages in Sect. 4: Message 1
of Sect. 4 is of type Message1, messages 2 and 3 are of type Message2, and
messages 4 and 5 are of type Message3. Here, Message1 is a Cipher1 attached
with meta-information describing the creator, the (seemingly) sender, and the
receiver of a message. For example

me1(intruder,p,q,c)

denotes a Message1 where c is a Cipher1, and the message is (seemingly) sent
from principal p to q, but was actually created by the intruder, i.e. faked and
injected in the network. Similar, a Message3 is a Cipher3 attached with corre-
sponding meta-information. The data type Message2 is constructed by attaching
meta-information to an exponent. Moreover for the definition of the data struc-
tures two design decisions — cf. also Sect. 6 — should be noticed:

Modeling of the Shared Password π. PACE assumes a fixed shared pass-
word π known among honest principals. Knowledge of the password is modeled
by a predicate knowspi where knowspi(intruder) = false is set. No specific

166 D. Klein

data type is introduced for decryption of messages of type 1, instead it is just
distinguished between messages that are created by an honest principal who does
know π and the intruder, who does not.

Equality of Hashes. The equality operator = for hashes is defined as

eq (H1 = H2) = (rand(H1) = rand(H2) and expo(H1) = expo(H2))

or (rand(H1) = rand(expo(H2))

and rand(H2) = rand(expo(H1))

and point(expo(H1)) = point(expo(H2))) .

i.e. that H(∗(na, ∗(nb, G1))) = H(∗(nc, ∗(nd, G2))) if G1 = G2, na = nc, nb = nd,
or G1 = G2, na = nd, nb = nc. This captures the equality of the keys generated
during the key exchange.

4.3 Protocol Modeling

In order to collect all sent messages, all generated random nonces, and other
information, the following definition of a multiset on an abstract level from [19]
is reused. This definition is then later used as a parametrized module to define
multisets containing the data-types defined in the previous section.

mod* SOUP (D :: EQTRIV) principal-sort Soup {
[Elt.D < Soup]
op empty : -> Soup {constr}
op _ _ : Soup Soup -> Soup {constr assoc comm id: empty}
op _\in_ : Elt.D Soup -> Bool
var S : Soup
vars E1 E2 : Elt.D
eq E1 \in empty = false .
eq E1 \in (E2 S) = (E1 = E2) or E1 \in S .

}

The operator defines membership in the multiset, and a space defines inser-
tion. To collect all random nonces for example, one can define an observation
bop rands : System -> RandSoup that takes as input a state, and returns as
the observation a soup of random nonces. Given a random nonce r and a state s,
one can test membership by rands(s), and — for example describing the
effects of a transition — insert r in the multiset by r rands(s). Observations
and transitions are defined as follows:

-- observations

bop network : System -> Network

bop rands : System -> RandSoup

bop hashes : System -> HashSoup

bop randsi : System -> RandSoup

bop expos : System -> ExpoSoup

bop cipher1s : System -> Cipher1Soup

Key-Secrecy of PACE with OTS/CafeOBJ 167

bop cipher3s : System -> Cipher3Soup

-- transitions

bop sdm1 : System Principal Principal Random Dompar -> System

bop sdm2 : System Principal Principal Random Message1 -> System

bop sdm3 : System Principal Principal Message1 Message2 Message2

-> System

-- faking and forging messages based on the gleaned info

bop fkm11 : System Principal Principal Cipher1 -> System

bop fkm12 : System Principal Principal Random Dompar -> System

bop fkm21 : System Principal Principal Expo -> System

bop fkm22 : System Principal Principal Random Random Dompar -> System

bop fkm31 : System Principal Principal Cipher3 -> System

bop fkm32 : System Principal Principal Random Expo Expo Dompar -> System

Seven observers are used to collect information:

– network returns a multiset of all messages that have been sent so far.
– rands returns a multiset containing all random nonces that have been gener-

ated so far.
– hashes returns all keys resulting from the PACE protocol that have been

gleaned or self-generated by the intruder. The name stems from the fact that
one considers hash to be the key derivation function.

– randsi contains all random nonces gleaned or self-generated by the intruder.
– expos contains all exponents that have been inserted in the network and
– cipher1s and cipher3s collect all ciphertexts of messages of type 1 and

messages of type 3 (i.e. mac-tokens).

The transitions sdm1, sdm2, and sdm3 describe state transitions and their effects
on observations when an honest principal sends a message of type 1, 2 or 3.
Therefore the conditions on when these transitions are effective, capture precisely
the behavior of an honest principal. For example sdm1 is defined as:

eq c-sdm1(S,P,Q,R,D) = not(R \in rands(S)) .

ceq network(sdm1(S,P,Q,R,D)) = me1(P,P,Q,enc(R,D)) network(S)

if c-sdm1(S,P,Q,R,D) .

Thus an honest principal p can add a message me1(P,P,Q,enc(R,D)) in state
S — in message protocol notation p → q : encπ(R,D) — only to the network
if the nonce R is fresh. Freshness means that R is not contained in the set of all
nonces that have been generated before reaching state S. This freshness condition
is modeled by the first equation.

The transitions fkmXY describe state transitions and their effects on obser-
vations when the intruder generates messages. Here one distinguishes two cases:
(1) The intruder fakes an existing message by changing its source and destina-
tion (fkmX1) and (2) The intruder injects a new message in the network using
information available to him (fkmX2). Therefore the effective conditions for these
transitions are usually more lax than the ones for sdmX. For example the condi-
tion to fake a message of type 1

eq c-fkm11(S,P,Q,C1) = C1 \in cipher1s(S) .

168 D. Klein

is just that a cipher1 exists in the network. The intruder can then inject the
message me1(intruder,P,Q,C1) with arbitrary source P and destination Q. Note
that the meta information denoting the creator of the message cannot be altered
by the intruder.

An example for the second case is the condition to construct an arbitrary
new message of type 1

eq c-fkm12(S,P,Q,R,D) = (not (R \in rands(S))) or (R \in randsi(S)) .

Here the intruder can choose to either use a fresh random nonce, or one that
he has gleaned or generated in an earlier state. He then injects the message
me1(intruder,P,Q,enc(R,D)) into the network.

5 Proving Key-Secrecy

Key secrecy is shown in the following sense: Suppose that one takes the perspec-
tive of an honest principal, i.e. one is either the passport or the terminal, and
one behaves according to protocol. In particular it is assumed that

1. One has either sent a Message1 with a nonce encrypted with the shared
password π and domain parameters (passport) or one has received a Message1
from a principal who knows π and decrypted it (terminal) and

2. One constructed a generator of the group with the nonce and the domain
parameters from the above message, used the generator together with a fresh
nonce to create an exponent, and sent it to the other party and

3. One seemingly (it is unknown who created the message) received an exponent
back from that other party and

4. One seemingly received a MAC-token that, using ones secret nonce together
with the received exponent as a key, validates that the other party knows
ones sent exponent and the domain parameters.

Then the resulting key must never be known to the intruder. This can be almost
verbatim translated into the next main theorem:

eq inv900(S,M1,M21,M22,M3,P,Q) =

(M1 \in network(S) and M21 \in network(S)

and M22 \in network(S) and M3 \in network(S)

and sender(M3) = Q and receiver(M3) = P

and creator(M21) = P and sender(M21) = P and receiver(M21) = Q

and sender(M22) = Q and receiver(M22) = P

and (not (creator(M21) = creator(M3)))

and (not (P = Q)) and knowspi(P)

and ((sender(M1) = P and creator(M1) = P and receiver(M1) = Q) or

(sender(M1) = Q and receiver(M1) = P and knowspi(creator(M1))))

and expo(M21) = expo(cipher3(M3))

and dpar(cipher1(M1)) = dpar(point(expo(M21)))

and rand(cipher1(M1)) = rand(point(expo(M21)))

and dpar(cipher1(M1)) = dpar(cipher3(M3))

and hash(cipher3(M3)) = hash(rand(expo(M21)),expo(M22)))

implies

not (hash(cipher3(M3)) \in hashes(S)) .

Key-Secrecy of PACE with OTS/CafeOBJ 169

Application of Lemmata and Case Analysis. To prove key secrecy one
needs additional invariants. Central to strengthening the induction hypothe-
sis for istep900 is the invariant that the assumptions of inv900 imply that
both principals have implicitly agreed upon the same generator g, which itself
depends on the nonce exchanged in the first message. For brevity suppose that
assump(S,M1,M21,M22,P,Q) is a predicate that denotes truth of the assump-
tions of invariant inv900 above. The invariant can then be expressed as:

eq inv800(S,M1,M21,M22,M3,P,Q) = assump(S,M1,M21,M22,P,Q)

implies rand(point(expo(M22))) = rand(point(expo(M21))) .

How such a lemma is used in the proof together with case analysis is illustrated,
albeit for a simpler invariant. Frequent use of the following invariant as a lemma
for others is made. It states that if one is in a state S, and a M1 of type Message1 is
in the network, then the random nonce of M1 has been used and is thus included
in the collection of all random nonces rands(S).

eq inv300(S,M1) = M1 \in network(S)

implies rand(cipher1(M1)) \in rands(S) .

inv300 is proven inductively on the number of transitions. In the case of tran-
sition fkm11 one performs case analysis w.r.t. its effective condition:

(c-fkm11(s,p10,q10,c11) = false) or (c-fkm11(s,p10,q10,c11) = true)

Here p10 and q10 denote arbitrary principals, and c11 denotes an arbitrary
cipher1. For the first case, the proof directly succeeds:

open ISTEP

ops p10 q10 : -> Principal .

op m10 : -> Message1 .

op c11 : -> Cipher1 .

eq c-fkm11(s,p10,q10,c10) = false .

eq s’ = fkm11(s,p10,q10,r10,d10) .

red istep300(m10) .

close

For the second case c-fkm11(s,p10,q10,c11) = true, one replaces the term
with its definition c11 \in cipher1s(s) = true and performs another case
analysis w.r.t. the equality m10 = me1(intruder,p10,q10,c11).

open ISTEP

ops p10 q10 : -> Principal .

ops m10 : -> Message1 .

op c11 : -> Cipher1 .

eq c11 \in cipher1s(s) = true .

eq m10 = me1(intruder,p10,q10,c11) .

eq s’ = fkm11(s,p10,q10,c11) .

close

170 D. Klein

If one directly tries to prove the induction step by reducing red istep300(m10)
inserted at ***, CafeOBJ outputs

rand(c11) \in rands(s) xor

me1(intruder,p10,q10,c11) \in network(s) xor ...

This indicates that if me1(intruder,p10,q10,c11) is not already included
in and thus inserted in the network as a result of the transition fkm11, then
rand(c11) rands(s) must be true for the induction step to hold. Therefore
the induction hypothesis needs to be strengthened. One does so by introducing
yet another invariant inv150, which states that if a cipher1 is in the network,
than its random nonce is included in the set of all used random nonces.

eq inv150(S,C1) = C1 \in cipher1s(S) implies rand(C1) \in rands(S) .

And indeed, applying inv150 as a lemma at *** by inserting

red inv150(s,c11) implies istep300(m10)

successfully finishes the induction step. Therefore it has been verified that if a
Cipher1 exists, i.e. is included in the set of collected ciphers observable in state
S in the network, then the random nonce of that cipher must be included in the
set of collected nonces observable in that state.

6 Experience and Lessons Learned

From the experience of applying OTS/CafeOBJ to a rather large real-world
example, three guidelines are formulated:

1. Refine your specification. When stuck in a proof attempt, it is worthwhile to
reconsider the specification. Take for example the definition of equality of has-
hes. Initially equality was defined for two ciphers3’s C1 and C2 intuitively as

eq (C1 = C2) = (hash(C1) = hash(C2) and expo(C1) = expo(C2)

and dpar(C1) = dpar(C2)).

This has the awkward consequence that messages can no longer uniquely be
identified: When a principal sends a message of type 3, implicitly two messages
are added to the network, one w.r.t. each case of equality of the hash of the
cipher. Then for example an invariant like

m3 \in network(s) implies cipher3(m3) \in cipher3s(s)

does not hold if we have cipher3(m3) = mac(hash(r2,expo(r1,...),...)
and mac(hash(r1,expo(r2,...),...) \in cipher3s(s). This makes rea-
soning during the induction steps quite unintuitive and led to defining equality
of cipher3’s as syntactic equality of normals forms, and formulating theorems
accordingly when referring to multiple cipher3’s with the same hash.

2. Simplify your specification. Trying to specify every detail naturally gives a
proof that is most faithful to the real protocol. It however also leads to more
involved proofs and case-analysis. For example, we purposely decided not to
fully model the symmetric cipher used to encrypt the shared password π, but
rather to model knowledge of π with a predicate.

Key-Secrecy of PACE with OTS/CafeOBJ 171

3. A deductive proof approach. It is very simple in CafeOBJ to quickly add a
lemma without proving it. Some invariants, like inv900 in the current case,
are quite involved, and it is likely that one encounters problems with the spec-
ification during the proof, and refines or simplifies the specification thereafter.
This often also affects helper lemmata. It it thus very useful to focus on the
proof of a complex invariant, thereby using several simpler, unproven lem-
mata, and only afterwards focus on the proof of the latter.

The main hindrance when conducting the proof is related to performance. Sup-
pose one is proving an invariant of the form a1 ∧ a2 . . . ∧ an =⇒ b, such as
inv900. A direct proof attempt often does not terminate, due to the amount
of branching. To get a terminating result, one can make a trivial case analysis
w.r.t. ai, e.g. distinguish the case for ¬a1, for a1 ∧ ¬a2, and so on, to finally
reach the case for a1 ∧ . . . ∧ an. Even then sometimes a proof attempt does not
terminate, so additional assumptions and corresponding cases have to be added.
Almost all cases are trivial – it is obvious that in the case with the assumption
¬a1 the above invariant holds – but lead to a blow up of the size of the proofs.
For example, our proof score consists of 38427 lines, of which the vast majority
are for such trivial cases. Fortunately, the majority of these cases could be gen-
erated automatically by scripts. Nevertheless, tools that tie more directly with
CafeOBJ, or come distributed with it, would be certainly helpful for an easier
work-flow and increased productivity.

All in all, 40 invariants of the formalization of PACE were proven. The verifi-
cation of all invariants together takes approximately two hours and eight minutes
on an Intel Core i7-3520M @ 2.9 Ghz.

7 Related Work

Security Analysis of PACE. An inductive verification [5] of the PACE pro-
tocol has been conducted in the verification support environment (VSE) [14].
VSE has been developed in the 1990’s by a consortium of German universities
and industry to provide a tool to meet industry needs for the development of
highly trustworthy systems. Since the proof source is not publicly published and
the VSE tool and documentation is not available for download, a comparison is
difficult. An independent verification of the proof however is important to ensure
trust in the protocol, not only for users, but also for work in international stan-
dardization bodies. A pen-and-paper proof for security in the sense of Abdalla,
Fouque and Pointcheval [1] has been given in [2]. In [6] attempts are made to
merge the pen-and-paper proof with the VSE-proof.

Formal Analysis of Security Protocols. According to [4], the execution of
the protocol, and thus the state space, is not bounded. An approach based on
model-checking seems therefore not appropriate. Other than (classical) model-
checking, a plethora of tools and approaches exist to formally analyze security pro-
tocols, and the reader is referred to [3] for a comprehensive overview. Compared to

172 D. Klein

other tools, the choice of CafeOBJ was motivated rather from the perspective of a
practitioner, and not necessarily due to other tools lacking features. In particular
the OTS/CafeOBJ approach is well documented, has a proven track record w.r.t.
security protocol verification [17–21,23], the CafeOBJ platform is very stable, and
modeling of protocols is straight-forward. Also, it is not difficult to start with an
abstract specification, and then add details and extend proofs later on.

The lack of automation in OTS/CafeOBJ is a double-edged sword. On one
hand no hidden limitations exist, whereas most tools that aim for full automa-
tion make some assumptions to e.g. reduce the state space. It is sometimes not
easy to anticipate in advance which of these limitations apply for the protocol
one intends to prove. Moreover the manual approach forces oneself to recapit-
ulate on the formalization and its appropriateness of capturing the protocol in
question. On the other hand, the lack of automation is sometimes not time-
effective and somewhat tedious. Constructing tools that not only offer a high
level of automation, but also fully axiomatize Abelian group-theory to account
for more in-depth algebraic attacks is an ongoing research-topic, with several
tools, e.g. the Tamarin tool [24], which is based on multiset rewriting, or an
extended version of ProVerif [15]. Maude, another member of the OBJ family,
has been used for formal analysis of security protocols [22], and in particular
the Maude-NPA [11] tool offers a narrowing based approach for Diffie-Hellman.
Last, automation of the OTS/CafeOBJ approach itself has also recently been
increased significantly [12].

All these approaches are natural candidates when extending the proof, e.g. by
adding detail to the specification w.r.t. mapping a point and domain parameters
to a group generator, or when extending to the protocol sequence to the full
protocol sequence for extended access control

8 Conclusion and Future Work

Key secrecy has been successfully verified in CafeOBJ. This not only facili-
tates trust in the PACE protocol, but also represents one more case-study that
shows that the OTS/CafeOBJ approach scales well beyond toy-examples like
NS(L)PK to real-world scenarios. Also, the PACE proof can serve as a guide
on how to model a DH-key exchange in CafeOBJ. Key-Secrecy however, is only
one important property of PACE. Future directions include to extend the proof
to mutual authentication, perfect forward secrecy, and the full EAC2 protocol
stack, possibly with the help of the automated tools mentioned in Sect. 7.

References

1. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

2. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement
protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009)

Key-Secrecy of PACE with OTS/CafeOBJ 173

3. Blanchet, B.: Security protocol verification: symbolic and computational models.
In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 3–29.
Springer, Heidelberg (2012)

4. BSI: Advanced security mechanisms for machine readable travel documents (2012)
5. Cheikhrouhou, L., Stephan, W.: Meilensteinreport: inductive verification of PACE.

Technical report, DFKI GmbH (2010)
6. Cheikhrouhou, L., Stephan, W., Dagdelen, Ö., Fischlin, M., Ullmann, M.: Merging

the cryptographic security analysis and the algebraic-logic security proof of PACE.
Sicherheit. LNI, vol. 195, 83–94 (2012)

7. Clark, J., Jacob, J.: A survey of authentication protocol literature (1997)
8. Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Techniques

and Methodologies for Object-oriented Algebraic Specification. AMAST Series in
Computing, vol. 6. World Scientific, Singapore (1998)

9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

10. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

11. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

12. Găină, D., Zhang, M., Chiba, Y., Arimoto, Y.: Constructor-based inductive the-
orem prover. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp.
328–333. Springer, Heidelberg (2013)

13. ICAO: Doc 9303 - Machine readable travel documents
14. Koch, F.A., Ullmann, M., Wittmann, S.: Verification support environment. In:

Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 454–457. Springer,
Heidelberg (1996)

15. Küsters, R., Truderung, T.: Using proverif to analyze protocols with Diffie-Hellman
exponentiation. In: proceedings of the 22nd CSF (2009)

16. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

17. Ogata, K., Futatsugi, K.: Rewriting-based verification of authentication protocols.
Electron. Notes Theor. Comput. Sci. 71, 208–222 (2002)

18. Ogata, K., Futatsugi, K.: Flaw and modification of the iKP electronic payment
protocols. Inf. Process. Lett. 86(2), 57–62 (2003)

19. Ogata, K., Futatsugi, K.: Proof scores in the OTS/cafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

20. Ogata, K., Futatsugi, K.: Equational approach to formal analysis of TLS. In: Pro-
ceedings of the 25th ICDCS. IEEE Computer Society (2005)

21. Ogata, K., Futatsugi, K.: Proof score approach to analysis of electronic commerce
protocols. Int. J. Softw. Eng. Knowl. Eng. 20(2), 253–287 (2010)

22. Ölveczky, P.C., Grimeland, M.: Formal analysis of time-dependent cryptographic
protocols in real-time maude. In: Proceedings of the 21st IPDPS (2007)

23. Ouranos, I., Ogata, K., Stefaneas, P.: Formal analysis of tesla protocol in the timed
OTS/cafeOBJ method. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II.
LNCS, vol. 7610, pp. 126–142. Springer, Heidelberg (2012)

24. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Proceedings of the 25th
CSF (2012)

Coalgebraic Semantic Model for the Clock
Constraint Specification Language

Frédéric Mallet1,2,3(B) and Grygoriy Zholtkevych4

1 University Nice Sophia Antipolis, CNRS, I3S, UMR 7271,
Sophia Antipolis, France

2 INRIA Sophia Antipolis Méditerranée, Sophia Antipolis, France
3 East China Normal University/Software Engineering Institute,

Shanghai, People’s Republic of China
Frederic.Mallet@unice.fr

4 Deparment of Theory and Application in Computerscience,
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract. The Clock Constraint Specification Language (ccsl) has ini-
tially been introduced as part of the uml Profile for marte dedicated
to the modeling and analysis of real-time and embedded systems. ccsl
proposes a set of simple patterns classically used to specify causal and
temporal properties of (uml/EMF) models. The paper proposes a new
semantic model for ccsl based on the notion of “clock coalgebra”. Co-
algebra promises to give a unified framework to study the behavior and
semantics of reactive systems and, more generally, infinite data struc-
tures. They appear as being the adequate mathematical structure to
capture the infinite nature of ccsl operators. This paper proposes a co-
algebraic structure for ccsl, or rather a natural generalization of ccsl

that we call generalized clock constraints: GenCCSL. We establish that
GenCCSL covers the class of ccsl constraints and we give examples
of GenCCSL constraints that cannot be expressed with classical ccsl.
Then, we discuss the properties of the newly introduced class, including
ways to detect valid and invalid GenCCSL behaviors, as well as deciding
whether a GenCCSL constraint is also a ccsl one.

Keywords: Concurrent system · Behavior model · Clock model · Tran-
sition system · Coalgebra

1 Introduction

The uml profile for marte (Modeling and Analysis of Real-Time Embedded
systems) [13] is dedicated to the modeling and analysis of real-time and embed-
ded systems. Its time model [3] builds on the notion of logical clock that was
concurrently made popular in distributed systems [8] and in synchronous lan-
guages [4]. Logical clocks offer a good abstraction to describe causal relationships
between the occurrences of events in a distributed systems, but also synchroniza-
tion constraints in synchronous (software or circuit) implementations. marte

c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 174–188, 2015.
DOI: 10.1007/978-3-319-17581-2 12

Coalgebraic Semantic Model for the Clock Constraint Specification Language 175

offers a stereotype to identify clocks and then promotes the use of the Clock
Constraint Specification Language (Annex C.3) as a concrete syntax to handle
and constrain those clocks. An operational semantics of ccsl has been defined
separately [1] as a basis for building a simulator, called TimeSquare [6]. Later, a
denotational semantics was defined [9] in a bid to provide some exhaustive veri-
fication support for ccsl. The equivalence of these two semantics has also been
proven [17]. ccsl operational semantics is inspired by the approach proposed by
G. Plotkin for defining the operational semantics of software systems [14]. The
theory of universal coalgebra [15] proposes another mathematical model to study
the semantics of reactive systems and, more generally, of infinite data structures.
It appears as being well fitted to deal with the infinite nature of ccsl operators.

This paper proposes a co-algebraic semantic model to reason on ccsl con-
straints. This opens the path to the use of co-algebraic bisimulation. It is used
here to identify a lack of expressiveness in ccsl and define an extension, called
GenCCSL.

We proceed by associating a coalgebra with each ccsl clock constraint. This
is useful to identify valid schedules with tracks in the corresponding coalgebra.
Such an identification embeds the class of clock constraints into a wider class
of constraints, GenCCSL. The principal problem in this context is to understand
whether this embedding is bijective or not. Showing that this embedding is not
bijective leads us to conclude that ccsl is incomplete. We then discuss the
properties of the constraints characterized by the generalized class, GenCCSL.

The remainder of the paper is as follows. Section 2 introduces the vocabulary,
the syntax and the semantics of the considered ccsl constraints as well as the
notion of coalgebra. Section 3 proposes our clock coalgebra. Section 4 presents
the notion of stationary clock constraint and stresses the incompleteness of ccsl
with regards to the proposed coalgebra. Section 5 discusses related works and
sources of inspiration. Section 6 concludes and summarizes the main results.

2 Preliminaries

In this section we remind the notation and definitions of the key terms used.
A (logical) clock denotes a repetitive event of relevance for the system under

consideration and its sequence of occurrences. For instance, if you consider a
train system. A clock can be any command from the driver to control systems
(brake pressed, power on. . .) or an event occurring (door opening, urgency brake
requested. . .). If you rather consider a computer architecture, clocks can repre-
sent the processor clock, but also any kinds of requests on buses, fetch operations,
interrupts. . .). We do not assume a regular rhythm in the occurrences (inter-
rupt) but we do not preclude it (processor clock). The occurrences of the events,
i.e., the clocks, are also called its ticks. When the clock ticks, the event occurs.
We do not need here any specific property on the clocks and therefore we do not
give a formal definition. In the following, we consider that we operate on a set
of clocks, C.

176 F. Mallet and G. Zholtkevych

2.1 Clock Constraints: Syntax

Syntactically a clock constraint is a finite set of primitive clock constraints, which
are classified as clock relations and clock definitions.

There are four kinds of clock relations: subclocking, exclusion, causality,
and precedence. All these relations are binary relations over clocks. The follow-
ing notation is used to denote these relations between clocks a ∈ C and b ∈ C:

a ⊆ b denotes that clock a is a subclock of clock b,

a # b denotes that clock a and b are mutually exclusive,

a � b denotes that clock a causes clock b, and

a ≺ b denotes that clock a precedes clock b.

Intuitively, the first two relations are synchronous constraints. Subclock allows
a (sub)clock to tick only when its master (super)clock ticks. We say that the
subclock is coarser than the superclock, and the superclock is finer than the
subclock. The second one forbids two clocks to tick simultaneously, without giv-
ing a priority to either clock. The last two relations are asynchronous. Causality
relates an effect to its cause, e.g., the sending of a message in a queue and its
reception. Its the classical symmetric and transitive causality relation of event
structures [12]. If a � b, we say that a is faster than b, or b is slower than
a. Precedence is similar to Causality but excludes instantaneous communica-
tions. The formal definitions of these relations are given in the next subsection.

There is one kind of unary clock definition parametrized by a positive natural
number, n ∈ N.

b � a $ n denotes that clock b is a n-times delay of clock a.

Intuitively, b is the same clock as a except that the first n ticks are ignored.
Finally, there are four kinds of binary clock definitions: union, intersection,
infimum, and supremum. The following notation is used for these definitions

c � a + b denotes that clock c is a union of clocks a and b,

c � a ∗ b denotes that clock c is an intersection of clocks a and b,

c � a ∧ b denotes that clock c is an infimum of clocks a and b, and

c � a ∨ b denotes that clock c is a supremum of clocks a and b.

Intuitively, the union of two clocks a and b is the coarsest clock c that is a super
clock of both a and b. The intersection is the finest clock that is a subclock of both a
and b. These two operators are related to the synchronous relation of subclocking.
Let us take as an example, a system where a command is sent to two actuators.
Let a and b be clocks that represent the instants at which the command is actually
received by the actuators. Then, a + b represent the instants at which a com-
mand is received on at least one actuator whereas a ∗ b represent the instants
at which the command arrives simultaneously on the two actuators.

Infimum and Supremum play a dual role with the asynchronous relation of
causality. The infimum of two clocks a and b is the slowest clock (with regards
to causality) that is faster than both a and b. The supremum is the fastest clock

Coalgebraic Semantic Model for the Clock Constraint Specification Language 177

slower than both a and b. Using the same example as before, a ∧ b represents
the instants of the earliest reception on either a or b. Sometimes a may receive
the command first, sometimes it is b. On the other hand, a ∨ b represents the
instants of the latest reception on either a or b.

2.2 Clock Constraints: Semantics

One way to define the semantics for a clock constraint system is to specify the
corresponding set of schedules, i.e., the scenarios of the valid system behavior.
In general, for a clock system, there are several (infinitely many) valid schedules.

Definition 1. Let C be a given finite set of clocks then a map σ : N>0 → P(C)
is called a schedule and an element χσ of N

C is called a configuration for a
given schedule σ. χσ

a ∈ N is a component of χσ that denotes the configuration of
clock a.1

Intuitively, a schedule is a sequence of steps. For a given step t ∈ N>0, σ(t) is
the set of clocks that tick simultaneously.

With each schedule σ, the sequence of configurations 〈χσ(t) | t ∈ N 〉 can be
defined in the following manner:

χσ(0) = 0;

χσ
a(t) =

{
χσ

a(t − 1), if a /∈ σ(t)
χσ

a(t − 1) + 1, if a ∈ σ(t) for all t ∈ N>0, a ∈ C.

In other words, χσ(t) counts the number of activations (ticks) of all the clocks
at step t (for a given schedule).

There is a close interrelation between schedules and sequences of configura-
tions. This interrelation is established in the following simple proposition.

Proposition 1. Let 〈χ(t) | t ∈ N 〉 be a sequence of configurations then there
exists a schedule σ such that χa(t) = χσ

a(t) for all t ∈ N and a ∈ C if and only
if the following conditions hold

χ(0) = 0

and

0 ≤ χa(t + 1) − χa(t) ≤ 1 for all t ∈ N and a ∈ C.

Moreover, the schedule σ is uniquely determined by 〈χ(t) | t ∈ N 〉.
Proof. The proof is simple and we do not give it. But we specify the method to
construct σ: σ(t) = {a ∈ C | χa(t) > χa(t − 1)} for t ∈ N>0 �
Below, we define the semantics of a primitive clock constraint as a set of sched-
ules that satisfy this constraint (similarly to [11]). We shall use the abbreviated
notation σ |= Cons to represent the statement “schedule σ satisfies clock con-
straint Cons” and [[Cons]] to refer to the set of all the schedules satisfying clock
constraint Cons.
1 Bold font denotes vectors. χσ ∈ N

C whereas χσ
a ∈ N.

178 F. Mallet and G. Zholtkevych

Subclocking. Let a and b be clocks belonging to C then we shall assume that
σ |= a ⊆ b means the validity of the following statement

a ∈ σ(t) implies b ∈ σ(t) for all t ∈ N>0.

Subclocking is the basic synchronous construct allowing one event to occur
only if its master event also occurs.

Exclusion. Let a and b be clocks belonging to C then we shall assume that
σ |= a # b means the validity of the following statement

a /∈ σ(t) or b /∈ σ(t) for all t ∈ N>0.

Exclusion, here, is a purely synchronous notion, which is very different from
the notion of exclusion in event structures. Indeed, it prevents two clocks from
ticking simultaneously. In event structures, two occurrences are exclusive of each
other means that if one occurs, the other one will never be able to occur, ever.

Causality. Let a and b be clocks belonging to C then we shall assume that
σ |= a � b means the validity of the following statement

χσ
a(t) ≥ χσ

b (t) for all t ∈ N.

On the contrary, consality is a purely asynchronous notion, classical in process
networks and Petri nets.

Precedence. Let a and b be clocks belonging to C then we shall assume that
σ |= a ≺ b means the validity of the following statement

χσ
a(t) = χσ

b (t) implies b /∈ σ(t + 1) for all t ∈ N.

Let us recall that χσ(0) = 0 so the equality of configurations is at least achieved
initially. Then a is bound to tick strictly faster than b unless they both never
tick. This latter pathological case denotes a classical liveness problem in ccsl

specifications. That is why we usually attempt to establish that all the clocks
tick infinitely often.

Delay. Let a and b be clocks belonging to C then we say that b is delayed
for m ∈ N compared to a (it is denoted by b � a $m) and assume that
σ |= b � a $ m if the following statement is valid

χσ
b (t) = max(χσ

a(t) − m, 0) for all t ∈ N

Union. Let a, b, and c be clocks belonging to C then we say that c is union of
a and b and assume that σ |= c � a + b if the following statement is valid

c ∈ σ(t) iff a ∈ σ(t) or b ∈ σ(t) for all t ∈ N>0

Coalgebraic Semantic Model for the Clock Constraint Specification Language 179

Intersection. Let a, b, and c be clocks belonging to C then we say that c is
intersection of a and b and assume that σ |= c � a ∗ b if the following statement
is valid

c ∈ σ(t) iff a ∈ σ(t) and b ∈ σ(t) for all t ∈ N>0

Infimum. Let a, b, and c be clocks belonging to C then we say that c is infimum
of a and b and assume that σ |= c � a ∧ b if the following statement is valid

χσ
c (t) = max(χσ

a(t), χσ
b (t)) for all t ∈ N

Supremum. Let a, b, and c be clocks belonging to C then we say that c is
supremum of a and b and assume that σ |= c � a ∨ b if the following statement
is valid

χσ
c (t) = min(χσ

a(t), χσ
b (t)) for all t ∈ N

Definition 2. If S is a finite set of primitive clock constraints described above
then σ |= S means that σ |= γ for each γ ∈ S and [[S]] denotes the set of all
schedules σ such that σ |= S.

2.3 Coalgebra as a Tool to Model Computer Systems

Gordon Plotkin explains [14] that transition structures are adequate models of
computer systems: “In discrete (digital) computer systems behaviour consists of
elementary steps which are occurrences of operations. Such elementary steps are
called here, (and also in many other situations in Computer Science) transitions
(= moves). Thus a transition step from one configuration to another and as a
first idea we take it to be a binary relation between configurations.” In [15] it has
been shown that considering transition systems as a coalgebra gives useful, non-
trivial results. It allows mathematical reasoning on infinite data structures, such
as the behavior of reactive systems and it paves the way to co-algebra homomor-
phism and bisimulation. This is essential to prove the semantic preservation when
transforming marte/ccsl into other formal models. In this paper, we rely on it
to define a notion of incompleteness for ccsl and propose an extension, called
GenCCSL.

We give in this subsection a minimally needed review of the definitions and
notations used on transition systems and coalgebra. We then define a clock co-
algebra for marte/ccsl.

Definition 3. A transition system is a structure 〈Γ,−→〉 where Γ is a set (of
elements, γ, called configurations) and −→⊂ Γ × Γ is a binary relation (called
the transition relation). Read γ −→ γ′ as saying that there is a transition from
configuration γ to configuration γ′.

Using the notion of coalgebra we obtain an alternative way to describe transition
systems.

180 F. Mallet and G. Zholtkevych

Definition 4. A (powerset) coalgebra [15] is a structure 〈Γ, α〉 where α is a
map from Γ into the set of all subsets of Γ , P(Γ). In this context Γ is called the
carrier of the coalgebra.

It is evident that any transition system 〈Γ,−→〉 determines the coalgebra 〈Γ, α〉,
where γ′ ∈ α(γ) if and only if γ −→ γ′, and conversely, any coalgebra 〈Γ, α〉
determines the transition system 〈Γ,−→〉, where γ −→ γ′ if and only if γ′ ∈ α(γ).

Definition 5. Let 〈Γ, α〉 be a coalgebra, B be a subset of Γ then the structure
〈B,α〉 is called a subcoalgebra of 〈Γ, α〉 if the embedding α(γ) ⊂ B is true for
each γ ∈ B.

One can check that any coalgebra 〈Γ, α〉 is a subcoalgebra of itself and the
intersection of a family of subcoalgebras is a subcoalgebra too. Hence, for each
subset X ⊂ Γ there exists a least one subcoalgebra whose carrier contains X.
In this case, the carrier of this subcoalgebra is denoted by 〈X〉.

To calculate 〈X〉 one can use Tarski’s fixed point theorem [16] for the monoto-
nic operator ΨX on the lattice PX(Γ), where PX(Γ) is the set of all Γ subsets
that cover X. This operator is defined by the following formula

ΨX(V) = V ∪ {γ′ ∈ Γ | (∃γ ∈ V) γ′ ∈ α(γ)}.

Calculation Schema. To calculate 〈X〉 one can build the following sequence
of sets

V0 = X,

and for n > 0

Vn = Vn−1 ∪ {γ′ ∈ Γ | (∃γ ∈ Vn−1) γ′ ∈ α(γ)};

then
〈X〉 =

⋃

n≥0

Vn.

This computational schema ensures that an element γ ∈ Γ belongs to 〈X〉 if
and only if there exists a finite sequence γ0, . . . , γn−1, γn formed by elements of
Γ such that

γ0 ∈ X and γn = γ; (1)
γk ∈ α(γk−1) for k = 1, . . . , n. (2)

Finite or infinite Γ -valued sequences satisfying (2) are used below therefore we
give them the name “tracks”.

Hence, conditions (1) and (2) mean that an element γ ∈ Γ belongs to 〈X〉 if
and only if there exists a track that links some element of X and γ.

Coalgebraic Semantic Model for the Clock Constraint Specification Language 181

3 Clock Constraints and Coalgebras

In this section interrelations between clock constraints and powerset coalgebras
are studied.

Below we assume that some finite set of clocks C has been given.
Let us define the constraint-free coalgebra over a clock set C as the coalgebra

with the carrier N
C and the map α : N C → P(N C) defined by the formula:

χ′ ∈ α(χ) if and only if 0 ≤ χ′
a − χa ≤ 1 for all a ∈ C.

It is evident that for any χ ∈ N
C the map α is represented in the form

α(χ) = χ + {0, 1} C .

The following statement is, in fact, a reformulation of Proposition 1, which states
that a clock can only tick once at each instant and that all the evolutions are
possible when no constraint is specified.

Proposition 2. Let 〈χ(t) | t ∈ N 〉 be a sequence of configurations then there
exists a schedule σ such that χa(t) = χσ

a(t) for all t ∈ N and a ∈ C if and only
if this sequence is a track in the coalgebra 〈N C , α 〉 such that χ(0) = 0.

A track 〈χ(t) | t ∈ N 〉 is called initial if the condition χ(0) = 0 holds.
The natural and simplest way to take into account some constraints is to

specify a map � : N C → P({0, 1} C) such that 0 ∈ �(χ) for any χ ∈ N
C and to

define

α�(χ) = χ + �(χ).

A map � : N
C → P({0, 1} C) that satisfies the condition 0 ∈ �(χ) for any

χ ∈ N
C is called an actuation distribution on C. The actuation distribution

captures the set of sets of clocks that are allowed to tick simultaneously at one
instant given a configuration.

Definition 6. Let � : N
C → P({0, 1} C) be an actuation distribution and

〈N C , α� 〉 be a coalgebra, where α�(χ) = χ + �(χ), then an element of N
C

is called �-reachable configuration if it belongs to the carrier of the minimal
subcoalgebra containing 0.

Such a set of reachable configurations is denoted below by R(�).

Definition 7. Let � : N C → P({0, 1} C) be an actuation distribution then the
coalgebra 〈R(�), α�〉 is called the clock coalgebra associated with �.

Proposition 3. Let � : N
C → P({0, 1} C) be an actuation distribution and

〈χ(t) | t ∈ N 〉 be an initial track in the coalgebra 〈N C , α� 〉 if and only if it is
an initial track in the subcoalgebra 〈R(�), α� 〉.
Proof. This is immediate consequence of the definition of initial tracks. �

182 F. Mallet and G. Zholtkevych

3.1 Structure of Actuation Distributions

The set P ({0, 1}C)
is finite therefore there exists a finite partition of the set N C

such that an actuation distribution � is constant on each atom of the partition.
One can extract the coarsest of such partitions.

Hence, if we fix some actuation distribution � and denote by Π� the coarsest
partition of N C such that � is constant on any atom of the partition then we
can assume that each such atom can be represented by a formula of some formal
arithmetical system.

If Π� has k atoms and λ1(χ), . . . , λk(χ) are formulae, which represent the
corresponding atoms, then the following conditions hold

λ1(χ) ∨ · · · ∨ λk(χ) ≡ t, (3)
λi(χ) ∧ λj(χ) ≡ f for i �= j and 1 ≤ i, j ≤ k, (4)

where t is true and f is false.
Further, let us denote by �i the value of �(χ) under condition that λi(χ) = t

where i = 1, . . . , k. Then 0 ∈ �i ⊂ {0, 1} C and it can be represented by the
boolean function δi(τ) over a boolean vector τ = 〈τc | c ∈ C〉 determined by the
following condition

δi(τ) = 1 if and only if τ ∈ �i.

The condition 0 ∈ �i ensures validity of the equation

δi(0) = 1. (5)

Hence, the following proposition describes the structure of an actuation distrib-
ution.

Proposition 4. Each actuation distribution � can be represented as a set of
rules

λi(χ) =⇒ δi(τ) where i = 1, . . . , k

such that formulae λ1, . . . , λk satisfy conditions (3) and (4) and boolean func-
tions δ1, . . . , δk satisfy condition (5).

3.2 Coalgebras for Primitive Clock Constraints

In this subsection coalgebras associated with primitive clock constraints are com-
puted. To do this we use the computational scheme presented in Sec. 2.3.

Proposition 5 (Clock Relations). Let a, b ∈ C and Rel be a clock relation
between clocks a and b then

case Rel = {a ⊆ b}: if � is defined by the following rule

t =⇒ τa → τb

then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if
there exists a schedule σ such that σ |= Rel and χσ(t) = χ(t) for all t ∈ N ;

Coalgebraic Semantic Model for the Clock Constraint Specification Language 183

case Rel = {a # b} : if � is defined by the following rule

t =⇒ ¬τa ∨ ¬τb

then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if
there exists a schedule σ such that σ |= Rel and χσ(t) = χ(t) for all t ∈ N;

case Rel = {a � b} : if � is defined by the following set of rules

{χa = χb =⇒ τb → τa}
then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if
there exists a schedule σ such that σ |= Rel and χσ(t) = χ(t) for all t ∈ N;

case Rel = {a ≺ b} : if � is defined by the following set of rules

{χa = χb =⇒ ¬τb}
then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if
there exists a schedule σ such that σ |= Rel and χσ(t) = χ(t) for all t ∈ N.

Proof. Let us define the function n : NC → N in the following manner

n(χ) = min{m ∈ N | χ ∈ Vm},

where 〈Vn | n ∈ N〉 is the series of sets defined by the computational schema
from Sect. 2.3. Using Proposition 3, and mathematical induction by n(χ) one can
check that

R(�) =

⎧
⎨

⎩

{χ ∈ N
C | χa ≤ χb}, for the case of subclocking

N
C , for the case of exclusion

{χ ∈ N
C | χa ≥ χb}, for the case of causality and precedence

Further, checking that any track in the coalgebra 〈R(�), α�〉 corresponds to
some schedule σ such that σ |= Rel and conversely is an easy exercise. �

Proposition 6 (Delay). Let a, b ∈ C and Expr = {b � a $ m} for some
natural m then if � is defined by the following set of rules

{χa < m =⇒ ¬τb, χa ≥ m =⇒ τa ↔ τb}
then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if there
exists a schedule σ such that σ |= Expr and χσ(t) = χ(t) for all t ∈ N.

Proof. Acting as in the proof of the previous proposition one can establish that

R(�) = {χ ∈ N
C | χa ≤ m, χb = 0} ∪ {χ ∈ N

C | χa > m, χb = χa − m}.

Further reasoning are similar to the reasoning in the previous proof. �

Proposition 7 (Binary Clock Definitions). Let a, b, c ∈ C and C be a binary
definition of clock c using clocks a and b then

184 F. Mallet and G. Zholtkevych

case Expr = {c � a + b}: if � is defined by the following rule

t =⇒ τc ↔ τa ∨ τb

then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if
there exists a schedule σ such that σ |= Expr and χσ(t) = χ(t) for all t ∈ N;

case Expr = {c � a ∗ b} : if � is defined by the following rule

t =⇒ τc ↔ τa ∧ τb

then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if
there exists a schedule σ such that σ |= Expr and χσ(t) = χ(t) for all t ∈ N;

case Expr = {c � a ∧ b} : if � is defined by the following set of rules

{χa < χb =⇒ τc ↔ τb, χa = χb =⇒ τc ↔ τa ∨ τb, χa > χb =⇒ τc ↔ τa}

then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if
there exists a schedule σ such that σ |= Expr and χσ(t) = χ(t) for all t ∈ N;

case Expr = {c � a ∨ b} : if � is defined by the following set of rules

{χa < χb =⇒ τc ↔ τa, χa = χb =⇒ τc ↔ τa ∧ τb, χa > χb =⇒ τc ↔ τb}

then 〈χ(t) | t ∈ N 〉 is a track in the coalgebra 〈R(�), α�〉 if and only if
there exists a schedule σ such that σ |= Expr and χσ(t) = χ(t) for all t ∈ N.

Proof. Acting as in the proof of Proposition 5 one can establish that

R(�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{χ ∈ N
C | χb ≤ χa ≤ χc ≤ χa + χb}∪

{χ ∈ N
C | χa < χb ≤ χc ≤ χa + χb}, in the case of union

{χ ∈ N
C | χc ≤ χa ≤ χb}

⋃

{χ ∈ N
C | χc ≤ χb ≤ χa}, in the case of intersection

{χ ∈ N
C | χa ≤ χb, χc = χb}

⋃

{χ ∈ N
C | χa > χb, χc = χa}, in the case of infimum

{χ ∈ N
C | χa ≤ χb, χc = χa}⋃

{χ ∈ N
C | χa > χb, χc = χb}, in the case of supremum

Further reasonings are the same as in the previous propositions. �

4 Stationary Clock Constraints

Actuation distributions of some clock constraints do not depend on the cur-
rent configuration as one can see from previous considerations. It motivates the
following definition.

Definition 8. An actuation distribution � : NC → {0, 1}C is called stationary
if the map � is a constant map.

Coalgebraic Semantic Model for the Clock Constraint Specification Language 185

Some primitive clock constraints, such as subclocking, exclusion, union and
intersection, represent stationary actuation distributions. Therefore the ques-
tion whether any stationary actuation distribution is represented by a set of
stationary primitive clock constraints is interesting.

The following proposition demonstrates that it is true for 2-clock systems.

Proposition 8. Let C = {a, b} then any corresponding stationary actuation
distribution can be expressed by a set of subclocking and exclusion relations.

Proof. Let us represent a vector τ ∈ N
C as τ = (τa, τb) the all possible stationary

actuation distributions for C can be listed in the following manner.

1 � = {0, 1}C constraint free

2 � = {(0, 0), (0, 1), (1, 1)} a ⊆ b

3 � = {(0, 0), (1, 0), (1, 1)} b ⊆ a

4 � = {(0, 0), (1, 0), (0, 1)} a # b

5 � = {(0, 0), (0, 1)} a ⊆ b ∧ a # b

6 � = {(0, 0), (1, 0)} b ⊆ a ∧ a # b

7 � = {(0, 0), (1, 1)} a ⊆ b ∧ b ⊆ a

8 � = {(0, 0)} a ⊆ b ∧ b ⊆ a ∧ a # b

Hence, we have built all the possible cases. �

However, this gives, in fact, the only example of completeness of stationary
primitive clock constraints to represent stationary actuation distributions.

Theorem 1. If | C | > 2 then there exists at least one stationary actuation dis-
tribution that cannot be represented as a set of stationary primitive clock con-
straints.

Proof. Analyzing definitions collected in Sect. 3.2 one can see that subclocking
relations, exclusion relations, union definitions, and intersection definitions form
an exhaustive list of stationary primitive clock constraints.

Further suppose that | C | = n and n > 2. Firstly, note that � for a stationary
primitive clock relation contains at most 3 · 2n−2 vectors.

Secondly, let us calculate the number of vectors that can belong to � con-
sidering only either union or intersection definitions when n = 3. To do it, let us
denote C = {a, b, c} then actuation vectors τ be represented as τ = {τa, τb, τc}
and all possible actuation distributions for a stationary definitions are listed as
follows

c � a + b � = {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
c � a ∗ b � = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}

Using this fact one can claim that for n ≥ 3, � for stationary clock definitions
contains at most 4 · 2n−3 = 2n−1 vectors.

186 F. Mallet and G. Zholtkevych

Thirdly, � for any clock constraint represented by a set of stationary clock
relations and clock definitions is equal to the intersection of the corresponding
�-s, thus the studied � contains at most 3 · 2n−2 vectors.

Further, � other arbitrary stationary constraints can contain from one to
2n − 1 vectors. Hence, all �-s that contain from 3 · 2n−2 + 1 to 2n − 1 vectors
cannot be represented by a set of clock relations or/and clock definitions. To
demonstrate that such constraints exist let us calculate the number of elements
in the set

{k ∈ N | 3 · 2n−2 + 1 ≤ k ≤ 2n − 1}.

One can easily check that 2n−1 − 1 is always in the set for n ≥ 3. �

Example 1. If � = {τ ∈ {0, 1}C | (∃c ∈ C) τc = 0} then it cannot be represented
as a set of stationary clock relations and clock definitions.

Intuitively, this example shows that one cannot explicitly prevent one specific
clock from ticking with classical ccsl. This is a pathological example that illus-
trates the incompleteness of ccsl. By relying on a co-algebra, we extend the
family of constraints that can be built and we can also highlight what cannot be
done with ccsl.

5 Related Work

CCSL operational semantics is inspired by the approach proposed by G. Plotkin
for defining the operational semantics of software systems [14]. In [15] it is pro-
posed to use the concept of “universal coalgebra” for studying Plotkin’s semantic
model. This is the main inspiration for our work.

Co-inductive structures have already been used in the context of logic pro-
gramming for modeling complex real-time systems (see for instance, [7]). How-
ever, they were mainly used as a way to handle infinite structures, where infinity
came from the dense nature of time and of its continuous evolution, such as in
timed pushdown automata [5]. We use them here to handle systems that are
discrete (but still infinite) in nature and to prove that ccsl is not rich enough
to capture all that could be built by the coalgebraic structure. We then propose
to build a generalized and complete constraint language as an extension of ccsl.

Transformation based approaches have been proposed for mapping ccsl or
a subset of it, into different semantic domains such as vhdl, Petri nets, and
Promela. André et al. [2] have presented an automatic transformation of a ccsl

specification into vhdl code. The proposed transformation assembles instances
of pre-built vhdl components while preserving the polychronous semantics of
ccsl. The generated code can be integrated in the vhdl design and verification
flow. Mallet and André have proposed a formal semantics to a kernel subset of
ccsl, and presented an equivalent interpretation of the kernel in two different
formal languages, namely Signal and Time Petri nets [10]. In their work, rele-
vant examples have been used to show instances when Petri-nets are suitable
to express CCSL constraints, as well as instances where synchronous languages

Coalgebraic Semantic Model for the Clock Constraint Specification Language 187

are more appropriate. Our contribution is very different in nature, since rather
than restricting the scope of CCSL to allow verification, we here attempt to
generalize the language and find a wider semantic domain that still brings useful
information about the constraint system.

6 Conclusion

In the paper we have presented a new semantic domain used to study the expres-
siveness of the marte ccsl constraint language. ccsl constraints are encoded
using a clock co-algebra that is later used to identify what can be expressed in
ccsl and more importantly what cannot be expressed.

In Subsect. 3.1, a coalgebraic structure of clocks has been studied. The obtai-
ned results show that computability of constraint preconditions is necessary for
verifying the validity of a schedule for a constraint. Taking into account that
any precondition is a predicate of natural variables the question about a choice
of formal arithmetic system for specifying such a precondition arises.

Besides, this new structure defines a class of constraints covering classical
ccsl constraints. This result is given in Subsect. 3.2. Theorem 1 shows that the
newly defined class of clock constraints is strictly larger than the class of ccsl

constraints. This semantic domain therefore defines a class of generalized clock
constraints. We then study the relationships between this generalized class and
the classical class of clock constraints.

Using a coalgebraic structure to capture clock constraints is a first step to
allow for the bisimulation of ccsl specifications. This is important since ccsl

was meant to provide a reference semantic domain for marte time model. Such
marte/ccsl models are then doomed to be transformed into other formal mod-
eling languages amenable to analysis. Bisimulation would then provide a support
for verifying the correctness of the transformation.

References

1. André, C.: Syntax and semantics of the Clock Constraint Specification Lan-
guage (CCSL). Research report 6925, INRIA, May 2009. http://hal.inria.fr/inria-
00384077/

2. André, C., Mallet, F., DeAntoni, J.: VHDL observers for clock constraint checking.
In: International Symposium on Industrial Embedded Systems (SIES), pp. 98–107.
IEEE, Trento, Italy, July 2010. http://dx.doi.org/10.1109/SIES.2010.5551372

3. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 559–573.
Springer, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-75209-7 38

4. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

5. Dang, Z.: Binary reachability analysis of pushdown timed automata with dense
clocks. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 506–518. Springer, Heidelberg (2001)

http://hal.inria.fr/inria-00384077/
http://hal.inria.fr/inria-00384077/
http://dx.doi.org/10.1109/SIES.2010.5551372
http://dx.doi.org/10.1007/978-3-540-75209-7 38

188 F. Mallet and G. Zholtkevych

6. DeAntoni, J., Mallet, F.: TimeSquare: treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-30561-0 4

7. Gupta, G., Saeedloei, N., DeVries, B., Min, R., Marple, K., Kluźniak, F.: Infinite
computation, co-induction and computational logic. In: Corradini, A., Klin, B.,
Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 40–54. Springer, Heidelberg
(2011)

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

9. Mallet, F.: Logical Time @ Work for the Modeling and Analysis of Embedded Sys-
tems. LAMBERT Academic Publishing, January 2011, ISBN: 978-3-8433-9388-1

10. Mallet, F., André, C.: On the semantics of UML/Marte clock constraints. In: 2009
IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing, ISORC, pp. 305–312. IEEE Computer Press, Tokyo,
March 2009. http://dx.doi.org/10.1109/ISORC.2009.27

11. Mallet, F., Millo, J.V., de Simone, R.: Safe CCSL specifications and marked graphs.
In: 11th ACM/IEEE International Conference on Formal Methods and Models for
Codesign, MEMOCODE, pp. 157–166. IEEE (2013). http://ieeexplore.ieee.org/
xpl/freeabs all.jsp?arnumber=6670955

12. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains.
In: Kahn, G. (ed.) Semantics of Concurrent Computation. LNCS, vol. 70. Springer,
Heidelberg (1979). http://dx.doi.org/10.1007/BFb0022474

13. OMG: UML Profile for MARTE, v1.0. Object Management Group, November
2009, formal/2009-11-02

14. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

15. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000). http://dx.doi.org/10.1016/S0304-3975(00)00056-6

16. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math. 5(2), 285–309 (1955). http://projecteuclid.org/euclid.pjm/1103044538

17. Zholtkevych, G., Mallet, F., Zaretska, I., Zholtkevych, G.: Two semantic models
for clock relations in the clock constraint specification language. In: Ermolayev,
V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI
2013. CCIS, vol. 412, pp. 190–209. Springer, Heidelberg (2013). http://dx.doi.org/
10.1007/978-3-319-03998-5 10

http://dx.doi.org/10.1007/978-3-642-30561-0 4
http://dx.doi.org/10.1109/ISORC.2009.27
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6670955
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6670955
http://dx.doi.org/10.1007/BFb0022474
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://projecteuclid.org/euclid.pjm/1103044538
http://dx.doi.org/10.1007/978-3-319-03998-5 10
http://dx.doi.org/10.1007/978-3-319-03998-5 10

Analyzing Industrial Architectural Models
by Simulation and Model-Checking

Raluca Marinescu1(B), Henrik Kaijser2, Marius Mikučionis3,
Cristina Seceleanu1, Henrik Lönn2, and Alexandre David3

1 Mälardalen University, Väster̊as, Sweden
{raluca.marinescu,cristina.seceleanu}@mdh.se

2 Volvo Group Trucks Technology, Gothenburg, Sweden
{henrik.kaijser,henrik.lonn}@volvo.com

3 Aalborg University, Aalborg, Denmark
{marius,adavid}@cs.aau.dk

Abstract. The software architecture of any automotive system has to
be decided well in advance of production, so it is very desirable to assess
its quality in order to obtain quick indications of errors at early design
phases. In this paper, we present a constellation of analysis techniques for
architectural models described in EAST-ADL. The methods are comple-
mentary in terms of covering EAST-ADL model analysis against a rich
set of requirements, and in terms of the varying degree of confidence
in the provided guarantees. Based on the needs of the current model-
driven development in a chosen automotive context, we propose three
analysis techniques of EAST-ADL architectural models, in an attempt
to tackle some of the exposed design needs: simulation of EAST-ADL
functions in Simulink, model-checking EAST-ADL models with timed
automata semantics, and statistical model-checking in UPPAAL, applied
on an automatically generated network of timed automata. An indus-
trial Brake-by-Wire prototype is the case study on which we show the
potential of simulating EAST-ADL models in Simulink, model-checking
downscale EAST-ADL models, as well statistical model-checking of full
model versions, in order to tame verification scalability problems.

1 Introduction

Mechanical and hydraulic systems in current vehicles are being replaced by elec-
trical/electronic systems that can implement highly complex functions like cruise
control and automatic braking. In order to deal with this complexity, the automo-
tive industry hasmoved towards amodel-based development process, during which
high-level system models are designed and analyzed against requirements. Since
many automotive systems are safety-critical, new standards such as ISO26262 place
requirements on the quality of software. Consequently, companies that wish to
adopt such standards will need to use methods and tools fit for guaranteeing such
quality on each level of design abstraction.

Simulink [2], a model-based tool for design, simulation, and code generation
of embedded systems, is already a well-established practice in the automotive
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 189–205, 2015.
DOI: 10.1007/978-3-319-17581-2 13

190 R. Marinescu et al.

domain. Simulink is typically used to define and assess system behavior in an
early phase, or to create a detailed behavioral behavioral definition of the system
in order to automatically generate the corresponding code. Architectural descrip-
tion languages, on the other hand, can be introduced earlier in the development,
to provide models that could handle the complex software architecture of automo-
tive systems. Compared to the current state-of-practice, architectural models offer
a well-defined and standardized structure that deals with all the related informa-
tion (e.g. functions, timing, triggering) of safety-critical systems [8]. A candidate
for this task is EAST-ADL [7], an architectural description language dedicated to
the modeling and development of automotive embedded systems. The use of such
modeling notations enables the application of verification techniques early in the
industrial development process, in an attempt to gain early-phase indications of
possible functional and timing errors.

In this paper, we propose a constellation of complementary verification tech-
niques that can be applied on EAST-ADL models to deliver various types of
model correctness assurance. We start by briefly presenting the EAST-ADL
architectural language and the tools involved in the verification process (see
Sect. 2), and we discuss the current state-of-practice in the development of auto-
motive systems as used nowadays by the automotive industry (see Sect. 3). Next,
we present our simulation and model-checking methodology (see Sect. 4), and
we show the verification techniques based on the: (i) simulation of EAST-ADL
models from a set of predefined verification cases with Simulink (see Sect. 6),
(ii) symbolic simulation and formal verification of EAST-ADL with UPPAAL,
and (iii) statistical model-checking of the architectural model with UPPAAL
SMC (see Sect. 8). In order to enable the verification of architectural models in
EAST-ADL, we also contribute with a timed automata (TA) semantics that we
propose for the EAST-ADL components (see Sect. 7). We show how the formal
techniques underlying the tools complement each other, by applying the EAST-
ADL to Simulink, and EAST-ADL to UPPAAL-TA transformations to analyze
the Brake-by-Wire (BBW) industrial system (see Sect. 5). Such an endeavor
exposes also the advantages and limitations of each framework, when used on
an industrial system model, which can serve as a guiding result especially if
safety standards such as ISO26262 are to be adopted. We end this paper by
discussing similar related works (see Sect. 9), and by presenting our conclusions
(see Sect. 10). The actual contribution of this paper consists of introducing two
new transformations, one from EAST-ADL models to Simulink models, and one
from EAST-ADL models to EAST-ADL models, together with the application
of simulation, model-checking and statistical model-checking on an industrial
architectural model.

2 Brief Overview of the EAST-ADL Language

EAST-ADL [7] is an AUTOSAR [4] compatible architectural description lan-
guage for automotive electronic systems. The functionality of the system is
defined at four levels of abstraction, as follows. The Vehicle Level is the highest

Analyzing Industrial Architectural Models 191

level of abstraction and describes the electronic features as they are perceived
externally. Next, the Analysis Level allows an abstract functional representa-
tion of the architecture without prescribing a specific hardware topology. The
Design Level presents a detailed functional representation of the architecture,
plus the allocation of these elements on to the hardware platform. Last,
the Implementation Level describes the implementation of the system using
AUTOSAR elements. At each abstraction level, the system model relies on
the definition of a set of FunctionTypes representing components that describe
the functional structure of the system. Each of these FunctionTypes has: (i) a
set of FlowPorts that provide and receive data, (ii) a FunctionTrigger that
can be either time-based or event-based, and (iii) a FunctionBehavior . The
system is modeled as a set of interconnected FunctionPrototypes, where each
FunctionPrototype is an instantiation of the corresponding FunctionType. The
execution of each FunctionPrototype is based on the “read-execute-write” seman-
tics, which enables semantically sound analysis and behavioral composition, and
makes the function execution independent of the notation used, when defining its
internal behavior. The FunctionBehavior is defined using different notations and
tools, e.g., Simulink or UPPAAL PORT timed automata (TA) [13]. At each level
of abstraction, the above structural elements of the system can be extended with
annotations for orthogonal aspects like requirements, timing properties, generic
constraints. etc. EAST-ADL also provides means to describe different validation
and verification activities as VVCases for different levels of abstraction.

In the following section, we present a typical automotive development process
and we try to identify different needs and gaps that need to be addressed.

3 The Current Development Process in an Automotive
Context

We have identified four main groups of actors who are involved in a typical auto-
motive development process: the Client , the System Engineers , the Software
Developers, and the Verification Engineers . As depicted in Fig. 1, the Client
compiles a set of informal, natural language requirements describing the new
system that needs to be implemented. The System Engineers break down these
requirements in incremental steps, passing the current requirement set from one
engineer to the other for further decomposition. The Software Developers decom-
pose further these requirements while considering implementation elements like

Fig. 1. A typical automotive development process.

192 R. Marinescu et al.

the system architecture. This new set of requirements, consisting of one require-
ment document per system component, is divided among the Software Developers,
who create a model-based implementation of the components in the system. The
components may be modeled using the Simulink tool, and the code is automat-
ically generated based on these models. This code is integrated as the behavior
of an AUTOSAR software component and, where necessary, adjusted by the
Software Developers. In order to ensure correct behavior, model-in-the-loop and
software-in-the-loop analysis are used. Once a software component has been
implemented, it can be deployed on an electronic control unit (ECU) for compo-
nent testing. Finally, the Verification Engineers perform testing at the system
level directly on the platform, using manually written tests. Any bugs discovered
in the implementation or any problems in the requirements are reported back
to the person responsible for the implementation or requirement, respectively.
Since models start to be included in the industrial development process, there
is also an increased need of stronger evidence of model correctness with respect
to functional or timing requirements.

For the development process described above, different state-of-the-art tech-
niques could facilitate model integration and verification, as follows:

– Introducing architectural languages (like EAST-ADL) will keep track of requi-
rements, features, functions, and hardware topology in an integrated model,
making the design decisions consistent and traceable.

– Providing the behavior for architectural components based on formal defini-
tions like TA, together with typical Simulink definitions, will enable alternative
representations of the same function, hence providing a more comprehensive
assessment of the system.

– Applying formal verification techniques, like model-checking, on the system’s
formalized structural and behavioral model will provide correctness assurances
regarding important properties.

In order to adopt these steps, an integrated system model is needed, such
that different verification techniques can be applied consistently, on the same
system description, at various levels of abstraction.

4 Our Methodology for Analyzing Architectural Models

In this section, we propose a methodology for simulation and model-checking of
EAST-ADL models, which is depicted in Fig. 2. Our verification methodology
consists of the following steps:

– Create the EAST-ADL model and provide the behavior of each FunctionType
as a FMU1 [3] or a Simulink model;

1 The Functional Mock-up Interface (FMI) is a tool-independent standard to support
behavior models using a combination of xml-files and compiled C-code. The standard
defines the concept of a Functional Mock-up Unit (FMU), as a software component
that implements the FMI standard.

Analyzing Industrial Architectural Models 193

Fig. 2. Our simulation and model-checking methodology.

– Select the verification method:
1. Simulation: by implementing an automatic transformation from the archi-

tectural model to a Simulink model and calling the Simulink tool, we can
provide verification through simulation;

2. Model-checking: by implementing an automatic transformation from the
architectural model to a network of TA, we can use the UPPAAL or
UPPAAL SMC model-checker to formally verify the system;

– Return the verification results back to the EAST-ADL model for possible
improvements of the design.

There are several differences between the two frameworks. The simulation
method requires the EAST-ADL model to be extended with verification and
validation elements as VVCases, which describe the part of the model to be
analyzed, together with the definition of monitor FunctionTypes, stimuli data,
and the requirements to be verified. The behavioral model of the monitor is
provided as an FMU or a Simulink model. The transformation to the network
of TA provides formal semantics for the architectural model in terms of timed
transition systems [5]. In order to preserve the informal semantics of the archi-
tectural language, the transformation produces a network of two synchronized
TA for each EAST-ADL FunctionPrototype: an Interface TA with the elements
provided in the architectural model and a Behavior TA.

The parts represented with a dotted line in Fig. 2 have not been implemented
in the current version of the transformation. By extending our methodology to
include an automatic transformation from the Simulink component model to

194 R. Marinescu et al.

the corresponding Behavior TA, the two models would be consistent and the
verification results of the both frameworks would truly complement each other.
However, information would be lost in such a transformation and the TA model
would require manual refinements, such that the TA could represent the key
behavior of the component that is largely consistent with the corresponding
Simulink model.

5 An Example from Industry: Brake-by-Wire Case Study

In this section, we introduce the Brake-by-Wire (BBW) system that will be
used through the paper as the running example to illustrate our techniques. The
BBW system is a braking system equipped with an ABS function, and without
any mechanical connectors between the brake pedal and the brake actuators.
A sensor attached to the brake pedal reads its position, which is used to compute
the desired global brake torque. For vehicles with stability control, the torque is
influenced by the wheel speed and the desired torque for each wheel is calculated
based on the following equation:

torque = (pos/100) × maxBrakeTorque × distribution (1)

where pos is the pedal position with values ∈ [0,100], maxBrakeTorque is the
maximum global brake torque, and distribution is the static distribution factor.
The ABS algorithm computes the slip rate s based on the following equation:

s = (v − w × R)/v (2)

where v is the speed of the vehicle, w is the speed of the wheel, and R is the
radius of the wheel. The friction coefficient has a nonlinear relationship with
the slip rate: when s starts increasing, the friction coefficient also increases, and
its value reaches the peak when s is around 0.2. After that, further increase in
s reduces the friction coefficient of the wheel. For this reason, if s is greater
than 0.2 the brake actuator is released and no brake is applied, otherwise the
requested brake torque is used.

Figure 3 presents the EAST-ADL model of the BBW system at the Design
Level , and a set of requirements has been provided (to describe the functionality
of this system at this level), as follows:

D1 The torque on the wheel shall be defined as: (pos/100) × maxBrakeTorque×
distribution.

D2 IfVehicleSpeedIn > ABSVehicleSpeedThrsh and s > ABSSlipRateThrsh, then
ABSBrakeTorqueOut shall be set to 0Nm.

D3 If s <= ABSSlipRateThrsh or VehicleSpeedIn <= ABSVehicleSpeedThrsh,
then ABSBrakeTorqueOut shall be set to RequestedTorqueIn.

D4 Investigate the latency between the wheel sensor and the brake pedal actuator.

The goal of this work is to show how one can verify the above requirements
on the EAST-ADL description, using various verification techniques that we
present in the following.

Analyzing Industrial Architectural Models 195

Fig. 3. The EAST-ADL model of the BBW system at design level.

6 Simulation of EAST-ADL Functional Architecture
in Simulink

In this section we describe the simulation method proposed in Sect. 4, which has
been implemented as an EATOP [1] plug-in called FMUSim that synthesizes
a Simulink model and configures it according to the properties in the EAST-
ADL model. The model transformation preserves the compositional hierarchy of
the EAST-ADL model in EATOP, and is implemented as a one-to-one mapping
between EAST-ADL elements and Simulink elements, as depicted in Table 1.

In order to simulate a time-trigged EAST-ADL function, the FMU block
needs to be sampled once per period. However, the FMU blocks provided by
the FMI Toolbox are continuous and cannot be sampled directly. As depicted in
Fig. 4, the solution chosen in this implementation is to add a pulse generator and
a subsystem InputData that is acting as a flip-flop clocked on the positive flank of
the pulse. Since the execution of a Simulink block is instantaneous, another flip-
flop OutputData is added, which is clocked on the negative flank of the pulse,
such that the execution time of the FMU becomes equal to the pulse width.
Similarly, in order to simulate an event-trigged EAST-ADL function, we reuse
the negative flank of the trigger pulse from another time-triggered function that
acts as the event source. The negative flank of EventTriggerIn is used to clock a

196 R. Marinescu et al.

Table 1. Mapping rules for the EAST-ADL to Simulink transformation.

EAST-ADL element Simulink element(s)

composed FunctionType Subsystem

FunctionConnector Line

non-top-level FunctionFlowPortIn Inport

non-top-level FunctionFlowPortOut Outport

top-level FunctionFlowPortIn Repeating sequence interpolated

top-level FunctionFlowPortOut Scope

time-trigged leaf FunctionType with Pattern with several elements

FMU behavior

event-trigged leaf FunctionType with Pattern with several elements

FMU behavior

continuous leaf FunctionType with FMU block

FMU behavior

leaf FunctionType with Simulink Same pattern as in the FMU cases above,

behavior but a copy of the behavior model is

inserted instead of the FMU block

flip-flop InputData to control execution start, as depicted in Fig. 5. The execution
period of the function is then simulated by adding a flip-flop OutputData, which
is clocked on a step down that is generated at a time equal to the worst-case
execution time (WCET) after the function starts executing. The clock signal is
exported as EventTriggerOut for the pattern to be repeatable. This means that
it is possible to simulate a chain of event-trigged functions with the pattern.

In this transformation, we have not addressed the nondeterminism or the
possible interleavings of the FunctionPrototypes’s execution. Since we are per-
forming simulations on the transformed model, the current execution pattern is
one of infinitely many interleavings and event sequences, which means that some
errors may be overlooked. To represent deviating clock speeds and arbitrary
start-up time, an arbitrary component could be added by the transformation
to the offset and period times, and a deterministic yet random sequence would
secure repeatability of the simulation runs. Multiple runs with randomized para-
metrization would increase confidence through the extended state space covered.
However, these extensions to the method are not in the scope of this paper.

Application on the BBW Case Study. We have applied the transformation
described above on the BBW case study. The resulting model contains one FMU
for each leaf EAST-ADL FunctionPrototype, plus the required monitors for the
VVCase specified in the EAST-ADL model.

As depicted in Fig. 6, pBrakeTorqueRRMonitor is a complex monitor despite
the fact that it verifies a simple linear function like requirement D1 for the
rear right wheel. The time until a new pedal position has propagated through
the system and has given rise to a new torque value GBC TorqueReq RR varies

Analyzing Industrial Architectural Models 197

Fig. 4. Simulink pattern for modeling time-trigged execution of an EAST-ADL func-
tion with execution time. The block pLDM Brake FL represents the FMU.

Fig. 5. Simulink pattern for modeling event-trigged execution of an EAST-ADL func-
tion with execution time. The block FMU Function F represents the FMU.

between delay min and delay max [ms]. As shown in Fig. 7, the torque requested
by the brake controller on the rear right wheel is a linear scaling of the pedal
position delayed by the propagation time. The boolean monitor function “looks
back” in time according to the delay interval, and is able to find a pedal position
corresponding to the requested torque at all evaluated time points. The result
shows that requirement D1 is satisfied to the extent guaranteed by the simulation
technique.

7 Formal Semantics of EAST-ADL as a Network
of Timed Automata

To formally verify that the architectural model meets its requirements, we need
to exhaustively explore all the function blocks in the model. In this context, we

198 R. Marinescu et al.

Fig. 6. Implementation of the pBrakeTorqueRRMonitor . The lower half of the figure
shows the contents of the block named for each subsystem in the upper half.

Fig. 7. Simulation results provided by the pBrakeTorqueRRMonitor .

need to represent the execution semantics of the EAST-ADL function blocks
using a network of TA (see Fig. 2), which has a well-defined formal semantics in
terms of timed transition systems [5]. We have developed an automatic trans-
formation, considering a subset of the EAST-ADL elements, which we define as
a tuple:

EAST − ADLDesignLevel � 〈FP , Con,DP, Trigg, TC〉,

where FP is the set of FunctionPrototypes, Con is the set of connectors between
the FP , DP is the set of data ports, defined as the union of input ports and
output ports, Trigg is the set of triggering elements, defined as the union of
events and periodic triggers, and TC the set of the model’s timing constraints.

Analyzing Industrial Architectural Models 199

In a similar manner, the TA is defined as a tuple:

TA � 〈L, l0, C,A,E, I〉,

where L is a finite set of locations, l0 ∈ L is the initial location, C is a set of
clocks, A is a set of possible actions, E is a set of edges between two locations,
and I is a set of invariants attached to the locations.

The transformation is a one-to-one function π : EAST-ADLDesignLevel→ TA,
which maps each element in the EAST-ADLDesignLevel to a TA element. The
mapping rules are:

– Each function FP is defined in terms of a network of two TA, as shown in
Fig. 8. To preserve the “read-execute-write” semantics of EAST-ADL, the
Interface TA (see Fig. 8a) has four locations: (i) Idle, (ii) a Read location
that allows the update of the variables according to the values on the input
ports, independent of other computations, (iii) an Exec location that triggers
the Behavior TA (see Fig. 8b) that models the desired behavior of FP , and
(iv) a Write location that allows the update of the output ports according
to the values of the computed internal variables, respectively, independent of
other computations.

– Each input and output port DP is mapped to a global variable in the TA
network, respectively.

– Each connector Con from output port Portout1 of FP1 to input port Portin2
of FP2 is transformed into an assignment Portin2 := Portout1 , along the edge
from Idle to Read ;

– The triggering of each interface TA is based on the triggering Trigg associated
to the EAST-ADL FP . Concretely, this creates two possible instantiations of
the Interface TA: (i) for timed-triggered FP the transformation produces a
local clock, plus invariants and guards on TA (see Fig. 9a), and (ii) for event-
triggered FP the transformation produces a set of dedicated variables that
need to be constantly updated and reset, respectively (see Fig. 10a).

– Other timing annotations TC , e.g., the execution time, can be included in the
timing behavior of the TA model.

Once we obtain the network of TA corresponding to the EAST-ADL model,
one manually edits the Behavior TA to match the desired behavior of the cor-
responding FunctionPrototype. Formal analysis techniques like model-checking
and statistical model-checking are then applied to verify the resulting model. In
the next section we apply such transformation on the BBW EAST-ADL model,
to enable the latter’s verification.

8 Analysis of EAST-ADL Models Using Model-Checking
and Statistical Model Checking

We have applied our method on the BBW architecture, and generated a network
of 50 TA, by transforming each of the 25 FP of Fig. 3 into a network of two

200 R. Marinescu et al.

Fig. 8. The generic TA semantics of an EAST-ADL FP .

synchronized TA, respectively. In Figs. 9 and 10, we exemplify the transformation
of two FP as follows: Fig. 9a presents the interface of the time-triggered pABS FL
FP , automatically generated from the EAST-ADL model, Fig. 9b presents the
behavior of the pABS FL FP obtained after manually editing the dedicated
TA template (see Fig. 8b); Fig. 10a shows the interface of the event-triggered
pVehicleSpeedEstimator FP , whereas Fig. 10b shows the behavior of the pVehicle
SpeedEstimator FP , after manually editing the dedicated TA template. On this
formal model, we have applied model-checking and statistical model-checking
techniques to validate the original EAST-ADL model against the requirements
introduced in Sect. 5.

Model-checking with UPPAAL. With UPPAAL, we have simulated and
we have attempted to verify the previously described network of TA. However,
the size of the model has lead to a state space explosion. On a computer with
1.8 Ghz Intel processor and 8 GB memory, the verifier could explore only 10 962
377 states before it had run out of memory. This is not surprising, since the BBW
system is subject to an enormous state-space explosion due to large number to
TA in the network, each with its clock and its set of variable created based o
the ports of the corresponding FunctionPrototype.

Consequently, we have used UPPAAL to verify a simplified version of the
BBW system with one wheel only. Properties D2 and D3 are formalized as
TCTL properties [5], as follows:

D2 A[] pABS FL VehicleSpeedIn > speed thrshld and pABS FL s == true
imply pABS FL ABSBrakeTorqueOut == 0 .

D3 A[] pABS FL VehicleSpeedIn <= speed thrshld or pABS FL s == false
imply pABS FL ABSBrakeTorqueOut == pABS FL RequestedTorqueIn.

Both properties have been verified and hold on the model. For property D2

the verification took 13,7 s and used 26 900 KB of memory. For property D3 the
verification took 9,1 s and used 26 916 KB of memory.

Statistical Model-Checking with UPPAAL SMC. TA is a suitable formal-
ism for analyzing architectural models like EAST-ADL, and enables symbolic
model-checking techniques to provide a rigorous proof of verifying or refuting a
TCTL property. However, such techniques suffer from state-space explosion in
terms of number of parallel components in the model, which is the case with
complex, industrial systems. One possible solution is the use of a statistical

Analyzing Industrial Architectural Models 201

(a) Interface TA

(b) Behavior TA

Fig. 9. The TA model for the pABS FL EAST-ADL FP .

model-checking engine to generate stochastic simulations and employ statistical
methods to estimate probabilities and probability distributions over time with
given confidence levels. The UPPAAL modeling language has been extended
with probabilistic and dynamical constructs, given a stochastic semantics of
timed automata networks [9], and the tool has been equipped with statistical
model-checking (SMC) algorithms [10] to decide qualitative properties in terms
of probabilities and cost. The symbolic and statistical techniques complement
each other: SMC can show results only up to a specified level of confidence and
never for certain like symbolic techniques, but it is a cheap way to generate and
confirm safety counter-examples where symbolic techniques may employ expen-
sive over-approximation [11]. Here, we attempt to analyze requirement D4 .

Since UPPAAL SMC works on stochastic models, we have manually added
probabilistic extensions to the four-wheels BBW model that contains the timed
behavior. Figure 11a and b show exponential rates added to locations Idle and
Exec of one Encoder component of Fig. 3. The rate of 1 means that the com-
ponent may potentially stay in the location forever, but it will stay there for 1
time unit on average which is consistent with the timed behavior. Further, we
are interested in latency between pressing the pedal and applying the brakes,
hence we added a monitoring stop-watch automaton shown in Fig. 11c. The
monitoring automaton has a stop-watch L that is stopped originally in loca-
tion Wait by specifying that the derivative is zero: L′ == 0 . The stop-watch
is started when synchronization pBrakePedalSensor beh start? is received (the
derivativeL′ == 1 is implicit in timed automata). The stop-watch is stopped
again when any of the wheels receive the synchronization braking signal, like
pHW Brake FL beh start? or pHW Brake FR beh start? (the synchronizations

202 R. Marinescu et al.

(a) Interface TA

(b) Behavior TA

Fig. 10. The TA model for the pVehicleSpeedEstimator EAST-ADL FP .

are on different edges that are drawn on top of each other to minimize cluttering).
The latency can be estimated by the following query: Pr [bm.L <= 1000](<>
bm.Done) that asks what is the probability that the brake monitor process bm
will end up in location Done in terms of the stop-watch L value. The result is
shown in Fig. 11d. The average latency is 5 time units but it tends to be high even
though our added stochastic delay assumptions are decreasing towards infinity,
which is a worrying behavior. The good news is that it seems to be strictly
limited by 6 time units and no simulation has been observed greater or equal
than 6 time units, which is on the other hand surprising, as the model contains
components with unlimited delays.

9 Related Work

Several researchers have looked into the formal analysis and verification of EAST-
ADL models. Kang et al. [13] propose a component-based analysis framework
for the EAST-ADL models extended with TA semantics based on the UPPAAL
PORT model-checker. Mallet et al. [14] describe the use of UML MARTE profile
for the timing analysis of EAST-ADL. In addition, Feng et al. [12] propose a
translation of EAST-ADL activity diagrams into the input language of SPIN for
formal verification. More recently, Qureshi et al. [15] describe a model-to-model

Analyzing Industrial Architectural Models 203

Fig. 11. The components decorated with stochastic extensions and estimated latency
between pressing the pedal and applying brakes.

transformation from’ EAST-ADL to timed automata towards formal verification
based on timing constraints using UPPAAL. Closely related to our work, in the
context of model-driven development, Biehl et al. [6] propose a modular app-
roach for data integration, together with their experiences from applying this
approach for the verification of EAST-ADL models. The latter is focused on
introducing a systematic solution for model-based tool integration, whereas our
work is focused on the analysis of industrial systems through complementary
methodologies that provide various degrees of assurance.

10 Conclusions and Discussion

In this paper, we have presented a set of analysis techniques dedicated to the sim-
ulation and verification of automotive embedded systems specified in the EAST-
ADL architectural language. In order to provide different correctness guarantees,
we present three techniques that enable the transformation in, and analysis of
EAST-ADL models with: (i) Simulink, a design and simulation tool used exten-
sively in industry, (ii) UPPAAL for model-checking purposes, and (iii) UPPAAL
SMC, a new extension of UPPAAL with statistical model-checking capabilities.
We report our analysis results by applying all these frameworks on the indus-
trial BBW case study. As future work, we intend to investigate the possible
integration and application of these frameworks into the large-vehicle industrial
development process.

204 R. Marinescu et al.

Limitations. Our current transformation to Simulink does not support jittering
of the execution start time and period times. The coverage of the state space in
terms of different function execution orders and phasings is thus very low, but
sufficient to detect the fundamental problems.

The model transformation from EAST-ADL to the network of TA and to
the Simulink model rely on the execution semantics of East-adl. However, the
TA used to define FunctionBehavior is difficult to make fully consistent with
the richer representation of the Simulink model or the FMU that is used by the
FMUSim tool. The verifications are thus complementary, and will not in general
verify the same properties.

Lessons Learned. Both transformations presented in the paper are concep-
tually simple, making them easy to implement and fast to execute. The two
model transformations preserve the structure of the architecture, which simpli-
fies the understanding and the debugging of the model. In our transformation
to Simulink, it is possible to define useful transformation patterns for time and
event triggered functions based on the FMI Toolbox and legacy Simulink blocks
only, so additional commercial toolboxes are not required. The EAST-ADL mod-
els with feedback loops require that the loops are broken before they can be
simulated in Simulink. This can be achieved either by adding a memory block
somewhere in each loop or latching the subsystem ports of at least one subsys-
tem in each loop. Moreover, the network of TA can be easily used for statistical
model-checking with UPPAAL SMC, ensuring formal verification of the model
even if the analysis with UPPAAL leads to a state-space explosion.

Acknowledgment. The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement number 269335, and from
VINNOVA, the Swedish Governmental Agency for Innovation Systems, within the
MBAT project.

References

1. Eclipse. The EAST-ADL Tool Platform (EATOP) Editor Tool (2014). http://
www.eclipse.org/proposals/modeling.eatop/

2. Mathworks. The MATLAB Simulink Design Tool (2014). http://www.mathworks.
se/products/simulink/

3. Modelica Association Project. The Functional Mock-up Interface (FMI) Standard
(2014). http://www.fmi-standard.org/

4. The AUTomotive Open System ARchitecture (AUTOSAR) (2014). http://www.
autosar.org/

5. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

6. Biehl, M., Sjöstedt, C.-J., Törngren, M.: A modular tool integration approach-
experiences from two case studies. In: 3rd Workshop on Model-Driven Tool &
Process Integration at the European Conference on Modelling Foundations and
Applications (2010)

http://www.eclipse.org/proposals/modeling.eatop/
http://www.eclipse.org/proposals/modeling.eatop/
http://www.mathworks.se/products/simulink/
http://www.mathworks.se/products/simulink/
http://www.fmi-standard.org/
http://www.autosar.org/
http://www.autosar.org/

Analyzing Industrial Architectural Models 205

7. Blom, H., Lönn, H., Hagl, F., Papadopoulos, Y., Reiser, M.-O., Sjöstedt, C.-J.,
Chen, D.J., Tagliabò, F., Torchiaro, S., Tucci, S.: EAST-ADL: An architec-
ture description language for automotive software-intensive systems. EAST-ADL
WhitePaper, vol. 1 (2013)

8. Cuenot, P., Chen, D., Gerard, S., Lonn, H., Reiser, M.-O., Servat, D.,
Sjostedt, C.-J., Kolagari, R.T., Torngren, M., Weber, M.: Managing complexity
of automotive electronics using the EAST-ADL. In: 12th IEEE International Con-
ference on Engineering Complex Computer Systems, pp. 353–358. IEEE (2007)

9. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

10. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

11. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of herschel-
planck revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012)

12. Feng, L., Chen, D., Lönn, H., Torngren, M.: Verifying system behaviors in EAST-
ADL2 with the SPIN model checker. In: International Conference on Mechatronics
and Automation, pp. 144–149 (2010)

13. Kang, E.-Y., Enoiu, E.P., Marinescu, R., Seceleanu, C., Schobbens, P.-Y.,
Pettersson, P.: A methodology for formal analysis and verification of EAST-ADL
models. Reliab. Eng. Syst. Saf. Int. J. 120, 127–138 (2013)

14. Mallet, F., Peraldi-Frati, M.-A., André, C.: Marte CCSL to execute EAST-ADL
timing requirements. In: International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, pp. 249–253. IEEE (2009)

15. Qureshi, T.N., Chen, D.-J., Persson, M., Trngren, M.: On integrating EAST-
ADL and UPPAAL for embedded system architecture verification. In:
Sangiovanni-Vincentelli, A. (ed.) Embedded Systems Development, vol. 20. Sprin-
ger, New York (2014)

Specifying and Verifying Concurrent
C Programs with TLA+

Amira Methni1,4(B), Matthieu Lemerre2, Belgacem Ben Hedia1,
Serge Haddad3, and Kamel Barkaoui4

1 Embedded Real-Time System Lab, CEA, LIST, 91191 Gif-sur-yvette, France
{amira.methni,belgacem.ben-hedia}@cea.fr

2 Software Safety Lab, CEA, LIST, 91191 Gif-sur-yvette, France
matthieu.lemerre@cea.fr

3 LSV, ENS Cachan, CNRS&INRIA, Paris, France
haddad@lsv.ens-cachan.fr

4 CNAM, CEDRIC, Paris, France
barkaoui@cnam.fr

Abstract. Verifying software systems automatically from their source
code rather than modelling them in a dedicated language gives more con-
fidence in establishing their properties. Here we propose a formal spec-
ification and verification approach for concurrent C programs directly
based on the semantics of C. We define a set of translation rules and
implement it in a tool (C2TLA+) that automatically translates C code
into a TLA+ specification. The TLC model checker can use this specifica-
tion to generate a model, allowing to check the absence of runtime errors
and dead code in the C program in a given configuration. In addition, we
show how translated specifications interact with manually written ones
to: check the C code against safety or liveness properties; provide con-
currency primitives or model hardware that cannot be expressed in C;
and use abstract versions of translated C functions to address the state
explosion problem. All these verifications have been conducted on an
industrial case study, which is a part of the microkernel of the PharOS
real-time system.

1 Introduction

Most software systems like the Linux kernel or the Apache Webserver are imple-
mented in a low level language such as C, which is one of the most used pro-
gramming languages in industry. Verifying C code is challenging, in particular
due to the presence of pointers and pointer arithmetic.

Moreover, C software systems are often concurrent, and traditional testing
techniques are not efficient to check the correctness of the implementation. Thus,
the use of formal verification techniques is essential. We address these issues in
the context of formal verification of operating systems microkernels written in
C code. In this paper, we focus on the model checking technique, a popular tech-
nique for the verification of correctness properties of finite-state systems. Given
a set of properties expressed in a temporal logic and a model, it automatically
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 206–222, 2015.
DOI: 10.1007/978-3-319-17581-2 14

Specifying and Verifying Concurrent C Programs with TLA+ 207

analyzes the state space of the model and checks whether the model satisfies
the properties [6]. To apply this technique to the verification of C programs,
the target modeling language should express all C features, handle concurrency,
allow to state the properties that we want to verify, and its tools should scale
up to large systems.

Contribution. Our main contribution is to provide a formal specification and
verification approach of C concurrent programs, based on both axiomatic (e.g.,
pre-post conditions) and operational (executable model) specification of a C imple-
mentation. We use TLA+ [17] as a formal specification language for writing our
specifications. In this approach, we translate a C code to an executable TLA+
specification using the C2TLA+ tool that we present in the paper. The gener-
ated specifications can be checked for runtime errors in the C code. We show how
the specifications thus generated can be completed with manually written TLA+
specifications: to provide concurrency primitives, to model hardware that cannot
be expressed in C, to check the C code against safety or liveness properties and to
provide an abstract operational specification. In the latter case, the operational
specification can be used in place of the C code in order to verify the whole sys-
tem. Preliminary experiments hint that this could considerably lessen the state
explosion problem. These examples are presented in a concrete case study, which
is part of the microkernel of the real-time operating system PharOS [19].

Outline. The rest of the paper is organized as follows. We discuss related work
in Sect. 2. We give an overview of TLA+ in Sect. 3. Section 4 presents the global
approach and focus on the translation from C to TLA+. Section 5 presents a
concrete application of the approach on the case study. Section 6 concludes and
presents future research directions.

2 Related Work

There are a variety of formal verification techniques. Among them there are
deductive verification techniques using theorem proving such as VCC [7]. These
techniques provide a rigorous approach but usually require a lot of human effort
and user expertise. Model checking is an automatic technique which requires less
human effort because it is fully automated once the system and its properties are
specified. But, it is restricted to finite-state systems. In what follows we focus
on the model checking tools for C programs related to our work.

SLAM [2] was the first model checker for C programs to implement the
Counterexample Guided Abstraction Refinement (CEGAR) approach [5]. This
approach has been used later in the BLAST [11] toolkit. SLAM and BLAST
have been used to check device drivers but they are only used for sequential
C programs.

Besides CEGAR based tools, an approach consists to transform the C code
into the input language of a model checker. Modex [14] can automatically extract
a Promela model from a C code implementation. The Promela code generated

208 A. Methni et al.

is then checked with the SPIN [12] model checker. Promela is a simple lan-
guage that does not handle pointer and has no procedure calls. Modex handles
these missing features by including embedded declarations and statements inside
Promela specifications. The embedded code fragments can not be checked by the
SPIN and can contain a division by zero error, or null pointer dereference. To
mitigate this problem, Modex instruments additional checks using assertions.
But, not all errors can be anticipated and the model checker can crash [13].

CBMC [4] is a bounded model checker for ANSI C programs that translates
a program into a formula (in Static Single Assignment form) which is then fed
to a SAT or SMT solver to check its satisfiability. It can be used to verify array
bounds, pointer safety, exceptions and user-specified assertions. On the other
hand, CBMC explores program behavior exhaustively but only up to a given
depth, i. e., it is restricted to programs without deep loops [10]. PlusCal [18] is
a high-level language for expressing multiprocess algorithms. A PlusCal algo-
rithm can be automatically translated into a TLA+ specification. PlusCal-2 [1]
improves Lamport’s PlusCal language by adding new constructs like hierarchi-
cal processes and specifying atomicity for some part of the code. Moreover, it
does not support some constructs of imperative programming like pointer-based
structures and does not handle function calls. PlusCal is also an algorithm lan-
guage that can be used to replace pseudo code but cannot be used in the final
implementation.

In this work, we use TLA+ as formal framework which provides an expressive
power to specify the semantics of a programming language. It is supported by
the TLC model checker and the TLAPS [8] prover. Moreover, TLA+ is a logic
that can reason about concurrent systems and can express safety and liveness
properties unlike SLAM, BLAST and CBMC which have limited support for
concurrent properties as they only check safety properties. Furthermore, TLA+
provides a mechanism for structuring large specifications using a refinement
process between different levels of abstraction unlike Spin and CBMC.

3 An Overview of TLA+

TLA+ [17] is the specification language of the Temporal Logic of Actions (TLA).
TLA is a variant of linear temporal logic introduced by Lamport [16] for spec-
ifying and reasoning about concurrent systems. The syntax of TLA is given in
Fig. 1 (the symbol � means equal by definition). Readers interested in a more
detailed presentation of TLA+ can refer to Lamport’s book [17].

TLA+ specifies a system by describing its possible behaviors. A behavior is
an infinite sequence of states. A state is an assignment of values to variables.
A state function is a nonboolean expression built from constants, variables and
constant operators and it assigns a value to each state. For example, y + 2 is a
state function that assigns to state s two plus the value that s assigns to the
variable y . An action is a boolean expression containing constants, variables
and primed variables (adorned with “′” operator). Unprimed variables refer to
variable values in the actual state and primed variables refer to their values in

Specifying and Verifying Concurrent C Programs with TLA+ 209

Fig. 1. TLA syntax [17]

the next-state. Thus, an action represents a relation between old states and new
states. A state predicate (or predicate for short) is an action with no primed
variables.

TLA+ formulas are built up from actions and predicates using boolean oper-
ators (¬ and ∧ and others that can be derived from these two), quantification
over logical variables (∀,∃), and the unary temporal operator � (always) of
linear temporal logic [20].

The behaviors satisfying this specification are the ones that represent correct
behaviors of the system, where a behavior represents a conceivable history of a
universe that may contain the system.

The predicate “enabled A”, where A is an action, is defined to be true in
a state s iff there exists some state t such that the pair of states 〈s, t〉 satisfies
A. The formula [A]vars , where A is an action and vars the tuple of all system
variables, is equal to (A∨ (vars ′ = vars)) where vars ′ is the expression obtained
by priming all variables in vars. It asserts that every step (pair of successive
states) is either an A step or else leaves the values of all variables vars unchanged.
TLA+ defines the abbreviation “unchanged vars” to denote that vars ′ = vars.
While TLA+ permits a variety of specification styles, the specification that we
use is defined by:

Spec � Init ∧ �[Next]vars ∧ Fairness (1)

where:

– Init is a state predicate describing the possible initial states by assigning
values to all system variables,

– Next is an action representing the program’s next-state relation,
– vars is the tuple of all variables,
– Fairness is an optional formula representing weak or strong assumptions about

the execution of actions.

Formula Spec is true of a behavior σ iff Init is true of the first state of σ and
every step of σ is either a Next step or a “stuttering step”, in which none of the
specified variables change their values, and Fairness holds.

The TLA+ formula Spec ⇒ φ is valid when the model represented by Spec
satisfies the property φ, or implements the model φ.

TLA+ has a model checker called TLC that can be used to check the validity
of safety and liveness properties. TLC handles specifications that have the stan-
dard form of the formula (1). It requires a configuration file which defines the

210 A. Methni et al.

Fig. 2. Specification and verification process

finite-state instance to analyze. TLC begins by generating all states satisfying
the initial predicate Init . Then, it generates every possible next-state t such that
the pair of states 〈s, t〉 satisfies Next and the Fairness constraints, looking for a
state where an invariant is violated. Finally, it checks temporal properties over
the state space.

4 Specification and Verification Process

4.1 Proposed Approach

Approach Workflow. The specification and verification process is illustrated in
Fig. 2. The first step of the process is to translate from an implementation
provided by one or more .c files a TLA+ specification using our translator
C2TLA+. Before translation, the C files are parsed and normalized according
to CIL (C Intermediate Language) [21]. Normalization to CIL makes programs
more amenable to analysis and transformation. In particular, all expressions
containing side-effects are put into separate statements (introducing temporary
variables); initializers for local variables are turned into assignments; all forms of
loops (while, for and do-while) are normalized as a single while(1) looping
construct plus explicit goto statement.

After obtaining the Abstract Syntax Tree (AST) of the C program, C2TLA+
generates the TLA+ specification according to a set of translation rules described
in Subsect. 4.2. The whole system is composed of TLA+ modules resulting from
C translation or manual specification that come from different sources:

– Several standard modules are provided with TLA+. They contain the defini-
tion of basic operators. Like Head, Tail, Len (for length), ◦ (for concatenation),
and SubSeq (for subsequence) that are defined in Sequences module.

Specifying and Verifying Concurrent C Programs with TLA+ 211

– The Runtime module contains the TLA+ definition of arithmetic, logical and
relational operators used by C2TLA+, as well as the definition of load() and
store() for loading/storing an lvalue in the memory.

– Modules resulting from translation. C2TLA+ generates for each .c file a
TLA+ module and the Parameters module which contains the definition of
constants, type sizes, offsets of member fields and variables used by the trans-
lation. It also defines the initial predicate Init , the action Next and the speci-
fication formula Spec. For simplicity, we assume that the size of an integer or
a pointer is 1 (one memory cell).

– Optional manual modules can be specified by the user. They provide concur-
rency primitives or hardware that can not be expressed in C, or an abstract
model.

The set of properties is manually specified. Then, all the modules are inte-
grated to form the complete specification, which is given to TLC to generate the
model and check the properties (or refinements) to be verified. If a property is
not satisfied, TLC reports a trace that leads to the bad state. TLC also provides
coverage information, i. e., the number of times each action was “executed” to
construct a new state. Using this information, we can identify actions that are
never “executed” and which might indicate an error in the specification. Both
the trace and coverage information can be translated back to C.

The Considered Subset of C. We restrict ourselves to a subset of C resulting
from the simplifications done by CIL. Table 1 gives the BNF representation of
the AST of CIL for this subset. The considered aspects include basic data-types
(int, struct, enum), integer operations, arrays, pointers, pointer arithmetic, all
kinds of control flow statements, function calls and recursion. Currently, we do
not handle float types, non-portable conversions between objects of different
types, dynamic allocation, function calls through pointers, and assignment of
structs (not needed by our case study), but the translator could be updated to
handle them.

4.2 Memory Layout of Concurrent C Program

A concurrent program consists in several interleaved sequences of operations
called processes (corresponding to threads in C). C2TLA+ attributes a unique
identifier to each process, and defines the constant ProcSet to be the set of all
process identifiers.

The memory layout of a C program in C2TLA+ is organized into four regions:

– A region that contains global (and static) variables. This region is represented
by a an array, called mem, that maps addresses to values. This memory region
is shared by all processes.

– A region that contains local variables and function parameters. It is rep-
resented by the TLA+ variable stack data. This region is represented by a
2-dimensional array: one dimension corresponds to the process id (the stack

212 A. Methni et al.

Table 1. BNF representation of the AST of CIL for the considered subset of C (The
symbols +pa/−pp denote the addition/substraction between a pointer and an integer.

−pp
denotes the substraction between two pointers. ε is a terminal symbol that denotes

an empty element).

is not shared between processes); the other to addresses (i. e., offsets in the
stack). The stack of each function is divided into stack frames whose bound-
aries (for each process) are given in another variable, stack regs. Each stack
frame corresponds to a call to a function which has not yet returned. Note that
this representation allows a function to access variables in its callers (through
pointers), which is frequent in C.

– A region that stores the program counter of each process; i .e., which statement
is being executed. This information needs to be saved and restored on function
calls and returns. Rather than saving the program counter together with the
data (in the stack data variable), we find it simpler to organize the registers of
the program as a stack. We define the TLA+ variable stack regs, associating
to each process a stack of records. Each record contains two fields:

• pc, the program counter, points to the current statement of the function
being executed, represented by a tuple 〈function name, label〉;

• fp, the frame pointer, contains the base offset of the current stack frame.
Note that we do not need to store the stack pointer, which is already given using
“Len(stack data)”. Each element of the stack of records represents the registers
of a function in the callstack; in particular, “Head(stack regs[id])” represents
the registers of the function being currently executed by the process id .

– A region that contains the values returned by a process. It is modeled using
an array called ret, indexed by the process identifier.

C2TLA+ maps each C variable to unique TLA+ constant modeled by a
record composed with two fields. The first one, loc, determines the memory region

Specifying and Verifying Concurrent C Programs with TLA+ 213

(a) C code (b) Memory representation

Fig. 3. Example of a C code in which one process (with id equals 0) executes function
P0() and the second one executes function P1(). The arrows in the C code indicate
which statement the process id is executing. The top of the stack regs[0] indicates that
process 0 is executing the statement with label 9 of function max().

where the variable is stored (mem or stack data). The other one, offs, defines
the offset of the data in the memory region. Fig. 3 provides a snapshot of the
memory on a C code example. The TLA+ expression [loc
→ ”mem”, offs
→ 0]
denotes the record Addr x such that Addr x.loc equals ”mem” and Addr x.offs
equals 0. offs for a local variable is relative to the start of the stack frame of the
current function, while offs for a global variable is the absolute index in mem.

C2TLA+ assigns to global (and static) variables not explicitly initialized
the value 0 for integers, and [loc
→ Null , offs
→ Null] for pointers. For local
variables, it assigns the Undef value. Null and Undef are TLA+ “model values”,
which are an unspecified values that TLC considers to be unequal to any value
that can be expressed in TLA+.

Loading and Assignment. An lvalue is a kind of expression that is evaluated to
an address and which refers to a region of storage. Accessing the value stored in
this region is performed using the load() operator (defined in Fig. 4) which uses
the TLA+ construct if/then/else.

The left-hand operand of an assignment must be an lvalue. The assign-
ment in C2TLA+ is performed by the store() operator defined in Fig. 5, which
assigns to the lvalue ptr the value of the right-hand operand of the assignment.

214 A. Methni et al.

load(id, ptr)
Δ
= if ptr .loc = “mem” then mem[ptr .offs]

else stack data[id][Head(stack regs[id]).fp + ptr .offs]

Fig. 4. Definition of load() operator

The expression [mem except ![ptr .offs] = value] denotes the function that is
equal to mem except that it maps the value of ptr .offs to value.

store(id, ptr , value)
Δ
=

∨ ∧ ptr .loc = “mem”
∧ mem′ = [mem except ! [ptr .offs] = value]
∧ unchanged stack data

∨ ∧ ptr .loc = “stack data”
∧ stack data′ = [stack data except ! [id][Head(stack regs[id]).fp + ptr .offs] = value]
∧ unchanged mem

Fig. 5. Definition of store() operator

The position of a parameter or local variable in stack data[id] is relative
to the base of the stack frame of the current function, which equals to Head
(stack regs[id]).fp.

Arrays, Pointer Arithmetic and Structure Member. Accessing an array element
in C2TLA+ requires computing the offset using the size of the elements, the
index and the base address of the array. For example, accessing to z[a] is trans-
lated into:

load(id, [loc �→ Addr z .loc, offs �→ (Addr z .offs + (load(id,Addr a) ∗ Size of int))])

The same kind of computation is used to perform pointer arithmetic. Simi-
larly, accessing a structure member is achieved by shifting the base address of
the structure with the constant accumulated size of all previous members. For
example, accessing to point.y is translated into:

load(id, [loc �→ Addr point.loc, offs �→ (Addr point.offs + Offset point y)])

4.3 Intra-procedural Control Flow

Function Definition. Each C function definition is translated into an operator
with the process identifier id as argument. The function body is translated into
the disjunction of the translation of each statement it contains. A C statement
is translated into the conjunction of actions that are done simultaneously. At
a given state one and only one action is true (i. e., feasible). The translation of
function dec() of the example is as follows:

Specifying and Verifying Concurrent C Programs with TLA+ 215

dec(id) � ∨ ∧ Head(stack regs[id]).pc = 〈“dec”,“lbl 19” 〉
∧ store(id, Addr dec i,minus(load(id, Addr y), load(id, Addr dec param b)))
∧ stack regs′ = [stack regs except ! [id] =

〈[pc �→ 〈“dec”, “lbl 20”〉, fp �→ Head(stack regs[id]).fp]〉 ◦ Tail(stack regs[id])]
∧ unchanged 〈ret〉

∨ ∧ Head(stack regs[id]).pc = 〈“dec”,“lbl 20”〉
∧ stack regs′ = ...

The translation of each statement s simultaneously asserts that the program
counter points to s; performs the action corresponding to that statement; and
updates the program counter to point to the next statement to execute.

Jump Statements. The translation of goto/break/continue statements consists
in updating stack regs[id] to the successor statement. The goto l1 statement
in function max() is translated as:

∨ ∧ Head(stack regs[id]).pc = 〈“max”, “lbl 10”〉
∧ stack regs′ = [stack regs except ! [id] =

〈[pc �→ 〈“max”, “lbl 12”〉, fp �→ Head(stack regs[id]).fp]〉 ◦ Tail(stack regs[id])]
∧ unchanged 〈mem, stack data, ret〉

Selection Statements. C integer expressions used in if condition are normal-
ized by C2TLA+. Selection statement causes the program control (i. e., stack
regs[id]) to be transferred to a specific block based upon whether the guard
expression is true or not. The translation of if statement in function max() is
as follows:

∨ ∧ Head(stack regs[id]).pc = 〈“max”, “lbl 9”〉
∧ if ((Gt(load(id, Addr max param u)), (load(id, Addr max param v))) �= [val �→ 0])
then stack regs′ = [stack regs except ! [id] =

〈[pc �→ 〈“max”, “lbl 10”〉, fp �→ Head(stack regs[id]).fp]〉 ◦ Tail(stack regs[id])]
else stack regs′ = [stack regs except ! [id] =

〈[pc �→ 〈“max”, “lbl 11”〉, fp �→ Head(stack regs[id]).fp]〉 ◦ Tail(stack regs[id])]
∧ unchanged 〈mem, stack data, ret〉

Iteration Statement. All loops in C are normalized by CIL as a single while(1)
looping construct (plus eventual if and break statements), that we translate
like other jump statements.

4.4 Inter-procedural Control Flow

Function Call. The function call is translated in two actions. Before calling a
function f , its stack frame is pushed onto the stack data[id] which obeys the
LIFO order. The stack regs[id] is updated by changing its head to a record
whose pc field points to the action done once the call has finished. At the top
of stack regs[id] is pushed a record with pc pointing to the first statement of
the called function, and fp to the new stack frame. Once the function returns,
the second action copies the return value. For instance, the translation of r1 =
dec(2) is as follows:

216 A. Methni et al.

∨ ∧ Head(stack regs[id]).pc = 〈“P1”, “lbl 30”〉
∧ stack data′ = [stack data except ! [id] = stack data[id] ◦ 〈[val �→ 2], [val �→ Undef]〉]
∧ stack regs′ = [stack regs except ! [id]

= 〈[pc �→ 〈“dec”,“lbl 19”〉,fp �→ Len(stack data[id]) + 1] 〉
◦ 〈[pc �→ 〈“P1”, “lbl 30.1”〉, fp �→ Head(stack regs[id]).fp]〉 ◦ Tail(stack regs[id])]

∧ unchanged 〈mem, ret〉
∨ ∧ Head(stack regs[id]).pc = 〈“P1”, “lbl 30.1”〉

∧ store(id, Addr P1 r1, ret[id])
∧ stack regs′ = [stack regs except ! [id] =

〈[pc �→ 〈“P1”, “lbl 31”〉, fp �→ Head(stack reg[id]).fp]〉 ◦ Tail(stack regs[id])]
∧ unchanged 〈ret〉

Return Statement. Once the function returns, the top of the stack regs[id] is
popped and its stack frame is removed from stack data[id] using the SubSeq
operator. The returned value is stored on ret[id]. The return i statement of
function dec() is translated as follows:

∨ ∧ Head(stack regs[id]).pc = 〈“dec”, “lbl 20”〉
∧ stack regs′ = [stack regs except ! [id] = Tail(stack regs[id])]
∧ stack data′ = [stack data except ! [id] =

SubSeq(stack data[id], 1,Head(stack regs[id]).fp − 1)]
∧ ret′ = [ret except ! [id] = load(id, Addr dec i)]
∧ unchanged 〈mem〉

4.5 Generating the Specification

In addition to generating constants and variables declarations, C2TLA+ also
defines in Parameters module the main specification by generating:

– The Init predicate that initializes all variables of the system.
– The tuple of all variables vars Δ= 〈mem, stack data, stack regs, ret〉.
– process(id), that defines the next-state action of process id . It asserts that

one of the functions is being executed until stack regs[id] becomes empty. For
the C code example, it is defined as:

process(id)
Δ
= ∧ stack regs[id] �= 〈〉

∧(max(id) ∨ inc(id) ∨ dec(id) ∨ P0(id) ∨ P1(id))

– The next-state action Next of all processes, that states that one of the process
that has not finished is nondeterministically chosen to execute one step.

Next
Δ
= ∨ ∃ id ∈ ProcSet : process(id)

∨(∀ id ∈ ProcSet : (stack regs[id] = 〈〉)∧ (unchanged vars))

– The complete specification Spec Δ= Init ∧ �[Next]vars ∧ WFvars(Next). It is
necessary to consider the fairness assumptions if we want to check liveness
properties. We assume only weak fairness assumptions.

The specification can be checked by TLC without manually defining anything
by the user. Errors that occur because TLC could not evaluate an expression
correspond to a runtime error in the C code, like dereferencing a null pointer,

Specifying and Verifying Concurrent C Programs with TLA+ 217

and are reported to the user. C2TLA+ also generates the Termination property
which asserts that all processes have their stack pointer eventually empty. This
property is useful in some test cases.

Termination
Δ
=♦(∀ id ∈ ProcSet : Head(stack regs[id]).pc = 〈〉)

5 Implementation and Experiments

C2TLA+ is developed as a Frama-C [9] plugin, implemented in OCaml. Frama-
C uses CIL to reorganize and simplify C code, produces an Abstract Syntax Tree
(AST) and passes it to the C2TLA+ translator. We have used C2TLA+ in a case
study, described in Sect. 5.1. We use this case study as an example to describe
the interactions between generated specifications and manually specified ones.

5.1 Case Study Description

We have applied our approach and tools (C2TLA+, TLC) on a critical part of the
microkernel of the PharOS [19] real-time operating system (RTOS). This part
contains approximately 600 lines of code and consists in a distributed version of
the scheduling algorithm of the RTOS tasks. It implements a variant of the EDF
(Earliest-Deadline First) scheduling algorithm. It runs on a dual-core system and
consists of two processes: one running on the control core and the other on the
executing core. The two processes share a set of task lists. Concurrent access
to shared data is ensured by lock-free synchronization. Figure 6(a) presents the
architecture of the modules of the microkernel that are of interest to us:

date provides the current date of the system. The considered implementation
uses Lamport’s algorithm of concurrent reading and writing of clocks [15].
This allows to read a concrete clock value, even if this value is concurrently
updated.

spinlock implements lock-based concurrency primitive using “compare-and-
swap” primitive.

tasklist implements the life-cycle of a task as given in Fig. 6(b). Tasks can
be in several states, each state corresponds to a data structure listing the
tasks in that state. The incoming/outgoing edge denotes insertion/removal
operation. Tasks are characterized by their start time and deadline.

scheduler is at the top-level. It performs inter-core notifications to awake proce-
sses when they have things to do. This module is not considered in translation
because we do not provide support for interruptions yet.

5.2 TLA+ Modules of the Model

C2TLA+ takes as inputs the C source code of these modules. By applying our
approach, we obtain the TLA+ modules of Fig. 7.

C2TLA+ generates the Parameters module and a TLA+ module for each C
input file. These modules can interact with manually specified TLA+ modules.

218 A. Methni et al.

(a) Modules dependencies (b) State-transition diagram of tasks

Fig. 6. Case study description

Fig. 7. TLA+ modules of the case study

Test Environment. The test environment represents the entry point of the
model. It simulates the main scheduler module by calling the tasklist API and
it is manually specified in the TestEnvironment TLA+ module.

Interacting with Manually TLA+ Specifications.

Specifying Concurrency Primitives. The spinlock module contains the definition
of “acquire” and “release” operations which use the “compare-and-swap” (CAS)
primitive. Fig. 8(a) shows the pseudo code version of this primitive. As this oper-
ation is performed atomically, we cannot translate it with C2TLA+. Such prim-
itives are specified manually, respecting the calling conventions of Subsect. 4.4
and are declared in the C code using attribute annotation mechanism
to define the TLA+ module where the primitives are specified. For instance,
CAS is specified in the Atomic primitives module as shown in Fig. 8(b). Other
primitives could be added to Atomic primitives which could be provided as a
standard module.

Using an Abstract Model. The implementation of read and write operations
on clock, in date module, is performed on several instructions. The possible
interleaving of these instructions multiplies the number of states of the model.
To cope with this problem, we write an abstract TLA+ version of date, called

Specifying and Verifying Concurrent C Programs with TLA+ 219

int CAS (int *,int , int) attribute
((Atomic primitives,alias("CAS")));
...
int CAS(int *addr, int old, int new)
{
atomic {
int temp = *addr;
if (temp == old)
{
*addr = new;
return 0;

}
else return 1;}

}
(a) Pseudo code

CAS(id)
Δ
=

∧ Head(stack regs[id]).pc = 〈“CAS”, “lbl 1”〉
∧ if (load(id, load(id, Addr CAS param addr)) =

load(id, Addr CAS param old))
then ∧ mem′ = [mem except

! [load(id, Addr CAS param addr).offs] =
load(id, Addr CAS param new)]
∧ ret′ = [ret except ! [id] = [val �→ 1]]

else ∧ ret′ = [ret except ! [id] = [val �→ 0]]
∧ unchanged 〈mem〉

∧ stack regs′ = [stack regs except ! [id] =
Tail(stack regs[id])]

∧ stack data′ = [stack data except ! [id] =
SubSeq(stack data[id], 1,Head(stack regs[id]).fp − 1)]

(b) TLA+ code

Fig. 8. CAS definition

Date abs which reads and writes the whole date atomically. Using this version
considerably decreases the state space (see Table 2). We also verify that Date
(the translated module) is a refinement of Date abs.

5.3 Specifying and Verifying Properties

We verified various properties of the system. Here we provide some examples.
We have checked that all spinlocks protect the critical sections, i. e., statements
of the two processes cannot be executed simultaneously.

Mutex(sc1, sc2)
Δ
=

�((Head(stack regs[“exec core”]).pc = sc1) ⇒ (Head(stack regs[“control core”]).pc �= sc2))

An important invariant of the system is that the tasks in the ready list are
sorted by their deadlines; this is necessary to implement the EDF algorithm. To
state this invariant, we first define a recursive operator getSeqDeadlines which
maps the C linked list to a more abstract TLA+ sequence. The property is sim-
pler to state on this abstract sequence by defining the IsSortedSeq() operator.

getSeqDeadlines[ptr ∈ SetAddr]
Δ
=

if (ptr �= [loc �→ Null, offs �→ Null])
then 〈load(id, [loc �→ ptr .loc, offs �→ (ptr .offs + Offset task deadline)])〉

◦ getSeqDeadlines[load(“unsued”, [loc �→ ptr .loc, offs �→ (ptr .offs + Offset task next)])]
else 〈〉

IsSortedSeq(S)
Δ
=

S �= 〈〉 ⇒ (∀ i ∈ 1 . . Len(S), j ∈ 1 . . Len(S) : (i �= j) ∧ (i ≤ j) ⇒ (S [i].val ≤ S [j].val))

The property applied on ready list is expressed as follows:

�IsSortedSeq(getSeqDeadlines[load(“unused”,Addr readyList)])

We have also checked some liveness properties, for instance, that if a thread
entered its critical section, it will eventually leave it. This property can be

220 A. Methni et al.

expressed by comparing the program counter of the process to the statement
labels of the functions “spinlock acquire” and “spinlock release”. For example,
for the executing core, the property is expressed as:

�((Head(stack regs[“exec core”]).pc = 〈”spinlock acquire”, ”lbl 2”〉) ⇒
♦(Head(stack regs[“exec core”]).pc = 〈”spinlock release”, ”lbl 15”〉))

In order to use the abstract model Date abs instead of Date, we have to
check that the Date model is a refinement of the Date abs model. For this, we
have to map states in Date model with those of Date abs model by substituting
constants and variables used in Date abs with those of Date. The refinement is
expressed in TLA+ as logical implication. Verifying this refinement is satisfying
that the specification of Date implies this substitution.

5.4 Verification and Discussion

We integrated the modules together and we performed model checking on two
complete specifications. The first specification uses the translated Date module
and the second one uses the abstract Date abs module. The experiment was
performed on an Intel Core Pentium i7-2760QM with 8 cores (2.40 GHz each)
machine, with 8 Gb of RAM memory. We model checked the two specifications
by considering four possible values of the clock. The executing core updates
the start time and deadline of the task that has run and inserts it into the
unsorted lists. Table 2 provides the generated states and the model checking
time according to the number of tasks, for the two considered specifications.

Table 2. Runtimes of model checking (time in seconds)

Tasks Specification using

Date Date abs

State space Time State space Time

1 5.986.509 227 718.084 20

2 >501.876.263 >10.800 5.450.732 64

3 - - 45.201.603 960

4 - - 138.679.106 2.400

For two tasks, the specification using Date module takes more than 3 h to
be model checked. Using an abstract model significantly reduces the size of the
state space and the time required for model checking.

We have successfully checked that the correctness properties (defined in Sub-
Sect. 5.3) are satisfied by the model. One of the motivations for verifying this
code was to check that the fine-grained locking constructs were properly used.
We checked that changing the locks in the source code leads to TLC finding

Specifying and Verifying Concurrent C Programs with TLA+ 221

that some invariants become violated. In that case, we obtain the error trace
that explains how the error can happen and TLC reports that the coverage is
incomplete.

6 Conclusion and Future Work

We have sketched an approach for specifying and verifying C code based on an
automated translation from C to TLA+. The main advantage of our approach
is the ability to make generated TLA+ specifications from a C implementa-
tion interact with more abstract, potentially already existing manually specified
TLA+ specifications. We use the TLC model checker to verify a part of the
implementation of an RTOS microkernel against safety and liveness properties
expressed in TLA+. We also checked that a generated specification was a refine-
ment of an abstract TLA+ specification, and showed that we could successfully
use abstraction to reduce the size of the state space.

We plan to extend this work on several interesting directions. We would
like to extend the translator to handle a bigger subset of C and to generate
TLA+ properties from the ACSL [3] specification language used in Frama-C.
We want to update the translator so that the generated TLA+ specification
catches all C runtime errors. It would be interesting to benefit from Frama-C
analysis of shared variables by several processes to generate TLA+ code with
less interleaving between the processes, to reduce the state space. We also plan
to further study the use of TLA+ modules with different levels of refinement.
Finally, we aim to use the TLA+ proof system [8] to prove properties on an
abstract specification of PharOS and prove that the specification generated by
C2TLA+ is a refinement of this abstract specification.

References

1. Akhtar, S., Merz, S., Quinson, M.: A high-level language for modeling algorithms
and their properties. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527, pp. 49–63.
Springer, Heidelberg (2011)

2. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. SIGPLAN Not. 37(1), 1–3 (2002)

3. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, version 1.4 (2009). http://frama-c.cea.fr/
acsl.html

4. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

6. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

http://frama-c.cea.fr/acsl.html
http://frama-c.cea.fr/acsl.html

222 A. Methni et al.

7. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

8. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA+ Proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 147–154. Springer, Heidelberg (2012)

9. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C: a software analysis perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer,
Heidelberg (2012)

10. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. (TCAD) 27(7), 1165–1178 (2008)

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 235–239. Springer, Heidelberg (2003)

12. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

13. Holzmann, G.J.: Trends in software verification. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 40–50. Springer, Heidelberg (2003)

14. Holzmann, G.J., Smith, M.H.: An automated verification method for distributed
systems software based on model extraction. IEEE Trans. Soft. Eng. 28, 364–377
(2002)

15. Lamport, L.: Concurrent reading and writing of clocks. ACM Trans. Comput. Syst.
8(4), 305–310 (1990)

16. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994)

17. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, MA (2002)

18. Lamport, L.: The PlusCal algorithm language. In: Leucker, M., Morgan, C. (eds.)
ICTAC 2009. LNCS, vol. 5684, pp. 36–60. Springer, Heidelberg (2009)

19. Lemerre, M., Ohayon, E., Chabrol, D., Jan, M., Jacques, M.B.: Method and
tools for mixed-criticality real-time applications within PharOS. In: Proceedings
of AMICS 2011: 1st International Workshop on Architectures and Applications for
Mixed-Criticality Systems (2011)

20. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

21. Necula, G.C., Mcpeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: International Confer-
ence on Compiler Construction. pp. 213–228 (2002)

Formal Modeling and Verification of Interlocking
Systems Featuring Sequential Release

Linh H. Vu1(B), Anne E. Haxthausen1, and Jan Peleska2

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{lvho,aeha}@dtu.dk

2 Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

jp@informatik.uni-bremen.de

Abstract. In this paper, we present a method and an associated tool
suite for formal verification of the new ETCS level 2 based Danish rail-
way interlocking systems. We have made a generic and reconfigurable
model of the system behavior and generic high-level safety properties.
This model accommodates sequential release – a feature in the new Dan-
ish interlocking systems. The generic model and safety properties can be
instantiated with interlocking configuration data, resulting in a concrete
model in the form of a Kripke structure, and in high-level safety prop-
erties expressed as state invariants. Using SMT based bounded model
checking (BMC) and inductive reasoning, we are able to verify the prop-
erties for model instances corresponding to railway networks of industrial
size. Experiments also show that BMC is efficient for finding bugs in the
railway interlocking designs.

Keywords: Railway interlocking systems · Formal verification · Boun-
ded model checking · Inductive reasoning · RobustRails · Safety-critical
systems

1 Introduction

An interlocking system is responsible for guiding trains safely through a given
railway network. It is a vital part of any railway signaling system and has the
highest safety integrity level (SIL4) according to the CENELEC 50128 stan-
dard [5]. Conventionally, the development and verification process of interlock-
ing systems is informal and mostly manual, hence time-consuming, costly, and
error-prone. Thus, automated verification of interlocking systems is an active
research topic, investigated by several research groups, see e.g. [8–10,14,15,23].
As part of the RobustRailS research project1, our work aims at establishing a

L.H. Vu and A.E. Haxthausen—The authors’ research has been funded by the Robus-
tRailS project granted by the Danish Council for Strategic Research.
J. Peleska—The author’s research has been partially funded by ITEA2 project
openETCS under grant agreement 11025.

1 http://robustrails.man.dtu.dk.

c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 223–238, 2015.
DOI: 10.1007/978-3-319-17581-2 15

http://robustrails.man.dtu.dk

224 L.H. Vu et al.

holistic method supporting the verification of such systems. The method should
be formal and facilitate automation in order to provide a better verification
process compared to the conventional one. In Denmark, in the period of 2009–
2021, new interlocking systems that are compatible with standardized European
Train Control System (ETCS) Level 2 [4] will be deployed in the entire coun-
try within the context of the Danish Signalling Programme2. In the context of
the RobustRailS project accompanying the signalling programme on a scientific
level, the proposed method will be applied to these new systems.

The main contributions presented in this paper are as follows. (1) We present
a formal model of the behavior of ETCS Level 2 compatible interlocking systems.
(2) The model accommodates sequential release: this is a method for incremen-
tally releasing route portions that have been traversed by the associated train,
with the objective to increase the level of concurrency in route allocation and,
consequently, the train throughput. (3) The state space encodings allow for high-
level safety properties and state transition relations to be processed in a highly
efficient manner by SMT solvers supporting bit vector and integer arithmetics.
(4) A verification technique combining induction with bounded model checking
(BMC) using novel SMT solvers enables the verification of safety properties for
railway network instances of industrial size.

The paper is organized as follows: Sect. 2 gives a brief introduction to the
new Danish route-based interlocking systems. The proposed method is described
in Sect. 3. Section 4 presents the formal, generic model in the form of a Kripke
structure, while the safety properties are formalized in Sect. 5. Section 6 describes
the verification strategy. The experimental results are shown in Sect. 7. Related
work and concluding remarks are presented in Sects. 8 and 9, respectively.

2 The New Danish Route-Based Interlocking Systems

A railway network in ETCS Level 2 consists of a number of track-side elements of
different types3: linear sections, points, marker boards. Figure 1 shows an exam-
ple layout of a railway network having six linear sections (b10,t10,t12,t14,t20,
b14), two points (t11,t13), and eight marker boards (mb10..mb21). A linear
section is a section with up to two neighbors: one in the up end, and one in the
down end4, e.g. the linear section t12 in Fig. 1 has t13 and t11 as neighbors at
its up end and down end, respectively. A point can have up to three neighbors:
one at the stem, one at the plus end, and one at the minus end, e.g. point t11
in Fig. 1 has t10, t12, and t20 as neighbors at its stem, plus, and minus ends,
respectively. Linear sections and points are collectively called detection sections,
as they are used by interlocking systems to detect the presence of trains in a rail-
way network. A point can be switched between two positions: PLUS and MINUS.

2 http://www.bane.dk/signalprogrammet.
3 Here we only show types that are relevant for the work presented in this paper.
4 In Denmark, up and down denote the directions in which the distance from a refer-

ence location is increasing and decreasing, respectively. The location is the same for
both up and down, e.g. an end of a line.

http://www.bane.dk/signalprogrammet

Formal Modeling and Verification of Interlocking Systems 225

When it is in the PLUS (MINUS) position, traffic can run from its stem to its
plus (minus) end and vice versa. A marker board is installed along a section,
and it is used as reference location for an intended travel direction that it is fac-
ing, e.g. mb13 in Fig. 1 is installed along section t12, and it is intended for travel
direction up. Contrary to legacy systems, in ETCS Level 2, there are no physical
signals, but virtual signals associated with marker boards. A virtual signal can
be OPEN or CLOSED, respectively, allowing or disallowing traffic to pass the
associated marker board. For simplicity, the terms virtual signals, signals, and
marker boards are used interchangeably throughout this paper.

Fig. 1. An example railway network layout

An interlocking system monitors constantly the status of track-side elements,
and sets them to appropriate states in order to allow trains traveling safely
through the given railway network. The new Danish interlocking systems are
route-based. An interlocking table specifies the routes in the given network layout
and the conditions for setting these routes. A route is a path from a source signal
to a destination signal.

In railway signaling terminology, setting a route denotes the process of allo-
cating the resources – i.e. sections, points, signals – for the route, and then
locking it exclusively for only one train when the resources are allocated. The
specification of a route and conditions for setting and releasing it include the
following information: (a) a list of the detection sections in the route’s path, (b) a
list of the detection sections which are used as overlaps – buffer space in case
trains overshoot the route’s path, (c) required positions of points5 used by the
route, (d) a set of protecting signals used for flank or front protection [19] for
the route, and (e) a set of conflicting routes which must not be set while the
current route is set.

Table 1 shows an excerpt of an interlocking table for the network shown in
Fig. 1. As can be seen, one of the routes has id 1a, goes from mb10 to mb13
via three sections t10, t11 and t12, and has no overlap. It requires point t11
(on its path) to be in PLUS position and point t13 (outside its path) to be in
MINUS position (as a protecting point). The route has mb11, mb12 and mb20 as
protecting signals, and it is in conflict with routes 1b, 2a, 2b, 3, 4, 5a, 5b, 6b,
and 7.

5 This includes points in the path and overlaps, and points used for flank and front
protection. For detail about flank and front protection, see [19].

226 L.H. Vu et al.

Table 1. Excerpt of the interlocking table for the network layout in Fig. 1. The overlaps
column is omitted as it is empty for all of the routes. (p means PLUS, m means MINUS.)

Id Source Dest. Points Signals Path Conflicts

1a mb10 mb13 t11:p;t13:m mb11;mb12;mb20 t10;t11;t12 1b;2a;2b;3;4;5a;5b;6b;7

..

7 mb20 mb11 t11:m mb10;mb12 t11;t10 1a;1b;2a;2b;3;5b;6a

Interlocking Principles. In order to prevent collision and derailment of trains,
traditional route-based interlocking systems employ a basic principle: a route is
locked exclusively for use of one train at a time. This is obtained by following
a strict procedure for setting and releasing routes based on information in their
interlocking tables. As an example, let us consider the following procedure for
route 1a specified in Table 1:

(0) Initially the route is free.
(1) When a request for setting the route is received by the interlocking system,

the route is marked as requested.
(2) The interlocking system checks the status of different track-side elements in

the system to figure out whether it can start allocating resources for route
1a, e.g. sections t10, t11 and t12 must be vacant, and conflicting routes
must not be allocated or locked. If so, the interlocking commands points and
signals to their required positions according to the route’s specification, e.g.
it commands the point t11 to switch to PLUS, t13 to switch to MINUS,
and the protecting signals mb11, mb12 and mb20 to change to CLOSED.

(3) The interlocking system constantly monitors the status of the track-side
elements. When the signals and points have changed their states as com-
manded in step 2, the route is locked and its source signal mb10 is set to
OPEN, allowing a train to enter the route.

(4) When the locked route is used, i.e. a train enters it, the source signal mb10
is set to CLOSED preventing other trains from entering.

(5) The route is released (set back to free) when the train has finished using it,
i.e. the train has passed mb13, or the train has come to standstill in front
of mb13.

Sequential Release. The new Danish interlocking systems employ sequential
release (also known as sectional release) [19]. This feature results in two major
changes:

(a) With sequential release, the interlocking can release an element in a locked
route as soon as the train has passed it, instead of waiting until the train
has finished using the route and then releasing the route as a whole. Conse-
quently, the capacity increases.

(b) As a direct result of (a), a route may be allocated (in step (2) above) while
some of its conflicting routes are still in use by trains, instead of waiting

Formal Modeling and Verification of Interlocking Systems 227

for all of its conflicting routes to be released as in traditional route-based
interlocking systems. For example, when a train has passed section t11 while
going along route 1a, t11 will be released and then route 7 going in the oppo-
site direction (see Table 1) can be allocated (assuming that other conditions
for this are fulfilled).

3 Verification Method

The verification process is shown in Fig. 2. The verification process begins with
the configuration data of an interlocking system, consisting of a network layout
and an interlocking table. The configuration data are described in a domain-
specific language [22] (DSL) having an XML representation6. After being parsed
into an internal representation, a static checker verifies whether the configura-
tion data is statically well-formed according to the static semantics of the DSL.
As an option the user may not provide an interlocking table, but instead use an
interlocking table generator (ITG) to get a table created automatically. Instan-
tiating a generic model of the dynamic behavior of the Danish interlocking sys-
tems with the well-formed configuration data results in a model instance in the
form of a Kripke structure. Similarly, the concrete safety-properties expressed
as state invariants are also generated from the generic safety- properties. The
model instance is then checked against the concrete properties using a combina-
tion of BMC and inductive reasoning. If the model instance does not satisfy the
properties, counter-examples will be generated. An interface for visualizing the
counter-examples at the DSL level is under development.

Fig. 2. Verification process

The tool-chain associated with the method has been implemented using the
RT-Tester tool-box [17,21]. The bounded model checker in RT-Tester uses the
SONOLAR SMT solver [18] to compute counter-examples for induction and
base cases. RT-Tester has been selected because (1) it is an integrated model-based
testing and BMC tool, and (2) its SMT solver also supports floating point arith-
metic. The first property is crucial for us, because our objective is to complement
6 A graphical representation and editor is currently under development.

228 L.H. Vu et al.

the model verification with HW/SW integration tests. The second capability is
vital, because we also plan to extend the model by real-time aspects, such as train
velocity and braking curves.

4 Kripke Structure Encodings of Interlocking Systems

The dynamic behavior of an interlocking system is formalized as a Kripke struc-
ture K = (S, s0, R, L,AP) with state space S, initial state s0 ∈ S, transition
relation R ⊆ S × S, and labeling function L : S → 2AP , where AP is the set
of atomic propositions and 2AP is the power set of AP . The labeling function L
maps a state s to the set L(s) of atomic propositions that hold in s. Due to the
limited space of this paper and the complexity of the Kripke encodings, in the
following subsections, we only outline how the state space S and the transition
relation R of a Kripke structure are encoded.

4.1 State Space

In order to encode the states of an interlocking system, a finite set V = {v0, . . . , vn}
of variables is defined to represent the current status of different components in the
system such as a track element or a route. Each variable v ∈ V has an associated
finite domain Dv ⊂ N0. The state space is the set of all valuation functions s : V →⋃

v∈V Dv for which s(v) ∈ Dv for all v ∈ V . The initial state s0 is the (safe) state
in which all detection sections are vacant, all signals are closed, all routes are free,
and there are no trains in the network. In our encodings, s0 is the state in which all
variables are evaluated to 0. For readability, sometimes we use named constants
instead of their corresponding integral values in the subsequent paragraphs.

Vacancy Status. The vacancy status of a section in a given travel direction
is encoded using the three least significant bits HTO of a non-negative integer
variable as shown in Fig. 3. For example, the variable l .U2D records the vacancy
status of a linear section l in the direction from its up end to its down end. The
value 1 of the bits H, T, O indicate: (H) the head of the train is within the section,
(T) the tail of the train is within the section, and (O) the section is occupied,
respectively. This encoding offers two advantages: (a) the encoding can cover
the case where a train occupies more than one detection section (e.g., when it
is crossing the joint between two sections), and (b) the safety properties can be
expressed efficiently using arithmetic operations on integer variables as shown
in Sect. 5.

2 1 0

. . . H T O

Fig. 3. A variable recording occupancy status of a detection section

Formal Modeling and Verification of Interlocking Systems 229

Lockable Elements. In order to accommodate sequential release into our model,
we consider a linear or point section as a lockable element. The status of a lockable
element e is encoded by two variables: (1) e.MODE – indicating the mode of the
element, and (2) e.PREV – this variable is set to 1 when the previous section
in the same route has been released, otherwise e.PREV = 0. An element can be
in one of the following modes: FREE (the element is not exclusively locked by
a route, or used by any train), EXLCK (the element is exclusively locked for a
route), or USED (the element has been used, i.e., occupied, by a train after it
was exclusively locked for a route).

Point Positions. The position of a point p is encoded by two variables: (1) p.POS –
the actual position of the point, and (2) p.CMD – the point position commanded
by the interlocking. The value of p.POS can be one of the following7: PLUS(0),
MINUS(1), or INTERMEDIATE(2) (the position where the point is switching
from one side to the other). The value of p.CMD can only be PLUS or MINUS
(as the interlocking cannot command a point to switch to the INTERMEDIATE
position).

Signal Aspects. The aspect of a signal s is encoded by two variables: (1) s.ACT –
the actual aspect of the virtual signal, its value can be OPEN or CLOSED,
and (2) s.CMD – the aspect as commanded by the interlocking, the possible
values of this variable have the same meaning as the ones of s.ACT . The s.ACT
variable represents the aspect of the signal as “seen” by the train, while s.CMD
is the aspect of the signal as seen by the interlocking. The values of these two
variables may be different because of the delay in the communication between
the interlocking system and the trains.

Routes. For each route r, a variable r .MODE is used to encode the current mode
of that route. A route can be in one of the following modes: FREE, MARKED,
ALLOCATING, LOCKED, or USED.

4.2 Transition Relation

The transition relation R ⊆ S×S can be represented symbolically by a predicate
Φ with free variables in V ∪ V ′, where V ′ = {v′ | v ∈ V } is the set of next-state
variables. A pair of states (s, s′) ∈ R, if and only if Φ evaluates to true when
replacing every v ∈ V occurring in Φ with s(v) and every v′ ∈ V ′ occurring in
Φ with s′(v). In order to specify Φ, we divide the transitions in an interlocking
system into four types as in the following, each type is represented collectively
in a predicate with free variables in V ∪ V ′.

(0) route dispatching transitions represented collectively by the predicate Φd;
(1) interlocking transitions – e.g., setting mode of a route – represented by the

predicate Φι;
7 The notation name(integer-value) means that name is the name of constant having

the value integer-value.

230 L.H. Vu et al.

(2) track element transitions – e.g., switching a point or a signal – represented
by the predicate Φε; and

(3) train movement transitions represented by the predicate Φτ .

Transitions of type (0) are not prioritized, i.e., they can be chosen whenever they
are enabled, independently from other transitions. On the other hand, transitions
of types (1), (2), and (3) are prioritized in the descending order that they appear
in the list, i.e., transitions of type (1) has the highest priority and transitions of
type (3) has the lowest. Whenever two transitions of different priorities are both
enabled, the one with higher priority will be chosen. Transitions with the same
priority are chosen non-deterministically if they are enabled at the same time.
This priority of transitions is based on the intuition that in practice, the events
in the interlocking control logic occur at significantly higher speed than the ones
occurring in a track element. An analogous argument applies to events related
to track elements and others related to train movements. With these types of
transitions, the transition relation of an interlocking system can be specified as
in the following

Φ ≡ Φd ∨ ITE(ι, Φι, ITE(ε, Φε, Φτ)) (1)

where ITE(c, i, e) is the if-then-else function: if c holds then the value of the
function is i, otherwise it is e; ι expresses whether an interlocking transition
is enabled; and ε expresses whether a track element transition is enabled. The
route dispatching transition relation Φd is put outside of the ITE function in
(1) in order to allow the routes to be dispatched arbitrarily. If route dispatching
transitions were given the same or higher priority as the one of interlocking
control logic transitions, all routes which could be dispatched would have to
be dispatched before track elements or trains could make any transition. On
the other hand, if route dispatching were given lower priority than interlocking
control logic transitions, then a route could not be dispatched if another route
is processed by the interlocking.

Route Dispatching. A route can be dispatched arbitrarily whenever its mode is
FREE. This means that multiple routes can be dispatched at the same time.

Life-cycle of a Route. Figure 4 shows the “life-cycle” of a route, i.e., its dif-
ferent modes and the transitions from one mode to another. This “life-cycle”
reflects the procedure for setting and sequentially releasing a route as described
in Sect. 2. The transitions labeled (1), (2), (3), (4), and (6) in Fig. 4 correspond
to items (1) – (5) in the procedure presented in Sect. 2 for setting and releasing
a route. Transition (5) models the sequential release that can take place while
the route stays in USED mode: as the train moves along the route, its elements
are released sequentially as soon as the train has passed them. Transition (2) is
adapted to sequential release: allocation is now also allowed when a conflicting
route is in the USED mode, as long as elements shared with the given route have
been sequentially released.

Formal Modeling and Verification of Interlocking Systems 231

FREE MARKED ALLOCATING

USED LOCKED

(1)
dispatch(r)

(2)
allocate(r)

(3)
lock(r)

(4)
use(r)

(6)
release(r)

(5)
seqRelease(r, e)

Fig. 4. A life-cycle of a route

Life-cycle of a Lockable Element. Figure 5 depicts the “life-cycle” of a lockable
element within the network controlled by the interlocking system. Each node
in the diagram is labeled with information about the status of the element e:
(a) whether the element is vacant, (b) its current mode, and (c) the value of
the PREV variable indicating whether the previous element prev(r, e) of e in
the route r has been released. An element e is initially in a state in which it is
vacant, in FREE mode, and its PREV variable is 0. (1) When the interlocking
system is allocating a route r that uses e, it sets the mode of the element to
EXLCK, meaning that the element is locked exclusively for r. (2) The element
becomes occupied, i.e., not vacant, as a train enters. (3) After that, e’s mode
is set to USED. (4) When the train leaves the previous element prev(r , e) of
e in the route r, prev(r , e) is released, and it informs e by setting the variable
e.PREV to 1. (5) When the train leaves e, the latter becomes vacant again,
(6) e is released and the next element next(r , e) in the same route is informed
by setting next(r , e).PREV to 1.

Switching Points. A point p can be switched if it is requested to be switched to
a position p.CMD that is different from its current position p.POS . The point
switching process occurs in two steps:

vacant(e)
FREE

¬PREV

vacant(e)
EXLCK
¬PREV

¬vacant(e)
EXLCK
¬PREV

¬vacant(e)
USED

¬PREV

¬vacant(e)
USED
PREV

vacant(e)
USED
PREV

(1)
allocate(r)

(2)
train enters e

(3)
use(r, e)

(4)
seqRelease(r, prev(r, e))

(5)
train leaves e

(6)
seqRelease(r, e) ∧
next(r, e).PREV ′ = 1

Fig. 5. “Life-cycle” of a lockable element e. vacant(e) is a formula over variables encod-
ing e’s vacancy status shown in Sect. 4.1.

232 L.H. Vu et al.

(1) the point moves from its current position to the intermediate position, i.e.,
p.POS 	= p.CMD ∧ p.POS 	= INTERMEDIATE ∧ p.POS ′ = INTER-
MEDIATE ,

(2) the point is switched from the intermediate position to the requested posi-
tion, i.e., p.POS = INTERMEDIATE ∧ p.POS ′ = p.CMD .

Switching Signals. Whenever the actual aspect s.ACT of a signal s differs from
the commanded aspect s.CMD , the actual aspect of the signal is set to the
commanded aspect, i.e., s.ACT 	= s.CMD ∧ s.ACT ′ = s.CMD .

Train Movements. Trains are not explicitly specified in our model, in the sense
that there are no explicit train objects. Instead, train movements and other
aspects are implicitly modeled via the occupancy status of train detection sec-
tions, inspired by the “rubber-band” model described in [1]. This implicit model
is advantageous when compared to the explicit one, because it models arbitrary
numbers of trains of arbitrary length. In the implicit model of train movements,
train length – in terms of numbers of sections that a train occupies – may vary
as trains move. This variation reflects the actual view of interlocking systems of
the train length: although trains have fixed geometric length, their length – in
terms of the number of sections that they occupy – as seen by the interlocking
systems is not fixed.

5 High-Level Safety Properties

Interlocking systems must at least guarantee the high-level safety properties of
non-collision and non-derailment. These properties can be expressed as state
invariants over the vacancy status variables of linear and point sections in the
given network. Basically, an interlocking system is safe if no hazardous situations
occur on any linear or point section at any time. Thus, the high- level safety
properties can be expressed formally by the following state invariant

φ = ¬(
∨

l:Linear

Hazard l ∨
∨

p:Point

Hazardp) (2)

where Hazard l and Hazardp specify conditions for hazards to occur on a lin-
ear section l and a point p, respectively. These propositions are disjunctions
of sub-propositions expressing hazards of different types on a section such as:
(a) head-to-head collision, (b) trains following each other collision on a section,
or (c) derailment on a point. Some examples of sub-propositions are given in the
subsequent paragraphs.

Head-to-Head Collision on a Linear Section. A head-to-head collision occurs on
a linear section l, when two trains running in opposite directions meet. This
situation is expressed by the following formula where l .D2U (l .U2D) is the
variable encoding the vacancy status of the section in the travel direction from
down (up) to up (down).

l .D2U ∗ l .U2D > 0 (3)

Formal Modeling and Verification of Interlocking Systems 233

As l .D2U ∗ l .U2D > 0 iff l .D2U > 0 and l .U2D > 0, the formula expresses
that the section is occupied in both down-to-up (l .D2U > 0) and up-to-down
(l .U2D > 0) directions. Collisions of type (b) are formulated in the similar way.

Derailment on a Point. A derailment occurs when a train traverses a point p
which is not locked in the correct position for the travel direction of the train.
This situation is expressed by the following formula where p.POS is the point’s
actual position, p.S2PM , p.P2S , and p.M2S are variables encoding the vacancy
status of the point in the travel direction entering the point from its stem, plus,
or minus ends, respectively, & and � are bit-wise and and arithmetic bit shift
right operators, respectively.

p.POS ∗p.P2S +(1− (p.POS & 1))∗p.M2S +(p.POS � 1)∗p.S2PM > 0 (4)

Formula (4) captures the following cases: (a) a train is entering a point from its
plus end (p.P2S > 0) while the point is in not in the plus position (p.POS > 0),
(b) a train is entering a point from its minus end (p.M2S > 0) while the point
is not in the minus position (1 − (p.POS & 1) > 0), and (c) a train is entering
a point from its stem end (p.S2PM > 0) while the point is in the intermediate
position ((p.POS � 1) > 0).

6 Verification of Safety Properties

When a model K (see Sect. 4) and a proposition φ expressing high-level safety
properties (see Sect. 5) have been generated, the next task according to our
method is to prove the absence of hazardous situations, i.e., to prove that φ
holds in all reachable states of K. This is written K |= G(φ) where G is Globally
temporal operator in Linear Temporal Logic (LTL). The following subsections
describe our approach for verifying this.

6.1 Verification Strategy

We employ a strategy combining BMC and k-induction techniques similar to
the one in [13]. The verification procedure is performed in two steps: (i) base
case: prove that φ holds for k > 0 consecutive states8, starting from the initial
state s0, and (ii) induction case: prove that if φ holds for k > 0 consecutive
states, starting from an arbitrary state sn, then φ will also hold in the (k + 1)th

state. Both the base case and the induction case are transformed to problems of
finding counter-examples for their negated formulas using an SMT solver. If no
counter-examples are found, then the cases have been proved.

8 Two states are consecutive, if there is a transition from the first to the second
according to the model K.

234 L.H. Vu et al.

6.2 Invariant Strengthening

As pointed out in [3], when φ is not strong enough to be inductive, counter-
examples are found for the induction case. These counter- examples are often
spurious, i.e., they start from an unreachable state and do not correspond to
any actual run of the system. In order to make φ inductive, it is strengthened
with an extra invariant ψ, i.e., one should prove φ ∧ ψ instead of φ. ψ is called
the strengthening invariant, which eliminates the spurious counter-examples. An
example of such strengthening properties is given in the following.

Train Integrity. Some states of the variables expressing the train occupancy
status of the track sections (see Sect. 4) are not feasible as they correspond to
situations that are not physically possible. An example of an infeasible state is
one in which the variables express that a section s is occupied in one direction
by a train without the head being on the section, but the next section in that
travel direction is unoccupied.

The train integrity conditions can be formalized as a conjunction of formulas
over the track vacancy variables. For each travel direction (up and down), there
is a formula for each section s that has a next section in the given travel direction.
The pattern of such a formula depends on the other sections the current section
is connected to in the given travel direction. For instance, for travel direction up
and a linear section s that has a linear section s′ as neighbor in travel direction
up, the formula will take the following form:

(s.D2U & 0b101) = 0b001 ⇐⇒ (s ′.D2U & 0b011) = 0b001 (5)

where & is the bit-wise and operator. This formula expresses that section s is
occupied by a train in direction up (the O bit of s.D2U is 1) without the head
being on the section (the H bit of s.D2U is 0), if and only if section s′ is occupied
by a train in direction up (the O bit of s ′.D2U is 1) without a tail being on the
section (the T bit of s ′.D2U is 0). Formula (5) shows the expressiveness of
our state encodings allowing properties to be efficiently formulated in compact
formulas.

7 Experiments

We have used the tool-chain to verify the safety properties for model instances
of a number of railway networks, ranging from a trivial tiny toy network to a
large station (Køge) extracted from the early deployment line of the new Danish
signalling systems.

In our first trials of verifying the models, we used simple induction (k-induction
with k = 1), but we got spurious counter-examples. To avoid that we tried to
increase k and strengthen the invariant to be verified. It turned out that the veri-
fication time increased significantly as k increased, making it impossible to verify
even the small networks. However, we were able to derive strengthening properties
ψ (see Sect. 6) for which the verification could be done just using simple induction.

Formal Modeling and Verification of Interlocking Systems 235

Table 2. Verification results for different networks using simple induction (k = 1). Toy,
cross, and mini are made-up trivial networks, while Gadstrup-Havdrup (Gt-Hd) and
Køge are extracted from the early deployment line in the Danish Signalling Programme.
(BR: branching ratio)

Case Linears Points Signals Routes BR Vars Time(sec) Memory(MB)

Toy 6 1 6 4 0.17 47 2 63

Cross 8 2 8 10 0.25 72 9 137

Mini 6 2 8 12 0.33 66 11 128

Gt-Hd 21 5 24 33 0.24 200 146 626

Køge 57 23 60 73 0.40 582 3868 4457

(Not for all applications this is possible, see, e.g., [13]). Table 2 shows the results
of the final verification. Each row of the table lists the size of a network in terms
of the number of linear sections, points, signals, and routes in the configuration,
and the number of generated variables in the corresponding model instance. The
two last columns show the approximate accumulated verification time and mem-
ory usage. All experiments have been performed on Intel(R) Core(TM) i7-3520 M
CPU @ 2.90 GHz, 8 GB RAM, Ubuntu 14.04 LTS, Linux 3.14.1-031401-generic
x86 64 kernel.

The branching ratio of a network (BR in Table 2) is defined as the ratio of
the number of points to the number of linear sections in that network. The larger
the branching ratio is, the more complex the corresponding network is in terms
of branching. The size of the formula Φ specifying the transition relation as well
as the size of the formulas φ and ψ specifying the state invariants grow as the
size of the network grows. Our experiments show that the formulas grow much
more when the network’s branching ratio also increases, than when the branching
ratio is nearly the same (as it is, e.g., the case when chaining multiple simple
stations). This is due to the fact that the interdependency between variables in
the model also increases when BR increases.

We also injected errors into models. Counter examples for these were nor-
mally found in relatively short time. This appears to be a general trend when
dealing with interlocking systems [16]. In a few cases, it took long time to find
counter examples. Such examples usually represent very subtle errors in the
model or the configuration data, which may be easily overlooked by inspection.

8 Related Work

In recent years, the railway domain has become one of the most promising appli-
cation domains of formal methods. Several research groups have investigated how
formal methods would help efficiently producing more robust railway control
systems. An overview of recent trends can be found in [7], and recommenda-
tions and best-practices for efficient development and verification of safe railway

236 L.H. Vu et al.

control systems are summarized in [12]. Re-configurable systems and automated
verification are among these recommendations that we have followed.

Model checking is a promising technique for verifying safety properties of
interlocking systems thanks to its capability to be fully automated. Unfortu-
nately, due to the state explosion problem, the technique is only able to verify
applications of small size [8]. Several techniques have been proposed in order
to push the applicability bounds toward industrial size. Winter et al. suggest
using ordering strategies optimized for interlocking models [23]. A number of
high-level abstractions for reducing the complexity of interlocking models are
presented in [15]. In [6], Fantechi et al. suggest a distributed interlocking model
whose verification can be divided into small tasks and verified in parallel. SAT-
based model checking and slicing technique are used in [16]. In order to remedy
the problem with state space explosion in the global model checking approach, we
have recently for some other applications [13,14] used BMC instead. In the cur-
rent work, a combination of SMT-based BMC with inductive reasoning allowed
us to verify safety properties without having to explore the whole state space,
hence we were able to push the bounds even further to handle larger networks
of industrial size. As an alternative to the model checking approach, theorem
proving based techniques have also shown success in the railway domain, see,
e.g., [2,11], but are less automated.

Although sequential release has been used in some interlocking systems, we
have not found any published formal models of interlocking systems that inte-
grate this feature. In [20], the conditions for elements to be unlocked and reused
in sequential releases are pre-computed and specified in the interlocking tables.
In our approach, sequential release is integrated into the behavioral model rather
than into the configuration data. This reduces the complexity of the configura-
tion data and makes interlocking configuration data relatively independent from
the chosen interlocking approaches.

9 Conclusion and Future Work

This paper presented a fully automated, formal method and an associated tool
suite for verifying the forthcoming new ETCS Level 2 based Danish railway
interlocking systems featuring sequential release. A formal model for these sys-
tems was outlined. A novelty in our contribution is that the system is part of
an ETCS Level 2 based signalling system in which there are no physical signals
along the tracks; instead, movement authorities are communicated via onboard
computers. By introducing the concept of virtual signals, we have been able
to handle the assignment of movement authorities in a way that is very sim-
ilar to the situations where conventional signals are used. Another novelty is
that the formal model features sequential release. As a consequence, the model
is more complex than those supporting route-based release only, because addi-
tional variables and transitions are required. Therefore the verification becomes
more challenging. In spite of this difficulty, using a combination of SMT-based
BMC and inductive reasoning, we were able to successfully verify safety proper-
ties for systems controlling large networks of realistic size. This was enabled by

Formal Modeling and Verification of Interlocking Systems 237

encodings of the state space, the transition relation, and of the safety proper-
ties that can be efficiently evaluated by SMT solvers supporting bit vector and
integer arithmetics.

In order to compare our verification approach to the approaches that use
BDD-based symbolic model checking, a translation from our model to NuSMV –
a well-known BDD-based symbolic model checker – is currently in progress. For
future work, we will benchmark how sequential release affects the complexity, and
hence verification challenges, of interlocking models. Furthermore, we will inves-
tigate advanced techniques for automating the process of discovering strength-
ening invariants, or reducing the size of the networks that need to be modeled.
For the current model there are potential overlaps between the strengthening
invariants, which should be eliminated in order to reduce the size of the formula
to be solved by the SMT solver.

Acknowledgments. The authors would like to thank Ross Edwin Gammon and
Nikhil Mohan Pande from Banedanmark (Railnet Denmark) and Jan Bertelsen from
Thales for helping us with their expertise about Danish interlocking systems and always
being helpful when we had questions; and Dr.-Ing. Uwe Schulze and Florian Lapschies
from University of Bremen for their help with the implementation in the RT-Tester
tool-chain.

References

1. Aanæs, M., Thai, H.P.: Modelling and verification of relay interlocking systems.
Master’s thesis, Technical University of Denmark, DTU Informatics (2012). Series:
IMM-MSC-2012-14

2. Behnia, S., Mammar, A., Mota, J.-M., Breton, N., Caspi, P., Raymond, P.: Indus-
trialising a proof-based verification approach of computerised interlocking systems.
In: Allan, J., Arias, E., Brebbia, C.A., Goodman, C., Rumsey, A.F., Sciutto, G.,
Tomii, N. (eds.) Eleventh International Conference on Computer System Design
and Operation in the Railway and Other Transit Systems (COMPRAIL 2008).
WIT Press (2008)

3. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: from
refutation to verification. In: Hunt Jr, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 14–26. Springer, Heidelberg (2003)

4. ERTMS: Annex A for ETCS Baseline 3 and GSM-R Baseline 0, April 2012
5. CENELEC European Committee for Electrotechnical Standardization. EN

50128:2011 - Railway applications - Communications, signalling and processing
systems - Software for railway control and protection systems (2011)

6. Fantechi, A.: Distributing the challenge of model checking interlocking control
tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610,
pp. 276–289. Springer, Heidelberg (2012)

7. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Heidelberg (2014)

8. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010 - For-
mal Methods for Automation and Safety in Railway and Automotive Systems, pp.
107–115. Springer, Heidelberg (2010)

238 L.H. Vu et al.

9. Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos,
O.M.: Automated verification of executable UML models. In: Aichernig, B.K., de
Boer, F.S., Bonsangue, M.M. (eds.) Formal Methods for Components and Objects.
LNCS, vol. 6957, pp. 225–250. Springer, Heidelberg (2011)

10. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010)

11. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control systems. IEEE Trans. Softw. Eng. 26, 687–701 (2000)

12. Haxthausen, A.E., Peleska, J.: Efficient development and verification of safe railway
control software. In: Reinhardt, C., Shroeder, K. (eds.) Railways: Types, Design
and Safety Issues, pp. 127–148. Nova Science Publishers Inc, New York (2013)

13. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects Comput. 23, 191–219
(2011). Springer

14. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 205–220. Springer, Heidelberg (2014)

15. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne,
H., Trumble, M., Williams, D.: Verification of scheme plans using CSP—B. In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 189–204. Springer,
Heidelberg (2014)

16. James, P., Roggenbach, M.: Automatically verifying railway interlockings using
sat-based model checking. In: Proceedings of the Electronic Communications of
the EASST, vol. 35, EASST (2011)

17. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings of the 8th Work-
shop on Model-Based Testing, Electronic Proceedings in Theoretical Computer
Science, vol. 111, pp. 3–28. Open Publishing Association, Rome, Italy (2013)

18. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011)

19. Theeg, G., Vlasenko, S.V., Anders, E.: Railway Signalling & Interlocking: Interna-
tional Compendium. Eurailpress, Germany (2009)

20. Tombs, D., Robinson, N., Nikandros, G.: Signalling control table generation and
verification. In: CORE 2002: Cost Efficient Railways through Engineering, p.
415. Railway Technical Society of Australasia/Rail Track Association of Australia
(2002)

21. Verified Systems International GmbH: RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual (2013)

22. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014–
10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems, pp. 200–209. Institute for Traffic Safety and Automation
Engineering, Technische Universität Braunschweig (2014)

23. Winter, K.: Optimising ordering strategies for symbolic model checking of railway
interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol.
7610, pp. 246–260. Springer, Heidelberg (2012)

A Spin-Based Approach for Checking
OSEK/VDX Applications

Haitao Zhang(B), Toshiaki Aoki, and Yuki Chiba

Japan Advanced Institute of Science and Technology, Nomi, Japan
{zhanghaitao,toshiaki,chiba}@jaist.ac.jp

Abstract. OSEK/VDX, a standard of automobile OS, has been widely
adopted by many manufacturers to design and develop a vehicle-mounted
OS. With the increasing functionalities in vehicles, more and more appli-
cations are developed based on the OSEK/VDX OS. However, how to
ensure the reliability of the developed OSEK/VDX applications is be-
coming a challenge for developers. As to ensure the reliability of the devel-
oped OSEK/VDX applications, model checking as an exhaustive checking
technique can be applied to verify the developed OSEK/VDX applica-
tions. In our previous work, we have proposed a bounded model check-
ing approach to verify the OSEK/VDX applications. In this paper, we
describe and develop an alternative approach to verify the OSEK/VDX
applications based on the Spin. There are two motivations in this paper,
one is to show how to use Spin to verify the OSEK/VDX applications, and
the other is to investigate the effectiveness of our bounded model checking
approach and Spin-based approach based on the experiments.

Keywords: OSEK/VDX applications · Scheduler · Spin model checker

1 Introduction

OSEK/VDX [11,13], a standard of automobile OS, is proposed by German and
France automobile manufacturers in 1994. The original motivation of OSEK/
VDX standard is to resolve the problem of increasing software content in automo-
biles and to deliver high-quality products. With the development of OSEK/VDX
OS standard, it has been widely adopted by many automobile manufacturers to
design and develop a vehicle-mounted OS, such as BMW, Opel, and Volkswagen.
As to enhance the driving fun and safety, more and more applications are devel-
oped based on the OSEK/VDX OS. However, with the increasing complexity
in the development, how to ensure the reliability of the developed OSEK/VDX
applications is becoming a challenge for developers.

To ensure the reliability of the developed OSEK/VDX applications, model
checking [2,3] as an exhaustive technique can be applied to verify the OSEK/
VDX applications. There are many model checking methods that have been
applied to verify the sequential software [18] and multi-threaded software [14,15].
However, it is difficult to directly use these existing model checking methods
c© Springer International Publishing Switzerland 2015
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2014, CCIS 476, pp. 239–255, 2015.
DOI: 10.1007/978-3-319-17581-2 16

240 H. Zhang et al.

to verify the OSEK/VDX applications, since the execution characteristics of
OSEK/VDX applications are different from sequential software and general
multi-threaded software such as SystemC programs. For example, when an appli-
cation runs on the OSEK/VDX OS,

– tasks within the application are concurrently executed and the running task
can be explicitly determined by OSEK/VDX scheduler according to the task
priority and configuration data.

– tasks within application can invoke service APIs to interact with OSEK/VDX
OS for changing task states, setting a synchronization event, and accessing a
shared resource.

– the invoked service APIs may lead to context switch of tasks.

According to these execution characteristics, we can easily find that the check-
ing process on OSEK/VDX applications is different from checking sequential
software and multi-threaded software, since the OSEK/VDX application is like
a multi-threaded software compared with sequential software, and moreover,
in contrast with multi-threaded software, OSEK/VDX application can interact
with OSEK/VDX OS via service APIs, and its executions are conducted by a
deterministic scheduler1 (in OSEK/VDX OS, the static priority scheduling policy
is adopted to dispatch tasks within the application).

As to apply model checking technique to verify the OSEK/VDX applications,
in our previous work [7,8], we have proposed a technique named execution path
generator (EPG) to verify the design model of developed OSEK/VDX applica-
tions based on the SMT-based bounded model checking (BMC) [5]. Particularly,
in order to accurately construct a transitions system for the OSEK/VDX applica-
tion and avoid the behaviors of OS model to be poured into the transition system,
an OS model corresponding to the OSEK/VDX specification is embedded in the
EPG to respond to the invoked service APIs and compute the running task.
We have conducted many experiments using EPG technique, the experiment
results show that, although the EPG technique can handle the complex appli-
cations which contain a lot of tasks and APIs, it will spend much time checking
the applications which hold a lot of loops. Furthermore, the EPG technique for
now cannot check the applications which contain interruptions. Therefore, in this
paper we develop an alternative approach to check the OSEK/VDX applications
based on the Spin model checker [6], and we want to investigate the effectiveness
of Spin-based approach and EPG technique based on the experiments.

As to accurately check an OSEK/VDX application using Spin model checker,
in our Spin-based approach a synchronization model (SynM) is used to simu-
late the executions of the target application. In the SynM, all of the tasks and
interrupt service routines (ISRs) within the target application are regarded as
process, and the OSEK/VDX OS model as a special process is employed to

1 In general multi-threaded software such as SystemC programs, the executions of
threads are conducted by a non-deterministic scheduler. As to completely check the
multi-threaded software, all of the possible interleavings of threads are taken into
account in the checking process.

A Spin-Based Approach for Checking OSEK/VDX Applications 241

responding to the invoked service APIs and conducting the executions of tasks,
and moreover, the channel within promela is used to implement the interactive
behaviors between application model and OS model via service APIs.

We have implemented our SynM in Spin model checker and conducted many
experiments using Spin based on the several OSEK/VDX applications. The
experiment results show that, our Spin-based approach is capable of checking the
safety properties related to variables, service APIs, OS data, and mutual exclu-
sion in the checking process, and moreover, the Spin-based approach also can be
used to check the applications which hold ISRs. In addition, in the experiments
we also investigated the effectiveness of the Spin-based approach and EPG tech-
nique. The investigation results show that, (i) for the simple application which
contains a few tasks (less than 15) but many loops, Spin-based approach is faster
than EPG technique in the verification. However, (ii) for the complex applica-
tion which contains many tasks and APIs, the EPG technique is more efficient
to check these applications compared with Spin-based approach.

The rest of the paper is structured as follows. The preliminaries for OSEK/
VDX OS and applications are presented in Sect. 2. Based on the discussion about
the execution characteristics of OSEK/VDX applications, the Spin-based app-
roach is presented in Sect. 3. As to evaluate our approach, some experiments are
carried out in Sect. 4. Related work is discussed in Sect. 5. Conclusion and future
work are shown in the last section.

2 Preliminaries

2.1 OSEK/VDX OS

A general OSEK/VDX OS consists of a scheduler module, event process module,
resource process module, alarm process module, and interruption process mod-
ule. Based on these system modules, OSEK/VDX OS supports a standardized
application interfaces (APIs) for user to develop customized applications. In our
research, we focus on the applications that communicate with scheduler module,
event process module, resource process module, and interruption process module.
The structure of OSEK/VDX OS with an application is shown in Fig. 1.

Scheduluer Module: OSEK/VDX OS can process two types of tasks, basic
task and extended task. The states of a basic task consist of running state,
suspended state, and ready state. Compared with basic task, the extended task
can hold synchronization events and has a unique state called waiting state. In
the scheduling process, the static priority scheduling policy with non-preemptive
and full-preemptive strategies is adopted by scheduler to conduct the execu-
tions of tasks, and moreover, scheduler manages a ready queue to indicate the
execution order of tasks. Besides, scheduler can respond to four service APIs
(TerminateTask , ActivateTask , ChainTask , and Schedule) that can be invoked
by tasks to switch task states. For instance, if the service API ActivateTask(tk1)
is invoked by running task, and task tk1 is currently in the suspended state,
scheduler will move task tk1 from suspended state to ready state.

242 H. Zhang et al.

Fig. 1. The structure of OSEK/VDX OS with an application.

Event Process Module: In the event process module, OSEK/VDX OS pro-
vides a synchronization mechanism for implementing synchronous executions
between tasks. Particularly, only extended tasks can hold a definite number of
events, and events are the criteria for the switching of task states from running
state to waiting state or from waiting state to ready state. There are three ser-
vice APIs (SetEvent , WaitEvent , and ClearEvent) that can be responded by
event process module, and tasks can invoke these service APIs to implement
the synchronous executions. E.g., when the running task tk1 waits for the event
evt1 using service API WaitEvent(evt1), task tk1 cannot continue until the
event evt1 is set by other tasks (basic tasks or extended tasks) using service API
SetEvent(tk1 ,evt1).

Resource Process Module: The priority inversion and deadlock are two typ-
ical problems of common synchronization mechanism when several tasks access
the same shared resource with different priorities. In order to avoid these two
problems, OSEK/VDX OS adopts the Priority Ceiling Protocol [4] to coordi-
nate the behaviors of accessing shared resources in the resource process mod-
ule. The resource process module supports two service APIs (GetResource and
ReleaseResource) which can be invoked by tasks to access a shared resource
according to the ceiling priority of the accessed resource. For example, if the
service API GetResource(res1) is invoked by running task, and the priority of
the task is lower than the ceiling priority of the resource res1 , the priority of the
task will be raised to the ceiling priority of the resource res1 , and the priority
of the task will be reset to the priority before requiring the resource res1 when
ReleaseResource(res1) is invoked by the task. Note that, the ceiling priority of
a shared resource is lower than the lowest priority of all tasks that do not access
the resource, and higher than the priority of all tasks that access the resource.

Interruption Process Module: The interrupt service routines (ISRs) play
an important role in the OSEK/VDX applications, such as responding to an

A Spin-Based Approach for Checking OSEK/VDX Applications 243

Fig. 2. The simple application.

external event or receiving data from a sensor. In OSEK/VDX OS, the interrup-
tion process module supports two categories of ISRs (ISR categories 1 and 2)
for applications. The features of ISRs within OSEK/VDX OS are as follow. (i)
The impulse signals of ISRs are triggered by the external asynchronous events.
(ii) The ISRs can interrupt the non-preemptive and full-preemptive tasks, and a
lower priority ISR can be interrupted by a higher priority ISR. (iii) In contrast
with category 1 ISR, the category 2 ISR can invoke service APIs to activate a
task, set an event to an extended task, and access a shared resource. (iv) The
rescheduling will happen if a category 2 ISR have been terminated and no other
ISR is activated.

2.2 OSEK/VDX Application and Execution Characteristics

An application developed based on OSEK/VDX OS consists of two files, one is
the source file, and the other is the configuration file. The source file, which can
be developed by C++ language, is used to present the concrete behaviors of the
application. The configuration file is used to define tasks, events, resources, and
ISRs. A simple OSEK/VDX application without ISRs is shown in Fig. 2.

As to clearly comprehend the execution characteristics of OSEK/VDX appli-
cations, an example is discussed in this part. In the simple application shown
in Fig. 2, since only the attribute AUTOSTART2 of conTask is set to be TRUE,
conTask will be firstly moved to running state by scheduler and then conTask
is executed. As shown in Fig. 3, when the service API ActivateTask(plusTask)
is invoked by conTask , scheduler will be loaded to respond to the API. For this
moment, the running task conTask will be preempted by plusTask since the
2 AUTOSTART: if the attribute AUTOSTART of a task is set to be TRUE, the task starts

from ready state in the initial state. Otherwise, the task starts from suspended state.

244 H. Zhang et al.

Fig. 3. The execution sequences of the application shown in Fig. 2.

priority of plusTask is higher than conTask and the attribute SCHEDUL3 of
conTask is set to be FULL (if a task is activated, the task will be moved from
suspended to ready state by scheduler). Currently, the task plusTask gets run-
unit to run, and goes to suspended state when the service API TerminateTask()
is invoked (the service API TerminateTask() is used to terminate the executions
of a task, and terminated tasks will be moved from running state to suspended
state by scheduler. If the running task is terminated, scheduler then dispatches
the head task in the ready queue to run). When plusTask is terminated, conTask
will be moved to running state again and continue its executions from preempted
point. Then, minusTask is activated by conTask , and will be run when the ser-
vice API TerminateTask() is invoked by conTask (conTask cannot be preempted
by minusTask , since the priority of minusTask is lesser than conTask).

According to the executions of the given example, we can find the follow-
ing execution characteristics, (i) which task within the application is to be run
is determined by scheduler according to the ready queue and configuration file
of the application, (ii) task states can be changed by invoked service APIs,
(iii) the invoked service APIs may lead to context switch of tasks. Based on
the listed characteristics, we can easily find that the execution characteristics
of OSEK/VDX applications are different from sequential software and multi-
threaded software. In order to employ Spin model checker to accurately verify
the OSEK/VDX applications, there are two challenges that should be addressed,
e.g., (i) how to implement the scheduling behaviors, (ii) how to implement the
interactive behaviors between tasks and scheduler via service APIs. As to over-
come these two challenges, we develop a synchronization model to simulate the
executions of the OSEK/VDX applications, which will be demonstrated in the
next section.
3 SCHEDUL: if the attribute SCHEDUL of a task is set to be FULL, the task can be pre-

empted by higher priority tasks. Otherwise, the task will not leave running state
until the service API TerminateTask , ChainTask or Schedule is invoked, or waits for
an event.

A Spin-Based Approach for Checking OSEK/VDX Applications 245

Fig. 4. The synchronization model (SynM).

3 The Spin-Based Checking Approach

3.1 The Synchronization Model

To accurately check OSEK/VDX applications using Spin model checker, the key
work is how to construct a checking model. Based on the given example shown in
Fig. 2, we have found that the running task within the application is determined
by the scheduler according to the ready queue and task configuration data. Thus,
as to accurately simulate the executions of tasks, the best way is to construct
an OS model (such as scheduler model) in the checking model to conduct the
executions of tasks.

In our approach, a synchronization model (SynM) is constructed to simu-
late the executions of target application, which is shown in Fig. 4. The SynM
is a combination of OS model OS and application model App. Where, the OS
model corresponding to the OSEK/VDX specification is employed to conduct
the executions of the application and respond to the invoked service APIs. The
application model App = {Δ, T , I} is the set of components, Δ is the config-
uration file of application, T = {t1, t2, · · · } is the finite set of tasks defined in
the application, I = {isr1 , isr2 , · · · } is the finite set of interrupt service routines
(ISRs) defined in the application (note that, in the SynM all of the tasks, ISRs
and OS model are regarded as process). Furthermore, the application model
and OS model will synchronously execute via service APIs. The execution char-
acteristics of SynM are stated in the following.

When an application runs on the OSEK/VDX OS, the head task in the ready
queue will be dispatched to run if the run-unit is idle. The other tasks in the
ready state, suspended state and waiting state will not be run until the running
chance is given by scheduler. Thus, the first execution characteristic of SynM is
as follows.

– a task t∈T can be run iff its ID equals to the running task ID that is computed
by OS model, and the remanent tasks A′ = T \{t} are restrained to execute.

Once a service API is invoked by the application, the OS will be loaded to
run for responding to the invoked service API (the executions of the application

246 H. Zhang et al.

Fig. 5. OS model.

will be preempted by OS). When OS has already completed its executions, the
run-unit is released, and then the application will be continued again. According
to the described execution characteristics, the following three execution char-
acteristics are poured into the SynM for simulating the interactive executions
between OS model and application model.

– application model App and OS model OS are synchronously executed via
APIs.

– when a service API is invoked by running task t or isr, the task t or isr will
stop its execution to wait for the executions of OS model.

– once OS model receives an invoked service API from App, OS model will
be executed for responding to the invoked service API and computing the
running task ID. If OS model has completed its executions, application model
App will be executed from the stopped point, and then OS model waits for
the next service API from application model.

As to completely simulate the ISRs, in our SynM all of the possible interleav-
ings between running task and ISRs are considered due to the non-deterministic
occurring time and execution order of ISRs. Substantially, in the checking process,

A Spin-Based Approach for Checking OSEK/VDX Applications 247

the executions between ISRs and currently running task can be considered as
the concurrent program. In SynM, we stipulate that ISRs I and running task t
are concurrently executed, and ∀isri , isrj ∈ I are also concurrently executed. In
addition, in order to avoid the executions of ISRs to be interleaved by tasks, the
behaviors of ISRs are designated as an atomic sequence. Here, a shortcoming is
involved in our approach because of the atomic sequence, that is, our approach
does not allow higher priority ISRs to interrupt the lower priority ISRs. Based on
the above analysis, the following one execution characteristic is put into SynM.

– ∀isr ∈ I and running task t ∈ T are concurrently executed, and ∀isri , isrj ∈ I
are concurrently executed in the SynM. Note that the behaviors of ISRs are
designated as atomic sequence.

Furthermore, as to support the checking process on the given property related
to task states, event states, and shared resource states, an interface corresponding
to OS data is provided by SynM.

3.2 Implementation in Spin

According to the SynM, we can easily simulate the executions of an OSEK/VDX
application. As to conveniently use Spin to check OSEK/VDX applications based
on the SynM, we have constructed an OS model using promela language accord-
ing to the OSEK/VDX specification, and moreover, three interface functions are
supported by the constructed OS model for easily constructing the application
model according to the given application. The OS model and interface functions
are stated in the following.

OS Model: The OS model is developed based on the our previous work [9],
which has been adopted by Japan automobile manufacturers to test the devel-
oped OSEK/VDX OS. As shown in Fig. 5, the OS model is a tuple OS =
(S, s0,D, F,Σ), which is a combination of scheduler model, event process model
and resource process model. Where, S is the finite set of states, s0 ∈ S is the
initial state. D = {runTask , readyQueue, suspendList , waitList , evtBitArray ,
resAccessList} is the set of data structures. F is the set of functions. Σ ⊆S×F×S
is the set of transition relations.

In the OS model, D is the interface of OS data shown in SynM. Where,
runTask which is a variable is used to store the running task tid (tid ∈ IN is
the identifier of tasks). Since several tasks can share a same priority in the
OSEK/VDX OS, the readyQueue which is composed of queues with different
priorities is used to store the tid of ready tasks. The data structures suspendList
and waitList are used to store the tid of tasks in the suspended state and waiting
state, respectively. evtBitArray which is a matrix is used to store the event states
of extended tasks (eid ∈ IN is the identifier of events). resAccessList which is com-
posed of lists is used to indicate the state of resources accessed by tasks (rid ∈ IN
is the identifier of resources). In the function set F , API ? APIName(para1, para2)
and notifyApp ! finishMessage are the synchronization functions, their imple-
mentations specified in promela are shown in Fig. 6. Here, API ? APIName(para1,

248 H. Zhang et al.

Fig. 6. The synchronization functions specified in promela.

Fig. 7. The inline function waitForRun(tid) specified in promela.

para2) is used to receive the invoked service APIs from application model (where,
APIName is the name of invoked service API, para1 and para2 are the parameters
in the service APIs). notifyApp ! finishMessage is used to notify the applica-
tion model that OS model has already completed its executions. In addition,
the assertion assert(runTask != −1) is used to terminate the checking process
if there is no running task (where, “−1” represents that running task is idle).
The other functions in F such as ChainTask(tid) and TerminateTask(), which
are the standardized functions defined in OSEK/VDX specification, are used to
operate the system data D according to the invoked service APIs.

Interface Functions: The first interface function waitForRun() shown in Fig. 7
is used to restrain the executions of the tasks whose tid are not equal to runTask .

The second interface function taskAPI() shown in Fig. 8, which can be invoked
by tasks, is used to simulate the behaviors of service APIs, in which API ! APIName
(para1, para2) and notifyAPP ? finishMessage are used to implement the
interactive executions between OS model and tasks, (tid == runTask) is
employed to simulate the context switch of tasks caused by the invoked ser-
vice API (the parameter tid is the host task ID). In addition, since category
2 ISRs can invoke service APIs to access a shared resource, it may lead to the
mutual exclusion problem when running task and ISRs want to access the same
shared resource. Therefore, the if branches are used to change the state of shared
resources for restraining the executions of ISRs when running task is holding the
shared resource, where the variable lock is used to label the resource state.

Like tasks, for the category 2 ISRs, we also provide an interface function
to implement the interactive executions between OS model and ISRs, which is
shown in Fig. 9. In the function, the variable lock is used to implement the mutual
exclusion behaviors between ISRs and tasks. Note that the functions shown in
Figs. 8 and 9 are only used to restraint the executions of ISRs when running
task and ISRs want to access the same resource, the behaviors between tasks
or ISRs for accessing shared resources are coordinated by the resource process
model and atomic sequence, respectively.

A Spin-Based Approach for Checking OSEK/VDX Applications 249

Fig. 8. The inline function taskAPI specified in promela.

Fig. 9. The inline function ISRAPI specified in promela.

Checking Application Using Spin: Based on the OS model and supported
interface functions, we can easily construct an application model for the given
application and check the constructed application model using Spin model
checker. E.g., the application model of the example shown in Fig. 2 has been
presented in Fig. 10. Note that, for the configuration file, our OS model also pro-
vides an interface function for inputting the configuration data. The OS model
is available at the osek-spin homepage.4 In addition, since the category 2 ISRs
can invoked service APIs to set an event to an extended task or activate a task
from suspendList , it will possibly lead to a rescheduling point. Therefore, when
we check the application which contains category 2 ISR, we should insert the
function waitForRun(tid) into each transition of tasks to simulate the context
switch of tasks.

3.3 Given Property

Based on the OS model and supported interface functions, we can accurately
check an OSEK/VDX application using Spin model checker. In this section, we

4 http://www.jaist.ac.jp/∼s1220209/osek-spin.htm.

http://www.jaist.ac.jp/~s1220209/osek-spin.htm.

250 H. Zhang et al.

Fig. 10. The application model of the example shown in Fig. 2.

will talk about what kinds of given properties can be checked by our approach
in the practical checking process.

Variable Property: In the practical checking process, sometimes we want to
check whether the executions of target application have already reached a spec-
ified state via asserting the values of variables declared in an application. Based
on the SynM, we can find that all of the executions of target application can
be checked by Spin model checker. Thus, our approach can be used to check
variable property using assertion statement.

LTL Property: In addition to assertions, the given property which holds tempo-
ral operators is frequently used to check an application in the practical checking
process. For instance, we want to check whether the value of a variable will be
changed to be zero in the future. Since Spin model checker can accept the given
property specified in Linear Temporal Logic (LTL), our approach thus can be
used to check the LTL property.

Service API Property: The service API is also an interesting checking point
for the OSEK/VDX applications, since service APIs perform an important part
in the interaction between application and OSEK/VDX OS. In the checking
process, we usually want to check whether a service API will be invoked by tasks.
In our approach, the service API is represented as a set {APIName,para1,para2}
of variables in promela. Therefore, our approach can check the service API
property.

A Spin-Based Approach for Checking OSEK/VDX Applications 251

OS Data Property: When an application runs on the OSEK/VDX OS, it is
difficult to judge the execution situations of the application since the executions
of OSEK/VDX applications are conducted by the scheduler, and tasks within
application can invoke service APIs to synchronously execute and access shared
resources. As to clearly detect the execution situations of an application, the
states of tasks, events and shared resources are often considered as a checking
point. To check this type of property (which is named as OS data property
in our paper), an interface with respect to OS data such as the data in the
ready queue is provided by OS model in our approach. E.g., we can use the LTL
property shown in formula (1) to check whether the task tid will be run after
ActivateTask(tid) is invoked.

<> ((APIName == ActivateTask && para1 == tid)
&& X(runTask == tid)) (1)

Mutual Exclusion Property: Furthermore, the checking process on mutual
exclusion property also will be carried out in the practical checking process,
since tasks and ISRs within application can enter a critical section for accessing
a shared resource using service APIs GetResource(rid) and ReleaseResource(rid).
Informally, mutual exclusion contains two properties, one is exclusiveness, the
other is liveness. In our approach, the task tid of accessing shared resources
is recorded by resAccessList of OS model. Thus, our approach can be used to
check these two properties. For instance, we can use the LTL properties shown
in formula (2) and (3) to check the exclusiveness property and liveness property
respectively, where we suppose task tk1 and task tk2 will access the same shared
resource rid , IN represents matching task tid in list, n is the number of tasks
defined in the application.

!<>(tk1.tid IN resAccessList [rid].list[0 : n] &&
tk2.tid IN resAccessList [rid].list[0 : n]) (2)

<>(tk1.tid IN resAccessList [rid].list[0 : n]) (3)

4 Experiment and Discussion

As to show the practicality of our approach, some experiments are carried out in
this part. In the experiments, as to comprehensively investigate the effectiveness
our approach, the applications which hold different task number, API number
and loop number are selected as our benchmarks. Moreover, we also compared
the Spin-based approach with osek-bmc5 which is an implementation of our EPG
technique. In the experiments, we investigate four aspects, including task num-
ber, API number, loop number, and ISR number. jSpin is selected as the exper-
iment platform, and the “C complier” is configured to “-DVECTORSZ=16384
-DBITSTATE”, the max depth is set to “20,000,000”. In the EPG technique,
5 osek-bmc is available at http://www.jaist.ac.jp/∼s1220209/Index.htm.

http://www.jaist.ac.jp/~s1220209/Index.htm

252 H. Zhang et al.

the max depth is set to “20,000,000”, and the loop bound is set to 40. All of the
experiment results have been listed in Table 1. In the results table, #t is the num-
ber of tasks, #l is the number of loops, #s is the number of explored states. “Mb”
is the memory consumption measured in Mbyte, “time” is the time consumption
measured in second. The benchmarks used in the experiments are available at
http://www.jaist.ac.jp/∼s1220209/osek-spin.htm.

4.1 Experiment Results

There are some noticeable results in the Table 1. In all of the conducted experi-
ments (lines 1–18), Spin-based approach will check more states than osek-bmc.
Moreover, if we increase the task number and APIs number, Spin will run out
of memory and time (e.g., line 4 and 10). Compared with Spin-based approach,
osek-bmc can successfully check these examples with small states, and spends
lower cost (time and memory) than Spin. It is easy to explain why osek-bmc is
excellent in the verification. In EPG technique, the OS model is embedded in the
checking algorithm level for avoiding the transitions of OS model to be verified
in the checking process. However, in Spin-based approach, since the OS model
is a part of constructed checking model, Spin will not only check the behaviors
of tasks but also verify the OS model behaviors, and moreover, all of the states
with respect to both tasks and OS model states will be stored in the memory in
the checking process. Therefore, Spin-based approach will spend more time and
memory checking the same applications compared with EPG technique.

However, if the target application contains a few tasks but many loops (lines
11–18), Spin-based approach will defeat osek-bmc in time consumption. This is
because, in EPG technique, since the different APIs in different branches will
lead to different task execution sequences, the transition system of the target
application is constructed based on the execution paths. Therefore, when the
target application holds a lot of loops, osek-bmc will check a large number of
execution paths and a large number of the same sub-paths will be repeatedly
verified in the verification, which will slow down the performance of osek-bmc. In
contrast with EPG technique, in Spin-based approach, loops will not be unfold in
the checking process, and moreover, we do not need to set an appropriate bound
for loops. These efforts will make Spin-based approach more efficient than EPG
technique. Furthermore, based on the conducted experiments (lines 19–24), we
can find that the Spin-based approach is capable of checking the applications
which holds ISRs (EPG technique for now cannot check ISRs).

4.2 Discussion

Based on the shown experiments, there are several important investigation
results can be considered in the practical verification of OSEK/VDX applica-
tions. (i) For the simple applications which contain a few tasks (less than 15)
but many loops, the Spin-based approach is capable of checking this kind of
applications in the practical verification. However, (ii) for the complex applica-
tions which hold a lot of tasks and APIs, we should use osek-bmc to verify these

http://www.jaist.ac.jp/~s1220209/osek-spin.htm

A Spin-Based Approach for Checking OSEK/VDX Applications 253

Table 1. Comparison between Spin-based approach and EPG technique

Benchmark Size Spin-based approach osek-bmc/EPG

#t #l loop #API #s Mb Time (s) Result #s Mb Time (s) Result

bound

1 passCnt1 4 0 - 4 480 755 0.19 sat 18 2.13 0.093 sat

2 passCnt2 10 0 - 10 137225 768 3.76 sat 46 2.13 0.097 sat

3 passCnt3 bug 15 0 - 15 670176 798 17.6 unsat 29 2.14 0.231 unsat

4 passCnt4 bug 20 0 - 20 - M.O. T.O. - 41 2.15 0.301 unsat

6 msgp4 bug 18 0 - 35 - - T.O. - 145 2.22 0.571 unsat

7 increAPI1 bug 10 1 10 200 2955686 832 59.9 unsat 333 2.23 2.923 unsat

8 increAPI2 bug 10 1 20 400 5905975 891 116 unsat 663 2.24 6.130 unsat

9 increAPI3 bug 10 1 30 600 8897424 937 174 unsat 993 2.27 10.24 unsat

10 increAPI4 bug 10 1 40 800 - M.O. - - 1323 2.31 15.23 unsat

11 token2 bug 6 6 40 161 34371 765 1.12 unsat 2283 2.23 139 unsat

12 token3 safe 9 9 40 161 46990 769 1.26 sat 6417 2.41 192 sat

13 cyclic1 6 16 5 86 4025 757 0.26 sat 992 2.41 10.76 sat

14 cyclic2 9 28 10 289 21803 761 1.31 sat 3276 2.61 60.59 sat

15 cyclic3 12 40 10 412 116432 768 3.97 sat 4680 2.80 94.94 sat

16 cyclic4 15 56 10 575 1110057 799 29.4 sat 6552 3.06 198.4 sat

17 acc res1 safe 2 3 10 4 13907 759 0.46 sat 3491 2.32 88.8 sat

18 acc res2 safe 13 13 10 480 483126 762 12.2 sat - - T.O. -

19 passCnt1 1ISR 4 0 - 4 500 761 0.18 unsat

20 passCnt1 2ISR 4 0 - 4 724 762 0.19 unsat

21 passCnt1 3ISR 4 0 - 4 9656 763 0.43 unsat

22 passCnt2 1ISR 10 0 - 10 131037 769 3.56 unsat

23 passCnt2 2ISR 10 0 - 10 146770 772 3.93 unsat

24 passCnt2 3ISR 10 0 - 10 666960 775 17.2 unsat

applications. Furthermore, (iii) if the target application holds a lot of tasks,
APIs and loops, we can firstly use Spin-based approach to check the application
until Spin-based approach runs out of the memory, and then use osek-bmc to
continue the checking process.

5 Related Work

With the development of OSEK/VDX OS standard, OSEK/VDX has been
widely applied in the development of vehicle-mounted OS. For the developed
OSEK/VDX OS and its applications, how to ensure the reliability is becom-
ing challenge for developers with the continuously increasing complexity in the
development process. To the scope of checking developed OSEK/VDX OS, there
are some invaluable methods, e.g., Jiang Chen and Toshiaki Aoki have proposed
a method [9] to generate the highly reliable test-cases for checking whether devel-
oped OS conforms to the OSEK/VDX OS standard based on the Spin model
checker. As to support an environment of OSEK/VDX OS for model checking,
an UML-based method for producing promela scripts of OSEK/VDX OS is also
proposed in paper [10]. In addition, for the Trampoline [1] which is an open

254 H. Zhang et al.

source RTOS developed based on the OSEK/VDX OS standard, Yunja Choi
proposed a method [17] to convert the Trampoline kernel into formal models
and an incremental verification approach is applied in the verification. Further-
more, a CSP-based approach for checking the code-level OSEK/VDX OS is also
addressed in the paper [16].

To the developed applications, the paper [12] has proposed a method to
check the timing property based on the UPPAAL. However, to the best of our
knowledge, there is no work that considers a formal method to check the safety
property of OSEK/VDX applications except our previous works. The main con-
tribution of our paper is that we successfully apply Spin to check the OSEK/VDX
applications based on our SynM. The advantages of our approach are as follow.
(i) Our approach can accurately check the OSEK/VDX applications, since the
OS model as a special process is used to respond to service APIs and compute
the running task in the checking process. (ii) The checking process on ISRs is
taken into account in our approach.

6 Conclusion and Future Work

In this paper, we presented an approach to check OSEK/VDX applications based
on the Spin model checker. In our approach, as to accurately check OSEK/VDX
applications using Spin model checker, a synchronization model is employed to
simulate the executions of OSEK/VDX applications. We have implemented our
approach in Spin model checker and conducted many experiments, the experi-
ment results show that our Spin-based approach is capable of checking the safety
property of OSEK/VDX applications. We have also investigated the effectiveness
of the Spin-based approach and EPG technique based on the many experiments.
The investigation results show that, (i) for the simple application which contains
a few tasks (less than 15) but many loops, Spin-based approach is faster than
EPG technique in the verification. However, (ii) for the complex application
which contains many tasks and APIs, the EPG technique is more efficient to
check these applications compared with Spin-based approach.

In the future, there is an important work that will be carried out based on the
drawbacks of our approach. In the conducted experiments, we find that, in our
Spin-based approach the OS model will be involved in the verification compared
with EPG technique. Therefore, as to efficiently check OSEK/VDX applications
using Spin, we will translate the behaviors of OSEK/VDX applications into the
sequential C program based on the EPG technique.

References

1. Trampoline. http://trampoline.rts-software.org/
2. Clarke, E.M., Emerson, E.A.: Model checking: algorithmic verification and debug-

ging. Commun. ACM 152(11), 74–84 (2009)
3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM

Trans Program. Lang. Syst. 16(5), 1512–1542 (1994)

http://trampoline.rts-software.org/

A Spin-Based Approach for Checking OSEK/VDX Applications 255

4. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages, 4th edn.
Addison Wesley Longmain, New York (2009)

5. Biere, A., Clarke, E.M., Zhu, Y.: Bounded model checking. Adv. Comput. 58(11),
117–148 (2003)

6. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Lucent
Technologies Inc., Bell Laboratories, Boston, USA (2003)

7. Zhang, H., Aoki, T., et al.: An approach for checking OSEK/VDX applications.
In: 13th QSIC, pp. 113–116 (2013)

8. Zhang, H., Aoki, T., Lin, H.-H., et al.: SMT-based bounded model checking for
OSEK/VDX applications. In: 20th APSEC, vol. 2(4), pp. 307–314 (2013)

9. Chen, J., Aoki, T.: Conformance testing for OSEK/VDX operating system using
model checking. In: 18th Asia Pacific, pp. 274–281 (2011)

10. Yatake, K., Aoki, T.: Automatic generation of model checking scripts based on
environment modeling. In: van de Pol, J., Weber, M. (eds.) Model Checking Soft-
ware. LNCS, vol. 6349, pp. 58–75. Springer, Heidelberg (2010)

11. Lemieux, J.: Programming in the OSEK/VDX Environment. CMP, Suite 200
Lawrence, KS 66046, USA (2001)

12. Waszniowski, L., Hanzlek, Z.: Formal verification of multitasking applications
based on timed automata model. Real-Time Syst. 38(1), 39–65 (2008)

13. OSEK/VDX Group: OSEK/VDX operating system specification 2.2.3. http://
portal.osek-vdx.org/

14. Stoller, S.D.: Model-checking multi-threaded distributed java programs. In: 7th
International SPIN Workshop, pp. 224–244 (2000)

15. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

16. Huang, Y., Zhao, Y., et al.: Modeling and verifying the code-level OSEK/VDX
operating system with CSP. In: 5th Theoretical Aspects of Software Engineering
(TASE), pp. 142–149 (2011)

17. Choi, Y.: Safety analysis of trampoline os using model checking: an experience
report. In: Software Reliability Engineering (ISSRE), pp. 200–209 (2011)

18. Yang, Z., Wang, C., Gupta, A., et al.: Model checking sequential software programs
via mixed symbolic analysis. ACM Trans. Des. Autom. Electron. Syst. 14(1), 1–26
(2009)

http://portal.osek-vdx.org/
http://portal.osek-vdx.org/

Author Index

Ahn, Univan 62
Aoki, Toshiaki 110, 239

Barkaoui, Kamel 206
Ben Hedia, Belgacem 206
Benerecetti, Massimo 93
Bukhari, Syed Ali Asadullah 32

Caltais, Georgiana 47
Chiba, Yuki 110, 239
Choe, Changil 62

David, Alexandre 189
De Guglielmo, Renato 93

Filali, Mamoun 76

Gentile, Ugo 93

Haddad, Serge 206
Han, Song 62
Hasan, Osman 32
Havelund, Klaus 1
Haxthausen, Anne E. 223
Henkel, Jörg 32

Jacobs, Jaco 127
Joshi, Rajeev 1

Kaijser, Henrik 189
Kelter, Timon 142
Klein, Dominik 159

Lemerre, Matthieu 206
Lodhi, Faiq Khalid 32
Lönn, Henrik 189

Mallet, Frédéric 174
Marinescu, Raluca 189
Marrone, Stefano 93
Marwedel, Peter 142
Mazzocca, Nicola 93
Methni, Amira 206
Mikučionis, Marius 189

Nardone, Roberto 93
Noll, Thomas 17

Ouederni, Meriem 76

Peleska, Jan 223
Peron, Adriano 93

Raclet, Jean-Baptiste 76

Seceleanu, Cristina 189
Shafique, Muhammad 32
Simpson, Andrew 127

Velardi, Luigi 93
Vittorini, Valeria 93
Vu, Dieu-Huong 110
Vu, Linh H. 223

Yatake, Kenro 110

Zhang, Haitao 239
Zholtkevych, Grygoriy 174

	Preface
	Organization
	Contents
	Experience with Rule-Based Analysis of Spacecraft Logs
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Related Work
	1.4 Contents

	2 The LogFire Runtime Verification System
	2.1 The Deadlock Potential Detection Problem
	2.2 Formulating Deadlock Detection in LogFire
	2.3 Improving the Specification

	3 Analyzing Telemetry from the Curiosity Rover
	3.1 Monitoring Sequence Execution Status
	3.2 Monitoring Communication Windows

	4 Conclusion and Future Work
	References

	Safety, Dependability and Performance Analysis of Aerospace Systems
	1 Introduction
	2 Modelling Using an AADL Dialect
	2.1 Nominal Behaviour
	2.2 Error Behaviour
	2.3 Fault Injection

	3 The COMPASS Toolset
	3.1 Functional Correctness
	3.2 Safety Assessment
	3.3 Diagnosability and FDIR Analysis
	3.4 Performability Analysis

	4 Industrial Evaluation
	References

	Formal Verification of Distributed Task Migration for Thermal Management in On-Chip Multi-core Systems Using nuXmv
	1 Introduction
	2 Preliminaries
	2.1 nuXmv Model Checker
	2.2 Task Migration Algorithm for Hot Spot Reduction

	3 Modeling the DTM Algorithm in nuXmv
	3.1 Our Refinements to the Original Task Migration Algorithm
	3.2 FSM for the Revised Algorithm
	3.3 Modeling the Average Estimation Algorithm
	3.4 Model for the 99 Grid

	4 Verification of the DTM Algorithm
	4.1 Experimental Setup
	4.2 Functional Verification
	4.3 Timing Verification

	5 Conclusion
	References

	Expression-Based Aliasing for OO--languages
	1 Introduction
	2 The Alias Calculus
	2.1 Extension to Unbounded Executions
	2.2 A Sound Over-Approximation

	3 A K-Machinery for Collecting Aliases
	4 Integration in SCOOP
	4.1 Further Applications of the Alias Calculus

	5 Conclusions
	References

	Checking Integral Real-Time Automata for Extended Linear Duration Invariants
	1 Introduction
	2 Integral Real-Time Automata and Extended Linear Duration Invariants
	2.1 Integral Real-Time Automata
	2.2 Extended Linear Duration Invariants

	3 Semantics of Extended Linear Duration Invariants
	4 Checking Algorithm
	4.1 Verification of the Reaction Tank: Main Idea of the Checking Algorithm
	4.2 Algorithm
	4.3 Solvability of the Nonlinear Programming Problems

	5 Conclusion
	References

	A Normalized Form for FIFO Protocols Traces, Application to the Replay of Mode-based Protocols
	1 Introduction
	2 FIFO Protocols Semantics
	2.1 Notations
	2.2 Transition Systems
	2.3 FIFO Protocols Systems

	3 An Illustrative Example
	3.1 A Distributed Spanning Tree Construction Algorithm
	3.2 Replaying a Trace

	4 A Normal Form for FIFO Protocols Traces
	4.1 Basic Operations
	4.2 Normalization

	5 Application to Trace-based Replay
	5.1 Replay Definition
	5.2 Mode Based FIFO Protocols
	5.3 A Replay Algorithm

	6 Related Works
	7 Conclusion
	References

	Dynamic State Machines for Formalizing Railway Control System Specifications
	1 Introduction
	2 RBC Use Case and Language Requirements
	3 DSTM4Rail
	3.1 Metamodel
	3.2 Formal Syntax
	3.3 Sketch of the Formal Semantics

	4 Application to the RBC Use Case
	5 Discussion and Related Work
	6 Conclusions
	References

	Checking the Conformance of a Promela Design to its Formal Specification in Event-B
	1 Introduction
	2 Specifications
	3 Designs and Environments of the Target System
	4 Checking the Design Against its Formal Specification
	4.1 Overview
	4.2 Formal Definitions

	5 Case Study
	6 Discussion
	7 Related Works
	8 Conclusion
	References

	A Formal Model of SysML Blocks Using CSP for Assured Systems Engineering
	1 Introduction
	2 Background
	3 A CSP View of SysML Blocks
	4 A Robotic Arm
	5 Conclusions
	References

	Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems
	1 Introduction
	2 Related Work
	3 System and Task Model
	4 Parallelism Analysis
	4.1 Framework
	4.2 Prerequisites
	4.3 Analysis Algorithm
	4.4 Parallel System State Models
	4.5 Correctness

	5 Analysis Extensions
	6 Evaluation
	7 Conclusions
	References

	Key-Secrecy of PACE with OTS/CafeOBJ
	1 Introduction
	2 The PACE Key Agreement Protocol
	3 OTS, CafeOBJ and Invariant-Proving
	4 Modeling PACE in CafeOBJ
	4.1 An Abstract Version of PACE
	4.2 Basic Data Types
	4.3 Protocol Modeling

	5 Proving Key-Secrecy
	6 Experience and Lessons Learned
	7 Related Work
	8 Conclusion and Future Work
	References

	Coalgebraic Semantic Model for the Clock Constraint Specification Language
	1 Introduction
	2 Preliminaries
	2.1 Clock Constraints: Syntax
	2.2 Clock Constraints: Semantics
	2.3 Coalgebra as a Tool to Model Computer Systems

	3 Clock Constraints and Coalgebras
	3.1 Structure of Actuation Distributions
	3.2 Coalgebras for Primitive Clock Constraints

	4 Stationary Clock Constraints
	5 Related Work
	6 Conclusion
	References

	Analyzing Industrial Architectural Models by Simulation and Model-Checking
	1 Introduction
	2 Brief Overview of the EAST-ADL Language
	3 The Current Development Process in an Automotive Context
	4 Our Methodology for Analyzing Architectural Models
	5 An Example from Industry: Brake-by-Wire Case Study
	6 Simulation of EAST-ADL Functional Architecture in Simulink
	7 Formal Semantics of EAST-ADL as a Network of Timed Automata
	8 Analysis of EAST-ADL Models Using Model-Checking and Statistical Model Checking
	9 Related Work
	10 Conclusions and Discussion
	References

	Specifying and Verifying Concurrent C Programs with TLA+
	1 Introduction
	2 Related Work
	3 An Overview of TLA+
	4 Specification and Verification Process
	4.1 Proposed Approach
	4.2 Memory Layout of Concurrent C Program
	4.3 Intra-procedural Control Flow
	4.4 Inter-procedural Control Flow
	4.5 Generating the Specification

	5 Implementation and Experiments
	5.1 Case Study Description
	5.2 TLA+ Modules of the Model
	5.3 Specifying and Verifying Properties
	5.4 Verification and Discussion

	6 Conclusion and Future Work
	References

	Formal Modeling and Verification of Interlocking Systems Featuring Sequential Release
	1 Introduction
	2 The New Danish Route-Based Interlocking Systems
	3 Verification Method
	4 Kripke Structure Encodings of Interlocking Systems
	4.1 State Space
	4.2 Transition Relation

	5 High-Level Safety Properties
	6 Verification of Safety Properties
	6.1 Verification Strategy
	6.2 Invariant Strengthening

	7 Experiments
	8 Related Work
	9 Conclusion and Future Work
	References

	A Spin-Based Approach for Checking OSEK/VDX Applications
	1 Introduction
	2 Preliminaries
	2.1 OSEK/VDX OS
	2.2 OSEK/VDX Application and Execution Characteristics

	3 The Spin-Based Checking Approach
	3.1 The Synchronization Model
	3.2 Implementation in Spin
	3.3 Given Property

	4 Experiment and Discussion
	4.1 Experiment Results
	4.2 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

