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Abstract Shapegradients of shape differentiable shape functionals constrained to an
interface problem (IP) can be formulated in two equivalent ways. Both formulations
rely on the solution of two IPs, and their equivalence breaks down when these IPs
are solved approximatively. We establish which expression for the shape gradient
offers better accuracy for approximations by means of finite elements. Great effort
is devoted to provide numerical evidence of the theoretical considerations.
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1 Introduction

Optimal control of mathematical models is a core activity of applied mathematics.
The goal is to optimizemodel parameters with respect to target functionals: real map-
pings on the set of all admissible configurations. In many practical cases the control
parameter is the shape of a structure [1, 2]. In this case we speak of shape functionals
and, in particular, of PDE constrained shape functionals, when the mapping involves
the solution of a PDE, the so-called state problem.

The sensitivity of shape functionals with respect to perturbations of shapes is
expressed by the shape gradient: a linear bounded operator on the space of pertur-
bation directions. The knowledge of this mapping is the starting point for gradient
based shape optimization [1–6].

Shape gradients of shape differentiable shape functionals can be stated equiv-
alently as an integration over the volume and as an integration on the boundary
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[7, Chap. 9, Theorem3.6]. In the case of PDE constrained shape functionals, shape
gradients depend on the solution of the state problem and, in general, on the solution
of an additional PDE, the so-called adjoint problem. When the state and the adjoint
solutions are replaced with numerical approximations, the equivalence of the two
representations of the shape gradient breaks down [8].

Several authors suggested that the volume based formulation is better suited,
when discretizations by means of finite elements are considered, cf. [7, Chap. 10,
Remark2.3], [8] and [9, Chap. 3.3.7]. However, to our knowledge, thorough con-
vergence analysis and numerical evidence have not been provided. For the case of
elliptic boundary value problem constraints, a first theoretical investigation was con-
ducted in [10]. The aim of this work is to extend these results to the case of elliptic
interface value problems. In particular, we devote great effort to provide numerical
evidence through numerical experiments. For the sake of simplicity, we restrict our
considerations to a class of shape functionals and interface problems. Nevertheless,
we believe that our test case is representative and that no important aspect is missing.

2 Shape Gradients

A shape functional is a real valued map J : A → R defined on a set of admissi-
ble domains A, which is usually constructed starting from an initial open bounded
domain �. In the general approach by Delfour–Zolesio [7, Chap. 4], A comprises
all domains Ts(�) that are generated through the evolution Ts(·) of the flow of a
non-autonomous vector field V .

For a fixed perturbation direction V , the Eulerian derivative

dJ (�;V) := lim
s↘0

J (Ts(�)) − J(�)

s
(1)

expresses the sensitivity of the shape functional J with respect to the perturba-
tion direction V . Without loss of generality, the vector field V can be assumed to
be autonomous [7, Chap. 9, Sect. 3.1]. The shape functional J is said to be shape
differentiable at � if (1) defines a linear bounded mapping

dJ (�; ·) : W 1,∞(Rd,Rd) → R, V �→ dJ (�;V), (2)

which is called the shape gradient of J at �. As already mentioned in the Introduc-
tion, shape gradients play a key role in shape optimization.

Shape optimization literature mostly deals with PDE constrained shape function-
als that can be expressed as an integral on a subdomain D ⊂ � [1–8]. Here we
consider

J (�) =
∫

D
j(u) dx, (3)
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Fig. 1 Computational
domain � of (4)

n
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where j : R → R is a Lipschitz continuos function and u is the solution the scalar
interface problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−div(σ (x)∇u) = f in � = �1 ∪ �2,

[[u]] = 0 on �,[[
σ

∂u

∂n

]]
= 0 on �,

u = 0 on ∂�,

(4)

with real piecewise constant coefficient

σ(x) := σ1χ�1(x) + σ2χ�2(x).

The jump symbol [[·]] denotes discontinuity across the interface �. Note that for the
Neumann jump the vector n points outward, see Fig. 1.

The shape gradient of shape differentiable PDE constrained shape functionals can
be expressed both as an integration in volume and as an integration on the boundary
(the latter as a result of the Hadamard–Zolésio structure theorem [7, Chap. 9, The-
orem3.6]). For instance, the shape gradient of (3) under the constraint (4) takes the
forms1

dJ (�;V) =
∫

�

(
σ∇u · (DV + DVT )∇p + p∇f · V

+ div(V) (j(u) − σ∇u · ∇p + fp)

)
dx (5)

and

dJ (�;V) =
∫

�

(V · n)

[[
2σ

∂p

∂n
∂u

∂n
− σ∇u · ∇p

]]
dS, (6)

1We tacitly assume that the vector field V vanishes on ∂� because we are mostly interested in the
contribution of the interface.
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where p is the solution of the adjoint problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−div(σ (x)∇p) = j′(u)χD in �,

[[p]] = 0 on �,[[
σ

∂p

∂n

]]
= 0 on �,

p = 0 on ∂�.

(7)

Remark 1 Deriving explicit formulas of shape gradients is a delicate and error prone
task. Among the several techniques available in literature, the so-called “fast deriva-
tion” method of Céa provides a formal shortcut to find the boundary based formula-
tion, cf. [1, Chap. 6.4.3] and [11]. However, great care has to be taken with interface
problems. In this case it is worth working out the details in order to overcome the
subtle issues induced by the presence of the interface. A thorough derivation of (5)
and (6) can be found in [5].

3 Approximation of Shape Gradients

The shape gradient dJ (�;V) of (3) depends on the solution of the two IPs (4) and
(7). To better stress this dependency, as well as to distinguish between Formulas (5)
and (6),we refer to themwith the notation dJ (�, u, p;V)Vol and dJ (�, u, p;V)Bdry,
respectively.

Lemma 1 Let u and p be exact solutions of (4) and (7), respectively. Then, the
following equality holds

dJ (�, u, p;V)Vol = dJ (�, u, p;V)Bdry. (8)

Proof Integration by parts on Formula (5) yields

dJ (�;V) =
∫

�

(
σ∇u · (DV + DVT )∇p

− V · (
j′(u)∇u − σ∇(∇u · ∇p) + f ∇p

) )
dx

+
∫

�

[[V · n (j(u) − σ∇u · ∇p + fp)]] dS. (9)

With the vector calculus identity [8, Eq. (44)]

∇u · (DV + DVT )∇p + V · ∇(∇u · ∇p) = ∇p · ∇(V · ∇u) + ∇u · ∇(V · ∇p), (10)
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Formula (9) can be rewritten as

dJ (�;V) =
∫

�

(
σ∇p · ∇(V · ∇u) + σ∇u · ∇(V · ∇p)

− j′(u)V · ∇u − fV · ∇p

)
dx

+
∫

�

[[V · n (j(u) − σ∇u · ∇p + fp)]] dS. (11)

Then, integration by parts yields

dJ (�;V) =
∫

�

[[
σ

∂p

∂n
V · ∇u

]]
−

∫
�

div(σ∇p)(V · ∇u) + j′(u)(V · ∇u) dx

+
∫

�

[[
σ

∂u

∂n
V · ∇p

]]
−

∫
�

div(σ∇u)(V · ∇p) + f (V · ∇p) dx

+
∫

�

[[V · n (j(u) − σ∇u · ∇p + fp)]] dS. (12)

The two domain integrals in (12) vanish because of (4) and (7). Moreover, since
[[u]] = 0 on �,

[[
σ

∂p

∂n
V · ∇u

]]
= V · n

[[
σ

∂p

∂n
∂u

∂n

]]
and [[V · nj(u)]] = 0,

and since [[p]] = 0, [[V · nfp]] = 0, so that we retrieve

dJ (�;V) =
∫

�

V · n
[[
2σ

∂p

∂n
∂u

∂n
− σ∇u · ∇p

]]
dS. (6)

�

Remark 2 For dJ (�, u, p;V)Vol to be well-defined, it is sufficient to assume that
u, p ∈ H1(�). On the other hand, higher regularity of u and p is required for
dJ (�, u, p;V)Bdry to be well-defined because the latter is not continuous on H1(�).

Usually, exact solutions of IPs are not available, and one has to rely on numerical
approximations uh, ph ∈ W 1,∞(�). Equality (8) breaks down when u and p are
replaced with their approximate counterparts [8], and both formulas (5) and (6)
become approximations

dJ (�, uh, ph;V)Vol ≈ dJ (�;V) ≈ dJ (�, uh, ph;V)Bdry (13)

of the exact value dJ (�;V). The natural question is then which among
dJ (�, uh, ph; ·)Vol and dJ (�, uh, ph; ·)Bdry is closer to dJ (�; ·).
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The answer may depend on the underlying discretization scheme. Although
discretization by boundary element method is also possible [2, 4], we focus on
discretizations by means of finite elements. This is the most popular choice in shape
optimization because of its flexibility, which is much appreciated among engineers.

In applied mathematics several operators that depend on the solution of bound-
ary value problems have equivalent volume and boundary based representations.
For instance, this is the case for lift functionals for potential flow [12] and for far
field functionals in electromagnetism [13, 14]. When used in the context of finite
element approximations, volume based formulations tend to exhibit faster conver-
gence and superior accuracy than their counterparts formulated on the boundary.
This can be motivated by volume integrals being continuous in energy norm, whilst
boundary integrals involve traces that are not well-defined on the natural variational
space. This difference determines whether the formulation displays the superconver-
gence that holds for the evaluation of continuous functionals on Galerkin solutions
[15, Sect. 2].

On account of Remark2,we heuristically expect the same trend in (13). A rigorous
statement can be made in case of smooth interfaces and sufficient regular source
function in (4). Following the same lines as for the proofs of Theorems3.1 and 3.2
in [10], it can be shown that2

|dJ (�;V) − dJ (�, uh, ph;V)Vol| = Ch2‖V‖W 2,4(Rd ;Rd) (14)

and that
|dJ (�;V) − dJ (�, uh, ph;V)Bdry| = Ch‖V‖L∞(Rd ;Rd), (15)

when uh and ph are Ritz-Galerkin solutions computed with piecewise linear
Lagrangian finite elements on a family of quasi-uniform triangular meshes with
nodal basis functions.

Remark 3 The result (14) is restricted to vector fields in W 2,4(Rd;Rd) because the
proof relies on finite element duality techniques [16, Chap.5.7]. However, the volume
based formulation (5) is a continuous linear operator with respect to W 1,∞(Rd;Rd),
and it can easily be shown that

|dJ (�;V) − dJ (�, uh, ph;V)Vol| = Ch‖V‖W 1,∞(Rd ;Rd). (16)

On the other hand, the estimate (15) relies on the nontrivial approximation properties
of finite element solutions in W 1,∞(�) [16, Corollary8.1.12]. We are not aware of a
technique to improve the rate in (15) by restricting the space of vector fields.

2We denote by C a generic constant, which may depend on�, its discretization, the source function
f , and the coefficient σ . Its value may differ between different occurrences.
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4 Numerical Experiments

We consider the quadratic shape functional

J (�) =
∫

�

u2 dx.

The shape gradient is a linear bounded operator on W 1,∞(Rd,Rd). Hence, the
quality of the approximation in (13) should be investigated in the operator norm.
Numerically, this is an extremely challenging task, if not impossible. Therefore we
have to content ourself with considering convergence with respect to a more tractable
operator norm over a finite dimensional space of vector fields.

Since we are mainly interested in contributions of the interface, we select vector
fields that vanish on ∂�. We set � =] − 2, 2[2 (a square centered in the origin and
with side equal 4), and we restrict ourself to the finite dimensional space of vector
fields of the form3

V(x, y) =
∑

m1+n1≤5
m2+n2≤5

m1,m2,n1,n2≥1

λm1,n1

(
v(x, y, m1, n1)

0

)
+ λm2,n2

(
0

v(x, y, m2, n2)

)

with v(x, y, m, n) = sin(mxπ/2) sin(nyπ/2) and λmi,ni ∈ R. Moreover, we replace
the W 1,∞-norm with the more manageable H1-norm.

To investigate the convergence, we monitor the approximate dual norms

errVol :=
(
max
V

1

‖V‖2H1(�)

|dJ (�;V) − dJ (�, uh, ph;V)Vol|2
)1/2

(17)

and

errBdry :=
(
max
V

1

‖V‖2H1(�)

|dJ (�;V) − dJ (�, uh, ph;V)Bdry|2
)1/2

(18)

on different meshes generated through uniform refinement.4 The reference value
dJ (�;V) is approximated by evaluating both dJ (�, uh, ph;V)Vol and dJ (�,

uh, ph;V)Bdry on a mesh with an extra level of refinement. To avoid biased results
we display convergence history both with self- and cross-comparison.

3Repeating the experiments for mi + ni ≤ 3 produces results in agreement with the observations
made for mi + ni ≤ 5. Therefore, the arbitrary choice of restricting the sum of the indices to 5 does
not seem to compromise our observations.
4 In experiment 1 new meshes are always adjusted to fit the curved interface.
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Fig. 2 Plot of the solution u of the state problem in the computational domain � for the first (left)
and the second (right) numerical experiment. The interface is drawn with a dashed line

As in [10], we consider finite element discretizations based on linear Lagrangian
finite elements on quasi-uniform triangular meshes with nodal basis functions.5 Inte-
grals in the domain are computed by 7 point quadrature rule in each triangle, while
line integrals by 6 point Gauss quadrature on each segment. In experiment 1, the
interface is approximated by a polygon. Nevertheless, the convergence of linear
finite elements is not affected by this discretization [17].

In the first numerical experiment the interface� is a circle centered in (0.1, 0.2)
and with radius equal 1, see Fig. 2 (left). The problem data are

f (x) = 1 and σ(x) = 2χ�1(x) + 1χ�2(x). (19)

The numerical results are displayed in Fig. 3 (left column). We clearly see that the
volume based formulation converges faster and is more accurate than its boundary
based counterpart. The convergence rates agree with what has been predicted by
(14) and (15). In the cross-comparison plot dJ (�, uh, ph;V)Vol saturates due to
insufficient accuracy of the reference solution computed with dJ (�, uh, ph;V)Bdry,
whereas the boundary based formulation converges with the same rate as for the
self-comparison.

In the second numerical experiment the interface � is a triangle with corners
located at (−1,−1), (1,−1) and (0.2, 1), see Fig. 2 (right). Interface corners are
known to affect the regularity of the solution of interface problems [18]. Therefore,
the estimates (14) and (15) can not be proved in this case, and we expect to observe
lower convergence rates. To better stress the impact of the corners we increase the
contrast of the diffusion coefficient by setting

σ(x) = 10χ�1(x) + 1χ�2(x).

5The experiments are performed in MATLAB and are based on the library LehrFEM developed at
ETHZ. Mesh generation and uniform refinement are performed with the functions initmesh and
refinemesh of the MATLAB PDE Toolbox.
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Fig. 3 Convergence history for the first (left column) and the second (right column) numerical
experiment. In the first row the reference value dJ (�;V) is computed with an extra level of
refinement. The second row displays cross-comparisons

The source function is the same as in (19). From the results displayed in Fig. 3 (right
column) we observe that the volume based formulation converges faster and is more
accurate then its boundary based counterpart. Again, in the cross-comparison the
convergence history of the volume based formulation saturates due to an insufficient
accuracy of the reference solution computed with dJ (�, uh, ph;V)Vol. We suspect
that this inaccuracy gives rise to the difference in the convergence rates of the bound-
ary based formulation between self- and cross-comparisons.

In the third numerical experiment we investigate the impact of the choice of
the diffusion coefficient σ on the results obtained in the first and in the second
numerical experiment. For σ2 = 1 fixed and σ1 = 0.1, 0.5, 0.8, 1.25, 2, 10, we
monitor the approximate relative error constructed by dividing the approximate dual
norms (17) and (18) by

max
V

|dJ (�;V)|
‖V‖H1(�)

.
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Fig. 4 Convergence history for the third numerical experiment. The choice of the diffusion
coefficient has no influence on the convergence rates in case of a circular interface (left). On the
other hand, for a triangular interface (right), the effect of the singularity in the functions u and p is
visible only for high contrasts σ1/σ2

The reference solution is computed evaluating dJ (�, u, p;V)Vol on a mesh with
an extra level of refinement. In Fig. 4 (left), we see that the choice of the diffusion
coefficient σ has no influence on the convergence rates in case of a circular interface.
On the other hand, for non-smooth interfaces, the effect of the singularity in the
functions u and p is visible only for high contrasts σ1/σ2.

5 Conclusion

The shape gradient of shape differentiable PDE constrained shape functionals is a
linear bounded operator on W 1,∞(Rd,Rd), and its knowledge is the starting point
for gradient based shape optimization. The shape gradient can be stated both as an
integration in volume and as an integration on the boundary, both of which depend on
the solution of boundary value problems. When used with discrete solutions, these
two representations lose their equivalence and become approximations of dJ (�; ·).
Theoretical considerations in Sect. 3 and numerical experiments in Sect. 4 convey that
volume based approximations of the shape gradient are better suited in the context of
finite element discretizations. Although our investigations are conducted on a chosen
class of scalar interface problems, we believe that similar conclusions can be drawn
for the case of more general PDE constraints stemming from electromagnetism and
continuum mechanics.
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