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Abstract In this survey we present the new techniques developed for proving exis-
tence of optimal sets when one minimizes functionals depending on the eigenvalues
of the Dirichlet Laplacian with a measure constraint, the most important being:

min
{
λk(�) :� ⊂ R

N , |�| = 1
}
.

In particular we sketch the main ideas of some recent works, which allow to extend
the now classic result by Buttazzo and Dal Maso to RN .
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1 Introduction

The aim of this note is to report some recent existence results for classical shape opti-
mization problems involving eigenvalues of the Dirichlet Laplacian. More precisely,
we consider minimization problems of the following form:

min {λk(�) : � ∈ A}, (1.1)

where k ∈ N, λi denotes the i th eigenvalue of the Dirichlet Laplacian (counted with
multiplicity) andA is the class of admissible shapes. A natural choice for this class,
that we use in Sects. 3 and 4, is:
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A := {
� ⊂ R

N , quasi-open, |�| ≤ 1
}
, (1.2)

where | · | denotes the Lebesgue measure inRN , N ∈ N. We need to have a bound on
the measure of admissible sets, otherwise the monotonicity of Dirichlet eigenvalues
would trivialize the problem;moreover the boundon themeasure is taken less or equal
to 1 only for simplicity: with every other positive constant the setting is unchanged.
Then, since eigenvalues are decreasing with respect to set inclusion, it is equivalent
to consider the problem with the equality constraint. An alternative (less common)
choice, instead of the measure constraint, is a bound on the perimeter, which was
studied only recently in [18]. The choice of quasi-open1 sets is made in order to
get compactness with a suitable topology and will be enlightened in Sect. 2. At last,
one can consider also shapes contained in (see Sect. 2) or containing (see Sect. 5) a
(quasi-)open bounded set.

Optimization problems like (1.1) naturally arise in the study of many physical
phenomena, e.g. heat diffusion or wave propagation inside a domain � ⊂ R

N , and
the literature is very wide (see [8, 13, 21, 22] for an overview), with many works in
the last few years. Problem (1.1) in the class (1.2) was studied first by Lord Rayleigh
in his treatise The theory of sound of 1877 (see [28]) and he conjectured the ball
to be the optimal set when k = 1. This was proved by Faber [19] and Krahn [23,
24] in the 1920s, using techniques based on spherical decreasing rearrangements.
From that result the case k = 2 follows with little additional effort: Krahn [23, 24]
and Szegö [29] proved two disjoint equal balls of half measure each to be optimal.
The situation for k ≥ 3 becomes more complicate and it is not known what are the
optimal shapes, yet. The only other functionals of eigenvalues for which the optimal
shape is known are λ1/λ2 and λ2/λ3; Ashbaugh and Benguria (see [2]) proved that
the minimizers are the unit ball and two equal disjoint balls of half measure each
respectively.

Since the search for explicit optimal shapes did not give other results, it is natural
to study at least whether a minimizer for (1.1) exists, and this subject turns out to be a
difficult one, too. It is natural to attack an existence problem using the direct method
of the Calculus of Variations. One first difficulty in order to apply it in this setting
consists in finding a suitable notion of convergence for sets, which “behaves well”
with respect to eigenvalues of Dirichlet Laplacian. More important, one needs also
to find out how to suitably choose the class of admissible sets. It is immediately clear
that the convergence in measure (or L1 convergence of the characteristic functions)
does not fit well, since it neglects sets of positive capacity: as an example one can
consider a ball and the same ball minus a radius (in R

2), which are the same set for
this topology, but have different Dirichlet eigenvalues.

The search for a “right” notion of convergence in this setting was a main problem
for many years. In the 1980s Dal Maso and Mosco (see [16, 17]) proposed the
notion of γ-convergence, which has the “good” property that Dirichlet eigenvalues
are continuous with respect to it. This was the main tool used by Buttazzo and Dal

1Quasi-open sets are superlevels of Sobolev functions.
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Maso in 1993 (see [14]) for proving a fundamental existence result for a very general
class of functions of eigenvalues, in the class ofquasi-open sets inside afixedbounded
box. More precisely, they fix D ⊂ R

N bounded and open, and consider F : Rk → R

a functional increasing in each variable and lower semicontinuous (l.s.c.). Then there
exists a minimizer for the problem

min {F(λ1(�), . . . ,λk(�)) : � ⊂ D, quasi-open, |�| ≤ 1}. (1.3)

The above result gives a definitive answer to the existence problem for a very
general class of spectral functionals in a bounded ambient space (actually it is suf-
ficient to suppose D to have finite measure). We give the main ideas of the proof
of this result in Sect. 2, together with some preliminaries about γ-convergence. The
extension of the result by Buttazzo and Dal Maso to generic domains in RN is a non
trivial topic, because minimizing sequences, in principle, could have a significant
portion of volume moving to infinity.

A first partial result in the direction of an extension to unbounded domains was
obtained by Bucur and Henrot in 2000 (see [11]); they proved the existence of a
minimizer for λ3, using a concentration-compactness argument (see [5]). Moreover
they showed that, given k ≥ 1, if there exists a bounded minimizer for λ j for all j =
1, . . . , k − 1, then there exists a minimizer for λk (and more in general for Lipschitz
functionals of the first k eigenvalues). Unfortunately this boundedness hypothesis
was not known even for λ3, till Dorin Bucur in a very recent paper (see [7]) was able
to study the regularity of energy shape subsolutions. Employing techniques coming
from the theory of free boundaries, it is possible to prove boundedness and finiteness
of the perimeter for this class of sets, stable with respect to internal perturbations.
Since optimal sets for (1.1) can be proved to be energy shape subsolutions, the
existence of a minimizer for λk for all k ∈ N follows easily from the result by Bucur
and Henrot. We present the ideas behind the proof of these results in Sect. 3.

In the same period another independent proof of existence of a solution for prob-
lem (1.3) in RN , with F satisfying the same hypotheses as in the result by Buttazzo
and Dal Maso, was given by Mazzoleni and Pratelli (see [27]). Their idea consists
in showing that, given a minimizing sequence for the problem

min
{

F(λ1(�), . . . ,λk(�)) : � ⊂ R
N , quasi-open, |�| ≤ 1

}
, (1.4)

it is then possible to find a new one made of sets with diameter bounded by a constant
depending only on k, N (but not on the particular functional) and with all the first k
eigenvalues not increased. This argument, roughly speaking, works because sets with
long “tails” can not have the first k eigenvalues very small. Moreover, with minor
changes in the proof, it is also possible to deduce that every minimizer for (1.4) is
bounded, provided that F is weakly strictly increasing (see [26]). This more “direct”
method is presented in Sect. 4.

In recent years the existence of optimal sets was studied also for another kind
of shape optimization problem (among sets with a measure constraint) involving
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eigenvalues of Dirichlet Laplacian: when there is an internal obstacle, that is,

min
{
λk(�) : D ⊂ � ⊂ R

N , quasi-open, |�| ≤ 1
}
, (1.5)

where D is a fixed quasi-open box with |D| ≤ 1. Bucur et al. in [10], using a
concentration-compactness argument similar to the one in [5], proved existence of
a solution for k = 1, gave a characterization of the cases when k ≥ 2 and provided
a partial regularity result for the solutions. In Sect. 5 we deal with the main ideas of
their work.

The results exposed above give a quite complete understanding for the problem of
existence ofminimizers for spectral functionals involving eigenvalues of theDirichlet
Laplacian with a measure constraint. On the other hand the study of the regularity of
solutions is still a main subject of research, both in the bounded (see [3]) and in the
unbounded case (see the recent work [12]). In particular it is not known in general
whether the minimizers for λk are open sets and not only quasi-open. This is one
major open problem in spectral shape optimization.

It is also possible to consider minimization problems like (1.1) with perimeter
constraint instead of volume constraint. This kind of problem was studied in the
recent paper by De Philippis and Velichkov [18], where they prove that there exists
a minimizer for

min
{
λk(�) : � ⊂ R

N , measurable, P(�) ≤ 1
}
.

They use techniques to some extent analogous to those used by Bucur in [7], com-
bining a concentration compactness argument and the study of the regularity for
perimeter shape subsolutions. The perimeter constraint turns out to have a better
regularizing effect than the volume constraint. In fact De Philippis and Velichkov
are able to give many informations about regularity of optimal shapes: first of all the
optimal shapes are open, so the above problem can be formulated among open sets.
Moreover every optimal set � is bounded, has finite perimeter and its boundary ∂�

is C1,α for all α ∈ (0, 1), outside a closed set of Hausdorff dimension at most N −8.

2 Preliminaries and Existence in a Bounded Box

First of all we need to recall some basic tools, which you can find in more detail in
the books [8, 21, 22]. We define the Sobolev space H 1

0 (�) as

H 1
0 (�) =

{
u ∈ H 1(RN ) : cap({u �= 0} \ �) = 0

}
, (2.1)

where for every E ⊂ R
N the capacity of E is defined as
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cap(E) := min
{
‖v‖2H1(RN )

: v ∈ H1(RN ), v ≥ 1 a.e. in a neighborhood of E
}

.

Then, given a function u ∈ H 1
0 (�), its quasi-continuous representative is defined as

ũ(x) := lim
r→0

−
∫

Br (x)

u(y) dy.

Since outside a set of zero capacity every point is Lebesgue for u (see [22] for
example), then the quasi-continuous representative is defined up to zero capacity
and we identify every H 1 function with its quasi-continuous representative.

A set � is called quasi-open if for all ε > 0 there exists an open set �ε such
that cap (�ε��) < ε; for example superlevels of H 1 functions are quasi-open sets.
Moreover, given a bounded open box D, we call R� : L2(D) → L2(D) the resolvent
operator for the Dirichlet Laplacian, that is,

R�( f ) := argmin

{
1

2

∫

D
|Du|2 −

∫

D
u f , u ∈ H 1

0 (�)

}
,

for all f ∈ L2(D). The definition above canbe extended also to capacitary2 measures:

Rμ( f ) := argmin

{
1

2

∫

D
|Du|2 +

∫

D
u2 dμ −

∫

D
u f , u ∈ H 1

0 (�) ∩ L2
μ(D)

}
.

When f = 1, R�(1) =: w� is called torsion function and it is an important tool for
proving existence results. In particular w� is the solution of

{ −�w = 1 in �,

w ∈ H 1
0 (�),

and hence a minimizer for the so called torsion energy functional

E(�) := min
u∈H 1

0 (�)

{
1

2

∫

D
|Du|2 −

∫

D
u

}
.

After that, given a sequence of quasi-open sets contained in D, (�n)n∈N, we say
that �n γ-converge to a quasi-open set � ⊂ D as n → ∞ when w�n ⇀ w� in
H 1

0 (D). Moreover Dal Maso and Mosco proved (see [16, 17]) that the convergence
above implies for all f ∈ L2(D) R�n ( f ) → R�( f ) in L2(D), hence also R�n →
R� in the operator norm L(L2(D)) and hence the full spectrum converges. Thus
eigenvalues of the Dirichlet Laplacian are continuous with respect to γ-convergence.
Unfortunately, γ is a rather strong convergence and it is not compact in the class
A(D) = {� ⊂ D, quasi-open, |�| ≤ 1}; it is then necessary to weaken it, in order

2A Borel measure μ is called capacitary if, for every set E , cap (E) = 0 implies μ(E) = 0.
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to apply the direct method of the calculus of variations to problem (1.3). A natural
choice is the following.

A sequence �n ∈ A(D) is said to weak γ-converge to a domain � ∈ A(D) if
w�n ⇀ w in H 1

0 (D) as n → ∞, with � := {w > 0}. Note that w coincide with
w� = R�(1) if and only if the convergence is γ and not only weak γ. More precisely,
for some capacitarymeasureμ,w = Rμ(1): in fact we can say that the γ-convergence
is compact in the class of capacitary measures, where a set � corresponds to the
following measure:

∞�(E) =
{

+∞ if cap (E \ �) > 0,

0 if cap (E \ �) = 0.

A well known example of a sequence of quasi-open sets γ-converging to a measure
which is not a quasi-open set is due to Cioranescu and Murat [15].

Buttazzo and Dal Maso used the compactness properties of the weak
γ-convergence and the lower semicontinuity of Dirichlet eigenvalues with respect to
it for proving a very general existence result.

Theorem 2.1 (Buttazzo–Dal Maso) Let D ⊂ R
N be a bounded, open set and

F : Rk → R be a functional increasing in each variable and lower semicontinu-
ous (l.s.c.). Then there exists a minimizer for the problem

min {F(λ1(�), . . . ,λk(�)) : � ⊂ D, quasi-open, |�| ≤ 1}. (2.2)

First of all, the weak γ-convergence is built in order to be compact in the class
A(D) and so a minimizing sequence converges, up to subsequences. Then it is easy
to see that the weak γ-convergence is l.s.c. with respect to the Lebesgue measure, so
the constraint |�| ≤ 1 is satisfied by the limit of a weak γ-converging sequence of
sets. It is then necessary to study the lower semicontinuity of theweak γ-convergence
with respect to eigenvalues and this turns out to be a crucial point in the argument by
Buttazzo and Dal Maso for proving Theorem 2.1. The following proposition gives a
positive answer, for a (quite large) class of functionals.

Proposition 2.2 A functional J : A(D) → R non decreasing with respect to set
inclusion is γ l.s.c if and only if it is weak γ l.s.c.

The hypothesis on the functional J to be nondecreasing with respect to set inclusion
is quite strong, but it is satisfied by eigenvalues of the Dirichlet Laplacian and hence
also by increasing functions of them. Thus the above Proposition can be applied in
the hypothesis of Theorem 2.1.

The proof of Proposition 2.2 is based on the following (non trivial) key points,
whose proof relies also on the maximum principle for the Dirichlet Laplacian.
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(a) If w�n converge weakly in H 1
0 (D) to w and vn ∈ H 1

0 (�n) converge weakly in
H 1

0 (D) to v, then v ∈ H 1
0 ({w > 0}).

(b) Let �n ⊂ D be quasi-open sets such that w�n converge weakly in H 1
0 (D) to

w ∈ H 1
0 (�) for some quasi-open set� ⊂ D. Then there exist a subsequence (not

relabeled) and a sequence of quasi-open sets �̃n that γ-converge to � satisfying
�n ⊂ �̃n ⊂ D.

Then the Buttazzo and Dal Maso Theorem follows easily from Proposition 2.2
using the direct method of the Calculus of Variations. Given a minimizing sequence
(�n) of quasi-open sets for problem (1.3), by the compactness of the weak γ-
convergence we can extract a subsequence (not relabeled) that weak γ-converges
to a quasi-open set � ∈ A(D). Using the properties of the weak γ-convergence
highlighted above, the hypotheses on F and Proposition 2.2, we have that

|�| ≤ lim inf
n→∞ |�n| ≤ 1,

F(λ1(�), . . . ,λk(�)) ≤ lim inf
n→∞ F(λ1(�n), . . . ,λk(�n)),

thus � is an optimal set for (1.3).

Remark 2.3 In the hypotheses of Theorem 2.1, it is sufficient to suppose that D ⊂
R

N has finite measure, so that the embedding H 1(D) ↪→ L2(D) remains compact
(see [9]).

3 Concentration Compactness and Subsolutions

The main problem in extending the result by Buttazzo and Dal Maso to (quasi-)open
sets of RN is the lack of compactness of the embedding H 1(RN ) ↪→ L2(RN ). The
concentration-compactness principle by P.L. Lions (see [25]) tries to focus on “how”
the embedding H 1(RN ) ↪→ L2(RN ) can be non compact. In the case of sets Bucur
(see [5]) rearranged the principle in the following way, ruling out the vanishing case.

Theorem 3.1 (Lions, Bucur) Let (�n)n ⊂ R
N be a sequence of quasi-open sets

with |�n| ≤ 1 for all n ≥ 1. Then there exists a subsequence (not relabeled) such
that one of the following situations occur:

(1) Compactness. There exist yn ∈ R
N and a capacitary measure μ such that

Ryn+�n → Rμ in L(L2(RN )).
(2) Dichotomy. There exist �i

n , i = 1, 2 such that |�i
n| > 0, d(�1

n,�
2
n) → ∞ and

‖R�n − R�1
n∪�2

n
‖L2(RN ) → 0 as n → ∞.

Thanks to the concentration compactness argument above, it is easy to prove the
following partial existence result (see [11]) for the unbounded case.
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Theorem 3.2 (Bucur–Henrot) For k ≥ 2 if there exists a bounded minimizer for
λ1, . . . ,λk in the class A(RN ), then there exists at least a minimizer for λk+1 in
A(RN ).

In particular this provides existence of a minimizer for the problem:

min
{
λ3(�) : � ⊂ R

N , quasi-open, |�| ≤ 1
}
, (3.1)

since the minimizers for λ1 and λ2 are respectively a ball and two balls, which are
bounded. The idea of the proof of Theorem 3.2 is quite simple. Given a minimizing
sequence for λk+1 in A(RN ), made of bounded sets �n , if compactness occur, exis-
tence follows directly considering the regular set3 �μ of the limit measure (see [21,
Theorem5.3.3]). On the other hand, if dichotomy happens, then �1

n ∪ �2
n is also a

minimizing sequence. But it is thus possible to see that the sequence (�i
n)n must be

minimizing for some lower eigenvalue in the class A(RN ), with different measure
constraints: c1, c2 > 0 such that c1 + c2 ≤ 1. Hence, up to translations, a minimizer
for λk+1 will be the union of the two minimizers corresponding to some lower eigen-
values. Note that if we do not know that there exists a bounded minimizer for every
lower eigenvalue, it is not possible to consider the union of two of them, since in
principle one can be dense in RN .

Since not even the boundedness of a minimizer for λ3 was known, Bucur studied
the link between this kind of shape optimization problems and free boundary prob-
lems, in order to be able to apply also in this framework the powerful techniques
developed by Alt and Caffarelli (see [1]) and later implemented in the study of the
energy of the Dirichlet Laplacian by Briançon, Hayouni and Pierre (see [4]).

First of all we need to be able to deal with measurable sets A, with |A| < ∞ (we
call M the class of such sets), so we define the Sobolev-like space

H̃ 1
0 (A) := {

u ∈ H 1(RN ) : u = 0 a.e. on RN \ A
}
. (3.2)

It is well known (see [18] for a more detailed discussion of those spaces) that there
exists a quasi-open set ωA ⊆ A such that

H 1
0 (ωA) = H̃ 1

0 (A),

hence for functionals decreasingwith respect to set inclusion (e.g. single eigenvalues)
it is equivalent to solve problem (1.4) in the class of quasi-open sets with the classical
definition of Sobolev space (2.1), or in the family of measurable sets associated
to H̃ 1

0 .
Then it is possible to endow the family of measurable sets with a distance induced

by γ-convergence:

3The regular set �μ of a measure μ is the largest (in the sense of inclusion q.e.) countable union of
sets of finite (μ-)measure.
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dγ(A, B) :=
∫

RN

|wA − wB |, A, B ∈ M,

where we considered the torsion functions in H 1(RN ) extended to zero: w� = 0 in
R

N \ �.

The most important notion in order to link shape optimization problems with free
boundary problems is the one of shape subsolution.

Definition 3.3 We say that a set A ∈ M is a local shape subsolution for a functional
F : M → R if there exist δ > 0 and � > 0 such that

F(A) + �|A| ≤ F( Ã) + �| Ã|, ∀ Ã ⊂ A, dγ(A, Ã) < δ.

Roughly speaking, a shape subsolution is a set that is optimal with respect to internal
perturbations. Bucur (see [7]) proved a very powerful regularity result for shape
subsolution of the torsion energy functional

E(A) := min
u∈H̃ 1

0 (A)

{
1

2

∫

RN

|Du|2 −
∫

RN

u

}
.

Theorem 3.4 Let A be a local shape subsolution (with constants δ,�) for the torsion
energy E. Then it is bounded, with diam(A) ≤ C(|A|, δ,�), has finite perimeter
and its fine interior has the same measure of A.

The proof of the theorem for the finite perimeter part is based on controlling the
term

∫
{0≤wA≤ε} |DwA|2, while the boundedness and the inner density estimate come

from the following Alt–Caffarelli type estimate: there exist r0, C0 > 0 such that for
all r ≤ r0

sup
B2r (x)

wA ≤ C0r implies u = 0 in Br (x).

The next key point in Bucur’s argument consists in linking the minimizers of
eigenvalues of Dirichlet Laplacian with shape subsolution of the energy.We consider
the minimization problem, equivalent to (1.4) up to choose � > 0 small enough (for
a detailed discussion about this equivalence, see [4]),

min
{

F(λ1(A), . . . ,λk(A)) + �|A| : A ⊂ R
N , quasi-open

}
, (3.3)

for a functional F : Rk → R which satisfies the following Lipschitz-like condition
for some positive αi , i = 1, . . . , k:

F(x1, . . . , xk) − F(y1, . . . , yk) ≤
k∑

i=1

αi (xi − yi ), ∀xi ≥ yi , i = 1, . . . , k.

(3.4)
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Theorem 3.5 Assume that A is a solution of (3.3), then it is a local shape subsolution
for the energy problem.

The proof is based on [6, Theorem3.4], which assures, for all k ∈ N, the existence
of a constant ck(A) such that:

∣
∣
∣
∣

1

λk( Ã)
− 1

λk(A)

∣
∣
∣
∣ ≤ ck(A)dγ(A, Ã).

Then, up to choose δ small enough and Ã ⊆ A with dγ( Ã, A) < δ, it follows

�(|A| − | Ã|) ≤ F(λ1( Ã), . . . ,λk( Ã)) − F(λ1(A), . . . ,λk(A))

≤
∑

i

αi (λi ( Ã) − λi (A))

≤
∑

i

αi c
′
i (E( Ã) − E(A)) ≤ K (E( Ã) − E(A)),

with a constant K depending on c′
i = c′

i (A, δ, i) and αi , for i = 1, . . . , k.
Now a straightforward application of Theorem 3.4, together with Theorem 3.2,

gives the main existence result.

Theorem 3.6 (Bucur) If the functional F satisfies the Lipschitz-like condition (3.4),
then problem (3.3) has at least a solution for every k ∈ N. Moreover every optimal
set is bounded and has finite perimeter.

In particular there exists a solution for the problem

min
{
λk(�) : � ⊂ R

N quasi-open, |�| ≤ 1
}
,

for all k ∈ N. We highlight here that, to our knowledge, it is not known yet if the
above problem admits solutions in the class of open sets. It is possible to give slightly
different proof of Theorem 3.6 that does not use the concentration-compactness
principle, but only the regularity of energy shape subsolutions. This proof is due to
BozhidarVelichkov and it has never appeared on a published paper, to our knowledge.

Remark 3.7 (Velichkov) Let (�n)n≥1 be a minimizing sequence for problem (3.3),
with |�n| < ∞ for all n ∈ N, and then we consider, for all n ∈ N, the minimum
problem

min {F(λ1(�), . . . ,λk(�)) + �|�| : � ⊂ �n},

for some � > 0 sufficiently small. Theorem 2.1 by Buttazzo and Dal Maso assures
that there exists a solution�∗

n , but this is also a subsolution and hence by Theorem 3.4
it has diameter uniformly bounded, depending only on k, N . Hence we have a new
minimizing sequence �∗

n uniformly bounded to which it is possible to apply again
Theorem 2.1, thus obtaining existence for problem (3.3).
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4 How to Choose an Uniformly Bounded
Minimizing Sequence

In this section we aim to provide the main ideas of the proof of the existence theorem
presented by Mazzoleni and Pratelli in [27], which uses an “elementary” method
that requires neither a concentration-compactness argument nor regularity of shape
subsolutions.

Theorem 4.1 Let k, N ∈ N and F : Rk → R be a functional increasing in each
variable and l.s.c., then there exists a (bounded) minimizer for the problem

min
{

F(λ1(�), . . . ,λk(�)) : � ⊂ R
N , quasi-open, |�| ≤ 1

}
. (4.1)

More precisely the diameter of the optimal set is controlled by a constant depending
only on k, N (and not on the particular functional F).

The proof is based on the following Proposition, which gives the possibility to
consider minimizing sequences for (4.1) with uniformly bounded diameters, which
means that we can employ Buttazzo–Dal Maso Theorem.

Proposition 4.2 If � ⊂ R
N is an open set with unit volume, there exists another

open set of unit volume, �̂, contained in cube of side R = R(k, N ) and such that

λi (�̂) ≤ λi (�), ∀ i = 1, . . . , k.

From Proposition 4.2, Theorem 4.1 follows easily: in fact, given a minimizing
sequence (�n)n∈N made of open sets with unit volume, it is sufficient to take the
corresponding sequence (�̂n)n∈N, which is again minimizing and then to apply The-
orem 2.1 by Buttazzo and Dal Maso to it.

On the other hand the proof of Proposition 4.2 is quite delicate: we give here
below the main ideas of how it is carried on. In particular, given � open and with
unit volume, we focus on its left “tail”, that is, the set

�l
t := {

x ∈ � : x1 < t
}
,

for a t such that
∣
∣�l

t

∣
∣ = m̂, for a suitably choosen m̂, very small but fixed (depending

only on k, N ). Then it is possible to find a new set �̂ with bounded tail and the first
k eigenvalues lowered. We need some notations: for all t ≤ t we define:
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Fig. 1 A set � with the cylinder Q(t) (shaded)

�r
t := {x ∈ � : x1 > t} ,

�t :=
{
(x2, . . . , xN ) ∈ R

N−1 : (t, x2, . . . , xN ) ∈ �
}
,

ε(t) := HN−1(�t ), m(t) =
∫ t

−∞
ε(s) ds,

δ(t) :=
k∑

i=1

∫

�t

|Dui (t, x2, . . . , xN )|2 dHN−1.

For all t ≤ t it is possible to compare the first k eigenvalues of � with those of
�̃(t) := �r

t ∪ Q(t), which is obtained by “cutting” the “tail” at level t and adding a

suitable small cylinder Q(t) of height σ(t) = ε(t)
1

N−1 (see Fig. 1).
Using the min-max principle for eigenvalues one obtains

λi (�̃(t)) ≤ λi (�) + C(k, N )ε(t)
1

N−1 δ(t), ∀i = 1, . . . , k,

if ε(t), δ(t) ≤ ν, for some constant ν = ν(k, N ). After rescaling �̃(t) to unit
volume, being �̂(t) := |�̃(t)|− 1

N �̃(t), it is possible to prove that for a suitable
constant C = C(k, N ), exactly one of the following conditions hold.

(1) max {ε(t), δ(t)} > ν.
(2) (1) does not hold and m(t) ≤ C(ε(t) + δ(t))ε(t)

1
N−1 .

(3) (1) and (2) do not hold and for all i = 1, . . . , k, λi (�̂(t)) < λi (�). Moreover
if m(t) ≥ m̂, then there exist η = η(k, N ) such that λi (�̂(t)) < λi (�) − η for
all i = 1, . . . , k.

In order to conclude the boundedness of the “tail”, we define

t̂ := sup
{
t ≤ t : condition (3) holds for t

}
,
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with the usual convention that t̂ = −∞ if condition (3) is false for every t ≤ t . We
consider the following subsets of (t̂, t)

A : =
{

t ∈ (t̂, t̄) : condition (1) holds for t
}

,

B : =
{

t ∈ (t̂, t̄) : condition (2) holds for t andm(t) > 0
}

,

and it is possible to prove that |A| + |B| ≤ C(k, N ), since in this case we obtain
a differential equation, regarding the measure of the “tail”, since for a.e. t ∈ R

m ′(t) = ε(t),

m ′(t) ≥ 1

C
m(t)

N−1
N ,

and an analogous one about
∫ t
−∞ δ(s) ds.

Then, if t̂ = −∞, that is, only case (1) or (2) happen, the set � has itself a
bounded “tail”.

On the other hand, if t̂ > −∞, we pick a t� ∈ [t̂ − 1, t̂] for which condition (3)
holds and consider U1 := �̂(t�).

If m(t�) < m̂, then we have that λi (U1) < λi (�) for all i = 1, . . . , k and U1 has
a bounded “tail”, so we have concluded. Instead, if m(t�) ≥ m̂, the stronger estimate
λi (U1) < λi (�) − η holds for all i = 1, . . . , k, but possibly U1 has not bounded
“tail”. Hence we iterate the procedure, by applying the whole construction to U1 and
thus finding U2 which either has bounded “tail”, or it satisfies λi (U2) < λi (�) − 2η
for all i = 1, . . . , k. After l steps, if we have not concluded yet, there is Ul such that

λi (Ul) < λi (�) − lη, ∀ i = 1, . . . , k.

Since we can reduce to consider sets with λk(�) ≤ M (see [27, Appendix]), the
inequality above is impossible if lη ≥ M : as a consequence, the iteration must stop
after less than M/η steps, thus finding a set with bounded “tail” and with the first k
eigenvalues lowered.

The same procedure can be performed with small changes also for the “inner”
part of the set, that is, �i := {

(x, y) ∈ � : m̂ ≤ |�−(x)| ≤ 1 − m̂
}
and to the right

tail. Then one can apply the same arguments in all the other coordinate directions.
This concludes Proposition 4.2.

At this point, Theorem 4.1 does not guarantee that every minimizer is bounded,
in fact a constant functional satisfies the hypothesis of the Theorem, but it can not
have minimizers uniformly bounded! With a necessary additional assumption on the
functional F , in [26] was proved the following.

Theorem 4.3 In the hypotheses of Theorem 4.1, if the functional F is also weakly
strictly increasing, that is,

∀xi < yi , ∀i = 1, . . . , k, F(x1, . . . , xk) < F(y1, . . . , yk),
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then all the minimizers for problem (4.1) have diameter bounded by a constant
depending only on k, N.

The proof is carried out improving Proposition 4.2. More precisely, given a
sequence of open sets with unit measure that γ-converge to a minimum � for prob-
lem (4.1), then either, up to pass to a subsequence, diam(�n) ≤ C(k, N ), or there
exist (�̂(tn))n open sets with unit measure (obtained with a “cutting” procedure as
above) such that

λi (�̂(tn)) < λi (�) − η(k, N ), ∀ i = 1, . . . , k.

Hence in this last case,

inf
n

{
F

(
λ1(�(tn)), . . . ,λk(�(tn))

)}
< F(λ1(�), . . . ,λk(�)),

which is absurd.

Remark 4.4 The main differences in the existence results in R
N described in this

section and in the previous one are the following:

• Bucur’s proof gives the important information that all minimizers have finite
perimeter, while this property can not be easily deduced from the approach by
Mazzoleni and Pratelli;

• On the other hand, the result by Bucur applies to “Lipschitz” functionals of the
first k eigenvalues (more precisely satisfying condition (3.4)), while the method
by Mazzoleni and Pratelli requires the functionals only to be increasing in each
variables and l.s.c.

Remark 4.5 As we have already highlighted, the regularity issue for problem (4.1)
is a difficult one and it is not completely understood yet, to our knowledge. In the
recent work [12] it is proved that optimal sets are open for a very special class of
functional, among which λ1(·) + · · · + λk(·). Moreover it is shown that an optimal
set for λk(·) admits an eigenfunction, corresponding to the k th eigenvalue, which is
Lipschitz continuous in RN , but this does not assure the openness.

5 The Case of Internal Constraint

In this section we present the approach used in [10] in order to give some existence
results for problem (1.5) with an internal constraint, where D is a quasi-open set with
|D| ≤ 1, possibly unbounded. The main point in order to prove existence results for
such problems is the following concentration-compactness principle, inspired by
Theorem 3.1, in the case of inner constraints. We remark that the main changes are
in the “compactness” case, where there are no more translations.
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Theorem 5.1 Let (�n)n be a sequence of quasi-open sets in R
N , each of them

containing a given quasi-open set D, with |�n| ≤ 1 for all n ≥ 1. Then there exists
a subsequence (not relabeled) such that one of the following situations occur:

(1) Compactness. There exists a capacitary measure μ such that R�n → Rμ in
L(L2(RN )) and moreover D ⊂ �μ.

(2) Dichotomy. There exist �i
n , i = 1, 2 such that lim infn→∞ |�i

n| > 0, d(�1
n,�

2
n)

→ ∞ and ‖R�n − R�1
n∪�2

n
‖L2(RN ) → 0 as n → ∞. Moreover lim supn→∞

|�1
n ∩ D| = 0 or lim supn→∞ |�2

n ∩ D| = 0.

From the above concentration-compactness principle it is possible to prove the fol-
lowing existence result (see [10]). First of all we need to introduce, for m ≥ 0, the
value

λ∗
k(m) := inf {λk(�) : � quasi-open, |�| ≤ m}.

Theorem 5.2 Let D be a quasi-open set with |D| ≤ 1. For k ∈ N we define

αk := inf
{
λk(�) : D ⊂ � ⊂ R

N , quasi-open, |�| ≤ 1
}
. (5.1)

If k = 1 the problem has at least a solution.
For k ≥ 2 one of the following assertions holds:

(a) Problem (1.5) has a solution;
(b) There exists l ∈ {1, . . . , k − 1} and an admissible quasi-open set � such that

αk = λk−l(�) = λ∗
l (1 − |�|);

(c) There exists l ∈ {1, . . . , k − 1} such that αk = λ∗
l (1 − |D|) > λk−l(D).

Clearly in case (b) and (c) we do not have existence of a solution in general. Some-
thing more can be said with stronger hypotheses on D and it will be stated later. Now
we sketch the proof of Theorem 5.2 for the case k = 1. Let (�n)n≥1 be a minimizing
sequence such that lim infn→∞ |�n| is minimal (clearly the value must be strictly
positive). Following Theorem 5.1, if we are in the compactness situation, there is
a subsequence (not relabeled) that γ-converges to a capacitary measure μ. The set
�μ := {

Rμ(1) > 0
}
is admissible and thus it is a solution.

On the other hand, if dichotomy occurs, we get a contradiction. We may assume
that λ1(�

1
n ∪ �2

n) = λ1(�
1
n), since the two sets have positive distance, and clearly

the sequence (�1
n ∪ D)n is also minimizing. Then only two situations can happen:

1. Either lim infn→∞ |�1
n ∪ D| < lim infn→∞ |�n|;

2. Or limn→∞ |�2
n \ D| = 0.

Case (1) contradicts the fact that (�n)n is the minimal minimizing sequence. Also
case (2) is impossible, since it implies d(�1

n, {0}) → ∞, otherwise the measure of D
would be infinite. Hence |�1

n ∩ D| → 0 and consider the ball B with measure equal
to lim supn |�1

n|: B ∪ D is a solution for every position of B, and when B intersects
(but not cover) some connected component of D we have the contradiction.
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The proof of the case k ≥ 2 follows from similar ideas. One takes again (�n)n a
minimizing sequence with minimal lim inf |�n| and if there is compactness one gets
immediately the existence of a solution. If dichotomy happens, then we can suppose

|�1
n| → α1, |�2

n| → α2, |�1
n ∩ D| → 0,

and (up to subsequences) we can take the maximal l ∈ {1, . . . , k − 1} for which one
of the following holds:

• |λk(�n) − λk−l(�
2
n)| → 0 and λl(�

1
n) ≤ λk−l(�

2
n) ≤ λl+1(�

1
n),

• |λk(�n) − λl(�
1
n)| → 0 and λk−l(�

2
n) ≤ λl(�

1
n) ≤ λk−l+1(�

2
n).

It is clear that case (b) of the thesis follows from the first one and case (c) follows
from the second one. With an easy induction argument one can now conclude.

The next result highlight that stronger hypotheses lead to a good improvement.

Theorem 5.3 In the hypotheses of Theorem 5.2, if moreover we ask the set D to be
bounded, then also the cases (b) and (c) of Theorem 5.1 lead to the existence of a
solution.

Moreover in [10] are proved also some regularity properties of solutions of (5.1).
In particular, if k = 1, |D| < 1 and D is quasi-connected,4 all the minimizers are
open sets even if D is only quasi-open.

Acknowledgments The author wishes to thank Giovanni Franzina for some discussions about the
paper.
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