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Abstract In this review article the theoretical foundations for shape-topological
sensitivity analysis of elastic energy functional in bodies with nonlinear cracks and
inclusions are presented. The results obtained can be used to determine the location
and the shape of inclusions which influence in a desirable way the energy release
at the crack tip. In contrast to the linear theory, where in principle, crack lips may
mutually penetrate, here we employ nonlinear elliptic boundary value problems in
non-smooth domains with cracks with non-penetration contact conditions across
the crack lips or faces. A shape-topological sensitivity analysis of the associated
variational inequalities is performed for the elastic energy functional. Topological
derivatives of integral shape functionals for variational inequalities with unilateral
boundary conditions are derived. The closed form results are obtained for the Lapla-
cian and linear elasticity in two and three spatial dimensions. Singular geometrical
perturbations in the form of cavities or inclusions are considered. In the variational
context the singular perturbations are replaced by regular perturbations of bilinear
forms. The obtained expressions for topological derivatives are useful in numerical
method of shape optimization for contact problems as well as in passive control of
crack propagation.
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1 Introduction and Overview

Understanding of nucleation, growth and propagation of single cracks and crack pat-
terns in the context of composite materials is a grand challenge in material sciences.
This is even more true for the controlled interaction between shapes and geometries
of material inclusions on the one side and defects leading to damage, cracks and
finally failure on the other side. Within the last century there have been developed
a number of theories describing the propagation of cracks in solids. From the point
of view of mathematical rigour, the approaches by Griffith and Barenblat are by
now well established and widely accepted. Given a particular distribution of inclu-
sions in a matrix material of an elastic body, it is possible, using Griffith’s theory,
to evaluate the stress concentrations at the tip of an incipient crack. This provides a
structure-property map from the shapes and geometries - and of course also themate-
rial properties - of the inclusions to the dissipated energy or the energy release rate.
This mapping can be described in terms of the Griffith functional. Optimal design of
composites with respect to influencing crack-properties is then amatter of ’inverting’
that map, in the sense of inverse engineering. Mathematically, this inversion is at the
heart of inverse problems and, more precisely in this context, of sensitivity based
shape and topology optimization. To this end, directional derivatives of the Griffith
functional play a major role in the context of control of crack propagation in brittle
materials where the Griffith criterion applies. The idea of designing composites with
this aim is not new, some attempts have been made in the literature. See [6] who
initialized this field of research in studying a distributed control problem for the
Laplacian with a linear crack, that is a crack where no non-penetration condition is
assumed to hold. The goal of that paper was to stop the crack propagation under the
action of the control. In [16] the problem of crack control has been treated with non-
penetration condition along the crack and boundary controls. The authors of [37]
consider the shape of inclusions with different material properties as controls but
take a linear crack model for a problem in conductivity. See also [51] for examples in
mechanical engineering, where sensitivities are typically based on FEM-models. All
articles mentioned are concerned with the reduction of the energy release rate. There
are only very few articles concerned with shape variations of rigid or elastic inclu-
sions in order to influence the energy release rate associated with non-penetrating
cracks. This leads to a problem of shape-optimization in the context of variational
inequalities; see [18] for an approach involving obstacles. The maximization of the
energy release rate, rather its reduction, is important in some cases, where one wants
to release as much energy as possible such that the material does not undergo a global
crack. A first attempt towards optimization of the shape of inclusion with respect to
maximizing the energy release rate have been reported in [21, 29, 30, 34, 48–50].
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However, a rigorous mathematical treatment on the infinite dimensional level is still
in its infancy. This article aims at a self-contained description of sensitivity based
crack-control in the particular sense that the design of composites is geared towards
influencing the crack resistance and, finally, the crack propagation. The sensitivities
used in order to optimize the crack propagation are topological and shape derivatives
of the Griffith functional with respect to changes in the inclusions constituting the
composite.

Topological derivatives of shape functionals are introduced in [54] for linear ellip-
tic boundary value problems. The corresponding expressions depend on pointwise
values of solutions as well as of its gradients [46]. Therefore, the expressions for
topological derivatives are not well defined on the energy spaces associated with the
boundary value problems. In this paper we propose equivalent expressions for the
topological derivatives for variational inequalities which are derived by a domain
decomposition technique. Such expressions are given by line integrals in two spatial
dimensions, or by surface integrals in three spatial dimensions. In addition, the new
expressions are well defined on the energy space. In order to derive the topological
derivatives by an application of the domain decomposition technique an artificial
interface � ⊂ � is introduced and � := �1 ∪ � ∪ �2 is decomposed into two
subdomains. The functional under consideration is the elastic energy E(�) of the
whole domain �. Mixed shape-topological or topological-shape second order deriv-
atives of the energy are evaluated. While shape sensitivity analysis is performed in
�2, asymptotic analysis is performed in �1. In the framework of shape-topological
sensitivity analysis the velocity method is applied in order to determine the shape
functional J (�) := dE(�; V ), where V is the specific vector field in derivation of
V → dE(�; V ). Then an asymptotic expansion of ε → J (�ε) is obtained. In the
framework of topological-shape sensitivity analysis, first the asymptotic expansion
of ε → E(�ε) is performed, and the first order term of such an expansion is called
the topological derivative. It turns out [46, 54] that the topological derivative of the
energy functional is unbounded in the energy space of the elasticity boundary value
problems under considerations. Therefore, we study an equivalent representation of
topological derivatives which are well defined in the energy space. These represen-
tations can be used as well to modify the state equations by replacing the singular
domain perturbations by the regular perturbations of bilinear forms in variational
setting.

The asymptotic analysis of the energy functional performed in one subdomain,
e.g., �1, can be used in the second subdomain �2 by means of an asymptotic expan-
sion of the Steklov-Poincaré operator on the interface. The method is justified by the
fact that the first order expansion of the energy functional in the subdomain leads
to the first order asymptotic expansion of the Dirichlet-to-Neumann mapping on the
interface between subdomains. Thus, a first order expansion of the Steklov-Poincaré
operator on the interface for the second subdomain is obtained. In this way, the first
order expansion of the energy functional in the truncated domain �2 is derived.
The precision of the obtained expansion is sufficient [56, 58] to replace the original
energy functional by its first order expansion, provided the obtained expression is
well defined on the energy space. Furthermore, the first order approximation of the
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energy functional in � is established. We point out that another method of approx-
imation of the state equation by using the so-called self-adjoint extensions of the
elliptic operators can be considered [39, 40].

The proposed domain decomposition method is important for variational inequal-
ities [2] related to crack problems with non-penetration conditions across the crack.
The arguments can, however, be developed for general variational inequalities. In
order to describe the methodology in a nut-shell, before going on to details for elas-
ticity, we consider the following abstract set-up.

v → I (v) = 1

2
a(v, v) − L(v) (1)

over a convex, closed subset K ⊂ H of the Hilbert space H called the energy space.
The function space H := H(�) is a Sobolev space which contains the functions
defined over a domain � ⊂ R

d , d = 2, 3. The singular geometrical perturbation ωε

centered at x̂ ∈ � of the domain � is denoted by �ε, the size of the perturbation is
governed by a small parameter ε → 0. The quadratic functional defined on H :=
H(�ε) becomes

v → Iε(v) = 1

2
aε(v, v) − Lε(v) (2)

with the minimizers uε ∈ K := K (�ε). The expansion of the associated energy
functional

ε → E(�ε) := Iε(uε) = 1

2
aε(uε, uε) − Lε(uε) (3)

is considered at ε = 0. Namely, we are looking for its asymptotic expansion

E(�ε) = E(�) + εdT (̂x) + o(εd), (4)

where x̂ → T (̂x) is the topological derivative [46, 54]. We show that there are
regular perturbations of the bilinear form defined on the energy space H(�),

v → b(v, v)

such that the perturbed quadratic functional defined on the unperturbed function
space H(�)

v → I ε(v) = 1

2

[

a(v, v) + εdb(v, v)
] − L(v) (5)

furnishes the first order expansion (4). In our applications to contact problems in
linear elasticity, it turns out that the bilinear form v → b(v, v) is supported on
�R := {|x − x̂ | = R} ⊂ � with R > ε > 0.
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Variational inequalities are used to model contact problems in elasticity. It is
known that the solutions to variational inequalities are Lipschitz continuous with
respect to the shape [52]. In general, however, the state governed by a variational
inequality is not Fréchet differentiable with respect to the shape. For a class of varia-
tional inequalities described by unilateral constraints in Sobolev spaces of Dirichlet
type, the metric projection onto the constraints turns out to be Hadamard differ-
entiable [12]. This property is used in order to obtain the first order directional
differentiability of the associated shape functionals.

In order to show second order shape differentiability for variational inequalities,
we have to restrict ourselves to energy-type shape functionals. The energy functional
is the so-called marginal function and it is Fréchet differentiable with respect to the
shape [12]. The first order shape derivative of the energy functional in the direction
of a specific velocity vector field is considered as the shape functional for topological
optimization. Thus, its topological derivative is evaluated. The possible applications
of shape-topological derivatives include the control of singularities of solutions to
variational inequalities by insertion of elastic inclusions far from the singularities.

Example 1 We describe the shape-topological differentiability of the energy shape
functional for the Signorini variational inequality in two spatial dimensions. The
same idea can be used for the frictionless contact problems in linear elasticity.

Let us consider the Signorini problem posed in � ⊂ R
2, with boundary ∂� =

� ∪ �0, and �c ⊂ �. Denote H 1
�0

(�) = {v ∈ H 1(�) | v = 0 on �0 ⊂ ∂�}. The
solution u ∈ K minimizes the quadratic functional

I (v) = 1

2
a(�; v, v) − ( f, v)�

over the cone

K = {v ∈ H 1
�0

(�) | v � 0 on �c ⊂ � ⊂ ∂�}.

The shape functional is the energy

E(�) = 1

2
a(�; u, u) − ( f, u)�,

where

a(�; u, u) =
∫

�

∇u · ∇udx,

( f, u)� =
∫

�

f udx .

We assume that � ∩ �0 = ∅. Let �t
0 := Tt (V )(�0) be the boundary variations [52]

of the Dirichlet boundary �0.
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Let us consider the decomposition of � = �1 ∪ � ∪ �2, �1 ∩ �2 = �, such
that �0 ⊂ ∂�1 and �c ⊂ ∂�2. It means that the boundary variations as well as the
topological asymptotic analysis are performed in �1, and the unilateral conditions
are prescribed in the second subdomain �2.

The shape derivative of the energy functional with respect to the boundary varia-
tions of �0 can be written in distributed form [52]

dE(�; V ) =
∫

�1

〈A′(0) · ∇u,∇u〉dx

where A′(0) = div V I − DV − DV�, under the assumption that the velocity field V
is supported in a small neighborhood of �0 and that supp V ∩ supp f = ∅.

The second shape functional for the purposes of topological optimization is simply
defined by

J (�) :=
∫

�1

〈A′(0) · ∇u,∇u〉dx . (6)

We are going to determine the topological derivatives of � → J (�) for insertion
of small inclusions in �1 far from �0. In this way we can control the possible
singularities on �0 by topology optimization in �.

We consider the domain decomposition method for purposes of the shape-
topological differentiability of energy shape functionals. First, the domain � is split
into two subdomains �1,�2 and the interface �. See Fig. 1. The differentiability
with respect to small parameter of the Dirichlet-to-Neumann map which lives on the
boundary � ⊂ ∂�1 is established. This map is called the Steklov-Poincaré operator
for subdomain �2.

Once, the derivative of the energy functional is given, we can proceed with the
subsequent topological optimization problem. For topological optimization another
decomposition � := �R ∪ �R ∪ �c is introduced. The small inclusion ωε centered
at the origin x̂ := O is located in subdomain �R ⊂ � with the interface �R ⊂ ∂�R .
See Fig. 2.

Fig. 1 Signorini problem
with domain decomposition
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Fig. 2 Domain � with crack

Σ

Ωc

ΓR
ε

Γ0

In particular, an elastic bodyweakened by small cracks is considered in the frame-
work of unilateral variational problems in linearized elasticity. The frictionless con-
tact conditions are prescribed on the crack lips in two spatial dimensions, or on the
crack faces in three spatial dimensions. Theweak solutions of the equilibrium bound-
ary value problem for the elasticity problem are determined by minimization of the
energy functional over the cone of admissible displacements. The associated elastic
energy functional evaluated for the weak solutions is considered for the purpose of
control of crack propagation. The singularities of the elastic displacement field at
the crack front are characterized by the shape derivatives of the elastic energy with
respect to the crack shape in the framework of Griffith’s theory. For example, in two
spatial dimensions, the first order shape derivative of the elastic energy functional
evaluated in the direction of a velocity field supported in an open neighbourhood
of one of crack tips is called the Griffith functional. The Griffith functional is mini-
mized with respect to the shape and the location of small inclusions in the body. The
inclusions are located far from the crack. In order to minimize the Griffith functional
over an admissible family of inclusions, the second order directional, mixed shape-
topological derivatives of the elastic energy functional are evaluated to determine
the locations of inclusions. The boundary value problem for the elastic displacement
field takes the form of a variational inequality over the positive cone in a fractional
Sobolev space. The sensitivity analysis of variational inequalities under considera-
tions lead to the property of directional differentiability of metric projection operator
onto a polyhedric positive cone in fractional Sobolev spaces. Therefore, the concept
of conical or Hadamard differentiability applies to shape and topological sensitivity
analysis of variational inequalities under consideration.

In our framework of shape-topological differentiability we consider:

• Variational inequalities for cracks in solids, the associated Griffith functional is
given by the shape derivative of the elastic energy;

• Conical differentiability of metric projection onto positive cone in the fractional
Sobolev space of Dirichlet type equipped with natural order;

• Asymptotic analysis of theDirichlet-to-Neumannmapwith applications to domain
decomposition technique andSteklov-Poincaré nonlocal pseudodifferential bound-
ary operators;

• The second order shape-topological derivatives of elastic energy for the purposes
of passive control of crack propagation.
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In linearized elasticity the Griffith criterion for crack propagation in two spatial
dimensions uses the size of singularity coefficients at the crack tips, called the stress
intensity factors, in order to forecast the crack propagation. In the pioneering paper
[26] this criterion is extended to the nonlinear crack models with a mathematical
proof which uses the Griffith shape functional, i.e. the shape derivative of the elastic
energy with respect to the perturbations of positions of crack tips. The next step in
the analysis of nonlinear crack models is the control of crack propagation. For such
control the possible strategy is proposed in this paper with full proofs.

• Find the sensitivities of the Griffith functional with respect to the location of
inclusions in elastic body;

• These sensitivities are called the topological derivatives [45] of Griffith’s shape
functional and can be determined by the asymptotic analysis in the singularly
perturbed geometrical domains;

• Minimize the topological derivatives and in this way determine the possible loca-
tions of inclusions;

• Use the shape sensitivity analysis of Griffith’s shape functional and determine
optimal shape of inclusions.

The main difficulty of sensitivity analysis of solutions to nonlinear boundary value
problems in non-smooth domains under consideration are the unilateral conditions
prescribed on the crack lips which lead to the variational inequalities of the first
kind. The asymptotic analysis of variational inequalities [57, 58]with respect to small
parameterwhich governs the size of the singular domain perturbation is performed by
a domain decomposition technique. In the present paper themathematical foundation
of the passive control strategy for crack propagation by means of shape-topological
optimization is described in detail. First, the method of sensitivity analysis used in
this paper is explained. The variational inequality in the perturbed domain �ε ⊂ �

is replaced by another variational inequality in the intact domain �. To this end the
bilinear form a(�ε; ·, ·) is approximated by the bilinear form

a(�; ·, ·) + εdb(�R; ·, ·), (7)

where d = 2, 3 is the space dimension.
We apply the method of boundary variations [53] and the asymptotic analysis

[45] in the subdomain �R in order to obtain the expansions of the elastic energy
with respect to an inclusion. These expansions are used in the subdomain �c which
contains the crack. As a surprising result expansion (7) of the bilinear form, which is
well defined on the energy space in the intact domain �, is established. To our best
knowledge, the bilinear form b(�R; ·, ·) has been employed in asymptotic analysis
in singularly perturbed geometrical domains for the first time in [57, 58] for the
Laplacian and the planar elasticity.

We now briefly describe the contents of paper, referring to the corresponding
sections.
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In Sect. 2, frictionless contact problems for the crack are introduced. The elastic
energy of the elastic body is considered in the subdomain�c. The contribution of the
elastic energy from the subdomain�R is given by the energy of the boundary Steklov-
Poincaré operator. The Steklov-Poincaré operator depends on a small parameter
ε → 0 which governs the size of singular geometrical perturbation in �R .

In Sect. 3, general results on directional differentiability of metric projection are
adapted to crack problems. The conical differentiability of solutions to the variational
inequality in �c leads to the main result of the paper, which is the directional differ-
entiability of the Griffith functional with respect to the shape parameter. The abstract
results on conical differentiability of the metric projection [12, 53] are adapted to
the non-penetration conditions prescribed on the crack.

In Sect. 4, the representative case of cracks in two spatial dimensions are consid-
ered for shape-topological sensitivity.

In Sect. 5, the complete proof of shape and topological differentiability of the
elastic energy in �R is given. This implies the differentiability of the boundary
bilinear form associated with the Steklov-Poincaré operator on�R . Thus, the Griffith
functional is differentiable. In this way we show that the main result of the paper
applies to the crack control strategy.

In Sect. 6, the bounded perturbations of bilinear forms are presented for elliptic
boundary value problems. In such a way the second order shape-topological deriv-
atives of the energy functionals can be evaluated by easily implemented numerical
methods.

The expansion of the Steklov-Poincaré operator involves a correction term B,
an operator that is made explicit for ring-shaped regions in Sect. 7 for a number of
situations.

Finally, in Sect. 8, an asymptotic analysis of the Steklov-Poincaré operator is
considered for ring-type walled inclusions, where different material properties apply.
This can be seen as an approach for coating of particles included in a matrix material.

In this article, some mathematical aspects of modeling and optimization for non-
linear partial differential equations are required, we refer the reader to the references
which can be considered for the specific topics:

• potential theory in Dirichlet spaces and applications to unilateral problems
[1, 5, 12, 14, 36, 53]

• mathematical theory of variational inequalities with applications to mechanics and
contact problems [7, 8, 14, 15, 22, 23, 36, 53, 57, 58]

• shape optimization in domains with cracks and for variational inequalities
[9–12, 18, 22, 53, 57, 58]

• asymptotic analysis and topological optimization for elasticity and variational
inequalities [2, 35, 41–45, 57, 58]

• modeling and control of cracks [6, 16, 17, 19, 21, 24–28, 30–34, 37, 48–51]
• numerical methods for variational inequalities and crack problems [3, 4]
• optimization for nonlinear pde’s [22, 47]



150 G. Leugering et al.

2 Unilateral Boundary Conditions in Isotropic Elasticity

We consider the following situation:
For the sake of simplicity, it is assumed that

• the crack in two spatial dimensions is given by the interval �c := {0 < x1 <

1, x2 = 0};
• the crack in three spatial dimensions is given by the disk �c := {0 � x2

1 + x2
2 <

1, x3 = 0}.
Therefore, the function spaces for the crack problem can be identified in Lipschitz
domains (see Fig. 3)

• the traces u± on � of functions u± ∈ H 1(�±) live in the space H 1/2(�);
• the traces u± on �c of functions u ∈ H 1(�c) are defined as the restrictions to �c

of functions from H 1/2(�);
• the space of traces on the crack H 1/2

00 (�c) ⊂ H 1/2(�) extended by zero outside
the crack;

• the jump � u� := u+ − u− of a function u ∈ H 1(�c) is well defined in H 1/2
00 (�c);

• the convex constraints for the crack with nonpenetration condition are given by
the positive cone in the space H 1/2

00 (�c).

2.1 Isotropic Elasticity Boundary Value Problems

For a given displacement vector field v = (v1, v2, v3)
� : � → R

3, we define the
Jacobian Dv = (∂x j vi ) and the gradient is its transpose

∇v = Dv� = (∂xi v j ) = [∇v1,∇v2,∇v3]

The symmetrized gradient is denoted by

∇vs = (∇v + ∇v�)/2,

and it is called the linearized deformation tensor ε(v) := ∇vs .

Fig. 3 Domain
decomposition of elastic
body � weakened
by crack �c

Σ
Ω+

Ω−

a
b

ν

Γc
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Given the symmetric and positive definite constitutive tensor C with the compo-
nents cijkl, i, j, k, l = 1, 2, 3 and the inverse S := C

−1, the symmetric stress tensor
is defined by

σ(v) = C∇vs, hence, ε(v) = Sσ(v)

or for the components σij = cijrsεrs, where the summation convention over the
repeated indices is used. In the case of the isotropic elasticity

cijrs = λδijδrs + μ(δirδjs + δisδjr),

whence,
σij = λδijεkk + 2μεij,

where λ and μ are the Lame constants, μ is also known as the shear modulus.
Let us assume that the elastic body is given by a torus and let us consider the

decomposition of the elastic body into two subdomains � := �+ ∪ � ∪ �− where
� is a C1,1 regular closed surface. Let �c ⊂ � be the regular subset of the surface
with C1,1-boundary given by the curve ∂�c. We denote by ν the unit normal vector
field on � which points out of �+, and by n the unit normal vector field on ∂�c

orthogonal to ν. See Fig. 3.
Given the displacement field v ∈ H 1(�), and σ := σ(v), the associated stress

field, we introduce the normal and tangential components of the stress field on �

σν = σijν jνi , στ = σν − σνν, στ = (στ1,στ2,στ3)
�.

First, we recall the strong form of a general crack boundary value problem in two
spatial dimensions.

Remark 2 For the sake of simplicity it is assumed that on the exterior boundary
� := ∂� of the elastic body the homogeneous Dirichlet boundary conditions are pre-
scribed. For a torus boundary conditions disappear. In the case of domain decomposi-
tion, the exterior boundary of the subdomain�c is divided into two parts,�R = ∂�R

and the exterior boundary ∂�.

Problem 3 (Equilibrium problem for a linear elastic body occupying �c) In the
domain �c with the boundary ∂�c := � ∪ �c we have to find a displacement field
u = (u1, u2) and stress tensor components σ = {σij}, i, j = 1, 2, such that

−divσ = f in �c, (8)

σ = Cε(u) in �c, (9)

u = 0 on �, (10)

�u�ν � 0, �σν� = 0, σν · �u�ν = 0 on �c, (11)

σν � 0, στ = 0 on �±
c . (12)
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Here �v� = v+ − v− is a jump of v on �c, and signs ± correspond to the positive
and negative crack faces with respect to ν, f = ( f1, f2) ∈ L2(�c) := L2(�c; R

2)

is a given function,

σν = σijν jνi , στ = σν − σν · ν, στ = (σ1
τ ,σ

2
τ ),

σν = (σ1 jν j ,σ2 jν j ),

the strain tensor components are denoted by εi j (u),

εij(u) = 1

2
(ui, j + u j,i ), ε(u) = {εij(u)}, i, j = 1, 2.

The elasticity tensor C = {cijkl}, i, j, k, l = 1, 2, is given and satisfies the usual
properties of symmetry and positive definiteness

cijklξklξij � α|ξ|2, ∀ ξij, ξij = ξji, α > 0,

cijkl = cklij = cjikl, cijkl ∈ L∞(�c).
Relations (8) are equilibrium equations, and (9) is the generalized Hooke’s law,

ui, j = ∂ui
∂u j

, (x1, x2) ∈ �c. All functions with two lower indices are symmetric in
those indices, i.e. σij = σji etc.

In three spatial dimensions the strong form of the crack boundary value problem
is completely analogous. The weak form is given by a variational inequality.

Problem 4 Introduce the Sobolev space

H 1
�(�c) = {v = (v1, v2) | vi ∈ H 1(�c), vi = 0 on �, i = 1, 2}

and the closed convex set of admissible displacements

K = {v ∈ H 1
�(�c) | �v�ν � 0 a.e. on �c}.

Find a solution u ∈ K of the energy minimization problem

min
v∈K

⎧

⎨

⎩

1

2

∫

�c

σi j (v)εi j (v) −
∫

�c

fivi .

⎫

⎬

⎭

The solution satisfies the variational inequality

u ∈ K ,

∫

�c

σi j (u)εi j (v − u) �
∫

�c

fi (vi − ui ), ∀v ∈ K , (13)

where σi j (u) = σi j are defined in (9).
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Remark 5 1. Existence and uniqueness of solutions for the strong Problem3 and
the variational inequality (13) in Problem4 as optimality conditions for the min-
imization Problem in 4 are given in e.g. [27].

2. The analysis of shape-topological differentiability of the Griffith functional can
be reduced by the proposed domain decomposition approach to the differentia-
bility property of the solution mapping for variational inequality (13)

f → u

with respect to the input f . This will be investigated in Sect. 3. We claim that
the mapping admits a conical differential. The proof of this claim follows by the
Hadamard differentiability of metric projection onto positive cone in fractional
Sobolev spaces.

2.2 Control of the Crack Front

The Griffith shape functional is an appropriate indicator in the framework of linear
elasticity for the crack propagation scenario. In order to influence the crack prop-
agation, we are going to design the elastic body in such a way that the Griffith
functional assumes better properties. In order to improve the design, we consider a
finite number of inclusions in thematrix material. Optimization in this context means
the best choice of location and shape of inclusions, which can be complemented by
optimization of material parameters for the inclusion. To this end, we employ the
shape-topological sensitivity analysis [45, 53, 57]. Our analysis is performed for a
single inclusion, the same approach works for a finite number of inclusions.

2.2.1 Elastic Body with a Crack and an Inclusion

The domain is divided in two parts as described above. The first part �c which
contains the crack, is built up from the matrix material (λ,μ), the second is �R with
an inclusion ω. The material properties of ω are denoted by (λω,μω). For simplicity,
we can consider the inclusion in the form of a ball

ω := B(y, r) = {x ∈ �R : |x − y| < r}, ∂ω = {|x − y| = r},

however a general shape of the inclusion can be treated in the same way. A finite
number of inclusions, far from the crack, is also admissible for our approach.
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2.2.2 The Griffith Shape Functional

For a given vector field V := (V1, V2)
� supported in �c, denote 2Ei j (V ; u) :=

ui,k Vk, j + u j,k Vk,i , where Vk, j := ∂Vk

∂x j
, k, j = 1, 2, and define the shape functional

depending on ω,

J (ω) := 1

2

∫

�

{

divV · εi j (u) − 2Ei j (V ; u)
}

σi j (u) −
∫

�

div(V fi )ui .

Problem 6 The problem is then to minimize J (ω) with respect to ω ⊂ �R and
solutions u satisfying in the domain � := �c ∪ �R ∪ �R the variational inequality

u ∈ K (ω),

∫

�

σi j (u)εi j (v − u) �
∫

�

fi (vi − ui ) ∀v ∈ K (ω),

where
K (ω) = {v ∈ H 1

�(�) | �v�ν � 0 a.e. on �c}.

2.3 Main Results

The shape optimization problem under considerations depends on the shape of the
inclusions exclusively via the characteristic functions of the inclusions. We are inter-
ested in the existence of the shape derivatives of J (ω) and also of the topological
derivatives of this functional. In such a case we speak of the shape-topological dif-
ferentiability of the Griffith functional.

Theorem 7 The shape functional ω → J (ω) is directionally shape-topologically
differentiable with respect to the inclusion ω in the cracked elastic body �.

We precise the general result for the specific class of circular inclusions. First of
all, the simplest choice of the admissible family Uad of inclusions with the material
properties (λω,μω) is

Uad := {B(y, r) ⊂ �R}.

Such a family, parametrized in a compact subset of R
3+d by (λω,μω, y, r) ∈ R

3+d ,
d = 2, 3, is compact with respect to the convergence of characteristic functions.
Thus, the existence of an optimal inclusion within this family follows by standard
arguments.

Theorem 8 For given parameters (λω,μω) and ω = B(y, r) ⊂ �R, the function

r → I (r) := 1

2

∫

�

{

divV · εi j (u) − 2Ei j (V ; u)
}

σi j (u) −
∫

�

div(V fi )ui
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is Lipschitz continuous and admits the directional derivatives given by

• the shape derivative of ω → J (ω) for r > 0, r small enough;
• the topological derivative of ω → J (ω) for r = 0+.

3 Applications of Directional Differentiability of Metric
Projection in Fractional Sobolev Spaces

Our results on shape-topological sensitivities for the Griffith functional related to
crack problems with non-penetration conditions across the crack interfaces depend
crucially on the regularity properties of metric projections in Hilbert spaces. This
is a classical issue that, due to its importance in this article, nevertheless, deserves
a brief but self-contained description. The convex cone for the crack model with
non-penetration conditions takes the form

K := {v ∈ H 1(�c) : �v�ν ∈ K(�c) ⊂ H 1/2
00 (�c)},

where K(�c) is the positive cone in the fractional Sobolev space H 1/2
00 (�c). There-

fore, we establish the Hadamard differentiability [15, 36] of the metric projection in
the Dirichlet space H 1/2

00 (�c) onto its positive cone [12]. Let us consider the direc-
tional differentiability of the metric projection onto the positive cone in the fractional
Sobolev spaces H 1/2(�). In the applications for the crack problem, we would like
to have a C1,1-surface in three spatial dimensions, and the C1,1-curve in two spatial
dimensions, selected in the interior of the elastic body � in such a way that the crack
�c ⊂ �. In order to present the results, we are going to consider a simple geome-
try of the crack �c. In the general setting the results are obtained in a similar way.
Therefore, we consider the subset B = {|x | < R}, x = (x1, . . . , xd) ⊂ �, of the
elastic body �, with the crack �c := {x = (x ′, xd) ∈ R

d : xd = 0, |x ′| < R/2}
and � defined by an extension of the subset ˜� := {x = (x ′, xd) ∈ B : xd = 0}. In
such a case, the unit normal vector to the crack ν := (0, . . . , 0, 1) is constant on the
crack, and the unit tangent vector orthogonal to ν on the boundary ∂�c of the crack
n := (n1, . . . , nd−1, 0). For the displacement field u = (u1, . . . , ud) it follows that
uν = ud , hence, the unilateral constraints for the jump of the normal component over
the crack H 1/2

00 (�c) � �u�ν = u−
d − u+

d � 0. Thus, the convex cone of admissible
displacements for the crack problem takes the form

Uad = {v = (v1, . . . , vd) ∈ H 1(�c) : v−
d − v+

d � 0 on �c}

and our analysis of the metric projection is reduced to the positive cone in H 1/2
00 (�c),

hence, in H 1/2(�).

Remark 9 We recall that in general for a domain�with the boundary�, the Sobolev
spaces H 1(�) and H 1/2(�) are [1, 14] examples of so-called Dirichlet spaces.
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It means that for the scalar product a(·, ·), with v+ := sup {v, 0} and v− :=
sup {−v, 0}, the property a(v+, v−) ≤ 0 holds for all elements of the Sobolev spaces.

Remark 10 The metric projection in Dirichlet spaces onto the cone of nonnegative
elements is considered for the purpose of sensitivity analysis of solutions to friction-
less contact problems in [53]. This result is extended to the crack problem. In order
to avoid unnecessary technicalities, we restrict ourselves to a model problem. We
consider the Hadamard differentiability of metric projection in Dirichlet space onto
the cone of positive elements, and recall the result on its conical differentiability.

Consider the convex, closed cone

K = {v ∈ H 1/2(�) : v � 0 on �}

and themetric projection H 1/2(�) � f → u = PK ( f ) ∈ K onto K which is defined
by the variational inequality

u ∈ K : (u − f, v − u)1/2,� � 0 ∀v ∈ K .

We denote v+ =: v ∧ 0 := sup {v, 0} and v− =: −v ∧ 0 := sup {−v, 0} in H 1/2(�).
With the element u = PK ( f ) we associate the convex cone

CK (u) = {v ∈ H 1/2(�) : u + tv ∈ K for some t > 0}

and denote by TK (u) the closure ofCK (u) in H 1/2(�). On the other hand [12] there is
a nonnegative Radon measure m such that for all v ∈ H 1/2(�) we have the equality
∫

v dm = (u − f, v)1/2,� , hence, we denote

m[v] := (u − f, v)1/2,�.

Definition 11 The convex cone K is polyhedric [15, 36] at u ∈ K if

TK (u) ∩ m⊥ = CK (u) ∩ m⊥.

We recall the result on polyhedricity of the positive cone in a Dirichlet space [12].

Lemma 12 The convex cone

CK (u) ∩ m⊥ := {v ∈ H 1/2(�) : v ∈ CK (u) such that (u − f, v)1/2,� = 0}

is dense in the closed, convex cone

TK (u) ∩ m⊥ := {v ∈ H 1/2(�) : v ∈ TK (u)such that (u − f, v)1/2,� = 0}.
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Proof Using the property of the Dirichlet space

(v+, v−)1/2,� � 0 for all v ∈ H 1/2(�)

then
TK (u) ∩ m⊥ = CK (u) ∩ m⊥

follows easily. Indeed, let
w ∈ TK (u) ∩ m⊥.

Then w = 0 m-a.e. Let CK (u) � vn → w. Then v−
n → w−, v+

n → w+ and
v+

n ∧ w+ − v−
n → w, here v ∧ w = inf {v,w}. Now, if v ∈ CK (u) then u + tv ≥ 0.

We claim v+
n ∧ w+ − v−

n ∈ CK (u) ∩ m⊥. Indeed, u + t[v+
n ∧ w+ − v−

n ] ≥ 0 so
v+

n ∧ w+ − v−
n ∈ CK (u) and m[v+

n ∧ w+ − v−
n ] = m[v+

n ∧ w+] = 0, because of
m[w+] = 0. �

Remark 13 In [12] the tangent cone TK (u) is derived for u ∈ K , in the case of the
positive cone K = {v ∈ H : v � 0} in the Dirichlet space H equipped with the
scalar product (u, v)H. We have

TK (u) = {v ∈ H : v � 0 on {u = 0}}.

The convex cone S := TK (u) ∩ m⊥ is important for our applications. It is obtained
in [12]

TK (u) ∩ m⊥ = {v ∈ H : v � 0on {u = 0} and v = 0 m − a.e.}.

The following result on the directional differentiability of metric projection holds
for polyhedric convex sets [15, 36].

Lemma 14 Let K be a polyhedric cone. For t > 0, t small enough,

PK (u + th) = PK (u) + t PS(h) + o(t; h)in H 1/2(�)

where
S := TK (u) ∩ m⊥

and the remainder o(t; h) is uniform on compact subsets of H 1/2(�). Hence, the
directional derivative of the metric projection is uniquely determined by the varia-
tional inequality

q := PS(h) ∈ S : (q − h, v − q)1/2,� � 0 ∀v ∈ S.

For a crack �c ⊂ � we introduce the following convex cones

K(�) := {v ∈ H 1/2(�) : v = 0 on � \ �c, v � 0 on �c},
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and

K(�c) := {v ∈ H 1/2
00 (�c) : v � 0 on �c}.

For the variational problems with unilateral conditions for the jump of normal com-
ponent of the displacement vector field over the crack, the convex cones K(�c) and
K(�) are employed in order to show the polyhedricity of the cone of admissible
displacements.

Remark 15 The proof of Lemma12 applies as well to the convex cone K(�c) ⊂
H 1/2

00 (�c) since the space C∞
0 (�c) is dense in H 1/2

00 (�c), hence, a nonnegative dis-
tribution is a Radon measure. In addition, contraction operates [5] for the scalar
product (16) in H 1/2

00 (�c). Let us note that the scalar products in H 1/2(�) and in
H 1/2

00 (�c) are not the same, the latter is a weighted space.

We recall an abstract result on shape sensitivity analysis of variational inequalities.
The conical differentiability of solutions to variational inequalities for the crack
problem follows from the abstract result given by Theorem17. The general result
[53] is adapted here to our settingwithin the domain decomposition framework. Thus,
the bilinear form a(·, ·) + bt (·, ·) defined in the subdomain �c is introduced, where
bt (·, ·) is the contribution from the Steklov-Poincaré operator on �R = ∂�R . The
real parameter t > 0 governs the shape perturbations of the inclusion t → ωt in �R ,
where t → 0 governs the topological changes of�R in the framework of asymptotic
analysis. The two boundary value problems in two subdomains are coupled by the
transmission conditions on the interface �R . The linear boundary value problem
in �R furnishes the expansions of the Steklov-Poincaré operators resulting from
perturbations of the inclusion in the interior of the subdomain. The sensitivity analysis
of solutions to variational inequality in �c is performed for compact perturbations
of nonlocal boundary conditions on the interface. As a result, the weak solution to
the unilateral elasticity boundary value problem under considerations is directionally
differentiable with respect to the parameter t → 0 which governs the perturbations
of the inclusion far from the crack. We provide the precise result on the conical
differentiability of solutions to variational inequalities [15, 36, 53] (see also [12])
which is given here without proof.

Let K ⊂ H be a convex and closed subset of a Hilbert space H, and let 〈·, ·〉
denote the duality pairing betweenH′ andH, whereH′ denotes the dual ofH. Let us
assume that there are given symmetric bilinear forms a(·, ·)+bt (·, ·) : H×H → R

parametrized by t � 0, and the linear form f ∈ H′ , such that

Condition 16 1. There are 0 < α � M such that

|a(u, v) + bt (u, v)| � M‖u‖‖v‖, α‖u‖2 � a(v, v) + bt (v, v) ∀u, v ∈ H

uniformly with respect to t ∈ [0, t0). Furthermore, there exists Q′ ∈ L(H;H′)
such that

Qt = Q + tQ′ + o(t) in L(H;H′),
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where Qt ∈ L(H;H′)

a(φ,ϕ) + bt (φ,ϕ) = 〈Qt (φ),ϕ〉 ∀φ,ϕ ∈ H.

2. The set K ⊂ H is convex and closed, and the solution operator H′ � f →
P( f ) ∈ H for (15)

P( f ) ∈ K : a(P( f ),ϕ − P( f )) ≥ 〈 f,ϕ − P( f )〉 ∀ϕ ∈ K

is differentiable in the sense that

∀h ∈ H′ : P( f + sh) = P( f ) + sP ′(h) + o(s) in H

for s > 0, s small enough, where the mapping P ′ : H′ → H is continuous and
positively homogeneous, in addition, the remainder o(s) is uniform with respect
to the direction h ∈ H′ on compact subsets of H′.

Let us consider the unique solutionsut = Pt ( f ) to variational inequalities depend-
ing on a parameter t ∈ [0, t0), t0 > 0,

ut ∈ K : a(ut ,ϕ − ut ) + bt (ut ,ϕ − ut ) � 〈 f,ϕ − ut 〉 ∀ϕ ∈ K. (14)

In particular, for t = 0

u ∈ K : a(u,ϕ − u) + b(u,ϕ − u) ≥ 〈 f,ϕ − u〉 ∀ϕ ∈ K, (15)

with u = P( f ) a unique solution to (15). The mapping t → ut is strongly differen-
tiable in the sense of Hadamard at 0+, and its derivative is given by a unique solution
of the auxiliary variational inequality [53].

Theorem 17 Assume that Condition16 is satisfied. Then the solutions to the vari-
ational inequality (14) are right-differentiable with respect to t at t = 0, i.e. for
t > 0, t small enough,

ut = u + tu′ + o(t) in H,

where
u′ = P ′(−Q′u).

3.1 Metric Projection onto Positive Cone in H1/2
00 (�c)

For boundary value problems in domains with cracks, unilateral conditions are pre-
scribed on the crack for the normal component of the displacement field. Hence, the
normal component of the displacement field belongs to the positive cone in the frac-
tional Sobolev space H 1/2

00 (�c). The sensitivity analysis of variational inequalities
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for Signorini problems was reduced in [53] to the directional differentiability of the
metric projection onto the positive cone in a fractional space which is the Dirichlet
space. This result is further extended in [12] to some crack problem. The method is
also used in the present paper, however for the other purposes.
Sensitivity analysis of the crack problem. We are going to explain how the results
obtained in [53] for the Signorini problem in linear elasticity can be extended to
the crack problems with unilateral constraints. To this end, the abstract analysis
performed in [12] for the differentiability of the metric projection onto the cone of
nonnegative elements in the Dirichlet space is employed. The framework for analysis
is established in function spaces over � := �+ ∪� ∪�−, where � is a C1,1 regular
curvewithout intersections. The regularity assumption can beweakened, if necessary.
Let �c ⊂ � be the segment {(x1, 0) : 0 < x1 < 1} included in the curve �. We
denote by ν the unit normal vector field on � which points out of �+, and by n the
unit normal vector field on ∂�c orthogonal to ν. We consider deformations of the
crack in the direction of the vector field V colinear with n in the neighbourhood of the
crack tip A = (1, 0) ∈ �c ⊂ R

2. In the Sobolev space defined on the cracked domain
�c, the elements enjoy jumps over the crack which are denoted by �v� := v+ − v−,
and we have the regularity property of traces �v� ∈ H 1/2

00 (�c). In our geometry of
�c, the Sobolev space H 1/2

00 (�c) coincides with the linear subspace of H 1/2(�)

H 1/2
00 (�c) = {ϕ ∈ H 1/2(�) : ϕ = 0 q.e. on � \ �c},

where q.e. means quasi-everywhere with respect to the capacity, see e.g. [47] for
the definition and elementary properties of the capacity useful for the existence of
optimal shapes in shape optimization problems with nonlinear PDE’s constraints. In
order to investigate the properties of the metric projection in the space of admissible
displacement fields onto the convex cone

K := {v ∈ H 1(�c) : �v�ν � 0},

where H 1(�c) := H 1(�c; R
2), we need to show that the positive convex cone

K = {ϕ ∈ H 1/2
00 (�c) : ϕ � 0 on �c}.

is polyhedric in the sense of [12, 15, 36]. We consider here the rectilinear crack �c

in two spatial dimensions. The scalar product in H 1/2
00 (�c) := H 1/2

00 (0, 1) is defined

〈ϕ,ψ〉c =
∫

�c

∫

�c

(ϕ(x) − ϕ(y))(ψ(x) − ψ(y))

|x − y|2 dxdy (16)

+
∫

�c

[

ϕ(x)ψ(x) + ϕ(x)ψ(x)

dist(x, ∂�c)

]

dx
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Polyhedricity of the positive cone in H1/2
00 (�c). In order to show the polyhedricity

of the nonnegative cone K inH := H 1/2
00 (0, 1), it is enough to check the property

〈ϕ+,ϕ−〉c � 0 ∀v ∈ H 1/2
00 (0, 1)

which is straightforward, here ϕ+(x) = max {v(x), 0}. The full proof of polyhedric-
ity in such a case is provided in [12]. It is easy to check that the polyhedricity with
respect to the scalar product implies the polyhedricity with respect to a bilinear form
which is equivalent to the scalar product.

Theorem 18 Let us consider the variational inequality for the metric projection of
f + th ∈ H onto K

ut ∈ K : 〈ut − f − th, v − ut 〉 � 0 ∀v ∈ K,

where f, h ∈ H are given, denote by �{u} = {x ∈ �c : u(x) = 0}. Then

ut = u + tq(h) + o(t; h) in H,

where the remainder o(t; h) is uniform on compact subsets of H, and the conical
diffferential of the metric projection q := q(h) is given by the unique solution to the
variational inequality

q ∈ S(u) : 〈q − h, v − q〉 � 0 ∀v ∈ S(u)

and the closed convex cone

S(u) = {ϕ ∈ H : ϕ � 0q.e. on �{u}, 〈u − f,ϕ〉 = 0}.

4 Rectilinear Crack in Two Spatial Dimensions

In this section the general method of shape-topological sensitivity analysis is pre-
sented in the domain � := �c ∪ �R ∪ �R , where the first subdomain �c contains
the rectilinear crack �c and the second subdomain �R contains the inclusion ω.
We denote by �in := �c ∪ �c, the first subdomain in the elastic body without the
crack. We assume that there is a regular C1,1-curve � ⊂ �in, without intersections,
which contains the rectilinear crack �c := {(x1, 0) : 0 � x1 � 1}. To simplify
the presentation, let us consider a torus � := T := T

2 with 2π-periodic coordi-
nates x = (x1, x2). The deformations of the subdomain �c are defined by the vector
field (x, t) → V (x, t) = (v(x, t), 0), where the C∞

0 (�+) function (x, t) → v(x, t)
is supported in [1 − δ, 1 + δ]2 × [−t0, t0] ⊂ �+ ⊂ R

2 × R and v(x, t) ≡ 1 on
[1 − δ/2, 1 + δ/2]2 × [−t0/2, t0/2]. In our notation, the real variable t ∈ R is a
parameter. It means that the vector field V deforms the reference domain �+

c to
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t → Tt (V )(�+
c ) just by moving the tip of the crack X = (1, 0) → x(t) = (x1(t), 0)

in the direction of the x1-axis. The mapping Tt : X → x(t) is given by the system
of equations

dx

dt
(t) = V (x(t), t), x(0) = X.

The boundary value problem of linear isotropic elasticity in �c is defined by the
variational inequality

u ∈ K : a(u, v − u) � ( f, v − u) ∀u ∈ K ,

where

K = {v ∈ H 1(�c) : �v� · ν := (v+ − v−) · ν � 0 on �c}.

The bilinear form

a(u, v) =
∫

�c

⎡

⎣

μ

2

2
∑

j,k=1

(∂ j uk + ∂ku j )(∂ jvk + ∂kv j ) + λdiv udiv v

⎤

⎦ dx

is associated with the operator

Lu := −μ�u − (λ + μ)grad div u.

The deformation tensor 2ε(u) = ∂ j uk + ∂ku j as well as the stress tensor σ(u) =
associated with the displacement field u are useful in the description of the boundary
value problems in linear elasticity. The energy functional E(�c) = 1/2a(u, u) −
( f, u)�c is twice differentiable [12] in the direction of a vector field V , for the
specific choice of the field V = (v, 0). The first order shape derivative

V → dE(�c; V ) = 1

t
lim
t→0

(E(Tt (�c)) − (E(�c))

can be interpreted as the derivative of the elastic energy with respect to the crack
length, we refer the reader to [26] for the proof, the same result for the Laplacian is
given in [24, 25].

Theorem 19 We have

dE(�c; V ) = 1

2

∫

�c

{

divV · εi j (u) − 2Ei j (V ; u)
}

σi j (u) −
∫

�c

div(V fi )ui . (17)

Now we restrict our consideration to the perturbation of the crack tip only in
the direction which coincides with the crack direction. The derivative is evaluated
in the framework of the velocity method [53] for a specific velocity vector field V
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selected in such a way that the result dE(�c; V ) is independent of the field V and
it depends only on the perturbation of the crack tip. That is why, this derivative is
called the Griffith functional J (�c) := dE(�c; V ) defined for the elastic energy in a
domain with crack. We are interested in the dependence of this functional on domain
perturbations far from the crack. As a result, shape and topological derivatives of
the nonsmooth Griffith shape functional are obtained with respect to the boundary
variations of an inclusion.

4.1 Green Formulae and Steklov-Poincaré Operators

The Steklov-Poincaré operator on the interface for the domain �c ∪ �R ∪ �R is
defined by the Green formula, first as the Dirichlet-to-Neumann map in �R , then
it is used on the interface as nonlocal boundary operator. Therefore, we recall here
the Green formula for linear elasticity operators in two and three spatial dimensions.
We start with analysis in two spatial dimensions. To simplify the presentation let
us consider the reference domain without a crack in the form of the torus T := T

2

with 2π-periodic coordinates x = (x1, x2). For the purpose of shape-topological
sensitivity analysis we assume that the elastic body without the crack is decomposed
into two subdomains, �in and �R , separated from each other by the interface �R .
Thus, the elastic body with the crack �c is written as

� := �c ∪ �R ∪ �R .

The rectilinear crack �c ⊂ � ⊂ �in is an open set, where the fictitious interface
� ⊂ �in is a closed C1,1-curve without intersections. In our notation�c = �in \�c.
The bilinear form of the linear isotropic elasticity is associated with the operator

Lu := −μ�u − (λ + μ) grad div u

for given Lame coefficients μ > 0,λ � 0. The displacement field u in the elastic
body � is given by the unique solution of the variational inequality

u ∈ K : a(u, v − u) � ( f, v − u) ∀u ∈ K ,

where

K = {v ∈ H 1(�c) : �v� · ν := (v+ − v−) · ν � 0 on �c}.

Given the unique solution u ∈ K of the variational inequality and the admissible
vector fieldV compactly supported in�c,we consider the associated shape functional
(17) evaluated in �c, which is called the Griffith functional

J (�c) := dE(�c; V ). (18)
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Let ω ⊂ �R be an elastic inclusion. Introduce the family of inclusions t → ωt ⊂ �R

governed by the velocity field W compactly supported in �R . The elastic energy in
�R with the inclusion ωt is denoted by

ωt → Et (�R) := 1

2
at (�R ; u, u) − ( f, u)�R .

Its shape derivative dE(�R; W ) in the direction W is obtained by differentiation at
t = 0 of the function

t → Et (�R) := 1

2
at (�R ; u, u) − ( f, u)�R .

Proposition 20 Assume that the energy shape functional in the subdomain �R,

ω → E(�R) := 1

2
a(�R ; u, u) − ( f, u)�R

is differentiable in the direction of the velocity field W compactly supported in a
neighbourhood of the inclusion ω ⊂ �R, then the Griffith functional (18) is direc-
tionally differentiable in the direction of the velocity field W . Therefore, the second
order directional shape derivative dE(�; V, W ) of the energy functional in � in the
direction of fields V, W is obtained.

This result can be proved by the domain decomposition technique:

• the shape differentiability of the energy functional in the subdomain �R implies
the differentiability of the associated Steklov-Poincaré operator defined on the
Lipschitz curve given by the interface�R ∩ �c with respect to the scalar parameter
t → 0 which governs the boundary variations of the inclusion ω;

• the expansion of the Steklov-Poincaré nonlocal boundary pseudodifferential oper-
ator obtained in the subdomain �R is used in the boundary conditions for the
variational inequality defined in the cracked subdomain �c and leads to the coni-
cal differential of the solution to the unilateral problem in the subdomain;

• the one term expansion of the solution to the unilateral problem is used in the
Griffith functional in order to obtain the directional derivative with respect to the
boundary variations of the inclusion.

Remark 21 For the circular inclusion ω := {x ∈ �R : |x − y| < r0}, r0 > 0, the
scalar parameter t → 0 which governs the shape perturbations of ∂ω in the direction
of a field W [53] can be replaced by the parameter r → r0. Thus, the moving domain
t → ωt is replaced by the moving domain r → {x ∈ �R : |x − y| < r}. In this way
the shape sensitivity analysis [53] for r0 > 0 and the topological sensitivity analysis
[45] for r0 = 0+ are performed in the same framework for the simple case of circular
inclusion.
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5 Shape and Topological Derivatives of Elastic Energy
in Two Spatial Dimensions for an Inclusion

In the subdomain �c the unique weak solutions

ε → u := uε

of the elasticity boundary value subproblem are given by the variational inequality

u ∈ K : a(�c; u, v − u) + bε(�R; u, v − u) � ( f, v − u)�c ∀v ∈ K .

In order to differentiate the solution mapping for this variational inequality, it is
required to differentiate the bilinear form ε → bε(�R; u, v), which is performed in
this section.

5.1 Shape and Topological Derivatives of the Energy
Functional in �R with Respect to the Inclusion ω

In order to evaluate the topological derivative of energy functional in isotropic elas-
ticity, the shape sensitivity analysis is combined with the asymptotic analysis [45].
In this section the small parameter is denoted by ε → 0, and the circular inclu-
sion ε → ωε := Bε is considered. The general shape of the inclusion ε → ωε

can be considered in the same way for shape sensitivity analysis [53] and asymp-
totic analysis [45]. For the sake of simplicity, the subscript R is omitted, thus, we
denote � := �R , since the inclusion is located in the subdomain �R . We also allow
for the Neumann �N and Dirichlet �D pieces of the boundary ∂� := ∂�R , thus,
∂�R := �N ∪ �D ∪ �. Thus, we evaluate the shape and topological derivative [45]
of the total potential energy associated to the plane stress linear elasticity problem,
considering the nucleation of a small inclusion, represented by Bε ⊂ �, as the topo-
logical perturbation. In this way the expansion of the Steklov-Poincaré operator on
the interface � := �R is obtained.

5.1.1 Steklov-Poincaré Operator

Let us consider the nonhomogeneous Dirichlet linear elasticity boundary value prob-
lem in the domain � with the boundary ∂� := �N ∪ �D ∪ �.
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find u, such that
divσ(u) = 0 in �,

σ(u) = C∇us,

u = 0 on �D,

u = u on �,

σ(u)n = 0 on �N ,

where the only columnists term is the Dirichlet condition u = u on the interface �.
Let

a(u, u) :=
∫

�

σ(u) · ∇us

stands for the associated bilinear form, thus the elastic energy of the solution u is
given by

E(�; u) = 1

2
a(u, u).

Then by Green’s formula

E(�; u) = 〈T (u), u〉�.

In the case of an inclusion ωε ⊂ �, the formula becomes

Eε(�; u) = 〈Tε(u), u〉�. (19)

Hence, the expansion of the energy functional in �, on the left hand side of (19)
with respect to the parameter ε → 0 can be used in order to determine the associated
expansion of the Steklov-Poincaré operator u → T (u) on the right hand side of (19).
Therefore, let us consider the smooth domain � with the boundary ∂� := �N ∪
�D ∪ �, here � is the interface on which the Steklov-Poincaré operator introduced
in our domain decomposition method is defined.

5.2 Shape and Topological Differentiability of the Energy
Functional for Expansion of Steklov-Poincaré Operator

The notation of monograph [45] is used in this section. We recall the known results
[45, 53] on the shape gradient of the energy functional ε → Eε(�) with respect to
moving interface ε → ∂ωε which is the boundary of inclusion ωε ⊂ �. Finally, the
topological derivative of the energy functional with respect to ε → 0+ is obtained
[45]. In this way, the shape and topological differentiability of the Steklov-Poincaré
operator on the fictitious interface � is established. Let us consider the subdomain
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�R with the interface �R ⊂ ∂�R , which are denoted by � and �, respectively. Let
us consider a circular inclusion in �. The inclusion ωε := Bε(y) ⊂ �R depends
on the parameter ε ∈ [0, ε0) ε0 � 0. The energy functional ε → Eε(�) is shape
differentiable for ε > 0 and topologically differentiable for ε = 0+. In this way
the expansion of the Steklov-Poincaré operator is obtained on the interface �R . The
energy shape functional associated to the unperturbed domain with ε = 0, i.e.,
without inclusion, which we are dealing with is defined as

ψ(χ) = 1

2

∫

�

σ(u) · ∇us,

where χ stands for the characteristic function of �, and the vector function u is the
solution to the variational problem:

⎧

⎪

⎨

⎪

⎩

Find u ∈ U , such that
∫

�

σ(u) · ∇ηs = 0 ∀η ∈ V,

with σ(u) = C∇us .

(20)

In the above equation, C is the constitutive tensor given by

C = E

1 − ν2
((1 − ν)I + νI ⊗ I),

where I and I are the second and fourth order identity tensors, respectively, E is
the Young modulus and ν the Poisson ratio, both considered constants everywhere.
For the sake of simplicity, we also assume that the thickness of the elastic body is
constant and equal to one. The convex set U written for the columnists Dirichlet
boundary condition on the interface and the associated space of test functions V are
respectively defined as

U := {ϕ ∈ H 1(�;R2) : ϕ|�D
= 0, ϕ|� = u},

V := {ϕ ∈ H 1(�;R2) : ϕ|�D
= 0 ϕ|� = 0}.

In addition, ∂� = � ∪�D ∪�N with �D ∩�N = ∅, � ∩�N = ∅, and �D ∩� = ∅,
where �D and �N are Dirichlet and Neumann boundaries, respectively. Thus, u is a
Dirichlet data on �, and there are homogeneous Dirichlet data on �D and Neumann
data on �N . The strong system associated to the variational problem (20) reads:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find u, such that
divσ(u) = 0 in �,

σ(u) = C∇us,

u = u on �,

u = 0 on �D,

σ(u)n = 0 on �N .
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Remark 22 Since the Young modulus E and the Poisson ratio ν are constants, the
above boundary value problem reduces to the well-known Navier system, namely

−μ�u − (λ + μ)∇(divu) = 0 in �,

with the Lame’s coefficients μ and λ respectively given by

μ = E

2(1 + ν)
and λ = νE

1 − ν2
.

Now, let us state the same problem in the perturbed domain which contains the
inclusion Bε. More precisely, the perturbed domain is obtained if a circular hole
Bε(y) is introduced inside � ⊂ R2, where Bε(y) � � denotes a ball of radius ε and
center at y ∈ �. Then, Bε(y) is filled by an inclusion with different material property
compared to the unperturbed domain �. The material properties are characterized
by a piecewise constant function γε of the form

γε = γε(x) :=
{

1 if x ∈ � \ Bε,

γ if x ∈ Bε,
(21)

where γ ∈ R+ is the contrast coefficient. In this case, the shape functional reads

ψ(χε) := 1

2

∫

�

σε(uε) · ∇us
ε, (22)

where the vector function uε solves the variational problem:

⎧

⎪

⎨

⎪

⎩

Find uε ∈ Uε, such that
∫

�

σε(uε) · ∇ηs = 0 ∀η ∈ Vε,

with σε(uε) = γεC∇us
ε.

(23)

with γε given by (21). The set Uε and the space Vε are defined as

Uε := {ϕ ∈ U : �ϕ� = 0 on ∂Bε},
Vε := {ϕ ∈ V : �ϕ� = 0 on ∂Bε},

where the operator �ϕ� is used to denote the jump of function ϕ on the boundary of
the inclusion ∂Bε, namely �ϕ� := ϕ|�\Bε

−ϕ|Bε
on ∂Bε. The strong system associated

to the variational problem (23) reads:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find uε, such that
divσε(uε) = 0 in �,

σε(uε) = γεC∇us
ε,

uε = u on �,

uε = 0 on �D,

σ(uε)n = 0 on �N ,

�uε�
�σε(uε)�n

=
=

0
0

}

on ∂Bε.

(24)

The transmission condition on the boundary of the inclusion ∂Bε comes out from
the variation formulation (23).

5.3 Shape Derivative of Steklov-Poincaré Operator

The next step consists in evaluating the shape derivative of functional ψ(χε) with
respect to an uniform expansion of the inclusion Bε. In the particular case of circular
inclusions, for a given y ∈ � and 0 < ε < �, with � := dist(y, ∂�), we can
construct a shape change velocity fieldV that represents uniform expansion of Bε(y).
In fact, it is sufficient to define V on the boundary ∂Bε i.e., V|∂Bε(y)

= −n, where
n = −(x − y)/ε, with x ∈ ∂Bε, is the normal unit vector field pointing toward the
center of the circular inclusion Bε Let us introduce the Eshelby energy-momentum
tensor [45], namely

Eε = 1

2
(σε(uε) · ∇us

ε)I − ∇u�
ε σε(uε). (25)

In addition, we note that after considering the constitutive relation σε(uε) = γεC∇us
ε

in (22), with the contrast γε given by (21), the shape functional ψ(χε) can be written
as follows

ψ(χε) = 1

2

(∫

�\Bε

σ(uε) · ∇us
ε +

∫

Bε

γσ(uε) · ∇us
ε

)

, (26)

where σ(uε) = C∇us
ε. Therefore, the explicit dependence with respect to the para-

meter ε arises, and we recall the following result [45]

Proposition 23 Let ψ(χε) be the energy shape functional defined by (22). Then, the
shape derivative of ψ(χε) with respect to the small parameter ε > 0 is given by

ψ̇(χε) =
∫

�

Eε · ∇V,

where V is the shape change velocity field defined by an extension of the normal
vector field n = −(x − y)/ε, with x ∈ ∂Bε, and Eε is the Eshelby energy-momentum
tensor given by (25).
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Proof Before starting, let us recall that the constitutive operator is defined asσε(ϕ) =
γεC∇ϕs . Thus, by making use of the Reynolds’ transport theorem and the concept
of material derivative of spatial fields [45], the derivative with respect to ε of the
shape functional (26) is given by

ψ̇(χε) = 1

2

(∫

�\Bε

σ(uε) · ∇us
ε +

∫

Bε

γσ(uε) · ∇us
ε

)

=
∫

�\Bε

σ(uε) · ∇u̇s
ε +

∫

Bε

γσ(uε) · ∇u̇s
ε

+ 1

2

∫

�\Bε

((σ(uε) · ∇us
ε)I − 2∇u�

ε σ(uε)) · ∇V

+ 1

2

∫

Bε

γ((σ(uε) · ∇us
ε)I − 2∇u�

ε σ(uε)) · ∇V.

Then,

ψ̇(χε) = 1

2

∫

�

((σε(uε) · ∇us
ε)I − 2∇u�

ε σε(uε)) · ∇V

+
∫

�

σε(u) · ∇u̇s
ε.

Since u̇ε is a variation of uε in the direction of the velocity field V, then u̇ε ∈ Vε

[53]. Finally, by taking u̇ε as test function in the variational problem (23), we have
that the last two terms of the above equation vanish. �

The shape gradient of energy functional is supported on the moving interface
ε → ∂Bε as it is predicted by the structure theorem of the shape gradient [45, 53].

Proposition 24 Let ψ(χε) be the shape functional defined by (22). Then, its deriv-
ative with respect to the small parameter ε is given by

ψ̇(χε) =
∫

∂Bε

�Eε�n · V, (27)

with V standing for the shape change velocity field compactly supported in a neigh-
bourhood of ∂Bε and tensor Eε given by (25).

Proof Before starting, let us recall the constitutive operator σε(ϕ) = γεC∇ϕs and
the relation betweenmaterial and spatial derivatives of vector fields ϕ̇ = ϕ′+(∇ϕ)V.
By making use of the Reynolds’ transport theorem [45], the shape derivative of the
functional (22) results in
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ψ̇(χε) =
(

1

2

∫

�

σε(uε) · ∇us
ε

)

=
∫

�

σε(uε) · (∇u′
ε)

s + 1

2

∫

∂�

(σε(uε) · ∇us
ε)n · V

+ 1

2

∫

∂Bε

�σε(uε) · ∇us
ε�n · V.

In addition, we have

ψ̇(χε) = 1

2

∫

∂�

(σε(uε) · ∇us
ε)n · V + 1

2

∫

∂Bε

�σε(uε) · ∇us
ε�n · V

−
∫

�

σε(uε) · ∇((∇uε)V)s +
∫

�

σε(u) · ∇u̇s
ε.

Since u̇ε is a variation of uε in the direction of the velocity field V, then u̇ε ∈ Vε

[53]. Now, by taking into account that uε is the solution to the variational problem
(23), we have that the last two terms of the above equation vanish. From integration
by parts

ψ̇(χε) = 1

2

∫

∂�

(σε(uε) · ∇us
ε)n · V + 1

2

∫

∂Bε

�σε(uε) · ∇us
ε�n · V

−
∫

∂�

(∇u�
ε σε(uε))n · V −

∫

∂Bε

�∇u�
ε σε(uε)�n · V

+
∫

�

div(σε(uε)) · (∇uε)V,

and rewriting the above equation in the compact form, we obtain

ψ̇(χε) =
∫

∂�

Eεn · V +
∫

∂Bε

�Eε�n · V +
∫

�

div(σε(uε)) · (∇uε)V.

Finally, taking into account that uε is the solution to the state equation (24), namely
divσε(uε) = 0, we have that the last term in the above equation vanishes, which
leads to the result. �

Corollary 25 We have

ψ̇(χε) =
∫

∂Bε

�Eε�n · V −
∫

�

divEε · V.

Since the above equation and (27) remain valid for all velocity fields V, we have that
the last term of the above equation must satisfy

∫

�

divEε · V = 0 ∀V ⇒ divEε = 0.
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hence
d

dε
ψ(χε) = ψ̇(χε) = −

∫

∂Bε

�Eε�n · n. (28)

5.4 Application to Conical Differentiability for Model Problem

We return to the variational inequalitywith regularly perturbed bilinear form, see (32)
for an application. Therefore, for given ε > 0 we consider the variational inequality
in �c,

ut ∈ K : a(ut , v − ut ) + bt (ut , v − ut ) = ( f, v − ut ) ∀v ∈ K ,

where for t > 0, t small enough, the symmetric, boundary bilinear form bt is defined
on � := �R by the elastic energy in �R ,

t → bt (u, u) := 〈Tε+t (u), u〉�.

Here, u stands for the trace of u on �. Thus, the shape derivative of this bilinear form
with respect to the deformations of interface ∂Bε governed by t → 0 is given by

b′(u, u) := ψ̇(χε) = −
∫

∂Bε

�Eε�n · n.

In this case Lemma14 applies and we have

Proposition 26 For t > 0, t small enough,

ut = u + tq + o(t),

where

q ∈ S : a(q, v − q) + b(q, v − q) + b′(q, v − q) � 0 ∀v ∈ S.

Remark 27 For ε = 0+ the result remain valid with the modification that

uε = u + ε2q + o(ε2),

and with the shape derivative of the Steklov-Poincaré replaced by the topological
derivative which is evaluated in the section below.

Remark 28 Given the one term expansion of the solution to variational inequality in
�c with respect to ε, it is straightforward to obtain the directional derivative of the
Griffith functional.
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5.5 Topological Derivative of the Steklov-Poincaré Operator

We recall known results on topological sensitivity analysis given in [45] which are
adapted to our setting. The shape derivative of functional ψ̇(χε) is given in terms of an
integral over the boundary of the inclusion ∂Bε (28). The formula for the topological
derivative Jψ of the shape functional ψ is obtained by asymptotic analysis of uε

with respect to ε. The asymptotic expansion of the solution uε is associated to the
transmission condition on the inclusion. We start with an ansatz for uε

uε(x) = u(x) + wε(x) + ũε(x).

After applying the operator σε, we have

σε(uε(x)) = σε(u(x)) + σε(wε(x)) + σε(̃uε(x))

= σε(u(y)) + ∇σε(u(ŷ))(x − y) + σε(wε(x)) + σε(̃uε(x)),

where ŷ is an intermediate point between x and y. On the boundary of the inclusion
∂Bε we have

�σε(uε)�n = 0 ⇒ (σ(uε)|�\Bε
− γσ(uε)|Bε

)n = 0,

with σε(ϕ) = γεC∇ϕs and σ(ϕ) = C∇ϕs . The above expansion, evaluated on ∂Bε,
leads to

(1 − γ)σ(u(y))n − ε(1 − γ)(∇σ(u(y))n)n + �σε(wε(x))�n + �σε(̃uε(x))�n = 0.

Thus, we can choose σε(wε) such that

�σε(wε(x))�n = −(1 − γ)σ(u(y))n on ∂Bε.

Now, the following exterior problem is considered, and formally obtained as ε → 0:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find σε(wε), such that
divσε(wε) = 0 in R2,

σε(wε) → 0 at ∞,

�σε(wε)�n = û on ∂Bε,

with û = −(1− γ)σ(u(y))n. The above boundary value problem admits an explicit
solution, which will be used later to construct the expansion for σε(uε). Now we can
construct σε(̃uε) in such a way that it compensates the discrepancies introduced by
the higher order terms in ε as well as by the boundary layer σε(wε) on the exterior
boundary ∂�. It means that the remainder ũε must be solution to the following
boundary value problem:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find ũε, such that
divσε(̃uε) = 0 in �,

σε(̃uε) = γεC∇ũs
ε,

ũε = −wε on �D,

σ(̃uε)n = −σ(wε)n on �N ,

�̃uε�
�σε(̃uε)�n

=
=

0
εh

}

on ∂Bε,

(29)

with h = (1 − γ)(∇σ(u(y))n)n. The following lemma is proved in [45]:

Lemma 29 Let ũε be the solution to (29) or equivalently the solution to the following
variational problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find ũε ∈ ˜Uε, such that
∫

�

σε(̃uε) · ∇ηs = ε2
∫

�N

σ(g)n · η + ε

∫

∂Bε

h · η ∀η ∈ ˜Vε,

with σε(̃uε) = γεC∇ũs
ε,

where the set ˜Uε and the space ˜Vε are defined as

˜Uε := {ϕ ∈ H 1(�;R2) : �ϕ� = 0 on ∂Bε, ϕ|�D
= ε2g},

˜Vε := {ϕ ∈ H 1(�;R2) : �ϕ� = 0 on ∂Bε, ϕ|�D
= 0},

with functions g = −ε−2wε and h = (1−γ)(∇σ(u(y))n)n independent of the small
parameter ε. Then, we have the estimate ‖ũε‖H 1(�;R2) = O(ε2) for the remainder.

Therefore, the expansion for σε(uε) can be written [45] in a polar coordinate
system (r, θ) centered at the point y as:

• For r � ε (outside the inclusion)

σrr
ε (uε(r, θ)) = ϕ1

(

1 − 1−γ
1+γα

ε2

r2

)

+ ϕ2

(

1 − 4 1−γ
1+γβ

ε2

r2 + 3 1−γ
1+γβ

ε4

r4

)

cos 2θ + O(ε2),

σθθ
ε (uε(r, θ)) = ϕ1

(

1 + 1−γ
1+γα

ε2

r2

)

− ϕ2

(

1 + 3 1−γ
1+γβ

ε4

r4

)

cos 2θ + O(ε2),

σrθ
ε (uε(r, θ)) = −ϕ2

(

1 + 2 1−γ
1+γβ

ε2

r2 − 3 1−γ
1+γβ

ε4

r4

)

sin 2θ + O(ε2).

• For 0 < r < ε (inside the inclusion)
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σrr
ε (uε(r, θ)) = ϕ1

(

2
1−ν

γ
1+γα

)

+ ϕ2

(

4
1+ν

γ
1+γβ

)

cos 2θ + O(ε2),

σθθ
ε (uε(r, θ)) = ϕ1

(

2
1−ν

γ
1+γα

)

− ϕ2

(

4
1+ν

γ
1+γβ

)

cos 2θ + O(ε2),

σrθ
ε (uε(r, θ)) = −ϕ2

(

4
1+ν

γ
1+γβ

)

sin 2θ + O(ε2).

Some terms in the above formulae require explanations. The coefficients ϕ1 and ϕ2

are given by

ϕ1 = 1

2
(σ1(u(y)) + σ2(u(y))), ϕ2 = 1

2
(σ1(u(y)) − σ2(u(y))),

where σ1(u(y)) and σ2(u(y)) are the eigenvalues of tensor σ(u(y)), which can be
expressed as

σ1,2(u(y)) = 1

2

(

tr σ(u(y)) ±
√

2σD(u(y)) · σD(u(y))
)

,

with σD(u(y)) standing for the deviatory part of the stress tensor σ(u(y)), namely

σD(u(y)) = σ(u(y)) − 1

2
tr σ(u(y))I.

In addition, the constants α and β are given by

α = 1 + ν

1 − ν
and β = 3 − ν

1 + ν
. (30)

Finally, σrr
ε (uε), σθθ

ε (uε) and σrθ
ε (uε) are the components of tensor σε(uε) in the

polar coordinate system, namely σrr
ε (uε) = er · σε(uε)er , σθθ

ε (uε) = eθ · σε(uε)eθ

and σrθ
ε (uε) = σθr

ε (uε) = er · σε(uε)eθ, with er and eθ used to denote the canonical
basis associated to the polar coordinate system (r, θ), such that, ||er || = ||eθ|| = 1 and
er · eθ = 0.

5.6 Formulae for Topological Derivative

Now, we can evaluate the integral in formula (28). With this result, we can perform
the limit passage ε → 0. The integral in (28) can be evaluated by using the expansion
for σε(uε) given by (30). The idea is to introduce a polar coordinate system (r, θ)
with center at y. Then, we can write uε in this coordinate system to evaluate the
integral explicitly. In particular, the integral in (28) yields
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∫

∂Bε

�Eε�n · n = 2πεPγσ(u(y)) · ∇us(y) + o(ε).

Finally,

Jψ(y) = −lim
ε→0

1

f ′(ε)
(

2πεPγσ(u(y)) · ∇us(y) + o(ε)
)

,

where the polarization tensor Pγ is given by the following fourth order isotropic
tensor

Pγ = 1

2

1 − γ

1 + γβ

(

(1 + β)I + 1

2
(α − β)

1 − γ

1 + γα
I ⊗ I

)

,

with the parameters α and β given by (30). Now, in order to extract the leading term
of the above expansion, we choose

f (ε) = πε2,

which leads to the final formula for the topological derivative, namely

Jψ(y) = −Pγσ(u(y)) · ∇us(y).

Remark 30 Polarization tensors for cracks are considered e.g., in [41–44].

Finally, the topological asymptotic expansion of the energy shape functional takes
the form

ψ(χε(y)) = ψ(χ) − πε2Pγσ(u(y)) · ∇us(y) + o(ε2),

whose mathematical justification is given in [45].

Remark 31 We note that the obtained polarization tensor is isotropic because we are
dealing with circular inclusions. Some results on the polarization tensor associated
to arbitrary shaped inclusions can be found in [35, 43].

Remark 32 Formally, we can consider the limit cases γ → 0 and γ → ∞. For
γ → 0, the inclusion leads to a void and the transmission condition on the boundary
of the inclusion degenerates to homogeneous Neumann boundary condition. In fact,
in this case the polarization tensor is given by

P0 = 1

2
(1 + β)I + 1

4
(α − β)I ⊗ I = 2

1 + ν
I − 1 − 3ν

2(1 − ν2)
I ⊗ I.

In addition, for γ → ∞, the elastic inclusion leads to a rigid one and the polarization
tensor is given by

P∞ = −1 + β

2β
I + α − β

4αβ
I ⊗ I = − 2

3 − ν
I − 1 − 3ν

2(1 + ν)(3 − ν)
I ⊗ I.
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6 Asymptotic Analysis with Bounded Perturbations
of Variational Inequalities

The bounded perturbations of bilinear forms in variational inequalities resulting
from the approximation of the energy by (5) are employed in asymptotic analysis of
variational inequalities in singularly perturbed geometrical domains. The proposed
method of asymptotic analysis is sufficiently precise for the first order topological
differentiability [56].

6.1 Applications of Steklov-Poincaré Operators
in Asymptotic Analysis

We analyse the precision of the proposed method of approximation for variational
inequalities in singularly perturbed geometrical domains. We assume for simplicity
that the singular perturbation is a disc Bε = {|x | < ε}. The Signorini variational
inequality in �ε := � \ Bε,

uε ∈ K (�ε) : a(�ε; uε, v − uε) − L(�ε; v − uε) � 0 ∀v ∈ uε ∈ K (�ε),

can be considered in the truncated domain �c := � \ B R for R > ε > 0, R small
enough. It is assumed that the source or linear form v → L(�; v) is supported in�c.
Hence the restriction uε ∈ K (�c) of uε ∈ K (�ε) to the truncated domain is given
by the solution to variational inequality

uε ∈ K (�c) : a(�c; uε, v−uε)+〈Aε(uε), v−uε〉−L(�c; v−uε) � 0 ∀v ∈ K (�ε), (31)

where Aε stands for the Steklov-Poincaré operator which replaces the portion of
bilinear form over the ring C(R, ε) := {R > |x | > ε}.
Proposition 33 Assume that the Steklov-Poincaré operator admits the one-term
expansion

〈Aε(v), v〉 = 〈A(v), v〉 + ε2〈B(v), v〉 + o(ε2; v, v)

with the compact remainder o(ε2; v, v), then we can replace in (31) the Steklov-
Poincaré operator by its one term approximation

ũε ∈ K (�c) :
a(�c; ũε, v − ũε) + 〈A(̃uε), v − ũε〉 +

ε2〈B(̃uε), v − ũε〉 − L(�c; v − ũε) � 0 ∀v ∈ K (�ε),
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with the estimate
‖ũε − uε‖ = o(ε2).

Remark 34 From Proposition33 it follows that for the shape-topological differen-
tiability of the energy functional we can consider the variational inequality

ûε ∈ K (�) : a(�; ûε, v−ûε) + ε2〈B(̂uε), v−ûε〉−L(�; v−ûε) � 0 ∀v ∈ K (�),

(32)
since ‖ûε − uε‖ = o(ε2) in �c. In this way, the approximation (5) of quadratic
functional (2) is justified for the first order topological derivatives of variational
inequalities in truncated domains.

For the quadratic functional (1) and the associated boundary value problem, the
bilinear form

v → b(�R; v, v) := 〈B(v), v〉

is determined. The linear operator B is obtained from the one term expansion of the
Steklov-Poincaré operatorAε, the expansion results from the energy expansion in the
subdomain �R . Therefore, the perturbed quadratic functional (3) can be replaced by
its approximation given by (5). For the Signorini problem in two spatial dimensions
it means that the variational inequality is obtained for minimization of perturbed
functional (3) over the energy space in unperturbed domain �, and the associated
energy functional

Eε(�) = 1

2
a(�; uε, uε) + ε2

2
b(�R; uε, uε) − ( f, uε)�,

is evaluated for the solution of variational inequality

uε ∈ K (�) : a(�; uε, v − uε) + ε2b(�R; uε, v − uε) − ( f, v − uε)� � 0 ∀v ∈ K (�).

6.2 Asymptotic Analysis by Domain Decomposition Method

In order to apply the domain decomposition technique to topological differentiability
ωε → Jε(�) in topologically perturbed domains � := �ε for the shape functionals
� → J (�)weneed the appropriate results on topological differentiability ε → Bε of
the Steklov-Poincaré pseudodifferential boundary operators defined on the artificial
interface �. In the particular case of holes ε → ωε the notation is straighforward,
with the singularly perturbed domain �ε := � \ ωε and with the shape functional to
be analysed with respect to small parameter ε → Jε(�) := J (� \ ωε). In the case
of inclusions ε → ωε the shape functional depends on the characteristic functions
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ε → χε of the domain perturbation ωε. For inclusions the state solution ε → uε ∈
H(�) is obtained by solving boundary value problems with operator coefficients
depending on the small parameter ε → 0. In both cases the asymptotics of Steklov-
Poincaré operators are obtained by asymptotic analysis of the energy functional
for linear elliptic boundary value problems in subdomains �2 which contains the
perturbations ε → ωε. Let us consider the direct method of sensitivity analysis in
subdomain �1 which contains the contact subset �c ⊂ ∂�. This is possible due
to the conical differentiability of metric projection onto the convex set K which is
valid under some assumptions (e.g., the convex, closed cone K is polyhedric in the
Dirichlet space H(�) [12]).

Example 35 In the case of the Signorini problem in two spatial dimensions the direct
method of asymptotic analysis for the shape functional (6)

Jε(�ε) :=
∫

�1

〈A′(0) · uε, uε〉dx

can be described as follows for the disc ωε := B(ε) = {|x | < ε} located at the origin.
1. We solve the variational inequality in �1 : determine u ∈ K and its coincidence

set � := {x ∈ �c : u(x) = 0}. Thus, the convex cone

S = {v ∈ H 1
�0

(�) : v � 0 on � a(�; u, v) = ( f, v)�}

used in conical differentiability of the element u with respect to the shape can
be determined.

2. The asymptotic analysis of solutions to variational inequality in singularly per-
turbed domain �(ε) : � \ B(ε) with respect to small parameter ε → 0 which
governs the size of the hole B(ε) leads to the expansion

uε = u + ε2q + o(ε2)

obtained by the domain decompositionmethodwith theSteklov-Poincaré bound-
ary operators, where

q ∈ S : a(�; q, v − q) + ε2〈Bq, v − q〉R � ∀v ∈ S.

3. The shape functional

Jε(�ε) :=
∫

�1

〈A′(0) · uε, uε〉dx

can be expanded in �1, the expansion is valid in the whole domain �,
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Jε(�ε) =
∫

�

〈A′(0) · u, u〉dx + 2ε2
∫

�

〈A′(0) · q, u〉dx + o(ε2),

however the obtained expression for the topological derivative may not be con-
structive in numerical methods. We want to obtain an equivalent expression,
when possible, which replaces the topological derivative

T (O) = 2
∫

�

〈A′(0) · q, u〉dx

in the first order expansion of the energy functional for Signorini problem. In the
linear boundary value problems such an expression can always be obtained by
the introduction of an appropriate adjoint state. We point out that for variational
inequalities the existence of an adjoint state in general cannot be expected.

7 Asymptotic Analysis of Boundary Value Problems
in Rings or Spherical Shells

In this section we shall consider asymptotic corrections to the energy functional
for the elasticity boundary value problems or the Laplace equation in R

d , where
d = 2, 3. The dependence of the energy on small parameter is caused by creating
a small ball-like void of variable radius ε in the interior of the domain �, with the
homogeneous Neumann boundary conditions for the boundary value problems on its
surface. We assume that this void has its centre at the originO. In order to eliminate
the variability of the domain,we take as�R the open ball B(O, R) = B(R)with fixed
R. In this way the void B(ε) is surrounded by B(R) ⊂ int�. We denote also the ring
or spherical shell as C(R, ε) = B(R) \ B(ε), �(R) = � \ B(R) and �R = ∂B(R).
Using these notations we define our main tool, namely the Dirichlet-to-Neumann
mapping for linear elasticity or the Steklov-Poincaré operator

Aε : H1/2(�R) �−→ H−1/2(�R)

by means of the boundary value problem:

(1 − 2ν)�w + grad divw = 0, in C(R, ε),

w = v on �R,

σ(w).n = 0 on �ε

so that
Aεv = σ(w).n on �R .
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Domain decomposition—Steklov-Poincaré operator. Let uR be the restriction of
u to �(R) and γRϕ the projection of ϕ on �R . We may then define the functional

I R
ε (ϕε) = 1

2

∫

�(R)

σ(ϕε) : ε(ϕε) dx −
∫

�N

h.ϕε ds

+ 1

2

∫

�R

(Aεγ
Rϕε).γ

Rϕε ds

and the solution uR
ε as a minimal argument for

I R
ε (uR

ε ) = inf
ϕε∈K⊂Vε

I R
ε (ϕε),

Here lies the essence of the domain decomposition concept: we have replaced the
the variable domain by a fixed one, at the price of introducing variable boundary
operator Aε. The above expressions have even simpler form in case of a single
Laplace equation. It is enough to replace the displacement by the scalar function u,
elasticity operator by −�, and

σ(u) := grad u, ε(u) := grad u, σ(u).n := ∂u/∂n.

The goal is to find the expansion

Aε = A + εdB + Rε, (33)

where the remainder Rε is of order o(εd) in the operator norm in the space
L(H1/2(�R), H−1/2(�R)), and the operatorB is regular enough, namely it is bounded
and linear:

B ∈ L
(

L2(�R), L2(�R)
)

.

Under this assumption the following propositions hold.

Proposition 36 Assume that (33) holds in the operator norm. Then strong conver-
gence takes place

uR
ε → uR

in the norm of H1(�(R)).

Proposition 37 The energy functional has the representation

I R
ε (uR

ε ) = I R(uR) + εd〈B(uR), uR〉R + o(ε3),

where o(εd)/εd → 0 with ε → 0 in the same energy norm.
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Here I R(uR) denotes the functional I R
ε on the intact domain, i.e. ε := 0 and

Aε := A, applied to truncation of u. Generally, the energy correction for both the
elasticity system and the Laplace operator has the form

〈B(uR), uR〉R = −cdeu(O),

where cd = vol(B(1)). The energy-like density function eu(O) has the form:

• In case of the Laplace operator

eu(O) = 1

2
‖∇u R(O)‖2

for both d = 2 and d = 3, see [56].
• In case of the elasticity system

eu(O) = 1

2
IPσ(uR(O) : ε(uR(O),

where for d = 2 and plain stress

IP = 1

1 − ν
(4I − I ⊗ I)

and for d = 3

IP = 1 − ν

7 − 5ν

(

10I − 1 − 5ν

1 − 2ν
I ⊗ I

)

see [46, 55]. Here I is the fourth order identity tensor, and I is the second order
identity tensor.

This approach is important for variational inequalities since it allows us to derive the
formulas for topological derivatives which are similar to the expressions obtained
for the corresponding linear boundary value problems.
Explicit form of the operatorB—the Laplace operator in two spatial dimensions.
If the function u is harmonic in a ball B(R) ⊂ R

2, of radius R > 0 and centre at
x0 = O, then the exact expressions for the first order derivatives of u take on the
following form [56]

u/1(O) = 1

πR3

∫

�R

u · x1 ds,

u/2(O) = 1

πR3

∫

�R

u · x2 ds.

Since the line integrals on �R are well defined for functions in L2(�R), it follows
that the operator B can be extended to a bounded operator on L2(�R),
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B ∈ L(L2(�R) → L2(�R)).

The symmetric bilinear form for this operator, given by

〈Bu, v〉R = − 1
2πR6

[(

∫

�R
ux1 ds

) (

∫

�R
vx1 ds

)

+
(

∫

�R
ux2 ds

) (

∫

�R
vx2 ds

)]

,

is continuous for all u, v ∈ L2(�R). In fact, the bilinear form

L2(�R) × L2(�R) � (u, v) �→ b(�R; u, v) ∈ R

is continuous with respect to the weak convergence because of the simple structure

b(�R; u, v) = l1(u)l1(v) + l2(u)l2(v) u, v ∈ L1(�R)

with two linear forms v → li (v), i = 1, 2,

li (u) = 1√
2π

R−3
∫

�R

uxi ds

defined as line integrals on �R . This gives an additional regularity for the regu-
lar non-local perturbation B of the pseudo-differential Steklov-Poincaré boundary
operator Aε.

Explicit form of the operator B—the Laplace operator in three spatial dimen-
sions. Similarly as in two spatial dimensions, for harmonic functions in R

3 it may
be proved [56] that

u/1(O) = 3

4πR4

∫

S(R)

ux1 ds,

u/2(O) = 3

4πR4

∫

S(R)

ux2 ds,

u/3(O) = 3

4πR4

∫

S(R)

ux3 ds.

Using this one can easily write down the bilinear form

b(�R; u, v) = 〈Bu, v〉R = l1(u)l1(v) + l2(u)l2(v) + l3(u)l3(v)

where

li (u, v) =
√

3

8π
R−4

∫

S(R)

uxi ds.

From the computational point of view, the effort in comparison to two spatial dimen-
sions grows similarly as the difficulty of computing integrals over circle versus inte-
grals over sphere.
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Explicit form of the operator B—elasticity in two spatial dimensions. Let us
denote for the plain stress case

k = λ + μ

λ + 3μ
.

It has been proved in [56] that the following exact formulae hold

ε11(O) + ε22(O) = 1

πR3

∫

�R

(u1x1 + u2x2) ds,

ε11(O) − ε22(O) = 1

πR3

∫

�R

[

(1 − 9k)(u1x1 − u2x2) + 12k

R2
(u1x3

1 − u2x3
2)

]

ds,

2ε12(O) = 1

πR3

∫

�R

[

(1 + 9k)(u1x2 + u2x1) − 12k

R2
(u1x3

2 + u2x3
1)

]

ds.

These expressions are easy to compute numerically, but contain additional integrals of
third powers of xi . Therefore, strains εi j (O)may be expressed as linear combinations
of integrals over circle which have the form

∫

�R

ui x j ds,
∫

�R

ui x
3
j ds.

The same is true, due to Hooke’s law, for stresses σi j (O). They may then be substi-
tuted into expression for the operator B, yielding

〈B(uR), vR〉R = −1

2
c2IPσ(u) : ε(v).

These formulas are quite similar to the ones obtained for Laplace operator and easy
to compute numerically.

Explicit form of the operator B for elasticity in three spatial dimensions. It turns
out that similar situation holds in three spatial dimensions, but obtaining the formulas
is more difficult. Assuming given values of u on �R , the solution of elasticity system
in B(R) may be expressed as

u =
∞
∑

n=0

[Un + (R2 − r2)kn(ν)grad divUn].

where kn(ν) = 1/2[(3 − 2ν)n − 2(1 − ν)] and r = ‖x‖. In addition

Un = 1

Rn
[an0dn(x) +

n
∑

m=1

(anmcm
n (x) + bnmsm

n (x))].
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The vectors
an0 = (a1

n0, a2
n0, a3

n0)
�,

anm = (a1
nm, a2

nm, a3
nm)�,

bnm = (b1
nm, b2

nm, b3
nm)�

are constant and the set of functions

{d0; d1, c11, s11 ; d2, c12, s12 , c22, s22 ; d3, c13, s13 , c23, s23 , c33, s33 ; . . .}

constitutes the complete system of orthonormal harmonic polynomials on�R , related
to Laplace spherical functions, see next paragraph. Specifically,

cl
k(x) = P̂l,c

k (x)

‖P̂l,c
k ‖R

, sl
k(x) = P̂l,s

k (x)

‖P̂l,s
k ‖R

, dk = Pk((x)

‖P̂k‖R

.

For example,

c23(x) = 1

R4

√

7

240π
(15x2

1 x3 − 15x2
2 x3),

If the value of u on �R is assumed as given, then, denoting

〈φ,ψ〉R =
∫

�R

φψ ds,

we have for n � 0, m = 1..n, i = 1, 2, 3:

ai
n0 = Rn〈ui , dn(x)〉R, (34)

ai
nm = Rn〈ui , cm

n (x)〉R,

bi
nm = Rn〈ui , sm

n (x)〉R .

Since we are looking for εi j (O), only the part of u which is linear in x is relevant. It
contains two terms:

û = U1 + R2k3(ν)grad divU3.

For any f (x), grad div (a f ) = H( f ) · a, where a – constant vector and H( f ) is the
Hessian matrix of f . Therefore
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û = 1

R
[a10d1(x) + a11c11(x) + b11s11(x))]

+ R2k3(ν)
1

R3

[

H(d3)(x)a30 +
3

∑

m=1

(

H(cm
3 )(x)a3m + H(sm

3 )(x)b3m
)

]

From the above we may single out the coefficients standing at x1, x2, x3 in
u1, u2, u3. For example,

ε11(O) = 1

R3

√

3

4π
a1
11 + 1

R5
k3(ν)

[

−3

√

7

4π
a3
30 − 9

√

7

24π
a1
31

−3

√

7

24π
b2
31 + 30

√

7

240π
a3
32 + 90

√

7

1440π
a1
33 + 90

√

7

1440π
b2
33

]

,

ε12(O) = 1

R3

√

3

4π
(b1

11 + a2
11) + 1

R5
k3(ν)

[

−3

√

7

24π
a2
31 −

√

7

24π
b1
31

+15

√

7

60π
b3
32 − 90

√

7

1440π
a2
33 + 90

√

7

1440π
b1
33

]

.

Observe that

ε11(O) + ε22(O) + ε33(O) = 1

R3

√

3

4π

(

R〈u1, c11〉R + R〈u2, s11〉R + R〈u3, d1〉R
)

and c11 = 1
R2

√

3
4π x1, s11 = 1

R2

√

3
4π x2, d1 = 1

R2

√

3
4π x3, exactly the same as for the case

of Laplace equation. This should be expected, since tr ε is a harmonic function.
As a result, the operator B may be defined by the formula

〈Bu, u〉R = −c3IPσ(u((O))) : ε(u((O)))

but the right-hand side consists of integrals of u multiplied by first and third order
polynomials in xi over �R resulting from (34). This is a very similar situation as
in two spatial dimensions. Thus, the new expressions for strains make possible to
rewrite B in the form possessing the desired regularity.

Laplace spherical polynomials. For n = 1:

P̂1(x) = x3, P̂1,c
1 (x) = x1, P̂1,s

1 (x) = x2,

‖P̂1‖R = ‖P̂1,c
1 ‖R = ‖P̂1,s

1 ‖R = R2

√

4π

3
,
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and for n = 3:

P̂3(x) = x3
3 − 3

2
x2
2 x3 − 3

2
x2
1 x3, ‖P̂3‖R = R4

√

4π

7
,

P̂1,c
3 (x) = 6x1x2

3 − 3

2
x3
1 − 3

2
x1x2

2 , ‖P̂1,c
3 ‖R = R4

√

24π

7
,

P̂1,s
3 (x) = 6x2x2

3 − 3

2
x3
2 − 3

2
x2
1 x2, ‖P̂1,s

3 ‖R = R4

√

24π

7
,

P̂2,c
3 (x) = 15x2

1 x3 − 15x2
2 x3, ‖P̂2,c

3 ‖R = R4

√

240π

7
,

P̂2,s
3 (x) = 15x1x2x3, ‖P̂2,s

3 ‖R = R4

√

60π

7
,

P̂3,c
3 (x) = 15x3

1 − 45x1x2
2 , ‖P̂3,c

3 ‖R = R4

√

1440π

7
,

P̂3,s
3 (x) = 45x2

1 x2 − 15x3
2 , ‖P̂3,s

3 ‖R = R4

√

1440π

7
,

8 Asymptotic Analysis of Steklov-Poincaré Operators
in Reinforced Rings in Two Spatial Dimensions

In this section the similar asymptotic analysis of elliptic boundary value problems
in subdomain �R ∈ R

2 is performed, but we modify the situation, assuming that
the hole is filled only partially, different material constituting a fixed part of it. In
this way, we may consider double asymptotic transition, where both the size of the
hole, as well as the proportion of the different material contained in it can vary.
Mechanically this situation corresponds e.g. to the hole with hardened walls.

The analysis is based again on exact representation of solutions and allows to
obtain the perturbation of solutions, using the fact that these solutions may be con-
sidered as minimizers of energy functional. The method is also suitable for double
asymptotic expansions of solutions as well as energy form. The ultimate goal is to use
obtained formulas in the evaluation of topological derivatives for elliptic boundary
value problems.

8.1 Model Problem

Let us consider the the domain� containing the holewith boundarymade ofmodified
material. For simplicity the hole is located at the origin of the coordinate system. In
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order to write down the model problem, we introduce some notations.

Bs = { x ∈ R
2 | ‖x‖ < s }

Cs,t = { x ∈ R
2 | s < ‖x‖ < t }

�s = { x ∈ R
2 | ‖x‖ = s }

�s = � \ Bs

Then the problem in the intact domain � has the form

k1�w0 = 0 in �

w0 = g0 on ∂�
(35)

The model problem in the modified domain reads:

k1�wρ = 0 in �ρ

wρ = g0 on ∂�

wρ = vρ on �ρ

k2�vρ = 0 in Cλρ,ρ

(36)

k2
∂vρ

∂n2
= 0 on �λρ

k1
∂wρ

∂n1
+ k2

∂vρ

∂n2
= 0 on �ρ,

where n1—exterior normal vector to �ρ, n2—exterior normal vector to Cλρ,ρ, and
0 < λ < 1.Wewant to investigate the influence of the small ring-like inclusionmade
of another material on the difference wρ − w0 in �R , where �R surrounds Cλρ,ρ and
R is fixed. We assume that ρ → 0+ and λ is considered temporarily constant.

If we define

uρ =
{

wρ in �ρ

vρ in Cλρ,ρ

then the problem (36) reduces to finding minimum of the energy functional

E1(uρ) = 1

2

∫

�ρ

k1∇uρ · ∇uρ dx + 1

2

∫

Cλρ,ρ

k2∇uρ · ∇uρ dx
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for uρ ∈ H 1(�ρ), uρ = g0 on ∂�. This expression may be rewritten as

E1(uρ) = 1

2

∫

�R

k1∇wρ · ∇wρ dx

+ 1

2

∫

Cρ,R

k1∇wρ · ∇wρ dx

+ 1

2

∫

Cλρ,ρ

k2∇vρ · ∇vρ dx .

Using integration by parts we obtain

E1(uρ) = 1

2

∫

�R

k1∇wρ · ∇wρ dx

+ 1

2

∫

�ρ

(

wρk1
∂wρ

∂n1
+ vρk2

∂vρ

∂n2

)

ds

+ 1

2

∫

�R

k1wρ
∂wρ

∂n3
ds,

where n3—exterior normal to �R . Hence, due to boundary and transmission condi-
tion,

E1(uρ) = 1

2

∫

�R

k1∇wρ · ∇wρ dx + 1

2

∫

�R

k1wρ
∂wρ

∂n3
ds (37)

8.2 Steklov-Poincaré Operator

Observe that E1(w0) corresponds to the problem (35). Therefore the main goal is to
find the Steklov-Poincaré operator

Aλ,ρ : w ∈ H 1/2(�R) �−→ ∂wρ

∂n3
∈ H−1/2(�R)

where the normal derivative is computed from auxiliary problem

k1�wρ = 0 in Cρ,R

wρ = w on �R

wρ = vρ on �ρ

k2�vρ = 0 in Cλρ,ρ

k2
∂vρ

∂n2
= 0 on �λρ

k1
∂wρ

∂n1
+ k2

∂vρ

∂n2
= 0 on �ρ
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The geometry of domains of definition for functions is shown in Fig. 2. Now let us
adopt the polar coordinate system around origin and assume the Fourier series form
for w on �R .

w = C0 +
∞
∑

k=1

(Ak cos kϕ + Bk sin kϕ)

The general form of the solution wρ is

wρ = Aw + Bw log r +
∞
∑

k=1

(

wc
k(r) cos kϕ + ws

k(r) sin kϕ
)

,

where

wc
k(r) = Ac

krk + Bc
k

1

rk
, ws

k(r) = As
krk + Bs

k

1

rk
.

Similarly for vρ:

vρ = Av + Bv log r +
∞
∑

k=1

(

vc
k(r) cos kϕ + vs

k(r) sin kϕ
)

,

where

vc
k(r) = ac

krk + bc
k

1

rk
, vs

k(r) = as
krk + bs

k

1

rk
.

Additionally, we denote the Fourier expansion of vρ on �ρ by

vρ = c0 +
∞
∑

k=1

(ak cos kϕ + bk sin kϕ)

From boundary conditions on �λρ it follows easily Bv = 0, Av = c0, and then
Bw = 0, Aw = Av = c0 = C0. There remains to find ak , bk , ac

k , bc
k , as

k , bs
k , Ac

k , Bc
k ,

As
k , Bs

k assuming Ak , Bk as given.

8.3 Asymptotic Expansion

In order to eliminate the above mentioned coefficients we consider first the terms at
cos kϕ. From boundary and transmission conditions we have for k = 1, 2, . . .
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Ac
k Rk + Bc

k

1

Rk
= Ak

Ac
kρ

k + Bc
k

1

ρk
− ak = 0

ac
kρ

k + bc
k

1

ρk
− ak = 0

ac
k(λρ)k−1 − bc

k

1

(λρ)k+1
= 0

k1Ac
kρ

k−1 − k1Bc
k

1

ρk+1
− k2ac

kρ
k−1 + k2bc

k

1

ρk+1
= 0

Thismay be rewritten in thematrix form: grouping unknown parameters into a vector
pk = [Ac

k, Bc
k , ac

k , bc
k, ak]� we obtain

T (k1, k2, R,λ, ρ)pk = Rk Ake1

where

T =

⎡

⎢

⎢

⎢

⎢

⎣

R2k 1 0 0 0
ρ2k 1 0 0 −ρk

0 0 (λρ)2k 1 −ρk

0 0 (λρ)2k −1 0
k1ρ2k −k1 −k2ρ2k k2 0

⎤

⎥

⎥

⎥

⎥

⎦

where e1 = [0, 0, 0, 0, 1]�. It is easy to see that

pk = p0
k Ak + ρ2kp1

k Ak + o(ρ2k)

where

p0
k = lim

ρ→0+ lim
λ→0+

pk(k1, k2, R,λ, ρ)

Ak

and p0
k = [1/Rk, 0, 0, 0, 0]�, which corresponds to the ball BR filled completely

with material k1. Similar reasoning may be conducted for terms containing sin kϕ.
As a result,

Aλ,ρ = A0,0 + ρ2A1
λ,ρ(k1, k2, R,λ, ρ, A1, B1) + o(ρ2).

The exact form ofA1
λ,ρ(k1, k2, R,λ, ρ, A1, B1) is obtained from inversion of matrix

T , but, what is crucial, it is linear in both A1 and B1. They in turn are computed as
line integrals
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A1(w) = 1

πR2

∫

�R

wx1 ds, B1(w) = 1

πR2

∫

�R

wx2 ds.

As a result, for computing uρ we may use the following energy form

E(uρ) = 1

2

∫

�

k1∇uρ · ∇uρ dx + ρ2Q(k1, k2, R,λ, ρ, A1, B1) + o(ρ2),

where A1 = A1(uρ), B1 = B1(uρ) and Q is a quadratic function of A1, B1. This
constitutes a regular perturbation of the energy functional which allows comput-
ing perturbations of any functional depending on this solution and caused by small
inclusion of the described above form.

8.4 Extension to Linear Elasticity

Let us consider the plane elasticity problem in the ring CR,ρ. We use polar coordi-
nates (r, θ)with er pointing outwards and eθ perpendicularly in the counter-clockwise
direction. Then there exists an exact representation of both solutions, using the com-
plex variable series. It has the form [20, 38]

σrr − iσrθ = 2�φ′ − e2iθ(z̄φ′′ + ψ′)
σrr + iσθθ = 4�φ′

2μ(ur + iuθ) = e−iθ(κφ − zφ̄′ − ψ̄).

(38)

The functions φ, ψ are given by complex series

φ = A log(z) +
k=+∞
∑

k=−∞
ak zk

ψ = −κ Ā log(z) +
k=+∞
∑

k=−∞
bk zk .

(39)

Here μ—the Lame constant, ν—the Poisson ratio, κ = 3 − 4ν in the plain strain
case, and κ = (3 − ν)/(1 + ν) for plane stress.

Similarly as in the simple case described in former sections, the displacement data
may be given in the form of Fourier series,

2μ(ur + iuθ) =
k=+∞
∑

k=−∞
Akeikθ
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The traction-free condition on some circle means σrr = σrθ = 0. From (38) and
(39) we get for displacements the formula

2μ(ur + iuθ) = 2κAr log(r)
1

z
− Ā

1

r
z

+
p=+∞
∑

p=−∞

[

κrap+1 − (1 − p)ā1−pr−2p+1 − b̄−(p+1)r
−2p−1

]

z p.

Similarly we obtain representation of tractions on some circle

σrr − iσrθ = 2A
1

z
+ (κ + 1)

1

r2
Āz

+
p=+∞
∑

p=−∞
(1 − p)

[

(1 + p)ap+1 + ā1−pr−2p + 1

r2
bp−1

]

z p.

As we see, in principle it is possible to repeat the same procedure again, glueing
solutions in two rings together and eliminating the intermediary Dirichlet data on the
interface. The only difference lies in considerably more complicated calculations,
see e.g. [13]. This could be applied for making double asymptotic expansion, in term
of both ρ and λ. However, in our case λ does not need to be small in comparison
to ρ.

8.5 Summary of Results for Particular Cases

The explicit form of solutions in BR allows us to conclude that for

‖wρ‖H 1/2(�R) � �0

the correction to the energy functional contains part proportional toρd and the remain-
der of order o(ρd). This in turn [56, 58] implies the possibility of representation

wρ = w0 + ρ2q + o(ρ2) in H 1(�R)

for both standard and contact problems, justifying computations of topological deriv-
atives. It is well known that the singularities of solutions to Partial Differential Equa-
tions due to the singularities of geometrical domains can be characterized by specific
shape derivatives of the associated energy shape functionals [12]. Therefore, the
influence of topological changes in domains on the singularities can be measured
by the appropriate second-order topological derivatives of the energy functionals. It
means that we evaluate the shape derivatives of the energy functional by using the
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velocity field method, and subsequently the second order topological derivatives of
the functionals by an application of the domain decomposition method,

• the portion �0 of the boundary with the homogeneous Dirichlet boundary condi-
tions is deformed to obtain t → Tt (V )(�0) as well as t → E(�t ) for the energy
shape functional; as a result the first order shape derivative J (�) := dE(�; V ) is
obtained in the distributed form as a volume integral.

• the second order derivative of the energy functional is evaluated with respect to
small parameter ε → 0, the parameter governs the size of small inclusion with the
material defined by a contrast parameter γ ∈ [0,∞).

We consider the energy shape functional � → E(�) for Signorini problems for
the Laplacian as well for the frictionless contact. The shape derivative J (�) :=
dE(�; V ) of this functional is evaluated with respect to the boundary variations of
the portion �0 ⊂ ∂�. In another words the velocity vector field V is supported
in a small neighbourhood of �0. The topological derivatives of J (�) are evaluated
with respect to nucleation of small inclusions far from�0. The domain decomposition
method is applied in order to obtain the robust expressions for topological derivatives.

9 Conclusions

In the paper the review of mathematical techniques required for shape-topological
sensitivity analysis for variational inequalities is presented. The singular geometrical
perturbations depending on small parameter ε → 0 are considered. It is shown that
the singular geometrical domain perturbations can be replaced, without any loss
of precision, by the regular perturbations of bilinear forms depending on the small
parameter. Non-smooth analysis is employed in order to obtain the second order
topological derivatives. The proposedmethod can be now used in numerical methods
of topology optimization as well in passive control of crack propagation.

Acknowledgments This work has been supported by the DFG EC315 ’Engineering of Advanced
Materials’ and by the ANR-12- BS01-0007 Optiform.

References

1. A. Ancona, Sur les espaces de Dirichlet: principes, fonction de Green. J. Math. Pures Appl.
54, 75–124 (1975)

2. I.I. Argatov, J. Sokołowski, Asymptotics of the energy functional in the Signorini problem
under small singular perturbation of the domain. Zh. Vychisl. Mat. Mat. Fiz. 43, 744–758,
translation in Comput. Math. Math. Phys. 43, 710–724 (2003)

3. Z. Belhachmi, J.-M. Sac-Epée, J. Sokołowski, Approximation par la méthode des élement finit
de la formulation en domaine régulière de problems de fissures. Comptes Rendus Acad. Sci.
Paris, Ser. I 338, 499–504 (2004)



Shape- and Topology Optimization for Passive Control of Crack Propagation 195

4. Z. Belhachmi, J.M. Sac-Epée, J. Sokołowski, Mixed finite element methods for smooth domain
formulation of crack problems. SIAM J. Numer. Anal. 43, 1295–1320 (2005)

5. A. Beurling, J. Deny, Dirichlet spaces. Proc. Natl. Acad. Sci. USA 45, 208–215 (1959)
6. P. Destuynder, Remarques sur le contrôle de la propagation des fissures en régime stationnaire.

Comptes RendusAcad. Sci. Paris Sèr. IIMéc. Phys. Chim. Sci. Univers Sci. Terre 308, 697–701
(1989)

7. G. Fichera, Boundary value problems of elasticity with unilateral constraints, in Festkörperme-
chanik/Mechanics of Solids, Handbuch der Physik, ed. by S. Flügge, C.A. Truesdell (Springer,
New York, 1984), pp. 391–424

8. G. Fichera, Existence theorems in elasticity, inFestkörpermechanik/Mechanics of Solids, Hand-
buch der Physik, ed. by S. Flügge, C.A. Truesdell (Springer, Berlin, 1984), pp. 347–389

9. G. Frémiot, Eulerian semiderivatives of the eigenvalues for Laplacian in domains with cracks.
Adv. Math. Sci. Appl. 12, 115–134 (2002)

10. G. Frémiot, J. Sokołowski, Hadamard formula in nonsmooth domains and applications, in
Partial Differential Equations on Multistructures (Luminy, 1999). Lecture Notes in Pure and
Applied Mathematics, vol. 219 (Dekker, New York, 2001), pp. 99–120

11. G. Frémiot, J. Sokołowski, Shape sensitivity analysis of problems with singularities, in Shape
Optimization and Optimal Design (Cambridge, 1999). Lecture Notes in Pure and Applied
Mathematics, vol. 216 (Dekker, New York, 2001), pp. 255–276

12. G. Frémiot, W. Horn, A. Laurain, M. Rao, J. Sokołowski, On the analysis of boundary value
problems in nonsmooth domains. Diss. Math. 462, 149 (2009)

13. W.A. Gross, The second fundamental problem of elasticity applied to a plane circular ring. Z.
für Angew. Math. Phys. 8, 71–73 (1957)

14. B. Hanouzet, J.-L. Joly, Méthodes d’ordre dans l’interprétation de certaines inéquations vari-
ationnelles et applications. J. Funct. Anal. 34, 217–249 (1979)

15. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applica-
tions to variational inequalities. J. Math. Soc. Jpn. 29, 615–631 (1977)

16. P. Hild, A. Münch, Y. Ousset, On the active control of crack growth in elastic media. Comput.
Methods Appl. Mech. Eng. 198, 407–419 (2008)

17. M. Hintermüller, V.A. Kovtunenko, From shape variation to topology changes in constrained
minimization: a velocity method based concept, in Special issue on advances in shape and
topology optimization: theory, numerics and new applications areas, ed. by C. Elliott, M.
Hintermüller,G. Leugering, J. Sokołowski,Optimization Methods and Software, vol. 26 (2011),
pp. 513–532

18. M. Hintermüller, A. Laurain, Optimal shape design subject to variational inequalities. SIAM
J. Control Optim. 49, 1015–1047 (2011)

19. D. Hömberg, A.M. Khludnev, J. Sokołowski, Quasistationary problem for a cracked body with
electrothermoconductivity. Interfaces Free Bound. 3, 129–142 (2001)

20. M. Kachanov, B. Shafiro, I. Tsukrov, Handbook of Elasticity Solutions (Kluwer Academic
Publishers, Dordrecht, 2003)

21. A.M. Khludnev, Optimal control of crack growth in elastic body with inclusions. Eur. J. Mech.
A Solids 29, 392–399 (2010)

22. A.M. Khludnev, J. Sokołowski, Modelling and Control in Solid Mechanics (Birkhäuser, Basel
1997), reprinted by Springer in 2012

23. A.M. Khludnev, J. Sokołowski, On solvability of boundary value problems in elastoplasicity.
Control Cybern. 27, 311–330 (1998)

24. A.M.Khludnev, J. Sokołowski, TheGriffith formula and theRice-Cherepanov integral for crack
problems with unilateral conditions in nonsmooth domains. Eur. J. Appl. Math. 10, 379–394
(1999)

25. A.M. Khludnev, J. Sokołowski, Griffith’s formula and Rice-Cherepanov’s integral for elliptic
equations with unilateral conditions in nonsmooth domains, in Optimal Control of Partial
Differential Equations (Chemnitz, 1998). International Series of Numerical Mathematics, vol.
133 (Birkhäuser, Basel, 1999), pp. 211–219



196 G. Leugering et al.

26. A.M. Khludnev, J. Sokołowski, Griffith’s formulae for elasticity systems with unilateral con-
ditions in domains with cracks. Eur. J. Mech. A Solids 19, 105–119 (2000)

27. A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids (WIT Press, Southampton,
2000)

28. A.M. Khludnev, J. Sokołowski, Smooth domain method for crack problems. Q. Appl. Math.
62, 401–422 (2004)

29. A.M. Khludnev, G. Leugering, Optimal control of cracks in elastic bodies with thin rigid
inclusions. Z. Angew. Math. Mech. 91, 125–137 (2011)

30. A.M. Khludnev, G. Leugering, M. Specovius-Neugebauer, Optimal control of inclusion and
crack shapes in elastic bodies. J. Optim. Theory Appl. 155, 54–78 (2012)

31. A.M. Khludnev, K. Ohtsuka, J. Sokołowski, On derivative of energy functional for elastic
bodies with a crack and unilateral conditions. Q. Appl. Math. 60, 99–109 (2002)

32. A.M. Khludnev, A.A. Novotny, J. Sokołowski, A. Żochowski, Shape and topology sensitivity
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