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Abstract We consider a classical shape optimization problem for the eigenval-
ues of elliptic operators with homogeneous boundary conditions on domains in the
N -dimensional Euclidean space. We survey recent results concerning the analytic
dependence of the elementary symmetric functions of the eigenvalues upon domain
perturbation and the role of balls as critical points of such functions subject to volume
constraint. Our discussion concerns Dirichlet and buckling-type problems for poly-
harmonic operators, the Neumann and the intermediate problems for the biharmonic
operator, the Lamé and the Reissner–Mindlin systems.
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1 Introduction

Let � be a bounded domain (i.e., a bounded connected open set) in R
N . As is well

known the problem {−�u = γu, in �,

u = 0, on �,

admits a divergent sequence of non-negative eigenvalues
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0 < γ1[�] < γ2[�] ≤ · · · ≤ γ j [�] ≤ . . . ,

where each eigenvalue is repeated as many times as its multiplicity (which is finite).
A classical problem in shape optimization consists in minimizing the eigenvalues
γ j [�] under the assumption that the measure of � is fixed. With regard to this, the
most famous result is probably the Rayleigh–Faber–Krahn inequality which reads

γ1[�∗] ≤ γ1[�], (1.1)

where �∗ is a ball with the same measure of �. In other words, the ball minimizes
the first eigenvalue of the Dirichlet Laplacian among all domains with prescribed
measure. Note that the first eigenvalue has multiplicity one. This inequality has been
generalized in several directions aiming at minimization or maximization results
in the case of other boundary conditions (for example, Neumann, Robin, Steklov
boundary conditions), other operators (for example, the biharmonic operator), more
general eigenvalue-type problems (for example, the buckling problem for the bihar-
monic operator) and other eigenvalues γ j [�] with j �= 1. It is impossible to quote
here all available results in this field and we refer to the monographs by Bucur and
Buttazzo [2], Henrot [18] and Kesavan [21] for extensive discussions and references.

We note that very little is known in the case of polyharmonic operators and sys-
tems.Wemention that in the case of the biharmonic operator with Dirichlet boundary
conditions inequality (1.1) is known as TheRayleigh Conjecture and has been proved
by Nadirashvili [27] for N = 2 and by Ashbaugh and Benguria [1] for N = 2, 3.
We also quote the papers by Bucur, Ferrero and Gazzola [3, 4] concerning the bihar-
monic operator with Steklov boundary conditions and Chasman [12] for Neumann
boundary conditions. See also the extensive monograph by Gazzola, Grunau and
Sweers [15] for more information on polyharmonic operators. As for systems, we
quote the papers by Kawohl and Sweers [19, 20] which contain interesting lower
bounds for the first eigenvalue of the Lamé system.

It should be noted that understanding the behavior of higher eigenvalues is a dif-
ficult task even in the case of the Dirichlet Laplacian. A famous result by Buttazzo
and Dalmaso [11] and its recent improvement by Mazzoleni and Pratelli [26] guar-
antee the existence of a minimizer for γ j [�] in the class of quasiopen sets but no
information on the shape of such minimizer is given. However, it is proved in Wolf
and Keller [30] that the minimizers of higher eigenvalues in general are not balls and
not even unions of balls. Moreover, the numerical approach by Oudet [28] allows to
get an idea of the shape of the minimizers of lower eigenvalues which confirms the
negative result in [30].

One of the problems arising in the study of higher eigenvalues is related to bi-
furcation phenomena associated with the variation of their multiplicity which leads
to complications such as, for example, lack of differentiability of the eigenvalues
with respect to domain perturbation. However, as it was pointed out in [23, 25]
this problem does not affect the elementary symmetric functions of the eigenvalues
which depend real-analytically on the domain. This suggests that the elementary
symmetric functions of the eigenvalues might be natural objects in the optimization



On a Classical Spectral Optimization Problem in Linear Elasticity 45

of multiple eigenvalues. In fact, it turns out that balls are critical points with volume
constraint for the elementary symmetric functions of the eigenvalues. This property
was proved for the Dirichlet and Neumann Laplacians in [24] and later was proved
for polyharmonic operators in [7, 8].

In this survey paper, we adopt this point of view and show that the analysis initiated
in [22–25] can be extended to a large variety of problems arising in linear elasticity
including Dirichlet and buckling-type eigenvalue problems for polyharmonic oper-
ators, biharmonic operator with Neumann and intermediate boundary conditions,
Lamé and Reissner–Mindlin systems. Details and proofs can be found in [5–10].

Our aim is not only to collect results spread in different papers but also to present
them in a unitary way. In particular, we provide a Hadamard-type formula for the
shape derivatives of the eigenvalues of the biharmonic operator which is valid not
only for Dirichlet boundary conditions (as in the classical case) but also for Neumann
and intermediate boundary conditions. In the case of simple eigenvalues such formula
reads

dγn[φε(�)]
dε |ε=0

=
∫

∂�

(
|D2u|2 − 2

(
∂2u

∂ν2

)2

+ 2
∂u

∂ν

(
div∂�[(D2u)ν] + ∂�u

∂ν

)
− γu2

)
ψ · ndσ, (1.2)

where it is assumed that � is sufficiently smooth, u is an eigenfunction normalized
in L2(�) associated with a simple eigenvalue γn[�], and φε are perturbations of the
identity I of the type φε = I + εψ, ε ∈ R. See Theorems3.1, 3.2 and Lemma3.3 for
the precise statements and for the case of multiple eigenvalues. Note that in the case
of Dirichlet boundary conditions the previous formula gives exactly the celebrated
Hadamard formula

dγn[φε(�)]
dε |ε=0

= −
∫

∂�

(
∂2u

∂ν2

)2

ψ · ndσ, (1.3)

discussed by Hadamard [17] in the study of a clamped plate (see also Grinfeld [16]).
This paper is organized as follows: in Sect. 2 we formulate the eigenvalue prob-

lems under consideration, in Sect. 3 we state the available analyticity results for the
dependence of the eigenvalues upon domain perturbation, in Sect. 4 we show that
balls are critical points for the elementary symmetric functions of the eigenvalues.

2 The Eigenvalue Problems

Let � be an open set in RN . We denote by H m(�) the Sobolev space of real-valued
functions in L2(�) with weak derivatives up to order m in L2(�) endowed with its
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standard norm, and by H m
0 (�) the closure in H m(�) of C∞

c (�). We consider the
following eigenvalue problems on sufficiently regular open sets �.
Dirichlet and buckling problems for polyharmonic operators
For m, n ∈ N, 0 ≤ m < n, we consider the problem

Pnm :
{

(−�)nu = γ(−�)mu, in �,

u = ∂u
∂ν

= · · · = ∂n−1u
∂νn−1 = 0, on ∂�,

(2.1)

where ν denotes the unit outer normal to ∂�. The case m = 0 gives the classical
eigenvalue problem for the polyharmonic operator (−�)n with Dirichlet boundary
conditions, while the case m > 0 represents a buckling-type problem. For N = 2,
P10 arises for example in the study of a vibrating membrane stretched in a fixed
frame, P20 corresponds to the case of a vibrating clamped plate and P21 is related
to plate buckling. If � is a bounded open set of class C1 then problem(2.1) has a
sequence of eigenvalues γPnm

j which can be described by the Min–Max Principle.
Namely,

γPnm
j = min

E⊂H n
0 (�)

dimE= j

max
u∈E
u �=0

Rnm[u], (2.2)

for all j ∈ N, where Rnm[u] is the Rayleigh quotient defined by

Rnm[u] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�

|�r u|2dx∫
�

|�s u|2dx , if n = 2r, m = 2s,
∫
�

|�r u|2dx∫
�

|∇�s u|2dx , if n = 2r, m = 2s + 1,
∫
�

|∇�r u|2dx∫
�

|�s u|2dx , if n = 2r + 1, m = 2s,
∫
�

|∇�r u|2dx∫
�

|∇�s u|2dx , if n = 2r + 1, m = 2s + 1.

Neumann and intermediate eigenvalue problems for the biharmonic operator
By Neumann eigenvalue problem for the biharmonic operator we mean the problem

N :

⎧⎪⎨
⎪⎩

�2u = γu, in �,

∂2u
∂2ν

= 0, on ∂�,

div∂�[(D2u)ν] + ∂�u
∂ν

= 0, on ∂�,

(2.3)

where D2u denotes the Hessian matrix of u, div∂� denotes the tangential divergence
operator on ∂�. We recall that div∂� f = div f −[(∇ f )ν] ·ν, for any vector field f
smooth enough defined in a neighborhood of ∂�. Note that we need � to be at least
of class C2 for the classical formulation to make sense, since we need the normal ν
to be differentiable, as can easily be seen from the boundary conditions; however,
we shall interpret problem (2.3) in the following weak sense
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∫
�

D2u : D2ϕdx = γ

∫
�

uϕdx, ∀ ϕ ∈ H 2(�), (2.4)

where D2u : D2ϕ = ∑N
i, j=1 uxi x j ϕxi x j . It is well-known that if � is a bounded open

set of class C1 then problem (2.3) has a sequence of eigenvalues γN
j given by

γN
j = min

E⊂H 2(�)
dimE= j

max
u∈E
u �=0

∫
�

|D2u|2dx∫
�

u2dx
, (2.5)

for all j ∈ N, where |D2u|2 = ∑N
i, j=1 u2

xi x j
.

If in (2.4) the space H 2(�) is replaced by the space H 2(�) ∩ H 1
0 (�) we obtain

the weak formulation of the classical eigenvalue problem

I :
⎧⎨
⎩

�2u = γu, in �,

u = 0, on ∂�,

�u − K ∂u
∂ν

= 0, on ∂�,

(2.6)

where K denotes the mean curvature of ∂� (the sum of the principal curvatures).
Since H 2

0 (�) ⊂ H 2(�) ∩ H 1
0 (�) ⊂ H 2(�) and the spaces H 2

0 (�), H 2(�) are the
natural spaces associated with the Dirichlet problem P20 and the Neumann problem
N respectively, we refer to (2.6) as the eigenvalue problem for the biharmonic op-
erator with intermediate boundary conditions. If � is of class C1 then problem(2.6)
has a sequence of eigenvalues γI

j given by

γI
j = min

E⊂H 2(�)∩H 1
0 (�)

dimE= j

max
u∈E
u �=0

∫
�

|D2u|2dx∫
�

u2dx
, (2.7)

for all j ∈ N.

Eigenvalue problem for the Lamé system
The eigenvalue problem for the Lamé system reads

L :
{−μ�u − (λ + μ)∇divu = γu, in �,

u = 0, on ∂�,
(2.8)

where the unknown u is a function taking values in RN and λ,μ > 0 are (the Lamé)
constants . If � is of class C1 then problem(2.8) has a sequence of eigenvalues γL

j
given by

γL
j = min

E⊂(H 1
0 (�))N

dimE= j

max
u∈E
u �=0

∫
�

μ|∇u|2 + (λ + μ)div2udx∫
�

u2dx
, (2.9)

for all j ∈ N.
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Eigenvalue problem for the Reissner–Mindlin system
Finally, we consider the eigenvalue problem for the Reissner–Mindlin system

R :

⎧⎪⎪⎨
⎪⎪⎩

− μ
12�β − μ+λ

12 ∇divβ − μ κ
t2 (∇w − β) = t2γ

12 β, in �,

−μ k
t2 (�w − divβ) = γw, in �,

β = 0, w = 0, on �,

(2.10)

where the unknown (β, w) = (β1, . . . ,βN , w) is a function with values in R
N+1

and λ,μ,κ, t > 0 are constants. According to the Reissner–Mindlin model for
moderately thin plates, for N = 2 system (2.10) describes the free vibration modes
of an elastic clamped plate � × (−t/2, t/2) with midplane � and thickness t . In
that case λ and μ are the Lamé constants, κ is the correction factor, w the transverse
displacement of the midplane, β = (β1,β2) the corresponding rotation and t2γ the
vibration frequency.

If � is of class C1 then problem(2.10) has a sequence of eigenvalues γR
j

given by

γR
j = min

E⊂(H 1
0 (�))N+1

dimE= j

max
(β,w)∈E

u �=0

∫
�

μ
12 |∇β|2η + μ+λ

12 div2β + μ κ
t2 |∇w − β|2dx∫

�
w2 + t2

12 |β|2dx
, (2.11)

for all j ∈ N.

3 Analyticity Results

Let � be a bounded open set in R
N of class C1. In the sequel, we shall consider

problems (2.1), (2.3), (2.6), (2.8), (2.10) on families of open sets parametrized by
suitable diffeomorphisms φ defined on �. To do so, for k ∈ N we set

Ak
� =

{
φ ∈ Ck

b (� ;RN ) : inf
x1,x2∈�
x1 �=x2

|φ(x1) − φ(x2)|
|x1 − x2| > 0

}
,

where Ck
b (� ;RN ) denotes the space of all functions from � to R

N of class Ck ,
with bounded derivatives up to order k. Note that if φ ∈ Ak

� then φ is injective,
Lipschitz continuous and inf� |det∇φ| > 0. Moreover, φ(�) is a bounded open set
of class C1 and the inverse map φ(−1) belongs toAk

φ(�). Thus it is natural to consider
the above mentioned eigenvalue problems on φ(�) and study the dependence of the
corresponding eigenvalues γPnm

j [φ(�)], γN
j [φ(�)], γI

j [φ(�)], γL
j [φ(�)], γR

j [φ(�)]
on φ ∈ Ak

� for suitable values of k.
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The choice of k depends on the problem. In the sequel it will be always understood
that k is chosen as follows:

Problem Pnm : k = n,

Probelms N and I : k = 2,
Problems L and R : k = 1.

(3.1)

Moreover, in order to shorten our notation, we shall write γ j [φ] instead of γPnm
j

[φ(�)], γN
j [φ(�)], γI

j [φ(�)], γL
j [φ(�)], γR

j [φ(�)], with the understanding that
our statements refer to any of the problems (2.1), (2.3), (2.6), (2.8), (2.10). We
endow the space Ck

b (� ;RN ) with its usual norm defined by ‖ f ‖Ck
b (� ;RN ) =

sup|α|≤k, x∈� |Dα f (x)|. We recall that Ak
� is an open set in Ck

b (� ;RN ), see [23,
Lemma3.11]. Thus, it makes sense to study differentiability and analyticity proper-
ties of the maps φ �→ γ j [φ(�)] defined for φ ∈ Ak

�.
As in [23],wefix afinite set of indexes F ⊂ N andwe consider thosemapsφ ∈ Ak

�

for which the eigenvalues with indexes in F do not coincide with eigenvalues with
indexes not in F ; namely we set

Ak
F,� = {

φ ∈ Ak
� : γ j [φ] �= γl[φ], ∀ j ∈ F, l ∈ N \ F

}
.

It is also convenient to consider those maps φ ∈ Ak
F,� such that all the eigenvalues

with index in F coincide and set

�k
F,� = {

φ ∈ Ak
F,� : γ j1 [φ] = γ j2 [φ], ∀ j1, j2 ∈ F

}
.

For φ ∈ Ak
F,�, the elementary symmetric functions of the eigenvalues with index in

F are defined by

�F,h[φ] =
∑

j1,..., jh∈F
j1<···< jh

γ j1[φ] · · · γ jh [φ], h = 1, . . . , |F |. (3.2)

In order to state Theorems3.1 and 3.2, we need to define a quantity M[u, v]where
u, v are eigenfunctions associated with an eigenvalue γ on a smooth bounded open
set �. For each problem, M[u, v] is a real valued function defined on ∂� as follows:

• Problem Pnm :

M[u, v] = ∂nu

∂νn

∂nv

∂νn
; (3.3)

• Problem N :
M[u, v] = γuv − D2u : D2v; (3.4)
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• Problem I:

M[u, v] = D2u : D2v − 2�∂�

(
∂u

∂ν

∂v

∂ν

)
−

(
∂u

∂ν

∂3v

∂ν3
+ ∂u

∂ν

∂3v

∂ν3

)
; (3.5)

• Problem L:

M[u, v] = μ
∂u

∂ν
· ∂v

∂ν
+ (μ + λ)

(
∂u

∂ν
· ν

) (
∂v

∂ν
· ν

)
; (3.6)

• Problem R:

M[u, v] = μ

12

∂β

∂ν
· ∂θ

∂ν
+ μ + λ

12

(
∂β

∂ν
· ν

)(
∂θ

∂ν
· ν

)
+ κμ

t2
∂w

∂ν

∂u

∂ν
; (3.7)

where u = (β, w) and v = (θ, u).

In (3.5), �∂� denotes the tangential Laplacian on ∂�. Recall that �∂�u =
div∂�∇∂�u where ∇∂�u = ∇u − ∂u

∂ν
ν is the tangential gradient of u.

Moreover, formula (3.8) below is expressed in terms of a basis {ul}F of the
eigenspace associated with an eigenvalue γ on an open set φ̃(�). It will be un-
derstood that such basis is orthonormal with respect to the appropriate L2-scalar
product, which is the standard scalar product in L2(φ̃(�)) for problems (2.1) with
m = 0, (2.3), (2.6), (2.8) and the scalar product defined by

∫
φ̃(�)

(wv+ t2

12β ·η)dy for
problem (2.10). Note that in the case of problem (2.1) with arbitrary m, we use the
natural scalar product associated with right-hand side of the equation, i.e., the scalar
product defined by

∫
φ̃(�)

�
m
2 u�

m
2 vdy if m is even, and

∫
φ̃(�)

∇�
m−1
2 u∇�

m−1
2 vdy if

m is odd.
Then we have the following

Theorem 3.1 Let � be a bounded open set in R
N of class C1 and F be a finite

set in N. Let k ∈ N be as in (3.1). The set Ak
F,� is open in Ck

b (� ;RN ) and
the real-valued maps which take φ ∈ Ak

F,� to �F,h[φ] are real-analytic on Ak
F,�

for all h = 1, . . . , |F |. Moreover, if φ̃ ∈ �k
F,� is such that the eigenvalues γ j [φ̃]

assume the common value γF [φ̃] for all j ∈ F, and φ̃(�) is of class C2k then the
Frechét differential of the map �F,h at the point φ̃ is delivered by the formula

d|φ=φ̃�F,h[ψ] = −γh−1
F [φ̃]

(|F | − 1

h − 1

) |F |∑
l=1

∫
∂φ̃(�)

M[ul, ul ]ζ · νdσ, (3.8)

for all ψ ∈ Ck
b (�;RN ), where {ul}l∈F is an orthonormal basis of the eigenspace

associated with γF [φ̃], and ζ = ψ ◦ φ̃(−1).

The proof of this theorem can be done by adapting that of [23, Theorem3.38] (see
also [25, Theorem2.5]). Namely, by pulling-back to � via φ the operator defined on
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φ(�), one reduces the problem to the study of a family of operators Tφ defined on
the fixed domain�. Such operators turn out to be self-adjoint with respect to a scalar
product also depending onφ, which is obtained by pulling-back the appropriate scalar
product defined of L2(φ(�)). Then it is possible to apply the abstract results of [23]
in order to prove the real-analyticity of the symmetric functions of the eigenvalues.
Formula (3.8) is also deducedby a general formula concerning the eigenvalues of self-
adjoint operators proved in [23] combined with lengthy calculations which depend
on the specific case under consideration. We refer to the papers indicated in the
introduction for details.

If we consider domain perturbations depending real analytically on one scalar
parameter, it is possible to describe all the eigenvalues splitting from a multiple
eigenvalue of multiplicity m by means of m real-analytic functions. For the sake
of completeness we state the following Rellich-Nagy-type theorem which can be
proved by using the abstract results [23, Theorem2.27, Corollary2.28] which, in
turn, are proved by an argument based on reduction to finite dimension.

Theorem 3.2 Let � be a bounded open set in R
N of class C1. Let k ∈ N be as

in (3.1), φ̃ ∈ Ak
� and {φε}ε∈R ⊂ Ak

� be a family depending real-analytically on
ε such that φ0 = φ̃. Let γ̃ be an eigenvalue on φ̃(�) of multiplicity m, namely
γ̃ = γn,t [φ̃] = · · · = γn+m−1,t [φ̃] for some n ∈ N. Then there exists an open interval
I containing zero and m real-analytic functions g1, . . . , gm from I to R such that
{γn,t [φε], . . . , γn+m−1,t [φε]} = {g1(ε), . . . , gm(ε)} for all ε ∈ I . Moreover, if φ̃(�) is
an open set of class C2k then the derivatives g′

1(0), . . . , g
′
m(0) at zero of the functions

g1, . . . , gm coincide with the eigenvalues of the matrix

(
−

∫
φ̃(�)

M[ui , u j ]ζ · νdσ

)
i, j∈{1,...,m}

where ui , i = 1, . . . , m, is an orthonormal basis of the eigenspace associated
with γ̃.

In the case of the biharmonic operator the quantities M[ui , u j ] can be represented
by one single formula which is valid for the Dirichlet problem P20, the Neumann
problem N and the intermediate problem I. Indeed, we can prove the following.

Lemma 3.3 Let u, v be eigenfunctions associated with the same eigenvalue γ of
one of the problems P20, N , I on a bounded open set � of class C4. Then

M[u, v] = 2
∂2u

∂ν2

∂2v

∂ν2
− D2u : D2v + γuv − ∂u

∂ν

(
div∂�[(D2v)ν] + ∂�v

∂ν

)

− ∂v

∂ν

(
div∂�[(D2u)ν] + ∂�u

∂ν

)
. (3.9)

In particular, in these cases formula (3.8) reads
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d|φ=φ̃�F,h[ψ] = − γh−1
F [φ̃]

(|F | − 1

h − 1

) |F |∑
l=1

∫
∂φ̃(�)

(
2

(
∂2ul

∂ν2

)2

− |D2ul |2

+ γu2
l − 2

∂ul

∂ν

(
div∂�[(D2ul)ν] + ∂�ul

∂ν

))
ζ · νdσ. (3.10)

Proof In the case of problem P20, taking into account the boundary conditions u =
v = 0 on ∂� and ∇u = ∇v = 0 on ∂�, it follows that D2u : D2v = ∂2u

∂ν2
∂2v
∂ν2 on ∂�

hence the right-hand side of (3.9) equals the right-hand side of (3.3) with n = 2.
In the case of problemN , functions u and v satisfy the boundary conditions in

(2.3) hence we immediately conclude that the right-hand side of (3.9) equals the
right-hand side of (3.4).

Finally, we consider the intermediate problem I. In this case, several calculations
are required. To begin with, we note that since u = v = 0 on ∂� we have

�∂�

(
∂u

∂ν

∂v

∂ν

)
= �∂�

(
∂u

∂ν

)
∂v

∂ν
+ 2∇∂�

∂u

∂ν
∇∂�

∂v

∂ν
+ ∂u

∂ν
�∂�

(
∂v

∂ν

)

= div∂�[(D2u)ν]∂v

∂ν
+ 2∇∂�

∂u

∂ν
∇∂�

∂v

∂ν
+ ∂u

∂ν
div∂�[(D2v)ν].

(3.11)

On the other hand, we have

�∂�

(
∂u

∂ν

∂v

∂ν

)
= �∂� (∇u · ∇v) = �(∇u · ∇v) − ∂2(∇u · ∇v)

∂ν2

− K
∂(∇u · ∇v)

∂ν
= ∇�u · ∇v + ∇�v · ∇u + 2D2u : D2v

− 2[(D2u)ν)] · [(D2v)ν] − ∇u
∂2∇v

∂ν2
− ∇v

∂2∇u

∂ν2
− K∇u · ∂∇v

∂ν

− K∇v · ∂∇u

∂ν
= ∂�u

∂ν

∂v

∂ν
+ ∂�v

∂ν

∂u

∂ν
+ 2D2u : D2v

− 2∇∂�

∂u

∂ν
∇∂�

∂v

∂ν
− ∂u

∂ν

∂3v

∂ν3
− ∂v

∂ν

∂3u

∂ν3
− K

∂u

∂ν

∂2v

∂ν2
− K

∂v

∂ν

∂2u

∂ν2
. (3.12)

By taking into account that functions u and v satisfy the boundary condition ∂2u
∂ν2 =

∂2v
∂ν2 = 0 on ∂�, and by summing the first and last terms in the respective equalities
(3.11) and (3.12) we get
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2�∂�

(
∂u

∂ν

∂v

∂ν

)
= 2D2u : D2v + ∂u

∂ν

(
div∂�[(D2v)ν] + ∂�v

∂ν

)

× ∂v

∂ν

(
div∂�[(D2u)ν] + ∂�u

∂ν

)
− ∂u

∂ν

∂3v

∂ν3
− ∂v

∂ν

∂3u

∂ν3
.

(3.13)

The previous equality shows that in the case of problem I the right-hand side of (3.9)
equals the right-hand side of (3.5).

4 Isovolumetric Perturbations

Consider the following extremum problems for the symmetric functions of the eigen-
values

min
V [φ]=const

�F,h[φ] or max
V [φ]=const

�F,h[φ], (4.1)

where V [φ] denotes the N -dimensional Lebesgue measure of φ(�).
Note that if φ̃ ∈ Ak

� is a minimizer or maximizer in (4.1) then φ̃ is a critical
domain transformation for the map φ �→ �F,h[φ] subject to volume constraint, i.e.,

Ker d|φ=φ̃V ⊂ Ker d|φ=φ̃�F,h, (4.2)

where V is the real valued function defined on Ak
� which takes φ ∈ Ak

� to V [φ].
The following theorem provides a characterization of all critical domain transfor-

mations φ. See [24] for the case of the Dirichlet and Neumann Laplacians.

Theorem 4.1 Let � be a bounded open set in R
N of class C1. Let k ∈ N be as in

(3.1). Let F be a finite subset of N. Assume that φ̃ ∈ �k
F,� is such that φ̃(�) is of

class C2k and that the eigenvalues γ j [φ̃] have the common value γF [φ̃] for all j ∈ F.
Let {ul}l∈F be an orthornormal basis of the eigenspace corresponding to γF [φ̃]. Then
φ̃ is a critical domain transformation for any of the functions �F,h, h = 1, . . . , |F |,
with volume constraint if and only if there exists C ∈ R such that

∑
l∈F

M[ul, ul ] = C, on ∂φ̃(�). (4.3)

Formula (4.3) follows from an application of the Lagrange Multipliers Theorem
(see e.g., Deimling [14, Sect. 26] for a formulation valid in the case of infinite di-
mensional spaces) and formula (3.8).

Finally, thanks to the rotation invariance of the operators related to the problems
we have considered, it is possible to prove the following.
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Theorem 4.2 Let the same assumptions of Theorem4.1 hold. If φ̃(�) is a ball then
condition (4.3) is satisfied.

The proof of this theorem is based on the following main idea. First, we assume
that φ̃(�) is a ball with radius R centered at zero. In the case of polyharmonic op-
erators, we have that by the rotation invariance of the Laplace operator, if {ul}l∈F

is an orthonormal basis of an eigenspace, then {ul ◦ A}l∈F is also an orthonormal
basis of the same eigenspace for all A ∈ ON (R), where ON (R) denotes the group
of orthogonal linear transformations in R

N . Since both {ul}l∈F and {ul ◦ A}l∈F are
orthonormal bases of the same space, it follows that

∑|F |
l=1 u2

l ◦ A = ∑|F |
l=1 u2

l , for
all A ∈ ON (R). Thus

∑|F |
l=1 u2

l is a radial function. Then the radiality of
∑|F |

l=1 u2
l

combined with appropriate calculations and similar arguments as above, allows to
conclude that (4.3) is satisfied. (Note that in the case of vector-valued functions, say
in the case of the Lamé system for simplicity, one has clearly to rotate the vector
itself by considering At · (ul ◦ A) where we identify A with its matrix.)

Itwould be interesting to describe the family of open sets φ̃(�) forwhich condition
(4.3) is satisfied. In the case of problemP10 a classical result by Serrin [29] guarantees
that if condition (4.3) is satisfied for the first eigenfunction then φ̃(�) is a ball. The
same result has been proved by Dalmasso [13] in the case of problem P20 under
the assumption that the first eigenfunction does not change sign; for problem P21

a different method by Weinberger and Willms leads to the same conclusion (see
e.g., [18]).
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