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Abstract We review available methods to compute shape sensitivities and apply
these methods to a semi-linear model problem. This will reveal the difficulties of
each method and will help to decide which approach should be used for a concrete
applications.
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1 Introduction

The objective of this manuscript is to give readers an overview on methods that
allow to derive the shape differentiability of PDE (partial differential equation) con-
strained shape functions. There are several methods available to prove the shape
differentiability of shape functions depending on the solution of a PDE. In the recent
past two new methods have been proposed: the rearrangement method [14] and an
approach using a novel adjoint equation [19]. Other more established methods com-
prise the material/shape derivative method [18] (also called ‘chain rule’ approach),
the min approach for energy cost functions [7], the minimax approach of [9] and an
interesting penalization method [8] to derive sensitivities for a class of variational
inequalities. The approach of Céa [5] is frequently used to derive the formulas for
the shape derivative, but itself gives no proof for the shape differentiability. Indeed,
there are cases where Céa’s method fails; cf. [17, 19]. For linear partial differential
equations and (semi)-convex cost functions all mentioned methods (except Céa’s
Lagrange method in some cases) work and the necessary assumptions are readily
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verified. But for non-linear PDEs the situation is quite different as we will see in the
presented example. After reading this article the reader may decide which method is
suited for his or her problem in hand .

In particular the presented methods are:

• The material derivative method analyzes the sensitivity of the solution of the PDE
with respect to the domain. This procedure is similar to the direct approach used in
PDE constraint optimal control [21]. Here, the solution of the PDE depends on a
control function, which belongs to a usually convex set. The main objective when
deriving the necessary optimality conditions is the investigation of the control-
solution operator. In shape optimization we have to investigate the “domain-state”
operator. The investigation of shape function is more involved, since spaces of
shapes admit no vector space structure.

• The rearrangement method exploits a first order expansion of the PDE and the
cost function with a remainder which tends to zero with order two. This expansion
is combined with the Hölder continuity of the domain-state operator. The main
challenge of this method constitute the proof of the Hölder continuity, but more
importantly the first order expansion.

• In the minimax approach the cost function is expressed as a minimax of the
Lagrangian associated to the optimization problem. By definition a Lagrangian
is a function that is the sum of a utility function and a state equation. The problem
of the differentiability of the cost function is shifted to the differentiability of a
minimax function. The Theorem of Correa-Seeger [6] can be applied to prove
the differentiability if (among other requirements) the Lagrangian admits saddle
points. A special case of this approach is when the cost function is itself aminimum
of an energy. In this case the minimax of the Lagrangian is replaced by the min of
the energy and we have to investigate the differentiability of the min function to
prove the shape differentiability.

• The averaged adjoint approach can also be seen as a proof for the differentiability
of a minimax function. Unlike the Theorem of Correa-Seeger it requires no saddle
point assumption. Therefore it constitutes an extension of the Theorem of Correa-
Seeger for the special class of Lagrangian functions.

The manuscript is organized as follows:
Section2, the basic notation is introduced and basic tools from shape optimization,

including the Zolésio-Hadamard structure theorem, are recalled. We introduce the
basic model problem and make some basic assumptions.

Section3, the existence of the strong material derivatives associated to this equa-
tion is shown under suitable assumption. This proves then the shape differentiability
of the cost function.

Section4, the minimax formulation is reviewed for the particular example. Then
the Theorem of Correa-Seeger is applied to prove the differentiability of theminimax
function with respect to a parameter, that is, the shape differentiability of the cost
function.

Section5, the rearrangement method is employed to derive the shape differentia-
bility of the semi-linear model problem.
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Section6, the shape differentiability of a special cost function, that is the energy
associated to the PDE, is proved. In this case the minimax differentiability reduces
to the differentiability of a min function.

Section7, a recently proposed approach of the averaged adjoint equation is pre-
sented and applied to the semi-linear problem.

2 Notations and Problem Description

2.1 Notation

Let E and F be Banach spaces and U ⊂ E an open subset. We denote by C(U ; F)

the space of all continuous functions f : U → F . We call a function f : U → F
differentiable in x ∈ U if it is Fréchet differentiable at x and denote the derivative by
∂ f (x). The function is called differentiable if it is differentiable at every point x ∈ U .
For k ≥ 1, the space of all k-times continuously differentiable functions f : U → F
is denoted by Ck(U ; F). The directional derivative of f at x in direction v is denoted
by d f (x; v). When F = R and E = Rd , we adopt the notation Ck(U ; Rd) of
[23] for all those functions f ∈ Ck(U ; F) that admit extendable partial derivative
∂α f to U for all indices α = (α1, . . . ,αd) with |α| ≤ k. Also, we identify the
derivative ∂ f (x) : Rd → R via the Riesz representation theorem by the gradient
∇ f (x), which is for each point x ∈ Rd a vector in Rd . For p ≥ 1, the space of all
measurable functions f : � → R for which ‖ f ‖L p(�) := (∫

�
| f |p dx

)1/p
< ∞ is

denoted by L p(�). The space of functions of bounded variations on D is denoted
by BV(D). For the one-sided limit (t approaches zero from the right) we write
limt↘0. The right derivative in zero of a function f : U ⊂ R → R is denoted
f (0+) := limt↘0( f (t) − f (0))/t .

2.2 The Problem Description

Let d ∈ N+. Throughout this manuscript, we consider the following semi-linear
state equation

− �u + �(u) = f in �, u = 0 on ∂�. (2.1)

on a domain � ⊂ Rd . The function u : � → R is called state and f : D → R
is a function specified below. Without loss of generality, we may assume �(0) = 0
otherwise consider �̃(x) := �(x) − �(0) with right hand side f̃ (x) := f (x) − �(0).
To simplify the exposition, we choose as objective function

J (�) :=
∫

�

|u − ur |2 dx, (2.2)
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where ur : D → R is given and | | denotes the absolute value. The task is now
to derivative the shape derivative of the cost function (2.2) by employing different
techniques.

Throughout this manuscript we suppose that the following assumption is satisfied.

Assumption (Data)

(i) Let � ⊂ D ⊂ Rd be two simply connected domains with Lipschitz boundaries
∂� and ∂D, respectively.

(ii) The functions ur , f : D → R are continuously differentiable.
(iii) The vector field θ belongs to C2

c (D, Rd).

For any k ≥ 1, we define the space

Ck
c (D, Rd) := {θ ∈ Ck(Rd; Rd) : supp(θ) ⊂ D}

and set C∞
c (D, Rd) = ⋂

n∈N Cn
c (D, Rd). The flow of a vector field θ ∈ Ck

c (D, Rd) is
defined for each x0 ∈ D by �θ

t (x0) := x(t), where x : [0, τ ] → Rd solves

ẋ(t) = θ(x(t)) in (0, τ ), x(0) = x0.

In the sequel, we write �t instead of �θ
t .

2.3 Compositions of Functions with Flows

In the following let θ ∈ C1
c (D, Rd) be a given vector field and�t = �θ

t its associated
flow. First, note that by the chain rule ∂�−1(t,�(t, x)) = (∂�(t, x))−1 or briefly
(∂(�−1

t )) ◦ �t = (∂�t )
−1 =: ∂�−1

t , which implies1

(∇ f ) ◦ �t = ∂�−T
t ∇( f ◦ �t ).

Subsequently the following abbreviations are used

ξ(t) := det(∂�t ), A(t) := ξ(t)∂�−1
t ∂�−T

t , B(t) := ∂�−T
t , (2.3)

where det : Rd,d → R denotes the determinant. Step-by-step, we will derive prop-
erties of the quantities ξ, B and A.

1For any scalar function f ∈ H1(Rd ), we have for all v ∈ Rd and all x ∈ D

∂( f (�t (x))v = ∂ f (�t (x))∂�t (x)v = ∇ f (�t (x)) · ∂�t (x)v = (∂�t (x))T ∇( f (�t (x))) · v.
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Proposition 2.1 Let a continuous mapping A ∈ C([0, τ ]; C(D; Rd,d)) and a func-
tion ξ ∈ C([0, τ ]; C(D)) be given and assume A(0) = I and ξ(0) = 1. Then there
are constants γ1, γ2, δ1, δ2 > 0 and τ > 0 such that

∀ζ ∈ Rd , ∀t ∈ [0, τ ] : γ1|ζ|2 ≤ ζ·A(t)ζ ≤ γ2|ζ|2, (a)

δ1 ≤ ξ(t) ≤ δ2. (b)

Proof (a) We can estimate

|η|2 = (I − A(t))η · η + A(t)η · η

≤ ‖I − A(t)‖C(D;Rd,d )η · η + A(t)η · η.

By continuity of t → A(t) there exists for all ε > 0, a δ > 0 such that for all t ∈
[0, δ] we have ‖I − A(t)‖C(D;Rd,d ) ≤ ε. From this the claim follows.
(b) This is clear. �

Proposition 2.2 Let B : [0, τ ] → Rd,d be a bounded mapping such that
‖B−1(t)‖C(D;Rd,d ) ≤ C for all t ∈ [0, τ ] for some constant C > 0. Then for any
p ≥ 1 there is a constant C > 0 such that

∀t ∈ [0, τ ], ∀ f ∈ W 1
p(D) : ‖∇ f ‖L p(D;Rd ) ≤ C‖B(t)∇ f ‖L p(D;Rd )

Proof Estimating

‖∇ f ‖L p(D;Rd ) = ‖(B(t))−1B(t)∇ f ‖L p(D;Rd ) ≤ C ‖B(t)∇ f ‖L p(D;Rd )

gives the first inequality. �

Lemma 2.3 Let θ ∈ C1([0, τ ]; C1
c (D, Rd)) be vector field and � its flow. The

functions t → A(t) := ξ(t)∂�−1
t ∂�−T

t , t → ξ(t) := det(∂�t ) and t → B(t) :=
∂�−T

t are differentiable on [0, τ ] and satisfy the following ordinary differential
equations

B ′(t) = −B(t)(∂θt)T B(t)

ξ′(t) = tr(∂θt BT (t))ξ(t)

A′(t) = tr(∂θt BT (t))A(t) − BT (t)∂θt A(t) − (BT (t)∂θt A(t))T ,

where θt (x) := θ(t,�t (x)) and ′ := d
dt .

Proof (i) Let E, F be two Banach spaces. In [2, p. 222. Satz 7.2] it is proved that

inv : Lis(E; F) → L(F; E), A → A−1

is infinitely continuously differentiable with derivative ∂inv(A)(B) = −A−1BA−1.
Now by the fundamental theorem of calculus, we have
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�t (x) = x +
∫ t

0
θ(s,�s(x)) ds ⇒ ∂�t (x) = I +

∫ t

0
∂θ(s,�s(x))) ds,

where I ∈ Rd,d denotes the identity matrix. Therefore t → ∂�t (x) is differentiable
for each x ∈ D with derivative

d

dt
(∂�t (x)) = ∂θt (x) = ∂θ(t,�t (x))∂�t (x).

Thus if we let E = F = Rd,d and take into account the previous equation, we get
by the chain rule

d

dt
(inv(∂�t (x))) = −(∂�t (x))−1∂θt (x)(∂�t (x))−1.

(ii) A proof may be found in [22, p. 215, Proposition10.6].
(iii) Follows from the product rule together with (i) and (ii). �

Remark 2.4 Note that equation (i) can also be proved by differentiating the iden-
tity ∂�t∂�−1

t = I , where I is the identity matrix in Rd . That the inverse
t → ∂�−1

t is differentiable can also be seen by the well known formula ∂�−1
t =

(det(∂�t ))
−1(cofac(∂�t ))

T , where cofac denotes the cofactor matrix.

Lemma 2.5 Let D ⊂ Rd be an open, bounded set and p ≥ 1 a real number. Denote
by �t the flow of θ ∈ C1

c (D, Rd).

(i) For any f ∈ L p(D), we have

lim
t↘0

‖ f ◦ �t − f ‖L p(D) = 0 and lim
t↘0

‖ f ◦ �−1
t − f ‖L p(D) = 0.

(ii) For any f ∈ W 1
p(D), we have

lim
t↘0

‖ f ◦ �t − f ‖W 1
p (D) = 0. (2.4)

(iii) For p ≥ 1 a real number, k ∈ {1, 2} and any f ∈ W k
p(D), we have

lim
t↘0

∥∥∥
∥

f ◦ �t − f

t
− ∇ f · θ

∥∥∥
∥

W k−1
p (D)

= 0.

(iv) Fix p ≥ 1 and let t → ut : [0, τ ] → W 1
p(D) be a continuous function in 0.

Set u := u0. Then t → ut ◦ �t : [0, τ ] → W 1
p(D) is continuous in 0 and

lim
t↘0

‖ut ◦ �t − u‖W 1
p (D) = 0.
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Proof (i) A proof can be found in [10, p. 529].
(ii) In order to prove (2.4) it is sufficient to show

lim
t↘0

‖∇( f ◦ �t − f )‖L p(D) = lim
t↘0

‖∂�T
t ((∇ f ) ◦ �t − ∇ f )‖L p(D) = 0.

By the triangle inequality, we have

‖∂�T
t ((∇ f )◦�t −∇ f )‖L p(D) ≤ ‖(∇ f )◦�t −∇ f )‖L p(D)+‖(∂�T

t − I )∇ f )‖L p(D).

For the first term on the right hand side we can use (i) and the second term tends to
zero since ∂�T

t → I in C(D; Rd,d).
(iii) A proof can be found in [14, p. 6, Lemma3.6].
(iv) By the triangle inequality, we get

‖ut ◦ �t − u‖W 1
p (D) ≤ ‖ut ◦ �t − u ◦ �t‖W 1

p (D) + ‖u ◦ �t − u‖W 1
p (D).

The last term on the right hand side converges to zero as t → 0 due to (ii). For the
second inequality note that

‖ut ◦ �t − u ◦ �t‖W 1
p (D) =

(∫

D
ξ−1(t)|ut − u|p + ξ−1(t)|B(t)∇(ut − u)|p

)1/p

≤ C

(∫

D
|ut − u|p + |∇(ut − u)|p

)1/p

and the right hand side converges to zero. �

Definition 2.6 (Eulerian semi-derivative) Let � ⊂ D and k ≥ 1 be given. Sup-
pose we are given a shape function J : Ξ(�) → R on the set Ξ(�) :=
∪t∈[0,τ ]{�t (�)| θ ∈ Ck

c (D, Rd)}. Then the Eulerian semi-derivative of J at � in
the direction θ is defined as the limit (if it exists)

d J (�)[θ] := lim
t↘0

J (�t ) − J (�)

t
.

Moreover, if the Eulerian semi-derivative d J (�)[θ] exists for all θ ∈ C∞
c (D, Rd)

and the map θ → d J (�)[θ] : C∞
c (D, Rd) → R, is linear and continuous, then J is

called shape differentiable at �.

Finally, we state the following theorem from [10, pp. 483–484], which will be
used to compute the boundary expression of the shape derivative.

Theorem 2.7 Let θ ∈ Ck
c (D, Rd), where k ≥ 1. Fix τ > 0 and let ϕ ∈

C(0, τ ; W 1,1
loc (Rd)) ∩ C1(0, τ ; L1

loc(R
d)) and an bounded domain � with Lipschitz

boundary � be given. The right sided derivative of the function f (t) := ∫
�t

ϕ(t) dx
at t = 0 is given by
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f ′(0+) =
∫

�

ϕ′(0) dx +
∫

�

ϕ(0) θn ds.

In the following, we prove the shape differentiability of J defined in (2.2) by the
following methods: the material and shape derivative method, the min-max formula-
tion of Correa-Seeger and the rearrangement method. We present a modification of
Céa’s Lagrange method which allows a rigorous derivation of the shape derivative
in the case of existence of material derivatives.

3 Material and Shape Derivative Method

3.1 Material Derivative Method

In order to compute the Eulerian semi-derivative of J given by (2.2) via material
derivative method (chain rule approach), we make the following assumption:

Assumption (A) The function � : R → R is continuously differentiable, bounded
and monotonically increasing.

We call u ∈ H 1
0 (�) a weak solution of (2.1) if

∫

�

∇u · ∇ψ dx +
∫

�

�(u)ψ dx =
∫

�

f ψ dx for all ψ ∈ H 1
0 (�). (3.1)

The weak solution of the previous equation characterizes the unique minimum of the
energy E(�, ·) : H 1

0 (�) → R defined by

E(�,ϕ) := 1

2

∫

�

|∇ϕ|2 + �̂(ϕ) dx −
∫

�

f ϕ dx,

where �̂(s) := ∫ s
0 2 �(s ′) ds ′. In the following, we denote by

dϕE(�,ϕ;ψ) := lim
t↘0

E(�,ϕ + t ψ) − E(�,ϕ)

t

d2
ϕE(�,ϕ;ψ, ψ̃) := lim

t↘0

dϕE(�,ϕ + t ψ̃;ψ) − dϕE(�,ϕ;ψ)

t

the first and second order directional derivative of E atϕ in the directionψ and (ψ, ψ̃),
respectively. Then we may write (3.1) as dϕE(�, u;ψ) = 0 for all ψ ∈ H 1

0 (�).
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Lemma 3.1 Assume that � is continuously differentiable. Then the mapping

s →
∫

�

�(ϕ + sϕ̃)ψ dx

is continuously differentiable on R for all ϕ, ϕ̃ ∈ L∞(�) and ψ ∈ H 1
0 (�).

Proof Let ϕ, ϕ̃ ∈ H 1
0 (�) ∩ L∞(�) and ψ ∈ H 1

0 (�). Put zs(x) := �(ϕ(x) +
sϕ̃(x))ψ(x). We have for almost all x ∈ �

zs+h(x) − zs(x)

h
→ = �′(ϕ(x) + sϕ̃(x))ϕ̃(x)ψ(x) as h → 0,

∣
∣∣∣

d

ds
zs(x)

∣
∣∣∣ ≤ C |ψ(x)||ϕ̃(x)|.

Then it holds

∣∣∣∣
zs+h(x) − zs(x)

h

∣∣∣∣ =
∣∣∣∣
1

h

∫ s+h

s

d

ds ′ zs ′
(x)ds ′

∣∣∣∣

≤ C |ψ(x)||ϕ̃(x)|1
h

∫ s ′+h

s ′
ds ′

= C |ψ(x)||ϕ̃(x)|.

Therefore applying Lebesgue’s dominated convergence theorem we conclude

d

ds

∫

�

zs(x) dx =
∫

�

�′(ϕ(x) + sϕ̃(x))ϕ̃(x)ψ(x) dx .

As a consequence of the previous lemma, we get the differentiability of s →
dϕE(�,ϕ + sϕ̃,ψ). Moreover, we conclude by the monotonicity of �

d2
ϕE(�,ϕ;ψ,ψ) =

∫

�

|∇ψ|2 + �′(ϕ)ψ2 dx ≥ C‖ψ‖2H 1
0 (�)

for all ϕ ∈ H 1
0 (�) ∩ L∞(�) and ψ ∈ H 1

0 (�). We now want to calculate the shape
derivative of (2.2). For this purpose, we consider the perturbed cost function J (�t ) =∫
�t

|ut − ur |2 dx , where ut denotes the weak solution of (3.1) on the domain �t :=
�t (�), that is, ut ∈ H 1

0 (�t ) solves

∫

�t

∇ut · ∇ψ̂ dx +
∫

�t

�(ut )ψ̂ dx =
∫

�t

f ψ̂ dx for all ψ̂ ∈ H 1
0 (�t ). (3.2)

It would be possible to compute the derivative of ut : �t → R pointwise by
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du(x) := lim
t↘0

ut (x) − u(x)

t
for all x ∈

(
⋂

t∈[0,τ ]
�t

)

∩ �.

In the literature this derivative is referred to as local shape derivative of u in direction
θ; cf. [12]. Nevertheless, we go another way and use the change of variables�t (x) =
y to rewrite J (�t ) as

J (�t ) =
∫

�

ξ(t)|ut − ur ◦ �t |2 dx, (3.3)

where ut := �t (ut ) : � → R is a function on the fixed domain �. We introduce the
mapping �t (ϕ) := ϕ ◦ �t with inverse � t (ϕ̂) := �−1

t (ϕ̂) = ϕ̂ ◦ �−1
t . To study the

differentiability of (3.3), we can study the function t → ut . Notice that u0 = u0 = u
is nothing but the weak solution of (3.1).

The limit u̇ := limt↘0(ut − u)/t is called strong material derivative if we
consider this limit in the norm convergence in H 1

0 (�) and weak material derivative
if we consider the weak convergence in H 1

0 (�).
The crucial observation of [23, Theorem2.2.2, p. 52] is that �t constitutes an

isomorphism from H 1(�t ) into H 1(�). Hence using a change of variables in (3.2)
shows that ut satisfies
∫

�

A(t)∇ut · ∇ψ dx +
∫

�

ξ(t) �(ut )ψ dx =
∫

�

ξ(t) f tψ dx for all ψ ∈ H 1
0 (�),

(3.4)
where we used the notation from (2.3). The previous equation characterizes the
unique minimum of the convex energy Ẽ : [0, τ ] × H 1

0 (�) → R2

Ẽ(t,ϕ) := 1

2

∫

�

ξ(t)|B(t)∇ϕ|2 + ξ(t)�̂(ϕ) dx −
∫

�

ξ(t) f tϕ dx . (3.5)

By standard regularity theory (see e.g. [15]) it follows that ut ∈ C(�) for all t ∈
[0, τ ]. Moreover, the proof of [4, Theorem3.1] shows that there is a constant C > 0
such that

‖ut‖C(�) + ‖ut‖H 1(�) ≤ C for all t ∈ [0, τ ].

As before using Lebesque’s dominated convergence theorem it is easy to verify that
for fixed t ∈ [0, τ ] the second order directional derivative d2

ϕ Ẽ(t,ϕ;ψ, η) exists for
all ϕ ∈ L∞(�) ∩ H 1

0 (�) and ψ, η ∈ H 1
0 (�). Taking into account Proposition2.1,

we see that
C‖ψ‖2H 1(�;Rd ) ≤ d2

ϕ Ẽ(t,ϕ;ψ,ψ). (3.6)

2Here we mean convex with respect to ϕ for each t ∈ [0, τ ].
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or all varphi ∈ L∞(�) ∩ H 1
0 (�),ψ ∈ H 1

0 (�) and for all t ∈ [0, τ ], Note that
dϕ Ẽ(t,ϕ;ψ) is also differentiable with respect to t and Lemma2.3 shows:

∂t dϕ Ẽ(t,ϕ;ψ) =
∫

�

A′(t)∇ϕ · ∇ψ + ξ′(t)�(ϕ)ψ dx

−
∫

�

(ξ′(t) f t + ξ(t)B(t)∇ f t )ϕ dx (3.7)

≤ C(1 + ‖ϕ‖H 1(�))‖ψ‖H 1(�),

for all t ∈ [0, τ ], where C > 0 is a constant. By the coercivity property (3.6) of the
second order derivative of Ẽ

C‖∇(ut − u)‖2L2(�;Rd ) ≤
∫ 1

0
d2

ϕ Ẽ(t, sut + (1 − s)u; ut − u, ut − u) (3.8)

= dϕ Ẽ(t, ut ; ut − u) − dϕ Ẽ(t, u; ut − u) (3.9)

= −(dϕ Ẽ(t, u; ut − u) − dϕ Ẽ(0, u; ut − u)) (3.10)

= −t∂t dϕ Ẽ(ηt t, u; ut − u) (3.11)

≤ Ct ‖∇(ut − u)‖L2(�;Rd ). (3.12)

In step (3.8)–(3.9), we applied themean value theorem in integral form, in step (3.9)–
(3.10), we used that dϕ Ẽ(t, ut ; ut − u) = dϕ Ẽ(0, u; ut − u) = 0, and in step from
(3.10)–(3.11), we applied the mean value theorem which yields ηt ∈ (0, 1). In the
last step (3.12), we employed the estimate (3.7). Finally, by the Poincaré inequality,
we conclude that there is c > 0 such that ‖ut − u‖H 1(�) ≤ ct for all t ∈ [0, τ ]. From
this estimate we deduce that for any real sequence (tn)n∈N with tn ↘ 0 as n → ∞,
the quotient wn := (utn − u)/tn converges weakly in H 1

0 (�) to some element u̇
and by compactness there is a subsequence (tnk )k∈N such that (wnk )k∈N converges
strongly in Lq(�) to some v, where 0 < q < 2d

d−2 ; (cf. [11, p. 270, Theorem6]).3

Extracting a further subsequence we may assume that wtk (x) → u̇(x) as k → ∞
for almost every x ∈ �. Notice that the limit u̇ depends on the sequence (tnk )k∈N.
However, we will see that this limit is the same for any sequence (tn)n∈N converging
to zero.

Subtracting (3.4) at t > 0 and t = 0 yields

∫

�

A(t)∇(ut − u) · ∇ψ dx +
∫

�

ξ(t)(�(ut ) − �(u))ψ dx

=
∫

�

(ξ(t) − 1) �(u)ψ dx −
∫

�

(A(t) − I )∇u · ∇ψ dx (3.13)

+
∫

�

(ξ(t) − 1) f tψ dx +
∫

�

( f t − f )ψ dx .

3When d = 2 this means H1(�) is compactly embedded into L p(�) for arbitrary p > 1. When
d = 3 we get that H1(�) compactly embeds into L6−ε(�) for any small ε > 0.
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We choose t = tnk in the previous equation and want to pass to the limit k → ∞.
The only difficult term in (3.13) is

∫

�

ξ(t)
�(ut ) − �(u)

t
ψ dx =

∫

�

ξ(t)

[∫ 1

0
�′(ut

s) ds

] (
ut − u

t

)
ψ dx .

From the strong convergence of (utnk − u)/tnk to u̇ in L2(�) and the pointwise
convergence ξ(tnk ) → 1 and �′(utnk

s ) → �′(u), we infer that

∫

�

ξ(tnk )
�(utnk ) − �(u)

tnk

ψ dx −→
∫

�

�′(u) u̇ ψ dx as k → ∞.

Therefore, choosing t = tnk in (3.13) and dividing by tnk , we may pass to the limit:

∫

�

∇u̇ · ∇ψ + �′(u) u̇ ψ dx +
∫

�

A′(0)∇u · ∇ψ dx

+
∫

�

div θ�(u)ψ dx =
∫

�

div (θ) f ψ dx +
∫

�

∇ f · θ ψ dx .

(3.14)

for all ψ ∈ H 1
0 (�). The function u̇ is the unique solution of (3.14). Hence for every

sequence (tn)n∈N converging to zero there exists a subsequence (tnk )k∈N such that
wtk → u̇ as k → ∞. Moreover,

∫

�

ξ(t)
�(ut ) − �(u)

t
ψ dx −→

∫

�

�′(u) u̇ ψ dx as t ↘ 0

and ∫

�

A(t)∇ ut − u

t
· ∇ψ dx −→

∫

�

∇u̇ · ∇ψ dx as t ↘ 0.

We now show that the strong material derivative exists. For this subtract (3.14)
from (3.13) to obtain

∫

�
A(t)∇

(
ut − u

t
− u̇

)
· ∇ψ dx +

∫

�
ξ(t)

[∫ 1

0
�′(ut

s) ds

] (
ut − u

t
− u̇

)
ψ dx

=
∫

�
(A(t) − I )∇u̇ · ∇ψ dx +

∫

�
(ξ(t) − 1)

[∫ 1

0
�′(ut

s) ds

]

u̇ ψ dx

+
∫

�

[∫ 1

0
�′(ut

s) − �′(u) ds

]

u̇ ψ dx −
∫

�

(
A(t) − I

t
− A′(0)

)
∇u · ∇ψ dx

+
∫

�

(
ξ(t) − 1

t
− div (θ)

)
�(u)ψ dx +

∫

�

(
ξ(t) − 1

t
− div (θ)

)
f tψ dx

+
∫

�

(
f t − f

t
− ∇ f · θ

)
ψ dx .
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Now we insert ψ = wt − u̇ as test function into the previous equation. Using
Proposition2.1 and the fact that ξ(t) > 0, �′ ≥ 0 we get

γ1‖∇(wt − u̇)‖2L2(�) ≤
∫

�
(A(t) − I )∇u̇ · ∇(wt − u̇) dx

+
∫

�
(ξ(t) − 1)

∫ 1

0
�′(ut

s) ds u̇ (wt − u̇) dx

+
∫

�

∫ 1

0
(�′(ut

s) − �′(u) ds) u̇ (wt − u̇) dx

−
∫

�

(
A(t) − I

t
− A′(0)

)
∇u · ∇(wt − u̇) dx

+
∫

�

(
ξ(t) − 1

t
− div (θ)

)
(�(u) (wt − u̇) + f t (wt − u̇)) dx

+
∫

�

(
f t − f

t
− ∇ f · θ

)
(wt − u̇) dx .

Using the convergences A(t) → I , (A(t)− I )/t−A′(0) → 0, ( f t − f )/t−∇ f ·θ →
0 , ξ(t) → 1 and (ξ(t) − 1)/t − div (θ) in C(�), and the uniform boundedness of
‖wt − u̇‖H 1(�) and ‖u̇‖H 1(�) yields

‖wt − u̇‖H 1(�) → 0 as t ↘ 0.

We are now in the position to calculate the volume expression of the shape derivative.
First, we differentiate (3.3) with respect to t

d J (�)[θ] =
∫

�

div (θ)|u − ur |2 dx −
∫

�

2(u − ur )∇ur · θ dx +
∫

�

2(u − ur )u̇ dx .

Note that for the previous calculation it was enough to have ‖ut − u‖H 1(�) ≤ ct for
all t ∈ [0, τ ]. This is sufficient to differentiate the L2 cost function. Nevertheless,
for a cost function that involves gradients of u such as

J̃ (�) :=
∫

�

‖∇u − ∇ur‖2 dx,

this is not true anymore. Now in order to eliminate the material derivative in the last
equation, the so-called adjoint equation is introduced

Find p ∈ H1
0 (�) : dϕE(�, u; p, ψ) = −2

∫

�

(u − ur )ψ dx for all ψ ∈ H1
0 (�).

(3.15)

The function p is called adjoint state. Finally, testing the adjoint equation with u̇ and
the material derivative Eq. (3.14) with p, we arrive at the volume expression
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d J (�)[θ] (3.15)=
∫

�

div (θ)|u − ur |2 dx

−
∫

�

2(u − ur )∇ur · θ dx − dϕE(�, u; p, u̇)

(3.14)=
∫

�

div (θ)|u − ur |2 dx −
∫

�

2(u − ur )∇ur · θ dx

+
∫

�

A′(0)∇u · ∇ p + div (θ)�(u)p dx −
∫

�

div (θ f )p dx . (3.16)

Note that the volume expression alreadymakes sensewhen u, p ∈ H 1
0 (�). Assuming

higher regularity of the state and adjoint (e.g. u, p ∈ H 2(�) ∩ H 1
0 (�)) would allow

us to rewrite the previous volume expression into a boundary expression, that is, an
integral over the boundary ∂�.

3.2 Shape Derivative Method

Assuming that the solutions u, p and the boundary ∂� are smooth, say C2, we
may transform the volume expression (3.16) into an integral over ∂�. This can be
accomplished by integration by parts or in the following way. Instead of transporting
the cost function back to �, one may directly differentiate J (�t ) = ∫

�t
|� t (ut ) −

ur |2 dx by invoking Theorem2.7, to obtain

d J (�)[θ] =
∫

∂�

|u − ur |2θnds +
∫

�

2 (u − ur )(u̇ − ∂θu) dx . (3.17)

The function u′ := u̇ − ∂θu is called shape derivative of u at � in direction θ
associated with the parametrization �t . It is linear with respect to θ. Note that since
�0 = id, we have � t ◦ �−t = �0 = idH 1

0 (�) and �−t ◦ � t = �0 = idH 1
0 (�t )

. Note
that setting ut := �t (ut ), we can write

u′ = d

dt
� t (ut )|t=0 = d

dt
(ut ◦ �−1

t )|t=0.

Therefore the shape derivative decomposes into two parts, namely

u′ = ∂t�
t (ut )|t=0︸ ︷︷ ︸

∈L2(�)

+�0(u̇)︸ ︷︷ ︸
∈H 1

0 (�)

,

where ∂t�
t (ut )|t=0 := limt↘0(�

t (ut ) − �0(ut ))/t = −∂θu. Assuming that the
solution u belongs to u ∈ H 1

0 (�) ∩ H 2(�), we have
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u′ = ∂t�
t (ut )|t=0︸ ︷︷ ︸

∈H 1(�)

+ �0(u̇)︸ ︷︷ ︸
∈H 1

0 (�)∩H 2(�)

The perturbed state equation (3.2) can be rewritten as

∫

�t

∇(� t (ut )) · ∇(� t (ϕ)) + �(� t (ut )) (� t (ϕ)) dx =
∫

�t

f � t (ϕ) dx

for all ϕ ∈ H 1
0 (�). Suppose that u, p ∈ H 2(�) ∩ H 1

0 (�). Hence by formally
differentiating the last equation using the transport Theorem2.7:

∫

�

∇u′ · ∇ϕ + �′(u)u′ ϕ dx −
∫

�

∇u · ∂θϕ + �(u) ∂θϕ dx

+
∫

∂�

(∇u · ∇ϕ + �(u) p) θnds =
∫

∂�

f ϕ θnds −
∫

�

f ∂θϕ dx
(3.18)

for all ϕ ∈ H 2(�) ∩ H 1
0 (�), where θn := θ · n and ∂θ := θ · ∇. Note that the

adjoint state p vanishes on �. This equation can also be derived from (3.14) by
partial integration.

Remark 3.2 Note that u′ does not belong to H 1
0 (�), but only to H 1(�). As the shape

derivative does not belong to the solution space of the state equation, it may lead
to false or incomplete formulas for the boundary expression. This seems to be first
observed in [17].

Note that u = 0 on � implies that ∇�u = 0 and hence ∇u|� = (∂nu)n. Then
integrating by parts in (3.18) and using that u is a strong solution yields

∫

�

∇u̇ · ∇ϕ + �′(u)u̇ ϕ dx =
∫

∂�

(∂nu ∂nϕ − 2 ∂nu ∂nϕ) θn ds

+
∫

�

∂θu (−�ϕ + �′(u)ϕ) dx .

(3.19)

Now, one can eliminate u̇ in d J (�)[θ] given by (3.17) using the previous equation
and the adjoint state equation

d J (�)[θ] (3.15)=
∫

∂�

|u − ur |2 θn ds +
∫

�

∇u̇ · ∇ p + �′(u) u̇ p dx

+
∫

�

∂θu 2(u − ur ) dx

(3.19)=
∫

∂�

|u − ur |2 θn ds −
∫

∂�

2∂nu ∂n p θnds

+
∫

�

(−�p + �′(u) p + 2(u − ur ))∂θu dx .
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Finally, assuming that p solves the adjoint equation in the strong sense, we get

d J (�)[θ] = ∫
∂�

(|u − ur |2 − ∂nu ∂n p) θn ds. (3.20)

What we observe in the calculations above is that there is no material derivative u̇ or
shape derivative u′ in the final expression (3.16) or (3.20). This suggests that there
might be a way to obtain this formula without the computation of u̇. In the next
section, we get to know one possible way to avoid the material derivatives.

4 The Min-Max Formulation of Correa and Seeger

In this section, we want to discuss the minimax formulation of shape optimization
problems and a theorem of Correa and Seeger [6] that gives a powerful tool to
differentiate a minimax function with respect to a parameter. The cost function for
many optimal control problems can be rewritten as the min-max of a Lagrangian
function L, that is, an utility function plus the equality constraints, i.e.,

J (u) = inf
ϕ∈A

sup
ψ∈B

L(u,ϕ,ψ).

Therefore, the directional differentiation of the cost function is equivalent to the
differentiation of the inf-sup with respect to u. This method has clear restrictions,
but still it is applicable to many commonly used cost functions and to a certain class
of non-linear partial differential equations. This method is in particular applicable to
linear partial differential equations and convex cost functions.

4.1 Saddle Points and Their Characterization

For the convenience of the reader we recall here the definition of saddle points and
their characterization.

Definition 4.1 Let A, B be sets and G : A × B → R a map. Then a pair (u, p) ∈
A × B is said to be a saddle point on A × B if

G(u,ψ) ≤ G(u, p) ≤ G(ϕ, p) for all ϕ ∈ A, for all ψ ∈ B.

We have the following equivalent condition for (u, p) being a saddle point.
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Lemma 4.2 A pair (u, p) ∈ A × B is a saddle point of G(, ) if and only if 4

min
ϕ̂∈A

sup
ψ̂∈B

G(ϕ̂, ψ̂) = max
ψ̂∈B

inf
ϕ̂∈A

G(ϕ̂, ψ̂),

and it is equal to G(u, p), where u being the attained minimum and p the attained
maximum, respectively.

Proof A proof can be found in [20, p. 166–167].

4.2 Min-Max Formulation for the Semi-linear Equation

Let ϕ,ψ ∈ H 1
0 (�) be two functions. Instead of differentiating the cost function and

the state equation separately, we incorporate both in the Lagrangian

L(�,ϕ,ψ) :=
∫

�

|ϕ − ur |2 dx +
∫

�

∇ϕ · ∇ψ dx +
∫

�

�(ϕ)ψ dx −
∫

�

f ψ dx .

The point of departure for the min-max formulation is the observation that

J (�) = min
ϕ∈H 1

0 (�)
sup

ψ∈H 1
0 (�)

L(�,ϕ,ψ),

since for any ϕ ∈ H 1
0 (�)

sup
ψ∈H 1

0 (�)

L(�,ϕ,ψ) =
{

J (�) when ϕ = u solves (3.1)
+∞ else .

In order to apply the theorem of Correa-Seeger to the Lagrangian L, we have to
show that it admits saddle points. Reasonable conditions to ensure the existence of
saddle points for our specific example is to assume thatL is convex and differentiable
with respect to ϕ.

Assumption (C) The function � is linear, that is, �(x) = ax , where a ∈ R.

Since for every open set � ⊂ Rd the Lagrangian L is convex and differentiable
with respect to ϕ, and concave and differentiable with respect to ψ, we know from
[20, Proposition1.6, p. 169–170] that the saddle points can be characterized by

u ∈ H 1
0 (�) : ∂ψL(�, u, p)(ψ̂) = 0 for all ψ̂ ∈ H 1

0 (�)

p ∈ H 1
0 (�) : ∂ϕL(�, u, p)(ϕ̂) = 0 for all ϕ̂ ∈ H 1

0 (�).

4Here the min and max indicate that the infimum and supremum is attained, respectively.
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The last equations are exactly the state equation (3.1) and the adjoint Eq. (3.15). To
compute the shape derivative of J , we consider for t > 0

J (�t ) = min
ϕ̂∈H 1

0 (�t )
sup

ψ̂∈H 1
0 (�t )

L(�t , ϕ̂, ψ̂)

= min
ϕ∈H 1

0 (�)
sup

ψ∈H 1
0 (�)

L(�t , �
t (ϕ),� t (ψ)),

(4.1)

where the saddle points of L(�t , ·, ·) are again given by the solutions of (3.1) and
(3.15), but the domain � has to be replaced by �t . By definition of a saddle point

L(�t , ut , ψ̂) ≤ L(�t , ut , pt ) ≤ L(�t , ϕ̂, pt ) for all ψ̂, ϕ̂ ∈ H 1
0 (�t ). (4.2)

Since �t : H 1
0 (�t ) → H 1

0 (�) is a bijection it is easily seen that the saddle points
of G(t,ϕ,ψ) := L(�t , �

t (ϕ),� t (ψ)) are given by ut = �t (ut ) and pt = �t (pt ).
It can also be verified that the function ut solves (3.4) and applying the change of
variables �t (x) = y to (3.15) shows that pt solves

∫

�

A(t)∇ψ · ∇ pt + ξ(t) �′(ut ) pt ψ dx = −2
∫

�

ξ(t)(ut − ut
r )ψ dx (4.3)

for all ψ ∈ H 1
0 (�). Moreover, the functions ut , pt satisfy

G(t, ut ,ψ) ≤ G(t, ut , pt ) ≤ G(t,ϕ, pt ) for all ψ,ϕ ∈ H 1
0 (�),

where G takes, after applying the change of variables �t (x) = y, the explicit form

G(t,ϕ, ψ) =
∫

�
ξ(t)|ϕ − ut

r |2 dx +
∫

�
A(t)∇ϕ · ∇ψ + ξ(t)�(ϕ)ψ dx −

∫

�
ξ(t) f tψ dx .

(4.4)

From Lemma4.2 and the definition of a saddle point (ut , pt ) of G(t, ), we conclude

g(t) := min
ϕ∈H 1

0 (�)
sup

ψ∈H 1
0 (�)

G(t,ϕ,ψ) = G(t, ut , pt ). (4.5)

Moreover, we have the relation

g(t) = G(t, ut ,ψ) for all ψ ∈ H 1
0 (�), (4.6)

since ut solves (3.4). In view of (4.1), we can obtain the shape derivative d J (�)[θ]
by calculating the derivative of g(t) at t = 0. In order to use (4.5), we have to
find conditions which show that we are allowed to differentiate the min-max of the
function G with respect to t at t = 0. On the other hand the relation (4.6) shows that
d J (�)[θ] = d

dt G(t, ut ,ψ)|t=0 for all ψ ∈ H 1
0 (�), that means the differentiability

of the min-max of G is equivalent to the differentiability of G(t, ut ,ψ) and it is
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independent of ψ. Sufficient conditions for the differentiability are provided by the
Theorem of Correa-Seeger (Theorem4.5). Note the relation (4.5) is also true for a
general function G when ut , pt are saddle points, but the relation (4.6) only for the
special structure (4.4) of G. It is clear that if the functions ut and G are sufficiently
differentiable the derivative d

dt (g(t))t=0 exists. The purpose of the reformulation of
the cost function as an inf-sup is to avoid the material derivatives u̇. Note that when
the state equation has no unique solution the cost function is not well-defined, but
the the function g is. Without a computation of the material derivative u̇ or ṗ, we can
show (cf. also the Theorem4.5) that d J (�)[θ] = ∂t G(0, u, p). Clearly the functions
t → ut , t → pt and G have to satisfy some additional conditions. Let us sketch the
proof of this fundamental result when G is given by (4.4). To be more precise we
want to establish the following.

Proposition 4.3 Let ψ ∈ H 1
0 (�). Then the function [0, τ ] → R : t → G(t, ut ,ψ)

is differentiable from the right side in 0. Moreover, we have the following

d

dt
G(t, ut ,ψ)|t=0 = ∂t G(0, u, p) (4.7)

for arbitrary ψ ∈ H 1
0 (�). Here, p ∈ H 1

0 (�) solves the adjoint Eq. (3.15).

Proof By definition of a saddle point (ut , pt )

G(t, ut , pt ) ≤ G(t, u, pt ), G(0, u, p) ≤ G(0, ut , p)

and therefore setting �(t) := G(t, ut , pt ) − G(0, u, p) gives

G(t, ut , p) − G(0, ut , p) ≤ �(t) ≤ G(t, u, pt ) − G(0, u, pt ).

Using the mean value theorem, we find for each t ∈ [0, τ ] numbers ζt , ηt ∈ (0, 1)
such that

t∂t G(tζt , ut , p) ≤ �(t) ≤ t∂t G(tηt , u, pt ), (4.8)

where the derivative of G with respect to t is given by

∂t G(t,ϕ, ψ) =
∫

�
ξ′(t)|ϕ − ut

r |2 − 2ξ(t)(ϕ − ut
r )B(t)∇ut

r · θt dx

+
∫

�
A′(t)∇ϕ · ∇ψ + ξ′(t)�(ϕ)ψ − ξ′(t) f tψ − B(t)∇ f t · θtψ dx

(4.9)

and the derivatives ξ′ and A′ are given by Lemma2.3. It can be verified from this for-
mula that (t,ϕ) → ∂t G(t,ϕ, p) is strongly continuous and (t,ψ) → ∂t G(t, u,ψ)

is even weakly continuous. Moreover, from (3.4) and (4.3) it can be inferred that
t → ut and t → pt are bounded in H 1

0 (�) and therefore for any sequence (tn)n∈N

we get utn ⇀ w, ptn ⇀ v for two elements w, v ∈ H 1
0 (�). Passing to the limit in
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(3.4) and (4.3) and taking into account Lemma2.5, we see that w solves the state
equation and v the adjoint equation. By uniqueness of the state and adjoint equation
we get w = u and v = p. Selecting a further subsequence (tnk )k∈N yields that utnk

converges strongly in L2(�). Thus we conclude from (4.8)

lim inf
t↘0

�(t)/t ≥ ∂t G(0, u, p), lim sup
t↘0

�(t)/t ≤ ∂t G(0, u, p),

which leads to lim supt↘0 �(t)/t = lim inf t↘0 �(t)/t . This finishes the proof of
(4.7) and hence we have shown the shape differentiability of J .

Evaluating the derivative ∂t G(t, u, p)|t=0 leads to the formula (3.16). Note that
when ∂� is C2 then we may extend u, p ∈ H 2(�) ∩ H 1

0 (�) to global H 2 functions
ũ, p̃ ∈ H 2(Rd). Then the boundary expression is obtained by applying the transport
theorem (Theorem2.7) to d

dt L(�t , �
t (ũ),� t ( p̃))|t=0:

d J (�)[θ] =
∫

�
(|u − ur |2 + ∇u · ∇ p + �(u) p)θn ds +

∫

�
∇ů · ∇ p + �′(u) ů p dx

+
∫

�
(u − ur )ů dx +

∫

�
∇u · ∇ p̊ + �(u) p̊ dx −

∫

�
f p̊ dx,

where ů = ∂t (�
t (ũ))|t=0 = −∇u · θ, p̊ = ∂t (�

t ( p̃))|t=0 = −∇ p · θ. To rewrite the
equation into an integral over �, we integrate by parts and obtain

d J (�)[θ] =
∫

�

(|u − ur |2 + ∇u · ∇ p + �(u) p) θn ds

+
∫

∂�

ů ∂n p ds +
∫

∂�

∂nu p̊ ds

−
∫

�

ů
(−�p + �′(u) p + 2(u − ur )

)
dx

−
∫

�

p̊ (−�u + �(u) − f ) dx .

Finally, using the strong solvability of u and p, and taking into account∇u = (∂nu)n
on ∂�, we arrive at (3.20).

Remark 4.4 We point out that the inequalities (4.2) are the key to avoid the material
derivatives. Nevertheless, without the assumption of convexity of G with respect to
ϕ it is difficult to prove this inequality.

4.3 The Theorem of Correa-Seeger

Finally, we quote the Theorem of Correa-Seeger, which applies in situations when
the state equation admits no unique solution and the Lagrangian admits saddle points.
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The proof is similar to the proof of Proposition4.3. Let a real number τ > 0 and
vector spaces E and F be given. We consider a mapping

G : [0, τ ] × E × F → R.

For each t ∈ [0, τ ] we define

g(t) := inf
u∈E

sup
p∈F

G(t, u, p), h(t) := sup
p∈F

inf
u∈E

G(t, u, p)

and the associated sets

E(t) =
{

ϕ̂ ∈ E : sup
p∈F

G(t, ϕ̂, p) = g(t)

}

F(t) =
{
ψ̂ ∈ F : inf

u∈E
G(t, u, ψ̂) = h(t)

}
.

For fixed t they are the points in E respectively F where inf respectively the sup are
attained in g(t) respectively h(t). We know that if g(t) = h(t) then the set of saddle
points is given by

S(t) := E(t) × F(t).

Theorem 4.5 (R. Correa andA. Seeger, [9])Let the function G and the vector spaces
E,F be as before. Suppose the following conditions:

(HH1) For all t ∈ [0, τ ] assume S(t) �= ∅.
(HH2) The partial derivative ∂t G(t, u, p) exists for all (t, u, p) ∈ [0, τ ] × E × F.
(HH3) For any sequence (tn)n∈N with tn ↘ 0 there exists a subsequence (tnk )k∈N

and an element u0 ∈ E(0), utnk
∈ E(tnk ) such that for all p ∈ F(0)

lim
k→∞
t↘0

∂t G(t, unk , p) = ∂t G(0, u0, p).

(HH4) For any sequence (tn)n∈N with tn ↘ 0 there exists a subsequence (tnk )k∈N

and an element p0 ∈ F(0), ptnk
∈ F(tnk ) such that for all u ∈ E(0)

lim
k→∞
t↘0

∂t G(t, u, ptnk
) = ∂t G(0, u, p0).

Then there exists (u0, p0) ∈ E(0) × F(0) such that

d

dt
g(t)|t=0 = ∂t G(0, u0, p0).
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4.4 Céa’s Classical Lagrange Method and a Modification

Let the function G be defined by (4.4). Assume that G is sufficiently differentiable
with respect to t , ϕ and ψ. Additionally, assume that the strong material derivative
u̇ exists in H 1

0 (�). Then we may calculate as follows

d J (�)[θ] = d

dt
(G(t, ut , p))|t=0 = ∂t G(t, u, p)|t=0︸ ︷︷ ︸

shape derivative

+ ∂ϕG(0, u, p)(u̇)
︸ ︷︷ ︸

adjoint equation

,

and due to u̇ ∈ H 1
0 (�) it implies

d J (�)[θ] = ∂t G(t, u, p)|t=0.

Therefore, we can follow the lines of the calculation of the previous section to obtain
the boundary and volume expression of the shape derivative.

In the original work [5], it was calculated as follows

d J (�)[θ] = ∂�L(�, u, p) + ∂ϕL(�, u, p)(u′) + ∂ψL(�, u, p)(p′), (4.10)

where ∂�L(�, u, p) := limt↘0(L(�t , u, p) −L(�, u, p))/t . Then it was assumed
that u′ and p′ belong to H 1

0 (�), which has as consequence that ∂ϕL(�, u, p)(u′) =
∂ψL(�, u, p)(p′) = 0. Thus (4.10) leads to the wrong formula

d J (�)[θ] =
∫

�

(|u − ur |2 + ∂nu ∂n p) θn ds.

This can be fixed by noting that u′ = u̇ −∂θu and p′ = ṗ −∂θ p with u̇, ṗ ∈ H 1
0 (�):

d J (�)[θ] = ∂�L(�, u, p) − ∂ϕL(�, u, p)(∂θu) − ∂ψL(�, u, p)(∂θ p),

which gives the correct formula. Finally, note that for Maxwell’s equations a differ-
ent parametrization than v → v ◦ �t of the function space is necessary since the
differential operator is modified differently. This leads then to a different definition
of the shape derivative and also the formulas will be different. This is well-known
from the finite element analysis of Maxwell’s equations; cf. [1, 3, 13, 16].

5 Rearrangement of the Cost Function

The rearrangement method introduced in [14] avoids the material derivative and is
applicable to a wide class of elliptic problems. We describe the method at hand of
our semi-linear example and write subsequently the perturbed cost function (3.3) as
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J (�t ) =
∫

�

j (t, ut ) dx, j (t, v) := ξ(t)|v − ut
r |2. (5.1)

In order to derive the shape differentiability, we make the following assumptions:

Assumption (R) Assume that � ∈ C2(R) ∩ L∞(R), �′′ ∈ L∞(R) and �′(x) ≥ 0
for all x ∈ R.

Instead of requiring theLipschitz continuity of t → ut ,we claim that the following
holds: there exist constants c, τ , ε > 0 such that ‖ut − u‖H 1

0 (�) ≤ ct1/2+ε for all
t ∈ [0, τ ].
Theorem 5.1 Let Assumption (R) be satisfied and let θ ∈ C2

c (D, Rd). Then J (�t )

given by (5.1) is differentiable with derivative:

d J (�)[θ] = ∂t G(0, u, p),

where u, p are solutions of the state and adjoint state equation.

Proof The main idea is to rewrite the difference J (�t ) − J (�) and use a first order
expansions of the PDE and the cost function with respect to the unknown together
with Hölder continuity of t → ut . To be more precise, write

J (�t ) − J (�)

t
= 1

t

∫

�

( j (t, ut ) − j (t, u) − j ′(t, u)(ut − u)) dx
︸ ︷︷ ︸

B1(t)

+ 1

t

∫

�

( j (t, u) − j (0, u)) dx
︸ ︷︷ ︸

B2(t)

+ 1

t

∫

�

( j ′(t, u) − j ′(0, u))(ut − u) dx
︸ ︷︷ ︸

B3(t)

(5.2)

+ 1

t

∫

�

j ′(0, u)(ut − u) dx
︸ ︷︷ ︸

B4(t)

,

where j ′ := ∂u j and ut
s := sut + (1− s)u. Using the mean value theorem in integral

form entails for some constant C > 0

∫

�

( j (t, ut ) − j (t, u) − j ′(t, u)(ut − u)) dx =
∫ 1

0
(1 − s) j ′′(t, ut

s)(u
t − u)2 dx

≤ C‖ut − u‖2L2(�) for all t ∈ [0, τ ].
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Using the limt↘0 ‖ut − u‖H 1
0 (�)/

√
t = 0, we see that B1 tends to zero as t ↘ 0. Let

Ẽ(t,ϕ) be defined by (3.5). Then the fourth term in (5.2) can be written by using the
adjoint Eq. (3.15) as follows

∫

�

j ′(0, u)(ut − u) dx = dϕ Ẽ(0, ut ; p) − dϕ Ẽ(0, u; p) − d2
ϕ Ẽ(0, u; ut − u, p)

+ dϕ Ē(t, ut ; p) − dϕ Ē(t, u; p)

− (dϕ Ẽ(0, ut ; p) − dϕ Ẽ(0, u; p))

+ dϕ Ẽ(t, u; p) − dϕ Ẽ(0, u; p). (5.3)

By standard elliptic regularity theory, we may assume that p ∈ H 1
0 (�) ∩ L∞(�).

Therefore by virtue of Taylor’s formula in Banach spaces (cf. [2, p. 193, Theo-
rem5.8]) the first line in (5.3) on the right hand side can be written as

dϕ Ẽ(0, ut ; p) − dϕ Ẽ(0, u; p) − d2
ϕ Ẽ(0, u; ut − u, p)

=
∫ 1

0
(1 − s)d3 Ẽ(0, ut

s; ut − u, ut − u, p) ds,

where the remainder can be estimated as follows

∫ 1

0
(1 − s)d3ϕ Ẽ(0, ut

s; ut − u, ut − u, p) ds =
∫ 1

0
(1 − s)�′′(ut

s)(u
t − u)2 p ds

≤ 1

2
‖p‖L∞(�)‖�′′‖L∞(R)‖ut − u‖L2(�).

Using dϕ Ẽ(t, ut ; p) − dϕ Ẽ(0, u; p) = 0, and the differentiability of t → Ẽ(t, u)
yields

lim
t↘0

dϕ Ẽ(t, ut ; p) − dϕ Ẽ(t, u; p)

t
= lim

t↘0

1

t
(dϕ Ẽ(0, ut ; p) − dϕ Ẽ(0, u; p)),

lim
t↘0

dϕ Ẽ(t, u; p) − dϕ Ẽ(0, u; p)

t
=

∫

�
A′(0)∇u · ∇ p − div (θ) f p − ∇ f · θ p dx .

Thus from (5.3), we infer

lim
t↘0

1

t

∫

�

j ′(0, u)(ut − u) dx

=
∫

�

A′(0)∇u · ∇ p + div (θ)�(u)p − div (θ) f p − ∇ f · θ p dx .

Therefore we may pass to the limit in (5.2) and obtain
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lim
t↘0

J (�t ) − J (�)

t
=

∫

�

∂t j (0, u) dx + ∂t dϕ Ẽ(0, u; p).

This finishes the proof and shows that d J (�)[θ] = ∂t G(0, u, p). �

6 Differentiability of Energy Functionals

If it happens that the cost function J is the energy of the PDE (2.1), that is,

J (�) := min
ϕ∈H 1

0 (�)
E(�,ϕ),

then it is easy to show the shape differentiability of J by using a result from [10, p.
524, Theorem2.1], see also [7, pp. 139]. First note that J (�t ) = minϕ∈H 1

0 (�) Ẽ(t,ϕ).

By definition of the minimum ut of Ẽ(t, ·) and u of Ẽ(0, ·), respectively, we have

Ẽ(0, ut ) − Ẽ(0, u) ≥ 0, Ẽ(t, u) − Ẽ(0, u) ≤ 0

and thus

J (�t ) − J (�) = Ẽ(t, ut ) − Ẽ(0, ut ) + Ẽ(0, ut ) − Ẽ(0, u)

≥ Ẽ(t, ut ) − Ẽ(0, ut )

J (�t ) − J (�) = Ẽ(t, ut ) − Ẽ(t, u) + Ẽ(t, u) − Ẽ(0, u)

≤ Ẽ(t, u) − Ẽ(0, u).

Using the mean value theorem, we conclude the existence of numbers ηt , ζt ∈ (0, 1)
such that

t ∂t Ẽ(ηt t, ut ) ≤ J (�t ) − J (�) ≤ t ∂t Ẽ(ζt t, u).

Thus if

Ẽ(0, u) ≤ lim inf
t↘0

∂t Ẽ(ηt t, ut ), Ẽ(0, u) ≥ lim sup
t↘0

∂t Ẽ(ζt t, u), (6.1)

then we may conclude that J is shape differentiable by the squeezing lemma. We
obtain

lim
t↘0

J (�t ) − J (�)

t
= ∂t Ẽ(0, u).

This result can be seen as a special case of Theorem4.5. Note that in our example
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∂t Ẽ(t,ϕ) =
∫

�

A′(t)∇ϕ · ∇ϕ + ξ′(t)�(ϕ) dx

−
∫

�

ξ′(t) f tϕ dx +
∫

�

ξ(t) B(t)∇ f t · ϕ dx .

From this identity, the convergence of ut → u in H 1
0 (�) and the smoothness of A(t),

ξ(t) and B(t), we infer that (6.1) are verified.

7 The Averaged Adjoint Approach

Let the Banach spaces E, F and a number τ > 0 be given. Consider a function

G : [0, τ ] × E × F → R, (t,ϕ,ψ) → G(t,ϕ,ψ)

such that ψ → G(t,ϕ,ψ) is affine for all (t,ϕ) ∈ [0, τ ]× E . Introduce the solution
set of the state equation

E(t) := {u ∈ E | dψG(t, u, 0; ψ̂) = 0 for all ψ̂ ∈ F}.

Introduce the following hypothesis.

Assumption Suppose that E(t) = {ut } is single-valued for all [0, τ ].
(i) For all t ∈ [0, τ ] and p̃ ∈ F the mapping

[0, 1] → R : s → G(t, sut + (1 − s)u0, p̃)

is absolutely continuous. This implies that for almost all s ∈ [0, 1] the derivative
dϕG(t, sut + (1 − s)u0, p̃; ut − u0) exists and in particular

G(t, ut , p̃) − G(t, u0, p̃) =
∫ 1

0
dϕG(t, sut + (1 − s)u0, p̃; ut − u0) ds.

(ii) For all t ∈ [0, τ ], ϕ ∈ E and p̃ ∈ F

s → dϕG(t, sut + (1 − s)u0, p̃;ϕ)

is well-defined and belongs to L1(0, 1).

Introduce for t ∈ [0, τ ], ut ∈ E(t) and u0 ∈ E(0) the following set

Y (t, ut , u0) :=
{

q ∈ F | ∀ϕ̂ ∈ E :
∫ 1

0
dϕG(t, sut + (1 − s)u0, q; ϕ̂) ds = 0

}
,
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which is called solution set of the averaged adjoint equation with respect to t , ut and
u0. For t = 0 the set Y (0, u0) := Y (0, u0, u0) coincides with the solution set of the
usual adjoint state equation

Y (0, u0) = {
q ∈ F | dϕG(0, u0, q; ϕ̂) = 0 for all ϕ̂ ∈ E

}
.

We call any p ∈ Y (0, u0) an adjoint state.

Theorem 7.1 Let linear vector spaces E and F, a real number τ > 0. Suppose that
the function

G : [0, τ ] × E × F → R, (t,ϕ,ψ) → G(t,ϕ,ψ),

is affine in the last argument. Let Assumption (H0) and the following conditions be
satisfied.

(H1) For all t ∈ [0, τ ] and all (u, p) ∈ E(0)× F the derivative ∂t G(t, u, p) exists.
(H2) For all t ∈ [0, τ ] the set Y (t, ut , u0) is nonempty and Y (0, u0, u0) is single-

valued.
(H3) Let p0 ∈ Y (0, u0). For any sequence (tn)n∈N of non-negative real numbers con-

verging to zero, there exist a subsequence (tnk )k∈N and ptnk ∈ Y (tnk , utnk , u0)

such that
lim
k→∞
s↘0

∂t G(s, u0, ptnk ) = ∂t G(0, u0, p0).

Then for any ψ ∈ F:

d

dt
(G(t, ut ,ψ))|t=0 = ∂t G(0, u0, p0).

Proof The result was proved in [19].

7.1 Application to the Semi-linear Problem

In this section,we applyTheorem7.1 to the example (2.1) and (2.2). For convenience,
we recall the cost function

J (�) =
∫

�

|u − ur |2 dx, (7.1)

and the weak formulation of (2.1)

∫

�

∇u · ∇ψ dx +
∫

�

�(u)ψ dx =
∫

�

f ψ dx for all ψ ∈ H 1
0 (�). (7.2)
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Suppose in the following the assumption on the data f, ur and � introduced in the
beginning of Sect. 3 is satisfied. Recall that the equation (7.2) on the domain �t (�)

transported back to � by y = �t (x) reads

∫

�

A(t)∇ut · ∇ψ dx +
∫

�

ξ(t)�(ut )ψ dx =
∫

�

ξ(t) f tψ dx, for all ψ ∈ H 1
0 (�).

(7.3)

This equation characterizes the unique minimum of the convex energy (3.5). Recall
the definition of the Lagrangian associated to the problem

G(t,ϕ, ψ) =
∫

�
ξ(t)|ϕ − ut

r |2 dx +
∫

�
A(t)∇ϕ · ∇ψ + ξ(t)�(ϕ)ψ dx −

∫

�
ξ(t) f tψ dx .

(7.4)

Theorem 7.2 Let Assumption (A) be satisfied. Then J defined in (7.1) is shape
differentiable and its derivative is given by

d J (�)[θ] = ∂t G(0, u0, p0),

where p0 ∈ Y (0, u0).

Proof Let us verify the conditions (H0)–(H3) for the function G given by (7.4).

(H0) This has already been proven in Sect. 3.
(H1) This is an easy consequence of θ ∈ C2

c (D, Rd) and Lemma2.5. The derivative
is given by (4.9).

(H2) Note that for all t ∈ [0, τ ], we have ∈ E(t) = {ut }, where ut solves (7.3). We
have pt ∈ Y (t, ut , u0) if and only if

∫

�

A(t)∇ψ · ∇ pt + ξ(t)k(u, ut )ψ dx = −
∫

�

ξ(t)(ut + u − 2ut
r )ψ dx, (7.5)

for all ψ ∈ H 1
0 (�), where k(u, ut ) := ∫ 1

0 �′(ut
s) ds and ut

s := sut + (1− s)u.
Due to the Lemma of Lax-Milgram the previous equation has a unique solution
pt ∈ H 1

0 (�). Note that the strong formulation of the averaged adjoint on the
moved domain, namely pt := pt ◦ �−1

t on �t satisfies

−�pt + k(u ◦ �−1
t , ut )pt = −(ut − u ◦ �−1

t − 2ur ) in �t

pt = 0 on ∂�t ,

where k(u ◦ �−1
t , ut ◦ �−1

t ) := ∫ 1
0 �′(ut

s ◦ �−1
t ) ds = ∫ 1

0 �′(sut + (1 − s)u ◦
�−1

t ) ds.
(H3) We already know that Assumption (A) implies that t → ut is continuous from

[0, τ ] into H 1
0 (�). But this is actually not necessary as we will show. Suppose
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that we do not know that t → ut is continuous. Then by inserting ψ = ut in
the state equation (7.3), we obtain after an application of Hölder’s inequality
‖ut‖H 1(�) ≤ C for some constant C > 0. For any sequence of non-negative
real numbers (tn)n∈N converging to zero there exists a subsequence (tnk )n∈N

such that utnk ⇀ z as k → ∞. Setting t = tnk in the state equation and passing
to the limit k → ∞ shows z = u. Moreover, inserting ψ = pt into (7.5) as
test function and using Hölder’s inequality yields for some constant C > 0

‖pt‖H 1
0 (�) ≤ C‖ut + u − 2ut

r‖L2(�) for all t ∈ [0, τ ].

Therefore again for any sequence (tn)n∈N there exists a subsequence (tnk )n∈N

such that ytnk ⇀ q as k → ∞ for some q ∈ H 1
0 (�). Selecting t = tnk in

(7.5), we want to pass to the limit k → ∞ by using Lebesque’s dominated
convergence theorem. It suffices to show that wk(x) := ∫ 1

0 �′(utnk
s (x)) ds is

bounded in L∞(Rd) independently of k and that this sequence convergences
pointwise almost everywhere in � to �′(u). The boundedness of wk follows
from the continuity of ut on � and the continuity of �. The pointwise conver-
gencewk(x) → �(u(x)) as k → ∞ (possibly a subsequence) follows from the
fact that � is continuous and utnk converges pointwise to u as k → ∞. There-
fore there is a sequence tn ↘ 0 such that we may pass to the limit n → ∞ in
(7.5), after inserting t = tn . By uniqueness, we conclude q = p ∈ Y (0, u0).
Finally note that (t,ψ) → ∂t G(t, u,ψ) is weakly continuous.

All conditions (H0)–(H3) are satisfied and we finish the proof. �
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