
14Structured Communication—
Approaching S-BPM with Microsoft
Technologies

Robert Singer and Stefan Raß

Abstract

Many enacted business processes in the field use (more or less intense)
communication to forward work to the next participant in an activity chain.
Communication can be oral (personal, phone) or technically supported (e-mail,
phone). It can be unstructured using natural language—typically text or spoken
word—or structured using formal language (business objects) typically stored in
systems. Based on decades of research in the domain of the social sciences, we
know that an understanding of how organizations work are based on commu-
nication and language. Therefore any technology to support the execution of
business processes should support communication between process participants.
This is the concept of S-BPM. Here, we present the results of work in the field to
develop a platform to model and execute business processes as interaction
between actors. As process models predefine work we call this way of interaction
structured communication (using standard e-mail exchange). To enable also
cross-company communication (process orchestrations) we technically imple-
mented the platform as a so-called multi-enterprise business process platform
(ME-BPP) using cloud technology. The contribution uses a real-world case to
demonstrate the need for a communication-based view on business processes. The
case reflects the situation typically for large-scale international companies with
world-wide activities and with focus on processes related to order fulfillment,
including manufacturing. Further on, an IT architecture to support the enactment

R. Singer (&)
FH-Joanneum—University of Applied Sciences, Alte Poststraße 147, 8020 Graz, Austria
e-mail: robert.singer@fh-joanneum.at

S. Raß
StrICT Solutions GmbH, Plüddemanngasse 39, 8010 Graz, Austria
e-mail: rass@strict-solutions.com

© The Author(s) 2015
A. Fleischmann et al. (eds.), S-BPM in the Wild,
DOI 10.1007/978-3-319-17542-3_14

235



of such distributed processes is discussed. The contribution is intended for
practitioners with some IT background and/or interests.

14.1 Introduction and Motivation

In this section we will report and discuss typical situations in the field—related to
business process management in general and the execution of business processes in
particular. These situations will provide the context and the motivational back-
ground for the analysis: the use of S-BPM as business process modeling and
execution paradigm.

For example, let’s think about a typical work situation in a manufacturing
company.

When the phone rings it is always something urgent, but Bob, the planning
manager of the company, has no choice and picks up the phone. The friendly voice
of Pieter wishes him a good morning, but the strange feeling in his stomach
remains. Pieter is responsible for consolidating orders from several industrial cus-
tomers; this includes orders from the own sales organization (brand) and from
OEM1 customers. Pieter is located in another European country. In principle, he
could simply enter all requests (new or changed sales orders) into the company’s
order system, according to some simple business rules, and the factory, represented
by Bob, has to answer via the system (accept or reject). Several key performance
indicators are automatically recorded via the system, measuring the flexibility and
reliability of the manufacturing site. But because of a trusted relationship, Pieter
typically informs the factory in advance and asks for feasible solutions: can you do
more of this product in week 24? Can we change some quantities from type A to B
in this month?

On this day he asks to start two weeks earlier with the production of a new
product for a very important customer and he needs an answer within two hours.
That needs a lot of hectic personal communication and commitment from engi-
neering, production, purchasing and logistics. Will the manufacturing equipment be
ready (e.g., moulds), can we conduct a trial run in advance (including losing
capacity because of a lost shift), can we bring in the needed material in time, etc.
And, if we cannot handle this situation, are there additional options like moving
orders between European and Chinese locations? The one and only tool to solve
such riddles is communication. Some of the communication threads are serial (first
check this, then that), some are parallel (each department checks). Additionally, the
communication thread spreads over many people for the issue to be discussed
personally, by e-mail, or by phone; they use, send and receive data using simple
office documents and or systems; and it involves people from outside the organi-
zation as well, e.g., suppliers, engineering colleagues or the logistics department in
the business unit headquarters in Taiwan.

1Original Equipment Manufacturer.

236 R. Singer and S. Raß



Bob will come up (as always) with an answer in time; after that, Pieter will
discuss the committed proposal with the customer and, if they commit too, he will
enter the agreed sales order (new or changed) into the system. Bob then will accept
the changes in the system. To make it more complicated, the solution has to be
communicated to and or committed with the business unit supply manager (Amy)
located in Taiwan (possibly delayed because of time difference). Obviously, there
are some interesting issues. An infamous point is that nobody knows what happens
afterwards. There are private conversations and phone communications, notes on
napkins and some or several e-mails all over the world. Maybe there will be trouble
two months later with this order and the customer has to be informed that the order
has to be postponed by two weeks. How to analyze what happened and why? The
only visible fact is the acceptance of the new or changed order contradicting
documented or undocumented policies or business rules. And—how to interpret the
measured KPIs? If we try to visualize the “relations” and information flow between
all involved actors of the Order Fulfillment process (on business unit level) we
come up with Figs. 14.1 and 14.2.

Practice shows that such processes are the norm and can neither be modeled in
full with “standard” modeling notations (such as Business Process Model and
Notation (BPMN) or Event-driven Process Chain (EPC), for example) nor auto-
matically executed based on these business process models—in this case, the
organization has some documented business process description in RACI2 form. As
can easily be seen, we are confronted with a typical knowledge-intensive process;
the main ingredient is knowledge, the output is a decision. But of course there is an

Fig. 14.1 Communication connections (relations) between the involved parties in the text case
(business unit view). Each box represents a particular organizational unit, as described in the text.
Abbreviations: RSO Regional Sales Office, TW Taiwan, Countries legal units in each European
country. Dashed lines visualize further communication and line of command relations not
explicitly discussed in the case

2Responsibility Assignment Matrix.

14 Structured Communication—Approaching S-BPM … 237



inherent structure in such a change case and it should be noted that such change
requests typically violate “standard” business rules and policies (fixed sales orders
over a period of three months, for example). Any change therefore has to be
evaluated on its own.

The question now is: Can we bring more structure into the work flow? Or,
shouldn’t we simply stick to a system, such as an Enterprise Resource Planning
(ERP) system? The first question we will answer with “yes”—as we will discuss
soon the second one with “no”. The above case uses information and enters
information into an ERP system, but that has no relation to any predefined work
flow (but it is linked with the organizational structure and roles).

But there is actual IT support which works very well: E-mails! All involved
parties (lets call them actors) can send any other actor a message. We can even cross
organizational borders—and world-wide. It is also possible to send messages to
people we do not even know, as long as somebody else knows them—so we can get
answers to our questions from people we didn’t know beforehand (we call this
mobile messages). Additionally, we can send data together with our messages; any
actor in the communication path can store or (depending on the data format) modify
the data, which often are office documents: an actor, for example, can add a column
in an MS Excel file and forward it to another actor. We can see from this that e-mail
communication is a way for flexible—but unstructured—enactment of business
processes. It can even be used to execute business processes we never thought about
—it can bootstrap a process. Nevertheless, neither the communication thread nor
the data is centrally stored—there is no central repository. It is therefore difficult to
investigate what happened in the past; more or less forensic work—not so good if
we are interested in compliance and process improvement.

Fig. 14.2 Connections between the parties in the case (site view). Each box represents a particular
department, as described in the text. Abbreviations: ImpEx Import and Export. Dashed lines
visualize further communication relations not explicitly discussed in the case

238 R. Singer and S. Raß



The predominant benefit of e-mail as business process execution tool is its flex-
ibility and ease of use (a really flat learning curve); the disadvantage is that it is not
efficient in cases when it is possible and wise to define a work flow (or parts of work
flows) in advance. Not all business processes are purely ad hoc. These types of
processes are typically expensive, as we need experienced and educated knowledge
workers to evaluate the situation, develop a solution and make decisions—this can
only be done by well-educated and empowered employees, who are typically also
well paid. It is also difficult to agree on service levels for such processes.

We can see in Fig. 14.3 that business processes can be categorized (gradually) in
two dimensions representing level of interdependence (number of actors) and
complexity of work. Depending on the value of each dimension, a business process
will have a more or less predefined structure.

14.2 Structured Communication

The question now is, how to create a system for structured communication? As
methodology, Subject-oriented Business Process Management (S-BPM) seems to
be the perfect foundation for such an approach—simply because it is structured
communication: we have a network of actors (subjects are conceptualizations of
actors), who are synchronizing their work through the exchange of messages. In the
following paragraphs we will identify some (somewhat technical) requirements we
have to consider for an implementation; and we want to create an IT platform for
the execution of S-BPM models based as closely as possible on natural commu-
nication behaviors, and using as many already existing software platforms and
applications as possible.

Fig. 14.3 A proposal of Davenport (2010) to categorize knowledge-based business processes

14 Structured Communication—Approaching S-BPM … 239



After collecting the requirements we will then be able to argue why a certain
architecture is a feasible and useful approach to realize a solution for the execution
of business processes. A business process execution system is an integral part of a
business process management system and bridges the gap between models stored in
repositories and their IT-enabled execution. It brings the information and knowl-
edge, which is embedded in the model—the blueprint of the business process—to
life.

In this context we understand a business process model as an entity for defining
a plan to deliver services (or products) to customers, i.e., defining what we plan to
do and in which logical order. If this sounds easy, let me assure you that it is not.
Business processes are a means to manage service delivery, and as broad as the
range of possible services is, the semantic spectrum of the term “logical order” is as
broad. We therefore have to understand “logical order” in a more fuzzy way, as
discussed in the previous section.

Therefore, business process execution systems need to support flexibility in the
order of activities to be performed or needed. What we mean is, if we define a
business process model, we define the future, how we plan to do the work. But from
practical applications we know that we cannot plan all possible future situations.
Depending on the type of service, organizational culture, or industry—the corre-
sponding business process will create situations where we will not be able to stick
to the predefined business process logic, simply because the concrete situation has
not been considered appropriately. That means any business process execution
system needs to facilitate this fact in some way. The typical case presented in the
previous section is the context for the definition of the requirements of a fully
featured business process execution system.

• Business process execution systems need to support concurrency. That means
activities (or, synonymously, tasks) are executed simultaneously and potentially
interact with each other; the simplest interaction would be synchronization after
each concurrent activity has finished. In modeling notations this typically is
reflected using symbols for AND-splits and -joins.

• Business process execution systems need to support distributed execution.
Business processes cannot be seen as isolated workflows for administrative
purposes only, but as a means to coordinate a value system with supply chain
partners. That means actors in a business process are geographically distributed
and not necessarily members of the same enterprise (e.g., manufacturer and
supplier).

• Business process execution systems need to support mobility. This is a conse-
quence of how we work today, but also leads to technical requirements for an
implementation of a business process execution system.

• Business process executions systems need to support flexibility, i.e., the pos-
sibility of human process participants deviating from the predefined process path
in case of an unexpected (and therefore not modeled) situation or exception—we
need the capability to deviate from the path initiating so-called ad hoc activities
while running a concrete instance of a process.

240 R. Singer and S. Raß



From these requirements we can conclude that BPMS based on any technology
which executes business processes under the central control of some software (the
process engine) cannot fulfill the criteria discussed above in its full consequence;
this is especially true for the requirements concurrency and distributed, which lead
to technical questions (Butcher 2014), which cannot be discussed here. Today such
systems mainly focus on BPMN as modeling notation and more or less proprietary
solutions to execute the models. Such “classical” workflow systems typically
support office processes very well (for example the famous “application for leave”
process) within one organization, but have serious difficulties executing real-world
processes crossing organizational boundaries; additionally, from a socio-technical
view on systems, we can also conclude that communication plays a central role in
social interaction and therefore it is a natural way to think about the coordination of
work.

Another issue we have to consider is the handling of data or business objects.
Here we have the same issues as above: who stores the data and where? If we think
of a process execution system as an ERP system it is clear that all data is centrally
stored in exactly one database. This database is “owned” by one organization (even
if it is located somewhere else) and the organization has full control over content
and states of the datasets. But how do we handle the data we send to other process
participants?

This demand is now reflected in new developments in the domain of BPM, such
as BPM Platform as a Service (bpmPaaS), Multi-Enterprise Business Process
Platform (ME-BPP), Cloud BPM, and Social BPM. The term bpmPaaS can be
defined (Dixon 2012) as “the delivery of BPM platform capabilities as a cloud
service by a service provider”. An ME-BPP is defined Dixon (2012) as a “high-
level conceptual model of a multistakeholder environment, where multi-enterprise
applications are operated. Multi-enterprise applications are those purposely built
to support the unique requirements for business processes that span across more
than one business entity or organization. They replace multiple business applica-
tions integrated in serial fashion”. Now, that is exactly what we are looking for: an
ME-BPP. The next sections will discuss what we found on our excavation in the
field.

14.3 How to Execute S-BPM Models

In this section we will sketch our journey towards a Multi-Enterprise Business
Process Platform based on S-BPM (Singer et al. 2014), i.e., a so-called agent based
approach. As already mentioned, one very important intention was to use as many
available tools as possible in the field. Although this section contains some tech-
nical stuff, we do not have the intention to discuss things like code snippets in
detail, but to give some deeper insight what is needed behind the scenes to execute
distributed and concurrent business processes.

14 Structured Communication—Approaching S-BPM … 241



An S-BPM process is defined via the communication exchange channels
between subjects (agents are instantiated subjects in this context, or the other way
round—subjects are generalizations of agents) (see Fig. 14.4). Additionally, each
subject has a defined (but invisible to the outside world) internal behavior, which is
determined as a process flow using states for receiving or sending a message (to
another subject), and states in which the subject is doing some work (see Fig. 14.5).
States can be flagged as starting or ending states and are connected using directed
arcs.

A platform for enterprise use cannot be built from scratch, but has to be inte-
grated with an available IT infrastructure (e.g., server platforms). Additionally, we
need some business process execution technology we can use as a starting point;
one prerequisite is that it must be usable in a software development platform (we
need to write software using some functionality offered by others) and be able to
run in a cloud environment (we will explain this later). Besides other points, and
because there is already a platform available which is based on Java (but limited to
running on MS Windows), we decided to start investigating other available tech-
nologies based on the MS Windows technology stack. Especially, the Workflow
Foundation (a .NET programming framework) offers a promising starting point, as
will be explained now. Principally any other workflow engine can be used, as long
as it integrates with the used server platforms and offers similar functionality.

14.3.1 Workflow Technology

The Workflow Foundation (WF) workflow provides functionality to maintain state,
get input from and send output to the outside world, provides control flow and
executes code—this is done by so-called Activities. An Activity can be modified in
any thinkable way and WF workflows can be graphically constructed within the
development platform (Microsoft Visual Studio in our case). An example of a WF
workflow is depicted in Fig. 14.6. The execution is done by the workflow engine,
which is part of the operating system (the .NET environment).

Fig. 14.4 An example of a Subject Interaction Diagram: it contains three subjects and all
exchange messages. Subject 1 starts the process by sending a request to Subject 2; Subject 2 makes
a decision, sends an answer back to Subject 1 and, in case of a positive answer, informs Subject 3
about the decision

242 R. Singer and S. Raß



If a process instance is not needed for the moment—e.g., because of waiting for
a message from another process participant—the state of a workflow can be per-
sisted (into a persistence store) and stored safely until the continuation condition
(e.g., an arriving message) is met—an important functionality for long-running
processes. Based on the requirements discussed above, a workflow might run on
different threads in different processes and on different machines during its lifetime.
Any application built on WF technology is therefore scalable, since it is not
confined to a single process on a single machine. Furthermore, activities can be
executed concurrently. The chosen WF workflow technology supports these
requirements.

Fig. 14.5 An example of a Subject Behavior Diagram: triangles at the top symbolize Sending,
triangles at the bottom Receiving States; other states are Function States and states in general are
marked as starting or ending state (by play and stop icon). State transitions are modeled as directed
arcs

14 Structured Communication—Approaching S-BPM … 243



If we simply compare the representation of an SBD (see Fig. 14.4) with the
representation of the WF workflow as depicted in Fig. 14.6, we can conclude that it
may be possible to map any SBD to a WF workflow. This will be our first topic to
study and we will show that this can be done. For the S-BPM methodology to work
with WF, custom activities3 are needed to perform the functionality of the S-BPM
states: so we need to write some code to get a custom Function, Receive and Send
Activity for standard S-BPM behavior, as defined by Fleischmann et al. (2012).
Technically, we get a process model defined as an XAML file4 (an XML-based
language).

14.3.2 S-BPM as Windows Workflow Model

The mapping of an SBD onto aWFworkflow can be done in the following way: there
are four elements in S-BPM which need equivalents in WF workflows: subjects,
states (send, receive, function), transitions and parameters (local, global). The WF
equivalent for a subject in general is a WF Flowchart Activity. Each S-BPM state and
its following transitions are a custom WF Activity. Parameters in S-BPM are

Fig. 14.6 The structure of a
WF workflow; all work is
done by activities. The
Flowchart Activity is enacted
by the WF runtime engine and
process flow can be routed
back to previous Activities

3From a programming point of view this means that we have to develop our own S-BPM classes
using the WF Activity classes as base classes.
4The Extensible Markup Language (XAML) is a Microsoft format to store executable program
code.

244 R. Singer and S. Raß



converted to variables in WF, which provide the same functionality. S-BPM
parameters assigned to S-BPM states becomeWF variables assigned toWF activities.

As we need WF Activities with specific behavior, we need to “enhance” the
standard Activity class (we use C#) with additional functionality. Not to forget, any
Function State can include so called Refinements, that is, any additional function-
ality, for example, interacting with other applications or hardware.

All information about processes and their execution has to be stored in a proper
way. Therefore, all defined processes as well as their running instances are stored
within a central process repository on the server side. Additionally, we have to
consider a mapping between organizational roles and subjects, i.e., a specific role is
mapped onto a specific instance of a subject (an agent); roles are typically defined in
the active directory structure of the IT infrastructure. Normally, a single user can be
assigned to several subjects and a subject can be assigned to several users.

As we can see, it is rather straightforward to map an S-BPM model and it goes
off without a hitch. It is therefore also possible to automatically transform S-BPM
models from other platforms.5 That means we have a general technology which is
able to represent and enact one subject, i.e., we can map the internal behavior of a
subject onto a Microsoft .NET workflow. The next step now is to find out how
several subjects can interact with each other, or in other words, how we can map an
entire business process onto WF workflows. As a reminder, any agent or actor in
the case at the beginning represents a subject. It is important to understand, that the
communicating subjects are distributed, that means we do not have a central control
over them; each of them acts independently and concurrently.

14.3.3 The First Prototype (PROMI)

The basic component of our first architecture model is an application titled
Scheduler, as it is responsible for scheduling all messages between the interacting
subjects. The Scheduler represents the server-side execution environment for pro-
cesses, while all necessary interactions with users are performed on the client side.
The basic concept of this server component is depicted in Fig. 14.7. First of all, the
Scheduler is acting as a host environment for all WF workflows. Each instance of
an S-BPM process consists of several communicating subject instances (agents).
The Scheduler manages loading, instantiating, termination, unloading, and the
storing of workflows, including the synchronous or asynchronous execution of
workflows. Furthermore, the Scheduler manages the message exchange between the
subject instances (agents). Messages can be exchanged by the use of specifically
designed activities from within the WF workflows. The Scheduler takes care that
messages are delivered to the dedicated recipients.

The message pool concept is a central mechanism of S-BPM; in S-BPM all
subjects have their own input message pool,6 and message exchange between

5As proof of concept we imported a process designed in the Metasonic Suite (www.metasonic.de).

14 Structured Communication—Approaching S-BPM … 245

http://www.metasonic.de


subjects can be synchronous or asynchronous. We need both types, as subjects are
instantiated as agents and an agent can be a human or a machine, or a service.
Further, a subject has full access to all messages in its input pool and it can remove
any of these messages for processing. This is a fundamental functionality for real-
world business processes, reflecting the fact that a process participant (actor)
decides which process to continue next (in general it allows setting of priorities).

Consequently, any agent can send messages to the message pool of another
agent and take out messages from its own message pool. Workflow activities may
require user interaction. In our implementation concept the user interaction is
performed client-side. Therefore, the Scheduler generates a so-called Task for the
responsible agent and also includes corresponding data fields (read and or write); in
case of a human agent (user-task) this will typically lead to a form to be completed
and returned to the Scheduler. The information flow between the components of the
architecture is depicted in Figs. 14.8 and 14.9.

Based on these concepts we have built a platform to execute S-BPM process
models. As structured communication is our motto, we use an enterprise e-mail
infrastructure to start the processes and to answer the tasks. Following this approach
there is no need to learn a new application and we can use the benefits of e-mail as a
tool to execute processes, but in a (more) structured way. And, we have the pos-
sibility at any time to send an “unstructured” e-mail to anybody inside or outside
the defined business process. This implements, in a very uncomplicated way, the S-
BPM modeling approach “modeling by restriction” (Fleischmann et al. 2012): we
gradually move from unstructured to structured communication.

Fig. 14.7 The figure shows the execution of a process with two subject instances, i.e., agents
(Subject A and Subject B). The behavior of each subject is defined by a sequence of custom
activities defined by a WF workflow (WF1 and WF2). The workflow activities can basically
perform three different actions: send a message, do something and receive a message. Each subject
has its own message pool. A workflow communicates with clients in the form of Tasks

6Since any technical implementation has limited resources, input pools are limited in their size. If a
pool is full, no further message can be received and the situation has to be handled by the software.
In worst case we have a deadlock situation: waiting for a message which never can be received.

246 R. Singer and S. Raß



Fig. 14.8 Part 1: (1) a process is started by a user on a client. The system then (2a) instantiates the
environment and (2b) the workflow, (3a, b) creates a Task for interaction with the user, (4) handles
the answer and (5) generates a Message to be forwarded to the next Subject in the process

Fig. 14.9 Part 2: now, (7) the Message is forwarded to the next Subject, which means that it has
to be instantiated first (6a, b), if needed. Then (8a, b) a Task is generated for interaction with an
user via a client application (9). And so on

14 Structured Communication—Approaching S-BPM … 247



The corresponding prototypical application and architecture (named PROMI) is
depicted in Fig. 14.10. Some components were not mentioned yet:

• A web-frontend can be used to answer Tasks via any web browser, if preferred
(instead of using MS Outlook, or when using a mobile device).

• In this prototype we useMS InfoPath for more sophisticated data exchange types
(business objects); so we can design rich forms to be sent to communication
partners (basic forms can hold only basic data types).

As we have learned, InfoPath is not a very practical candidate as foundation for
the exchange of forms; there are many restrictions (safety or documentation issues).
It principally works, but we think that other solutions are needed to achieve the
required ease of use, flexibility, performance and a cost-efficient implementation.
MS Outlook is also not an easy candidate, because of programming restrictions.

S-BPM processes can be uploaded for execution (JPP or XAML format), all data
(persisted instances, process models, etc.) is stored in a SQL database, a web server
instance works as application host, role models from an active directory can be
directly used to model the organization, and a mail server instance is used to handle
message exchange between the subjects in the form of e-mails. The architecture
resides on a server running MS Windows Server 2008 R2 Datacenter with Hyper-V;
on this platform there are two virtual MS Windows Server 2008 R2 servers running
(one for active directory, DNS, IIS, SQL and the PROMI application, the other one
hosting the MS Windows Exchange server). On clients we need MS Outlook, which
uses a plugin to start S-BPM models (appears as a separate menu entry).

One very important aspect of using such a setting should not be neglected:
integration of other software or hardware components; for example, we used MS
Dynamics NAV 2009 to demonstrate the integration of customer data via web
service calls. Any software built on the Microsoft technology stack can be inte-
grated without big hassle, as long as the interface is documented.

Fig. 14.10 Structured communication: overview of the S-BPM execution architecture

248 R. Singer and S. Raß



14.3.4 Moving into the Cloud

The PROMI architecture has some substantial limitations, thus we have to rethink
some assumptions. Nevertheless, the core idea—to translate S-BPM models into
WF workflows and use this as a foundation for an enterprise application to execute
business processes—remains.

What do we need? To recap, we need an infrastructure which can be used by
more than one company to define and execute integrated business processes
crossing organizational boundaries. That means we have to create an architecture
which does not run on only one company’s server; from a technical point of view
this means that processes running on the infrastructure of one company need to
interact with processes running on the infrastructure of another company. Other
requirements yet not or not fully considered:

• The platform needs to be scalable; that means it must be capable of handling
processes with a small and a large number of instances and transactions per time
frame.

• There must be a security concept which allows fine granular steering of user
rights and visibility of business process models or instances, and access to data
(business objects).

We believe that the only way to implement a Multi-Enterprise Business Process
Platform is the use of an agent-based approach (in our case the S-BPM method-
ology) built on proper infrastructure. This can be for example a public or private
cloud; the installation, running and managing of a cloud infrastructure as discussed
in the following needs serious capabilities of an organization (money and people).
We think that a public cloud has some beneficial features related to cost and as a
foundation for new services and business models. We especially think, that a public
cloud could have some advantages for SMEs. But there are also some drawbacks of
a public cloud, as it needs additional efforts to integrate locally hosted applications
with S-BPM processes hosted. If deep integration with other applications is needed,
a local installation is preferred.

The whole new architecture is depicted in Fig. 14.12. Processes are hosted on an
instance of the Workflow Manager (WFM), which is responsible for the hosting,
administration and configuration of the subjects based on scopes (see Fig. 14.11),
such as a Company Scope (1) for the processes of one organization, a Process Scope
(2) for each process and aManagement Scope (3). Each company has its own Process
Store (4) and Subject Store (5); the same for Message Store (6) and Task Store (7).
Each company has Task Handler (9) instances to generate new tasks and each process
hasMessage Handler (8) instances to manage message exchange. Task andMessage
Handler are implemented as workflows itself. The mechanism of Scopes ensures full
encapsulation of one company or organization by the other. Further, it allows rights
management on a very fine granular basis for each activity; depending on the rights of
a role, activities can be visible or not, and activities can be executed or not.

14 Structured Communication—Approaching S-BPM … 249



The new S-BPM architecture heavily uses fundamental functionality of the MS
Workflow Manager (hosting of workflows) and the MS Service Bus (exchange of
messages). The service bus provides relay and broker messaging functionalities that
enable the exchange of messages between different services (see Fig. 14.13). It is

Fig. 14.11 Scopes are containers that may contain Scopes, Activities, workflow definitions,
workflow instances and configuration settings

Fig. 14.12 StrICT architecture. The processes are executed server side and the workflows are
coordinated through message exchange (orange). Task requests (light green) and task answers
(dark green) are routed to a client via the task service

250 R. Singer and S. Raß



important to understand that the S-BPM architecture can be hosted on a server or a
server farm (if scalability is needed) under the control of a company’s IT depart-
ment, or it can be hosted on a public cloud infrastructure provider such as Microsoft
Azure. Any needed service (exchange, etc.) is available as a service in the Azure
Cloud. A public cloud offers some additional possibilities for inter-company pro-
cess execution, as will be explained later.

Communication between subjects—Messages to other subjects are routed via
the internal Service Bus (part of Workflow Manager). The Message Handler is
instantiated after receiving a message and forwards it to the correct input pool
(Message Store) of the receiving subject instance; afterwards the instance is can-
celed. Subject instances have access to their own message pool and can choose any
available message. Now, there is no central scheduler component any more; any
subject conceptualizes an independent agent. This realizes an environment for
distributed execution of concurrent business process tasks, which are synchronized
via the exchange of messages. Messages are containers for data models, which
means process actors exchange relevant business data (e.g., customer order, pro-
duction order, invoice, …) via message exchange.

User interaction—Interaction with process participants is done via the Task
Service. A Task is a request to be processed by a user, typically to fill in some data
into a form (or anything else). A user has full access to its list of tasks. Tasks can be
routed as regular e-mails to a user according to the role in an S-BPM process. A
task can then be answered again using a standard e-mail protocol.

Figure 14.14 depicts the routing of messages via an external service bus. In this
way messages can be routed from the IT infrastructure of one company to another
one. This realizes an execution scenario of cross-company business processes. Of
course, the processes need to have an agreed common name (technically we also have
to send a Globally Unique Identifier (GUID) to identify the instance, so we know for
which running instance the answer is) and a compatible and agreed interface.

The modeling of process collaborations can be a difficult task, as it is not an easy
task to check whether a model can be executed without dead- or life-lock (because
of the distributed and concurrent nature we have no execution path under central
control). Principally, there are methods to accomplish that in an automatic or semi-

Fig. 14.13 Service bus namespace with service bus queues. Send messages to a transmitter
queue, from which they are taken in the order received by the recipient

14 Structured Communication—Approaching S-BPM … 251



automatic way. As the processes are executable, they can be validated via simple
execution (but, depending on the complexity eventually, not in a systematic way).

14.4 Results

14.4.1 Impact of Actions

Using the S-BPM methodology and the developed process execution platform it is
an easy task to develop an enterprise application based on business process models.
Now, we get an executable business process without coding; nevertheless, prom-
ising any complexity without coding is not credible. Especially if we need com-
munication with other applications we will need to develop interfaces, or, if there
are standard interfaces, we may need some coding to pack the data accordingly and
make the correct calls writing some lines of code. Data, or business objects in
general, typically call for technical skills for the design of the data models. Even if
there is a tool to design nice forms for user interaction (generated by the Task
service) knowledge about different data types is needed.

In the case of our example, in the beginning no highly sophisticated data model or
extra lines of code are needed to demonstrate the functionality of the discussed and
developed application. Nevertheless, a fully functional implementation of business
processes needs interfaces to existing applications, such as an ERP or sales systems
where customer data, purchase or manufacturing orders and other data is stored
(depending on the needs of each collaboration participant). To design and discuss the
process in collaboration between the interacting Subjects, simple data types can be
used. If the process participants—we mean the people doing the process—have

Fig. 14.14 Messages for external entities are passed to the input of the external subject

252 R. Singer and S. Raß



developed a common understanding over the supply chain, IT can support the busi-
ness process by connecting process activities with other systems; but only if needed.

Now, back to the introductory case. There are several involved subjects which
coordinate work through the exchange of messages. For clarity we focus on the
exchange of messages only and do not discuss the internal behavior of all subjects as it
does not add any additional experiences. Following themodeling guidelines discussed
by Fleischmann et al. (2012) we focus on the interface behavior, i.e., message
exchange. If one is interested in similar scenarios as discussed here, we suggest also
having a look at the book S-BPM Illustrated from Fleischmann et al. (2013).

For a compact visualization7 of the process participants (Subjects) we use a BPMN
conversation diagram as depicted in Fig. 14.15. This visualizes the case in a similar
way as a Subject Interaction Diagram but without a detailed view of allMessages. It is
interesting to see that the S-BPM concept to define business processes corresponds
with a very similar representation defined in the BPMN standard; we see that the S-
BPM concept is not something esoteric, but contrary to BPMN conversation diagrams
S-BPM allows for a direct enactment of the modeled business processes.

The presented cloud implementation as discussed in the previous sections is
capable of fully realizing an IT-based implementation of the case process. In
Fig. 14.15 the subjects Customer, Regional Logistics, BU Logistics and Factory
Planning represent cross-company process partners. Each of them has its own
Scope in the cloud architecture, which represents its very own area to model and
execute processes; no data can be interchanged between different scopes. It is also
possible that any involved organization hosts its own copy of the architecture on
separate hardware. Each organization models only its own processes and defines its
communication partners as interface subjects.8 Messages during execution are
routed to the correct process partner (subject) as elaborated in Sect. 14.3.4 and
depicted in Fig. 14.14. Further, the process execution is done via e-mail exchange
(the client side). That means starting a process, interacting with tasks via forms and
message exchange are done via e-mail (we developed a Microsoft Outlook plugin
for this, as discussed in Sect. 14.3.3).

14.4.2 Open Issues

At the end of this practical case, some words about open technical issues.

Performance: we did not execute any performance tests, specifically performance
depending on the number of running instances in total and of a process model. Even
the architecture should be scalable, this has to be confirmed based on scientific and
technical best-practice principles.

7The case discusses a so-called Process Network as described in Chap. 5 in Fleischmann et al.
(2012).
8Interface Subjects regulate cooperation and facilitate the synchronization of process network
partners (Fleischmann et al. 2012).

14 Structured Communication—Approaching S-BPM … 253



Modeling: at the time of writing, the modeling tools are not in a mature state; the
development of models is done in a browser window based on jsPlumb9; the
models are stored in the cloud infrastructure and can be uploaded for execution.

Business objects: there are two ways to work with data; messages can hold simple
data types (numbers, text) or complex data types based on JavaScript Object
Notation (JSON) data structures, a readable and compact data format designed for
the exchange between applications. In this context there are some open technical
questions to be solved.

Usability: as the application is intended to be used by non-technical people, heavy
research towards usability has to be done. This includes questions about semantic
transparency of the modeling language as discussed by Singer (2014), the design of
data models and forms for user interaction.

Fig. 14.15 The case visualized as BPMN conversation diagram. This representation cannot be
directly converted into an S-BPM process representation and is therefore not directly executable

9http://jsplumbtoolkit.com.

254 R. Singer and S. Raß

http://jsplumbtoolkit.com


14.4.3 Takeaway

Practical work based on real-world problem settings has shown that all tools
(applications) to build a multi-enterprise business process platform are available. In
our case we have demonstrated that using the available server and programming
tools from Microsoft it is possible without large effort to build an S-BPM platform
based on cloud technology. The benefit and intention of choosing these platform
products was to get an architecture for any size of business, even the largest. All
used server applications are available as services on the Microsoft Azure Cloud and
are therefore highly scaleable. The drawback of the presented approach is that it
may be a too “fat” (i.e., not lean) solution for small and medium enterprises.
Especially, if there are only simple processes based on some few subjects, the
platform could be too expensive based on cost per transaction.

But we also have learned that execution is not everything—there is also a great
need for modeling tools, not only for process models, but also to design data
structures and forms. The execution platform is not visible to any stakeholder, but
only to IT staff. Nevertheless, for daily and practical use also well-designed
interfaces for using a business process system are needed with plenty of func-
tionality; for example, users want and need to search for transactions (instances)
and the related data. A very good approach is the idea of exchanging messages via
e-mails. This leads to a mix of structured (the processes) and unstructured com-
munication with high acceptance by the involved users.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

Butcher P (2014) Seven concurrency models in seven weeks. The Pragmatic Programmers. LCC,
www.pragprog.com

Davenport TH (2010) Process management for knowledge work. In: vom Brocke J, Rosemann M
(eds) Handbook on business process management, vol 1. Springer, Berlin

Dixon J (2012) Hype cycle for business process management. Gartner, Stamford
Fleischmann A, Schmidt W, Stary Ch, Obermeier S, Börger E (2012) Subject-oriented business

process management. Springer, Berlin
Fleischmann A, Raß S, Singer R (2013) S-BPM illustrated. Springer, Berlin
Singer R (2014) User centered development of agent-based business process models and notations.

arXiv:1404.2737
Singer R, Kotremba J, Raß S (2014) Modeling and execution of multi-enterprise business

processes. In: 16th IEEE conference on business informatics, workshop on cross-organizational
and cross-company BPM (XOC-BPM), Genf, Switzerland, July 14–17

14 Structured Communication—Approaching S-BPM … 255

http://www.pragprog.com
http://arxiv.org/abs/1404.2737

	14 Structured Communication---Approaching S-BPM with Microsoft Technologies
	Abstract
	14.1 Introduction and Motivation
	14.2 Structured Communication
	14.3 How to Execute S-BPM Models
	14.3.1 Workflow Technology
	14.3.2 S-BPM as Windows Workflow Model
	14.3.3 The First Prototype (PROMI)
	14.3.4 Moving into the Cloud

	14.4 Results
	14.4.1 Impact of Actions
	14.4.2 Open Issues
	14.4.3 Takeaway

	References


