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Abstract. Finishing process like polishing is usually used to obtain high quality 
mechanical surface characteristics such as texture and roughness. These operations 
are mainly handmade and need highly trained operators thus limiting their repeat-
ability and profitability. To optimize the industrialization of the polishing process, 
it is therefore necessary to modelize the process to built efficient parameter data-
base. The aim of this study is to characterise the polishing of 316L stainless steel 
with structured abrasive belts. The geometric data of the belts are given, and we 
then propose a model to determine material removal. An experimental test bench 
is set up to test this model and characterise the polishing process in terms of 
forces. It produces samples for different polishing conditions. The different po-
lished surfaces are then analyzed thanks to the roughness and the wettability. Us-
ing experimental designs, we are able to validate the proposed model and identify 
the parameters that influence a polishing operation. 

Keywords: polishing, structured abrasive, roughness, material removal rate, wet-
tability.  

1 Introduction 

Polishing is the last stage in the manufacturing of industrial parts to give surfaces 
well-defined characteristics. These may be related to roughness for aesthetic or 
functional reasons, to surface stresses to ensure better fatigue behaviour or to cor-
rosion and wettability when a protective coating is to be applied. 

This process differs from other material removal processes as the thrust force 
exerted by the abrasive grains on the polished surface has to be controlled. Other 
factors can intervene, such as the morphology of the surface to be polished and the 
aggressiveness of the abrasive grains, which can change in the course of the pol-
ishing cycle. These operations must therefore be carried out by experienced opera-
tors in order to meet the most stringent level of requirements for the polished 
parts.  

To derive the maximum from abrasive tools in terms of quality, productivity 
and repeatability, it is necessary first to identify and control the parameters that 
govern the polishing process and the operating range of each one.  
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From this, the material removal rate can be expressed: ௗ௩ௗ௧ ൌ ܵ௣௥௢௝௘௖௧௘ௗ · ௗ௭ௗ௧ ൌ ܵ௣௥௢௝௘௖௧௘ௗ · ሺ1 െ ݇ሻଶ · ௣ܥ · ݌ · ܸ (5)   

Pressure (p) derives from the thrust force (Fz) applied to a pad with a constant 
cross-section pressing the abrasive grains downwards onto the material to be pol-
ished. Here too the ratio of the area of the pad to the area of the pyramid apices in 
contact with the part to be polished must be taken into account. ݌ ൌ  ி೥ௌ೎೚೙೟ೌ೎೟ ൌ  ி೥ௌ೛ೝ೚ೕ೐೎೟೐೏·ሺଵି௞ሻమ  (6)   

When the thrust force is constant, the pressure exerted at the apex of the pyra-
mids decreases as the contact surface of the abrasives increases due to the effect of 
wear. The material removal rate can then be expressed as ௗ௩ௗ௧ ൌ ௣ܥ   · ௭ܨ   ·  ܸ (7) 

and the indentation speed of the abrasive belt in the material can also be written:  ௗ௭ௗ௧  ൌ ௣ܥ  ·  ed  (8)ݐ݆ܿ݁݋ݎ݌ܸܵ · ݖܨ 

In the context of our study, designing a polishing process consists mainly of  
defining: the thrust force to be exerted by a polisher with a pad that has a constant 
cross-section and a feed speed for the belt. When these are determined, material 
removal is constant in theory, whatever the degree of wear on the structured  
abrasive belts. 

Based on Preston’s model, for pyramid-shaped structured abrasive belts we put 
in place models defining the forward speed of the polisher across the material and 
the material removal rate. We show that the material removal rate does not vary 
throughout the life cycle of the belts we studied, when the parameters of the proc-
ess remain fixed. We shall see later to what extent this model is verified. 

5 Experimental System 

An experimental approach is used to characterise the polishing process of the 
pyramid abrasive belts. The aim is to characterise: the material removal rate, the 
tangential cutting coefficient, the ratio of the polishing force borne by the polished 
surface (Fx) to the thrust force (Fz) applied perpendicular to the polished surface 
(see Fig. 4.a), the roughness and the wettability of the polished surface. We  
devised a test bench to measure the thrust force (Fz), the tangential stress (Fx), the 
feed speed of the abrasive grains (V) in the course of a polishing operation and the 
position of the polisher which remained normal to the material. 
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(a): Polishing force  sample (b): Layout of the polishing bench 

Fig. 4 Principal features of the polishing bench 

Figure 4b shows the layout of the polishing bench. It consists of a pneumatic 
abrasive belt polisher (reference DINABRADE 14200 – speed without load = 30 
m/s – belt width = 25.4 mm – belt length = 457 mm). To ensure that the polisher 
covers the sample correctly (maximum dimensions: 40 x 70 x 2 mm), it is guided 
in translation by sleeve bearings mounted on two rigid columns. The thrust force 
is obtained by a cable attached to a weight suspended in mid-air. The forces  
applied to the sample by the polisher are measured with a six-component dyna-
mometric sensor. The feed rate of the belt is controlled by a flow regulator with a 
cone-point set screw. It is measured using an inductive sensor combined with a 
metal pad placed on the roller ahead of the polisher. Lastly, the position of the  
polisher in relation to the sample is measured with an LVDT sensor.  

6 Characterisation of the Performance of the Abrasive Belts  

6.1 Design of Experiments 

An factorial design of experiments (DOE) is proposed to determine material re-
moval (dz/dt), the tangential cutting coefficient (f) and roughness (Ra) for polish-
ing operations with grade A100, A30 and A6 belts. The input parameters and their 
boundaries are given in Table 3. These boundaries of DOE are defined from  
preliminary tests and test bench limits. 

Table 3 Input parameters of the experimental design 

Parameters Symbol Unit Min. boundary Max. boundary 

Abrasion pressure p N/cm2 10 20 

Speed  V m/s 10 25 

Wear rate k  0.2 0.7 

Fz Fx 

Vbelt/sample 
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6.2 Polisher Indentation Speed 

These tests will help to identify influent parameters on material consumption 
(dz/dt) and will be compared to the modified Preston's model results. Fig. 5a 
shows the average indentation speed (dz/dt) for the three types of belt considered. 
The productivity of a polishing operation is closely linked with the size of the 
grains, with a ratio of 1 to 10 for the two extreme grades studied (A100 and A6). 

 

 
(a): Average values (b): Coefficients of input parameters – A100 belt 

Fig. 5 Results for indentation speed (dz/dt) 

Figure 5b shows the coefficients for the input variables for the A100 belt. It can 
be seen that the weight of the p, k and V coefficients is significant, as are all the 
interactions. The different tests carried out on the A30 and A6 belts show identical 
changes to those shown in Fig. 5b.  

The tests established for this experimental design enable us to determine the 
Preston constant (Cp) using a least squares regression. We are therefore able  
to calculate the theoretical values for indentation (dz/dt) for each test in the  
experimental design.  

 

Fig. 6 Deviations between experimental readings and Preston’s law –A100 belts 
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In Fig. 6 we show the comparison between these calculations and the values 
from the tests. An Ln-Ln scale is used for a better distribution of the points on the 
graph, revealing a good correlation between the model and the experimental val-
ues. Behaviour is similar for the A30 and A6 belts. 

6.3 Tangential Cutting Coefficient 

From the experimental design dealing with the tangential cutting coefficient the 
average of this parameter can be established for each type of belt (see Fig. 7a). It 
is greater the larger the size of the grains. 

The coefficients of input parameter effect and interaction are less than 1/10 of 
the average standardised value. The pressure, speed and abrasive wear parameters 
therefore have only a very weak influence on the tangential cutting coefficient.  

 

 

Fig. 7 Average values from experimental design 

6.4 Roughness of the Polished Surface 

Standard NF EN ISO 4287 (ISO 4287) suggests different parameters to character-
ise the roughness of a metal surface. For our work, we decided to use the arithme-
tic average deviation criterion of the profile (Ra). Readings were taken using a 3D 
ALTISURF 500 roughness meter equipped with a confocal white light sensor. 

Figure 7b shows the average values of (Ra) for the three types of belt studied. 
In this instance too, average values are lower the smaller the grain size. For the 
interaction coefficients specific to each input parameter, values have little influ-
ence on output, with most being less than 10% and with a maximum at 20%. And 
here too the parameters of the process, with the exception of grain size, have no 
influence on the arithmetic average deviation of the profile of the polished surface. 

6.5 Wettability 

Wettability is the ability of a liquid to spread over a surface. It is defined by  
the angle (θ) between the tangent at the base of a drop of distilled water and the  
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surface on which the drop is placed. Based on Young’s equation, the link can be 
established between surface tensions σsolid , σliquid , interfacial tension γliquid/solid and 
contact angle θ using the following equation: σୱ୭୪୧ୢ ൌ γ௟௜௤௨௜ௗ/௦௢௟௜ௗ ൅ σ௟௜௤௨௜ௗ כ cosሺθሻ  (9) 

  
(a): Angle determining wettability (b): Angle (θ) for 316L stainless steel 

Fig. 8 Characterisation of wettability 

This ability runs counter to the process whereby paint or adhesive sticks to a 
backing. The greater the angle (θ) the more difficult it will be to make a coating 
adhere to the surface. The results obtained here show the influence of particle size 
on the wettability of the surface obtained for 316L stainless steel.  

7 Conclusion 

The aim of this study was to characterise the polishing process for 316L stainless 
steel using structured abrasive belts. After describing their main geometric charac-
teristics, we proposed a model based on Preston’s law to determine material re-
moval. We set up an experimental test bench in order to produce an experimental 
design and were thus able to validate the model suggested for different grain sizes. 
We were also able to specify the tangential cutting coefficient, roughness and 
wettability of the polished surface for three types of belt and show that only grain 
size has a bearing on these production goals. 
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