
Reachability Preservation Based Parameter
Synthesis for Timed Automata

Étienne André1(B), Giuseppe Lipari2, Hoang Gia Nguyen1, and Youcheng Sun3

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, Paris, France
Etienne.Andre@lipn.fr

2 CRIStAL – UMR 9189, Université de Lille, USR 3380 CNRS, Lille, France
3 Scuola Superiore Sant’Anna, Pisa, Italy

Abstract. The synthesis of timing parameters consists in deriving con-
ditions on the timing constants of a concurrent system such that it meets
its specification. Parametric timed automata are a powerful formalism
for parameter synthesis, although most problems are undecidable. We
first address here the following reachability preservation problem: given
a reference parameter valuation and a (bad) control state, do there exist
other parameter valuations that reach this control state iff the reference
parameter valuation does? We show that this problem is undecidable,
and introduce a procedure that outputs a possibly underapproximated
answer. We then show that our procedure can efficiently replace the
behavioral cartography to partition a bounded parameter subspace into
good and bad subparts; furthermore, our procedure can even outperform
the classical bad-state driven parameter synthesis semi-algorithm, espe-
cially when distributed on a cluster.

1 Introduction

The design of critical real-time systems is notoriously error-prone, and requires
formal verification to assess the absence of undesired behaviors. The theory of
timed automata (TA) [1] provided in the past two decades designers with a
powerful formalism to formally verify real-time systems. TA extend finite-state
automata with clocks that can be compared with integers in guards and invari-
ants. Unfortunately, the classical definition of TA is not tailored to verify systems
only partially specified, especially when the value of some timing constants is not
yet known. The synthesis of timing parameters consists in deriving conditions
on the timing constants of a concurrent system such that it meets its specifica-
tion. Parametric timed automata (PTA) [2] extend TA by allowing the use of
parameters (i.e., unknown constants) in place of integer constants in the model.

This work was partially supported by a BQR grant “SynPaTiC” and by the ANR
national research program “PACS” (ANR-2014).

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 50–65, 2015.
DOI: 10.1007/978-3-319-17524-9 5

Reachability Preservation Based Parameter Synthesis for Timed Automata 51

Related Work. The expressive power of PTA comes at the cost of the undecid-
ability of almost all interesting problems. The EF-emptiness problem1 (“does
there exist a parameter valuation such that a control state is reachable?”) is
undecidable if the model contains as little as three parameterized clocks [2].
Research around PTA since then consisted mainly in either exhibiting subclasses
of PTA for which interesting problems become decidable, or devising efficient
semi-algorithms that would terminate “often enough” to be useful. A famous
subclass of PTA is L/U PTA [8,13] where each parameter can be used only
either as upper bounds or as lower bounds, and for which the EF-emptiness
problem becomes decidable. In [8], further problems have been shown to be
decidable for L/U PTA, including the emptiness and the universality problem
for infinite runs properties (“do all parameter valuations have an infinite accept-
ing run?”), for integer parameter valuations. In [14], however, it was shown that
the solution to the EF-synthesis problem (“find all parameter valuations such
that a control state is reachable”) for L/U PTA cannot be represented as a finite
union of polyhedra, hence strongly limiting the practical interest of L/U PTA.
Orthogonal to syntactical restrictions on the model is the search for restrictions
on the parameter domain: in [14], an algorithm is proposed to synthesize integer
parameter valuations in a bounded domain. This is of course decidable, and the
authors devise two symbolic algorithms that perform better than enumeration.

More practical research on PTA include the development of tools (e.g., Romo
[16], Imitator [6]) and their application to several fields such as hardware veri-
fication (e.g., [10]) and parametric schedulability analysis (e.g., [12]). In [3], we
proposed the inverse method IM, a procedure that takes advantage of a reference
parameter valuation and generalizes it in the form of a convex constraint, such
that the discrete (linear-time) behavior of the system is preserved. In [5], we
proposed the behavioral cartography BC: by iterating IM on integer points in
a bounded parameter domain, we decompose this domain into constraints such
that, for all parameter valuations in each constraint, the discrete behavior is the
same. Then, BC can give a (possibly incomplete) solution to the EF-synthesis
problem, by returning the union of all constraints for which the desired control
state is reachable.

Contribution. In this work, our main goal is to address the EF-synthesis problem.
Instead of attacking the state space exploration in a brute force manner (like [2,
14]), we propose to perform several explorations of smaller size, taking advantage
of reference valuations in the line of the inverse method. More in details, our
contributions are as follows:

1. We first address the following reachability preservation problem for PTA:
given a reference parameter valuation π and a control state, do there exist
other parameter valuations that reach this control state iff π does? We show
that this problem is undecidable, and we introduce a procedure PRP (para-
metric reachability preservation) that gives a (possibly incomplete) answer.

1 “EF” comes from the CTL syntax and stands for “exists finally”.

52 É. André et al.

2. Then, we show that PRP can efficiently replace IM in the behavioral cartogra-
phy to partition a bounded parameter subspace into good and bad subparts,
and give a solution to the EF-synthesis problem.

3. We then compare the PRP-based cartography with the classical parameter
synthesis semi-algorithm “EFsynth” [2,14] that solves the EF-synthesis prob-
lem: not only PRP gives a more precise result, but it also performs surpris-
ingly well, despite its repeated analyses. Comparisons are performed using
parametric schedulability problems for real-time systems.

4. We finally briefly discuss a distributed version of PRP, that is faster and
almost always outperforms EFsynth.

Outline. Section 2 recalls PTA, decision problems and existing results. Section
3.1 defines the reachability preservation problem and proves its undecidability;
Section 3.2 introduces PRP and proves its correctness; Section 3.3 shows that
PRP can be used to solve the EF-synthesis problem. Section 4 discusses a dis-
tributed version of PRP, and Section 5 describes an experimental comparison
with BC and EFsynth. Section 6 concludes the paper and gives perspectives.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation w is a func-
tion w : X → R+. We will often identify a clock valuation π with the point
(w(x1), . . . , w(xH)). We denote by X = 0 the conjunction of equalities that
assigns 0 to all clocks in X. Given d ∈ R+, w + d denotes the valuation such
that (w + d)(x) = w(x) + d, for all x ∈ X.

Throughout this paper, we assume a set P = {p1, . . . , pM} of parameters, i.e.,
unknown constants. A parameter valuation π is a function π : P → Q+. We will
often identify a valuation π with the point (π(p1), . . . , π(pM)). An integer point
is a valuation π : P → N.

An inequality over X and P is e ≺ 0, where ≺∈ {<,≤,≥, >}, and e is a linear
term

∑
1≤i≤N αizi+d for some N ∈ N, where zi ∈ X∪P , αi ∈ Q+, for 1 ≤ i ≤ N ,

and d ∈ Q+. A (linear) constraint over X and P is a set of linear inequalities
over X and P . We define in a similar manner inequalities and constraints over
P . A parametric guard is a set of linear inequalities where exactly one zi is a
clock. We denote by L(P) and L(X ∪ P) the set of all constraints over P , and
over X and P respectively. We use K ∈ L(P) and C ∈ L(X ∪ P).

Given a parameter valuation π, C[π] denotes the constraint over X obtained
by replacing each parameter p in C with π(p). Likewise, given a clock valua-
tion w, C[π][w] denotes the expression obtained by replacing each clock x in C[π]
with w(x). We say that π satisfies C, denoted by π |= C, if the set of clock valu-
ations satisfying C[π] is nonempty. We use the notation <w|π> |= C to indicate
that C[π][w] evaluates to true.

We denote by � (resp. ⊥) the constraint over P that corresponds to the set
of all possible (resp. the empty set of) parameter valuations. We denote by C↓P
the projection of C onto P , i.e., obtained by eliminating the clock variables. We

Reachability Preservation Based Parameter Synthesis for Timed Automata 53

define the time elapsing of C, denoted by C↑, as the constraint over X and P
obtained from C by delaying an arbitrary amount of time. Given R ⊆ X, we
define the reset of C, denoted by [C]R, as the constraint obtained from C by
resetting the clocks in R, and keeping the other clocks unchanged.

Parametric timed automata are an extension of the class of timed automata to
the parametric case, where parameters can be used within guards and invariants
in place of constants [2].

Definition 1. A PTA A is a tuple A = (Σ,L, l0,X, P, I, E), where:

– Σ is a finite set of actions,
– L is a finite set of locations, l0 ∈ L is the initial location,
– X is a set of clocks, P is a set of parameters,
– I is the invariant, assigning to every l ∈ L a parametric guard I(l),
– E is a set of edges (l, g, a,R, l′) where l, l′ ∈ L are the source and destination

locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a parametric
guard.

Throughout this paper, we will be interested in the reachability of bad loca-
tions. We assume a special location lbad ∈ L; without loss of generality, we
assume that this location is unique (the case with several bad locations can be
reduced to one only using additional transitions to lbad).

Given a PTA A = (Σ,L, l0,X, P, I, E), and a parameter valuation π, A[π]
denotes the TA obtained from A by substituting every occurrence of a parameter
pi by the constant π(pi) in the guards and invariants.

We borrow from [14] and adapt to our notations the semantics of a TA.

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, l0,X, P, I, E),
and a parameter valuation π, the semantics of A[π] is given by the timed transi-
tion system (Q, q0,⇒), with

– Q = {(l, w) ∈ L × R
H
+ | I(l)[π][w] evaluates to true} , q0 = (l0,X = 0)

– ((l, w), a, (l′, w′)) ∈ ⇒ if ∃w′′ : (l, w) a→ (l′, w′′) d→ (l′, w′), with
• discrete transitions: (l, w) a→ (l′, w′), with a ∈ Σ, if (l, w), (l′, w′) ∈ Q,

there exists (l, g, a,R, l′) ∈ E, w′ = [w]R, and g[π][w] evaluates to true.
• delay transitions: (l, w) d→ (l, w + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w +

d′) ∈ Q.

A concrete run of a TA is an alternating sequence of states of Q and actions
of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . , m − 1, ai ∈ Σ,

and (si, ai, si+1) ∈ ⇒. Given a state s = (l, w), we say that s is reachable (or
that A[π] reaches s) if s belongs to a run of A[π]; by extension, we say that l is
reachable in A[π].

We now recall the semantics of PTA.

Definition 3 (Symbolic state). A symbolic state of a PTA A is a pair (l, C)
where l ∈ L is a location, and C ∈ L(X ∪ P) its associated constraint.

54 É. André et al.

l1
x ≤ b

x = y = 0 l2

x ≥ a
x := 0

y ≥ 20

Fig. 1. An example of a PTA A1 [14]

A state s = (l, C) is π-compatible if π |= C.
The initial state of A is s0 = (l0, (X = 0)↑ ∧ I(l0)).
The computation of the state space relies on the Succ operation. Given a

symbolic state s = (l, C), Succ(s) = {(l′, C ′) | ∃(l, g, a,R, l′) ∈ E s.t. C ′ =
(
[(C ∧ g)]R

)↑ ∩ I(l′)}. By extension, given a set S of states, Succ(S) = {s′ | ∃s ∈
S s.t. s′ ∈ Succ(s)}.

A symbolic run of a PTA is an alternating sequence of symbolic states and
actions of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . , m − 1,

ai ∈ Σ, and si
ai⇒ si+1 is such that si+1 belongs to Succ(si) and is obtained via

action ai.
Given a (concrete or symbolic) run (l0, C0)

a0⇒ (l1, C1)
a1⇒ · · · am−1⇒ (lm, Cm),

its corresponding trace is l0
a0⇒ l1

a1⇒ · · · am−1⇒ lm. The set of all traces of a TA is
called its trace set. Two runs (concrete or symbolic) are said to be equivalent if
their associated traces are equal.

Problems for PTA. We recall below two classical problems, as formalized in [14].

Problem 1 (EF-emptiness). Let A be a PTA. Is the set of parameter valua-
tions π such that A[π] reaches lbad empty?

Problem 2 (EF-synthesis). Let A be a PTA. Compute the set of parameter
valuations π such that A[π] reaches lbad .

Problem 1 is undecidable [2], and the set of parameter valuations solving
Problem 2 cannot be computed in general. In [14], the following semi-algorithm
is proposed, that gives a complete answer to Problem 2 when it terminates.

EFsynthlbad ((l, C), S) =

⎧
⎨

⎩

C↓P if l = lbad
∅ if (l, C) ∈ S⋃

s′∈Succ((l,C)) EFsynthlbad
(
s′, S ∪ {(l, C)}) otherwise

Example 1. Consider the PTA A1 in Fig. 1 [14], with clocks x and y and param-
eters a and b. Then EFsynthl2(s0, ∅) does not terminate, and neither does it if
the range of the parameters is bounded from above (e.g., a, b ∈ [0, 50]).

From the proof of correctness of EFsynth in [14], one can infer that the result
of EFsynth is still a (possibly incomplete) answer to Problem 2 even when the
algorithm is artificially stopped before its termination. By artificially stopping

Reachability Preservation Based Parameter Synthesis for Timed Automata 55

EFsynth, we mean bounding the recursion depth: when the depth indeed exceeds
some bound, we replace the recursive call EFsynthlbad (s

′, S ∪ {(l, C)}) with ⊥.

Proposition 1. Let K be the result of EFsynthlbad (s0, ∅) when EFsynth is stopped
after being recursively called a bounded number of times. For all π |= K, lbad is
reachable in A[π].

Behavioral Cartography. In [3], we introduced the inverse method IM. This proce-
dure takes as input a reference parameter valuation π and outputs a constraint K
such that 1) π |= K and 2) for all π′ |= K, the trace sets of A[π] and A[π′] are the
same; hence, the discrete (linear-time) behavior of the system is preserved. IM
performs a breadth-first exploration of the symbolic state space of A; whenever
a π-incompatible state (l, C) is met, it is removed as follows: a π-incompatible
inequality is selected within the projection of C onto P , and then its negation is
added to a constraint maintained by IM. When a fixpoint is reached, IM returns
the intersection of all parametric constraints associated to the remaining sym-
bolic states.

A variant of IM named IMK outputs a weaker (i.e., larger) constraint, that
only guarantees that any trace of A[π′] is a trace of A[π] [7]. It is similar to IM
except that, instead of returning the intersection of all parametric constraints, it
returns only the accumulation of π-incompatible inequalities. Hence, IMK only
forbids the traces not possible under π, without requiring that all traces of A[π]
be possible in A[π′].

In [5], we introduced the behavioral cartography BC: by iterating IM on the
integer points in a bounded parameter domain V (usually a product of intervals
in |P | dimensions), one can decompose V into tiles, i.e., parametric constraints
in which the discrete behavior is uniform. Hence all parameter valuations in
a tile satisfy the same set of linear-time properties. Then, given such a prop-
erty (expressed using, e.g., LTL), one can partition V into good and bad tiles
depending whether this property is or not satisfied in each tile.

This method has two theoretical drawbacks: first, some calls to IM may not
terminate and, second, BC does not formally guarantee that any “dense” part
of V will be covered beside the integer points. However, in practice not only the
whole dense part of V is almost always covered, but large (infinite) parts of the
parameter space beyond V are often covered.

3 Solving the EF-Emptiness Problem Using Reachability
Preservation

3.1 Undecidability of the Preservation of Reachability

Parameter synthesis with respect to a bad location is known to be undecidable [2].
Here, we take advantage of a reference parameter valuation π, for which it is
possible to decide whether lbad is reachable [1]. The assumption of a known
parameter valuation seems realistic to us: in system design, it is often the case
that one knows (from a previous design, of using empirical methods) a first

56 É. André et al.

valuation; however, finding other valuations may be much more difficult, and may
require to restart the design phase from zero. Here, given a reference parameter
valuation, we are interested in the preservation of the reachability of lbad by other
parameter valuations. Given two TA A[π] and A[π′], we say that A[π′] preserves
the reachability of lbad in A[π] when lbad is reachable in A[π] if and only if
lbad is reachable in A[π′]. We call PREACH the problem of the preservation of
reachability. In the following, we show that, given π, deciding whether at least
one parameter valuation π′ �= π preserves the reachability of lbad in A[π] is
undecidable.

Problem 3 (PREACH-emptiness). Let A be a PTA, and π a parameter valua-
tion. Does there exist π′ �= π such that A[π′] preserves the reachability of lbad
in A[π]?

Problem 4 (PREACH-synthesis). Let A be a PTA, and π a parameter valua-
tion. Compute the set of parameter valuations π′ such that A[π′] preserves the
reachability of lbad in A[π].

We show below that Problem 3 is undecidable.

Theorem 1. PREACH-emptiness is undecidable.

Proof. Given a parameter valuation reaching some location, we reduce the exis-
tence of a different parameter valuation reaching the same location from the
halting problem of a 2-counter machine.

1. First, recall that [2] defines the encoding of a 2-counter machine (2CM) using
a PTA A2CM that contains two parameters a and b.2 Then [2] shows that
the 2CM halts iff there exists at least one non-null parameter valuation such
that a special location lhalt is reachable in A2CM .

2. Now, let us add a gadget to A2CM that adds a direct transition from the
initial location l0 to lhalt with a guard a = b = 0.3 Let A be this new PTA,
as depicted in Fig. 2. Now, we have:
(a) If the 2CM halts, then lhalt is still reachable in A for some non-null

parameter valuation since it was already reachable in A2CM . Addition-
ally, due to our gadget, lhalt is also reachable in A for a = b = 0.

(b) If the 2CM does not halt, lhalt is again reachable in A for a = b = 0 due
to our gadget, but no other parameter valuation can reach lhalt , just as
in item 1.

Hence, given π : a = b = 0, there exists a parameter valuation π′ �= π such
that A[π′] preserves the reachability of lhalt in A[π] iff the 2CM halts.

2 Strictly speaking, their construction uses six parameters, but it is well-known (shown,
e.g., in [14]) that they can be reduced to two.

3 This guard is not allowed in PTA, but can be simulated using an extra clock x and
an urgent location followed by a transition with guard x = a ∧ x = b.

Reachability Preservation Based Parameter Synthesis for Timed Automata 57

l0 lhaltA2CM

a = b = 0

Fig. 2. Undecidability of PREACH-emptiness: PTA A

3.2 Parameter Synthesis Preserving the Reachability

To propose a solution to Problem 4, we introduce here PRP(A, π), that is inspired
by two existing algorithms, viz., EFsynth and the variant IMK of IM [7]. PRP
(standing for parametric reachability preservation) is at first close to IMK , and
then switches to an algorithm that resembles EFsynth:

– As long as no bad location is reached, PRP generalizes the trace set of A[π]
by removing π-incompatible states; this is done by negating π-incompatible
inequalities, and returning the intersection of such negated inequalities, in
the line of IMK .

– When at least one bad location is met, PRP switches to an algorithm close
to EFsynth, i.e., it simply gathers the constraints associated with the bad
locations, and returns their union. However, a main difference with EFsynth
is that PRP does not explore π-incompatible states: although this is not
necessary to ensure correctness (in fact, this makes PRP not complete), this
is a key heuristics to keep the state space of reasonable size.

We introduce PRP in Algorithm 1. It is a breadth-first exploration procedure that
maintains the following variables: S (resp. Snew) is the set of states computed
at the previous (resp. current) iterations; Bad is a Boolean flag that remembers
whether a bad location has been met; Kgood is the intersection of the negation
of all π-incompatible inequalities, that will be returned if no bad state is met;
Kbad is the union of the projection onto P of all bad states, that will be returned
otherwise; i remembers the current exploration depth.

The procedure consists in a (potentially infinite) while loop. First, lines
3–4 take care of the π-incompatible states and resembles IMK . These states
are discarded from the exploration, i.e., they are removed from the set of new
states (line 4). Then, if the exploration has not yet met any bad state, Kgood

is refined so as to prevent any such π-incompatible state (l, C) to be reached: a
π-incompatible inequality J is selected within the projection of C onto P , and
then its negation is added to Kgood . This mechanism is borrowed to IM (and its
variant IMK).

Second, lines 8–9 take care of the bad states. If any bad state is reached
(line 8), then the Bad flag is set to true, the union of the projection onto P
of the constraints associated with these bad states is added to Kbad , and these
states are discarded, i.e., their successor states will not be computed (line 9).

58 É. André et al.

Algorithm 1. PRP(A, π)
input : PTA A of initial state s0, parameter valuation π
output : Constraint over the parameters

1 S ← ∅ ; Snew ← {s0} ; Bad ← false ; Kgood ← � ; Kbad ← ⊥ ; i ← 0
2 while true do
3 foreach π-incompatible state (l, C) in Snew do
4 Snew ← Snew \ {(l, C)}
5 if Bad = false then
6 Select a π-incompatible inequality J in C↓P (i.e., s.t. π
|= J)
7 Kgood ← Kgood ∧ ¬J

8 foreach bad state (lbad , C) in Snew do
9 Bad ← true ; Kbad ← Kbad ∨ C↓P ; Snew ← Snew \ {(lbad , C)}

10 if Snew ⊆ S then
11 if Bad = true then return Kbad else return Kgood ;

12 S ← S ∪ Snew ; Snew ← Succ(Snew) ; i ← i + 1

The third part is a classical fixpoint condition: if no new state has been met
at this iteration (line 10), then the result is returned, i.e., either Kbad if some
bad states have been met, or Kgood otherwise. If new states have been met, then
the procedure explores one step further in depth (line 12).

We will show in Theorem 2 that PRP outputs a sound (though possibly
incomplete) answer to Problem 4. In fact, PRP verifies a stronger property: if
lbad is reachable in A[π], PRP outputs a constraint K guaranteeing that lbad is
reachable for any parameter valuation satisfying K. However, if lbad is unreach-
able in A[π], the constraint K output by PRP satisfies the same property as IMK ,
i.e., the trace set of A[π′] is a subset of the trace set of A[π], for all π′ |= K.
This is formalized in Proposition 2.

Proposition 2. Let A be a PTA, and π a parameter valuation. Suppose PRP
(A, π) terminates with result K. Then, π |= K and, for all π′ |= K:

– if lbad is reachable in A[π], then lbad is reachable in A[π′];
– if lbad is unreachable in A[π], then every trace of A[π′] is a trace of A[π].

Theorem 2. Let A be a PTA, and π a parameter valuation. Suppose PRP(A, π)
terminates with result K. Then, π |= K and, for all π′ |= K, lbad is reachable in
A[π] iff lbad is reachable in A[π′].

Proof. From Proposition 2.

Remark 1. PRP may not terminate, which is natural since Problem 3 is unde-
cidable. Furthermore, even if it terminates, the result output by PRP may be
non complete; in fact, this is designed on purpose (since we stop the exploration
of π-incompatible states) so as to prevent a too large exploration. Enlarging the
output constraint can be done by repeatedly calling PRP on other points than
π, which will be done in Section 3.3.

Reachability Preservation Based Parameter Synthesis for Timed Automata 59

Example 2. Let us apply PRP to the PTA A1 in Fig. 1. For point π1 : (a =
20, b = 10), PRP outputs constraint 20 > b∧a > b∧ b ≥ 0, which guarantees the
unreachability of lbad . For point π2 : (a = 30, b = 30), PRP outputs constraint
b > 20 ∧ a ≥ 0, which guarantees the reachability of lbad . For point π3 : (a =
0, b = 40), PRP does not terminate.

We now state in Theorem 3 that, even when PRP is interrupted before
its termination, PRP outputs a sound (though possibly incomplete) answer to
Problem 4, provided some bad states have already been met. The result comes
from the fact that the first item of the proof of Proposition 2 holds even if PRP
has not terminated. (Note that the converse case, when Bad = false, does not
hold if PRP has not terminated: although no bad state has been met yet, there
could be some in the future.)

Theorem 3. Let A be a PTA, and π a parameter valuation. Let be K the value
of Kbad at the end of iteration i of PRP(A, π), for some i ≥ 0, such that Bad =
true. Then: 1) lbad is reachable in A[π], and 2) for all π′ |= K, lbad is reachable
in A[π′].

Example 3. Let us again apply PRP to the PTA A1 in Fig. 1. For this PTA and
π3 : (a = 0, b = 40), PRP with a depth limit of 10 terminates with Bad = true.
From Theorem 3, the output constraint is valid, i.e., guarantees the reachability
of lbad .

3.3 EF-Synthesis Using PRP

Given a bounded parameter domain, IM can be iterated on integer points to
perform a behavioral cartography; then, the tiles can be partitioned in good and
bad according to a linear-time property. If the property of interest is simply a
(non-)reachability property, then PRP can be used in place of IM within BC,
giving birth to a procedure PRPC (see Algorithm 2). PRP is called repeatedly
with as an argument the first integer point not yet covered by any constraint
(line 2 in Algorithm 2).

The “cartography” output by PRPC is less precise than the one output by
the classical BC, because the constraints outputs by PRP are not tiles anymore:
Theorem 2 only guarantees the preservation of reachability, and hence different
parameter valuations within a constraint may correspond to different trace sets.
To output a set of parameter valuations solving EF-synthesis, it suffices to return
the union of the constraints for which lbad is reachable.

Now, a key feature of PRPC is to explore a relatively small part of the whole
parametric state space at a time, and to still output larger constraints than BC.
We will show in Section 5 that using PRP instead of IM in the cartography indeed
dramatically increases its efficiency.

Remark 2. In the general case, PRPC may not terminate, due to the non-termina-
tion of PRP. However, it is possible to set up a maximum exploration depth for
PRP: when this depth is reached, the algorithm stops. If some bad states have

60 É. André et al.

Algorithm 2. PRPC(A, V)
input : PTA A, bounded parameter domain V
output : Set C of constraints over the parameters (initially empty)

1 while there are integer points in V not covered by C do
2 Select an integer point π in V not covered by C
3 C ← C ∪ PRP(A, π)

4 return C

been met, the resulting constraint can be safely used (from Theorem 3); otherwise
the constraint is just discarded and the reference point on which PRP was called
will never be covered. In this case, termination of PRPC is always guaranteed,
with a partial result (some integer points may still be uncovered).

Let us now compare EFsynth and PRPC, that can both output (possibly
incomplete) solutions to the EF-synthesis problem. On the one hand, EFsynth
should be faster (although we will see in Section 5 that it is not even true in
general), because it performs only one exploration, whereas PRPC has to launch
PRP on many integer points. On the other hand, PRPC will use less memory,
since a smaller part of the state space is explored at a time (due to the non-
exploration of π-incompatible states). Furthermore, its main interest is that it
synthesizes a more valuable result: whereas EFsynth outputs only a possibly
under-approximated set of bad parameter valuations (reaching lbad) and leaves
the whole rest of parameter valuations unknown, PRPC outputs possibly under-
approximated sets of both bad and good parameter valuations, giving much more
valuable information. Finally, just as BC, PRPC can possibly cover parameter
valuations beyond the limits of V , which is not possible for EFsynth.

Example 4. Consider again the PTA A1 in Fig. 1, and let us apply EFsynth
and PRPC with a bounded exploration depth of 10; recall that this is safe from
Proposition 1 and Theorem 3. We apply PRPC to an unconstrained model with
V : a, b ∈ [0, 50]. We apply EFsynth to a model where a and b are constrained to
be in [0, 50]. We give in a graphical manner in Fig. 3a (resp. Fig. 3b) the results
output by PRPC (resp. EFsynth). PRPC synthesizes all the good parameter val-
uations (below, in green), i.e., that do not reach l2, and all the bad parameter
valuations (above, in red), i.e., that reach l2, with the exception of a small area
near (0, 0) (in white). All constraints output by PRPC are infinite (which is
not shown in the figure), and hence cover the whole part outside V too. As of
EFsynth, the same bad valuations as for PRPC are covered, but only within V ,
and no information is given about the good valuations. Hence, since EFsynth was
stopped prematurely, no information can be given for the non-covered part: in
particular, the white part of V cannot be decided, whereas PRPC covers every-
thing except the small area near (0, 0). This is a major advantage of PRPC over
EFsynth in terms of precision of the result. Also recall that EFsynth covers only
(a part of) V whereas PRPC covers here the whole parameter space beyond V .

Reachability Preservation Based Parameter Synthesis for Timed Automata 61

(a) PRPC (b) EFsynth

Fig. 3. EF-synthesis using PRPC and EFsynth for A1

4 Towards Distributed Parameter Synthesis

In [4], we proposed two distribution algorithms to execute BC on a set of com-
puters (e.g., on a cluster), implemented in Imitator using the message passing
interface (MPI). Distributing BC is intrinsically easy: it is trivial that two exe-
cutions of IM from two different parameter valuations can be performed on two
different nodes. However, distributing it efficiently is challenging: calling two
executions of IM from two contiguous integer points has a very large probability
to yield the same tile in both cases, and hence to result in a loss of time for
one of the two nodes. Hence, the critical question is how to distribute efficiently
the reference valuations (“points”) on which to call IM. In [4], we proposed a
master-workers scheme, where a master distributes the points to the workers,
using two point distribution algorithms:

1. A sequential point enumeration: each integer point not yet covered by any tile
is sent to a worker, i.e., (0, 0), then (0, 1) and so on (in two dimensions). This
algorithm suffers from the aforementioned problem of close integer points,
but still performs reasonably well (up to 7 times faster using 36 nodes).

2. A random point distribution followed by a sequential enumeration: points
are selected randomly and, when points not yet covered by any tile become
scarce, the master switches to a sequential point enumeration to ensure that
all integer points are covered. The fact that the points not covered by any
tile become scarce is detected after the number of unsuccessful attempts to
randomly choose an uncovered point goes beyond a certain threshold (e.g.,
100). This algorithm performs better (up to 12 times faster using 36 nodes).

Here, we will use a third master-workers distribution method, that dynamically
splits the parametric domain V in subparts: when a worker completes the cover-
ing of its subpart, the master splits another subpart into two parts, and assigns
one of the two part to that worker. From our results, this algorithm (implemented
in the working version of Imitator) is more efficient than the two algorithms
of [4].

Remark 3 (Fairness). Of course, comparing a distributed algorithm (PRPC) with
a monolithic one (EFsynth) is unfair. However, to the best of our knowledge, no

62 É. André et al.

distributed algorithm for parameter synthesis has been proposed (except [4]).
One could argue that EFsynth could at least take advantage of multi-cores,
e.g., using one core to compute the successor states while another performs the
(costly) equality check, or by computing in parallel the successor states of several
states – but PRPC could take advantage of exactly the same enhancements.

5 Experimental Comparison

We compare here several algorithms to solve the EF-synthesis problem using Imi-
tator [6]. In its latest version, Imitator implements EFsynth, BC and PRPC,
and can run PRPC in a distributed fashion. Experiments were run using Imita-
tor 2.6.2 (build 845) on a Linux-based cluster. The nodes of this cluster feature
two 6-core Intel Xeon X5670 running at 2.93 GHz CPUs (therefore, 12 cores in a
NUMA fashion). Each node has 24 GiB of memory and runs a 64-bit Linux 3.2
kernel. The code was compiled using OCaml 3.12.1. The message-passing library
we used is Bull’s OpenMPI variant for Bullx, and the nodes are interconnected
by a 40 Gb/s InfiniBand network.4

5.1 Case Studies

Our first case study is the PTA A1 in Fig. 1, with V : a, b ∈ [0, 50].
Sched1 and Sched2 are two parametric schedulability problems on a single

processor. The goal is to synthesize task parameter valuations guaranteeing that
every task meets its relative deadline. For Sched1, we consider two parameters
D2 and T2 that correspond to the relative deadline and the period of task 2
respectively. We set V to D2, T2 ∈ [20, 100]. For Sched2 (adapted from the
example studied in [9,14]), we consider two parameters b and z, which correspond
to upper bounds on the execution time of tasks 1 and 3, that is C1 ∈ [10, b]
and C3 ∈ [20, z]. A third parameter (always valuated in our experiments) is a,
that is used in the relative deadline and the period of tasks 1, 2, 3. Precisely:
D1 = T1 = a, D2 = T2 = 2a and D3 = T3 = 3a. Finally, task τ2 has a release
jitter J2 ∈ {0, 2}. We will study Sched2 with two different V . First, we valuate
a = 50, we set V : b ∈ [10, 50], z ∈ [20, 100] and we synthesize parameters for
both J2 = 0 (“Sched2.50.0”) and J2 = 2 (“Sched2.50.2”). Second, we valuate
a = 100, we set V : b ∈ [10, 1000], z ∈ [20, 1000] and we consider J2 = 0
(“Sched2.100.0”) and J2 = 2 (“Sched2.100.2”).

Sched5 models the schedulability of 5 fixed-priority tasks in a single processor.
SPSMALL is a model of an asynchronous memory circuit [10].

4 Sources, binaries, models and results are available at www.lipn.fr/∼andre/PRP/.

www.lipn.fr/~andre/PRP/

Reachability Preservation Based Parameter Synthesis for Timed Automata 63

Table 1. Comparison of algorithms to solve the EF-synthesis problem

Case study |H| |V | EFsynth BC PRPC PRPC distr(12)

A1 2 2,601 0.401* TO 0.078* 0.050*

Sched1 13 6,561 TO TO 1595 219

Sched2.50.0 6 3,321 9.25 990 14.55 4.77

Sched2.50.2 6 3,321 662 TO 213 84

Sched2.100.0 6 972,971 21.4 2093 116 10.1

Sched2.100.2 6 972,971 3757 TO 4557 1543

Sched5 21 1,681 352 TO TO 917

SPSMALL 11 3,082 7.49 587 118 11.2

5.2 Summary of the Experiments and Discussion

Table 1 gives from left to right the case study, the number of clocks, the number of
integer points in V and the computation time in seconds for EFsynth, BC, PRPC,
and the distributed version of PRPC using the part-splitting point distribution
running on 12 nodes. “TO” indicates a timeout (> 5000 s).

For A1, none of the algorithms terminate; hence, termination is ensured
by bounding the exploration depth to 10 (marked with * in Table 1). From
Proposition 1 and Theorem 3, the result is still correct; however, this does not
hold for BC. For the other case studies, all algorithms terminate (except in case
of timeouts), and always cover entirely V . To allow a fair comparison, parameters
for EFsynth are bounded in the model as in V ; without these bounds, EFsynth
never terminates for these case studies.

First, we see that PRPC dramatically outperforms BC for all case studies.
This is due to the fact that the constraints output by PRP (that preserve only
non-reachability) are much weaker than those output by IM (that preserve trace
set equality). Second, we see that PRPC compares rather well with EFsynth, and
is faster on three case studies; PRPC furthermore outputs a more valuable con-
straint for A1 (see Example 4). PRPC can even verify case studies that EFsynth
cannot (Sched1).

The distributed version of PRPC is faster than PRPC for all case studies.
Most importantly, the distributed PRPC outperforms EFsynth for all but two
case studies. The good timing efficiency of PRPC is somehow surprising, since
it was devised to output a more precise result and to use less memory, but not
necessarily to be faster. We believe that PRPC allows to explore small state
spaces at a time and, despite the repeated executions, this is less costly than
handling a large state space (as in EFsynth), especially when performing equality
checks when a new state is computed.

6 Conclusion

In this work, we address the synthesis of timing parameters for reachability
properties. We introduce PRP that outputs an answer to the parameter synthe-
sis problem of the preservation of the reachability of some bad control state lbad ,

64 É. André et al.

which we showed to be undecidable. By repeatedly iterating PRP on some
(integer) points, one can cover a bounded parameter domain with constraints
guaranteeing either the reachability or the non-reachability of lbad . This app-
roach competes well in terms of efficiency with the classical bad state synthesis
EFsynth, and gives a more precise result than EFsynth while using less memory.
Finally, our distributed version almost always outperforms EFsynth.

The approach recently proposed to synthesize parameters using IC3 for reach-
ability properties [11] looks promising; it would be interesting to investigate a
combination of that work with a PRP-like procedure, especially if distributed.

So far, we only investigated the preservation of the reachability; investigating
infinite runs properties is of interest too. In this case, it would be interesting to
combine our distributed setting with the multi-core algorithm recently proposed
for (non-parametric) timed automata [15].

Acknowledgments. We thank Camille Coti for a valuable help while using the Magi
cluster, and Didier Lime for useful comments on Section 3.1.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

3. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

4. André, É., Coti, C., Evangelista, S.: Distributed behavioral cartography of timed
automata. In: EuroMPI/ASIA 201414, pp. 109–114. ACM (2014)

5. André, É., Fribourg, L.: Behavioral cartography of timed automata. In: Kučera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg
(2010)

6. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012)

7. André, É., Soulat, R.: Synthesis of timing parameters satisfying safety properties.
In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp. 31–44. Springer,
Heidelberg (2011)

8. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design 35(2), 121–151 (2009)

9. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed state space analysis of real-time
preemptive systems. Transactions on Software Engineering 30(2), 97–111 (2004)

10. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of
the generic architecture of a memory circuit using parametric timed automata.
Formal Methods in System Design 34(1), 59–81 (2009)

11. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
FMCAD, pp. 165–168. IEEE (2013)

12. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability
regions using parametric timed automata. In: RTSS, pp. 80–89. IEEE Computer
Society (2008)

Reachability Preservation Based Parameter Synthesis for Timed Automata 65

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52–53, 183–220 (2002)

14. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Transactions on Software Engineering (2014, to appear)

15. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013)

16. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009)

	Reachability Preservation Based Parameter Synthesis for Timed Automata
	1 Introduction
	2 Preliminaries
	3 Solving the EF-Emptiness Problem Using Reachability Preservation
	3.1 Undecidability of the Preservation of Reachability
	3.2 Parameter Synthesis Preserving the Reachability
	3.3 EF-Synthesis Using PRP

	4 Towards Distributed Parameter Synthesis
	5 Experimental Comparison
	5.1 Case Studies
	5.2 Summary of the Experiments and Discussion

	6 Conclusion
	References

