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11.1             General Principles 

 Oxygen delivery (DO 2 ) to organs and tissues depends on fl ow generated by the heart 
(cardiac output, CO) and arterial oxygen content. Arterial oxygen content depends 
on oxygen partial pressure (PaO 2 ) and hemoglobin (Hb) concentration and satura-
tion. In case of hypoxemia and/or low CO states, Hb concentration may play a key 
role in preventing tissue hypoxia and cellular dysfunction. 

 Although Hb concentration in perioperative settings and in critical care is a cru-
cial aspect for almost all patients, the optimal values are still a matter of debate [ 1 ]. 
Nonetheless, current guidelines and recommendations suggest lower “transfusion 
triggers” than in the past, encouraging blood-saving techniques following a multi-
disciplinary, multi-procedural approach [ 2 ]. The diffi culties of supplying red blood 
cells (RBCs), the need to overcome problems of storage and transfusion (refrigera-
tion and crossmatching), the aim to avoid potential transfusions’ harming effects 
(infection, transfusion reactions, transfusion-related acute lung injury, immuno-
modulation) [ 3 ,  4 ], and the need for alternatives to biological blood for religious 
reasons (e.g., Jehovah’s Witnesses) [ 5 ,  6 ] have led scientists and companies, over 
the past three decades, to synthesize and test artifi cial blood solutions. Oxygen car-
rier (OC) is a generic defi nition for blood substitutes, blood surrogates, artifi cial Hb, 
or artifi cial blood. These substances mimic oxygen-carrying function of the RBCs 
(Table  11.1 ) and are characterized by a long shelf life. In other words, OCs are 
pharmacological substances that aim to improve DO 2  independently from RBCs. 
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However, OCs only transport oxygen and do not share with whole blood all its other 
functions (e.g., coagulation and immunological functions). Over the years, various 
different solutions divided into two main categories have been created and studied: 
hemoglobin-based oxygen carriers (HBOC) and perfl uorocarbon-based oxygen car-
riers (PFBOC) (Table  11.2 ).

    Both kinds of transporters bind and transport O 2 , but their characteristics are 
totally different. During the decade 2000–2010, great enthusiasm came from the 
possibility to replace blood transfusions in many clinical situations and led to a 
number of experimental applications of these new molecules. Some of these prod-
ucts reached phase III in clinical trials, but unfortunately their path toward a fi nal 
approval was hampered by reports on side effects and regulatory concerns about 
safety. As a consequence, the lacking of regulatory approval and investor supports 
led to the withdrawal of many products from the market.  

11.2     Main Evidences 

 The fi rst attempts of substituting Hb as an extracellular substance date back over 
100 years ago [ 11 – 13 ]. Considerable side effects, with the so-called stroma-free Hb, 
were mainly related to renal impairment due to vasoconstriction and led to abandon 
these potential blood substitutes. 

 Hemoglobin-like oxygen carriers can be of allogeneic (from outdated red blood 
cells), xenogeneic (bovine), or recombinant ( E. coli ) origin [ 14 ]. Unmodifi ed Hb 
solutions cannot be used because of the inherent instability of the tetrameric struc-
ture ( α 2 β 2), which dissociates to  αβ -dimers [ 15 ]. To stabilize the product and pre-
vent extravasation and renal fi ltration, after extraction from red blood cells 
(stroma-free Hb), Hb molecules are modifi ed by cross-linkage, polymerization, 
pyridoxylation, pegylation, or conjugation to prolong retention time and provide 
colloidal osmotic pressure [ 16 ,  17 ]. Cross-linking and polymerization appeared to 
have largely solved some of the problems associated with unmodifi ed stroma-free 
Hb: longer half-life, limited nephrotoxicity, and improved oxygen transport 
[ 16 – 18 ]. 

  Table 11.1    The ideal 
oxygen carrier  

 Always available without temperature limitations 

 Long shelf life 

 Effective oxygen-carrying capacity 

 Effective volume expander 

 Absent scavenging effect on nitric oxide 

 No side effects 

 No infectious carrier 

 No crossmatching necessity 

 Cost-effective 

 Usable for cardioplegia priming and preservative fl uid for 
transplant organs 
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 Although HBOCs have been shown to be effective in enhancing cellular oxygen-
ation and improve outcome in trauma in preclinical studies [ 19 ,  20 ], they are no 
longer considered for clinical use since experimental and clinical trials have failed 
to prove any benefi t, while severe concerns about safety have been raised. Among 
the HBOCs, only one,  Hemopure®  (or HBOC-201 – 13 g/dL glutaraldehyde- 
polymerized bovine hemoglobin), is currently available for clinical use in South 
Africa and Russia (Table  11.2 ). 

11.2.1     Diaspirin Cross-Linked Hemoglobin 

 Sloan et al., over 15 years ago, tested the diaspirin cross-linked hemoglobin 
(DCLHb), a purifi ed and chemically modifi ed human Hb solution ( HemAssist® , 
10 g/dL diaspirin cross-linked human hemoglobin in balanced electrolytes solution) 
[ 21 ]. Their randomized multicenter study had the primary objective of reducing 
28-day mortality for hemorrhagic shock trauma patients. The study design included 

        Table 11.2    Oxygen carriers [ 7 – 10 ]   

 HBOC product  Company  Availability 

  Hemopure®  
 Glutaraldehyde-polymerized 
bovine Hb 

 OPK Biotech  South Africa and Russia 
 Expanded Access Study of HBOC- 201 
( Hemopure® ) for the Treatment of 
Life-Threatening Anemia is currently 
recruiting patients 
  Hemopure  has not been approved yet 
by the FDA pending safety review 

  PolyHeme®  
 Pyridoxal-50-phosphate 
cross-linked and 
glutaraldehyde-polymerized 
human Hb 

 Northfi eld 
Laboratories, Inc. 

 On May 9, 2009, after being informed 
by the FDA, the product’s risks 
outweighed the benefi ts; the company 
shut down any research operation 

  HemAssist®  
 Bis-3,5-dibromosalicyl 
fumarate cross-linked human 
Hb 

 Baxter Healthcare 
Corporation 

 Product withdrawn 

  rHb 1.1 Optro®; r Hb 2.0  
 Recombinant hemoglobin 

 Baxter Healthcare 
Corporation 

 Product withdrawn 

  Hemolink®  
 Open-chain raffi nose 
cross-linked and polymerized 
human Hb 

 Hemosol, Inc.  Abandoned due to the cardiac toxicity 
observed during the clinical trials 

  PFBOC product    Company    Availability  

  Oxygent®  
 PFBOC 

 Alliance 
Pharmaceutical Corp. 

 European phase III in noncardiac 
surgery concluded in 2002 
 Not currently approved by the US 
FDA for safety reasons 

   Abbreviations :  HBOC  hemoglobin-based oxygen carriers,  PFBOC  perfl uorocarbon-based oxygen 
carriers,  FDA  Food and Drug Administration,  US  United States  
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the addition of 500–1,000 mL DCLHb to standard treatment during initial fl uid 
resuscitation. In the 58 treated patients, death rate was higher than in the 53 controls 
(46 % vs. 17 %;  p  = 0.003). It is likely that DCLHb might have worsened outcomes 
by scavenging nitric oxide (NO) with worsening of hemorrhage and reduction of 
tissue perfusion due to vasoconstriction. Nitric oxide, an endothelial-derived relax-
ing factor, is a strong heme ligand, and its reduction results in systemic and pulmo-
nary vasoconstriction, decrease in blood fl ow, release of proinfl ammatory mediators, 
and loss of platelet inactivation, predisposing conditions for vascular thrombosis 
and hemorrhage [ 17 ,  22 ] (Table  11.3 ). Nitric oxide scavenging causing microvascu-
lar vasoconstriction and reduction in functional capillary density is the major side 
effect for many of the HBOCs (Table  11.3 ). Endothelin-1, a strong vasoconstrictor 
produced by endothelial cells, has also been suggested to be involved in vasocon-
strictor effects of HBOCs [ 27 ] together with sensitization of α-receptors [ 28 ].

   In 2003, a randomized controlled study was performed by Kerner et al. [ 29 ] in 
trauma patients with hypovolemic shock. The study population was sorted into the 
standard care group ( n  = 62) or into the  HemAssist®  group (1,000 mL) ( n  = 53) dur-
ing transport from the scene of trauma to the hospital and until defi nitive control of 
bleeding source. The trial was interrupted prematurely for futility after an interim 
evaluation. In fact, no difference in either 5- or 28-day organ failure or mortality 
between the two groups was found.  

11.2.2     Other Hemoglobin-Based Oxygen Carriers 

  PolyHeme®  (hemoglobin glutamer-256 [human]; polymerized hemoglobin, pyri-
doxylated; Table  11.2 ) was produced starting from human purifi ed Hb, then pyri-
doxylated (to decrease the O 2  affi nity), and polymerized with glutaraldehyde. In 
1998, Gould et al. [ 30 ] fi rst compared, in a prospective randomized trial, the thera-
peutic benefi t of  PolyHeme®  with that of allogeneic RBCs in the treatment of acute 
blood loss in 44 trauma patients.  PolyHeme®  was designed to avoid the vasocon-
striction issues observed with tetrameric Hb preparations, probably due to endothe-
lial extravasation of the molecules and binding of NO. The patients were randomized 
to receive either RBCs ( n  = 23) or up to 6 U (300 g) of  PolyHeme®  ( n  = 21) as their 
initial blood replacement after trauma and during emergent operations. The fi rst 

    Table 11.3    Reported side effects with HBOCs in experimental and human studies [ 17 ,  23 – 26 ]   

 Vasoactivity-hypertension 
(systemic and pulmonary) 

 NO scavenging 

 Gastrointestinal  Pancreatic injury, hepatocellular injury, esophageal 
spasm,↑ AST, ↑ CPK, ↑ amylase, ↑ bilirubin 

 Renal  Heme-mediated oxidative events 

 Hemostasis  Coagulation defects, thrombosis, thrombocytopenia 

 Cardiac  Myocardial infarction 

   Abbreviations :  NO  nitric oxide,  AST  aspartate aminotransferase,  CPK  creatine phosphokinase  
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results were encouraging since no serious or unexpected adverse events were related 
to  PolyHeme® , which maintained total Hb concentration, despite the marked fall in 
RBCs Hb concentration. This led to reduction in the use of allogeneic blood [ 30 ]. In 
2002, the same group of authors performed a study in massively bleeding trauma 
and urgent surgery [ 31 ]. A total of 171 patients received a rapid infusion of 1–20 
units (1,000 g, 10 L) of  PolyHeme®  instead of RBCs as initial oxygen-carrying 
replacement, simulating the unavailability of RBCs. Forty patients had a nadir RBC 
[Hb] ≤3 g/dL. However, total [Hb] was adequately maintained because of plasma 
[Hb] added by  PolyHeme® . The 30-day mortality (25 %) was compared with a simi-
lar historical group (64.5 %;  p  < 0.05). On the basis of these results, the authors 
concluded that  PolyHeme®  should be useful in the early treatment of urgent blood 
loss and resolve the dilemma of unavailability of red cells. These fi rst encouraging 
results led to a multicenter phase III trial performed in 2009 in the United States 
[ 32 ]. The study was designed to assess survival of patients resuscitated with 
 PolyHeme®  starting at the scene of injury. The patients were randomized to receive 
either up to 6 U of  PolyHeme®  during the fi rst 12 h post-injury before receiving 
blood or crystalloids. After 714 patients were enrolled and randomized, 30-day 
mortality was higher in the  PolyHeme®  arm than in the crystalloid arm (13.4 % vs. 
9.6 %), although this difference was not statistically signifi cant. The incidence of 
multiple organ failure was similar (7.4 % vs. 5.5 % in  PolyHeme®  and controls, 
respectively). Total adverse events instead were higher in intervention vs. control 
group (93 % vs. 88 %;  p  = 0.04); this was similar to serious adverse event, including 
myocardial infarction (MI) (40 % vs. 35 %;  p  = 0.12). 

  Hemospan®  (Table  11.2 ) is an oxygenated, polyethylene glycol-modifi ed hemo-
globin: it showed some promising results in clinical trials [ 15 ,  23 ]. Olofsson et al. 
conducted a safety phase II study in patients undergoing major orthopedic surgery. 
The authors compared Ringer’s lactate with  Hemospan®  given before the induction 
of anesthesia in doses ranging from 200 to 1,000 mL.  Hemospan®  mildly elevated 
hepatic enzymes and lipase and was associated with less hypotension and more 
bradycardic events. Nausea was more common in the patients receiving  Hemospan® , 
without correlation with the dose [ 23 ]. A “Phase III Study of  Hemospan®  to Prevent 
Hypotension in Hip Arthroplasty” has been completed, but the results have never 
been published [ 33 ]. Moreover, due to the lack of investor interest, this product is 
not currently used in clinic [ 34 ]. 

 In the mid-1990s, recombinant technology for hemoglobin production (use of  E. 
coli  transfected with human hemoglobin genes;  rHb1.1 ,  Optro® ) gave some promis-
ing results [ 35 ]. Nevertheless, when tested in animal models, vasoconstriction due to 
NO scavenging and increase in amylase and lipase levels led to project abandonment 
[ 35 ]. Further modifi cation of  rHb 1.1  ( rHb 2.0 ), which aimed at mitigating the vas-
cular response [ 24 ], did not reach the desired objective, and consequently, due to the 
hemodynamic side effects, synthesis of recombinant product was discontinued [ 36 ]. 

  Hemopure®  (bovine hemoglobin, polymerized by glutaraldehyde-lysine) is the 
only available HBOC, and it is nowadays licensed in South Africa and Russia: it 
was tested in some clinical trials including cardiac, vascular, and surgical patients 
[ 37 – 39 ]. The largest study was a randomized controlled multicenter phase III trial 
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performed in 2008 in the United States. 688 patients were randomized to receive 
either  Hemopure®  ( n  = 350) or RBCs ( n  = 338) at fi rst transfusion decision in ortho-
pedic surgery [ 40 ]. The investigators reported that 59.4 % of the patients receiving 
 Hemopure®  were able to avoid allogeneic RBC transfusions; adverse events (8.47 % 
vs. 5.88 %;  p  < 0.001) and serious adverse events (0.35 % vs. 0.25 %;  p  < 0.01) were 
higher in  Hemopure®  in comparison with controls; mortality was comparable in the 
two treatment groups [ 40 ]. 

  Hemolink®  is an open-chain raffi nose cross-linked and polymerized human Hb 
that was used in patients undergoing cardiac surgery (Table  11.2 ). Treatment with 
 Hemolink®  allowed a reduction in RBCs compared with pentastarch [ 41 ,  42 ]. 
However, hypertension, MI, increase in pancreatic enzymes, and raised bilirubin 
were observed [ 25 ,  41 ,  42 ]. Consequently,  Hemolink®  has been abandoned due to 
the toxicity observed during the clinical trials. 

 In 2008, Natanson et al. published a meta-analysis [ 17 ] counting 16 randomized 
controlled trials (3,711 patients) focusing on the safety evaluation of 5 OCs 
( HemAssist® ,  Hemopure® ,  PolyHeme® ,  Hemospan®, Hemolink® ) in surgical, stroke, 
and trauma patients. Overall analysis showed a signifi cant increase in risk of death 
in treated patients (relative risk (RR), 1.30; 95 % confi dence interval [CI], 1.05–
1.61) and risk of MI (RR, 2.71; 95 % [CI], 1.67–4.40). Although some limitations 
can be acknowledged (some details on study protocols were unavailable, and con-
trol groups received different treatments), this meta-analysis addressed important 
safety concerns as far as all fi ve different types of OCs are concerned.  

11.2.3     Perfluorocarbon-Based Oxygen Carriers 

 Perfl uorocarbon-based oxygen carriers are inert organofl uorine compounds con-
taining only carbon and fl uorine. They are chemically and biologically inert, have 
low viscosity, and have a high gas-dissolving capacity. Plasma half-life is approxi-
mately 12 h, and when refrigerated at 4 °C for storage, they last up to 2 years [ 43 ]. 
Differently from HBOCs, in PFBOC, the relationship between PaO 2  and PFC- 
transported O 2  is linear. Therefore, they are effi cient solvents, and their oxygen- 
carrying capacity is relevant in patients receiving high concentrations of supplemental 
oxygen [ 43 ,  44 ]. The only product based on perfl uorocarbon ever approved by the 
Food and Drug Administration (FDA) was  Fluosol®  in 1989, for perfusion during 
percutaneous coronary angioplasty [ 45 ]. In 1994 the product has been withdrawn 
from the market due to its insuffi cient applicability in clinical practice. During the 
following years,  Oxygent® , a new PFBOC (Table  11.2 ), was tested by Spahn et al. 
[ 46 ] in a European phase III trial in noncardiac surgery patients, with expected 
blood loss of 20 mL/kg or greater, and used in conjunction with acute normovole-
mic hemodilution (1.8 g/Kg). The administration of  Oxygent®  as fl uid for PFBOC 
normovolemic hemodilution reduced transfusion needs. Adverse event rates were 
similar in the PFBOC (86 %) and the control (81 %) groups, and the overall mortal-
ity was not statistically signifi cant. However, more serious adverse events were 
reported in the PFBOC group than in the control (32 % vs. 21 %;  p  < 0.05).   
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    Conclusions 

 Clinical evidence, recommendations, and guidelines suggest that RBC transfu-
sion indications should be much more restrictive than in the past and the decision 
to transfuse or not transfuse must be tailored on an individual basis for each 
patient. Nonetheless, there is an undisputed need for an oxygen-carrying product 
with reduced risk of transfusion harming effects, universal compatibility, infi nite 
availability, and long-term storage capability. Perioperative settings, trauma 
scenes, military battlefi eld casualties, disaster scenarios, remote settings, and 
religious issues are conditions suitable for alternatives to blood administration. 
During the last decades, much research has been done to develop products to 
substitute blood transfusion: so far, randomized controlled trials have raised 
questions about safety and have failed to demonstrate clinical benefi ts of the 
available substitutes. Thus, new and safer alternative products are absolutely 
needed before transfusion medicine can be profoundly modifi ed.
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