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Abstract. We consider a problem related to industrial production
planning, namely the multi-product discrete lot-sizing and scheduling
problem with sequence-dependent changeover costs. This combinatorial
optimization is formulated as a mixed-integer linear program and solved
to optimality by using a standard Branch & Bound procedure. However,
the computational efficiency of such a solution approach relies heavily
on the quality of the bounds used at each node of the Branch & Bound
search tree. To improve the quality of these bounds, we propose a new
family of multi-product multi-period valid inequalities and present both
an exact and a heuristic separation algorithm which form the basis of a
cutting-plane generation algorithm. We finally discuss preliminary com-
putational results which confirm the practical usefulness of the proposed
valid inequalities at strengthening the MILP formulation and at reducing
the overall computation time.

Keywords: Production planning · Lot-sizing · Mixed-integer linear pro-
gramming · Valid inequalities · Cutting-plane algorithm

1 Introduction

Capacitated lot-sizing arises in industrial production planning whenever change-
over operations such as preheating, tool changing or cleaning are required between
production runs of different products on a machine. The amount of the related
changeover costs usually does not depend on the number of products processed
after the changeover. Thus, to minimize changeover costs, production should be
run using large lot sizes. However, this generates inventory holding costs as the
production cannot be synchronized with the actual demand pattern: products
must be held in inventory between the time they are produced and the time they
are used to satisfy customer demand. The objective of lot-sizing is thus to reach
the best possible trade-off between changeover and inventory holding costs while
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taking into account both the customer demand satisfaction and the technical lim-
itations of the production system.

An early attempt at modelling this trade-off can be found in [12] for the prob-
lem of planning production for a single product on a single resource with an unlim-
ited production capacity. Since this seminal work, a large part of the research on
lot-sizing problems has focused on modelling operational aspects in more detail to
answer the growing industry need to solve more realistic and complex production
planning problems. An overview of recent developments in the field of modelling
industrial extensions of lot-sizing problems is provided in [7].

In the present paper, we focus on one of the variants of lot-sizing problems
mentioned in [7], namely the multi-product single-resource discrete lot-sizing and
scheduling problem or DLSP. As defined in [4], several key assumptions are used
in the DLSP to model the production planning problem:

– A set of products is to be produced on a single capacitated production resource.
– A finite time horizon subdivided into discrete periods is used to plan produc-

tion.
– Demand for products is time-varying (i.e. dynamic) and deterministically

known.
– At most one product can be produced per period and the facility processes

either one product at full capacity or is completely idle (discrete production
policy).

– Costs to be minimized are the inventory holding costs and the changeover
costs.

In the DLSP, it is assumed that a changeover between two production runs
for different products results in a changeover cost. Changeover costs can depend
either on the next product only (sequence-independent case) or on the sequence
of products (sequence-dependent case). We consider in the present paper the
DLSP with sequence-dependent changeover costs (denoted DLSPSD in what
follows). Sequence-dependent changeover costs are mentioned in [7] as one of the
relevant operational aspects to be incorporated into lot-sizing models. Moreover,
a significant number of real-life lot-sizing problems involving sequence-dependent
changeover costs have been recently reported in the academic literature: see
among others [9] for a textile fibre industry or [3] for soft drink production.

A wide variety of solution techniques from the Operations Research field
have been proposed to solve lot-sizing problems: the reader is referred to [2,6]
for recent reviews on the corresponding literature. The present paper belongs to
the line of research dealing with exact solution approaches aiming at providing
guaranteed optimal solutions for the problem. A large amount of existing exact
solution techniques consists in formulating the problem as a mixed-integer linear
program (MILP) and in relying on a Branch & Bound type procedure to solve
the obtained MILP. However the computational efficiency of such a procedure
strongly depends on the quality of the lower bounds used to evaluate the nodes
of the search tree. In the present paper, we seek to improve the quality of these
lower bounds so as to decrease the total computation time needed to obtain
guaranteed optimal solutions for medium-size instances of the problem.
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Within the last thirty years, much research has been devoted to the polyhe-
dral study of lot-sizing problems in order to obtain tight linear relaxations and
improve the corresponding lower bounds: see e.g. [8] for a general overview of
the related literature and [1,5,10] for contributions focusing specifically on the
DLSP. However, these procedures mainly focus on the underlying single-product
subproblems and thus fail at capturing the conflicts between multiple products
sharing the same resource capacity. This leads in some cases to significant inte-
grality gaps for multi-product instances of the DLSPSD. In what follows, we
propose a new family of multi-product valid inequalities to partially remedy this
difficulty and discuss both an exact and a heuristic algorithm to solve the cor-
responding separation problem. To the best of our knowledge, this is one of the
first attempts focusing on improving the polyhedral description of multi-product
lot-sizing problems.

The main contributions of the present paper are thus twofold. First we intro-
duce a new family of valid inequalities representing conflicts on multi-period
time intervals between several products simultaneously requiring production on
the resource. Second we formulate the corresponding separation problem as a
quadratic binary program and propose to solve it either exactly by relying on a
quadratic programming solver or approximately through a Kernighan-Lin type
heuristic algorithm. The results of the preliminary computational results carried
out on medium-size instances show that the proposed valid inequalities are effi-
cient at strengthening the linear relaxation of the problem and at decreasing the
overall computation time needed to obtain guaranteed optimal solutions of the
DLSPSD.

The remainder of the paper is organized as follows. In Sect. 2, we recall the
initial MILP formulation of the multi-product DSLPSD and the previously pub-
lished single-product valid inequalities. We then present in Sect. 3 the proposed
new multi-product multi-period valid inequalities and discuss in Sect. 4 both an
exact and a heuristic algorithm to solve the corresponding separation problem.
Preliminary computational results are discussed in Sect. 5.

2 MILP Formulation

We first recall the initial MILP formulation of the DLSPSD. We use the network
flow representation of changeovers between products, which was proposed among
others by [1], as this leads to a tighter linear relaxation of the problem. We then
discuss the valid inequalities first proposed by [10] to strengthen the underlying
single-product subproblems.

2.1 Initial MILP Formulation

We wish to plan production for a set of products denoted p = 1 . . . P to be
processed on a single production machine over a planning horizon involving
t = 1 . . . T periods. Product p = 0 represents the idle state of the machine and
period t = 0 is used to describe the initial state of the production system.
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Production capacity is assumed to be constant throughout the planning hori-
zon. We can thus w.l.o.g. normalize the production capacity to one unit per
period and express the demands as binary numbers of production capacity units:
see e.g. [4]. We denote dpt the demand for product p in period t, hp the inventory
holding cost per unit per period for product p and Spq the sequence-dependent
changeover cost to be incurred whenever the resource setup state is changed
from product p to product q.

Using this notation, the DLSPSD can be seen as the problem of assigning at
most one product to each period of the planning horizon while ensuring demand
satisfaction and minimizing both inventory and changeover costs. We thus intro-
duce the following binary decision variables:

– ypt where ypt = 1 if product p is assigned to period t, 0 otherwise.
– wpqt where wpqt = 1 if there is a changeover from p to q at the beginning of

t, 0 otherwise.

This leads to the following MILP formulation denoted DLSPSD0 for the problem.

ZLS0 =min

P∑

p=1

T∑

t=1

hp

t∑

τ=1

(ypτ − dpτ ) +
P∑

p,q=0

Sp,q

T−1∑

t=1

wp,q,t (1)

t∑

τ=1

ypτ ≥
t∑

τ=1

dpτ ∀p,∀t (2)

P∑

p=0

ypt = 1, ∀t (3)

yp,t =
P∑

q=0

wq,p,t ∀p,∀t (4)

yp,t =
P∑

q=0

wp,q,t+1 ∀p,∀t (5)

ypt ∈ {0, 1} ∀p,∀t (6)
wp,q,t ∈ {0, 1} ∀p,∀q,∀t (7)

The objective function (1) corresponds to the minimization of the inventory
holding and changeover costs over the planning horizon.

∑t
τ=1(ypτ − dpτ ) is the

inventory level of product p at the end of period t. Constraints (2) impose that
the cumulated demand over interval [1, t] is satisfied by the cumulated production
over the same time interval. Constraints (3) ensure that, in each period, the
resource is either producing a single product or idle. Constraints (4)–(5) link
setup variables ypt with changeover variables wpqt through equalities which can
be seen as flow conservation constraints in a network. They ensure that in case
product p is setup in period t, there is a changeover from another product q
(possible q = p) to product p to at the beginning of period t and a changeover
from product p to another product q (possible q = p) at the end of period t.
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2.2 Single-Product Valid Inequalities

We now recall the expression of the valid inequalities proposed by [10] for the
single product DLSP. We denote dp,t,τ the cumulated demand for product p in
the interval {t, . . . , τ} and Δp,v the vth positive demand period for product p.
Δp,dp,1,t+v is thus the period with the vth positive unit demand for product p
after period t occurs.

t∑

τ=1

(ypτ − dpτ ) +
w∑

v=1

[
yp,t+v +

Δp,dp,1,t+v∑

τ=t+v+1

∑

q �=p

wq,p,τ

]
≥ w

∀p,∀t,∀w ∈ [1, dp,t+1,T ] (8)

The idea underlying valid inequalities (8) is to compute a lower bound on
the inventory level of a product p at the end of a period t,

∑t
τ=1(ypτ − dpτ ),

by considering both the demands and the resource setup states for this product
in the forthcoming periods τ = t + 1...Δp,dp,1,t+v. The reader is refered to [10]
for a full proof of validity for these inequalities. In the computation experiments
to be presented in Sect. 5, we use a standard cutting-plane generation algorithm
to strengthen the formulation DLSPSD0 by adding violated valid inequalities of
family (8). The resulting improved formulation is denoted DLSPSD1.

Constraints (8) can be understood as a way to strengthen the demand sat-
isfaction constraints (2) by expressing in a more detailed way the need for each
individual product to access the resource in order to satisfy its own demand on
a given subinterval of the planning horizon. However, in the resulting DLSPSD1
formulation, the conflicts between different products simultaneously requiring
production on the resource will only be handled by the single-period capacity
constraints (3). In what follows, we propose to improve this representation of the
conflicts between different products by considering multi-period multi-product
valid inequalities.

3 New Multi-product Valid Inequalities

We now present the multi-period multi-product valid inequalities we propose to
strengthen the linear relaxation of the multi-product DLSPSD.

Proposition 1
Let SP ⊂ {0...P} be a subset of products.
Let t ∈ [1, T ] be a period within the planning horizon. Let (θ1, ..., θp, ..., θP ) ∈
[0, T ]P be a set of periods such that θp < t if p ∈ SP . For each period τ ∈ [1, T ],
we denote SDτ = {p = 1...P |θp > τ}.
The following inequalities are valid for the multi-product DLSPSD.

[ P∑

q=1

dq,1,θq

][ ∑

p∈SP

ypt

]
≤

T∑

τ=1

C̃τ (9)
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where C̃τ is defined by:

C̃τ = min
( ∑

q∈SDτ

yq,τ ,
∑

p∈SP

yp,t

)
if τ /∈ [t − 1; t + 1]

C̃t−1 =
∑

q∈SDt−1,p∈SP

wqpt

C̃t = 0

C̃t+1 =
∑

p∈SP,q∈SDt+1

wpq,t+1

Before providing the proof for Proposition 1, we briefly explain the idea
underlying valid inequalities (9). We choose a subset SP of products. If none
of these products is assigned for production in period t (i.e.

∑
p∈SP ypt = 0),

all corresponding valid inequalities are trivially respected. But if one of these
products is produced in period t (i.e.

∑
p∈SP ypt = 1), then we have to make

sure that we are able to satisfy the total cumulated demand
∑P

q=1 dq,1,θq
on the

remaining periods 1...t−1, t+1...T . In this case, the right hand side of inequalities
(9) computes a tight upper bound (

∑T
τ=1 C̃τ ) of the total production capacity

remaining to satisfy this cumulated demand.

Proof. Let (y, w) be a feasible solution of the DLSPSD. We arbitrarily choose a
subset of products SP , a period t and a vector of periods (θ1, ..., θp, ..., θP ) such
that θp < t if p ∈ SP and show that all proposed inequalities (9) are valid for
the considered feasible solution.

We distinguish two main cases:

– Case 1:
∑

p∈SP ypt = 0
In this case, the left hand side of the inequalities is equal to 0 whereas the
right hand side is nonnegative. All inequalities (9) are thus trivially true.

– Case 2:
∑

p∈SP ypt = 1
In this case, the left hand side of inequalities (9) is equal to the total cumulated
demand over intervals [1, θq] for products q = 1..P , i.e. to

∑P
q=1 dq,1,θq

.
∑

p∈SP ypt = 1 means that period t is devoted to the production of one of
the products in SP . As we have θp < t for each product p ∈ SP , period t cannot
be used to satisfy the cumulated demand dp,1,θp

of any product in SP . Hence
(y, w) can be a feasible solution of the DLSPSD if and only if the remaining total
cumulated production capacity over the periods 1...t− 1, t+1...T is sufficient to
satisfy the cumulated demand

∑P
q=1 dq,1,θq

.
We now seek to compute a tight upper bound for the production capacity

Cτ available in each period τ ∈ [1, t − 1] ∩ [t + 1, T ] to satisfy the cumulated
demand

∑P
q=1 dq,1,θq

:

– By capacity constraints (3), we have Cτ ≤ 1, i.e. Cτ ≤ ∑
p∈SP ypt.

– Moreover, the cumulated demand dq,1,θq
for a product q can only be sat-

isfied by a production for q in period τ if τ ≤ θq as demand backlogging
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is not allowed here. Hence period τ can be used to satisfy part of demand∑P
q=1 dq,1,θq

only if the resource is setup for one of products q = 1..P such
that τ ≤ θq. This gives Cτ ≤ ∑

q∈SDτ
yq,τ .

We thus obtain Cτ ≤ min(
∑

q∈SDτ
yq,τ ,

∑
p∈SP ypt) ∀τ ∈ [1, t−1]∩ [t+1, θ].

Now, we can exploit our knowledge of the setup state of the resource in
period t to further strengthen these inequalities. Namely, we know that a product
p belonging to SP is produced in period t. A changeover to (resp. from) this
product p thus has to take place at the beginning (resp. at the end) of period t.
This means that:

– If period t − 1 is to be used to satisfy the demand of one of the products
belonging to SDt−1, there must be a changeover from this product q ∈ SDt−1

to the product p ∈ SP at the beginning of period t. The production capacity
available in period τ = t − 1 for the products in SDt−1 is thus limited by
Ct−1 ≤ ∑

p∈SP,q∈SDt−1
wq,p,t.

– Similarly, if period t + 1 is to be used to satisfy the demand of one of the
products belonging to SDt+1, there must be a changeover from the product
p ∈ SP to this product at the end of period t. The production capacity
available in period τ = t + 1 for the products in SDt+1 is thus limited by
Ct+1 ≤ ∑

p∈SP,q∈SDt+1
wp,q,t+1.

We can thus strengthen the upper bound of Ct−1 (resp Ct+1) by replacing the
term min(

∑
q∈SDτ

yq,τ ,
∑

p∈SP ypt) by
∑

p∈SP,q∈SDt−1
wq,p,t (resp.

∑
p∈SP,q∈SDt+1

wp,q,t+1)
and obtain the inequalities (9) discussed in Proposition 1.

4 Separation Problem

The number of valid inequalities (9) grows very fast with the problem size. It
therefore not possible to include them a priori in the MILP formulation of the
problem. This is why we use a cutting-plane generation strategy to add to the
MILP formulation only the most violated valid inequalities of the family. This
requires solving the corresponding separation algorithm which, given a fractional
solution (y, w) of the DLSPSD, will either identify a violated valid inequality or
prove that no such inequality exists.

4.1 Exact Separation Algorithm

We first discuss an exact separation algorithm, i.e. an algorithm which is guaran-
teed to find an inequality violated by a fractional solution (y, w) of the DLSPSD
if one exists. We consider each period t and seek to identify the subset SP and the
vector (θ1, ..., θp, ..., θP ) which provide the largest violation of inequalities (9).
To achieve this, we formulate the separation problem for a given t as follows.

We introduce the following decision variables:

– αp = 1 if product p ∈ SP , 0 otherwise.
– βq,θ = 1 if θq = θ, 0 otherwise.
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– γτ = 1 if capacity Cτ is limited by
∑P

p=0 yptαp, 0 if Cτ is limited by
∑P

q=0

∑T
θ=τ yq,τβq,θ.

With this notation, the separation problem QBPt for a given t and a solution
(y, w) is formulated as:

max

P∑

p=0

P∑

q=1

T∑

θ=1

dq,1,θyptαpβq,θ −
P∑

p=0

P∑

q=1

T∑

θ=t−1

wq,p,tαpβq,θ

−
P∑

p=0

P∑

q=1

T∑

θ=t+1

wp,q,t+1αpβq,θ

−
∑

τ=1...t−2t+2...θ

[ P∑

p=0

yptαpγτ +
P∑

q=1

T∑

θ=τ

yq,τβq,θ(1 − γτ )
]

(10)

αp +
T∑

θ=t

βp,θ ≤ 1 ∀p (11)

T∑

θ=0

βp,θ = 1 ∀p (12)

αp ∈ {0, 1} ∀p (13)
βp,θ ∈ {0, 1} ∀p,∀θ (14)
γτ ∈ {0, 1} ∀τ (15)

The objective function (10) corresponds to the maximimization of the viola-
tion of the inequalities, i.e. we seek to identify SP and(θ1, ..., θp, ..., θP ) so as to
maximize the difference between the left and the right hand side of the inequality.
If this value is strictly positive, we obtain a violated valid inequality. In case this
value is less than or equal to 0, it means that all valid inequalities for period t are
satisfied by the fractional solution (y, w). Constraints (11) state that for a given
product p, we cannot simultaneously include it in SP and choose a period θp such
that θp ≥ t. Constraints (12) guarantee that for each product p, exactly one value
of θp is chosen .

Problem QBPt is a binary program with a quadratic objective function and a
series of linear constraints. It can be solved to optimality by a quadratic binary
programming solver such as the one embedded in CPLEX 12.5.

4.2 Heuristic Separation Algorithm

As can be seen from the computational experiments to be presented in Sect. 5,
solving to optimality a sequence of quadratic binary programs QBPt leads to pro-
hibitively long computation times for the cutting-plane generation algorithm, even
for small-size instances. We are thus currently investigating the development of
a heuristic separation algorithm capable of identifying violated valid inequalities
more quickly.
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We discuss here a first version of this separation algorithm which focuses on
a special case of the proposed multi-product valid inequalities. This special case
consists in choosing a period θ such that θ ≥ t, in restricting the possible values
for periods θ1,..., θp,...,θP to the set {0, θ} and in imposing θp = 0 if p ∈ SP .

In this case, for a given pair of periods (t, θ), the separation problem amounts
to finding a tripartition of the set of products {0...P} into 3 subsets: SP ,
SDemθ = {q = 1..P |θq = θ} and SDem0 = {q = 1..P |θq = 0} such that
the quadratic expression (10) is maximized. This problem shares some common
features with graph partitioning problems. We therefore propose to solve it using
the following Kernighan-Lin type heuristic as this type of algorithm is known to
be rather efficient at solving graph partitioning problems.

Choose a tripartition of {0...P}, Πref , and compute its violation Vref .
While (test =0):

Let test = 1, PossMove = P + 1 and Πcur = Πref .
Allow all possible moves to explore the neighbourhood of Πcur.
While (PossMove > 0):

Evaluate all partitions obtained by carrying out each of the allowed
moves in the neighbourhood of Πcur

Select the best partition obtained in this neighbourhood of Πcur,
Πbest, forbid the move used to obtain Πbest from Πcur, decrease
PossMove by 1 and set Πcur = Πbest

If Vbest > Vref , test = 0 and Πref = Πbest

The neighbourhood of a tripartition Π of {0...P} is defined as the set of tripar-
titions obtained by moving a single product from its current subset in Π to one of
the two other subsets. Moreover, in the computational experiments to be presented
in Sect. 5, five different types of partitions are used to initialize the heuristic.

4.3 Cutting-Plane Generation Algorithm

We now briefly describe the cutting-plane generation used to strengthen formu-
lation DLSPSD1 by adding to it some multi-product valid inequalities (9).

Compute the initial LP relaxation of the DLSPSD using formulation
DLSPSD1.
While (test = 0):

Denote (y, w) the solution of the current linear relaxation.
For t=1...T such that ∃p such that 0.0001 < ypt < 0.9999;

Let θ = t and found =0.
While (θ ≤ T ) and (found == 0),

Solve the separation problem for periods (t, θ) using either the exact
or the heuristic algorithm.
If a violated valid inequality has been found, let found = 1.
θ = θ + 1

If at least one violated valid inequality is found, add all the found
violated valid inequalities to the current formulation and compute its
LP relaxation.
Else set test = 1 to stop the cutting-plane generation.
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5 Computational Results

We now discuss the results of some preliminary computational experiments car-
ried out to evaluate the effectiveness of the proposed multi-product valid inequal-
ities at strengthening the formulation of the multi-product DLSPSD and to
assess their impact on the total computation time.

We randomly generated instances of the problem using a procedure similar
to the one described in [11] for the DLSP with sequence-dependent change-over
costs and times. More precisely, the various instances tested have the following
characteristics:

– Problem dimension. The problem dimension is represented by the number of
products P and the number of periods T : we solved medium-size instances
involving 4–10 products and 15–75 periods.

– Inventory holding costs. For each product, inventory holding costs have been
randomly generated from a discrete uniform DU(5, 10) distribution.

– Changeover costs. We used two different types of structure for the changeover
cost matrix S. Instances of sets A1–A7 have a general cost structure: the cost
of a changeover from product p to product q, Spq, was randomly generated
from a discrete uniform DU(100, 200) distribution. Instances of sets B1–B7
correspond to the frequently encountered case where products can be grouped
into product families: there is a high changeover cost between products of
different families and a smaller changeover cost between products belonging
to the same family. In this case, for products p and q belonging to differ-
ent product families, Spq was randomly generated from a discrete uniform
DU(100, 200) distribution; for products p and q belonging to the same prod-
uct family, Spq was randomly generated from a discrete uniform DU(0, 100)
distribution.

– Production capacity utilization. Production capacity utilization ρ is defined as
the ratio between the total cumulated demand (

∑P
p=1

∑T
t=1 dpt) and the total

cumulated available capacity (T ). We set ρ = 0.95 for all instances.
– Demand pattern. Binary demands dpt ∈ {0, 1} for each product have been

randomly generated according to the a procedure similare to the used by [11].

For each considered problem dimension, we generated 10 instances, leading
to a total of 140 instances.

All tests were run on an Intel Core i5 (2.7 GHz) with 4 GB of RAM, running
under Windows 7. We used a standard MILP software (CPLEX 12.5) with the
solver default settings to solve the problems with one of the following formula-
tions:

– DLPSD1: initial MILP formulation DLSPSD0, i.e. formulation (1)–(7), streng-
thened by single-product valid inequalities (8). We used a standard cutting-
plane generation strategy based on a complete enumeration of all possible
valid inequalities to add them into the formulation.
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– DLSPSD2e: formulation DLSPSD1 strengthened by multi-product valid in-
equalities (9). We used the cutting-plane generation algorithm presented in
Sect. 4.3 to add only the most violated valid inequalities and relied on the
exact separation algorithm discussed in Sect. 4.1.

– DLSPSD2h: formulation DLSPSD1 strengthened by multi-product valid in-
equalities (9). We used the cutting-plane generation algorithm presented in
Sect. 4.3 to add only the most violated valid inequalities and relied on the
heuristic separation algorithm discussed in Sect. 4.2.

Tables 1 and 2 display the computational results. We provide for each set of
10 instances:

– P and T : the number of products and planning periods involved in the pro-
duction planning problem.

– V and Cst: the number of variables and constraints in the initial formulation
DLSPSD0.

– SP : the number of single-product violated valid inequalities (8) added in the
three formulations.

– MPe and MPh: the number of multi-product violated valid inequalities added
in formulation DLSPSD2e by the exact separation algorithm and in formula-
tion DLSPSD2h by the heuristic separation algorithm.

– GapLP1 (resp. GapLP2e, GapLP2h): the average percentage gap between the
linear relaxation of formulation DLSPSD1 (resp. DLSPSD2e, DLSPSD2h) and
the value of an optimal integer solution.

– NIP1 (resp. NIP2e, NIP2h): the average number of nodes explored by the
Branch & Bound procedure before a guaranteed optimal integer solution is
found or the computation time limit of 2700 s is reached.

– TIP1 (resp. TIP2e, TIP2h): the total computation time (cutting-plane genera-
tion and Branch & Bound search) needed to find a guaranteed optimal integer
solution (we used the value of 2700s in case a guaranteed optimal integer solu-
tion could not be found within the computation time limit).

Results from Table 1 show that the proposed valid inequalities (9) are effi-
cient at strengthening formulation DLSPSD1. Namely, the integrality gap is

Table 1. Preliminary computational results: exact separation algorithm.

DLSPSD1 DLSPSD2e

P T V Cst SP GapLP1 NIP1 TIP1 MPe GapLP2e NIP2e TIP2e

A1 4 15 425 250 106 2.6 % 2 0.3s 9 0.0 % 0 38.5s

A2 6 15 840 315 108 0.9 % 0 0.3s 3 0.1 % 0 50.2s

A3 4 20 600 300 193 2.6 % 5 0.4s 13 0.1 % 0 2386.0s

B1 4 15 425 250 105 11.5 % 6 0.3s 12 0.02 % 0 51.2s

B2 6 15 840 315 107 5.3 % 1 0.3s 17 1.3 % 0 273.0s

B3 4 20 600 300 192 8.3 % 9 0.5s 20 0.3 % 2 3609.9s



248 C. Gicquel and M. Minoux

Table 2. Preliminary computational results: heuristic separation algorithm.

DLSPSD1 DLSPSD2h

P T V Cst SP GapLP1 NIP1 TIP1 MPh GapLP2h NIP2h TIP2h

A1 4 15 425 250 106 2.6 % 2 0.3s 9 0.0 % 0 0.1s

A2 6 15 840 315 108 0.9 % 0 0.3s 3 0.2 % 0 0.2s

A3 4 20 600 300 193 2.6 % 5 0.4s 15 0.2 % 0 0.3s

A4 6 25 1400 625 315 4.3 % 9 1.0s 27 0.7 % 4 1.0s

A5 6 50 2800 1050 1153 1.6 % 32 6.7s 20 0.9 % 11 4.7s

A6 10 50 6600 1650 1949 2.1 % 99 21.0s 51 1.1 % 30 22.7s

A7 8 75 6750 2025 2776 2.7 % 856 151.9s 23 2.5 % 660 147.5s

B1 4 15 425 250 105 11.5 % 6 0.3s 16 0.1 % 0 0.1s

B2 6 15 840 315 107 5.3 % 1 0.3s 10 2.1 % 1 0.3s

B3 4 20 600 300 192 8.3 % 9 0.5s 21 0.4 % 0 0.4s

B4 6 25 1400 625 307 9.2 % 13 1.2s 30 0.8 % 1 0.7s

B5 6 50 2800 1050 1248 12.2 % 1753 47.7s 48 9.5 % 983 37.6s

B6 10 50 6600 1650 1274 15.7 % 25937 901.0s 97 11.9 % 11284 496.0s

B7 8 75 6750 2015 2681 15.3 % 25015 1961.9s 53 10.7 % 22323 1904.7.0s

reduced from an average of 5.3 % with formulation DLSPSD1 (see GapLP1) to
an average of 0.3 % with formulation DLSPSD2e (see GapLP2e). We note that
this reduction is particularly significant for instances B1–B3 featuring a prod-
uct family changeover cost structure. Moreover this formulation strengthening
is obtained thanks to a relatively small number of multi-product inequalities as
can be seen from the average value of MPe (12). However, even if the number
of nodes needed by the Branch & Bound procedure to find a guaranteed optimal
solution is slightly reduced when using formulation DLSPSD2e, it does not lead
to an overall reduction of the computation time. This is mainly explained by the
fact that the cutting-plane generation algorithm based on an exact separation
algorithm requires prohibitively long computation times to identify the violated
multi-product valid inequalities to be added to the formulation. It is thus nec-
essary to resort to a heuristic separation algorithm such as the one proposed in
Sect. 4.2.

Comparison of the results obtained with the exact and the heuristic sepa-
ration algorithm for the instances A1–A3 and B1–B3 (Tables 1 and 2) shows
that the proposed heuristic is efficient at finding violated valid inequalities for
small size instances. Namely, the average integrality gap for these 60 instances
when using the heuristic algorithm is the GapLP2h = 0.5% which is close to
the one obtained when using the exact algorithm (GapLP2e = 0.3%). Moreover,
the number of violated valid inequalities found by the heuristic algorithm is
nearly the same as the number of violated valid inequalities found by the exact
algorithm.

Results from Table 2 also confirm that the proposed heuristic is rather effi-
cient at finding violated valid inequalities for larger instances. This can be seen
by looking at the results for instances A4–A7 and B4–B7. We first note that, for
these instances, the integrality gap is reduced from an average of 7.9 % while
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using formulation DLSPSD1 to an average of 4.7 % while using formulation
DLSPSD2h. Moreover a significant decrease in the overall computation time
is obtained for instances B4–B7 when using formulation DLSPSD2h.

6 Conclusions

We considered the multi-product discrete lot-sizing and scheduling problem with
sequence-dependent changeover costs and proposed a new family of multi-product
valid inequalities for this problem. This enabled us to better take into account
in the MILP formulation the conflicts between different products simultaneously
requiring production on the resource. We then presented both an exact and a
heuristic separation algorithm in order to identify the most violated valid inequal-
ities to be added in the initial MILP formulation within a cutting-plane generation
algorithm. Our preliminary results show that the proposed valid inequalities are
efficient at strengthening the MILP formulation and that their use leads to a signif-
icant reduction of the overall computation time for instances featuring a product
family changeover cost structure. Research work is currently ongoing in order to
extend the proposed heuristic separation algorithm so as to identify violated valid
inequalities from the whole family.
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