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Abstract. Evolution strategies belong to the best performing mod-
ern natural computing methods for continuous optimization. This paper
takes a new look at the covariance matrix adaptation, a mechanism which
is central to the algorithm. The adaptation focusses strongly on the sam-
ple covariance. However, as known from modern statistics, this estimate
may be of poor quality if certain conditions are not fulfilled. Unfortu-
nately, this is often the case in practice. This paper compares the estab-
lished methods for the covariance correction in evolution strategies with
the approaches in modern statistics. Furthermore, it introduces and eval-
uates new covariance correction schemes.

Keywords: Evolutionary algorithms · Continuous optimization · Evo-
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1 Introduction

Black-Box optimization is an important subcategory of optimization. Over the
years, several methods have been developed - ranging from simple pattern search
over mesh adaptive methods to natural computing, see e.g. [1,8,10]. This paper
focuses on evolution strategies (ESs) which represent well-performing meta-
heuristics for continuous, non-linear optimization. In recent workshops on black-
box optimization, see e.g. [15], variants of this particular subtype of evolutionary
algorithms have emerged as one the best performing methods among a broad
range of competitors stemming from natural computing. Evolution strategies
rely primarily on random changes to move through the search space. These ran-
dom changes, usually normally distributed random variables, must be controlled
by adapting both, the extend and the direction of the movements.

Modern evolution strategies apply therefore covariance matrix and step-size
adaptation – with great success. However, most methods use the common esti-
mate of the population covariance matrix as one component to guide the search.
Here, there may be room for further improvement, especially with regard to com-
mon application cases of evolution strategies which usually concern optimization
in high-dimensional search spaces. For efficiency reasons, the population size λ,
that is, the number of candidate solutions, is kept below the search space dimen-
sionality N and scales usually with O(log(N)) or with O(N). In other words,
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either λ � N or λ ≈ N which may represent a problem when using the sample
covariance matrix. This even more so, since the sample size used in the estima-
tion is just a fraction of the population size. Furthermore, the result is not robust
against outliers which may appear in practical optimization which has often to
cope with noise. This paper introduces and explores new approaches addressing
the first problem by developing a new estimate for the covariance matrix. To our
knowledge, these estimators have not been applied to evolution strategies before.

The paper is structured as follows: First, evolution strategies are introduced
and common ways to adapt the covariance matrix are described and explained.
Afterwards, we point out a potential dangerous weakness of the traditionally
used estimate of the population covariance. Candidates for better estimates
are presented and described in the following section. We propose and investi-
gate several approaches ranging from a transfer of shrinkage estimators over a
maximum entropy covariance selection principle to a new combination of both
approaches. The quality of the resulting algorithms is assessed in the experimen-
tal test section. Conclusions and possible further research directions constitute
the last part of the paper.

1.1 Evolution Strategies

Evolutionary algorithms (EAs) [10] are population-based stochastic search and
optimization algorithms including today genetic algorithms, genetic program-
ming, (natural) evolution strategies, evolutionary programming, and differential
evolution. As a rule, they require only weak preconditions on the function to be
optimized. Therefore, they are applicable in cases when only point-wise function
evaluations are possible.

An evolutionary algorithm starts with an initial population of candidate solu-
tions. The individuals are either drawn randomly from the search space or are
initialized according to previous information on good solutions. A subset of the
parent population is chosen for the creation of the offspring. This process is
termed parent selection. Creation normally consists of recombination and muta-
tion. While recombination combines traits from two or more parents, mutation
is an unary operator and is realized by random perturbations. After the offspring
have been created, survivor selection is performed to determine the next parent
population. Evolutionary algorithms differ in the representation of the solutions
and in the realization of the selection, recombination, and mutation operators.

Evolution strategies (ESs) [20,22] are a variant of evolutionary algorithms
that is predominantly applied in continuous search spaces. Evolution strategies
are commonly notated as (μ/ρ, λ)-ESs. The parameter μ stands for the size
of the parent population. In the case of recombination, ρ parents are chosen
randomly and are combined for the recombination result. While other forms
exist, recombination usually consists of determining the weighted mean of the
parents [4]. The result is then mutated by adding a normally distributed random
variable with zero mean and covariance matrix σ2C. While there are ESs that
operate without recombination, the mutation process is essential and can be seen
as the main search operator. Afterwards, the individuals are evaluated using the
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function to be optimized or a derived function which allows an easy ranking of
the population. Only the rank of an individual is important for the selection.

There are two main types of evolution strategies: Evolution strategies with
“plus”-selection and ESs with “comma”-selection. The first select the μ-best
offspring and parents as the next parent population, where ESs with “comma”-
selection discard the old parent population completely and take only the best
offspring. Methods for adapting the scale factor σ or the full covariance matrix
have received a lot of attention (see [19]). The main approaches are described in
the following section.

1.2 Covariance Matrix Adaptation

First, the update of the covariance matrix is addressed. In evolution strate-
gies two types exist: one applied in the covariance matrix adaptation evolution
strategy (CMA-ES) [14] which considers past information from the search and
an alternative used by the covariance matrix self-adaptation evolution strategy
(CMSA-ES) [5] which focusses more on the present population.

The covariance matrix update of the CMA-ES is explained first. The CMA-
ES uses weighted intermediate recombination, in other words, it computes the
weighted centroid of the μ best individuals of the population. This mean m(g) is
used for creating all offspring by adding a random vector drawn from a normal
distribution with covariance matrix (σ(g))2C(g), i.e., the actual covariance matrix
consists of a general scaling factor (or step-size or mutation strength) and the
matrix denoting the directions. Following usual notation in evolution strategies
this matrix C(g) will be referred to as covariance matrix in the following.

The basis for the CMA update is the common estimate of the covariance matrix
using the newly created population. Instead of considering the whole population
for deriving the estimates, though, it introduces a bias towards good search regions
by taking only the μ best individuals into account. Furthermore, it does not esti-
mate the mean anew but uses the weighted mean m(g). Following [14],

y(g+1)
m:λ :=

1
σ(g)

(
x(g+1)

m:λ − m(g)
)

(1)

are determined with xm:λ denoting the mth best of the λ particle according to
the fitness ranking. The rank-μ update the obtains the covariance matrix as

C(g+1)
μ :=

μ∑
m=1

wmy(g+1)
m:λ (y(g+1)

m:λ )T (2)

To derive reliable estimates larger population sizes are usually necessary which
is detrimental with regard to the algorithm’s speed. Therefore, past information,
that is, past covariance matrizes are usually also considered

C(g+1) := (1 − cμ)C(g) + cμC(g+1)
μ (3)

with parameter 0 ≤ cμ ≤ 1 determining the effective time-horizon. In CMA-
ESs, it has been found that an enhance of the general search direction in the
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covariance matrix is usual beneficial. For this, the concepts of the evolutionary
path and the rank-one-update are introduced. As its name already suggests, an
evolutionary path considers the path in the search space the population has
taken so far. The weighted means serve as representatives. Defining

v(g+1) :=
m(g+1) − m(g)

σ(g)

the evolutionary path reads

p(g+1)
c := (1 − cc)p(g)

c +
√

cc(2 − cc)μeff

(m(g+1) − m(g)

σ(g)

)
. (4)

For details on the parameters, see e.g. [12]. The evolutionary path gives a general
search direction that the ES has taken in the recent past. In order to bias the
covariance matrix accordingly, the rank-one-update

C(g+1)
1 := p(g+1)

c (p(g+1)
c )T (5)

is performed and used as a further component of the covariance matrix. A normal
distribution with covariance C(g+1)

1 leads towards a one-dimensional distribution
on the line defined by p(g+1)

c . With (5) and (3), the final covariance update of
the CMA-ES reads

C(g+1) := (1 − c1 − cμ)C(g) + c1C
(g+1)
1 + cμC(g+1)

μ . (6)

The CMA-ES is one of the most powerful evolution strategies. However, as
pointed out in [5], its scaling behavior with the population size is not good.
The alternative approach of the CMSA-ES [5] updates the covariance matrix
differently. Considering again the definition (1), the covariance update is a con-
vex combination of the old covariance and the population covariance, i.e., the
rank-μ update

C(g+1) := (1 − 1
cτ

)C(g) +
1
cτ

μ∑
m=1

wmy(g+1)
m:λ (y(g+1)

m:λ )T (7)

with the weights usually set to wm = 1/μ. See [5] for information on the free
parameter cτ .

1.3 Step-Size Adaptation

The CMA-ES uses the so-called cumulative step-size adaptation (CSA) to control
the scaling parameter (also called step-size, mutation strength or step-length) [12].
To this end, the CSA determines again an evolutionary path by summating the
movement of the population centers

p(g+1)
σ = (1 − cσ)p(g)

σ +
√

cσ(2 − cσ)μeff(C(g))− 1
2
m(g+1) − m(g)

σ(g)
(8)
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eliminating the influence of the covariance matrix and the step length. For a
detailed description of the parameters, see [12]. The length of the path in (8)
is important. In the case of short path lengths, several movement of the cen-
ters counteract each other which is an indication that the step-size is too large
and should be reduced. If on the other hand, the ES takes several consecutive
steps in approximately the same direction, progress and algorithm speed would
be improved, if larger changes were possible. Long path lengths, therefore, are
an indicator for a required increase of the step length. Ideally, the CSA should
result in uncorrelated steps.

After some calculations, see [12], the ideal situation is revealed as standard
normally distributed steps, which leads to

ln(σ(g+1)) = ln(σ(g)) +
cσ

dσ

(‖p(g+1)
σ ‖ − μχn

μχn

)
(9)

as the CSA-rule. The change is multiplicative in order to avoid numerical prob-
lems and results in non-negative scaling parameters. The parameter μχn

in (9)
stands for the mean of the χ-distribution with n degrees of freedom. If a random
variable follows a χ2

n distribution, its square root is χ-distributed. The degrees
of freedom coincide with the search space dimension. The CSA-rule works well
in many application cases. It can be shown, however, that the original CSA
encounter problems in large noise regimes resulting in a loss of step-size con-
trol and premature convergence. Therefore, uncertainty handling procedures and
other safeguards are advisable.

An alternative approach for adapting the step-size is self-adaptation first
introduced in [20] and developed further in [22]. It subjects the strategy para-
meters of the mutation to evolution. In other words, the scaling parameter or
in its full form, the whole covariance matrix, undergoes recombination, muta-
tion, and indirect selection processes. The working principle is based on an indi-
rect stochastic linkage between good individuals and appropriate parameters:
On average good parameters should lead to better offspring than too large or
too small values or misleading directions. Although self-adaptation has been
developed to adapt the whole covariance matrix, it is used nowadays mainly to
adapt the step-size or a diagonal covariance matrix. In the case of the mutation
strength, usually a log-normal distribution

σ
(g)
l = σbaseexp(τN (0, 1)) (10)

is used for mutation. The parameter τ is called the learning rate and is usually
chosen to scale with 1/

√
2N . The variable σbase is either the parental scale

factor or the result of recombination. For the step-size, it is possible to apply
the same type of recombination as for the positions although different forms –
for instance a multiplicative combination – could be used instead. The self-
adaptation of the step-size is referred to as σ-self -adaptation (σSA) in the
remainder of this paper.

The newly created mutation strength is then directly used in the mutation
of the offspring. If the resulting offspring is sufficiently good, the scale factor is
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passed to the next generation. The baseline σbase is either the mutation strength
of the parent or if recombination is used the recombination result. Self-adaptation
with recombination has been shown to be “robust” against noise [3] and is used
in the CMSA-ES as update rule for the scaling factor. In [5] it was found that
the CMSA-ES performs comparably to the CMA-ES for smaller populations but
is less computational expensive for larger population sizes.

2 Concerning the Covariance Estimator

The covariance matrix Cμ which appears in (2) and (7) can be interpreted as the
sample covariance matrix with sample size μ. Two differences are present. The
first using μ instead of μ−1 can be explained by using the known mean instead of
an estimate. The second lies in the non-identically distributed random variables
of the population since order statistics appear. We will disregard that problem
for the time being.

In the case of identically independently distributed random variables, the
estimate converges almost surely towards the “true” covariance Σ for μ → ∞.
In addition, the sample covariance matrix is related (in our case equal) to the
maximum likelihood (ML) estimator of Σ. Both facts serve a justification to
take Cμ as the substitute for the unknown true covariance for large μ. However,
the quality of the estimate can be quite poor if μ < N or even μ ≈ N .

This was first discovered by Stein [23,24]. Stein’s phenomenon states that
while the ML estimate is often seen as the best possible guess, its quality may
be poor and can be improved in many cases. This holds especially for high-
dimensional spaces. The same problem transfers to covariance matrix estimation,
see [21]. Also recognized by Stein, in case of small ratios μ/N the eigenstructure
of Cμ may not agree well with the true eigenstructure of Σ. As stated in [17],
the largest eigenvalue has a tendency towards too large values, whereas the
smallest shows the opposite behavior. This results in a larger spectrum of the
sample covariance matrix with respect to the true covariance for N/μ 	→ 0 for
μ,N → ∞ [2]. As found by Huber [16], a heavy tail distribution leads also to a
distortion of the sample covariance.

In statistics, considerable efforts have been made to find more reliable and
robust estimates. Owing to the great inportance of the covariance matrix in data
mining and other statistical analyses, work is still ongoing. The following section
provides a short introduction before focussing on the approach used for evolution
strategies.

3 Approaches for Estimating the Covariance

As stated above, the estimation of high-dimensional covariance matrices has
received a lot of attention, see e.g. [6]. Several types have been introduced, for
example: shrinkage estimators, banding and tapering estimators, sparse matrix
transform estimators, and the graphical Lasso estimator. This paper concen-
trates on shrinkage estimators and on an idea inspired by a maximum entropy
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approach. Both classes can be computed comparatively efficiently. Future resea-
rch will consider other classes of estimators.

3.1 Shrinkage Estimators

Most (linear) shrinkage estimators use the convex combination

Sest(ρ) = ρF + (1 − ρ)Cμ (11)

with F the target to correct the estimate provided by the sample covariance.
The parameter ρ ∈]0, 1[ is called the shrinkage intensity. Equation (11) is used
to shrink the eigenvalues of Cμ towards the eigenvalues of F. The shrinkage
intensity ρ should be chosen to minimize

E
(
‖Sest(ρ) − Σ‖2

F

)
(12)

with ‖ · ‖2
F denoting the squared Frobenius norm with

‖A‖2
F =

1
N

Tr
[
AAT

]
, (13)

see [17]. To solve this problem, knowledge of the true covariance Σ would be
required which is usually unobtainable.

Starting from (12), Ledoit and Wolf obtained an analytical expression for
the optimal shrinkage intensity for the target F = Tr(Cμ)/N I. The result does
not make assumptions on the underlying distribution. In the case of μ ≈ N or
vastly different eigenvalues, the shrinkage estimator does not differ much from
the sample covariance matrix, however.

Other authors introduced different estimators, see e.g. [7] or [6]). Ledoit and
Wolfe themselves considered non-linear shrinkage estimators [18]. Most of the
approaches require larger computational efforts. In the case of the non-linear
shrinkage, for example, the authors are faced with a non-linear, non-convex opti-
mization problem, which they solve by using sequential linear programming [18].
A general analytical expression is unobtainable, however.

Shrinkage estimators and other estimators aside from the standard case have
not been used in in evolution strategies before. A literature review resulted in one
application in the case of Gaussian based estimation of distribution algorithms
albeit with quite a different goal [9]. There, the learning of the covariance matrix
during the run lead to non positive definite matrices. A shrinkage procedure was
applied to “repair” the covariance matrix towards the required structure. The
authors used a similar approach as in [17] but made the shrinkage intensity
adaptable.

Interestingly, (3), (6), and (7) of the ES algorithm can be interpreted as a
special case of shrinkage. In the case of the CMSA-ES, for example, the esti-
mate is shrunk towards the old covariance matrix. The shrinkage intensity is
determined by

cτ = 1 +
N(N + 1)

2μ
(14)
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as ρ = 1 − 1/cτ . As long as the increase of μ with the dimensionality N is
below O(N2), the coefficient (14) approaches infinity for N → ∞. Since the
contribution of the sample covariance to the new covariance in (7) is weighted
with 1/cτ , its influence fades out for increasing dimensions. It is the aim of the
paper to investigate whether a further shrinkage can improve the result.

Transferring shrinkage estimators to ESs must take the situation in which the
estimation occurs into account since it differs from the assumptions in statistical
literature. The covariance matrix Σ = Cg−1 that was used to create the offspring
is known. The sample is based on rank-based selection, however, which differs
from the iid case usually considered. Only if there were no selection pressure,
the sample x1, . . . ,xμ would represent normally distributed random variables.
In this context, it is interesting to note that the argumentation in [12] with
respect to the setting of the CMA-ES parameter argues to choose the parameter
so that the distribution of the random variables remains unchained as long as
no selection pressure occurs. In other words, if p(g) ∼ N (0,C(g)) then also
p(g+1) for both evolution paths, (4) and (8). However, due to sampling and using
the covariance estimate, larger deviations may occur. Applying shrinkage could
improve the situation. However, the choice of the target remains. Most shrinkage
approaches consider diagonal matrices as shrinkage targets. If we were following
that approach, we could choose the matrix F = diag(Cμ). This would leave
the diagonal elements of the sample covariance matrix unchanged decreasing
only the off-diagonal entries. However, a shrinkage towards a diagonal does not
appear to be a good idea for optimizing functions that are not oriented towards
the coordinate system.

3.2 A Maximum Entropy Covariance Estimation

Therefore, we make use of another concept following [25]. Confronted with the
problem of determining a reliable covariance matrix by combining a sample
covariance matrix with a pooled variance matrix, the authors introduced a max-
imum entropy covariance selection principle. Since a combination of covariance
matrices also appears in evolution strategies, a closer look at their approach is
interesting. Defining a population matrix Cp and the sample covariance matrix
Si, the mixture

Smix(η) = ηCp + (1 − η)Si (15)

was considered. In departure from usual approaches, focus lay on the combina-
tion of the two matrixes that maximizes the entropy. To this end, the coordinate
system was changed to the eigenspace of Smix = Cp +(1− η)Si. Let MS denote
the (normalized) eigenvectors of the mixture matrix. The representations of Cp

and Si in this coordination system read

ΦC = MT
SCpMS

ΦS = MT
SSiMS . (16)
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Both matrices are usually not diagonal. To construct the new estimate for the
covariance matrix,

ΛC = diag(ΦC)
ΛS = diag(ΦS) (17)

were determined. By taking λi = max(λC
i , λS

i ), a covariance matrix estimate
could finally be constructed via MSΛMT

S . The approach maximizes the possible
contributions to the principal direction of the mixture matrix and is based on a
maximum entropy derivation for the estimation.

3.3 New Covariance Estimators

This paper proposes a combination of a shrinkage estimator and the basis trans-
formation introduced [25] for a use in evolution strategies. This paper focuses on
the CMSA-ES. The aim is to switch towards a suitable coordinate system and
then either to discard the contributions of the sample covariance that are not
properly aligned or to shrink the off-diagonal components. Two choices for the
mixture matrix represent themselves. The first

Smix = Cg + Cμ (18)

is be chosen in accordance to [25]. The second takes the covariance result that
would have been used in the original CMSA-ES

Smix = (1 − cτ )Cg + cτCμ (19)

and introduces a single step recursion which may be more appropriate for small
population sizes. Both choices will be investigated in this paper. They in turn can
be coupled with several further ways to proceed and to construct the new covari-
ance matrix. Switching towards the eigenspace of Smix, results in the covariance
matrix representations Φμ := MT

SCμMS and ΦΣ := MT
SC

gMS .

1. The first approach for constructing a new estimate of the sample covariance
is to apply the principle of maximal contribution to the axes from [25] and
to determine

Λμ = max
(
diag(Φμ),diag(ΦΣ)

)
(20)

The sample covariance matrix can then be computed as C′
μ = MSΛμMT

S .
2. Another approach would be to discard all entries of Φμ except the diagonal

Λμ = diag(Φμ) (21)

3. A third approach consists of applying a shrinkage estimator like

ΦS
μ = (1 − ρ)Φμ + ρdiag(Φμ). (22)

This approach does not discard the off-diagonal entries completely. The shrink-
age intensity ρ remains to be determined.
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4 Experimental Evaluation

This section describes the experiments that were performed to explore the new
approaches. For our investigation, the CMSA-ES version is considered since it
operates just with the population covariance matrix and effects from changing
the estimate should be easier to discerned. The competitors consist of algorithms
which use shrinkage estimators as defined in (18) to (22). This code is not opti-
mized for performance with respect to absolute computing time, since this paper
aims at a proof of concept. The experiments are performed for the search space
dimensions N = 2, 5, 10, and 20. The maximal number of fitness evaluations is
FEmax = 2 × 104N . The CMSA-ES versions use λ = �log(3N) + 8 offspring
and μ = �λ/4� parents. The start position of the algorithms is randomly chosen
from a normal distribution with mean zero and standard deviation of 0.5. A run
terminates prematurely if the difference between the best value obtained so far
and the optimal fitness value |fbest − fopt| is below a predefined precision set to
10−8. For each fitness function and dimension, 15 runs are used.

4.1 Test Suite

The experiments are performed with the black box optimization benchmarking
(BBOB) software framework and the test suite introduced for the black box
optimization workshops, see [13]. The aim of the workshop is to benchmark
and compare metaheuristics and other direct search methods for continuous
optimization. The framework allows the plug-in of algorithms adhering to a
common interface and provides a comfortable way of generating the results in
form of tables and figures.

The test suite contains noisy and noise-less functions with the position of the
optimum changing randomly from run to run. This paper focuses on the 24 noise-
less functions [11]. They can be divided into four classes: separable functions (func-
tion ids 1–5), functions with low/moderate conditioning (ids 6–9), functions with
high conditioning (ids 10–14), and two groups of multimodal functions (ids 15–24).

4.2 Performance Measure

The following performance measure is used in accordance to [13]. The expected
running time (ERT) gives the expected value of the function evaluations (f -
evaluations) the algorithm needs to reach the target value with the required
precision for the first time, see [13]. In this paper, we use

ERT =
#(FEs(fbest ≥ ftarget))

#succ
(23)

as an estimate by summing up the fitness evaluations FEs(fbest ≥ ftarget) of
each run until the fitness of the best individual is smaller than the target value,
divided by all successfull runs (Fig. 1).
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4.3 Results and Discussion

Due to space restrictions, Figure 3 and Table 1 and Fig. 2 show only the results
from the best experiments which were achieved for the variant which used (22)
together with (19) as the transformation matrix (called CMSA-shr-ES in the
following). First of all, it should be noted that there is no significant advantage
to either algorithm for the test suite functions. Table 1 and Fig. 2 show the ERT
loss ratio with respect to the best result from the BBOB 2009 workshop for
predefined budgets given in the first column. The median performance of both
algorithms improves with the dimension until the budget of 103 – which is inter-
esting. An increase of the budget goes along with a decreased performance which
is less pronounced for the CMSA-shr-ES in the case of the larger dimensional
space. This indicates that the CMSA-shr-ES may perform more favorable in
larger search spaces as envisioned. Further experiments which a larger maximal
number of fitness evaluations and larger dimensional spaces will be conducted
which should shed more light on the behavior. Furthermore, the decrease in
performance with the budget hints at a search stagnation probably due to con-
vergence into local optima. Restart strategies may be beneficial, but since they
have to be fitted to the algorithms, we do not apply them in the present paper.

Figure 3 shows the expected running time for reaching the precision of 10−8

for all 24 functions and search space dimensionalities. In the case of the sepa-
rable functions (1–5), both algorithms show a very similar behavior, succeed-
ing in optimizing the first two functions and exhibiting difficulties in the case
of the difficult rastrigin variants. On the linear slope, the original CMSA-ES
shows fewer expected function evaluations for smaller dimensions which starts
to change when the dimensionality is increased. For the functions with ids 6–9,
with moderate condition numbers, there are advantages to the CMSA-shr-ES,
with the exception of the rotated rosenbrock (9). Most of the functions with high
conditioning, ids 10–12, and 14, can be solved by both variants with slightly bet-
ter results for the CMSA-ES. The sharp ridge (id 13) appears as problematic,
with the CMSA-shr-ES showing fewer fitness evaluations for hitting the various
precisions goals in Table 1.

Interestingly, the CMSA-shr variant seems to perform better for the difficult
multimodal functions, e.g., Gallaghers 101 peak function, a finding which should
be explored in more detail. The results for the last two multimodal functions can
be explained in part in that the computing resources were insufficient for the
optimization. Even the best performing algorithms from the BBOB workshop
needed more resources than we used in our experiments.

Further experiments will be conducted in order to shed more light on the
behavior. Special attention will be given to the choice of the shrinkage factor,
since its setting is unlikely to be optimal and may have influenced the outcome
strongly. Furthermore, the question remains whether the population size should
be increased for the self-adaptation process. Also, larger search space dimension-
alities than N = 20 are of interest.
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Fig. 1. The CMSA-shr-ES. ERT loss ratio (in number of f -evaluations divided by
dimension) divided by the best ERT seen in GECCO-BBOB-2009 for the target ftar-
get, or, if the best algorithm reached a better target within the budget, the budget
divided by the best ERT. Line: geometric mean. Box-Whisker error bar: 25–75 %-ile
with median (box), 10–90 %-ile (caps), and minimum and maximum ERT loss ratio
(points). The vertical line gives the maximal number of function evaluations in a single
trial in this function subset.

Fig. 2. The CMSA-ES. ERT loss ratio (in number of f -evaluations divided by dimen-
sion) divided by the best ERT seen in GECCO-BBOB-2009 for the target ftarget, or,
if the best algorithm reached a better target within the budget, the budget divided by
the best ERT. Line: geometric mean. Box-Whisker error bar: 25–75 %-ile with median
(box), 10–90 %-ile (caps), and minimum and maximum ERT loss ratio (points). The
vertical line gives the maximal number of function evaluations in a single trial in this
function subset.
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Fig. 3. Expected running time ERT in number of f -evaluations) divided by dimension
for target function value as log10 values versus dimension. Different symbols corre-
spond to different algorithms given in the legend of f1 and f24. Light symbols give
the maximum number of function evaluations from the longest trial divided by dimen-
sion. Horizontal lines give linear scaling, slanted dotted lines give quadratic scaling.
Black stars indicate statistically better result compared to all other algorithms with
p < 0.01 and Bonferroni correction number of dimensions (six). Legend: .1: CMSA-S
is CMSA-shr-ES and 2: CMSA is CMSA-ES.
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Table 1. ERT in number of function evaluations divided by the best ERT mea-
sured during BBOB-2009 given in the respective first row with the central 80 % range
divided by two in brackets for different Δf values. #succ is the number of trials that
reached the final target fopt+10−8. 1:CMSA-S is CMSA-shr-ES and 2:CMSA is CMSA-
ES. Bold entries are statistically significantly better compared to the other algorithm,
with p = 0.05 or p = 10−k where k ∈ {2, 3, 4, . . .} is the number following the � sym-
bol, with Bonferroni correction of 48. A ↓ indicates the same tested against the best
BBOB-2009. 1: CMSA-S is CMSA-shr-ES and 2: CMSA is CMSA-ES.
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5 Conclusions

Evolution strategies are well performing variants of evolutionary algorithms used
in continuous optimization. They ultilize normally distributed mutations as their
main search procedure. Their performance depends on the control of the muta-
tion process which is governed by adapting step-sizes and covariance matrices.
One possible improvement concerns the covariance matrix adaptation which
makes use of the sample covariance matrix. In statistical research, this esti-
mate has been identified as not agreeing well with the true covariance for the
case of large dimensional spaces and small sample sizes, or more correctly for
sample sizes that do not increase sufficiently fast with the dimensionality.

While modern approaches for covariance matrix adaptation correct the esti-
mate, the question arises whether the performance of these evolutionary algo-
rithms may be further improved by applying other estimators for the covariance.

This paper took a closer look at covariance estimation in evolution strategies
and provided a comparison with approaches in modern statistics. Furthermore,
it introduced and discussed new adaptation schemes for use in optimization. In
cases, where the fitness function requires highly different eigenvalues and a rota-
tion other than the cartesian coordinate system. Therefore, a switch towards the
eigenspace of the covariance matrix was proposed in this paper and investigated
in experiments on the BBOB test suite. While work remains to be done, this
paper provided an important first step on the way.
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