
123

Eric Pinson
Fernando Valente
Begoña Vitoriano (Eds.)

Third International Conference, ICORES 2014
Angers, France, March 6–8, 2014
Revised Selected Papers

Operations Research
and Enterprise Systems

Communications in Computer and Information Science 509



Communications
in Computer and Information Science 509

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Cosenza, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Dominik Ślęzak
University of Warsaw and Infobright, Warsaw, Poland

Takashi Washio
Osaka University, Osaka, Japan

Xiaokang Yang
Shanghai Jiao Tong University, Shangai, China



More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899


Eric Pinson • Fernando Valente
Begoña Vitoriano (Eds.)

Operations Research
and Enterprise Systems
Third International Conference, ICORES 2014
Angers, France, March 6–8, 2014
Revised Selected Papers

123



Editors
Eric Pinson
IMA, LISA
Angers
France

Fernando Valente
Polytechnic Institute of Setúbal
Setúbal
Portugal

Begoña Vitoriano
Complutense University
Madrid
Spain

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-17508-9 ISBN 978-3-319-17509-6 (eBook)
DOI 10.1007/978-3-319-17509-6

Library of Congress Control Number: 2015937937

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

The present book includes extended and revised versions of a set of selected papers from
the Third International Conference on Operations Research and Enterprise Systems
(ICORES 2014), held in ESEO, Angers, Loire Valley, France, during March 6–8, 2014,
which was organized by the Institute for Systems and Technologies of Information,
Control, and Communication (INSTICC) and held in cooperation with the ACM Special
Interest Group on Applied Computing (ACM SIGAPP). ICORES is also technically
cosponsored by the Portuguese Association of Operational Research (Apdio).

The purpose of the International Conference on Operations Research and Enterprise
Systems (ICORES) is to bring together researchers, engineers, and practitioners
interested in the theory and applications in the advances and applications in the field of
operations research. Two simultaneous tracks were held, covering on one side domain-
independent methodologies and technologies and on the other side practical work
developed in specific application areas.

ICORE 2014 received 96 paper submissions from 31 countries, in all continents. To
evaluate each submission, a double-blind paper review was performed by the Program
Committee, whose members are highly qualified researchers in ICORES topic areas.
Based on the classifications provided, only 38 papers were selected for oral presentation
(20 full papers and 18 short papers) and 21 papers were selected for poster presentation.
The full paper acceptance ratio was about 21% and the total oral acceptance ratio
(including full papers and short papers) was 40%. These strict acceptance ratios show the
intention to preserve a high-quality forum which we expect to develop further next year.

We would like to highlight that ICORES 2014 included also three plenary keynote
lectures given by internationally distinguished researchers, namely: Nicolas Zufferey
(University of Geneva, Switzerland), Marie-Christine Costa (ENSTA - ParisTech,
France), and Paul Williams (London School of Economics, UK).

We would like to express our appreciation to all of them and in particular to those
who took the time to contribute with a paper to this book.

We must thank the authors, whose research and development efforts are recorded
here. We also thank the keynote speakers for their invaluable contribution and for
taking the time to synthesize and prepare their talks. Finally, special thanks to all the
members of the INSTICC team, whose collaboration was fundamental for the success
of this conference.

October 2014 Eric Pinson
Fernando Valente
Begoña Vitoriano
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Learning Tabu Search for Combinatorial
Optimization

Nicolas Zufferey1(B) and David Schindl2

1 Geneva School of Economics and Management, GSEM, University of Geneva,
Blvd du Pont-d’Arve 40, 1211 Geneva, Switzerland

n.zufferey@unige.ch
2 Geneva School of Business Administration, Rte de Drize 7,

1227 Carouge, Switzerland
david.schindl@hesge.ch

Abstract. In this paper, a new type of local search algorithm is pro-
posed, called Learning Tabu Search and denoted LTS. It is assumed that
any solution of the considered problem can be represented with a list
of characteristics. LTS involves a learning process relying on a trail sys-
tem. The trail system is based on the idea that if some combinations of
characteristics often belong to good solutions during the search process,
such combinations of characteristics should be favored when generating
new solutions. It will be showed that LTS obtained promising results on
a refueling problem in a railway network.

Keywords: Tabu search · Combinatorial optimization · Learning process

1 Introduction

As exposed in [9], modern methods for solving complex optimization problems
are often divided into exact methods and metaheuristic methods. An exact
method guarantees that an optimal solution will be obtained in a finite amount
of time. Among the exact methods are branch-and-bound, dynamic program-
ming, Lagrangian relaxation based methods, and linear and integer program-
ming based methods [6]. However, for a large number of applications and most
real-life optimization problems, which are typically NP-hard [3], such methods
need a prohibitive amount of time to find an optimal solution. For these difficult
problems, it is preferable to quickly find a satisfying solution. If solution quality
is not a dominant concern, then a simple heuristic can be employed, while if
quality occupies a more critical role, then a more advanced metaheuristic proce-
dure is warranted. There are mainly two classes of metaheuristics: local search
and population based methods. The former type of algorithm works on a sin-
gle solution (e.g., descent local search, simulated annealing, tabu search, and
variable neighborhood search), while the latter makes a population of solutions
evolve (e.g., genetic algorithms, scatter search, ant colonies, adaptive memory
algorithms). At each iteration of a local search, a neighbor solution is generated
c© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-17509-6 1



4 N. Zufferey and D. Schindl

from the current solution by performing a modification on the current solu-
tion, called a move. The reader interested in a recent book on metaheuristics is
referred to [4].

In this work is proposed a generalized version of the learning tabu search
(LTS) proposed in [8]. LTS is a new type of local search algorithm, easy to
adapt within the tabu search framework. It is assumed that any solution of the
considered problem can be represented with a list of characteristics. LTS involves
a learning process relying on a trail system. The trail system is based on the
idea that if some combinations of characteristics often belong to good solutions
during the search process, such combinations of characteristics should be favored
when generating new solutions.

This paper is organized as follows. In Sect. 2 is proposed and discussed a
generic version of LTS. In Sect. 3, a successful adaptation of LTS is described for
a refueling problem in a railway network. The paper ends up with a conclusion in
Sect. 4, where LTS is positioned according to the main existing metaheuristics.

2 Learning Tabu Search (LTS)

In this section are formally presented the general framework of local search
techniques, the descent local search, tabu search, and LTS, which is a tabu
search involving a learning process relying on a trail system.

Let f be an objective function which has to be minimized. At each step of
a local search, a neighbor solution s′ is generated from the current solution s by
performing a specific modification on s, called a move. All solutions obtained
from s by performing a move are called neighbor solutions of s. The set of all
the neighbor solutions of s is denoted N(s). First, a local search needs an ini-
tial solution s0 as input. Then, the algorithm generates a sequence of solutions
s1, s2, . . . in the search space such that sr+1 ∈ N(sr). The process is stopped for
example when an optimal solution is found (if it is known), or when a time limit
is reached. Famous local search algorithms are: the descent method (where at
each step, the best move is performed and the process stops when a local opti-
mum is reached), simulated annealing, variable neighborhood search, and tabu
search. Note that to escape from a local optimum, in tabu search, when a move
is performed from a current solution sr to a neighbor solution sr+1, it is forbid-
den to perform the reverse of that move during tab (parameter) iterations. Such
forbidden moves are called tabu moves. Formally, the solution sr+1 is computed
as sr+1 = arg min

s∈N ′(sr)
f(s), where N ′(s) is a subset of N(s) containing solutions

which can be obtained from s by performing a non tabu move. Many variants of
this basic tabu search algorithm can be found in [5]. More generally, the reader
is referred to [4] for a recent book on metaheuristics, and to [9] for guidelines to
efficiently design a metaheuristic.

A tabu search with a learning process relying on a trail system is now pro-
posed and denoted LTS. Let (P) be the problem under consideration. It is
assumed that C = {c1, c2, . . . , cN} is the set of all the possible characteristics
(i.e. specific features or attributes) of solutions of (P). Further, it is assumed that
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any solution of (P) with n characteristics can be denoted s = {c(1), c(2), . . . , c(n)},
where c(i) is the ith characteristic of solution s. Therefore, with each solution
s can be associated a set IN(s) (resp. OUT (s)) of characteristics which belong
(resp. do not belong) to s. If s can be represented with a vector of size n, then c(i)
could simply be the ith component of the vector. At each iteration, in order to
generate a neighbor solution s′ of the current solution s, a basic move m consists
in one of the following options: (1) add a characteristic c to s (i.e. move c from
OUT (s) to IN(s), which is denoted m(c+)), (2) drop a characteristic c from s
(i.e. move c from IN(s) to OUT (s), which is denoted m(c−)), (3) switch two
characteristics c and c′ between IN(s) and OUT (s) (i.e. move c from OUT (s)
to IN(s) and move c′ from IN(s) to OUT (s), which is denoted m(c ↔ c′)).
The straightforward notation s′ = s + m can thus be used. Then, it is forbidden
(i.e. tabu) to perform the reverse move for tab (parameter) iterations. More pre-
cisely: (1) if m(c+) is performed, it is forbidden to perform m(c−); (2) if m(c−)
is performed, it is forbidden to perform m(c+); (3) if m(c ↔ c′) is performed, it
is forbidden to perform m(c′ ↔ c).

The trail system relies on the idea that if some combinations of characteris-
tics often belong to good solutions during the search process, such combinations
of characteristics should be favored when generating new solutions. If one consid-
ers combinations of k characteristics, the trail tr(c(i1), c(i2), . . . , c(ik)) associated
with characteristics c(i1), c(i2), . . . , c(ik) indicates if it is a good idea to have such k
characteristics together in a solution, according to the observation of the history
of the search.

Let Πn
k (s) be the set of all possible combinations of k characteristics of a solu-

tion s containing n > k characteristics. Consider that s′ = s+m. The trail Tr(s′)
associated with solution s′ can be defined as follows: (1)

∑
π∈Πn

k−1(s)
tr(c, π)

if m(c+) is considered; (2) −∑
π∈Πn

k−1(s)
tr(c, π) if m(c−) is considered;

(3)
∑

π∈Πn
k−1(s)

tr(c, π) − ∑
π∈Πn

k (s) tr(c′, π) if m(c ↔ c′) is considered. For
instance, one can remark that if Tr(s′) associated with a move m(c+) is large,
it means that c is in average attracted by the characteristics of the current solu-
tion s (because it was often observed in the past that the combination of c with
k − 1 characteristics of s leads averagely to good solutions).

The updating of the trail values is now discussed. Let ρ ∈ [0, 1] be a para-
meter representing an evaporation coefficient. A cycle of size I (parameter) is
defined as a sequence of I iterations of tabu search. Every I iterations, the
best solution ŝ of the last cycle is used to update the trail system as follows:
tr(c(i1), c(i2), . . . , c(ik)) = ρ · tr(c(i1), c(i2), . . . , c(ik)) + Δtr(c(i1), c(i2), . . . , c(ik)),
where Δtr(c(i1), c(i2), . . . , c(ik)) is a reinforcement term proportional to the qual-
ity of ŝ if the k characteristics c(i1), c(i2), . . . , c(ik) appear in ŝ, and Δtr(c(i1),
c(i2), . . . , c(ik)) = 0 otherwise. An alternative would be to say that Δtr(c(i1),
c(i2), . . . , c(ik)) is proportional to: (1) the number of times that characteris-
tics c(i1), c(i2), . . . , c(ik) jointly appear in the solutions visited within the cycle,
(2) the average quality of the solutions of the cycle having characteristics
c(i1), c(i2), . . . , c(ik) together.
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At each iteration of LTS, it is proposed to first randomly choose a random
set A (resp. D and S) of non tabu neighbor solutions obtained with add (resp.
drop and switch) moves, such that |A| = |D| = |S|. Note that the size of A is
an important and sensitive parameter to tune. Then, let Aq (resp. Dq and Sq)
be the set containing the q (parameter) solutions of A (resp. D and S) with the
largest trail values. The performed move among Aq ∪Dq ∪Sq is then the best one
according to the objective function f of the considered problem. This technique
is particularly relevant if it is cumbersome to evaluate a solution with f , as f is
only used to evaluate a sample of solutions which rank highly according to the
trail function Tr (which does not require a lot of computation). In other words,
at each iteration of LTS, the objective function f (or its associated incremental
computation) is only used to evaluate 3 · q good neighbor solutions according to
Tr, which is likely to be more promising than to evaluate a random sample of
3 · q neighbor solutions.

In order to help to visit new regions of the solution space, the following
diversification mechanism (denoted DIV) is introduced, relying on a different

Algorithm 1. LTS: Learning Tabu Search.
Initialization

1. construct an initial solution s;
2. set s� = s and f� = f(s);
3. set iter = 0 (iteration counter);
4. set DIV as closed (i.e. not active);

While a time limit is not reached, do:

1. from s, generate a set A (resp. D and S) of non tabu neighbor solutions obtained
with add (resp. drop and switch) moves, such that |A| = |D| = |S|;

2. if DIV is closed, identify the sets Aq ⊆ A (resp. Dq ⊆ D and Sq ⊆ S) containing
the solutions with the q largest trail values;

3. if DIV is open, identify the sets Aq ⊆ A (resp. Dq ⊆ D and Sq ⊆ S) containing
the solutions with the q smallest trail values;

4. select the neighbor solution: set s′ = arg min
s′′∈Aq∪Dq∪Sq

f(s′′);

5. update the current solution: set s = s′;
6. update the tabu status: the reverse move is forbidden for tab iterations;
7. update the best encountered solution: if f(s) < f�, set s� = s and f� = f(s);
8. update the iteration counter: set iter = iter + 1;
9. update the status of DIV:

(a) open DIV if t1 iterations without improving s� have been performed;
(b) close DIV if it has been performed during t2 consecutive iterations, or if s�

has been improved within the current application of DIV;
10. if (iter mod I) = 0, update the trail system with the best solution ŝ among the

last I iterations;

Return s�
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use of the trail system. Generally, the trail system is used to favor good moves
which were often performed in the previous cycles. This is also the case for the
trail systems used in the various types of ant algorithms [10]. In contrast, to
diversify the search, it is proposed here to perform good moves which were not
often performed in the previous cycles. More precisely, assuming that a neighbor
solution s′ can be generated from the current solution s with move m (i.e.,
s′ = s + m), it is diversifying to perform m if the corresponding Tr(s′) is small.
Each iteration of DIV is performed as above, but the set Aq (resp. Dq and Sq)
contains the q solutions of A (resp. D and S) with the smallest trail values.
DIV relies on two sensitive parameters t1 and t2: it is triggered if t1 iterations
without improving s� (the best encountered solution during the search) have
been performed, and it is performed until one of the following conditions is
satisfied: (1) s� has been improved; (2) a sequence of t2 iterations of DIV have
been performed.

LTS can now be formulated in Algorithm 1.

3 LTS for a Refueling Problem in a Railway Network

The problem consists in optimizing the refueling costs of a fleet of locomotives
over a railway network [7]. It is assumed that there is only one source of fuel:
fueling trucks, located at yards. A solution of the problem has two important
components: choose the number of trucks contracted at each yard, and determine
the refueling plan of each locomotive (i.e. the quantity of fuel that must be
dispensed into each locomotive at every yard). Such components are respectively
called the truck assignment problem (TAP) and the fuel distribution problem
(FDP) in this paper. The constraints are the following: the capacity of the tank
of each locomotive is limited, as well as the maximum amount of fuel a truck can
provide the same day; a locomotive can not be refueled at its destination yard;
there is a maximum number of times (which is two) a train can stop to be refueled
(excluding the origin); it is forbidden to run out of fuel. The encountered costs
are the weekly operating cost of each fueling truck, the fuel price per gallon
associated with each yard (which can vary from yard to yard because of the
differences in distribution, marketing costs and other factors), and the fixed cost
associated with each refueling. A solution satisfying all the above constraints is
called feasible. The problem consists in finding a feasible solution minimizing the
sum of the costs.

If the number of trucks is known for every yard (i.e., if a solution of the
TAP is provided), it is possible to exactly solve the associated FDP with the
flow algorithm proposed in [7]. To tackle the TAP, various solution methods
have been proposed in [8]: a descent local search DLS, a regular tabu search
TS, and a learning tabu search LTS. The common features of DLS and TS are
the following. From a current solution s, a move simply consists in adding a
contracted truck to a yard (add move), or in removing a contracted truck from
a yard (drop move). When a move is performed, it is evaluated by the use of the
flow algorithm. During the evaluation, all the costs are considered: the refueling
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costs for the used gallons of fuel, the fixed refueling costs and the contracting
costs of the trucks. At each iteration, |A| add moves and |D| drop moves are
generated (with the tuning |A| = |B| = 10). The resulting descent local search
DLS for the TAP is presented in Algorithm 2. In contrast with DLS, TS does not
stop when it reaches a local optimum, but returns the best encountered solution
within a predefined time limit. When an add (resp. drop) move is performed on
yard yj , it is forbidden to consider yard yj for a drop (resp. add) move for tab
iterations (parameter tuned to 10).

Algorithm 2. DLS: Descent Local Search for the TAP.
Construct an initial solution s;

While a local optimum is not reached, do:

1. in solution s, randomly choose a set D containing yards for which drop moves are
allowed; for any yard yj ∈ D and from s, remove a truck from it, and apply the
flow algorithm to evaluate such a drop candidate move;

2. in solution s, randomly choose a set A of yards; for any yard yj ∈ A and from s,
add a truck to it, and apply the flow algorithm to evaluate such an add candidate
move;

3. from s, perform the best move among the | A ∪ D | above candidate moves, and
rename the resulting solution as s;

In order to adapt LTS to the considered problem, one mainly has to define
what is a characteristic and to set a learning process based on a trail system.
Let x and y be two yards. A characteristic is simply a pair (x, y) of yards such
that there is at least a truck on x and at least a truck on y. The trail tr(x, y)
associated with x and y aims to indicate if it is a good idea to have trucks on
both yards x and y in the same solution.

Every I (parameter tuned to 50) iterations of LTS, such trails are globally
updated with ŝ (the best solution of the cycle) as follows (with ρ tuned to 0.9):
tr(x, y) = ρ · tr(x, y) + Δtr(x, y), where Δtr(x, y) is the number of trucks on x
and y, computed only if ŝ has trucks on both x and y (it is 0 otherwise). A move
can be denoted by (x, s), indicating that a truck is added to or removed from
yard x, in the current solution s. Let Tr(x, s) be its associated trail value. It is
straightforward to set Tr(x, s) =

∑
y∈s tr(x, y) if it is used as follows. If (x, s) is

an add move (i.e. add a truck to yard x of solution s), among the possible add
moves, it is interesting to select a move with a large Tr(x, s) value (because the
history of the search seems to indicate that having trucks on yard x, as well as
on the yards which already contain trucks in the current solution s, is a good
idea). On the contrary, if (x, s) is a drop move (i.e. remove a truck from yard x
of solution s), among the drop moves, it is better to select a move with a small
Tr(x, s) value.

The way to select a move at each iteration is now described. Remember that
in DLS and in TS, the performed move is the best among the ones in the set
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| A ∪ D |, with |A| = |D| = 10. In LTS, two sets A and D of size 20 are
first randomly chosen. Then, let Aq (resp. Dq) be the subset of A (resp. D)
containing the q (parameter tuned to 10) moves with the largest (resp. smallest)
trail values. Note that computing the trail value of a move is much quicker to
compute than the value of the resulting neighbor solution, as the flow algorithm
is requested for it. The performed move among Aq ∪Dq is the best one according
to the objective function of the problem (i.e., the sum of the costs). Therefore,
for DLS, TS and LTS, the performed move has the best objective function value
among a sample of 20 evaluated solutions. This will allow to better measure
the impact of the trail system on the search. Note that if DIV is open (i.e., the
diversification mechanism is activated), Aq (resp. Dq) is the subset of A (resp.
D) containing the q moves with the smallest (resp. largest) trail values.

Now are presented results on the 57 linear instances and the 15 non linear
instances instances associated with [8]. The non linear instances are based on the
following idea. If several trucks from the same company are contracted for the
same yard, the company is likely to propose discounted prices for that yard.
The proposed algorithms were tested on an Intel Quad-core i7 @ 3.4 GHz with
8 GB DDR3 of RAM memory. A common time limit T = 60 min is imposed
to each proposed method (i.e., DLS, TS and LTS). Note that DLS is restarted
from scratch each time a local optimum is found, in order to be able to apply
it during T minutes, and thus to perform a fair comparison with the two other
metaheuristics.

For DLS, TS and LTS, Fig. 1 compares the evolution of the average best
encountered solution value during 60 min on the linear instances (57 instances,
10 runs per instance). On the one hand, one can observe that LTS clearly out-
performs the other methods from the beginning to the end of the hour of compu-
tation. This obviously indicates that the learning process (i.e. the trail system)
introduced to TS to derive LTS is relevant. On the other hand, one can remark
that TS is better than DLS in the first 30 min, and then both methods have a
very comparable behavior.

Fig. 1. Evolution of DLS, TS and LTS on the linear instances.
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Fig. 2. Evolution of DLS, TS and LTS on the non linear instances.

Figure 2 is similar to Fig. 1 but is associated with the non linear instances.
The same observations as before can be made: LTS outperforms TS and DLS,
TS is better than DLS during half an hour, TS and DLS are comparable during
the second half hour.

4 Conclusion

In this paper, a new type of local search is presented, called Learning Tabu
Search and denoted LTS. It was showed that LTS was successfully adapted to
a refueling problem in a railway network, which was initially motivated by the
Railway Applications Section of INFORMS.

LTS involves a learning process relying on a trail system. The trail system
is based on the idea that if some combinations of characteristics often belong
to good solutions during the search process, such combinations of characteristics
should be favored when generating new solutions.

Even if the concept of trail system also exists in ant algorithms, it is managed
very differently in LTS. Recent overviews of ant algorithms can be found in [1]
and [2]. In contrast with ant algorithms: (1) LTS is a local search dealing with
a single solution, and not a method based on a population of solutions; (2) LTS
performs each decision quickly and with an aggressive manner (whereas in ant
algorithms, it is computationally cumbersome to select a move); (3) LTS uses
sequentially (instead of jointly) information based on the history of the search
(known in the ant community as the trail system) and on the short term profit
(known in the ant community as the heuristic information or the visibility or
the greedy force).

Within the local search frameworks, there already exist some mechanisms
favoring good moves (resp. attributes) which were frequently performed (resp.
encountered) in the past of the search process [4]. Such mechanisms are however
very differently managed in LTS, mainly because of the joint use of the follow-
ing two elements: (1) a trail system managed with an evaporation component
and a reinforcement component; (2) combinations of characteristics are handled
(instead of individually considering each characteristic).
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Therefore, LTS can be clearly positioned according to the existing meta-
heuristics. Among the possible future works, it would be interesting to apply LTS
to other kinds of problems, for example to find out for each of them which value
of k is the most relevant.
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Abstract. The discriminant analysis is essential knowledge in science, tech-
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Revised IP–OLDF and k–fold cross validation.
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1 Introduction

Fisher [1] described the linear discriminant function (LDF), and founded the dis-
criminant theory. Following this, the quadratic discriminant function (QDF) and multi-
class discrimination using Mahalanobis distance were proposed. These functions are
based on the variance-covariance matrices, and are easily implemented in the statistical
software packages. They can be used in many applications. However, real data rarely
satisfy Fisher’s assumptions. Therefore, it is well known that logistic regression is
better than LDF and QDF, because it does not assume a specific theoretical distribution,
such as a normal distribution. In addition to this, the discriminant rule is very simple:
If yi*f(xi) > 0, xi is classified to class1/class2 correctly. If yi*f(xi) < 0, xi is misclas-
sified. There are four serious problems hidden in this simplistic scenario [22].

(1) Problem 1

We cannot properly discriminate between cases where xi lies on the discriminant hype-
plane (f(xi) = 0). This unresolved problem has been ignored until now. The proposed
Revised IP-OLDF is able to treat this problem appropriately. Indeed, except for
Revised IP-OLDF, no functions can correctly count the number of misclassifications
(NM). These functions should count the number of cases where f(xi) = 0, and display
this alongside the NM in the output.

(2) Problem 2

Fisher’s LDF and QDF cannot recognize linear separable data (where the Minimum
NM (MNM) = 0). This fact was first found when IP-OLDF was applied to Swiss bank
note data [3]. In this paper, the determination of pass/fail in exams is used because it is
trivially linear-separable and we can obtain it easily. We show that, in many cases, the
NMs of LDF and QDF are not zero. Next, 100 re-samples of these data are generated,
and the mean error rates are obtained by 100-fold cross validation. The mean error rates
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of LDF are 6.23 % higher than that of Revised IP-OLDF in the validation samples of
Table 7.

(3) Problem 3

If the variance-covariance matrix is singular, Fisher’s LDF and QDF cannot be cal-
culated because the inverse matrices do not exist. The LDF and QDF of JMP [9] are
solved by the generalized inverse matrix technique. In addition to this, RDA [4] is used
if QDF causes serious trouble with dirty data. However, RDA and QDF do not work
properly for the special case in which the values of features belonging to one class are
constant. If users can choose proper options for a modified RDF developed for this
special case, it works better than QDF and LDF in Table 5.

(4) Problem 4

Some statisticians misunderstand that the discriminant analysis is the inferential sta-
tistical method as same as the regression analysis, because it is derived from Fisher’s
assumption. But there are no standard error (SE) of the discriminant coefficients or
error rate, and variable selection methods such as stepwise methods and statistics such
as Cp and AIC. In this paper, we propose “k-fold cross validation for small samples”
and new variable selection method, the minimum mean error rates of which is chosen
as the best model. In future works (Future1), generalization ability and 95 % confi-
dence intervals of all LDFs are proposed.

In this research, two Optimal LDFs (OLDFs) based on the MNM criterion are
proposed. The above three problems are solved by IP-OLDF and Revised IP-OLDF
completely. IP-OLDF [13–15] reveals the following properties.

Fact (1) Relation between LDFs and NMs. IP-OLDF is defined on the data and
discriminant coefficient spaces. Cases of xi correspond to linear hyper-planes
(Hi(b) = yi* (txib + 1) = 0) in the p-dimensional discriminant coefficient space that
divide the space into two half-planes: the plus half-plane (Hi(b) > 0) and minus half-
plane (Hi(b) < 0). Therefore, the coefficient space is divided into a finite convex
polyhedron by Hi(b). Interior point bj of the convex polyhedron corresponds to the
discriminant function fj(x) =

tbjx + 1 on the data space that discriminates some cases
properly and misclassifies others. This means that each interior point bj has a unique
NM. The “Optimal Convex Polyhedron (OCP)” is defined as that with the MNM.
Revised IP-OLDF [16] can find the interior point of OCP directly, and solves the
unresolved problem (Problem 1) because there are no cases on the discriminant hyper-
plane (f(xi) = 0). If bj is on a vertex or edge of the convex polyhedron, however, the
unresolved problem cannot be avoided because there are some cases on f(xi) = 0.

Fact (2) Monotonous decrease of MNM (MNMp ≥ MNM(p+1)). Let MNMp be the
MNM of p features (independent variables). Let MNM (p+1) be the MNM of the (p + 1)
features formed by adding one feature to the original p features. MNM decreases
monotonously (MNMp ≥ MNM(p+1)), because OCP in the p-dimensional coefficient
space is a subset of the (p + 1)-dimensional coefficient space [18]. If MNMp = 0, all
MNMs including p features are zero. Swiss bank note data consists of genuine and
counterfeit bills with six features. IP-OLDF finds that this data is linear-separable
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according to two features (X4, X6). Therefore, 16 models including these two features
have MNMs = 0. Nevertheless, Fisher’s LDF and QDF cannot recognize that this data
is linear-separable, presenting a serious problem. In this paper, we show that Revised
IP-OLDF can resolve the above three problems, and is superior to Fisher’s LDF,
logistic regression, and Soft-margin SVM (S-SVM) [28] under 100-fold cross vali-
dation [20, 21] of the pass/fail determinations of exams [19] and their re-sampled data.

2 Discriminant Functions

2.1 Statistical Discriminant Functions

Fisher defined LDF to maximize the variance ratio (between/within classes) in Eq. (1).
This can be solved by non-linear programming (NLP).

MIN ¼ tb m1 �m2ð Þt m1 �m2ð Þb=tbRb; ð1Þ

If we accept Fisher’s assumption, the same LDF is obtained in Eq. (2). This equation
defines LDF explicitly, whereas Eq. (1) defines LDF implicitly. Therefore, statistical
software packages adopt this equation. Some statisticians misunderstand that dis-
criminant analysis is the same as regression analysis. Discriminant analysis is inde-
pendent of inferential statistics, because there are no SEs of the discriminant
coefficients and error rates (Problem 4). Therefore, the leave-one-out (LOO) method [6]
was proposed to choose the proper discriminant model.

Fisher's LDF : f xð Þ ¼ t x� m1 þm2ð Þ=2f gR�1 m1 �m2ð Þ ð2Þ

Most real data does not satisfy Fisher’s assumption. When the variance-covariance
matrices of two classes are not the same (Σ1 ≠ Σ2), the QDF defined in Eq. (3) can be
used. The Mahalanobis distance (Eq. (4)) is used for the discrimination of multi-
classes, and the Mahalanobis-Taguchi [25] method is applied in quality control.

QDF : f xð Þ ¼ t x R�1
2 � R�1

1

� �
x=2þ tm1 R

�1
1 �t m2 R

�1
2

� �
xþ c ð3Þ

D ¼ SQRT t x�mð ÞR�1 x�mð Þ� � ð4Þ

These functions are applied in many areas, but cannot be calculated if some features
remain constant. There are three cases. First, some features that belong in both classes
are the same constant. Second, some features that belong in both classes are different
but constant. Third, some feature that belongs to one class is constant. Most statistical
software packages exclude all features in these three cases. On the other hand, JMP
enhances QDF using the generalized inverse matrix technique. This means that QDF
can treat the first and second cases correctly, but cannot handle the third case properly.

Recently, the logistic regression in Eq. (5) has been used instead of LDF and QDF
for two reasons. First, it is well known that the error rate of logistic regression is often
less than those of LDF and QDF, because it is derived from real data instead of some
normal distribution that is liberated from reality. Let ‘P’ be the probability of belonging
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to a group of diseases. If the value of some feature is increasing/decreasing, ‘P’
increases from zero (normal group) to one (group of diseases). This representation is
very useful in medical diagnosis, as well as for ratings in real estate and bonds. On the
contrary, Fisher’s LDF assumes that cases near to the average of the diseases are
representative cases of the diseases group. Medical doctors never permit this claim.

Log P= 1� Pð Þð Þ ¼ f xð Þ ð5Þ

2.2 Before and After SVM

Stam [24] summarized Lp-norm discriminant methods until 1997, and answers the
question of “Why have statisticians rarely used Lp-norm methods?” He gives four
reasons: Communication, promotion and terminology; Software availability; Relative
accuracy of Lp-norm classification methods: Ad hoc studies; and the Accuracy of Lp-
norm classification methods: decision theoretic justification. While each of these reasons
is true, they are not important. The most important reason is that there is no comparison
between these methods with statistical discriminant functions, because discriminant
analysis was established by Fisher before mathematical programming (MP) approaches.
There are two types of MP applications. The first is modeling by MP, such as for
portfolio selection [26], and the second is catch-up modeling, such as for the regression
and discriminant analysis. Therefore, the latter type should be compared with preceding
results. No statisticians use Lp-norm methods, because there is no research indicating
that Lp-norm methods are superior to statistical methods. Liitschwager and Wang [7]
defined a model based on the MNM criterion. There are several mistakes, but the most
important one is the restriction on the discriminant coefficients. Only one discriminant
coefficient should be fixed to −1/1. There is no need to fix the other (k − 1) coefficients in
the range [−1, 1].

Vapnik proposed three different SVM models. The hard-margin SVM (H-SVM)
indicates the discrimination of linear separable data. H-SVM is defined to maximize the
distance of the “Support Vector (SV)” in order to obtain “good generalization” by NLP,
which is similar to “not overestimating the validation data in statistics.” H-SVM is
redefined to minimize (1/“distance of SV”) in Eq. (6). This is solved by quadratic
programming (QP), which can only be used for linear separable data. This may be why
investigation of linear separable data has been ignored. We statisticians misunderstand
that discrimination of linear separable data is very easy. In statistics, there was no
technical term for linear separable data. However, the condition “MNM = 0” is the
same as being linear-separable. Note that “NM = 0” does not imply the data is linear-
separable. It is unfortunate that there has been no research into linear separability.

MIN ¼ bj jj j2=2; yi � txibþ b0ð Þ� 1; b : p� discriminant coefficients:

yi ¼ 1=� 1 for xi 2 class1=class2: xi : p� features independent variablesð Þ: ð6Þ

Real data are rarely linear-separable. Therefore, S-SVM has been defined in Eq. (7).
S-SVM permits certain cases that are not discriminated by SV (yi*(

txib + b0) < 1).

18 S. Shinmura



The second objective is to minimize the summation of distances of misclassified cases
(Σei) from SV. These two objects are combined by defining some “penalty c.” The
Markowitz portfolio model to minimize risk and maximize return is the same as S-SVM.
However, the return is incorporated as a constraint, and the objective function minimizes
risk. The decision maker chooses a solution on the efficient frontier. On the contrary,
S-SVM does not have a rule to determine c properly; nevertheless, it can be solved by an
optimization solver. (Kernel-SVM is omitted from the research.)

MIN ¼ bj jj j2=2þ c � Rei; yi � txibþ b0ð Þ� 1� ei; ð7Þ

c: penalty c to combine two objectives. ei: non-negative value.

2.3 IP-OLDF and Revised IP-OLDF

Shinmura andMiyake [12] developed the heuristic algorithm of OLDF based on theMNM
criterion. This solves the five features (5-features) model of Cephalo Pelvic Disproportion
(CDP) data that consisted of two groups having 19 features. SAS was introduced into
Japan in 1978, and three technical reports about the generalized inverse matrix, the sweep
operator [5], and SAS regression applications [8] are related to this research. LINDO was
introduced to Japan in 1983. Several regression models are formulated by MP [10], e.g.,
least-squares problems can be solved by QP, and LAV (Least Absolute Value) regression
is solved by LP.Without a survey of previous research, the formulation of IP-OLDF can be
defined as in Eq. (8). This notation is defined on p-dimensional coefficient space, because
the constant is fixed to 1. In pattern recognition, the constant is a free variable. In this case,
the model is defined on (p + 1)-coefficient space, and we cannot elicit the same deep
knowledge as with IP-OLDF. This difference is very important. IP-OLDF is defined on
both p-dimensional data and coefficient spaces. We can understand the relation between
the NM and LDF clearly. The linear equation Hi(b) = yi* (txib + 1) = 0 divides
p-dimensional space into plus and minus half-planes (Hi(b) > 0, Hi(b) < 0). If bj is in the
plus half-plane, fj(x) = yi*(

tbjx + 1) discriminates xi correctly, because fj(xi) = yi*
(tbjxi + 1) = yi *(

txibj + 1) > 0. On the contrary, if bj is included in the minus half-plane,
fj(x) cannot discriminate xi correctly, because fj(xi) = yi*(

tbjxi + 1) = yi *(
txibj + 1) < 0. The

n linear equations Hi(b) divide the coefficient space into a finite number of convex
polyhedrons. Each interior point of a convex polyhedron has a unique NM that is equal to
the number of minus half-planes. We define the OCP as that for which NM is equal to
MNM. If xi is classified correctly, ei = 0 andHi(b)≥ 0 in Eq. (8). If there are p cases on f(xi)
=0, we can obtain the exact MNM. However, if there are over (p+1) cases on f(xi)=0, this
causes the unresolved problem. If xi is misclassified, ei = 1 and Hi(b) ≥ −10000. This
means that IP-OLDF chooses the discriminant hyper-plane Hi(b) = 0 for correctly clas-
sified cases, and Hi(b) = −10000 for misclassified cases according to a 0/1 decision
variable. if IP–OLDF chooses a vertex having p cases, it chooses the OCP correctly. If it
chooses a vertex having over (p+1) cases, it may not choose the OCP. In addition to this
defect, IP-OLDF must be solved for the three cases where the constant is equal to 1, 0, −1,
because we cannot determine the sign of yi in advance. Combinations of yi = 1/−1 for xi ∊
class1/class2 are decided by the data, not the analyst.
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MIN ¼ Rei; Hi bð Þ� � M � ei; M :10; 000 Big M constantð Þ: ð8Þ

The Revised IP-OLDF in Eq. (9) can find the true MNM, because it can directly find
the interior point of the OCP. This means there are no cases where yi*(

txib + b0) = 0.
If xi is discriminated correctly, ei = 0 and yi*(

txib + b0) ≥ 1. If xi is misclassified, ei = 1
and yi*(

txib + b0) ≥ −9999. It is expected that all misclassified cases will be extracted
to alternative SVs, such as yi*(

txib + b0) = −9999. Therefore, the discriminant scores of
misclassified cases become large and negative, and there are no cases where yi*
(txib + b0) = 0. This means that b is interior point of OCP defined by IP-OLDF.

MIN ¼ Rei; yi � txibþ b0ð Þ� 1�M � ei; b0 : free decision variable: ð9Þ

If ei is a non-negative real variable, we utilize Revised LP-OLDF, which is an L1-
norm LDF. Its elapsed runtime is faster than that of Revised IP-OLDF. If we choose a
large positive number as the penalty c of S-SVM, the result is almost the same as that
given by Revised LP-OLDF, because the role of the first term of the objective value in
Eq. (7) is ignored. Revised IPLP-OLDF is a combined model of Revised LP-OLDF and
Revised IP-OLDF. In the first step, Revised LP-OLDF is applied for all cases, and ei is
fixed to 0 for cases that are discriminated correctly by Revised LP-OLDF. In the second
step, Revised IP-OLDF is applied for misclassified cases in the first step. Therefore,
Revised IPLP-OLDF can obtain an estimate of MNM faster than Revised IP-OLDF
[17, 23], but it is unknown to be free from the unresolved problem.

3 The Unresolved Problem (Problem 1)

3.1 Perception Gap of This Problem

About the unresolved problem, there are several understandings. Most researchers treat
the cases xi on f(xi) = 0 in class1. There is no explanation of why it makes sense. Some
statisticians explain that it is decided stochastically, because the statistics is a sturdy of
probability. This explanation seems theoretically at first glance, but it is nonsense by
two reasons. Statistical software adopt the former decision rule because many papers
and researchers adopt this rule. In the medical diagnosis, medical doctors strive to
judge the patients near by the discriminant hyper-plane. If they know second expla-
nation, they are deeply disappointed in the discriminant analysis. Until now, all LDFs
such as Fisher’s LDF, logistic regression, H-SVM and S-SVM cannot treat this
problem properly. IP-OLDF reveals that only interior points of convex polyhedron can
resolve this problem. It can find the vertex of true OCP if data is general position and it
stop the optimization choosing p cases on the discriminant hyper-plane. But, it may not
find the true MNM if data is not general position and it choose over (p + 1) cases on the
discriminant hyper-plane. Revised IP-OLDF can find the interior point of the OCP
directly. We cannot judge whether other LDFs choose the interior point, edge or vertex
of the convex polyhedron. This is confirmed by checking the number of cases xi that
satisfy |f(xi)| ≤ 10−6 if we consider | f(xi)| ≤ 10−6 is zero. If this number is zero, this
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function chooses the interior point of the convex polyhedron. If this number ‘m’ isn’t
zero, this LDF chooses the vertex or edge of the convex polyhedron, and true NM has a
possibility of increase up to ‘m’

3.2 The Student Data

The student data1 is proper for us to discuss about the unresolved problem. Fifteen
students (yi = ‘F’) fail the exam and twenty five students (yi = ‘P’) pass the exam in
Table 1. X1 is sturdy hours/day and X2 is expenditure (10,000 yen)/month. X3 is
drinking days/week, X4 is sex and X5 is smoking/non-smoking. In the case that IP-
OLDF discriminates two classes by (X1, X2), the discriminant hyper-plane of IP-
OLDF is X2 = 5. Eight students (X2 > 5) are discriminated to the fail group correctly,
four students are on X2 = 5 and three student (X2 < 5) are misclassified into the pass
group. On the other hands, twenty one students (X2 < 5) are classified into the pass
group correctly and four students are on X2 = 5. Nevertheless IP-OLDF cannot dis-
criminate eight students on X2 = 5, it returns MNM = 3. Revised IP-OLDF can find
three discriminant hyper-plane: X2 = 0.006*X1 + 4.984, X2 = 0.25*X1 + 3.65,
X2 = 0.99*X1 + 212. And, true MNM = 5. S-SVM (SVM4, c = 104) is X2 = X1 + 1,
and NM = 6. There is a student having the value of (4, 5) on the discriminant hyper-
plane. Therefore, we had better estimated NM = 7. This data is tiny and toy data, but it
is useful for the evaluation of the discriminant functions and it is easy for us to
understand by scatter plots with two features.

4 The Discrimination of Linear Separable Data (Problem 2)

4.1 The Importance of This Problem

The purpose of discriminant analysis is to discriminate two classes or objects properly.
For this purpose, the discrimination of linear separable data is very important, because
we can evaluate the result very clearly. If some LDFs cannot discriminate linear
separable data properly, these LDFs should not be used. It is very strange that there is

Table 1. The student data.

yi F F F F F F F F F F F F F F F P P P P P

X1 3 1 3 3 2 1 4 3 5 2 3 2 3 3 5 6 9 4 3 2
X2 10 8 7 7 6 6 6 6 5 5 5 5 3 2 2 5 5 5 5 4
yi P P P P P P P P P P P P P P P P P P P P
X1 5 12 4 10 7 5 7 3 7 7 7 6 3 6 6 8 5 10 9 5
X2 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 2 2 2

1 This data was used for the description of three statistical books using SAS, SPSS and JMP. It is
download from (http://sun.econ.seikei.ac.jp/*shinmura/). Click Tab of “Data Archive” and double
click “aoyama.xls”.
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no research about the discrimination of the linear separable data. H-SVM implies us
this discrimination very clearly. But it can be applied only for linear separable data.
This may be the reasons why there is no good research about linear separable data until
now. Some statistician believes that LDF based on MNM criterion is foolish method,
because it over fits for the training samples and its generalization ability may be wrong
for the validation samples without examination by real data.

IP-OLDF finds Swiss bank note data is linear separable by two features (X4, X6)
and MNMs of 16 models including (X4, X6) are zero. Until now, nobody realize this
fact. And, we think it is difficult for us to find linear separable data from real data. But,
we can easily obtain two kinds of good research data. First, the pass/fail determination
by scores. This is explained in 4.2. Second, every real data is changed to linear
separable data by enlarging the distance between the mean of the two classes. The
Swiss bank note data consisted of two kinds of bills: 100 genuine and 100 counterfeit
bills. There were six features: X1 was the length of the bill (mm); X2 and X3 were the
width of the left and right edges (mm), respectively; X4 and X5 were the bottom and
top margin widths (mm), respectively; X6 was length of the image diagonal (mm).
A total of 63 (= 26−1) models were investigated. According to Shinmura [18], of the 63
total models, 16 of them including two features (X4, X6) have MNMs of zero; thus,
they are linearly separable. The 47 models that remain are not linearly separable. This
data is adequate whether or not LDFs can discriminate linearly separable data correctly.

Table 2 shows four results. Upper right (B) is original bank data. Upper left (A) is
data expanded to 1.25 times the average distance. Lower left (C) and right (D) are data
that are reduced to 0.75 and 0.5 times the average distance. Fisher’s LDF is independent
of the inferential statistics. But, if we treat yi = 1/−1 as object value and data is analyzed
by the regression analysis, obtained regression coefficients are proportional to the dis-
criminant coefficients of Fisher’s LDF by the plug-in rule. The stepwise methods can be
used formally. ‘p’ is the number of features by the forward stepwise method. ‘Var.’ is the
selected features. From p = 1 to p = 6, X6, X4, X5, X3, X2 and X1 are selected in this
order by the forward stepwise method. In the regression analysis, Mallow’s Cp statistics
and AIC are used as variable selection. Usually, the model with minimum of |Cp –

(p + 1)| and AIC are recommended. By this rule, Cp statistics choose the same full
model. On the other hand, AIC chooses 4-features model (X3, X4, X5, X6) in data ‘A’.
AIC chooses 5-features model (X2, X3, X4, X5, X6) in other three data.

This table tells us two important facts. We can easily obtained the linear separable
data from the real data. The same result as the bank data are observed by the student
data, iris data and CPD data those are not linear-separable. Second fact is as follows:
“Cp and AIC” choose almost same models, nevertheless 1-feature (X6) model is linear
separable in ‘A’. And, 2-features (X4, X6) model is linear separable in ‘B’. The models
selected by “Cp and AIC” are independent from the linear-separablility. Some statis-
ticians don’t permit this result by the plug-in rule. On the contrary, they consider
Fisher’s LDF is the inferential statistics, because it is derived by the Fisher’s
assumption. This confusion is new problem and is future work (Future2).
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4.2 Pass/Fail Determination

The pass/fail determination of exam scores makes good research data, because it can be
obtained easily, and we can find a trivial discriminant function. My theoretical research
starts from 1997 and ends in 2009 [18]. My applied research began in 2010. I nego-
tiated with the National Center for University Entrance Examinations (NCUEE), and
borrowed research data consisting of 105 exams in 14 subjects over three years.
I finished analyzing the data at the end of 2010, and obtained 630 error rates for
Fisher’s LDF, QDF, and Revised IP-OLDF. However, NCUEE had requested me not
to present the results on March 2011. Therefore, I explain new research results using
my statistical exam results. The reason for the special case of QDF and RDA (Problem
3) is resolved at the end of 2012. The course consists of one 90 min lecture per week
for 15 weeks. In 2011, the course only ran for 11 weeks because of power shortages in
Tokyo caused by the Fukushima nuclear accident. Approximately 130 students, mainly
freshmen, attended the lectures. Midterm and final exams consisted of 100 questions
with 10 choices. Two kinds of pass/fail determinations were discriminated by 100 item
scores, and four testlet scores as features. If the pass mark is 50 points, we can easily
obtain a trivial discriminant function (f = T1 + T2 + T3 + T4–50). If f ≥ 0 or f < 0, the
student passes or fails the exam, respectively. In this case, students on the discriminant
hyper-plane pass the exam, because their score is exactly 50. This indicates that there is
no unresolved problem because the discriminant rule is decided by features.

4.3 Discrimination by Four Testlets

Table 3 shows the discrimination of four testlet scores as features for 10 % (from third
column to seventh column) and 90 % (after eighth column) levels of the midterm

Table 2. Swiss bank data [18].

A: The distance *1.25 B: Original Bank Data
Var. p Cp AIC MNM LDF Cp AIC MNM LDF
1-6 6 7.0 -863 0 0 7.0 -779 0 0
2-6 5 5.3 -865 0 0 5.3 -781 0 0
3-6 4 10.5 -896 0 0 10.3 -776 0 0
4-6 3 10.9 -859 0 0 10.7 -775 0 0
4, 6 2 118.8 -779 0 0 107.0 -699 0 3
6 1 313.9 -679 0 1 292.0 -604 2 2

C: The distance * 0.75 D: The distance * 0.5
Var. p Cp AIC MNM LDF Cp AIC MNM LDF
1-6 6 7.0 -676 1 2 7.0 -543 5 12
2-6 5 5.3 -678 1 2 5.3 -545 6 12
3-6 4 9.8 -673 1 1 8.9 -541 7 13
4-6 3 10.1 -673 1 2 8.8 -541 8 14
4, 6 2 97.9 -601 4 6 78.7 -482 16 19
6 1 253.8 -517 6 8 184.4 -417 53 56
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exams. The results of 50 % level are omitted. ‘p’ denotes the number of features selected
by the forward stepwise method. In 2010, T4, T2, T1, and T3 are entered in the model
selected by the forward stepwise method. The MNM of Revised IP-OLDF and NM of
logistic regression are zero in the full model, which means the data is linear-separable in
four features. NMs of LDF and QDF are 9 and 2. This means LDF and QDF cannot
recognize linear separability. In 2011, Revised IP-OLDF and logistic regression can
recognize that the 3-features model (T2, T4, T1) is linear-separable. In 2012, the
2-features model (T4, T2) is linear-separable. T4 and T2 contain easy questions, and T1
and T3 consist of difficult questions for fail group students. This suggests the possibility
that pass/fail determination using Revised IP-OLDF can elicit the quality of the test
problems and understanding of students in the near future (Future3).

Table 4 shows a summary of the 18 error rates derived from the NMs of Fisher’s
LDF and QDF for the linear separable model. Ranges of the 18 error rates of LDF and
QDF are [2.2 %, 16.7 %] and [0.8 %, 10.8 %], respectively. Error rates of QDF are lower
than those of LDF. At the 10 % level, the six error rates of LDF and QDF lie in the
ranges [4.2 %, 11.9 %] and [0.8 %, 8.5 %], respectively. Clearly, the range at the 50 %

Table 3. NMs of four discriminant functions by forward stepwise in midterm exams at the 10 %
(from 3rd column to 7th column) and 90 % levels (after 8th column).

p Var. MNM Logi. LDF QDF Var. MNM Logi. LDF QDF

2010 1 T4 6 9 11 11 T3 10 37 24 24
2 T2 2 6 11 9 T4 5 10 20 11
3 T1 1 3 8 5 T1 0 0 20 10
4 T3 0 0 9 2 T2 0 0 20 11

2011 1 T2 9 17 15 15 T3 6 7 14 14
2 T4 4 9 11 9 T4 1 1 14 6
3 T1 0 0 9 10 T1 0 0 13 5
4 T3 0 0 9 11 T2 0 0 14 9

2012 1 T4 4 8 14 12 T3 8 30 12 12
2 T2 0 0 11 9 T1 5 12 9 9
3 T1 0 0 12 8 T4 3 3 10 3
4 T3 0 0 12 1 T2 0 0 11 3

Table 4. Summary of error rates of Fisher’s LDF and QDF.

10 % 50 % 90 %
LDF QDF LDF QDF LDF QDF

Midterm 10 7.5 1.7 2.5 5.0 16.7 9.2
11 7.0 8.5 2.2 2.3 10.5 6.7
12 9.9 0.8 4.9 4.8 13.6 7.1

Final 10 4.2 1.7 3.3 4.2 3.3 10.8
11 11.9 2.9 2.9 3.6 3.6 8.6
12 8.7 2.3 2.3 2.3 13.0 4.5
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level is less than for the 10 % and 90 % levels. Miyake and Shinmura [27] followed
Fisher’s assumption, and surveyed the relation between population and sample error
rates. One of their results suggests that the sample error rates of balanced sample sizes
such as 50 % level are close to the population error rates. The above results may confirm
this. These results suggest a serious drawback of LDF and QDF based on the variance-
covariance matrices. We can no longer trust the error rates of LDF and QDF. Until now,
this fact has not been discussed, because there is little research using linear separable
data. From this point on, we had best evaluate discriminant functions using linear
separable data, because the results are very clear. In genome discrimination, researchers
try to estimate the variance-covariance matrices using small sample sizes and large
numbers of features. These efforts may be meaningless and lead to incorrect results.

5 Problem 3 (Discrimination of 44 Japanese Cars)

The special cases found in NCUEE exams are confirmed by my exams, also. It is
resolved in Nov., 2012. It needs three years because I never doubt the algorithm of QDF
and surveyed by the multivariate approach. I checked all features by t-test of two classes,
before I abandon the survey. The special case above is more easily explained by the
discrimination of 44 Japanese cars.2 Let us consider the discrimination of 29 regular cars
and 15 small cars. Small cars have a special Japanese specification. They are sold as
second cars or to women, because they are cost efficient. The emission rate and capacity
of small cars are restricted. The emission rate of small and regular cars ranges from
[0.657, 0.658] and [0.996, 3.456], respectively. The capacity (number of seats) of small
and regular cars are 4 and [5, 8], respectively.

Table 5 shows the forward stepwise result. At first, “emission” enters the model
because the t-value is high. The MNM and NMs of QDF are zero. LDF cannot
recognize linear separability. Next, ‘price’ enters the 2-features model, although the
t-value of ‘price’ is less than that of ‘capacity’. In the third step, QDF misclassifies all

Table 5. Discrimination of Japanese small and regular cars.

p Var. t LDF QDF1 MNM2 λ = γ = 0.8 0.5 0.2 0.1

1 Emission 11.37 2 0 0 2 1 1 0
2 Price 5.42 1 0 0 4 1 0 0
3 Capacity 8.93 1 29 0 3 1 0 0
4 CO2 4.27 1 29 0 4 1 0 0
5 Fuel −4.00 0 29 0 5 1 0 0
6 Sales −0.82 0 29 0 5 1 0 0
1If we add small noise to the constant (capacity of small cars), “NMs = 29” are changed to zero.
2MNM and NMs of logistic regression are zero.

2 This data is open to the paper about DEA (Table 1 in Page 4. http://repository.seikei.ac.jp/dspace/
handle/10928/402).
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29 regular cars as small cars after “capacity” is included in the 3-features model. This is
because the capacity of small cars is fixed to four persons. It is very important that only
QDF and RDA are adversely affected by this special case. LDF and the t-test are not
affected, because these are computed from the pooled variance of two classes. Modified
RDA offers two options such as λ and γ. Four trials show that λ = γ = 0.1 is better than
others. JMP division is expected to show the guideline of two options.

6 K-fold Cross Validation (Problem 4)

Usually, the LOO method is used for model selection of the discriminant analysis. In
this research, “k-fold cross validation for small sample sizes” is proposed, as it is more
powerful than the LOO method. In near future, these results will reveal generalization
abilities and the 95 % CIs of Revised IP-OLDF, Revised IPLP-OLDF, Revised
LP-OLDF, H-SVM, S-SVM (c = 104, 1), logistic regression and Fisher’s LDF.

6.1 Hundred-Fold Cross Validation

In the regression analysis, we benefit from inferential statistics, because the SE of
regression coefficients, and model selection statistics such as Cp, AIC and BIC, are known
a priori. On the other hand, there is no SE of discriminant coefficients and model selection
statistics in the discriminant analysis. Therefore, users of the discriminant analysis and
SVMs often use the LOOmethod. Let the sample size be n. One case is used for validation,
and the other (n − 1) cases are used as training samples. We evaluate n sets of training and
validation samples. If we have a large sample size, we can use k-fold cross validation. The
sample is divided into k subsamples. We can evaluate k combinations of the training and
validation samples. On the other hand, bootstrap or re-sampling methods can be used with
small sample sizes. In this research, large sample sets are generated by re-sampling, and
100-fold cross validation is proposed using these re-sampled data. In this research, “100-
fold cross validation for small sample sizes” is applied as follows: (1) We copy 100 times
the data frommidterm exams in 2012 using JMP. (2)We add a uniform random number as
a new variable, sort the data in ascending order, and divide into 100 subsets. (3) We
evaluate eight functions such as Revised IP-OLDF, Revised LP-OLDF, Revised IPLP-
OLDF, H-SVM, S-SVM (c = 104 and 1), Fisher’s LDF and logistic regression by 100-fold
cross validation using these 100 subsets.

Revised IP-OLDF and S-SVM are analyzed by LINGO [11], developed with the
support of LINDO Systems Inc. Logistic regression and LDF are analyzed by JMP,
developed with the support of the JMP division of SAS Japan. There is merit in using
100-fold cross validation because we can easily calculate the 95 % CIs of the dis-
criminant coefficients and NMs (or error rates). The LOO method can be used for
model selection, but cannot obtain the 95 % CIs. These differences are quite important
for analysis of small samples.
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6.2 LOO and K–Fold Cross Validation

Table 6 shows the results of the LOOmethod and NMs in the original data. ‘Var.’ shows
the suffix of four testlet scores named ‘T’. Only 11 models were showed, because four
1-feature models were omitted from the table. The MNM of the 2-features model
(T2, T4) in No. 6 is zero, as are those of the 4-features model (T1-T4) in No. 1, and the
two 3-features models of (T1, T2, T4) in No. 2 and (T2, T3, T4) in No. 3. The NMs of
logistic regression and SVM4 (c = 104) are zero in these four models, but NMs of SVM1
(c = 1) are 2 and 3 in No. 2 and No. 6, respectively. It is often observed that S-SVM
cannot recognize linear separability when the penalty c has a small value. The LOO
method recommends models in No. 3 and No. 6 because these NMs are minimum.

Table 7 shows the results given by Revised IP-OLDF (RIP), SVM4, LDF, and
logistic regression (Logi.). The results of SVM1, Revised LP-OLDF and Revised
IPLP-OLDF are omitted. First column shows the same No. in Table 6. After four linear
separable models, the ranges of seven models are showed. ‘MEAN1’ column denotes
the mean error rate in the training sample. Revised IP-OLDF and logistic regression can
recognize linear separability for four models. For SVM4, only model No.1 has an NM
of zero. The mean error rates of all Fisher’s LDF are over 9.48 %. ‘MEAN2’ column
denotes the mean error rate in the validation sample. Only two models (No.2 and No. 6)
of Revised IP-OLDF have NMs of zero and are selected as the best models. The NMs
of other functions are greater than zero, and those of LDF are over 9.91 %.

We can conclude that Fisher’s LDF is the worst of these four LDFs. Some statis-
ticians believe that NMs of Revised IP-OLDF is less suitable for validation samples,
because it over fits for the training samples. On the other hand, Fisher’s LDF does not
lead to overestimation, because it assumes a normal distribution. These results show that
the presumption of ‘overestimation’ is wrong. We may conclude that real data does not
obey Fisher’s assumption. To build a theory based on an incorrect assumption will lead
to incorrect results [2]. ‘Diff.’ is the difference between MEAN2 and MEAN1. We think
the small absolute value of ‘Diff.’ implies there is no overestimation. In this sense,

Table 6. LOO and NMs in original test data.

No Var. LOO LDF Logi MNM SVM4 SVM1

1 1–4 14 12 0 0 0 0
2 1,2,4 13 12 0 0 0 2
3 2,3,4 11 11 0 0 0 0
4 1,3,4 15 15 2 2 3 3
5 1,2,3 16 16 6 4 6 6
6 2,4 11 11 0 0 0 3
7 1,4 16 16 6 3 6 6
8 3,4 14 13 3 3 4 4
9 1,2 18 17 12 7 7 7
10 2,3 16 11 11 6 11 11
11 1,3 22 21 15 7 10 10
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Fisher’s LDF is better than the other functions, because all values are less than 0.9.
However, only high values of the training samples lead to small values of ‘Diff.’

‘Diff1’ denotes the value of (MEAN1 of seven LDFs - MEAN1 of Revised IP-
OLDF) in the training samples, and ‘Diff2’ is the value of (MEAN2 of seven LDFs -
MEAN2 of Revised IP-OLDF) in the validation samples. All values of ‘Diff1 and Diff2’
of SVM4, Fisher’s LDF and logistic regression are greater than zero. The maximum
values of ‘Diff1’ given by SVM4, LDF and logistic regression are 2.33, 11.34 and
3.13 %, respectively. And the maximum values of ‘Diff2’ given by these functions were
1.7, 10.55 and 1.62 %, respectively. It is concluded that Fisher’s LDF was not as good as
Revised IP-OLDF, S-SVM, and logistic regression by 100-fold cross validation.
Therefore, we had better chosen the model of Revised IP-OLDF with minimum value of
M2 as the best model. Two models such as (T1, T2, T4) and (T2, T4) are zero. In this
case, we had better chosen 2-features model (T2, T4), because of the principle of
parsimony or Occam’s razor. The values of ‘MEAN2’ of Revised IP-OLDF, SVM4,
Fisher’s LDF and logistic regression are 0 %, 1.7 %, 9.91 % and 0.91 %, respectively.
This implies that the mean error rates of Fisher’s LDF is 9.91 % higher than the best
model of Revised IP-OLDF in the validation sample.

Table 7. Comparison of four functions.

RIP MEAN1 MEAN2 Diff.

1 0 0.07 0.07
2 0 0 0
3 0 0.03 0.03
6 0 0 0
4,5,7–11 [0.79,4.94] [0.03,7.21] [0.03,2.39]
SVM4 MEAN1 MEAN2 Diff. Diff1 Diff2
1 0 0.81 0.81 0 0.74
2 0.73 1.62 0.90 0.73 1.62
3 0.13 0.96 0.83 0.13 0.93
6 0.77 1.70 0.93 0.77 1.70
4,5,7-11 [1.65,6.85] [3.12,8.02] [0.66,1.65] [0.78,2.33] [0.59,1.36]
LDF MEAN1 MEAN2 Diff. Diff1 Diff2
1 9.64 10.54 0.90 9.64 10.47
2 9.89 10.55 0.66 9.89 10.55
3 9.48 10.09 0.61 9.48 10.06
6 9.54 9.91 0.37 9.54 9.91
4,5,7-11 [10.81,16.28] [11.03,16.48] [0.16,0.6] [7.97,11.34] [6.23,9.61]
Logi MEAN1 MEAN2 Diff. Diff1 Diff2
1 0 0.77 0.77 0 0.70
2 0 1.09 1.09 0 1.09
3 0 0.85 0.85 0 0.82
6 0 0.91 0.91 0 0.91
4,5,7-11 [1.59,7.65] [2.83,8.04] [0.35,1.34] [0.8,3.13] [0.39,1.62]
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In 2014, these results are recalculated using LINGO Ver.14. The elapsed runtimes
of Revised IP-OLDF and SVM4 are 3 min 54 s and 2 min 22 s, respectively. The
elapsed runtimes of LDF and logistic regression by JMP are 24 min and 21 min,
respectively. Reversals of CPU time have occurred for this time.

7 Conclusions

In this research, we have discussed three problems of discriminant analysis. Problem 1
is solved by Revised IP-OLDF, which looks for the interior points of the OCP directly.
Problem 2 is theoretically solved by Revised IP-OLDF and H-SVM, but H-SVM can
only be applied to linear separable data. Error rates of Fisher’s LDF and QDF are very
high for linear separable data. This means that these functions should not be used for
important discrimination tasks, such as medical diagnosis and genome discrimination.
Problem 3 only concerns QDF. This problem was resolved by a t-test after three years
of investigation, and can be solved by adding a small noise term to variables. Now,
JMP offers a modified RDA, and if we can choose proper parameters, it may be better
than LDF and QDF.

However, these conclusions are confirmed by the training samples. In many
researches, statistical users have small sample sizes, and cannot evaluate the validation
samples. Therefore, “k-fold cross validation for small samples” is proposed. This
method confirms the same above conclusion by the validation samples. Many dis-
criminant functions are developed using various criteria after Warmack and Gonzalez
[29]. The mission of discrimination should be based on the MNM criterion. Statisticians
have tried to develop functions based on the MNM criterion, but this can now be
achieved by Revised IP-OLDF using MIP. It is widely believed that Revised IP-OLDF
leads to overestimations, but Fisher’s LDF is worse for validation samples. Comparison
of eight LDFs are examined for future work (Future4) by 100-fold cross validation.
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Abstract. This paper is devoted to the problem of designing a computational
system utilizing the minimal number of processors to ensure that the program is
executed before the deadline. The program is represented by a direct acyclic
graph where vertices correspond to jobs. The system is supposed to tolerate both
hardware and software faults. The schedule of the program execution does not
include the exact moments of job launch and termination, thus allowing to
employ abstract models with various levels of detail to estimate the time of
execution. A simulated annealing algorithm is proposed for this problem. The
paper provides the proof of asymptotic convergence of the algorithm and an
experimental evaluation. The algorithm is also applied to a practical problem of
scheduling in radiolocation systems.

Keywords: Systems design � Job shop scheduling � Scheduling algorithms �
Reliability � Multiprocessor systems � Optimization problems � Real-time systems

1 Introduction

Real-time systems (RTS) often impose obligatory restrictions not only on the deadlines
of the programs, but also on the reliability and other characteristics such as weight and
volume. The co-design problem of finding the minimal necessary number of processors
and scheduling the set of tasks on it arises in this relation. The limitations on the time of
execution and the reliability of the RTS must be satisfied. This paper describes an
algorithm of solving this problem. The algorithm can be tuned for solving instances of
the problem by adjusting various settings. The algorithm permits to employ various
techniques of computing the reliability of the RTS and various simulation methods for
estimating the time of execution of a schedule. Thanks to this it can be used on different
stages of designing the RTS. The program being scheduled changes over the course of
designing the system with additional details introduced gradually, so the need to re-
schedule it and to define the hardware architecture more precisely may arise.

2 Problem Formulation

This paper considers only homogeneous hardware systems. Hence the system consists
of a set of processors connected with a network device; all processors are identical,
which means that they have equal reliability and the time of execution of any program
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is equal on all processors. The structure of the network, on the other hand, is not
defined strictly, allowing various models (bus, switch, etc).

The program to be scheduled is a set of interacting tasks. The program can be
represented with its data flow graph G ¼ fV ;Eg where V is the set of vertices and E is
the set of edges. Let M denote the set of available processors.

To improve reliability, two methods are used: processor redundancy and N-version
programming.

Processor redundancy implies adding a new processor to the system and using it to
run the same tasks as on some existing processor. In this case the system fails if both
processors fail. The additional processor is used as hot spare, i.e. it receives the same
data and performs the same operations as the primary processor, but sends data only if
the primary one fails.

To use N-version programming (NVP, also known as multiversion programming),
several versions (independent implementations) of a task are created. It is assumed that
different versions written by different programmers will fail in different cases. The
number of versions is always odd, and the execution of a task is deemed successful by
majority vote, i.e. when more than a half of the versions produce the same output.

The reliability of the system depends on the following variables: P(mi) is the reliability
of a processor,VersðviÞ is the set of available versions for the task vi, P(vi) is the reliability
of vi counting all versions used. Formulae for P(vi) can be found in [3, 4, 8, 23].
The reliability of the whole system is calculated as the product of the reliability of its
elements.

A schedule for the program is defined by task allocation, the correspondence of
each task with one of the processors, and task order, the order of execution of the task
on the processor.

If N-version programming is employed, the number of version must be specified for
each instance of each task. Allocation and order are defined not for individual tasks, but
for pairs “task - version”.

Formally, a schedule of a system with processor redundancy and multiversion
programming is defined as a pair ðS;DÞ where S is a set of quadruples ðv; k;m; nÞ where
v 2 V ; k 2 VersðvÞ;m 2 M; n 2 N, so that

8v 2 V9k 2 VersðvÞ : 9s ¼ ðvi; ki;mi; niÞ 2 S : vi ¼ v; ki ¼ k;

8si ¼ ðvi; ki;mi; niÞ 2 S; 8sj ¼ ðvj; kj;mj; njÞ 2 S : ðvi ¼ vj ^ ki ¼ kjÞ ) si ¼ sj;

8si ¼ ðvi; ki;mi; niÞ 2 S; 8sj ¼ ðvj; kj;mj; njÞ 2 S : ðsi 6¼ sj ^ mi ¼ mjÞ ) ni 6¼ nj:

D is a multiset of elements of the set of processors, M. The number of reserves of
processor m is equal to the number of instances of m in D. Substantially m and n denote
the placement of the task on a processor and the order of execution for each version of
each task. The multiset D denotes the spare processors.

A schedule can be represented with a graph. The vertices of the graph are the
elements of S. If the corresponding tasks are connected with an edge in the graph G, the
same edge is added to the schedule graph. Additional edges are inserted for all pairs of
tasks placed on the same processor right next to each other.
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According to the definition, there can be only one instance of each version of each
task in the schedule, all tasks on any processor have different numbers and the schedule
must contain at least one version of each task. Besides these, one more limitation must
be introduced to guarantee that the program can be executed completely. A schedule
S is correct by definition if its graph has no cycles. �S is the space of all correct
schedules.

For every correct schedule the following functions are defined: t(S) – time of
execution of the whole program, R(S) – reliability of the system, M(S) – the number of
processors used.

As mentioned before, the structure of the network is not fixed, so the time of
execution depends on the actual model. Various models can be implemented (partic-
ularly, the algorithm was tested for bus, Ethernet switch and Fibre channel switch
architectures), but all of them in the end have to build a time chart of the execution of
the schedule. To calculate t(S), it is necessary to define the start and end time of each
task and each data transfer. t(S) can be an analytic function, or it can be calculated with
some algorithm, or it can even be estimated with simulation experiments with tools like
the one described in [1 or 19]. If the X axis indicates time, different processors are
represented with lines parallel to the X axis, the start and end times of all the tasks and
transfers can be drawn in a chart like the one shown on Figs. 1 and 2 in Sect. 3.

Finally, the optimization problem can be formulated as follows. Given the program
G, tdir, the hard deadline of the program, and Rdir, the required reliability of the system,
the schedule S that satisfies both constraints and requires the minimal number of
processors is to be found:

minS2�SM Sð Þ;

t Sð Þ� tdir;

R Sð Þ� Rdir:

Theorem 1. The problem stated above is NP-hard.

Proof. The NP-hardness can be proved by reducing problem (1) to the NP-hard subset
sum problem: given the set of integers a1, …an, find out whether it can be split in two
subsets with equal sums of its elements.

Let B = ∑ i=1
n ai, Rdir = 0, tdir = B/2. Graph G has n vertices and zero edges, E ¼ [, so

the tasks can be assigned to the processors in any order. The time of execution of each
task vi is defined as constant ai. The time of execution of a task is defined in a natural
way: if s0 is assigned after s1, …sn, then it is executed in the interval
( ∑ i=1

n ai, ∑ i=1
n ai + a0).

If the subset sum problem has a solution consisting of two subsets, X and Y, then
the tasks corresponding to X can be assigned on the first processor, and the rest can be
assigned to the second processor. Obviously the time of execution will be B/2, the
deadline will be met, and the number of processors is minimal, so the corresponding
scheduling problem is solvable.
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Similarly, if the subset sum problem has no solution, then for any of the possible
divisions into two subsets the sum of one subset will exceed B/2, and thus the corre-
sponding schedule will not meet the deadline.

This means that scheduling problem can be reduced to subset sum problem, and the
reduction is obviously polynomial, because the only computation needed for the
reduction is defining B which is a sum of n numbers. Therefore, the scheduling problem
is NP-hard.

3 Proposed Problem Solution

3.1 Selecting the Method

The problem as formulated in Sect. 2 is unique, however, it is necessary to examine the
solutions of similar problems. Out of all job shop scheduling problems we need to
consider only those where the program is represented with a direct acyclic graph and
the tasks cannot be interrupted. The definition of the schedule and the fault tolerance
techniques can vary. Also we can ignore non-NP-hard scheduling problems, as their
methods of solution are unlikely to be applicable to our problem. These limitations
leave only the following possible methods of solution: exhaustive search, greedy
strategies, simulated annealing and genetic strategies.

Exhaustive search is impractical in this case simply because of the sheer size of the
solution space (the number of all transpositions of the tasks on all processors is more
than n!). The target function (the number of processors) is discrete and can yield a
limited set of integer values which makes using limited search methods such as branch
and bound method impossible.

Greedy algorithms give an approximation of the optimal solution. The solution is
constructed by scheduling tasks separately one after another according to a pre-defined
strategy. For example, it is possible to select the position of the task so that the total
execution time of all scheduled tasks is minimal. Such algorithm has polynomial
complexity. This strategy can be called «do as soon as possible» strategy, it is dis-
cussed in [17]. More complex strategies, both reliability and cost/time driven are
discussed in [18]. An approach that takes possible software and hardware faults into the
account is discussed in [3]. Another solution is to do the exact opposite: first schedule
all tasks on separate processors and then join processors while such operation is
possible without breaking the deadlines [12].

The main drawback of greedy algorithms is potential low accuracy. There is no
theoretical guarantee that the solution is close to the optimal, in fact, it is possible to
artificially construct examples where a greedy strategy gives a solution infinitely distant
from the optimal one. This drawback can be partially fixed by adding a random
operation to the algorithm and running it multiple times, however, this way the main
advantage that is low complexity is lost.

Simulated annealing algorithm [10] deals with a single solution on each step. It is
mutated slightly to create a candidate solution. If the candidate is better, then it is
accepted as the new approximation, otherwise it is accepted with a probability
decreasing over time. So on the early steps the algorithm is likely to wander around the
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solution steps, and on the late steps the algorithm descends to the current local opti-
mum. Simulated annealing does not guarantee that the optimal solution will be found,
however, there are proofs that if the number of iterations is infinite, the algorithm
converges in probability to the optimal solution [14]. Reference [21] formulates the
principal steps needed to apply simulated annealing to job shop scheduling problem.
It is necessary to define the solution space; define the neighborhood of each solution, in
other words, introduce the elementary operations on the solution space; define the
target function of the algorithm. Reference [16] gives experimental proofs of the
efficiency of simulated annealing for job shop scheduling. This work also suggests an
improvement over the standard algorithm: heuristics. In the classical algorithm, the
candidate solution is chosen from the neighborhood randomly, however, knowing the
structure of the schedules, it is possible to direct the search by giving priority to specific
neighbors. Reference [9] also suggest the use of heuristics and gives an example of
successful application of simulated annealing to scheduling.

The widely known genetic algorithms give an approximation of the optimal
solution, and there is a hypothesis about the asymptotical convergence [5]. The first
problem related to the application of genetic algorithm to scheduling is the encoding.
If the tasks are independent, the schedule can be encoded simply by the list of pro-
cessors where the corresponding tasks are assigned [15]. However, this is not viable for
more complex models such as the one considered in this paper. For such cases, more
sophisticated encoding is necessary, and the operations of crossover and mutations do
not resemble the traditional operations with bit strings; schedules exchange whole parts
that do not break the correctness conditions [6]. Reference [7] shows an example of an
evolutionary strategy resembling the genetic algorithm applied to scheduling problems.

The main problem with genetic algorithms in regard to the discussed scheduling
problem is low speed. As the algorithm has to allow using various models for time
estimation, the time estimation can be complex and resource-consuming. It is impos-
sible to avoid estimating time for all solutions of the population on each step. There-
fore, if the population is substantially large, the algorithm can work very slowly as
opposed to the simulated annealing algorithm that requires time estimation only once
on each iteration.

Summing up the survey of the scheduling methods, we can conclude that simulated
annealing is the preferable method both in terms of potential accuracy (asymptotic
convergence can be proved) and speed (lower than greedy algorithm but substantially
higher than genetic algorithm). The actual algorithm is discussed in detail in the next
subsection.

3.2 Simulated Annealing Algorithm Description

The proposed algorithm of solution is based on simulated annealing [9]. Each iteration
of the algorithm consists of the following steps:

Step 1. Set the initial solution ðS0;D0Þ 2 �S which becomes the first approximation
ð S;Dð Þ ¼ ðS0;D0ÞÞ.

Step 2. Set the current temperature to T0 (T = T0).
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Step 3. Apply the mutation operation to the current approximation (S, D) to get the
new correct solution S0;D0ð Þ 2 �S. If this solution is the better than all
previously visited solutions, it is recorded.

Step 4. Compute the value of the solution accuracy difference: ΔF = F(S′, D′) − F
(S, D). If ΔF ≤ 0 (the new solution is better), it is accepted as the current
approximation ð S;Dð Þ ¼ ðS0;D0ÞÞ. If ΔF > 0 (the new solution is worse), it is
accepted with the probability = e-ΔF/T.

Step 5. Repeat steps 3 and 4 a fixed number of times with constant temperature.
Step 6. If the stopping condition is satisfied, terminate the algorithm.
Step 7. Lower the temperature and return to step 3.

To construct a simulated annealing algorithm for the particular problem, the fol-
lowing problems have to be solved:

• Define the system of operations on schedules in order to implement mutation on
step 3.

• Define the heuristic strategy that suggests which operation is applied on step 3.
• Select the temperature function on step 7.
• Define the function F(S, D) used to evaluate the solutions on step 4.
• Select the stopping condition for step 6.

The following operations on schedules are defined.

Add spare processor. In the schedule ðS;DÞ a new element is added to the multiset D.

Delete spare processor. In the schedule ðS;DÞ he element m is removed from the
multiset D, if there is more than one instance of m in D.

Move vertex. This operation changes the order of tasks on a processor or moves a task
on another processor. It has three parameters: the task to be moved, the processor where
it is moved and the position on the target processor. The correctness of the resulting
scheduled must always be checked during this operation.

Let Trans(s) be the set of tasks transitively depending on s: the set of all si, such
that the graph G contains a chain ðv; viÞ:

The set Succ(s) can be constructed with the following method. Let N0 = Trans(s).
If Ni ¼ fs1; s2; . . .; sng, and sn+1, …, sn+k satisfy 8l 2 1::k½ � : 9i 2 1::n½ � : mi 6¼ m ^
mi ¼ mnþl ^ ni\ nl: Then Ni = Ni+1 ∪ Trans(sn+1) ∪ Trans(sn+2) ∪ … ∪ Trans(sn+k).
If Ni-1 = Ni, then Ni = Succ(s). Succ(s) is the set of tasks that depend on s indirectly.

Finally we can formulate the correctness condition of Move vertex operation. The
task to move is s1 ¼ ðv1; k1;m1; n1Þ, the target processor is m2 and the target number is
n2, and the following condition must be true:

8si : mi ¼ m2 : ðni\n2 ) si 62 Succ s1ð ÞÞ ^ ðni � n2 ) s1 62 Succ sið ÞÞ;

Then the operation requires the following substitution:
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s01 ¼ v1; k1;m2; n2ð Þ; 8si : mi ¼ m2 : ni � n2 ) s0i ¼ ðvi; ki;mi; ni þ 1Þ:

Add versions. Versions can be added only in pairs because the total number of
versions must be odd if NVP is used. Two new versions are added on a new empty
processor.

Delete versions. Versions are deleted in pairs. Two elements corresponding to two
different versions of the same task are removed from the schedule.

Theorem 2. The system of operations is complete: if ðS1;D1Þ; ðS2;D2Þ are correct
schedules, there exists a sequence of operations that transforms ðS1;D1Þ to ðS2;D2Þ
such that all interim schedules are correct.

Proof. Applying any operation results in a correct schedule by definition of the
operations. It is easy to see that each operation can be reversed [13], thus to prove the
completeness of the system of operations it is enough to show how to transform both
ðS1;D1Þ and ðS2;D2Þ to some schedule ðS0;D0Þ.
First let us enumerate all tasks. As the graph G has no cycles, for each task v it is
possible to define Level(v). Level(v) = 1 if there are no edges terminating in v. Level
(v) = n if all edges terminating in v start from vertices from levels below n. Assume that
there are p1 tasks at level 1, they can be numbered from 1 to p1. Similarly, if there are
p2 tasks on level 2, they can be numbered from p1 + 1 to p1 + p2. In the end all tasks
will be numbered from 1 to N (where N is the total number of tasks).

The canonical schedule for program G is the schedule consisting of quadruples
si = (vi, ki, m1, i), where {i} are the numbers defined above. In this schedule all tasks are
located on one processor, and due to the definition of the indices {i} it has no cycles.
Now let us show that any schedule can be transformed to the canonical schedule.

First all reserve processors and additional versions are deleted. After that the
number of elements in the schedule will be equal to the number of tasks in graph
G. Then an empty processor m0 is selected, and the tasks are moved to it according to
their respective numbers, each task is assigned the last position. This will be the
canonical schedule, and now we need to prove, that all operations in this procedure
were correct.

It can be proved with induction. The first operation is always correct, because the
first task doesn’t depend on any other (as it is on level 1), and since it is moved to the
first position, no edges in the schedule graph terminate in it, hence cycles cannot
appear.

Now assuming that tasks 1…p have been moved, let us examine the move of the
task number p + 1. By definition, the operation is correct if

8si : mi ¼ m2 : ni\n2 ) si 62 Succ s1ð Þð Þ ^ ni � n2 ) s1 62 Succ sið Þð Þ:

Since the task vp+1 becomes the last one on the new processor, the latter part of the
equation is always true, so the condition is reduced to ∀i: i ≤ p ⇒ si ∉ Succ(sp+1).

Let us analyze the set Succ(sp+1). On the first iteration of its construction, it will
contain quadruples from Trans(sp+1). Due to the definition of the enumerations, none of
the elements of Trans(sp+1) can have a number lower than p + 1, because their level is
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higher. So, none of them is already assigned to processor m0, so on the next iteration of
constructing Succ(sp+1) only tasks from TransðsjÞ; j[ p will be added. Accordingly,
none of the elements of Succ(sp+1) has a number lower than p, and it means that the
correctness condition is satisfied.

Summing up, any two schedules ðS1;D1Þ and ðS2;D2Þ can be transformed to the
canonical form with a sequence of correct operations. Using the reverse operations, the
canonical form can be transformed to any of these tow schedules, Q.E.D.

The selection of the operation on each step of the algorithm is simple: if reliability
requirements are not satisfied, either adding processors or adding versions is done with
equal probability. Otherwise the operation is chosen from the remaining three opera-
tions, of course, if the operation is possible at all (i.e. for deleting versions some extra
versions must already be present in the schedule). When the operation is selected, its
respective parameters are chosen.

If the reliability of the system is lower that required, spare processors and versions
should be added, otherwise they can be deleted. If the time of execution exceeds the
deadline the possible solutions are deleting versions or moving vertices.

The selection of the operation is not deterministic so that the algorithm can avoid
endless loops. Probability of selecting each operation, possibly zero, is defined for each
of the four possible situations. These probabilities are given before the start of the
algorithm as its settings.

Some operations cannot be applied in some cases. For example, if none of the
processors have spare copies it is impossible to delete processors and if all versions
are already used it is impossible to add more versions. Such cases can be detected
before selecting the operation, so impossible operations are not considered.

When the operation is selected, its parameters have to be chosen according to the
following rules.

Add versions. Among the tasks that have available versions one is selected randomly.
Tasks with more versions already added to the schedule have lower probability of
being selected.

Delete versions. The task is selected randomly. Tasks with more versions have higher
probability of being selected.

Add spare processor. Similar to the addition of versions, processors with fewer spares
have higher probability of being selected for this operation.

Delete spare processor. A spare of a random processor is deleted. The probability is
proportional to the number of spare processors.

The probabilities for these four operations are set with the intention to keep balance
between the reliability of all components of the system.

Move vertex. If t < tdir the main objective is to reduce the number of processors. The
following operation is performed: the processor with the least tasks is selected and all
tasks assigned to it are moved to other processors.

If t > tdir it is necessary to reduce the time of execution of the schedule. It can be
achieved by reallocating some tasks, and we suggest three different heuristics to assist
finding tasks that need to be moved: delay reduction, idle time reduction or mixed
strategy.
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Delay reduction strategy (shortened to S1). The idea of this strategy emerges from the
assumption that if the time of the start of each task is equal to the length of the critical
path to this task in graph G, the schedule is optimal. The length of the critical path is the
sum of the lengths of all the tasks forming the path and it represents the earliest time
when the execution of the task can begin.

For each element s it is possible to calculate the earliest time when s can start, i.e.
when all the tasks that are origins of the edges terminating in s are completed. The
difference between this time and the moment when the execution of s actually starts
according to the current schedule is called the delay of task s. Since the cause of big
delays is the execution of other tasks before the delayed one, the task before the task
with the highest delay is selected for Move Vertex operation. If the operation is not
accepted, on the next iteration the task before the task with the second highest delay is
selected, and so on. If all tasks with non-zero delay have been tested, the task to move
is selected randomly. The position (pair ðm; nÞ from the triplet) is selected randomly
among the positions where the task can be moved without breaking the correctness
condition, and the selected task is moved to this position.

Figure 1 gives an example of delay reduction. Task 3 does not depend on task 4, so
moving task 4 to the first processor reduces the delay of task 3, and the total time
decreases accordingly.

Idle time reduction strategy (strategy S2). This strategy is based on the assumption that
in the best schedule the total time when the processors are idle and no tasks are
executed due to waiting for data transfer to end is minimal.

For each position ðm; nÞ the idle time is defined as follows. If n ¼ 1 then its idle
time is the time between the beginning of the work and the start of the execution of the
task in the position ðm; 1Þ. If the position ðm; nÞ denotes the place after the end
of the last task on the processor m, then its idle time is the time between the end of the
execution of the last task on m and the end of the whole program. Otherwise, the idle
time of the position ðm; nÞ is the interval between the end of the task in ðm; n� 1Þ and
the beginning of the task in ðm; nÞ:

The task to move is selected randomly with higher probability assigned to the tasks
executed later. Among all positions where it is possible to move the selected task, the
position with the highest idle time is selected. If the operation is not accepted, the
position with the second highest idle time is selected, and so on.

Fig. 1. Delay reduction strategy example.
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The idle time reduction strategy is illustrated in Fig. 2. The idle time between tasks
1 and 4 is large and thus moving task 3 allows reducing the total execution time.

Mixed strategy (strategy S3). As the name suggests, the mixed strategy is a combi-
nation of the two previous strategies. One of the two strategies is selected randomly on
each iteration. The aim of this strategy is to find parts of the schedule where some
processor is idle for a long period and to try moving a task with a big delay there,
prioritizing earlier positions to reduce the delay as much as possible. This strategy has
the benefits of both idle time reduction and delay reduction, however, more iterations
may be required to reach the solution.

Additionally, completely random selection of the operation with a uniform distri-
bution will be called random strategy (S0).

After performing the operation a new schedule is created and time, reliability and
number of processors are calculated for it. Depending on the values of these three
functions the new schedule can be accepted as the new approximation for the next
iteration of the algorithm. The probability to accept a worse schedule on step 3 depends
on the parameter called temperature. This probability decreases along with the tem-
perature over time. Temperature functions such as Boltzmann and Cauchy laws [22]
can be used as in most simulated annealing algorithms.

The correctness of the algorithm can be inferred from the fact that on all iterations
the schedule is modified only by operations introduced in this section, and according to
theorem 2, each operation leads to a correct schedule.

Theorem 3 (Asymptotic convergence). Assume that the temperature values decrease at
logarithmic rate or slower: tk �C=logðk þ k0Þ;C[ 0; k0 [ 2. Then the simulated
annealing algorithm converges in probability to the stationary distribution where the
probability to reach an optimal solution is qi ¼ 1

=j j v=ðiÞ, where = is the set of optimal

solutions.

Proof. As shown in [14], the simulated annealing algorithm can be represented with an
inhomogeneous Markov chain. The stationary distribution exists if the Markov chain is
strongly ergodic. The necessary conditions of strong ergodicity are (1) weak ergodicity,
(2) the matrix P(k)T has an eigenvalue equal to 1 for each k, (3) for its eigenvectors
q(k) the series ∑ k=1

∞ q(k) − q(k + 1)1 converges [21]. First we need to prove that the
Markov chain is strongly ergodic. Condition (2) means that there exists an eigenvector

Fig. 2. Idle time reduction strategy example.
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q such that P(k)T · q = q, or for each row of the matrix, qi = ∑ j∊Iqj · Pji, which is exactly
equivalent to the detailed balance equations. It is possible to check that

qi ¼ je ið Þj
P

j e jð Þj j �
min 1;e

f ið Þ�f jð Þ
tn

� �

min 1;e
f jð Þ�f ið Þ

tn

� �

0

@

1

A

is the solution of this set of equations.

Let min 1; e
f ið Þ�f jð Þ

tn

� �
¼ Aij. Notice that the following equation holds: Aij · Ajk = Aik.

Now it is easy to check the detailed balance equations.

je ið Þj
P

jð e jð Þj j � Aij

Aji
Þ
Gij � Aij ¼ e jð Þj j

P
k e kð Þj j � Ajk

Akj

� �Gji � Aji

1
P

jð e jð Þj j � Aij

Aji
Þ
¼ 1

P
k e kð Þj j � Ajk

Akj

� � � Aji

Aij

1
P

jð e jð Þj j � Aij

Aji
Þ
¼ 1

P
k e kð Þj j � Ajk

Akj
� Aij

Aji

� �

1
P

jð e jð Þj j � Aij

Aji
Þ
¼ 1

P
k e kð Þj j � Aik

Aki

� �

The last equation is obviously correct.
To check condition (3) the following calculations can be performed.

X1

k¼1

jj q kð Þ � q kþ 1ð Þ jj1

¼
X1

k¼1

X

i

qi kð Þ � qi kþ 1ð Þj j

¼
X1

k¼1

X

i

e ið Þj j
P

j e jð Þj j � Aij kð Þ
Aji kð Þ

� �� e ið Þj j
P

j e jð Þj j � Aij kþ1ð Þ
Aji kþ1ð Þ

� �

��������

��������

�C �
X1

k¼1

X

i

1
P

jðAijðkÞ=AjiðkÞÞ �
1

P
jðAijðkþ 1Þ=Ajiðkþ 1ÞÞ

�����

�����

¼ C �
X

i

1
P

jðAijð1Þ=Ajið1ÞÞ �
1

P
jðAijðkÞ=AjiðkÞÞ

�����

�����
:
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Considering the conditions of the theorem, the last item is proportional to 1/k, and
thus it converges to 0.

To check condition (1) it is possible to use the necessary condition of weak
ergodicity [21]: prove that the series

P1
k¼1 ð1� s1ðP kð ÞNk ÞÞ diverges. Let us find a

lower bound for P(k).

P kð Þ� min
i;j

Gij

� �
� exp �min 1; f ið Þ � f jð Þð Þ

tk

� �
¼ C1e

�C2=tk

X1

k¼1

1� s1 P kð ÞNk
� �� ��

X1

k¼1

CNk
1 e�C2Nk=tk

Considering that tk � C
logðkþk0Þ, we have a series like C �P1

k¼1
1
k, that diverges.

Finally it is necessary to find the limit of the vector q when the temperature
approaches 0. Let us examine the limit of the expression in the denominator.

lim
n!1

X

j

min 1; e
f ið Þ�f jð Þ

tn

� �

min 1; e
f jð Þ�f ið Þ

tn

� �

0

B@

1

CA

If solution i is optimal, then the denominator is always equal to 1 regardless
of j. The numerator will be equal to 1 is j is also an optimal solution, i.e. f ðiÞ ¼ f ðjÞ,
otherwise, if f(i) < f(j), then e

f ið Þ�f jð Þ
tn ! 0. So, the item in the sum converges to 1 if it

corresponds to an optimal solution j, and converges to 0 otherwise. Therefore the limit
is =j j, and qi ¼ 1

=j j.
If solution i is not optimal, then in one of the denominators contains f(j) − f(i) > 0,

and so the sequence e
f ið Þ�f jð Þ

tn ! 1, and the corresponding qi → 0.
Finally we can conclude that qi ¼ 1

=j j v=ðiÞ, Q.E.D.
Theorem 5. The computational complexity of one iteration is O(N(N+E)), where N is
the number of vertices of the program graph G and E is the number of its edges [24].

4 Experiments

The algorithm was tested both on artificial and practical examples. Artificial tests are
necessary to examine the behavior of the algorithm on a wide range of examples.
As the general convergence is theoretically proved, the aim of the experiments is to find
the actual speed of the algorithm and to compare different strategies among each other.

Graph on Fig. 3 shows the results of the comparison of three strategies. We gen-
erated random program graphs with a pre-defined number of vertices and the number of
edges proportional to the number of vertices. The number of vertices varies from 5 to
200 with step 5. For each example the algorithm was run 300 times, 100 times for each

42 D.A. Zorin and V.A. Kostenko



strategy, to make the results statistically important. The number of iterations of the
algorithm was set fixed.

Figure 3 shows the average value of the target function (number of processors)
depending on the number of vertices. The functions are not monotonous because of the
random nature of the examples: it is not possible to guarantee that a solution with some
number of processors exists, so a program of n tasks might require more processors
than a program of n + 5 tasks. The idle time reduction strategy works worse than the
other two, which is a sharp contrast with the previous version of the algorithm as
shown in [24].

Let Resi be the number of processors reached by the algorithm with strategy Si. The
following statistical hypotheses [20] hold for the conducted sample of experiments.

• Strategies S1 and S3 work better than S2 and S0 Res1 > Res2, Res1 > Res0,
Res3 > Res2, Res3 > Res0;

• Res3 � Res1 � 1;
• The results given by the algorithm are locally optimal.

Figure 4 shows the number of iterations required to reach the best result found for the
corresponding problem. In each experiment, the algorithm conducted 10N operations
where N is the number of tasks. However, after some point the continuing iteration
stopped improving the result. Experiments show that the speed of the mixed strategy is
practically equal to the speed of the delay reduction strategy, with S3 being slightly
faster. Idle time reduction strategy is significantly faster, but it can be explained with
the low quality of its results, hence fewer steps are needed to reach such results.

The practical problem we solved with the proposed algorithm is related to the
design of radiolocation systems and is described in detail in [11, 25]. Briefly, the
problem is to find the minimal number of processors needed to conduct the compu-
tation of the source of radio signals. The signals are received by an antenna array and
then a special parallel method is used computes the results. The method is based on
splitting the whole frequency diapason into L intervals and calculating the data for each

Fig. 3. Comparison of the strategies.
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interval separately, preferably on parallel processors. Each of L threads is split into
M subthreads as well.

In real systems the size of the array is a power of 2, usually between 256 and 1024
and the number of frequency intervals (L) is also power of 2, usually 32 or 64. M is a
small number, usually between 2 and 5. As the vast majority of complex computations
are done after splitting to frequency intervals, L is the main characteristic of the system
that influences the overall performance. Therefore, the quality of the algorithm can be
estimated by comparing the number of processors in the result with the default system
configuration where L * M processors are used. Figure 5 shows the quotient of these
two numbers, depending on L, for radiolocation problem. Lower quotient means better
result of the algorithm.

As we can see, the algorithm optimizes the multiprocessor system by at least 25 %
in harder examples with many parallel tasks, and by more than a half in simpler cases.
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Fig. 4. Comparison of the speed of the strategies.

Fig. 5. Optimization rate (X axis shows the values of L, Y axis shows the optimization rate).
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5 Conclusions

In this paper we formulate a combinatorial optimization problem arising from the
problem of co-design of real-time systems. We suggest a heuristic algorithm based on
simulated annealing, provide its description and prove the basic features, including
asymptotic convergence.

Experimental evaluation of the different heuristic strategies within the discussed
algorithm showed that one of the strategies was lacking compared to the other two.
Mixed and delay reduction strategies have equal quality, while the mixed strategy
converges slightly faster.
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Abstract. In this work, a multi-agent network flow problem is addressed
where a set of transportation-agents can control the capacities of a set
of elementary routes A third-party agent, a customer, is interesting in
maximizing the product flow transshipped from a source to a sink node
through the network and offers a reward that is proportional to the flow
value the transportation agents manage to provide. This problem can be
viewed as a Multi-Agent Minimum-Cost Maximum-Flow Problem where
the focus is put on finding stable strategies (i.e., Nash Equilibria) such
that no transportation-agent has any incentive to modify its behavior.
We show how such an equilibrium can be characterized by means of
augmenting or decreasing paths in a reduced network. We also discuss
the problem of finding a Nash Equilibrium that maximizes the flow and
prove its NP-Hardness.

Keywords: Multi-agent network flow · Nash equilibria · Complexity ·
Min-Cost Max-Flow

1 Introduction

Multi-agent network games have become a promising interdisciplinary research
area with important links to many application fields such as transportation net-
works, supply chain management, web services, production management, etc.
[1,2]. In these applicative areas, decision processes often involve several agents,
each one having its own autonomy, its own objectives and its own constraints.
These actors, often referred to as agents, need to cooperate together to fulfill
a global (social) goal, provided their own objective is also satisfied. This paper
stands at the crossroads of two disciplines, namely multi-agent systems and social
networks. A network flow that involves a set of agents, each one being in charge
of a part of the network, is considered in this paper, where every agent is able
to control the capacities of its arcs at a given cost. We address the problem
of finding a Nash equilibrium that maximizes the flow transported through the
network. A lot of features used in this work are inspired by the Multi-Agent
Project Scheduling (MAPS), as presented in [3], especially the payment scheme:

c© Springer International Publishing Switzerland 2015
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the outcome of an agent depends on its own strategy and on the satisfaction of
a customer, which depends on the flow circulating in the network. This paper
mainly discusses the complexity of finding a Nash Equilibrium that maximizes
the flow in the network.

To the best of our knowledge, the research presented here is an original
way of presenting a transportation problem using multi-agent network flow with
controllable arcs capacities. One important application is the expansion of trans-
portation network capacity (railway, roads, pipelines, etc.) to meet current peak
demand or to absorb future increase in the transportation demands. Therefore,
it is possible to increase the capacity of the network using two solutions: either
increase the capacity of one or many existing arcs or installing a new arc between
two nodes. A natural problem in many network applications is where to increase
arc capacities so that to increase the overall flow in the network at minimum cost.
There exists substantial research on capacity expansion (or capacity planning)
problems in different domains, such as manufacturing [4], electric utilities [5],
telecommunications [6], inventory management [7], and transportation [8–10].

As regards to social networks, the prediction of agents’ behavior is of interest.
Several papers focus on games associated with various forms of networks, see
[11] for an overview. In a recent work, Apt and Markakis (2011) studied the
complexity of finding a Nash Equilibrium for the multi-agent social networks
with multiple products, in which the agents, influenced by their neighbors, can
choose one out of several alternatives [12]. In [13], a cooperative network flow
game is considered, where an external party gives an additional payment to the
coalition, which may stabilize the game if the payment is sufficiently high. They
study the Cost of Stability (CoS) in threshold network flow games where each
agent controls an edge in the network.

A decade ago, some researchers have paid attention to a particular multi-
agent network problem: the Multi-Agent Project Scheduling problem (MAPS)
that describes a project scheduling environment in which the activities of the
project network are partitioned among a set of agents. In the seminal work
of Evaristo and Van Fenema (1999) [14], a special framework for distributed
projects is proposed, with costs and rewards shared among agents. In an ear-
liest work [15], the authors considered a MAPS problem where each agent can
control the duration of its activities at a given cost. The project activities and
precedence constraints are classically modeled with an activity-on-arc graph.
A reward is offered to the agents when they manage to finish the project earlier
than expected, as proposed in [16]. It has been demonstrated in [3,17] that find-
ing a Nash equilibrium minimizing the project makespan is NP-hard in the strong
sense. Moreover, using the concepts of an increasing and decreasing cut defined
in [18] and the duality between maximum flow and minimum cut problems,
Briand et al. (2012b) proposed an efficient integer linear program formulation
for this problem [19].

The paper is organized as follows: Sect. 2 defines formally the Multi-Agent
Minimum-Cost Maximum-Flow problem and introduces some important nota-
tions. Thereafter, Sect. 3 introduces the requirements for agents’ strategies and
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presents some important properties. In Sect. 4, some useful particular cases are
considered, namely the single agent, the general multi-agent and the special
multi-agent cases. Section 5 focuses on the complexity of some decision prob-
lems. Finally, conclusions and future directions are drawn in Sect. 6.

2 Problem Statement and Notations

We focus on a Minimum-Cost Maximum-Flow problem in a Multi-Agent con-
text. This problem will be further referred to as MA-MCMF. In this work, a
major assumption is that arc capacities are controlled by some agents, called
transportation-agents, each arc being assigned to a specific agent.

As in [16], we assume that a customer-agent gives a reward proportional
to the flow that circulates inside the network. This reward is shared among
transportation-agents according to some ratios collectively agreed during the
network design phase [20]. Considering a network flow with limited arc capac-
ities, this problem consists in sending a maximum amount of products (for
the customer) from a source node to a sink node, at minimum cost (for the
transportation-agents).

2.1 Problem Definition

The MA-MCMF problem is defined by a tuple < G,A, Q,Q,C, π,W > where:

– G = (V,E) is a network flow. V is the set of nodes, s, t ∈ V being the source
and the sink nodes of the network flow G, respectively. E is the set of arcs,
each one having its capacity and receiving a flow. An arc e from node i to
node j is denoted by e = (i, j).

– A is a set of m transportation-agents: A = {A1, . . . , Au, . . . , Am}. Arcs are
distributed among the agents. An agent Au owns a set of mu arcs, denoted Eu.
Each arc (i, j) belongs to exactly one transportation-agent (i.e., Eu ∩ Ev = ∅
for each agent’s pair (Au, Av) ∈ A2 such that u �= v).

– Q (resp. Q) represents the vector of normal (resp. maximum) capacity for
each arc (i, j) ∈ E: Q = (q

i,j
)(i,j)∈E and Q = (qi,j)(i,j)∈E .

– C = (ci,j)(i,j)∈E is the vector of costs where ci,j is the unitary cost incurred
by agent Au, for increasing qi,j by one unit. The vector Cu denotes the cost
vector incurred when augmenting the capacity of its arcs.

– π refers to the reward given by the final customer. This reward is proportional
to the flow that circulate from s to t.

– W = {wu} defines the sharing policy of rewards among the agents. The Au

reward for a gain of one unit of maximum flow equals wu × π.

In such a network game, each transportation-agent has to determine its indi-
vidual strategy, i.e., the capacity qi,j of its own arcs, satisfying the constraints
qi,j ∈ [q

i,j
, qi,j ]. The individual strategy of Au is denoted Qu = (qi,j), (i, j) ∈ Eu.

It represents the vector of capacities chosen by Au for its arcs, with Q ≤ Qu ≤ Q.
A strategy S in the network flow is the vector of individual strategies of all agents:
S = (Q1, . . . , Qm).
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The price paid by transportation-agent Au for its individual strategy Qu

equals:
Pu(Qu) = Cu × (Qu − Q

u
) =

∑

(i,j)∈Eu

ci,j × (qi,j − q
i,j

) (1)

Given a strategy S, F (S) denotes the maximum flow that can circulate on
the network flow given the current values of capacities. For each arc (i, j),
the circulating flow fi,j is such that q

i,j
≤ fi,j ≤ qi,j . The maximum flow

F (S) is equal to the sum of flow circulating in the forward arcs of source node
(i.e., F =

∑
(s,j)∈E fs,j). Let us remark that F (S) can be computed in polyno-

mial time using the well-known Ford-Fulckerson algorithm [22]. We denote by F
the maximum flow when capacities qi,j are set to q

i,j
for all transportation-agents

(in other words, the largest possible flow at zero cost) and by F the maximum
flow obtained when capacities qi,j are set to qi,j . Therefore, for any strategy S,
it holds that F ≤ F (S) ≤ F .

With respect to the above payment scheme, the total reward given by the
customer-agent for a circulating flow F (S) under a strategy S is π× (F (S)−F ).

The profit Zu(S) of transportation-agent Au under strategy S is equal to the
difference between its reward and spending:

Zu(S) = wu × π × (F (S) − F ) − Pu(Qu) (2)

Z(S) = (Z1(S), . . . , Zm(S)) represents the overall profit vector.

The strategy profile S−u denotes the strategies of the (m − 1) agents, but agent
Au, that is S−u = (Q1, Q2, .., Qu−1, Qu+1, .., Qm). Therefore, a strategy where
only one agent Au modify its strategy is denoted by S = (Qu, S−u) and the
profit of agent Au resulting from such a strategy is denoted by Zu(Qu, S−u).

Example of a MA-MCMF Problem. Let us consider a customer-agent willing to
transport a flow of products from a given source node A to a given sink node
D. Two transportation-agents A1 and A2 are involved in the transportation
process. The customer-agent gives a reward π = 120 which is shared between
agents following the sharing policy w1 = w2 = 1

2 . Figure 1 displays the network
topology. The set of arcs of each transportation-agent are E1 = {b = (A,C), c =
(B,C), d = (B,D)} and E2 = {a = (A,B), e = (C,D)}, which are represented

A D

B

C

a, ([0,1], 50)

e, ([0,1], 30)

c, ([0,1], 10)

b, ([0,1], 30)

d, ([0,1], 50)

Fig. 1. Example of MA-MCMF problem.
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with plain and dotted arcs, respectively. Each arc in the graph of Fig. 3 is valu-
ated by the interval of normal and maximum capacities ([q

i,j
, qi,j ]), and by the

cost of increasing arc capacities (ci,j). For instance, arc b of agent A1 is val-
uated by the interval of capacities [0,1] and the cost 30. Transportation-agent
A1 can choose to open the route b from A to C with capacity qA,C = 1 and
transportation-agent A2 can choose to put the capacity of the route e from C to
D to capacity qC,D = 1. With this strategy, the maximum flow of product than
can be transported F (S) is equal to 1 (from A to C and from C to D). The
total reward given by the customer-agent equals 120 and the rewards for A1 and
A2 are equal to 60. The cost for A1 to open the route b for one unit of flow is
30 and the cost for A2 to open the route e for one unit of flow is 30 too. Then,
Z1 = Z2 = 60 − 30 = 30, which means that this strategy is profitable for both
agents.

2.2 Mathematical Formulation

Each agent having the objective of maximizing its own profit, the problem can be
formalized as the following multi-objective mathematical program where Zu(S)
is computed according to Eq. (2):

Max (F,Z1(S), Z2(S), . . . , Zm(S))
s.t.
(i) fi,j ≤ qi,j , ∀(i, j) ∈ E

(ii)
∑

(i,j)∈E fi,j − ∑
(j,i)∈E fj,i =

⎧
⎨

⎩

0 ∀i �= s, t
F , i = s
−F , i = t

(iii) q
i,j

≤ qi,j ≤ qi,j , ∀(i, j) ∈ E

fi,j ≥ 0, ∀(i, j) ∈ E

(3)

The mathematical formulation (5) aims at finding an overall strategy S that
maximizes both the flow and the profit of all agents, each agent Au deciding the
arc capacity qi,j , ∀(i, j) ∈ Eu. Constraints (i) represent the capacity constraints.
Constraints (ii) impose the conservation of the flow.

3 Efficiency vs. Stability

A strategy is said efficient if it corresponds to a Pareto-optimal solution with
respect to the above multi-objective program (5). The notion of Pareto optimal-
ity is concerned with social efficiency [21]. A Pareto strategy is preferred to any
other strategy dominated by it.

Definition 1. Pareto optimal strategy: A strategy S is Pareto-optimal if it is
not dominated by any other strategy S′. In other words, it does not exist any
strategy S′ such that Zu(S′) ≥ Zu(S) for all Au, with at least one inequality
being strict.
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The set of Pareto optimal strategies is denoted by SP .
On the other hand, a strategy is stable if there is no incentive for any agent

to modify its decision in order to improve its profit. The stability of a strategy
ensures that agents can trust each other. It is connected to the notion of a Nash
equilibrium in non-cooperative game (see [23–25]).

Definition 2. Nash Equilibrium strategy: given a sharing reward policy wu, a
strategy S = (Q1, . . . , Qm) is a Nash Equilibrium if for any agent Au with strat-
egy Q′

u, the following equation holds:

Zu(Qu, S−u) ≥ Zu(Q′
u, S−u), ∀Q′

u �= Qu (4)

We refer to SN as the set of Nash equilibria. Ideally, agents should choose a strat-
egy which satisfy both Pareto optimality and Nash stability (i.e., S ∈ SN

⋂
SP ).

Nevertheless, since SN
⋂

SP can be empty, such a strategy does not always exist.
In this case, we are looking for a Nash equilibrium that is as efficient as possi-
ble with respect to the customer viewpoint. A Nash equilibrium that maximizes
the flow circulating is indeed suitable both for maximizing the total reward and
the customer satisfaction. The aim of this study is to find a stable strategy profile
S∗ (i.e., a Nash Equilibrium) that maximizes the flow circulating.

Let us also define the concept of a poor strategy. This concept will be useful for
characterizing properly Nash equilibria.

Definition 3. Poor strategy: A strategy S = (Q1, . . . , Qm) with flow F (S) is a
poor strategy if and only if it exists an agent Au and an alternative strategy Q′

u

such that Zu(S′) > Zu(S) and F (S′) = F (S), where S′ = (Q′
u, S−u).

In other words, S is a poor strategy if and only if one agent is able to increase
its profit by changing unilaterally its strategy (modifying the capacity of some
of its arcs), without modifying the overall flow in the network, nor the profits of
other agents. It is obvious that for any poor strategy S, S �∈ SN

⋃
SP .

A poor strategy S = (Qu, S−u) can be easily transformed into a non-poor strat-
egy S′ = (Q′

1, . . . , Q
′
m) by proceeding to an adaptation of the strategy Qu of

agent Au while keeping strategy defined by S−u fixed for the m − 1 agents but
agent Au such that S−u = (Q1, Q2, . . . , Qu−1, Qu+1, . . . , Qm).

Given F (S) = F (S′) and S−u, a non-poor strategy S′ can be the solution of
the following linear program:

Max
∑

Au∈A Zu(S′) =
∑

Au∈A [wu × π × (F (S′) − F ) − Pu(Q′
u)]

s.t.
(i) Zu(S′) > Zu(S), ∀Au ∈ A
(ii) F (S′) = F (S) =

∑
(s,j) f ′

s,j

(iii) f ′
i,j ≤ q′

i,j , ∀(i, j) ∈ E

(vi)
∑

(i,j)∈E f ′
i,j − ∑

(j,i)∈E f ′
j,i =

⎧
⎨

⎩

0 ∀i �= s, t
F , i = s
−F , i = t

(v) q
i,j

≤ q′
i,j ≤ qi,j , ∀(i, j) ∈ Eu

f ′
i,j ≥ 0, ∀(i, j) ∈ E

(5)



Nash Equilibria for Multi-agent Network Flow with Controllable Capacities 53

The mathematical program (5) is used both to verify if a strategy is poor
and to ameliorate the strategy in order to remedy to its poorness. For the former
concern, if a solution to (5) exists and is different from S, then the strategy S
is poor. For the latter concern, the mathematical program (5) gives a non-poor
strategy S′ since it aims at maximizing the sum of profits of all the agents under
the constraint that the flow remains constant and the profit of every agent in S′

is at least greater or equal to the profit in S (i.e., Zu(S′) > Zu(S), ∀Au ∈ A).
Therefore the following proposition holds.

Proposition 1. Any solution of the mathematical program (5) is non poor
solution.

4 Case Analysis

For sake of simplicity, it is assumed throughout this section, that q
i,j

=0. There-
fore, the initial minimum circulating flow at zero cost is equal to F = 0.

4.1 The Single-Agent Case

This section presents or recalls some basic properties related to classical network
flow theory. In the single agent case (all the arcs belong to the same agent), a
non-poor strategy S for a given flow F (S) is a strategy that minimizes the
overall cost. Such minimization problem is well-identified in the literature as the
minimum-cost maximum-flow problem [26].

Let us define, in the following section, how the total flow can be either
increased or decreased, at minimum cost, using augmenting or decreasing paths.
These notions will be used in Sect. 4.2.

Increasing the Max-Flow. Given a flow F (S) for strategy S, we are interested
in increasing the flow value at minimum cost. For this purpose, we recall the well-
known notion of an augmenting path, based on the concept of a residual graph
Gf (S), which is defined below.

Definition 4. Residual graph: Given a network G = (V,E) and a flow F (S), the
corresponding residual graph Gf (S) = (V,Er) for a given strategy S is defined
as follows: each arc (i, j) ∈ E, having a maximum capacity qi,j and a flow fi,j
in G, is replaced by two arcs (i, j) and (j, i) in the residual graph. The arc (i, j)
has cost ci,j and residual capacity ri,j = qi,j − fi,j and the arc (j, i) has cost
cj,i = −ci,j and residual capacity rj,i = fi,j.

Definition 5. Augmenting path: An augmenting path is a path P in Gf (S) from
the source s to the sink t through which the flow can be increased.

We refer to P as the set of augmenting paths. The greatest flow augmentation
that can be achieved using P ∈ P is rp = min{rij : (i, j) ∈ P}.

An augmenting path in Gf (S) is made of forward arcs (having the same
direction in G) and backward arcs (having the opposite direction than the ones in
G). The set of forward and backward arcs are denoted P+ and P−, respectively.
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Fig. 2. Example of single-agent network flow.

The cost of augmenting the flow by one unit using the augmenting path
P ∈ P is denoted cost(P ). It is expressed as follows:

cost(P ) =
∑

(i,j)∈P+

ci,j −
∑

(i,j)∈P−
ci,j (6)

Decreasing the Max-Flow. When considering the problem of decreasing the
flow at minimum cost in the network, we introduce the new concept of a decreas-
ing path.

Definition 6. Decreasing path: a decreasing path P is a path in Gf (S) from the
sink node t to the source node s through which the flow can be decreased.

We refer to P as the set of decreasing paths.
Similarly, a decreasing path in Gf (S) is made of forward arcs (having the

opposite direction than the one in Gf (S)) and backward arcs (having the same
direction in Gf (S)). The set of forward and backward arcs are denoted P

+
and

P
−

, respectively. The profit of decreasing the flow along P can be expressed as
follows:

profit(P ) =
∑

(i,j)∈P
+

ci,j −
∑

(i,j)∈P
−

ci,j (7)
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Example. Consider the network flow G(V,E), displayed in Fig. 2, composed
of seven arcs E = {a, b, c, d, e, f, g}. The set of vertex is V = {s, 1, 2, 3, 4, t}.
Each arc in the graph is valuated by the interval of normal and maximum
capacities, and by the cost of increasing arc capacities ([q

i,j
, qi,j ], ci,j), where

[q
i,j

, qi,j ] =[1,20], ∀(i, j) ∈ E. For instance, arc (s, 1) from node s to node 1 is
valuated by the capacity interval [1,20] and the cost 100.

The initial strategy S0 is described in Fig. 2(a) with flow equal to F (S0) = 3.
The best way to increase the flow in the network is to use the augmenting path
having minimum cost, (i.e., P = s − 1 − 3 − 2 − 4 − t), to increase the flow on
forward arcs by one unit and decrease the flow on backward arcs by one unit.
With the obtained strategy S1 = (2, 2, 2, 0, 2, 2, 2) (see Fig. 2(b)), the maximum
flow of product that can be transported F (S1) is equal to 4 and the cost incurred
by the flow increase throughout the augmenting path P is equal to cost(P ) = 5.

4.2 The Multi-agent Case

In the multi-agent context, any agent Au can decrease (or increase) unilaterally
its arc capacities to improve its profit Zu. In this context, we introduce the
concept of profitability of an augmenting or a decreasing path and provide a
characterization of a Nash equilibrium strategy for the MA-MCMF problem.

Increasing the Max-Flow. Let us introduce the notion of a profitable aug-
menting path. In the multi-agent context, an augmenting path is composed by
a set of forward and backward arcs P = {P+, P−} such that by simultaneously
increasing qi,j increased by one unit ∀(i, j) ∈ P+ and decreasing by one unit
∀(i, j) ∈ P−, it is possible to increase the overall flow by one unit.

The cost of an augmenting path for agent Au, costu(P ) is expressed as follows:

costu(P ) =
∑

(i,j)∈P+∩Eu

ci,j −
∑

(i,j)∈P−∩Eu

ci,j (8)

Definition 7. Profitable augmenting path. An augmenting path P ∈ P is said
profitable for all agents if, for every agent Au involved in P , costu(P ) < wu ×π.

This means that through a profitable augmenting path, increasing the flow by
one unit, is profitable for all the agents owning the arcs of the path (i.e., the
profit of an agent Au for increasing the flow by one unit verify Zu(S) = wu ×
π − costu(P ) > 0, where costu(P ) is the reduced cost).

Decreasing the Max-Flow. Now, the notion of profitability is introduced.
In the multi-agent context, a decreasing path P = {P

+
, P

−} is composed of
forward and backward arcs. If qi,j is decreased by one unit, ∀(i, j) ∈ P

+
, and

increased by one unit, ∀(i, j) ∈ P
−

, the overall flow is decreased by one unit.
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Considering an agent Au, the profit profitu(P ) generated by decreasing
capacity by one unit through a decreasing path is defined as follows:

profitu(P ) =
∑

(i,j)∈P
+∩Eu

ci,j −
∑

(i,j)∈P
−∩Eu

ci,j (9)

Definition 8. Profitable decreasing path. A decreasing path P ∈ P is profitable
if there is one agent Au such that profitu(P ) > wu × π.

In other words, through a profitable decreasing path, decreasing the flow by one
unit is profitable for one agent, to the detriments of the others.

In the multi-agent context, it is important to characterize strategies in which
some agents can decrease or increase the overall flow. Therefore, it is important
to find profitable augmenting paths in order to increase flow without generating
decreasing paths that are profitable for some agent, hence preserving stability.

Proposition 2. Nash Equilibrium.
For a given non-poor strategy profile S, S is a Nash Equilibrium if and only if:

– ∀Au ∈ A, ∀P ∈ P such that (i, j) ∈ Eu

costu(P ) > wu × π (10)

– ∀Au ∈ A, ∀P ∈ P
profitu(P ) ≤ wu × π (11)

Proof. Consider a strategy S and a transportation-agent Au. If S is poor, then
S is not a Nash equilibrium. If S is non poor, Au can only improve its situation
by increasing or decreasing the flow. In the former case, for an additional unit
of flow, Au receives wu × π. Such a flow increase is profitable to Au if and
only if there is an augmenting path P such that costu(P ) < wu × π, which
contradicts equation (10). In the latter case, vice-versa, decreasing the flow by
one unit is profitable if and only if there exists a decreasing path P such that
profitu(P ) > wu × π, which contradicts equation (11). Therefore, if and only if
for no agent any of those conditions holds, no agent Au can individually improve
its profit, and S is a Nash equilibrium. 	


Fig. 3. Example of multi-agent network flow.
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Example. Let us come back to the first example (cf. Sect. 2.1) to illustrate the
notions of augmenting and decreasing path in the multi-agent case.

Consider an initial flow on the network equal to its minimum value F = 0
corresponding to an initial strategy S0. Increasing the flow is possible throughout
the profitable augmenting path P = (A−C−D), which leads to the strategy S1 =
(0, 1, 0, 0, 1) (see Fig. 3(a)) with F (S1) = 1 and Z1(S1) = Z2(S1) = 60 − 30 = 30
where the part of shared reward is wu × π = 60 and the cost of the path P is
costu(P ) = 30 for both agents. From this strategy, the flow can be increased
along the profitable augmenting path P ′(= A − B − D), leading to the strategy
S2 = (1, 1, 0, 1, 1) (see Fig. 3(b)) with F (S2) = 2. The cost of the augmenting
path for every agent is equal to costu(P ′) = 50 and the part of the shared reward
for the additional unit of flow is equal to wu × π = 60. Therefore, the profit of
both agents is equal to Zu(S2) = Zu(S1) + (60 − 50) = 30 + 10 = 40.

Note that, for the strategy S2, there exists a profitable decreasing path P” =
(D−B−C−A) from sink node D to source node A which is profitable for agent A1.
In fact, A1 can improve its own profit, by decreasing back the flow on b and d by one
unit and increasing the flow on arc c by one unit. This leads to the strategy S3 =
(1, 0, 1, 0, 1) (see Fig. 4) with F (S3) = 1 and profits Z1(S3) = 60 − 10 = 50 and
Z2(S3) = 60−(50+30) = −20, which is obviously bad for A2. Therefore, although
the strategy S2 corresponds to a Pareto Optimum, which leads to a maximization
of agent’s profits, it is not a stable strategy. Strategy S1 is a Nash Equilibrium
but not Pareto Optimum. Therefore, in our example there is no a strategy which
is both in SN and SP . The motivation of this paper is to search for a Nash-stable
solution which is as efficient as possible, i.e., which maximizes F (S).

Fig. 4. Strategy S3.

4.3 The Special Case |Eu| = 1, ∀Au

In this section, we consider the special multi-agent case where each arc is man-
aged by a specific agent. For this case, we show that finding a Nash equilibrium
that maximizes the flow can be done in polynomial time. For sake of simplicity,
we denote by u the unique arc of the agent Au. In this context, increasing the
flow by one unit brings to the agent Au the reward wu × π and since an agent
manages only a single arc u then it is easy to compare the reward with the cost



58 N.C. Fakhfakh et al.

of increasing arc’s capacity cu of arc u. It is possible to divide the set of agents
A into two subsets A+ and A− as follows:

A+ = {Au, 1 ≤ u ≤ m, /cu < wu × π}
A− = {Au, 1 ≤ u ≤ m, /cu ≥ wu × π}

Signification of each group of agents: On the one hand, for any agent belonging to
the group A+, it is profitable to increase the capacity of its arc (i.e., wu×π−cu >
0) if it increases the overall flow in the network (i.e., its arcs belong to an
augmenting path). On the other hand, it is not profitable for any agent belonging
to A− to increase its arc capacity since wu × π − cu ≤ 0.

Consider the initial strategy S = (Q1, . . . , Qm) defined by:

Qu = (qu), ∀Au ∈ A+

Qu = (q
u
), ∀Au ∈ A−

We highlight that the strategy S can be poor since some arcs of the agents
belonging to A+ can have an opened capacity greater than the value of the flow
traversing them (i.e., fi,j(S) < qi,j(S)). Nevertheless, using LP formulation (5),
finding a non-poor strategy Ŝ starting from S is easy. This leads to a non-poor
strategy Ŝ with the same value of flow F (Ŝ) = F (S).

Notice that Ŝ may not be unique, since different non-poor strategies can be
obtained.

We are going to prove now the following property:

Proposition 3. Strategy Ŝ is a Nash Equilibrium, and there is no Nash Equi-
librium with greatest flow.

Proof. This proof is organized in two parts:

– Proof that Ŝ is a Nash Equilibrium: Let us consider the arcs of Au ∈ A−.
Since their capacities are at their minimum value, F (Ŝ) can be increased only
by increasing the capacities throughout an augmenting path. Since for agents
in A−, cu > wu ×π, then no agent in A− has any incentive to increase its arc
capacity.

Now let consider the agents Au ∈ A+. If, in Ŝ, qu = qu then Au can improve
its situation only by decreasing its arc capacity throughout a decreasing path.
Since for agents in A+, cu ≤ wu × π, no agent Au can take profit from
decreasing back its arc capacity. If in Ŝ, qu < qu, one agent Au might increase
its arc capacity throughout an augmenting path such that all forward arcs
belong to him (else it is not possible to increase the value of the flow). Since
each agent owns exactly one arc, such a situation cannot occur.
Finally, since no agent is able to improve its situation by itself, Ŝ is a Nash
equilibrium.

– Proof that Ŝ is the best Nash Equilibrium: Suppose that there is a strategy S′

such that F (S′) > F (Ŝ). This strategy requires that the capacity of at least
one arc of Au ∈ A− has to be increased with respect to strategy Ŝ. But since
cu > wu ×π, ∀Au ∈ A−, S′ is not a Nash Equilibrium (see Proposition (2)).	
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5 Problem Complexity

In this section, we discuss the complexity of finding a Nash equilibrium that
maximizes the flow in the network.

5.1 Finding a Feasible Solution

Firstly, let us discuss the complexity of a simplified version of the considered
problem in which we substitute the Nash Equilibrium constraint by a looser
constraint stating that the profit of all agents has to be non-negative, i.e.,
Zu(S) ≥ 0, ∀Au ∈ A.

Proposition 4. The multi-agent Min-Cost Max-Flow problem which aims at
maximizing F (S) under the constraints that agents have non-negative profits
Zu(S) ≥ 0, with qi,j ∈ R

+, can be solved in polynomial time.

Proof. This problem can be solved by the following linear mathematical problem
where constraints (iii) impose that the profit of all agents has to be positive
or null:

Max F =
∑

(s,j)∈E fs,j
s.t.
(i) fi,j ≤ qi,j , ∀(i, j) ∈ E

(ii)
∑

(i,j)∈E fi,j − ∑
(i,j)∈E fj,i =

⎧
⎨

⎩

0 ∀i �= s, t
F , i = s
−F , i = t

(iii) wu × π × (F − F ) − ∑
(i,j)∈Eu

ci,j × (qi,j − q
i,j

) ≥ 0, ∀Au ∈ A
(iv) q

i,j
≤ qi,j ≤ qi,j , ∀(i, j) ∈ E

fi,j ≥ 0, ∀(i, j) ∈ E

Therefore, this problem can be solved using linear programming in polynomial
time. 	


5.2 Finding a Nash Equilibrium with Bounded Flow

We now consider the decision problem to determine if there exists a strategy
which is a Nash equilibrium, with a flow greater than a given value. This problem
can be defined as follows:

Nash-Equilibrium Bounded Flow (NEBF). Given a tuple < G,A, Q,Q,C,
π,W > as defined in Sect. 2 and an integer ϕ, is it possible to find a Nash
Equilibrium strategy profile S such that F (S) > ϕ?

Proposition 5. Problem NEBF is strongly NP-complete.

Proof. The NP-completeness of this problem can be proved using a reduction
from the well-known 3-partition problem, which is known to be NP-complete in
the strong sense [27]. First, MA-MCMF is in NP since, given a strategy S, F (S)
can be determined in polynomial time using classical Min-Cost Max-Flow algo-
rithms. Let us recall the definition of the 3-partition problem.



60 N.C. Fakhfakh et al.

3-Partition. Given a set ζ = {a0, . . . , aK−1} of K = 3k positive integers, such
that

∑K−1
l=0 al = k × B and al ∈]B/4, B/2], is it possible to partition ζ into k

subsets so that the sum of integers in each subset is equal to B?
An instance of the MA-MCMF problem with controllable capacities can be gen-

erated from an arbitrary instance of the 3-partition problem as follows.
From the 3-partition problem instance, we build up a network G with k × K

arcs and K + 1 nodes where the first one is source node V0 = s and the last one
is the sink node VK = t. An agent Au ∈ A = {A1, . . . , Ak} owns K arcs.

The tail of an arc ei is Vi divK , its head is V(i divK)+1. Between nodes Vi divK

and Vi divK+1, there are k parallel arcs, indexed from i to (i + K) step k, each
of them belonging to a specific agent: arc ei belongs to Ai divK . The cost of arc
ei is cei = aimodK . In other words, to any positive integer al ∈ ζ is associated
k parallel arcs with, same head and tail, maximum capacity qei = 1 and cost
al. The total reward is set to π = (B + ε)k, ε being an arbitrary small positive
value. The sharing policy is defined by wu = 1/k. Therefore, agent’s unit reward
is wuπ = B + ε, identical for all agents. The objective is to determine whether
it exists a Nash strategy such that F (S) > 0?

For illustration, the resulting network flow obtained from the 3-partition
instance defined by k = 3, ζ = {7, 8, 7, 7, 7, 8, 9, 10, 9} and B = 24. We have
k = 3 agents and K ∗ k = 27 arcs is displayed in Fig. 5. Between nodes i and
i+1, we find k = 3 arcs with cost ai+1. The problem is to find, whether it exists, a
Nash strategy such that the flow is strictly greater than 0. In that example, using
the augmenting path with bold arcs allows to obtain a one-unit total flow, which
is a Nash equilibrium since every agent does not pay more than its part of reward
(wuπ = B + ε = 24 + ε). But we remark that, any equivalent stable path is also
a solution to the original 3-Partition problem.

Let us prove this last property in a general way. Consider the strategy S where
all arcs have normal capacity, qi,j = 0. The resulting flow obviously equals to
F (S) = 0. With respect to S, we observe that an agent can increase the flow by
the amount δ ∈]0, 1], increasing the capacities of all its arcs by the same amount
δ. However, doing so, the agent pays kBδ and only gains (B+ε)δ. Hence, the new
strategy is not profitable and cannot be a Nash equilibrium. In order to obtain
a Nash equilibrium, the total cost incurred by each agent for increasing its arc
capacities must not exceed B, otherwise at least one agent will be interested
in decreasing back its capacities (i.e., the residual graph cotains a profitable
decreasing path).

Fig. 5. Reduction from 3-PARTITION problem with k = 3.
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Due to the topology of the network, in order to increase the flow, exactly
K = 3k arcs must be involved in an augmenting path. In any Nash equilibrium
strategy with flow strictly greater than 0, the augmenting path having to be
profitable for every agent, it must be made of exactly three arcs per agent. The
total cost for every agent equals exactly B.

6 Conclusions

This paper presents a new game theory framework for a multi-agent network flow
problem with controllable capacities. We consider that a final customer gives a
reward, shared among agent, for any additional unit of flow circulating in the
network. Each agent has the possibility to modify the capacities of its arcs at
a given cost. We particularly point out the notions of efficiency and stability of
a strategy and we introduce the notion of profitable augmenting or decreasing
paths. We also prove that finding a Nash Equilibrium strategy with maximum
flow is NP-hard in the strong sense.

Further works are ongoing to propose a linear mathematical model to find a
Nash Equilibrium. Distributed heuristic able to find a Nash equilibrium are also
under study.
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Abstract. Information systems can be represented by acyclic directed
graphs where the nodes denote assets and the arcs connecting nodes rep-
resent the degree of dependency between assets. Threats are events that
can trigger an incident in the organization, causing damage or intangi-
ble material loss to assets, and safeguards are measures for addressing
threats. In this paper, we propose a fuzzy approach for selecting safe-
guards that minimizes costs while keeping the degree of dependency
between support assets and terminal assets within acceptable levels.
The approach is based on dynamic programming and uses the simulated
annealing metaheuristic to solve optimization problems.

Keywords: Risk analysis · Fuzzy logic · Dynamic programming ·
Simulated annealing

1 Introduction

There are several risk analysis and management methodologies for information
systems (IS) that conform to International Organization for Standardization
(ISO) standards, specifically the ISO 27000 family of standards. Some examples
of these methodologies are MAGERIT, by the Spanish Ministry of Public Admin-
istrations [5,11], by the Central Computing and Telecommunications Agency
(UK); or NIST SP 800-30 [14], by the National Institute of Standard and Tech-
nology (USA).

These methodologies do not, however, consider uncertain valuations, but use
precise values on different, usually percentage, scales. Boolean values are some-
times even used to indicate whether or not assets are dependent on each other
regardless of the degree of such dependency. In no case is vague or imprecise infor-
mation about the input parameters allowed. In our opinion, this is an important
drawback of these methodologies.

In [15] we proposed an extension of the MAGERIT methodology based on
classical fuzzy computational models. This methodology includes the following
milestones:

1. Identification and Valuation of Assets. An asset is anything that is of value to
the organization and therefore requires protection. A few data, information or
business process assets often account for the total value of an organization’s

c© Springer International Publishing Switzerland 2015
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assets. These assets are called terminal assets. Other assets (support assets
such as hardware, software, personnel, facilities, . . . ) are valuable insofar as
they are beneficial to the terminal assets, and they inherit the terminal asset
value, according to the resulting benefit. Thus, support assets have no intrinsic
value; they take their value from terminal assets.

The identified assets of the organization are then valued. Some assets may
have a monetary value (how much money the organization would lose if
this asset stopped working), whereas others require a qualitative assessment
(if an asset stops working the losses would be very high, low, medium. . . ).
As mentioned above, the support assets inherit their values from terminal
assets depending on how they influence each other. So, we have to determine
the dependency relationships of the terminal assets with respect to support
assets, and also dependency relationships between support assets.

2. Threat Identification. A threat is an event that can trigger an incident in the
organization, causing damage or intangible material loss to assets. Threats
may be of natural or human, accidental or deliberate origin. Some threats can
affect more than one asset. In such cases, threats can cause different impacts
depending on what assets are affected. A detailed list of threats is available
in Annex C of ISO IEC 27005. MAGERIT suggests two threat assessment
measures: degradation, the damage that the threat can cause to the asset,
and frequency, how often the threat materializes.

3. Identification and Valuation of Impact and Risk Indicators. It is then neces-
sary to qualitatively identify the consequences and establish impact and risk
indicators for the valued assets and threats. The impact of a threat on an
asset is the product of the asset value multiplied by the respective degra-
dation. Risk is the product of the impact of the threat multiplied by the
respective frequency.

4. Selection of Safeguards. Safeguards are measures for addressing threats. They
can be procedures, personnel policies, technical solutions or physical security
measures at the facilities. These safeguards can be preventive, if they reduce
the frequency of threats; or palliative, if they reduce the degradation of assets
caused by threats [11].

As described below, experts use a linguistic term scale (see Table 1) to rep-
resent asset values, their dependencies and the frequency and asset degradation
associated with possible threats. Risk analysis computations are then based on
the trapezoidal fuzzy numbers associated with linguistic terms.

However, direct assignment based on a rigid linguistic term scale is not always
advisable since the expert has no say in the number of linguistic terms that
the scale is to include and about the appearance of their associate trapezoidal
fuzzy numbers. In that case we propose the use of the betting and lottery-based
method for fuzzy probability elicitation described in [17]. Betting and lottery-
based methods commonly used to assign probabilities can also be used to assign
fuzzy probabilities [6,12]. In this section we briefly describe these methods and
show how a fuzzy number representing the probability judgment can be extracted
from experts.
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Table 1. Linguistic term scale.

Term Trapezoidal fuzzy number

Very low (VL) (0, 0, 0, 0.05)

Low (L) (0, 0.075, 0.125, 0.275)

Medium-low (ML) (0.125,0.275, 0.325, 0.475)

Medium (M) (0.325, 0.475, 0.525, 0.675)

Medium-high (MH) (0.525, 0.675, 0.725, 0.875)

High (H) (0.725, 0.875, 0.925, 1)

Very high (VH) (0.925, 1, 1, 1)

Betting Method. For two selected monetary values x > y, the expert is given the
option between either of the two following gambles:

– b1 : If event A happens, then you win x$. Otherwise, you lose y$.
– b2 : If event A does not happen, then you win y$. Otherwise, you lose x$.

If the expert has no preference for either bet, the respective expected utilities
of both bets are equal, and it follows that p(A) = x/(x + y). If the expert
chooses one of the two gambles, then the expected utility of the selected gamble
should be higher than for the rejected gamble. Then, the analyst has to update
monetary values and offer the expert two new gambles. Thus, an interactive
process is enacted until two alternative gambles are reached to which the expert
is indifferent.

Lottery-based methods. For a given probability and monetary values x$ and y$,
the expert is given the choice between the following lotteries:

– l1 : If event A happens, then you win x$. Otherwise, you lose y$.
– l2 : You win x$ with probability p, or y$ with probability 1 − p.

If the expert has no preference for either of the lotteries, then the respective
expected utilities are equal, and it follows that p(A) = p. Otherwise, the expert
must readjust the value p, keeping the same monetary values. This again gen-
erates an interactive process, enacted until a couple of lotteries are reached to
which the expert is indifferent.

The betting and lottery-based methods assume that the expert is able to
provide a specific value for the probability of an event. However, a more real-
istic scenario is where experts have an imprecise and vague idea of that value.
Consequently, experts will have an interval rather than a precise value in mind
at the point when they are indifferent to either bet or lottery, that is, for the
lottery-based method there will be an interval [a, c] such that if p = [a, c], then
the expert has no preference for either lottery l1 or l2. Similarly, the betting
method can result in an interval of indifference [b, d].

Current protocols for probability elicitation like the above recommend the
use of several methods to test the consistency of the expert and the existence
of bias. In this regard, the development of betting and lottery-based methods
meets this recommendation and establishes the following:
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– If [a, c] ∩ [b, d] = ∅, then the expert’s probabilistic judgment was inconsistent.
– If any of the intervals is contained in the other [a, c] ⊆ [b, d] (or [b, d] ⊆ [a, c]),

then we assume that the trapezoidal fuzzy number (b, a, c, d) (or (a, b, d, c))
designates the expert probabilistic judgment.

– If [a, c] ∩ [b, d] �= ∅, is uncountable, and none of the intervals is contained in
the other, then, assuming that a ≤ b ≤ c ≤ d, (a, b, c, d) designates the expert
probabilistic judgment.

Thus, we consider the set of trapezoidal fuzzy numbers with support in [0,1],
TF[0,1], i.e., Ã = (a, b, c, d) with 0 ≤ a ≤ b ≤ c ≤ d ≤ 1 and with a trapezoidal
function in the vertices (a, 0), (b, 1), (c, 1), (d, 0) [2–4,16].

Consequently, the following operators proposed in (Xu et al. 2010) accounting
for trapezoidal fuzzy numbers will be used to make computations. Given Ã1 =
(a1, b1, c1, d1), Ã2 = (a2, b2, c2, d2) ∈ TF [0, 1], then Ã1⊕Ã2 = (a1+a2−a1a2, b1+
b2 − b1b2, c1 + c2 − c1c2, d1 + d2 − d1d2) and Ã1 ⊗ Ã2 = (a1a2, b1b2, c1c2, d1d2). ⊕
and ⊗ are two internal composition laws in TF[0,1] that verify the commutative
and associative properties and both have a neutral element.

The assets of an IS are elements of value to the organization and therefore
require protection (servers, files, personnel, facilities, hardware, software, . . . ).

As cited before, these assets are interrelated [11], forming an acyclic graph,
where just a few data, information items or business process assets often account
for the total value of an organization’s assets. These assets are called terminal
assets. Other assets (support assets, such as hardware, software, personnel, facil-
ities, . . . ) are valuable insofar as they are beneficial to the terminal assets. In
other words, the support assets inherit their values from terminal assets depend-
ing on how they influence each other, i.e., depending on the probability of that
any failure in an asset being transferred to the terminal assets.

In general, we say asset Aj directly depends on asset Ai, denoted by Ai → Aj ,
if a failure in asset Ai causes a failure in the asset Aj with any given probabil-
ity. This probability is usually referred to as the degree of direct dependency of
Aj with respect to Ai. Note that in this fuzzy adaptation the degrees of direct
dependency between assets will be represented by linguistic terms, which have
associated trapezoidal fuzzy numbers. We denote these degrees of direct depen-
dency by d̃(Ai, Aj).

These dependencies form a directed acyclic graph (to terminal assets), so
that there may be intermediate assets between any asset Ai and a terminal asset
Ak which can propagate a fault generated in Ai through to the terminal Ak. Our
aim then is to compute the transmission probability between Ai and Ak. This
probability is called degree of indirect dependency between Ai and Ak, which is
denoted by D̃(Ai, Ak) and can be computed as follows [15].

We denote by P = {P1, . . . , Ps} the set of paths in the network connecting
Ai with Ak. These paths are a sequence of arcs connecting a sequence of vertices,
such that the start vertex and the last vertex are Ai and Ak, respectively. Then,

(A) If all assets, excluding Ai and Ak, in the paths in P are influenced by only
one asset, then

D̃(Ai, Ak) =
s⊕

j=1
D̃(Ai, Ak|Pj) (1)
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where D̃(Ai, Ak|Pj) = d̃(Ai, Aj1) ⊗ . . . ⊗ d̃(Ajn , Ak) and Pj : (Ai → Aj1 →
. . . → Ajn → Ak).

(B) Otherwise, we assume that the first r paths in P are formed by assets
(excluding Ai and Ak) influenced by only one asset, and the remaining
s − r paths include at least one asset simultaneously influenced by two or
more assets. Then, for the r first paths, we proceed as in (A), and we denote
by S the set including the s − r remaining paths. We proceed with S as
follows:

(i) Consider the set of non-terminal assets in S influenced by two or more
assets, denoted by I, and the subset of I including assets uninfluenced
by any other asset in I, denoted by NI.

(ii) We consider an asset Ar in NI. Then, we simplify the paths in S that
include asset Ar making Ai → Ar → . . . → Ak, with d̃(Ai, Ar) =
D̃(Ai, Ar) (computed as in A).

(iii) Remove repeated paths from S and keep only one instance.
(iv) Build I and NI again from S.
(v) If NI is not empty, go to (ii). Otherwise, the algorithm finishes.

Let us denote the resulting set of paths by S = {P ′
1, . . . , P ′

m} with m ≤ s − r.
Then, the degree of dependency of Ak regarding Ai is

D̃(Ai, Ak) =
r⊕

j=1
D̃(Ai, Ak|Pj)

m⊕
l=1

D̃(Ai, Ak|P ′
l ). (2)

Once we have computed the degree of indirect dependency between all assets
regarding the terminal assets, we can compute the accumulated values for non-
terminal assets ṽl. These values usually have three components (ISO/IEC serie
27000):

1. Availability. How much damage would it cause if the asset is not available or
cannot be used? This is a typical services inspection.

2. Confidentiality. How much damage would it cause if the asset is disclosed to
someone it should not be? This is a typical data inspection.

3. Integrity. How much damage would it cause if the asset is damaged or cor-
rupt? This a typical data inspection. Data can be manipulated, be wholly or
partially false, or even missing.

Therefore,

ṽi(l) =
n∑

k=1

((D̃(Ai,Ak) ⊗ ṽk(l)) (3)

where l denotes the lth component.
Once assets have been valueted, the next step in the risk analysis method-

ology is to identify possible threats and compute the corresponding impact and
risk indicators for the IS.

Threats are characterized by how often the threat materializes (frequency) f̃

and by the degradation D = (d̃1, d̃2, d̃3) that the threat can cause to the three
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asset components. Note again that the frequency and degradation levels will
be selected by the expert from the linguistic term scale and, consequently, a
trapezoidal fuzzy number will be associated with each of them.

Then, the impact of a threat on an asset Ai is

Ĩi(l) = d̃l ⊗ ṽi(l) , (4)

and the risk to the asset is
R̃i(l) = Ĩi(l) ⊗ f̃ . (5)

The results of these operations will be fuzzy numbers belonging to TF[0, 1],
which, generally, do not match up with the fuzzy numbers associated with the
linguistic terms of the scale. Thus, a similarity function must be used to identify
the most similar trapezoidal fuzzy number in the linguistic term scale to the
fuzzy number output from computations.

Different similarity functions have been proposed by several authors [3,4,
7,18,19]. In [16] a new similarity function was proposed on the basis of the
geometric distance between both fuzzy numbers, the distance between their cen-
troids and/or the ratio between the common area and the joint area under the
membership functions.

Following the risk analysis and management methodologies for IS, Sect. 2
deals with the selection of safeguards that can be enforced to reduce the trans-
mission probability of a failure throughout the IS. The aim is to minimize costs
while keeping the risk at acceptable levels. To do this, we propose a mixed tech-
nique based on dynamic programming and metaheuristics, specifically, simulated
annealing.

2 Selection of Preventive Safeguards

From Eqs. (3), (4) and (5) and the algorithm for computing degrees of indirect
dependency, we can derive the risk for the IS in each component l given a threat
with frequency f̃ and degradation D = (d̃1, d̃2, d̃3) in the support asset Ãi as

R̃i(l) =
n∑

k=1

D̃D(Ai,Ak) ⊗ ṽk(l) ⊗ f̃ ⊗ d̃l, ṽk(l) being the value (constant) assigned

to the terminal asset Ãk in the component l.
Safeguards are measures for addressing threats. They can be procedures, such

as incident management and documentation; personnel policies, such as training
and awareness of employees operating on the IS; technical solutions, such as
identification and authentication mechanisms based on biometrics; or physical
security measures of the facilities, such as temperature control systems.

These safeguards can be preventive, if they reduce the frequency of threats;
or palliative, if they reduce the degradation caused by threats on assets [11]. As
the degree of dependence between two assets is the transmission probability of
failures, a special type of preventive safeguard is that which reduces dependencies
between support and terminal assets.

In this section we propose a method for reducing the degrees of dependency
from all support assets to terminal assets minimizing the costs for the company.
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As mentioned above, the probability of transmission of failure D̃(Ai, Ak) is
the result of fuzzy operations with the probabilities of transmission of failure
through intermediate assets linking the attacked support asset with other asset.

In each of these intermediate assets, safeguards can be enforced to reduce
the probability of transmission of a failure. The effect induced for a safeguard
in the probability of transmission of failures between two assets Au and Av can
also be defined as a linguistic term, which is represented by a fuzzy number
ẽu,v ∈ TF [0, 1], so that if the degree of direct dependency between the assets
Au and Av is d̃(Au, Av), then, when we implement a safeguard with effect ẽu,v,
the degree of direct dependency is reduced to d̃(Au, Av) ⊗ (1̃ 
 ẽu,v), where 

denotes the usual subtraction operation between trapezoidal fuzzy numbers, i.e.,
(a1, a2, a3, a4) 
 (b1, b2, b3, b4) = (a1 − b4, a2 − b3, a3 − b2, a4 − b1).

Note that 
 is not an internal composition law in TF[0, 1], however,

– Ã, B̃ ∈ TF [0, 1] ⇒ Ã ⊗ (1̃ 
 B̃) ∈ TF [0, 1],
– Ã ⊗ (1̃ 
 B̃) ≤ Ã with the partial order of the trapezoidal fuzzy numbers

(i.e., Ã ≤ B̃ ⇔ a1 ≤ b1, a2 ≤ b2, a3 ≤ b3, a4 ≤ b4) and
– Ã ⊗ (1̃ 
 B̃) decreases with B̃.

We consider the set of safeguards that hinder the direct transmission of failure
between Au and Av, Su,v. Each safeguard Su,v

p ∈ Su,v has a monetary cost cu,vp

and an effect ẽu,vp over d̃(Au, Av), which is reduced to d̃(Au, Av) ⊗ (1̃ 
 ẽu,vp ).
The problem of keeping an acceptable level (low or very low) for the failure

transmission probabilities among support and terminal assets with minimal costs
can be represented as follows:

min
∑

u,v

∑

p
cu,vp xu,v

p

s.t. D̃(Ai, Ak) ≤ Ũik ∀i, k,
xu,v
p ∈ {0, 1} ,∀u, v, p

where i and k in the first set of constraints refer to non-terminal and termi-
nal assets, respectively, Ũik is a residual value accepted by the experts, xu,v

p

are the decision variables (xu,v
p = 1 means that safeguard Su,v

p is selected), and
D̃(Ai, Ak) is reassessed replacing values d̃(Au, Av) by the affected values regard-
ing the selected safeguards d̃(Au, Av) ⊗ [⊗

p
(1̃ 
 ẽu,vp )], where Au and Av are two

consecutive assets connected by an arc in some path between Ai and Ak.
Note that the fact that the usual order in TF [0, 1] is a partial order consti-

tutes a very restrictive constraint in our optimization problem, so we will use
the concept of similarity function to relax this constraint.

If we define a threshold α ∈ [0, 1] and a similarity function S, the constraint
D̃(Ai, Ak) ≤ Ũik ∀i, k can be replaced by S(D̃(Ai, Ak), Ũik) ≥ α. Thus, the
restrictiveness of the constraint increases proportionally to the threshold value
and the feasible solution set will be composed of solutions that verify these
softened/relaxed constraints.
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Remember that indirect dependencies are recursively computed following the
algorithm described in Sect. 1. Thus, the degree of dependency of the support
assets further away from the terminals can be computed from the degree of
dependency of the closest assets. Therefore, the problem can be solved in stages,
and the principle of optimality in dynamic programming is verified: Given an
optimal sequence of decisions, every subsequence is, in turn, optimal. Then we
proceed as follows:

– Let L0 be the set of terminal assets.
– Consider L1 including support assets whose children belong to L0 only (L1

is not empty because the graph is acyclic). Identify safeguards that minimize
costs keeping the degrees of dependency over their children at an acceptable
level.

– Consider L2 including support assets whose children belong to L0 ∪ L1 only.
Identify safeguards that minimize costs keeping the degrees of dependency
over L0 under an acceptable level. Note that the degrees of indirect depen-
dency from the children of L2 to terminal assets have already been computed
in the previous stage, so we just need to identify the direct degree of depen-
dency over assets in L0 ∪ L1.

– Consider Li including support assets whose children belong to L0 ∪ L1 ∪
. . .∪Li−1 only. Identify safeguards that minimize costs keeping the degrees of
dependency over L0 under an acceptable level. Note that again we just need
to identify the direct degree of dependency on assets of L0 ∪ L1 ∪ . . . ∪ Li−1.

Simulated annealing [1,10] is applied in each step of the algorithm to derive the
optimal selection of safeguards. It is a trajectorial metaheuristic which is named
for and inspired by annealing in metallurgy.

An initial feasible solution is randomly generated. In each iteration a new
solution y is randomly generated from the neighborhood of the current solution,
y ∈ N(xi). If the new solution is better than the current one, then the algorithm
moves to that solution (xi+1 = y), otherwise the movement to the worst solution
is performed with certain probability. Note that accepting worse solutions allows
for a more extensive search for the optimal solution and avoids trapping in local
optima in early iterations. The probability of accepting a worse movement is a
function of both the temperature factor and the change in the cost function.
The initial value of temperature (T ) is high, which leads to a diversified search,
since practically all movements are allowed. As the temperature decreases, the
probability of accepting a worse movement falls. If the temperature is zero, then
only better movements will be accepted, which makes simulated annealing work
like hill climbing.

The pseudocode of simulated annealing for a minimization problem is:

– Generate an initial feasible solution x0. Do x∗ = x0, f∗ = f(x0), i = 0. Select
the initial temperature t0 = T (ti temperature in the step i)

– Repeat until stopping criterion is satisfied:
• Randomly generate y ∈ N(xi)

∗ If f(y) − f(xi) ≤ 0, then



A Fuzzy Model for Selecting Safeguards to Reduce Risks 71

· xi+1 = y
· If f(x∗) > f(y), then x∗ = y, f∗ = f(y)

∗ Else
· p ∼ U(0, 1)
· If p ≤ e−(f(y)−f(xi))/ti , then xi+1 = y
· Else xi+1 = xi

• i = i + 1
• Update temperature

3 An Illustrative Example

Let us consider the IS shown in Fig. 1 with the direct degrees of dependency
assessed by the experts considering the linguistic terms of Table 1, which has
only one terminal asset, A6.

Fig. 1. Direct dependencies in the IS.

The set of paths in the analysis of the influence of A1 over A6 is P = {P1 :
(A1 → A2 → A6), P2 : (A1 → A2 → A3 → A6), P3 : (A1 → A2 → A3 → A4 →
A6), P4 : (A1 → A3 → A6), P5 : (A1 → A3 → A4 → A6), P6 : (A1 → A4 → A6),
P7 : (A1 → A5 → A6)}. Asset A3 is influenced by A1 and A2, and A4 is influenced
by A1 and A3. Therefore, we proceed as in (B) of the algorithm described in
Sect. 2, with r = 2 and S = {P2, P3, P4, P5, P6}:

(i) I = {A3, A4} and NI = {A3}.
(ii) Select A3, then simplify paths P2, P3, P4 and P5 to P ′

2 : (A1 → A3 →
A6), P ′

3 : (A1 → A3 → A4 → A6), P ′
4 : (A1 → A3 → A6) and P ′

5 :
(A1 → A3 → A4 → A6), respectively, with d̃(A1, A3) = D̃(A1, A3) =(
d̃(A1, A2) ⊗ d̃(A2, A3)

)
⊕ d̃(A1, A3).

(iii) S = {P ′
2, P

′
3, P6} since P ′

2 = P ′
4 and P ′

3 = P ′
5.

(iv) I = {A4} and NI = {A4}.
(v) Go to (ii).
(ii) Select A4, then simplify paths P ′

3 and P6 to P ′′
3 : (A1 → A4 → A6),

and P ′
6 : (A1 → A4 → A6), respectively, with d̃(A1, A4) = D̃(A1, A4) =(

d̃(A1, A3)⊗ d̃(A3, A4)
)

⊕ d̃(A1, A4).
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(iii) S = {P ′
2, P

′′
3 } since P ′′

3 ≡ P ′
6.

(iv) I = ∅ y NI = ∅.
(v) The algorithm finishes since NI = ∅.

Finally, S = {P ′
2, P

′′
3 } and the degree of dependency of A6 regarding A1 is

D̃(A1, A6) = D̃(A1, A6|P1) ⊕ D̃(A1, A6|P7) ⊕ D̃(A1, A6|P ′
2) ⊕ D̃(A1, A6|P ′′

3 ) =
(d̃(A1, A2) ⊗ d̃(A2, A6)) ⊕ (d̃(A1, A5) ⊗ d̃(A5, A6)) ⊕ (d̃(A1, A3) ⊗ d̃(A3, A6)) ⊕
(d̃(A1, A4) ⊗ d̃(A4, A6)).

The degree of dependency of A6 regarding A1 is D(A1, A6) = (0.98, 0.99,
0.99, 1) if we consider the linguistic terms of Table 1 show in Fig. 1.

Let us consider a threat on asset A1 with frequency f̃ = M and degradation
d̃ = (H,H,H), then the risk to A1 is R̃1(l) = (0.23, 0.415, 0.485, 0.675), l = 1, 2, 3.

We consider the asset network and the fuzzy direct dependencies shown in
Fig. 1 corresponding to an IS. Besides, the set of available safeguards of failure
transmission between support assets are shown in Table 2.

We also consider the fuzzy threshold Ũ = (0, 0, 0.1, 0.2) below which the
degree of dependency between all assets and terminal assets will be acceptable,
and let α = 0.95. In other words, the similarity of the degree of dependency after
applying the selected safeguards for the given Ũ must be at least 0.95.

The set of solutions in each stage is represented by binary matrices, in which
each row represents the safeguards of Suv

p , which prevents the failure transmis-
sion from asset u to v considered in that stage.

We use the similarity function proposed by Chen [2]: Given two trapezoidal
fuzzy numbers Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4), S(Ã, B̃) = 1 −
4∑

i=1

|ai−bi|
4 . Although other similarity functions have been proposed in the lit-

erature [3,4,7,9,13,16,18,19], we have decided to use the geometric distance
between both fuzzy numbers due to its low computational cost.

Dynamic programming is then executed as follows. First, note that L0 =
{A6}, since the only terminal asset in the IS in Fig. 1 is A6.

– Stage 1: L1 = {A4, A5}. We adjust the degrees of dependency D̃(A4, A6) =

d̃(A4, A6) ⊗ [
10⊗
p
(1̃ 
 ẽ4,6p x4,6

p )] = V H ⊗ [
10⊗
p
(1̃ 
 ẽ4,6p x4,6

p )] and D̃(A5, A6) =

d̃(A5, A6) ⊗ [
15⊗
p
(1̃ 
 ẽ5,6p x5,6

p )] = H ⊗ [
15⊗
p
(1̃ 
 ẽ5,6p x5,6

p )], such that

S(D̃(A4, A6), Ũ) ≥ 0.95 and S(D̃(A5, A6), Ũ) ≥ 0.95, ẽ4,6p being the effect
induced for the safeguard S4,6

p , p = 1, . . . , 10, ẽ5,6p the effect induced for the
safeguard S5,6

p , p = 1, . . . , 15, x4,6
p = 1 or 0 if the safeguard S4,6

p , p = 1, . . . , 10,
is selected or not, respectively, and x5,6

p = 1 or 0 depending on whether or not
the safeguard S5,6

p , p = 1, . . . , 15, minimizing the cost.
As L1 contains two elements, two optimization problems must be solved in
this stage, associated with A4 and A5, respectively.
Regarding asset A4, solutions are represented by the vector x4,6 = (x4,6

1 ,
. . . , x4,6

10 ), see Table 2, where x4,6
p = 1 if the safeguard S4,6

p is selected. The
respective optimization problem to be solved using simulated annealing is:
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min c4,61 x4,6
1 + . . . + c4,610 x4,6

10

s.t. S
(
D̃(A4, A6), Ũ

)
≥ 0.95

x4,6
p ∈ {0, 1} , p = 1, . . . , 10

. (6)

Table 2. Safeguards for A1, A2, A3, A4 and A5.

Tag Effect Cost Tag Effect Cost Tag Effect Cost Tag Effect Cost Tag Effect Cost

S
1,2
1 L 100 S

1,3
1 MH 356 S

1,4
1 M 209 S

1,5
1 M 230 S

2,3
1 M 356

S
1,2
2 M 300 S

1,3
2 H 324 S

1,4
2 M 267 S

1,5
2 M 345 S

2,3
2 L 87

S
1,2
3 MH 550 S

1,3
3 L 110 S

1,4
3 MH 342 S

1,5
3 L 187 S

2,3
3 ML 267

S
1,2
4 M 430 S

1,3
4 ML 345 S

1,4
4 VH 789 S

1,5
4 M 321 S

2,3
4 M 320

S
1,2
5 ML 125 S

1,3
5 VL 87 S

1,4
5 M 234 S

1,5
5 MH 345 S

2,3
5 ML 156

S
1,2
6 L 240 S

1,3
6 MH 345 S

1,4
6 M 356 S

1,5
6 H 543 S

2,3
6 M 320

S
1,2
7 VL 100 S

1,3
7 M 200 S

1,4
7 M 276 S

1,5
7 MH 356 S

2,3
7 M 256

S
1,2
8 MH 324 S

1,4
8 M 200 S

1,5
8 M 206 S

2,3
8 M 300

S
1,2
9 VH 570 S

1,4
9 H 467 S

1,5
9 M 342 S

2,3
9 L 200

S
1,4
10 H 342

S
1,4
11 L 127

S
1,4
12 M 207

S
2,6
1 M 348 S

3,4
1 M 345 S

3,6
1 M 267 S

4,6
1 M 260 S

5,6
1 M 200

S
2,6
2 L 187 S

3,4
2 H 650 S

3,6
2 M 356 S

4,6
2 M 245 S

5,6
2 M 210

S
2,6
3 ML 254 S

3,4
3 M 200 S

3,6
3 M 378 S

4,6
3 ML 170 S

5,6
3 L 120

S
2,6
4 ML 367 S

3,4
4 M 367 S

3,6
4 M 324 S

4,6
4 M 256 S

5,6
4 ML 234

S
2,6
5 ML 567 S

3,4
5 M 388 S

3,6
5 M 345 S

4,6
5 M 367 S

5,6
5 M 267

S
2,6
6 M 390 S

3,4
6 H 453 S

3,6
6 M 231 S

4,6
6 M 289 S

5,6
6 MH 367

S
2,6
7 ML 256 S

3,4
7 L 189 S

3,6
7 MH 453 S

4,6
7 M 278 S

5,6
7 MH 366

S
2,6
8 M 307 S

3,4
8 L 256 S

4,6
8 M 345 S

5,6
8 M 254

S
2,6
9 L 235 S

3,4
9 M 345 S

4,6
9 M 240 S

5,6
9 ML 145

S
2,6
10 ML 124 S

4,6
10 MH 435 S

5,6
10 L 206

S
2,6
11 M 400 S

5,6
11 M 306

S
2,6
12 L 278 S

5,6
12 M 345

S
2,6
13 ML 260 S

5,6
13 M 280

S
5,6
14 L 178

S
5,6
15 MH 377

Table 3. Optimal solutions and costs for each asset.

Asset Solution Cost

A5 S5,6
1 , S5,6

7 , S5,6
9 711

A4 S4,6
2 , S4,6

3 , S4,6
4 ,S4,6

9 911

A3 S3,6
1 , S3,6

4 , S3,6
6 , S3,6

7 1275

A2 S2,3
7 , S2,6

1 , S2,6
5 , S2,6

7 ,S3,6
10 1551

A1 S1,2
1 , S1,3

2 , S1,4
10 1236

Total cost 5684
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The optimal solution and the associated costs are shown in the second row of
Table 3, corresponding to vector x4,6∗

= (0, 1, 1, 1, 0, 0, 0, 0, 1, 0).
Regarding asset A5, solutions are now represented by the vector x5,6 = (x5,6

1 ,
x5,6
2 , . . . , x5,6

15 ), see Table 2. The optimization problem to be solved is:

min c5,61 x5,6
1 + ... + c5,615 x5,6

15

s.t. S
(
D̃(A5, A6), Ũ

)
≥ 0.95

x5,6
p ∈ {0, 1} , p = 1, ..., 15

. (7)

The optimal solution and the associated costs are shown in the first row of
Table 3, corresponding to vector x5,6∗

= (1,0,0,0,0,0,1,0,1,0, 0,0,0,0,0).
The new degrees of dependency after the application of the selected safe-

guards and the respective similarity to the fixed threshold, Ũ , are shown in
the first two rows of Table 4.

The purpose of this paper is to describe how a mixture of dynamic program-
ming techniques and metaheuristics can efficiently solve the problem and not
to detail or compare the applied metaheuristic (simulated annealing) with
others. However, we do think it is worthwhile to describe some parameters
used in the implementation and to report a sensitivity analysis analyzing the
effects caused by the changes to these parameters.

Table 4. New degrees of dependency after applying safeguards.

Asset ˜D(Aj , A6) Similarity ˜U

A5 (0.015, 0.077, 0.114, 0.280) 0.953

A4 (0.016, 0.072, 0.104, 0.269) 0.959

A3 (0.008, 0.059, 0.096, 0.301) 0.956

A2 (0.008, 0.057, 0.094, 0.316) 0.953

A1 (0.005,0.045,0.082,0.327) 0.951

• We randomly generate a sequence with binary values and check if the similarity
constraint is verified to derive the initial solution. The length of the binary
sequence depends on the problem (15 when dealing with x5,6, 10 when dealing
with x4,6. . . ).

• The neighborhood of a solution is composed of any solutions that can be
derived by changing the value of one of the binary elements of the solution,
selected at random. If the resulting solution is not feasible, then it is discarded
and another solution is generated in the neighborhood until a feasible solution
is found.

• The initial temperature assures acceptance probabilities of worse solutions
close to 0.9 in the initial iterations of the algorithm. The initial temperature
is computed to obtain a high probability of acceptance (≥0.9) of any neighbor
of the initial solution, i.e., given the initial solution x0, the minimum value T
is computed such that e−(f(y)−f(x0))/T ≥ 0.9, ∀y ∈ N(x0) and feasible, with
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f(y) − f(x0) > 0. In other words, T = max
y∈N(x0)
feasible

{
−(f(y)−f(x0))

ln(0.9)

}
because if we

have T ≥ −(f(y)−f(x0))
ln(0.9) ∀y ∈ N(x0) and feasible, withf(y) − f(x0) > 0, then

ln(0.9) ≤ −(f(y)−f(x0))
T ∀y ∈ N(x0) and feasible, with f(y) − f(x0) > 0, and

since ex is an increasing function, 0.9 ≤ e
−(f(y)−f(x0))

T ∀y ∈ N(x0) and feasible,
with f(y) − f(x0) > 0.
The pseudocode, starting from x0 = (x0[1], . . . , x0[n]), as follows:

∗ y = x0, T = 0, i = 1.
∗ While i ≤ n. Do y[i] = 1 − y[i].

· If y is a feasible solution then, if −(f(y)−f(x0))
ln(0.9) > T , we have T =

−(f(y)−f(x0))
ln(0.9)· y = x0, i = i + 1.

The solution x0 has at most n feasible neighboring solutions. We have evalu-
ated all neighboring solutions that are worse than the initial solution in those n
steps. In the unfortunate event that the initial solution is the worst of its neigh-
borhood, the initial value of the resulting T is null. Therefore we must start
from another initial solution. This does not degrade the algorithm, because it
can return to the neighborhood of the discarded solution at any time.
Thus the initial temperature that leads to the optimal solution over A5 (for
optimization problem (7)) is 3578. The temperature is maintained constant
for L = 20 iterations and then it decreases after multiplying by 0.95, so that,
after h ∗ L iterations, the temperature is th∗L = 0.95ht0.

• The algorithm stops if f has not improved in the last 100 iterations.

Table 5 shows the best solutions reached after running the algorithm with dif-
ferent values for α to minimize D̃(A5, A6). Note that if the constraint is more
restrictive, allowing only minor differences with the threshold Ũ , the set of safe-
guards for implementation will be larger. The same effect occurs when we use
a more accurate (with a smaller support) threshold Ũ . Therefore, experts must
choose lower or higher levels of acceptable accuracy regarding the dependency
between assets, i.e., the accepted risk considering this fact.

Table 5. ˜D(A5, A6) and associated costs for different α levels.

α ˜D(A5, A6) Similarity Cost

0.8 (0.05,0.23,0.27,0.46) 0.81 554

0.9 (0.02,0.09,0.12,0.30) 0.93 653

0.95 (0.01,0.07,0.11,0.28) 0.95 711

0.98 (0.00,0.03,0.06, 0.20) 0.98 1021
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– Stage 2: L2 = {A3}. The degrees of dependency d̃(A3,A6) and d̃(A3,A4) are
adjusted by minimizing costs and incorporating the soft constraint

S(D̃(A3, A6), Ũ) ≥ 0.95, where D̃(A3, A6) = [d̃(A3, A6)⊗(
7⊗

p=1
(1̃
 ẽ3,6p x3,6

p ))]⊕

[d̃(A3,A4) ⊗ (
9⊗

p=1
(1̃ 
 ẽ3,4p x3,4

p )) ⊗ D̃(A4, A6)]. Note that D̃(A4, A6) was com-

puted in Stage 1, D̃(A4, A6) = V H ⊗ [(1̃ 
 ẽ4,62 )⊗ (1̃ 
 ẽ4,63 )⊗ (1̃ 
 ẽ4,64 )⊗ (1̃ 

ẽ4,69 )] = (0.016, 0.072, 0.104, 0.269). The optimization problem to be solved in
this stage is

min c3,61 x3,6
1 + . . . + c3,67 x3,6

7 + c3,41 x3,4
1 + . . . + c3,49 x3,4

9

s.t. S(D̃(A3, A6), Ũ) ≥ 0.95
x3,6
p , x3,4

q ∈ {0, 1} , p = 1, . . . , 7, q = 1, . . . , 9
.

The optimal solution and the associated cost is shown in the third row of
Table 3, corresponding to vectors x3,6∗

= (1, 0, 0, 1, 0, 1, 1) and x3,4∗
=

(0, 0, 0, 0, 0, 0, 0, 0, 0). The new degree of dependency after the application of
the selected safeguards and the corresponding similarity to the fixed threshold,
Ũ , are shown in the third row of Table 4.

– Stage 3: L3 = {A2}. The degrees of dependency d̃(A2, A3) and d̃(A2, A6) are
adjusted minimizing costs and incorporating the soft constraint

S(D̃(A2, A6), Ũ) ≥ 0.95, where D̃(A2, A6) = [d̃(A2, A6) ⊗ (
13⊗
p=1

(1̃
ẽ2,6p x2,6
p ))]⊕

[d̃(A2,A3) ⊗ (
7⊗

p=1
(1̃ 
 ẽ2,3p x2,3

p )) ⊗ D̃(A3, A6)]. Note that D̃(A3, A6) was com-

puted in Stage 2, D̃(A3, A6) = [d̃(A3, A6)⊗ (1̃
 ẽ3,61 )⊗ (1̃
 ẽ3,64 )⊗ (1̃
 ẽ3,66 )⊗
(1̃ 
 ẽ3,67 )] ⊕ [d̃(A3,A4)) ⊗ D̃(A4, A6)] = (0.008, 0.059, 0.096, 0.301).

The optimal solution and the associated cost are shown in the fourth row of
Table 3, corresponding to vectors x2,3∗

= (0, 0, 0, 0, 0, 0, 1, 0, 0) and x2,6∗
=

(1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0). The new degree of dependency and similarity
to Ũ , are shown in the fourth row of Table 4.

– Finally, L4 = {A1}. The degrees of dependency d̃(A1, A2), d̃(A1, A3), d̃(A1, A4)
and d̃(A1, A5) are adjusted minimizing the cost and considering the soft

constraint S(D̃(A1, A6), Ũ) ≥ 0.95, where D̃(A1, A6) = [d̃(A1, A2) ⊗ (
9⊗

p=1
(1̃ 


ẽ1,2p x1,2
p ))⊗D̃(A2, A6)]⊕[d̃(A1,A3)⊗(

7⊗
p=1

(1̃
ẽ1,3p x1,3
p )⊗D̃(A3, A6)]⊕[d̃(A1, A4)

⊗(
12⊗
p=1

(1̃
ẽ1,4p x1,4
p ))⊗D̃(A4, A6)]⊕[d̃(A1, A5)⊗(

9⊗
p=1

(1̃
ẽ1,5p x1,5
p ))⊗D̃(A5, A6)].

Note that D̃(A2, A6), D̃(A3, A6), D̃(A4, A6) and D̃(A5, A6) were computed in
previous stages, D̃(A2, A6) = [d̃(A2, A6)⊗((1̃
ẽ2,61 )⊗(1̃
ẽ2,65 )⊗(1̃
ẽ2,67 )⊗(1̃

ẽ2,610 ))] ⊕ [d̃(A2,A3) ⊗

(
(1̃ 
 ẽ2,37 )

)
⊗ D̃(A3, A6)] = (0.008, 0.057, 0.094, 0.316),

D̃(A3, A6) = (0.008, 0.059, 0.096, 0.301), D̃(A4, A6) = (0.016, 0.072, 0.104,
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0.269) and D̃(A5, A6) = (0.01, 0.07, 0.11, 0.28). The optimal solution in this
stage is shown in the last row of Tables 3 and 4.

After implementing the best safeguards, the risk caused by the previously
considered threat over asset A1 in each component is R̃1(l) = (0.001, 0.018, 0.039,
0.22), l = 1, 2, 3. The risks associated with this threat before and after imple-
mentation of safeguards are illustrated along with the risk threshold in Fig. 2.

Fig. 2. Risk of A1 before and after implementation of optimal safeguards.

4 Conclusions

We propose a model for selecting safeguards to reduce risks in information sys-
tems based on the reduction of the degree of dependency between support assets
and terminal assets. As safeguards have associated costs, our aim is to select
safeguards that minimize costs while keeping the risk with acceptable levels.

Although a metaheuristic could be used to solve this optimization problem,
dynamic programming combined with simulated annealing was used because of
the special structure of the constraint set. This leads to a more computationally
efficient solution to the safeguard selection problem. Also the fuzzy environment
allows experts to provide imprecise and vague failure propagation probabilities.

Another way to reduce system risk is to act on the probability of threats to
each asset materializing or reducing the degradation of assets caused by threat
materialization. This is a multiobjective problem (degradation has three com-
ponents), which will be considered in future research.

Acknowledgements. The paper was supported by Madrid Government project S-
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Abstract. Manufacturers are faced with complex global challenges that con-
tributed to significant changes in the business environment. These challenges
drive business to continuously assess their performance and competitiveness.
This paper proposes a model that will assist companies, particularly the small
and medium-sized enterprises, assess their performance by prioritizing perfor-
mance measures and selecting an adequate operations strategy under various
market scenarios. The outlined model utilizes and integrates the Supply Chain
Operations Reference framework and the Analytical Hierarchy Process approach
to construct, link, and assess a multi-levels hierarchal structure. The model also
assist small and medium-sized enterprises put more weight on supply chain
attributes. The use and benefits of the proposed model are illustrated on a case of
a family owned, medium-sized manufacturing enterprise.

Keywords: Small and medium sized enterprises � AHP � SCOR model �
Supply chain strategy � Performance measurement � Expert choice

1 Introduction

Manufacturers today are faced with complex global challenges such as low cost com-
petitors, fluctuating commodity prices, increasing customer expectations, and volatile
economic conditions. The uncertainty associated with these factors has contributed on
one hand to significant changes in the business environment resulting in tremendous
growth and opportunities for new markets, and on the other hand in increased frequency
and complexity of challenges that threaten the operations and survival of firms. These
competitive pressures are driving manufacturing firms to continuously re-evaluate and
adjust their competitive strategies, supply chains, and manufacturing technologies in
order to improve performance, compete, and survive long term. Small and medium sized
enterprises (SMEs) are much more vulnerable to these external pressures than larger
companies, thus their responses often fall short, due to limited resources and capabilities
(e.g., financial resources, managerial talent, and access to markets). Numerous studies
have revealed that small businesses are extremely susceptible to failures; about 50 % of
small businesses in Canada and 53 % in the United States fail to survive for more than
five years [1]. Several research studies have linked the success of businesses to the type
of performance measurement system (PMS) used by the firms and to the successful
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design and implementation. Other researchers have considered strategic performance
measurement system as a means to attain competitive advantage, continuous
improvement and ability to successfully manage changes [2, 3]. Despite these results,
several investigators found that many small enterprises predominantly emphasize
financial index only [4–6] neglecting the others.

This paper proposes an approach methodology and a model that will assist SMEs in
building a strategic and flexible performance measurement system that considers two
types of supply chain strategies, and the supply chain performance attributes based on
Supply Chain Operations Reference (SCOR) framework. The model relies on Ana-
lytical Hierarchy Process (AHP) approach to integrate various market scenarios, per-
formance attributes and supply chain strategies into one comprehensive model. Unlike
other previous works where the use of AHP and performance measures were mainly
addressing the selection of best supplier, vendors, and markets or manufacturing
departments, this work discusses the improvement of one enterprise performance under
different market circumstances and the importance of different performance measures.

2 Performance Measurement Systems in SME

Performance measurement is at the core of a control and management system of an
enterprise. It plays a key role in developing strategic plans and assessing organizational
objectives. It is also important in assessing business ability to gain and sustain com-
petitive advantage and directing corrective adjustments and actions as well [2]. Various
researchers have linked the success of businesses to the type of performance mea-
surement system used by them and to the successful design and implementation of the
measurement system. Other researchers have considered strategic performance mea-
surement system as means to attain competitive advantage, continuous improvement
and ability to respond to internal and external changes [3]. In this sense, the perfor-
mance measurement system is the instrument to support the decision-making either for
launching, selecting actions or redefining objectives [7–9]. From a global perspective,
performance measurement system as a multi-criteria instrument consists of a set of
performance expressions or metrics [10].

The early generations of performance measurement models focused extensively on
financial and accounting areas and completely ignored the operational and other non-
financial issues. Currently, the new generation of performance measurement models
makes a strong effort to be strategically oriented and to address other performance
dimensions including combination of financial and non-financial areas [11]. Never-
theless, according to Tangen: “these new approaches have a good academic ground-
work and are theoretically sound but they rarely help with the practical understanding
of specific measures at an operational level”. This is considered a major obstacle in
implementing multi-dimensional performance measurement system in small enterprises
[12]. Other researchers have tied the failure of implementing existing performance
measurement systems in small and medium sized enterprises to the following issues:

• Use of models or frameworks originally introduced for large enterprises, the one
size fits all, leads to implementation failure [11].
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• Improper use of well-known performance measurement models and frameworks
[13].

• Informal approach to performance measurement models and frameworks (no rig-
orous plan or execution) [14].

Numbers of studies have revealed that many of the small and medium sized enterprises
did not achieve the requirements of a strategic performance measurement system. For
example, a study found that all companies under investigation had a surplus of financial
measures, but their performance measurement systems were not derived from strategy,
often unclear with complex or obsolete data, and historically focused on some outdated
measures [4]. Another empirical survey conducted on 83 Danish enterprises [5] found
that 50 % of these enterprises have either only one performance indicator such as cost
or no performance indicators in place at all. An additional empirical study [6] revealed
that majority of small and medium sized Canadian manufacturing firms continue using
financial measures.

Despite the recommendations from industrial and academic experts, the proportion
of firms that implement well-known performance measurement systems remains low.
The results indicated that the types of performance measures used by the SMEs were
rarely connected to strategy. The study also revealed that about 70 % of the companies
failed to implement well-known strategic performance measurement models [6]. The
majority of SMEs according to the previous studies use traditional management ac-
counting systems. Nevertheless, the traditional management accounting systems and
financial measures simply do not provide the richness of information that allows a
company to remain competitive in today’s market place [15] see also Table 1.

It is necessary to understand that the metrics and the measures that are used in
performance measurement system should have the power to capture the depth of
organizational performance, the measures should reflect their clear relations with a
range of levels of decision-making such as strategic, tactical, and operational, the
metrics should reflect an acceptable balance between financial and non-financial
measures, and the measurement system should ensure proper assignment of measures
to the areas where they would be most suitable.

Table 1. Traditional versus no-traditional PMS.

Traditional performance measures Non-traditional performance measures

Based on outdated traditional accounting system Based on company strategy
Mainly financial measures Mainly non-financial measures
Do not change over time Change overtime as the needs change
Intended mainly for monitoring performance Intended to improve performance
Not applicable for new advanced technology
and methods, JIT, TQM

Applicable for new advances
technology and methods: JIT, TQM

Ignoring continuous improvement Support in achieving continuous
improvement
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3 SME and the Challenges

Studies show that small and medium-sized enterprises are distinguished from larger
firms by a number of key characteristics [4] such as personalized management with
little delegation of authority, severe resource limitations in terms of skilled manpower,
management and finance, and flexible structure, reactive or fire-fighting mentality,
informal and dynamic strategies, dependency on small number of customers, limited
markets, and high potential to innovativeness.

These characteristics are also viewed as challenges that influence the implemen-
tation of well-known performance measurement systems that are designed for larger
firms in small and medium sized enterprises [16].

For example, the dynamic strategy of small business means that these businesses
are more frequently revising their decisions than the larger firms. This greatly influ-
ences internal operations, and the relations with customers and suppliers. Such
behaviour requires a better system of control with higher capability to control effec-
tively and rapidly reflect these changes and their consequences on the internal opera-
tions as well as the external ones. These limitations of small manufacturing enterprises
emphasize need for a performance measurement and control system that effectively
reflects key business operations with fewer but critical measures that are written in form
of an understandable structure, and flexible enough to fit specific needs of each indi-
vidual enterprise and the changeable market conditions as well.

4 Analytical Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP), introduced in 1970 has become one of the most
broadly used methods for multiple criteria decision-making (MCDM) [17]. It is a
decision approach designed to assist in the solution of complex multiple criteria
problems in a number of application areas. AHP is a problem-solving framework,
flexible, organized method employed to represent the elements of a compound prob-
lem, hierarchically [18]. It has been considered to be an essential tool for both prac-
titioners and academic researchers in organizing and analysing complex decisions [19].
AHP has been extensively used for selection process such as comparing the overall
performance of manufacturing departments [20], manufacturing supply chain [21],
benchmarking logistics performance [18], and vendor evaluation and selection [22].
More researchers are realizing that AHP is an effective technique and are applying it to
several manufacturing areas [21]. AHP has several benefits [23]:

• It helps to decompose an unstructured problem into a rational decision hierarchy.
• Second, it can draw out more information from the experts or decision makers by

employing the pair-wise comparison of individual groups of elements.
• Third, it sets the computations to assign weights to the elements.
• Fourth, it uses the consistency measure to validate the consistency of the rating from

the experts and decision makers. The AHP procedure to solve a complex problem
involves four steps [19]:
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1. Breaking down the complexity of a problem into multiple levels and synthe-
sizing the relations of the components are the underlying concepts of AHP

2. Pair-wise comparison aims to determine the relative importance of the elements
in each level of the hierarchy. It starts from the second level and ends at the
lowest. A set of comparison matrices of all elements in a level of the hierarchy
with respect to an element of the immediately higher level are built so as to
prioritize and convert individual comparative judgments into ratio scale mea-
surements. The preferences are quantified by using a nine-point scale. The
meaning of each scale measurement is explained in Table 2. Decision maker
needs to express preference between each pair of the elements in terms of how
much more one element is important than other element. Table 3 shows a matrix
that expresses personal judgment and preferences.

3. Relative weight calculation
After the pair-wise comparison matrix is developed, a vector of priorities (i.e.
eigenvector) in the matrix is calculated and is then normalized to sum to 1.0.
This is done by dividing the elements of each column of the matrix by the sum
of that column (i.e. normalizing the column). Then, obtain the eigenvector by

Table 2. Comparison scale for the importance using AHP grading system.

Intensity of
importance

Definition Explanation

1 Equal importance Two activities/factors contribute equally to the
objective

3 Somewhat more
important

Experience and judgment slightly favor one
over the other

5 Strong importance Experience and judgment strongly favor one
over the other

7 Very strong
importance

Experience and judgment very strongly favor
one over the other. Its importance is
demonstrated in practice

9 Absolutely extremely
important

The evidence favoring one over the other is of
the highest possible validity

2, 4, 6, 8 Intermediate values When compromise is needed
Reciprocal Opposite value When activity I has one of the above numbers

assigned to it with activity j, then j has the
reciprocal value when compared to I.

Source: Saaty(2008).

Table 3. Pair-wise comparison for n number of elements at the same level.

I1 I2 I3 In

I1 1 2 4 …

I2 0.5 1 … …

I3 0.25 … 1 …

In …. … … 1

A Performance Improvement and Management Model 83



adding the elements in each resulting row to obtain a row sum, and dividing this
sum by the number of elements in the row to obtain relative weight.

4. Consistency check
A consistency ratio (CR) is used to measure the consistency in the pair-wise
comparison. The purpose is to ensure that the judgments of decision makers are
consistent. For example, when using AHP technique, a consistency ratio
between factors and criteria can be obtained by the following equation:

CR ¼ CI=RI ð1Þ

Where:
CI: consistency index
RI: consistency ratio based on the value of n.

Checking consistency provides more information about the accuracy of the com-
parison and the decision alternatives selection. The final score of decision alternatives
can be obtained by applying the following general equation:

Sk ¼
Xm

i¼1

Xni

j¼1
Wiwij rijk ð2Þ

Where:
Sk = overall decision of alternative k score
Wi = relative weight of criteria i
wij = relative weight of indicator j of criteria i
rijk = rating of decision alternative k and for indicator j of criteria i
ni = total number of indicators belong to criteria.

5 SCOR Performance Levels and Attributes

Supply Chain Council (SCC) is a global non-profit organization formed in 1996 to
make and evolve a standard industry process reference model of the supply chain for
the benefits of helping enterprises improve supply chain operations. SCC has estab-
lished the supply chain framework- the (SCOR) process reference model for evaluating
and comparing supply chain activities and related performance [24]. The SCOR model
consists of standard supply chain processes, standard performance attributes and
metrics, standard practices and standard job skills. It divides the supply chain attributes
into two categories: internal and customer related attributes. The SCOR performance
attributes such as: Supply Chain Reliability, Responsiveness, and Agility are consid-
ered as customer related attributes. Cost and Assets management are internal attributes.
The SCOR performance section consists of two types of elements: Performance
Attributes and Performance Metrics. A performance attribute is a combination of
characteristics used to express a strategy. However, an attribute itself cannot be mea-
sured, it is used to set and identify strategic direction. The metrics that are assigned to
each performance attribute measure the ability of the supply chain to achieve these
attributes. Table 4 shows five performance attributes; two of them (the cost and assets
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management) are considered as internal-focused. Reliability, Responsiveness and
Agility are considered as Customer-focused. Associated with the performance attri-
butes are the level 1 strategic metrics. These level 1 metrics are the calculations by
which an organization can measure how successful it is in achieving its desired position
within the competitive market.

For example, the performance attribute supply chain cost includes two types of
costs: supply chain management cost and cost of goods sold. Reliability on the other
hand involves only perfect order fulfilment. Each of level one strategic metric also
divided to level 2 and 3 metrics, more information about SCOR performance attributes
can be found at Supply Chain Council website [24]. However, the framework does not
provide users and practitioners with any guidelines on how to use or where to start the
evaluation that requires another tool that simplify such a complex framework.

6 The Approach

Since business conditions became more unpredictable and unstable, manufacturing
firms are required to adjust their operations strategies in order to meet these changes.
The evaluation of the alternative supply chain strategies; effective or responsive
requires that the performance of the strategies on agility, reliability, responsiveness,
cost, to be reevaluated, re-prioritized, quantified and aggregated to capture the new
business goals. However, this process is not a straightforward task, since the perfor-
mance and strategy evaluation process depends on many factors that by nature are
interconnected and require a specific level of skill and qualifications that mostly do not
exist in many SMEs. Successful performance measuring systems have to satisfy and
completely fulfil the following points:

• The metrics used in performance measurement systems should have the power to
capture and represent the organizational performance.

• The measures need to convey clear connections with a range of levels of decision-
making such as strategic and operational.

Table 4. SCOR performance attributes and definitions.

Performance Attribute Definition 

In
te

rn
al

 Costs: CO The cost of operating the supply chain processes. 

Assets 
management: AM

The ability to efficiently utilize assets 

C
us

to
m

er
 

Reliability: RL The ability to perform tasks and activates as 
planned or expected. It focuses on the outcomes 
of the processes 

Responsiveness: 
RS

The speed at which tasks and activities are per-
formed 

Agility: AG The ability to respond to external effects, i.e. 
demand and supply uncertainties. 
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• The metrics should also need to reflect an acceptable balance between non-financial
and financial measures.

• A measurement system that ensures a suitable allocation of metrics to the areas
where they would be most appropriate.

Therefore, the framework outlined in this paper helps SMEs construct and build a
strategic performance measurement system which involves the two types of supply
chain strategies: Efficient and Responsive, and supply chain performance attributes
based on SCOR model. The framework utilizes AHP approach to integrate SCOR
performance attributes, and the two types of supply chain strategies into one com-
prehensive model, (Fig. 1). The supply chain model is use for several reasons. First,
SMEs need to think and act relying on a wider range of measures that covers financial
and non-financial issues. Secondly, this effort aims at bridging the gap between supply
chain models and SMEs. For example, a study revealed that there is a poor fit between
supply chain management and the small and medium-sized enterprises. The authors
attributed this poor fit to variety of reasons such as improper implementation of supply
chain management by the small and medium-sized enterprises, and due to the lack of
use of supply chain management to complement strategic focus [25]. The Expert
Choice software was used to assist us in building the hierarchal structure of the
company’s overall goal, market scenarios, performance attributes and supply chain
strategies. Expert Choice is intuitive, graphically based and structured in a user friendly
fashion so as to be valuable for conceptual and analytical thinkers, novices and cate-
gory. Expert Choice software is intended to help decision-makers and the software
users overcome the limits of the human mind to synthesize qualitative and quantitative
inputs from multiple stakeholders. The Expert Choice software [26]:

Fig. 1. The four levels structure of the model.
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• Conveys structure and measurement to the planning and budgeting process
• Aids you determine strategic priorities and optimally allocates business resources
• Converses priorities and builds consensus
• Documents and justifies strategic decisions
• Enables you to move forward quickly and confidently

The AHP and Expert Choice software engage decision makers in structuring a decision
into smaller parts, proceeding from the goal to objectives to sub-objectives down to the
alternative courses of action. Decision makers then make simple pairwise comparison
judgments throughout the hierarchy to arrive at overall priorities for the alternatives.
The decision problem may involve social, political, technical, and economic factors
[26]. The model is illustrated in the next section on a case of a medium-sized manu-
facturing enterprise. As shown in Fig. 1, two key supply chain strategies are considered
at the last level that represents the available alternatives that the decision maker has to
choose from based on market conditions, business environment and company’s overall
goal. The third level, the attributes level, includes: Cost, Assets management as internal
or let us say financial attributes and Agility, Reliability, and Responsiveness as cus-
tomer or non-financial performance and strategy attributes. Notice that the SCOR
attributes bring financial and non-financial measures together to achieve an important
part of the non-traditional performance system requirements. The second level or the
scenario level shows various market conditions: low demand, average demand and high
demand. Each and every business encounters one or more of these market conditions,
but the question of how, when, and why one supply chain strategy is chosen over the
other and on what basis usually remains fairly open. Some of these issues will be
highlighted in the next section through the presented case study.

7 Case Study

A family-owned medium-size manufacturing firm, call it company x, specialized in
production of plastic pipes and fittings products. The company strategy is to produce
and deliver high quality products to its customers at the agreed delivery time and
method. Most of its customers are large firms, mega project contractors and govern-
ment agencies. Although the company operates in a highly competitive market, the
plastic pipes and fittings market, its product prices are almost the highest compared to
similar products on the market. Based on the information collected about the company
policy and operations, the Expert Choice software was used to translate and build the
four level hierarchal structures: the goal, scenarios, criteria, and alternatives levels.

The evaluation of these alternative strategies is carried out level-by-level, starting
from top down towards the lower levels. The process begins on level two by assessing
likelihood of occurrence of scenarios of different market demands during the planning
period. The evaluation process of different scenario according to company x is shown
in Table 5.

The results of the second level evaluation process show that the possibility of high
demand scenario occurrence is relatively higher than the other ones, Fig. 2 above. The
second step evaluates the relative effects of each criterion “attribute” on performance
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under a specific scenario. For example, what would be the relative effect of cost (CO),
assets management (AM), agility (AG), reliability (RL), and responsiveness (RS) on
performance if demand is low?, see Table 6. Notices that the relative effects of each
performance attribute or criterion may vary depending on market conditions or product
types.

The results obtained from the evaluation process of performance attributes are
shown in Fig. 3. In order to complete the level calculations one needs two more
comparison processes for average and high market demand. The third step addresses
the performance of each strategy on each performance criterion. Finally, the overall
performance of each strategy can be calculated through the composition process by
using Expert Choice. The performance of the two alternatives: efficient and responsive
supply chain strategy is shown in Fig. 4.

Fig. 2. The likelihood of different scenarios.

Table 6. The pair wise comparison of performance attributes under low market demand.

CO AM AG RL RS

CO 1 3 4 3 4
AM 0.33 1 3 2 2
AG 0.25 0.33 1 3 4
RL 0.33 0.50 0.33 1 1
RS 0.25 0.50 0.25 1 1

Table 5. Pair wise comparison at level 2.

Low Av. High

Low 1 4 3
Av. 1/4 1 2
High 1/3 1/2 1
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8 Results and Discussion

The proposed framework was used to develop a model for a specific medium-sized
manufacturing company. Notice that the company expectations of having high demand
for the plastic pipes and fittings is about 52 %, 36 % for average demand and 12 % for
low demand during the planning period. With high market demand, customers usually
pay less attention to products prices and manufacturers without difficulty cover fixed
and other related costs in mass production environment. This means that the company
must place more emphasis on customer-related attributes as a major performance
success factors. Within the planning period, the evaluation process clearly shows that
focus on responsiveness is the most appropriate strategy that company x needs to adopt
since the possibility of having high demand is relatively higher than the others.
However, maintaining forever the same performance measures or supply chain will not
help in rapidly changing business environment.

As the external environment changes frequently and rapidly, the group of perfor-
mance attributes and measures in use by businesses must also change to reflect the
changes in internal and/or external environment. Generally speaking, the changes in the
performance measurement system can be done by adding, eliminating, replacing, or
simply by reprioritizing performance measures and metrics. For example, a perfor-
mance measure such as, for example supply chain responsiveness which initially has
high priority may move down to low priority in other circumstances or because of
changes in the internal and external business environment.

Fig. 3. Weights of performance attributes under low market demand.

Fig. 4. Overall weight of the two alternatives.
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In the case presented, the judgments of the likelihood of having high, average and
low demand are based on previously collected information about the market demands of
company x in the last few years. However, the demand may change at any time during
the planning period which in some cases leads to remarkable increase or decrease of the
real market needs. These types of changes usually call for adjustments in businesses
strategies, policies, or goals in order to meet the new challenges. For this reason,
sensitivity analyses to evaluate changes in scenarios during planning period of company
x were used. The model remains as is with the same scenarios of market demands: low,
average, and high in the second level. The third level has five supply chain performance
attributes: cost, assets management, agility, reliability, and responsiveness. And finally
in fourth level provides a choice between two types of supply chains: efficient or
responsive. Some changes were made to the input data and judgments of level 2, the
market scenarios level. For example, the likelihood of having high demand was set to
100 % in order to capture and observe the changes in the model outputs. The 100 % high
demand market resulted in selection of responsive supply chain strategy with about 0.66
priority weights as shown in Fig. 5a below. However, market conditions and demands
always change, thus companies also need to examine the extremes of the markets.
Therefore, the model was reset to 100 % low demand. With this setting, the model
chooses efficient supply chain strategy as the best strategy for the low demand market,
see Fig. 5b. Similar steps were conducted to reset the model to 100 % average demand.
With this setting, the model gave the priority to efficient supply chain strategy but with
less weight compared to 100 % low demand scenario, Fig. 5c.

Table 7 shows the results of different scenarios generated using sensitivity analysis
using Expert choice. In general, when the probability of the occurrence of low or
average demand is 100 %, the performance of efficient supply chain strategy will be
better than the performance of responsive supply chain strategy. When the probability
of high demand is certain, likelihood of 100 %, responsive supply chain strategy should
give better performance than efficient supply chain strategy. For company x, the market
demand can be divided to three intervals or classes: low, average, and high. In addition,
the company sets the limits for each one as shown in Table 8 below. Based on these
intervals and the forecasted demand for the planning period, the coming 18 months, the
company has to adopt both strategies but in different time periods as shown in Fig. 6.

a) 100% high demand b) 100% low demand c) 100% average demand 

Fig. 5. Various demand scenarios.
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The company needs to adopt responsive supply chain strategy for the first five months
within the planning period and go back to efficient supply chain for the rest of the year.

The Fisher’s framework suggests that there are two types of products, functional
and innovative products [27]. Based on this classification, he suggested two types of
supply chain strategies that fit each product type. For instance, he recommended effi-
cient supply chain strategy for functional products, and a responsive supply chain for
innovative types of products. Although efficient supply chain strategy performs well
with functional products, i.e. plastic pipes and fittings, our case shows that there are
few months within the planning period that require some degree of responsiveness in
order to meet customer orders, particularly orders for government projects.

Nevertheless, implementation of the model requires users to be aware of the difference
between the two strategies. For instance, in the presented case the company needs to
minimize inventory to lower the cost during low demand time. It also needs to select
material suppliers based on cost as a main factor while trying to reduce manufacturing

Table 7. Different scenarios call for differing supply chain strategies.

Prob.
Low

Prob.
AV.

Prob.
Hi

Priority
efficient

Priority
responsiveness

Strategy to
adopt

1.00 0.00 0.00 0.768 0.232 Efficient
0.00 1.00 0.00 0.573 0.427 Efficient
0.00 0.00 1.00 0.333 0.667 Responsive

Table 8. Demand categories for company x.

Demand Low Average High

Weight (tons) 0–2499 2500–4999 5000–8000

Fig. 6. Forecasted market demand of company x and the selection of the supply chain strategy.
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costs and lower the margins. On the other hand (during high demand period), the company
has to reduce lead time, put higher price margins, respond quickly to demand and select
suppliers based on flexibility, speed and reliability. Table 9 shows the general differences
and a comparison between the two strategies [28].

9 Conclusion

A quantitative model for performance measurement system with the example used
illustrates how practitioners especially in SMEs can implement the model in order to
improve business performance. Using SCOR model helped in identifying a set of
financial and non-financial performance measures that are generally used to evaluate
supply chain performance in large firms. The use of AHP approach was useful in
structuring the model to four levels: Overall goal, Scenarios, Criteria, and Alternatives.
The use of Expert Choice software facilitated an excellent environment in structuring
the model hierarchically, carrying out evaluation level by level, and making final
alternatives evaluation and selection. Limited sensitivity analyses were performed in
order to sense the difference when changes occur in the internal or external environ-
ment through our model. We witnessed through the case that the link between product
type and supply chain strategy type works very well which proofs previous sugges-
tions. We also observed that adding market demands with three different scenarios
into the model provides us with different results for one market scenario, which sug-
gests that there are two key players in strategy selection and that are the product type
and the market demand. The authors of this paper believe that the outlined model
achieves important directions of non-traditional performance measurement system
such as: flexibility, easy to use, up to date, comprehensive, involves financial and

Table 9. Characteristics of efficient and responsive supply chain strategies.

Efficient supply chain Responsive supply chain

Primary goal Supply demand at lowest
cost

Respond quickly to demand

Product design
strategy

Max. Performance at a min.
product cost

Create modularity to allow
postponement of product
differentiation

Pricing strategy Lower margins because price
is a prime custom driver

Higher margins because price is not a
prime customer driver

Manufacturing
strategy

Lower costs through high
utilization

Maintain capacity flexibility to buffer
against demand/supply uncertainty

Inventory
strategy

Min. inventory to lower cost Maintain buffer inventory to deal with
demand/supply uncertainty

Lead time
strategy

Reduce, but not at the
expense of costs

Reduce aggressively, even if the cost
are significant

Supplier
strategy

Select based on cost and
quality

Select based on speed, flexibility,
reliability, and quality

Source: Chopra and Meindle (2004)
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non-financial measures, and based on business strategy as well. Unlike previous
implementations of AHP and performance measures model, the proposed model
introduced a new approach that SMEs can use to evaluate their internal needs and
external requirements by combining the two approaches correctly. The proposed model
also effectively engages users, mainly SMEs, to the world of supply chain management
and operations. However, we need to implement this methodology and model in dif-
ferent business environments to insure the ease of use of the model and to collect
more data and information about obstacles, limitations and ultimately the impact on
business profit.
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Abstract. We present a new integer linear formulation usingO(n2) vari-
ables, called adjacency variables, to solve the Minimum Linear
Arrangement problem (MinLA). We give a couple of valid equalities and
inequalities for this formulation, some of them deriving from on a new
general partitioning approach that is not limited to our formulation. We
numerically tested the lower bound provided by the linear relaxation using
instances of the matrix market library. Our results are compare with the
best known lower bounds, in terms of quality, as well computing times.

Keywords: Minimum linear arrangement problem · Integer program-
ming · Graph partitioning · Cutting plane algorithms

1 Introduction

The Minimum Linear Arrangement (MinLA) is a combinatorial optimization
problem, originally proposed by Harper [10] in 1961. It consists in arranging the
nodes of a graph on a line in such a way to minimize the sum of the distances
between the adjacent nodes. In the literature, the MinLA is known under dif-
ferent names such as the optimal linear ordering, the edge sum problem, or the
minimum-1-sum (see e.g., [2,4,5,12,13,17,18]). Formally, let G = (V,E) be a
simple graph, where V (with |V | = n, and |E| = m ) is the set of nodes and
E denotes the set of edges. An arrangement is defined as a one-to-one function
ϕ : V −→ {1, 2, ..., n}. MinLA consists in finding an arrangement ϕ minimizing
the following sum

c© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 95–107, 2015.
DOI: 10.1007/978-3-319-17509-6 7
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∑

uv∈E

|ϕ(u) − ϕ(v)|.

MinLA has many practical applications in design of VLSI layouts, graph
drawing, or single machine job scheduling ([13,17,18]). It is known to be strongly
NP-hard in its general form [8]. However there are polynomial time algorithms
for some particular graphs such as trees, outerplanar graphs, and certain Halin
graphs [5].

MinLA can be viewed as a particular case of the well-known Quadratic
Assignment Problem (QAP) [14]. Consequently, the standard Koopmans and
Beckmann’s formulation may be used for modeling MinLA.

Let xik be binary variables defined as follows:

xik =
{

1 if the node i is assigned to the location k of the line,
0 otherwise.

Using these variables, the problem consisting of

(Q) : Min
∑

(i,j)∈E

n∑

k=1

n∑

l=1

|k − l|xikxjl

such that
n∑

k=1

xik = 1, ∀ i = 1, ..., n,

n∑

i=1

xik = 1, ∀ k = 1, ..., n,

xik ∈ {0, 1} ∀ i, k = 1, ..., n,

belongs to the class of 0–1 quadratic problems.

Let A be the adjacency matrix of G. The objective function of (Q) may be
written as follows:

n∑

i=1

n∑

j=i+1

n∑

k=1

n∑

l=1

Aij |k − l|xikxjl.

Because of the hardness of finding optimal values to such formulation, lower
bounding and heuristic algorithms are usually applied to get good approxima-
tions ([5,17,18]). We focus in this paper on the family of lower bounding tech-
niques that uses integer linear programming techniques, in which our contribu-
tion may be also classified.

In a sequence of articles, Liu and Vanelli [16], Amaral et al. [2] and Caprara
et al. [4,5] have proposed some integer linear programs. All uses a similar kind of
variables called “distance variables”. For any couple (i, j), a distance variable
Dij (between i and j) is defined as follows

Dij =
n∑

k=1

n∑

l=1

|k − l|xikxjl, ∀ 1 ≤ i < j ≤ n. (1)
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Note that, for all fixed locations k0 and l0, taking xik0 = 1 and xjl0 = 1
implies Dij = |k0 − l0|. Thus, Dij represents the distance between entities i and
j, which depends on their respective locations on the line.
With these variables, (Q) becomes:

(LPD) : Min
n∑

i=1

n∑

j=i+1

AijDij (2)

such that
n∑

i=1

xik = 1, ∀ i = 1, ..., n, (3)

n∑

k=1

xik = 1, ∀ k = 1, ..., n, (4)

Dij ≥ |k − l|(xik + xjl − 1), ∀ i, j, k, l = 1, ..., n, i < j, k �= l, (5)
xik ∈ {0, 1}, ∀ i, k = 1, ..., n, (6)

Dij ≥ 0, ∀ i, j = 1, ..., n, i �= j. (7)

The drawback of this formulation is that its linear relaxation admits the
trivial solution xik = 1/n for all i, k and Dij = 0 for all (i, j) ∈ E, yielding
a lower bound of zero. For this reason, it is necessary to analyze the polytope
corresponding to the convex hull of the feasible integer points in order to derive
additional valid inequalities. This kind of studies have been performed in [2,5,16].

Caprara et al. [6], as well as Amaral [1] and Gueye et al. [9] have reformu-
lated a closed problem, called the Single Ray Facility Layout Problem, using the
concept of “betweeness variables”. A betweeness variable tilj is defined as a
binary variable that is equal to 1 if and only if the entity l is located between the
entities i and j. Adding suitable cuts for the polytope induced by these types of
variables lead to very good lower bounds for the minimum linear arrangement
problem.

The goal of this paper is to propose a new integer linear formulation using
O(n2) variables. We give some valid inequalities and equalities of the associated
polytope. Some of them exploit a partitioning process of the graph G, and may
be applied, on minor changes, for the distance variables formulation. We test
our method with some instances of the matrix market library1 [3].

The structure of the paper is as follows. In Sect. 2, the new formulation is
given. In Sects. 3 and 4 valid constraints. They are derived from a lifting process
as well as the property of the node degrees of G. To make the formulation
stronger, new type of cuts, called partitioning cuts, and cutting planes algo-
rithms are introduced in Sect. 5. The computational experiments are reported in
Sect. 6 and the last Section includes some conclusions.

2 A Linear Formulation with O(n2) Variables

Let us consider the following adjacency variables

Fkl :=
n∑

i=1

n∑

j=1

Aijxikxjl ∈ {0, 1}. (8)

1 http://math.nist.gov/MatrixMarket/.

http://math.nist.gov/MatrixMarket/
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Remark 1. We note that Fkl is equal to 1 if the two entities located in k and l
are linked by an edge in G, and 0 otherwise. As a consequence, one may see that
the graph whose the adjacency matrix is represented by F = {Fkl} is isomorphic
to G.

If we apply this definition on (Q), the formulation becomes:

(LPF ) : Min
n∑

k=1

n∑

l=k+1

|k − l|Fkl (9)

such that
n∑

i=1

xik = 1, ∀ i = 1, ..., n, (10)

n∑

k=1

xik = 1, ∀ k = 1, ..., n, (11)

Fkl ≥ Aij(xik + xjl − 1), ∀ i, j, k, l = 1, ..., n, k < l, (12)
xik ∈ {0, 1}, ∀ i, k = 1, ..., n, (13)

Fkl ≥ 0, ∀ k, l = 1, ..., n, k < l. (14)

Because of the definition of F , one may see that we transform the initial
problem in a new one that consists in finding an optimal isomorphic graph for
G. For any feasible solution, we can easily verify that the constraints (12) imply
that Fkl is greater than Aij . Since we are minimizing and because Fkl ≥ 0, Fkl

will be precisely equal to 1 if i and j are adjacent in G (i.e. Aij = 1) and 0
otherwise.

Our linear model has O(n2) variables; but there are two similar drawbacks
as for the distance variables formulation. In one hand, the formulation has a
zero bound obtained by taking xik = 1

n and Fkl = 0. On the other hand, there
are O(n4) number of constraints (12) that should be reduced. In the Sect. 3,
we replace the constraints (12) by O(n3) equivalent ones. We introduce subse-
quently, in Sect. 4, some valid equalities related to the node degrees of G. The
Sect. 5 deals with a new family of cuts based on a partitioning of the graph G.

3 Lifting Valid Inequalities

In order to reduce the number of constraints, we present the following theorem that
shows how we can produce O(n3) inequalities equivalent to the constraints (12).

Theorem 1. Let k, l, i0 ∈ {1, 2, · · · , n}. The following inequalities are valid for
(LPF ):

Fkl ≥
n∑

j=1

Ai0jxjl +
n∑

k′=1
k′ �=k

αk′xi0k′ , (15)

where αk′ := min(Ai′j − Ai0j), such that i′ �= i0, j and j �= i0 and k′ �= k.
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Proof. Let us consider the subdomain where xi0,k′ = 0 for all k′ �= k, implying
that xi0,k = 1.

Taking into account the definition of F (see (8)), it follows that, for any l

Fkl ≥
n∑

j=1

Ai0jxjl.

By using lifting techniques, assuming that xi0,k′ = 1, we can find for any
k′ �= k the best coefficient, αk′ , for which

Fkl ≥
n∑

j=1

Ai0jxjl + αk′ .

The corresponding value is given by: αk′ = min(Ai′j − Ai0j) such that i′ �=
i0, j and j �= i0 and k′ �= k.
We obtain the valid inequalities by repeating the same lifting procedure for all
k′ �= k. �

Replacing the constraints (12) by (15) yields an equivalent formulation while
reducing the constraint complexity by a factor n (i.e., O(n3) instead of O(n4)).
In the next section, we present some additional sets of valid equalities that
strengthen our formulation.

4 Degree Valid Equalities

According to the definition of Fkl, we note that

n∑

l=1

Fkl

is equal to the degree of any node having the label k. Since the sum of the degree
of a simple graph with |E| = m edges is 2m we have the following valid equalities.

Theorem 2. We have
n∑

k=1

n∑

l=1

Fkl = 2m,

where m is the number of edges of the simple graph G. �

A stronger version of these inequalities is given through the following theorem.

Theorem 3. For any connected graph G, the following equalities are valid

n∑

k=1

Fkl =
n∑

j=1

(degree of node j) xjl, l ∈ {1, · · · , n}. (16)
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Proof. For any value of l, we have

n∑

k=1

Fkl =
n∑

i=1

n∑

j=1

Aijxjl =
n∑

j=1

n∑

i=1

Aijxjl =
n∑

j=1

xjl

(
n∑

i=1

Aij

)

Since the degree of the node (j) is equal to
n∑

i=1

Aij , consequently,

n∑

k=1

Fkl =
n∑

j=1

(degree of node j) xjl,

where l belongs to {1, · · · , n}. �

5 Partitioning Cuts

We present in this section the partitioning cuts based on the definition of Fkl and
on the Remark 1. To properly define these cuts, we need to use weighted graphs.

So, let GA be the completed weighted graph defines in the node set
V = {1, 2, ..., n} of G, and where each edge (k, l), with 1 ≤ k < l ≤ n, is valuated
by Akl, the element (k, l) of the adjacency matrix A of G. Let F = {Fkl}1≤k,l≤n

be a square symmetric matrix whose each element corresponds to a value of the
variable Fkl, and D(LPF ) be the set containing all feasible binary matrices F
for LPF . Remark that each element of D(LPF ) derived from a permutation of
lines and columns of the adjacency matrix A. The permutation being indicated
by the binary variables xik. For any element F of D(LPF ), the simple complete
weighted graph where the node set is V , and each edge (k, l) are weighted by
the value Fkl is noticed GF . Because of the Remark 1, one may see that any
quantitative property verified by GA must be also verified by GF . For instance,
the optimal value of any graph partitioning problem on GA must be the
same than in GF .

For a given p, a node partition of GA in p subsets V1, V2,...,Vp, of cardinality
n1, n2,...,np is such that:

– Vi ∩ Vj = ∅, ∀ i, j ∈ {1, 2, ..., p}, i �= j (i.e. the sets are disjoints),
– V1 ∪ V2 ∪ ... ∪ Vp = V ,
– |Vi| = ni ∀ i ∈ {1, 2, ..., p}.

The cut set (or multicut), corresponding to the node partition, is defined as
the set of weighted edges whose the nodes belongs to two different subsets. It
is noticed (V1, V2, ..., Vp). The capacity of the cut (V1, V2, ..., Vp) is the sum of
its edge weights. It will be noticed cA(V1, V2, ..., Vp). The graph partitioning
problem consists in finding a node partition minimizing cA(V1, V2, ..., Vp). Sev-
eral researchers have studied and developped good heuristics or exact methods
to solve this problem. The special case p = 2 corresponds to the well-known
graph bipartitioning problem.
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Remark that since A is the adjacency matrix of G, cA(V1, V2, ..., Vp) may be
also written as: ∑

(k,l)∈(V1,V2,...,Vp)

Akl = cA(V1, V2, ..., Vp).

Since for any F ∈ D(LPF ), all GA properties must be respected by GF , we
have the following lemma.

Lemma 1. Let p be any integer number, and V1,...,Vp an optimal partition of
GA in p subsets of sizes n1, n2,...,np. For any partition (W1,W2, ...,Wp) in p
subsets of sizes n1, n2,...,np we necessary have:

cF (W1,W2, ...,Wp) =
∑

(k,l)∈(W1,W2,...,Wp)

Fkl ≥ cA(V1, V2, ..., Vp) .

�

The lemma gives a necessary condition for a F to be feasible, in particular
optimal. As a consequence, given F kl (1 ≤ k < l ≤ n) an optimal solution of the
linear relaxation of LPF , if, for a partition W1,W2, ...,Wp, we have

cF (W1,W2, ...,Wp) < cA(V1, V2, ..., Vp)

then, ∑

(k,l)∈(W1,W2,...,Wp)

Fkl ≥ cA(V1, V2, ..., Vp),

defines a cut that may be added on the formulation.

5.1 Separation Problem

To implement such a type of cuts, we need to solve the corresponding separa-
tion problem. Given an optimal solution F kl (1 ≤ k < l ≤ n) of the linear
relaxation, it consists in finding an optimal partition of GF giving the value
cF (W1,W2, ...,Wp). We also need to know cA(V1, V2, ..., Vp). Each value requires
to solve a graph partitioning problem, the first one in GF , and the second one
in GA. Unfortunately, the graph partitioning problem is NP-hard and therefore
finding an optimal solution is likely to be a difficult task. However, the problem
has been intensively studied. It is currently possible to derive quickly some good
lower bounds of the optimal value, using semidefinite programming or lineariza-
tion techniques. Similarly, many metaheuristic schemes such as the ones used in
the software Chaco [3] allow to find good upper bounds. Fortunately, these lower
and upper bounds are already sufficient for our purposes as explained below.

If we notice cA(V1, V2, ..., Vp) a lower bound of the optimal value cA(V1, V2, ...,
Vp), and W 1,W 2, ...,W p the best partition of GF found by any metaheuristic
scheme, we also have

∑

(k,l)∈(W 1,W 2,...,Wp)

Fkl ≥ cA(V1, V2, ..., Vp) ≥ cA(V1, V2, ..., Vp)
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Thus, if cF (W 1,W 2, ...,W p) < cA(V1, V2, ..., Vp), then the corresponding cut
can be added on the formulation.

5.2 Cutting Planes Algorithm

We can then deduce the following cutting plane Algorithm 1.

Algorithm 1. Level p Partitioning Cutting Plane Algorithm.

1 cut : global boolean variables that indicates if some cuts have been found2 p :
fixed number of partitions;

3 cut = false;
4 for all possible cardinalities n1, n2, ..., np of the p subsets do

5 Solve the linear relaxation of (LPF ) to obtain the values F kl ;
6 Using any metaheuristic, solve the graph partitioning problem in GF to

obtain (W 1,W 2, ...,W p) ;

7 if cF (W 1,W 2, ...,W p) < cA(V1, V2, ..., Vp) then
8 add

∑

(k,l)∈(W1,W2,...,Wp)

Fkl ≥ cA(V1, V2, ..., Vp);

9 cut = true ;
10

11

The Level p Partitioning Cutting Plane Algorithm can be then embedded in a
loop on p as described in the Global Algorithm 2. In this algorithm, for different
values of p starting from 2 until a maximal values, some cuts are generated. And
as long as some cuts are found the entire process is restarted.

Algorithm 2. Global Algorithm.

1 cut = true ;
2 pmax : maximum value for p ;
3 while cut == true do
4 for p = 2, ..., pmax do
5 Level p Partitioning Cutting Plane Algorithm;
6

7

In the Algorithm 1, it may be observed that the number of iterations of the
loop grows polynomially with p. Indeed, p = 2 implies O(n) iterations, p = 3
implies O(n2) and in general we have O(np−1) iterations.

Furthermore, the values cA(V1, V2, ..., Vp) used in the Algorithm 1 are the
lower bounds of the graph partitioning problem on the graph GA. For all p ∈
{1, 2, ..., pmax}, and all possible cardinalities of the subsets V1, V2, ..., Vp, these
values may be precomputed one time before the global algorithm. We show
in the Subsect. 5.3 how to obtain these bounds. At the opposed, deriving cF (W 1,
W 2, ...,W p), makes necessary to run, at each iteration of the Algorithm 1, a
metaheuristic scheme.
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5.3 Solving the Graph Partitioning Problem

The graph partitioning problems that give cA(V1, V2, ..., Vp) can be modeled
using a distance variables formulation.

Let us recall that we want to find a partition of the node set of GA in p
subsets V1, V2,...,Vp of size n1, n2,...,np, in such a way that the sum of the edge
weight with extremities in two different partitions is minimized.

Let us consider the binary variables

yik =
{

1 if the node i of G is put in the partition k,
0 otherwise.

where i ∈ {1, 2, ..., n} and k ∈ {1, 2, ..., p}.

For any k, l ∈ {1, 2, ..., p} let δkl be equal to 1 if k �= l and 0 otherwise.

The graph partitioning problem can be formulated as follows:

Min
n∑

i=1

p∑

k=1

n∑

j=i+1

p∑

l=1

Aijδklyikyjl (17)

such that
n∑

i=1

yik = nk, ∀ k = 1, ..., p, (18)

n∑

k=1

yik = 1, ∀ i = 1, ..., n, (19)

yik ∈ {0, 1}, ∀ i = 1, ..., n; k = 1, ..., p. (20)

As for the minimum linear arrangement problem, this is also a variant of a
Quadratic Assignment Problem. The objective function represents the number
of edges (i, j) with endpoints in two differents partitions (k and l). The first
constraints determines the size of each partition, and the second one imposes
that each node must be in one and only one partition.

Let us define the distance variables as follows:

Dij =
p∑

k=1

p∑

l=1

δklxikxjl, ∀ 1 ≤ i < j ≤ n. (21)

It can be seen that, for all known locations k0 and l0, taking yik0 = 1 and
yjl0 = 1 implies Dij = δk0l0 which in turn will be equal to 1 if k0 �= l0 and 0
otherwise. In other words, Dij is 1 if and only if i and j are assigned to two
different partitions, or similarly if (i, j) is cut by the partition.

According to Deza and Laurent [7], the vector D = {Dij}1≤i<j≤n corre-
sponds to the definition of a multicut. It is known that multicuts define a
distance on the node set of G, and as a particular consequence respect the tri-
angular inequalities. Indeed, it is easy to see that for any nodes i, j, h with
1 ≤ i < j < h ≤ n
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Dij ≤ Dih + Djh,

since if Dij = 1 it means that i and j are in two different partitions, implying that:

– either h are in the partition of i with Djh = 1,
– or h is in the partition of j with Dih = 1,
– or h is nor in the partition of i, nor in the partition of j with Djh = Dih = 1.

This leads to the following lemma.

Theorem 4. Let i, j, h satisfy 1 ≤ i < j < h ≤ n. We have the following
triangular inequalities:

Dij ≤ Dih + Djh, (22)
Dih ≤ Dij + Djh, (23)
Djh ≤ Dij + Dih. (24)

In addition to the triangular inequalities, we can be added the following one
that exploit for each i the sum of the distance.

Theorem 5. Let δk =
p∑

l=1
l �=k

nl, ∀ k = 1, 2, ..., n. The following equalities is verified:

n∑

j=1

Dij =
p∑

k=1

δkyik,∀ i = 1, 2, ..., n . (25)

Proof. We know that Dij =
p∑

k=1

p∑

l=1

δklyikyjl,∀ i, j..

Thus
n∑

j=1

Dij =
p∑

k=1

[
p∑

l=1

δkl
n∑

j=1

xjl

]

yik. It follows with constraint (19) that

n∑

j=1

Dij =
p∑

k=1

[
p∑

l=1

δklnl

]

yik =
n∑

k=1

δkyik.

�

Using Theorems 4 and 5 we have the following linear program.

(LPGP ) : Min
n∑

i=1

n∑

j=i+1

AijDij

such that (18)–(20), (22)–(25)

A closed formulation has been studied by Lisser and Rendl [15] with the
difference that the set of constraints (25) do not appear in the corresponding
paper.
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To compute cA(V1, V2, ..., Vp), for each number of partitions and each cardi-
nalities of the subsets, somes problems similar to (LPGP ) are generated at the
beginning of the global algorithm. Then, for each, we solve the linear relaxation
in which the O(n) ((18), (19), (25)) constraints are introduced directly while the
O(n3) triangular inequalities ((22)–(24)) are generated iteratively by a cutting
plane algorithm.

6 Numerical Experiments

The goal of this Section is to evaluate the lower bound quality corresponding to
the linear relaxation of (LPF ) strengthened with, degree valid equalities
(16), and partitioning cuts. We note LB this bound. The lifting inequalities
are necessary to reach a feasible optimal integer solution since they make the
formulation (LPF ) equivalent to (Q). But our numerical experiments show that
they play a minor role in the quality of the lower bound. For this reason, the
results do not included these inequalities.

We compare our results with the currently published, best known lower
bounds given in Schwarz PhD thesis [18]. We use the benchmark instances that
come from the matrix market library [3]. All experiments are conducted on a
DELL laptop equipped with Intel Core i3 CPU of 2.40 GHz and 3456 MB of
memory. All linear programs are solved with IBM Ilog Cplex 12.5.1. It includes
the programs need for LB as well as for the formulations (LPGP ).

In the global Algorithm 2, one may see, that the number of possible cardi-
nalities, for the subsets of p partitions (p ∈ {2, ..., pmax}) increases with p. Thus,
it may becomes very difficult, or intractable, to consider big value for p. In our
experiments, we limit ourselves to pmax = 3.

To find good heuristic solutions of the graph partitioning problems on the
graphs GF (line 6 of Algorithm 1), we use the free software package Chaco 2.2
[11]. Chaco is an open source code, under license of the Sandia National Labora-
tories, designed to find heuristic solutions of partitioning problems of any num-
ber of partitions, and whatever is the size of each partition. It has been written
in C and applies several heuristic methods. More precisely, we use the multilevel
Kernighan-Lin heuristic of this software. At each iteration, we generate the graph
GF . Then we give it to a Chaco C function that solve the problem and return the
best partition found (W 1,W 2, ...,W p). The results of our computational experi-
ments are summerized in Table 1.

In this table, “Prob” is the name of the problem, d(%) is the density of the
graph G, and LB our lower bound. We distinguish the time to solve the graph
paritioning problems on GA, noticed t(LPGP ), to the time to perform the global
algorithm notices tLB . We indicate in the column LB∗ the best lower bounds of
the litterature, the time to obtain it (tLB∗), and the best upper bounds of the
litterature UB. GapLB (resp. GapLB∗) is the relative deviation from UB of the
bound LB (resp. LB∗).

The best bounds of the litterature are, in terms of gaps, better than ours but
the scheme we propose is able to generate for some instances good bounds faster.
For instance, if we consider the time tLPGP

and tLB , we reach some bounds closed
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Table 1. Numerical results.

Prob n d(%) LB tLPGP tLB LB∗ tLB∗ UB GapLB GapLB∗

bcspwr01.mtx 39 6 76, 5 25, 5 1, 4 106 5, 7 106 28 0

bcspwr02.mtx 49 5 116 203, 5 4 161 14, 9 161 28 0

can24.mtx 24 25 181 0, 8 1, 6 210 3, 3 210 14 0

can61.mtx 61 14 943 919, 4 28, 2 1137 1125, 1 1137 17 0

can62.mtx 62 4 143 685, 4 5, 2 210 49, 6 210 32 0

can73.mtx 73 6 969 4484, 7 8, 8 971 2016, 8 1100 12 12

curtis54.mtx 54 9 296 232, 7 9, 9 454 69, 6 454 35 0

dwt59.mtx 59 6 172, 2 936, 2 9, 5 289 39, 4 289 65 0

dwt66.mtx 66 6 190 1145 3 192 34, 2 192 1 0

dwt72.mtx 72 3 133, 5 2140, 1 19, 2 167 38, 4 167 20 0

ibm32.mtx 32 18 426 6, 2 1, 4 485 1241, 3 485 12 0

will57.mtx 57 8 214 648, 5 3 335 50, 3 335 36 0

to 17% of the optimal value in ibm32 and can61 with a reduced processing time.
The CPU time of the instance ibm32 is particularly short.

Due to the fact that the method to compute the lower bounds of the graph
partitioning problems are independent of the partitioning cuts algorithm, one
may focused only on the time tLB . Since, applying other mathematical program-
ming techniques, such as in the paper of Lisser and Rendl [15], may reduced this
time. So, in the case we consider only the time tLB the computing time appears
even more interesting in comparison to tLB∗ .

7 Conclusion and Perspectives

We have proposed a new formulation based on some variables expressing the
adjacency between locations. This formulation has been strenghthened by valid
inequalities and equalities, in particular by partitioning cuts for which a cutting
plane algorithm have been designed. Notice that the partitioning cuts and the
cutting plane algorithm are not limited to the adjacency variables formulation. It
may be applied similarly to the distances variables to enhance the corresponding
bounds. The numerical results are currently modest with some relative deviations
between 1%, for the better case, to 65%, for the worst one.

As perspectives, it is necessary to decrease the processing time need to solve
the graph partitioning problems on GA. This can be done by a more carefull
analysis of the important graph partitioning problems to solve. Actually for
each value p, all possible partitioning problems with p partitions are generated
and solved. It is also necessary to better described the polytope induced by
the adjacency variables to make our formulation more competitive in terms of
bound quality. Finally, we will also investigate the application of partitioning
cuts to distance variables formulation for closed problems such as the Quadratic
Assignment Problem.
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Abstract. We study the inventory and distribution operations encoun-
tered in oil and petrochemical industry. We show some special cases
for the NP-complete problem, and propose polynomial time solution
methods. We propose two approaches for the main problem. One of them
makes use of the minimum cost flow formulation of the same problem
under some assumptions, and the other one uses Benders Decomposi-
tion. In addition, we propose another problem and its formulation which
involves time-windows for delivery, for which the same approaches can
be applied. However, methodology or the results for the latter problem
are not given.

Keywords: Vessel scheduling · Bender’s decomposition · Minimum cost
network flow

1 Introduction

This study is focused on the demand-supply coordination problem encountered
in petrochemical industry such as oil and gasoline. The cost to produce and
deliver gasoline products to the market consists of three major components: the
transportation cost of crude oil to refiners, the operation cost of refinery process-
ing, and the cost of marketing and distribution. An oil company typically oper-
ates many tens of refineries, with several million barrels of crude oil per day
and several billion dollars on crude transportation per year. As the retail gaso-
line prices continue to rapidly elevate around the world, effectively coordinating
the demand and supply of gasoline products has therefore become even more
crucial to oil companies. Particularly in this study, the company uses its own
and chartered vessels to distribute the gasoline products to discharging/demand
locations. Each discharging location carries its own inventories and serves as a
depot of distribution for the local market. Since vessels are expensive in both
variable and fixed costs, any inefficiency in the supply process could result in a
substantial operating cost. The distribution scheduling problem encountered in
this process is very complicated due to the involvement of heterogeneous vessels
(e.g., in terms of their loading capacities, discharging and berthing times, and
operating costs) and the fact that each vessel has multi-level of loading capacities
c© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 108–125, 2015.
DOI: 10.1007/978-3-319-17509-6 8
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such that a load beyond the normal/base capacity will result in an extra overload
cost. Practical issues faced include which vessel should deliver to which depot
in which time period, whether a particular vessel trip should carry an extra
load and by how much, and what should be the ending inventory at a depot
in a particular period, etc. Due to high distribution cost of gasoline products,
an effectively distribution schedule could help the company to further improve
the profit of its supply chain and to strengthen its competitive advantage in the
market place.

Our goal is to minimize the operating costs related to shipping and handling
of goods. The fleet size is not fixed, nor an initial amount is set, so one of the tasks
we have at hand is to determine the number of vessels that will be used within
the planning horizon. Shipping costs can be divided into two categories:(1) The
fixed cost related to either purchase or lease of a vessel, (2) the overloading cost
which is incurred if the vessels carry above a certain capacity. There are two
more costs that we need to watch out for. Each shipment made to a port may
incur a holding or penalty cost based on the demand. If the demand is not met
on time, it cannot be satisfied at a later time period, and therefore we need to
pay penalty for each unit. Also, if the port is forced to hold some inventory, then
a holding cost is charged. In addition to all these cost factors, we also need to
consider the fact that each vessel is available for a certain amount of time within
a period, and therefore even if a vessel has enough capacity, it may not have
enough time to visit all the ports we desire.

Optimally solving distribution operations scheduling problem is not an easy
task. Previous work related to industrial shipping varies a lot. Here, we focus
on the existing results that are closely related to our work. A large summary
of works related to various types of vessel scheduling and routing problem can
be found in the literature survey by [8]. Two more recent surveys can be found
more specifically in the area of combined inventory management and routing [1]
and on fleet composition and routing [11]. The most recent literature survey is
by [7], which takes a look at the publications in the last decade, and list possible
research areas that could be pursued in this area.

Reference [16] presents an algorithm which combines the linear programming
technique with that of dynamic programming to improve the solution to linear
model for fleet planning. Even though their approach is similar, the problem
they are dealing with requires demand satisfaction and initial fleet is already
given, and the decision is to whether add new vessels to the existing fleet or not.

Reference [5] presented a better formulation to the original fleet deployment
problem proposed by [14]. In this formulation, just like we do, there is a single
loading port, finite number of customer ports, and a finite planning horizon.
However, they require the demand to be met, and the fleet size is constant. The
costs incurred are due to routes chosen, shipping cargoes, and unloading time.
They show that this formulation is better for computational efficiency.

Reference [4] present a study regarding fleet size and design of optimal liner
routes for a container shipping company. The problem is solved by generating a
number of candidate routes for the different ships first, and then, the problem
is formulated and solved as a linear programming model, where the columns
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represent the candidate routes. They extend this model to a mixed integer pro-
gramming model that also considers investment alternatives to expanding fleet
capacity. Reference [2] also present a model for determining the optimal number
of ships and fleet deployment plan.

On the other hand, [13] were the first ones to propose dynamic programming
application to ship fleet management. The problem they dealt with was to deter-
mine the sequence in which the currently owned ships should be sold and the
extent to which charter ships should be taken on. They tackle the problem in two
stages. The first stage determines a good priority ordering for selling the ships
regardless of the rate at which charter ships are taken on. The second stage uses
dynamic programming to determine an optimal level of chartering given the pri-
ority replacement order. This first stage priority ordering essentially reduces the
dynamic programming calculation from a problem with as many as states as
number of ships in fleet to a 1 state variable problem which is computationally
manageable by dynamic programming methods. Several authors use benchmark
instances to compare the results of different strategies and heuristics. Reference
[10] define 20 test instances with 12100 nodes for the standard fleet size and mix
vehicle routing problem. Reference [15] deals with trucks that vary in capacity
and age are utilized over space and time to meet customer demand. Operational
decisions (including demand allocation and empty truck repositioning) and tac-
tical decisions (including asset procurements and sales) are explicitly examined
in a linear programming model to determine the optimal fleet size and mix. The
method uses a time-space network, common to fleet-management problems, but
also includes capital cost decisions, wherein assets of different ages carry differ-
ent costs, as is common to replacement analysis problems. A two-phase solu-
tion approach is developed to solve large-scale instances of the problem. Phase I
allocates customer demand among assets through Benders decomposition with
a demand-shifting algorithm assuring feasibility in each subproblem. Phase II
uses the initial bounds and dual variables from Phase I and further improves the
solution convergence through the use of Lagrangian relaxation.

A network optimization approach has been proposed by [3], where they for-
mulate a multi-commodity capacitated distribution-planning problem as a non-
linear mixed integer programming model, and solve it as a generalized assignment
problem within an algorithm for the overall distribution/routing problem based
on a Bender’s type decomposition.

Reference [12] proposes an approach to a bi-directional flow problem where
each iteration starts with a given planning horizon, which is then partitioned
into three planning intervals, where each interval consists of consecutive time
periods in the given planning horizon. Afterwards, some constraint relaxations
are applied to the problem in which all the forward demand and all the backward
demand of the time periods in the third planning interval are consolidated into
a single forward demand and a single backward demand, which is an idea we use
in one of our approaches.

Reference [6] focuses on minimizing total tardiness, rather than the operating
costs, and the routes for vessels are observed under three different cases, one of
them being arbitrary, just like in our problem. Later on, they talk about the
other problems in the literature and how their approach is related to them.
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2 Problem Definition

This paper, brings together some of the ideas that were proposed in the litera-
ture before. We are given a fleet |V | of container vessels, v ∈ V that distributes
the goods from a main distribution center to a number of customer ports over a
|T |-period planning horizon. Each vessel has two loading capacities: the regular
loading capacity u0

v, and the maximum loading capacity umax
v so that carrying

a load beyond u0
v will impose an over loading charge g0v/unit and carrying a

load beyond umax
v violates the feasibility. In addition to this limitation, for every

vessel there is total available time τv which is used up by the berthing time bv,p
at ports which vary depending on vessel type. There are |p| customer ports on
the network, each port p ∈ P has a demand, dp,t ≥ 0 in period t ∈ T. For
every port, unsatisfied demand are penalized at pp,t/unit based on the unsatis-
fied demand and no backlogging is allowed. On the other hand, end of period
inventory incurs a holding cost of hn/unit. Let cfv denote the fixed cost if the
vessel is being dispatched in a period. The problem is finding a feasible vessel
dispatching schedule to minimize the total shortage and overage penalty plus the
vessel overloading and fixed cost. The minimum cost flow network formulation
proposed guarantees optimality when the number of vessels dispatched in every
period is known. To define our problem more formally, we define the following
set of variables:

– Sp,t ∈ Z+: amount of shortage at port p in period t
– Qv,p,t ∈ Z+: amount of supply delivered to port p in period t via vessel v’s

regular capacity
– Ov,p,t ∈ Z+: amount of supply delivered to port p in period t via vessel v’s

overloading capacity
– Ip,t ∈ Z+: ending inventory at port p in period t
– Yv,p,t ∈ {0, 1}: Yv,n,t = 1 if vessel v delivers to port p in period t
– Zv,t ∈ {0, 1}: Zv,t = 1 if vessel v is dispatched in period t.

Based on this, the constraints to the problem will include the following:
A vessel must not be carrying anything if it’s not dispatched, nor visiting

ports:

Qv,p,t + Ov,p,t ≤ umax
v Yv,p,t ∀ v ∈ V, p ∈ P, t ∈ T. (1a)

Yv,p,t ≤ Zv,t ∀ v ∈ V, p ∈ P, t ∈ T. (1b)

Vessels dispatched must not be used over their time and regular/maximum
capacity:

∑

p∈P

bv,pYv,p,t ≤ τv ∀ v ∈ V, t ∈ T. (2a)

∑

p∈P

Qv,p,t ≤ u0
v ∀ v ∈ V, t ∈ T. (2b)

∑

p∈P

(Qv,p,t + Ov,p,t) ≤ umax
v ∀ v ∈ V, t ∈ T. (2c)
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The last group of constraints is to help to formulate our objective, which is
a compositions of all expenses (penalties, etc.).

Vessel dispatching costs:

cD =
∑

v∈V

∑

t∈T

cfvZv,t. (3a)

Early arrival penalties:

cH =
∑

p∈P

∑

t∈T

hpIp,t. (3b)

Unsatisfied demands’ penalties:

cU =
∑

p∈P

∑

t∈T

pp,tSp,t. (3c)

Overloading penalties:

cO =
∑

v∈V

∑

p∈P

∑

t∈T

g0vOv,p,t. (3d)

Then our problem is to minimize cD + cH + cU + cO, subject to the constraints
(1)–(3) and the sign and type restrictions in the definitions of the decision
variables.

If the dispatching information is already available, i.e. |V1| vessels for t = 1,
|V2| for t = 2, . . . , |VT | for t=T, then there becomes no need for the binary
variables. In addition, define new variables, xv,k,n,t and rv,k,n,t, which are the
normal and over flows shipped by vessel v dispatched in period k for port n to
satisfy the demand on period t. Based on this definition, the following can be
established:

Qv,p,t =
T∑

k=t

xv,t,p,k ∀ v ∈ V, p ∈ P, t ∈ T. (4a)

Ov,p,t =
T∑

k=t

rv,t,p,k ∀ v ∈ V, p ∈ P, t ∈ T. (4b)

Sp,t = dp,t −
∑

k∈T

∑

v∈Vk

(xv,k,p,t + rv,k,p,t) ∀ p ∈ P, t ∈ T. (4c)

Ip,t =
∑

k∈T

T∑

w=t+1

∑

v∈Vk

(xv,k,p,w + rv,k,p,w) ∀ p ∈ P, t ∈ T. (4d)

Based on the above assumptions and definitions, we get the following model.
Objective function is the same except that the last part is now a constant
based on vessel dispatching information, i.e. Zv,t values are known. Constraints
(5b) and (5c) assure that normal and over capacity are not exceeded, where as
constraint (5d) prevents shipments for a specific demand to be more than the
demand itself, therefore making the first part of the objective function always
nonnegative.
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min
∑

p∈P

∑

t∈T

pp,t(dp,t −
T∑

k=1

∑

v∈Vk

(xv,k,p,t + rv,k,p,t))

+
∑

v∈V

∑

p∈P

∑

t∈T

g0v

T∑

k=t

rv,t,p,k +
∑

v∈V

∑

t∈T

cfvZv,t

+
∑

p∈P

∑

t∈T

hp

t∑

k=1

T∑

w=t+1

∑

v∈Vk

(xv,k,p,w + rv,k,p,w). (5a)

s.t.
∑

p∈P

bv,pYv,p,t ≤ τv ∀ v ∈ V, t ∈ T. (5b)

T∑

k=t

∑

n∈N

(xv,t,n,k + rv,t,n,k) ≤ umax
v ∀ v ∈ V, t ∈ T. (5c)

T∑

k=t

xv,t,n,k + rv,t,n,k ≤ umax
v Yv,n,t ∀ v ∈ V, p ∈ P, t ∈ T. (5d)

∑

n∈N

T∑

k=t

xv,t,n,k ≤ u0
v ∀ v ∈ V, t ∈ T. (5e)

t∑

k=1

∑

v∈Vk

(xv,k,n,t + rv,k,n,t) ∀ p ∈ P, t ∈ T. (5f)

Yv,n,t ≤ Zv,t ∀ v ∈ V, p ∈ P, t ∈ T. (5g)

Lemma 21. The above problem can be reformulated without the berthing time
constraint and solved as a minimum cost flow problem by assuming the knowledge
of the number of vessels dispatched in each time period.

Proof. First, we construct a dummy source node S, and a dummy sink node F .
Associate to each vessel v ∈ Vk, 2 nodes (v, k)P and (v, k)O, one for normal and
other for over capacity. These nodes are connected to the source node with 0 and
g0v costs, a lower bound of 0 and an upper bound u0

v and umax
v − u0

v respectively.
Add another set of |P | nodes (pp) for case of shortage at each port with 0 costs, 0
lower bounds and no upper bounds. Next, take care of the ports by adding |P |∗|T |
nodes denoted (p, t) for each port n at every period t. The arcs between nodes
corresponding to vessels and ports incur a holding cost of hp(t − k), has a lower
bound of 0 and no upper bound. Also, there will be arcs between shortage nodes,
(pp), and ports, (p, t), where the shortage costs pp,t will be charged. Finally, add
arcs between ports and the sink, with a lower and upper bound of dp,t and no
cost. This network will have 2|V ||T | + |P | + |P ||T | many nodes, and |V ||P ||T 2| +
|P 2| many arcs, making minimum cost flow approach practical for problems of
reasonable size. An example network is shown in Fig. 1. �

Lemma 22. The objective function values and constraints for both problems
above are the same, assuming we guessed the right number of vessels.
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Fig. 1. An example of the network for |V1| = 2, |V2| = 1, |V3| = 2, |N | = 3, and |T | = 3.

Proof. First of all, the fixed cost due to vessels for both problems will be the
same. Next, assume x∗

v,k,n,t and r∗
v,k,n,t are the optimal flow vectors correspond-

ing to the minimum cost flow problem. Then, using the equalities corresponding
the variables of two problems, the objective function value of the original prob-
lem becomes:

∑

p∈P

∑

t∈T

pp,t(dp,t −
∑

k∈T

∑

v∈Vk

(xv,k,p,t + rv,k,p,t))

+
∑

v∈V

∑

p∈P

∑

t∈T

g0v

T∑

k=t

rv,t,p,k +
∑

v∈V

∑

t∈T

cfvZv,t

+
∑

p∈P

∑

t∈T

hp

∑

k∈T

T∑

w=t+1

∑

v∈Vk

(xv,k,p,w + rv,k,p,w)

=
∑

p∈P

∑

t∈T

pp,tS
∗
p,t +

∑

v∈V

∑

p∈P

∑

t∈T

g0vO
∗
v,k,p,t

+
∑

v∈V

∑

t∈T

cfvZ∗
v,t +

∑

p∈P

∑

t∈T

hpI
∗
p,t

(6)
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The first 2 lines of this equality (6) and the objective function of the minimum
cost flow are exactly the same, which only leaves us with the inventory part.
The w index is for shipments that are on a future date than current period t,
and the k index is taking into account all shipments that have been made up to
period t. Therefore, a shipment made on period k for period t will appear in the
summation (t−k) many times, allowing us to replace index w with t, remove the
summation regarding w, and charge the holding cost as many times as necessary.
This shows that both objective function values are the same.

As far as the constraints are concerned, first realize that in the original prob-
lem, (2a) is no longer required while berthing times are large enough. Similarly,
(1a) and (1b) were associated with the fact that dispatching information was not
available, so now, they could be dropped as well. Equation (2b) in the original
problem is the same constraint as (5d) in the reduced problem, and they are
both concerned with normal capacity of a vessel. Equations (5c) and (5d) of the
reduced problem, added together, imply the same restriction on maximum vessel
capacity as (2c) of the original problem. On the other hand, the flow balance
constraint in the original problem is taken care of by two means: (1) the new
index k for the variables, tells us when shipment was made, so we now whether
a shipment is held at inventory or used immediately, (2) in the reduced problem,
shipment for a specific demand will not be more than the demand itself, there-
fore shortage never becomes negative according to the relation between Sn,t and
xv,k,n,t, rv,k,n,t. �

3 Special Cases

Figure 2 is a list of special cases deduced from the general problem, for which we
propose efficient solution approaches. Case 7 makes use of the method proposed
by [9], used for solving knapsack problems with divisible item sizes.

Based on our minimum cost network flow approach, we propose the following
two heuristics for no berthing time case:

3.1 Backward Heuristic

1. Divide the planning horizon into two groups, primary and secondary, for each
port, the new demand is equal to sum of the individual demands in each group,
holding cost is the minimum and penalty cost is the maximum of individual
penalties.

2. Start with |P |∗ |T | vessels in that group in total, solve the minimum cost flow
problem iterating through all vessel dispatching combinations available for a
group.

3. Once the optimal number of vessels required for each group are determined,
repeat the procedure of dividing into groups and solving as a minimum cost
flow problem for the individual groups. Demand belonging to ports in the
other individual group is also added to the demand of the ports in the sec-
ondary period of the group under consideration.
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Fig. 2. Special cases deduced from the general problem under different assumptions.

4. Once the primary group has only 1 period remaining, optimal number of
vessels have been determined for that group, start over.

3.2 Greedy Heuristic

1. Start with no vessels assigned to each period.
2. Add a vessel to any period and solve the problem. Remove the vessel, and

add to another period, and solve again. Once the best vessel addition has
been determined, move on to next vessel addition.

3. Keep determining the best vessel to add until objective function no longer
improves.
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Going back to the original problem with berthing constraints, we propose modified
greedy heuristics and a decomposition based exact method. We first introduce
the algorithms and then compare them with state of the are integer programming
solver, XpressMP.

3.3 Improved Greedy Heuristic

1. Start with no vessels assigned to each period.
2. For each vessel type, compute maximal subsets of ports such that no further

port can be added to a set due to berthing time constraint.
3. For each vessel type, in every period, sort the subset of ports in decreasing

order based on
∑

n∈Maximalv
dn,tpn,t

4. Next, add any vessel to any period allowing it to only serve the top ranked
subset of ports and solve the problem. Try different vessel types, for different
periods in the same manner. Determine the best vessel to add to which period.

5. Once a vessel assignment has been determined, update remaining demand
and sort subsets of ports accordingly.

6. Keep determining the best vessel to add until objective function no longer
improves.

3.4 Bender’s Type Decomposition Approach

1. Choose a feasible assignment of ports to a vessel to start with.
2. Solve the master problem to obtain a new objective function value and new

port assignments to other vessels.
3. Keeping port assignments fixed, solve the dual problem.
4. STOP, if master and dual objective values are close enough, otherwise go

back to the master problem.

4 Computational Results

With the minimum cost flow network formulation proposed, one question that
arose was whether it was worth Table 1, the minimum cost flow problem is not
submodular. Case 1 and Case 2 are random dispatches, where as Case Int
refers to the scenario where minimum of number of vessels dispatched in each
latter case is used, and Case Union refers to of Case 1 and Case 2 are random
dispatches, where as Case Int refers to the scenario, where minimum of number
of vessels dispatched in each latter case is used, and Case Union refers to the
scenario, where maximum of number of vessels dispatched in each latter case is
used.

Backward and Greedy Heuristic both performed well, however, as can be seen
in Table 2, Backward Heuristic always takes shorter, where as Greedy Heuristic
performs better by a slight margin.

However, it must be kept in mind that Table 2 reflects results for the version
of the problem with no berthing time constraint. Improved Greedy Heuristic
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Table 1. |N | = 3, |T | = 4, vessel type same, number of vessels in each period shown,
as well as the optimal objective function value for each case, indicating that even a
much simpler version of the original problem is not submodular.

Case 1 Obj. func Case 2 Obj. func Case Obj. func Case Obj. func Comp.

int union

(3,2,2) 170 (2,1,3) 390 (2,1,2) 540 (3,2,3) 50 Lower

(1,2,1) 840 (2,1,3) 390 (1,1,1) 1140 (2,2,3) 90 Equal

(2,2,1) 580 (2,1,3) 390 (2,1,1) 880 (2,2,3) 90 Equal

(1,2,3) 350 (2,1,3) 390 (1,1,3) 650 (2,2,3) 90 Equal

(1,3,2) 390 (2,1,3) 390 (1,1,2) 800 (2,3,3) 50 Lower

Table 2. |N | = 10, |T | = 10, 3 different vessel types, number of vessels each method
solves for vary for XpressMP, Backward and Greedy as 10, 100, 1 in respect. Runs are
terminated after 2 h or when 0.1 % gap from the best bound is reached.

Time (s) Objective function Gap (%)

Xpress Backward Greedy Xpress Backward Greedy Xpress Backward Greedy

7200 412.50 435.8 7503 7799 7733 1.7384 5.47 4.66

7200 420.40 435.20 8141 8314 8298 2.1557 4.20 4.01

7200 393.30 420.60 8270 8483 8450 0.9988 3.48 3.11

7200 332.30 390.70 7759 7806 7800 0.3519 0.95 0.88

7200 289.90 316.80 7316 7395 7375 0.1414 1.20 0.94

7200 310.30 336.60 8412 8494 8487 3.2309 4.16 4.09

7200 345.2 347.6 8270 8356 8338 3.8278 4.82 4.62

7200 429.50 443.30 7918 8159 8112 1.1641 4.08 3.53

7200 421.8 425.8 7475 7825 7768 1.4574 5.87 5.17

7200 306.70 321.10 7448 7661 7600 2.4489 5.16 4.40

designed to deal with this issue performs a bit slower than the previously men-
tioned heuristics, but gives good bounds for the solution of the original problem
as can be seen in Table 3.

The formulation proposed for Bender’s type approach is computationally
efficient, as can be on Tables 4 and 5. The running time is a bit longer, but we’re
able to get exact solutions.

5 Delivery with Time-Windows

The problem we are interested in is related to the movement of full and empty
containers in between ports. In this study we take the viewpoint of a single
shipping company who delivers full containers from a single source port to a
number of ports.
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Table 3. |N | = 10, |T | = 10, 3 different vessel types, number of vessels each method
solves for vary for XpressMP and Improved Greedy as 10 and 1 in respect. All runs are
terminated after 2 h or when 0.1 % gap from the best bound is reached.

Time (s) Objective function Gap (%)

Xpress I. Greedy Xpress I. Greedy Xpress I. Greedy

7200 593.9 7503 7533 1.74 2.13

7200 582.2 8141 8226 2.16 3.17

7200 635.3 8270 8381 1.00 2.31

7200 678.2 7759 7921 0.35 2.39

7200 668.6 7316 7436 0.14 1.75

7200 594.4 8412 8548 3.23 4.77

7200 649.3 8270 8353 3.83 4.78

7200 667.3 7918 8092 1.16 3.29

7200 641.1 7475 7513 1.46 1.96

7200 662.1 7448 7565 2.45 3.96

Table 4. |N | = 10, |T | = 10, 3 different vessel types, number of vessels each method
solves for vary for XpressMP and Improved Greedy as 10 and 1 in respect. All runs are
terminated after 2 h or when 0.1 % percent gap from the best bound is reached.

Time (s) Objective function Gap (%)

Xpress Decomposition Xpress Decomposition Xpress Decomposition

7200 767.1 7503 7380 1.74 0.10

7200 757.5 8141 7973 2.16 0.10

7200 905.8 8270 8196 1.00 0.10

7200 1291.4 7759 7739 0.35 0.10

7200 1420.4 7316 7313 0.14 0.10

7200 959 8412 8148 3.23 0.10

7200 1183.5 8270 7961 3.83 0.10

7200 907.4 7918 7834 1.16 0.10

7200 1032.8 7475 7373 1.46 0.10

7200 1349.4 7448 7273 2.45 0.10

We assume that these ports can naturally be visited in a given cyclic order,
though not all ships have to stop at each of the ports in this cycle. We also assume
that at each of the ports there is a known demand or surplus of empty containers,
and the ships can use their spare capacity to load these empty containers and
deliver them to the other ports on their route.

We consider a single planning horizon with certain length in which we would
like to optimize the schedule and loading plans for the vessels. In this planning
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Table 5. |N | = 15, |T | = 10, 3 different vessel types, number of vessels each method
solves for vary for XpressMP and Improved Greedy as 10 and 1 in respect. All runs are
terminated after 2 h or when 0.1 % percent gap from the best bound is reached.

Time (s) Objective function Gap (%)

Xpress Decomposition Xpress Decomposition Xpress Decomposition

7200 805 7764 7619 1.98 0.10

7200 777.9 8652 8448 2.46 0.10

7200 990.5 8326 8245 1.07 0.10

7200 1401.1 8001 7978 0.39 0.10

7200 1544.6 7464 7461 0.15 0.10

7200 1015.4 8789 8496 3.43 0.10

7200 1216.9 9423 9026 4.30 0.10

7200 984.8 8128 8035 1.24 0.10

7200 1114.2 7849 7727 1.66 0.10

7200 1413.5 7652 7455 2.67 0.10

cycle, vessels are dispatched from the source port, carrying full and empty con-
tainers, within their capacity, to the other customer ports to satisfy their needs.
Travel time between ports are deterministic, and the deliveries of the full con-
tainers must be made within given fixed time windows, defined uniquely for
every port. If the vessels arrive prior to delivery time window, they must wait
till the window opens, and incurring a waiting cost, where as if the delivery is
made after the time window, a late fee is charged. Once a vessel is at a port and
able to deliver, it remains there for the duration of berthing time associated with
the particular port, and then the vessels can move to their next destination. Any
unsatisfied handling of full containers or empty containers at a customer port
incurs a penalty as well. There is no limitation on how many vessels could visit
a single customer port. In addition to the capacity restrictions of vessels, vessels
only have a fixed amount of time to visit ports and get back to the source port
eventually. Also, the fleet size is not fixed, and we must decide how many vessels
should be dispatched in the considered planning horizon.

5.1 Formulation

Let us denote by V = {1, 2, ..., V } the set of available vessels, by P = {0, 1, ..., P}
the set of ports, 0 being the source, and 1, 2, ..., P being their natural order to get
visited. Let us denote by T = {1, 2, ..., T} the set of time period, where time is
measured in some natural unit, say in days. In other words, our planning horizon
is T days, and all time windows are assumed to be specified as subintervals of
consecutive days within T. In the sequel we shall refer to vessels by v, w, ..., to
ports by p, q, ... and to time units by t.

We assume that each vessel v ∈ V has a capacity Uv, and a fixed cost Cv

incurred if the vessel is dispatched. Travel times between ports p, q ∈ P, p < q are
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deterministic, denoted by Tp,q. Each customer port p ∈ P have a known demand
for full containers, denoted by Fp, as well as demand for empty containers, denoted
by Ep. We assume that Fp ≥ 0 for all ports p ∈ P, while Ep may take both nega-
tive and positive values, where Ep < 0 indicates the presence of a surplus of empty
containers to be taken away. All deliveries made to a customer port p ∈ P expected
to be within a fixed time window, [Ap, Bp] ⊂ T. However vessels may arrive early
or late with respect to the target time window. We assume that vessels berth only
when they load/unload. To simplify our notations, we consider a particular day
the “arrival” day for a vessel at a port if by that day it unloads/loads its cargo.
We assume that the travel time Tp,q includes the berthing time at port q. Accord-
ingly, if a vessel arrives early to a port p ∈ P, a holding cost of CH

p /day/container
is charged for the unloaded cargo, and similarly if a delivery is too late, a penalty
cost of CL

p /day/container is charged. Customer ports may be visited by more than
one vessel, but in case full container demand, or loading/unloading of empty con-
tainers are not totally fulfilled, then costs CF

p /container and CE
p /container are

charged, respectively. Finally, a revenue of Rp is received for satisfied full container
demand at port p ∈ P.

Let us note that since the total demand for full containers is given input
for the considered problem, we get a mathematically equivalent formulation by
simply assuming that Rp = 0 for all ports p ∈ P.

To be able to formulate our model, we need to introduce the following decision
variables:

V ariable group Type Explanation
xv,p v ∈ V p ∈ P {0, 1} xv,p = 1 if vessel v visits port p
yv v ∈ V {0, 1} yv = 1 if vessel v is dispatched
av,p v ∈ V p ∈ P Z+ Number of full containers unloaded from vessel v

at port p
bv,p v ∈ V p ∈ P Z+ Number of empty containers unloaded from

vessel v at port p
cv,p v ∈ V p ∈ P Z+ Number of empty containers loaded by vessel v

at port p
fv,p v ∈ V p ∈ P Z+ Number of full containers on vessel v when

leaving port p
ev,p v ∈ V p ∈ P Z+ Number of empty containers on vessel v when

leaving port p
hv,p v ∈ V p ∈ P Z+ Number of holding days of vessel v at port p due

to early arrival
�v,p v ∈ V p ∈ P Z+ Number of late days of vessel v at port p
tv,p v ∈ V p ∈ P Z+ Arrival day (within T) of vessel v at port p
zFp p ∈ P Z+ Unsatisfied full conatiner demand at port p

zEp p ∈ P Z+ unsatisfied empty container demand/pickup at
port p
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Let us note that the variables describing vessel content, fv,p and ev,p are
defined for all vessels and ports, even if vessel v is not dispatched, or even if it
does not visit port p. We shall make sure that these variables take value 0 for
un-dispatched vessels, and we can view them, for dispatched vessel and unvisited
ports, as the content of a passing by ship.

We can now start describing our model in terms of these decision variables
and parameters. Let us start with a few necessary relations, stemming form the
logical relations these quantities must satisfy.

Un-dispatched vessels cannot visit ports, and no loading or unloading at
unvisited ports:

xv,p ≤ yv ∀ v ∈ V, p ∈ P (7a)
av,p ≤ xv,p ∀ v ∈ V, p ∈ P (7b)
bv,p ≤ xv,p ∀ v ∈ V, p ∈ P (7c)
cv,p ≤ xv,p ∀ v ∈ V, p ∈ P (7d)

Number of containers on board must obey the law of conservation, and cannot
exceed the ship’s capacity:

fv,p = fv,p−1 − av,p ∀ v ∈ V, p ∈ P \ {0} (7e)
ev,p = ev,p−1 − bv,p + cv,p ∀ v ∈ V, p ∈ P \ {0} (7f)

ev,p + fv,p ≤ Uv ∀ v ∈ V, p ∈ P (7g)

Let us note that we defined all decision variables to be nonnegative. Thus, the
above relations imply also that we cannot unload more than what we have on a
ship, and we cannot load more than the ship’s free capacity.

The next group of constraints make sure that we load/unload empty con-
tainers only where there is a demand/surplus:

bv,p = 0 ∀ p ∈ P with Ep ≤ 0, and ∀ v ∈ V (7h)
cv,p = 0 ∀ p ∈ P with Ep ≥ 0, and ∀ v ∈ V (7i)

Finally, we prescribe that container demands are met:

Fp = zFp +
∑

v∈V

av,p ∀ p ∈ P (7j)

Ep =

⎧
⎪⎪⎨

⎪⎪⎩

zEp +
∑

v∈V

bv,p if Ep ≥ 0

−zEp −
∑

v∈V

cv,p if Ep ≤ 0
∀ p ∈ P (7k)

Note that we defined Ep to take both positive (demand) and negative (surplus)
values, and hence we had to formulate the above constraints accordingly.

The next group of constraints will help to get the right values assigned to
the time related decision variables.
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If the same vessel visits two ports, then the arrival times must differ by at
least the travel time between these ports:

tv,p ≥ tv,q + Tq,p + T (xv,p + xv,q − 2) ∀ v ∈ V, p, q ∈ P, q < p (8a)

Note that since T is a maximum time difference in our problem, the last term
makes the above inequality irrelevant, unless vessel v visits both ports p and q.

Ap ≤ hv,p + tv,p + T (1 − xv,p) ∀ v ∈ V, p ∈ P (8b)
Bp ≥ tv,p − �v,p − T (1 − xv,p) ∀ v ∈ V, p ∈ P (8c)

Note that the last term makes the above constraints trivial, unless vessel v visits
port p. Note also that both hv,p and �v,p are limited form below by these con-
straints. This, together with the fact that they will have nonnegative coefficients
in our minimization objective, assures that our objective computes penalties for
the true earliness/lateness.

The last group of constraints is to help to formulate our objective, which is
a compositions of all expenses (penalties, etc.).

Vessel dispatching costs:

cD =
∑

v∈V

Cvyv (9a)

Early and late arrival penalties:

cH =
∑

p∈P

CH
p

∑

v∈V

hv,p(av,p + bv,p) (9b)

cL =
∑

p∈P

CL
p

∑

v∈V

�v,p(av,p + cv,p) (9c)

Unsatisfied demands’ penalties:

cU =
∑

p∈P

CF
p zFp + CE

p zEp (9d)

Then our problem is to minimize cD + cH + cL + cU , subject to the constraints
(7)–(9) and the sign and type restrictions in the definitions of the decision
variables.

Note that constraints (9b) and (9c) are quadratic in terms of our decision
variables. All other constraints are linear.

Note also, that if variables x and y are binary, then the integrality of the other
decision variables follow from the structure of the constraints and the integrality
of the input parameters.

6 Conclusions

In this study, we studied a difficult real life supply chain scheduling problem
encountered in oil and petrochemical industry, which involves production, inven-
tory, and distribution operations, and requires an integrated scheduling to min-
imize the total operation cost. We showed the hardness of this problem, and
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showed that some of its special cases are polynomial time solvable. A minimum
cost flow based heuristic, motivated by the observations from one of the special
cases, was proposed and demonstrated to have a promising performance under
the set of test cases considered in this study. Also, a new formulation of the
model was developed, which made Bender’s type decomposition method compu-
tationally efficient. Therefore, we’re now able to get really good(exact) results
for big problems at a much faster fashion then solver XpressMP.

In addition, we defined and formulated another version of the problem, for
which time-windows for delivery are also set. Even though the methodology and
results are not shown in this study, we have managed to apply a similar minimum
cost flow approach as well as Bender’s decomposition approach, both yielding
promising results.

There are several interesting extensions of the work presented here. These
include integrating the inland production with single or multiple refineries at
different locations on the network, and multiple products needed by the same
customer port. This integration would cause the supply chain to become big-
ger, and therefore more complex, however closer to reality, as inland production
and demand satisfaction are activities that need synchronization. Furthermore,
the involvement of multiple refineries and multiple products introduces the new
optimization issues due to assigning refineries to customer ports and allocat-
ing vessel capacity for different products. This will make the modeling and the
design of search procedures more interesting and challenging.

Also, for the simplicity of modeling, in this study, we assumed a linear
penalty function for vessel overloading. However, this penalty cost is in reality
very complex and is affected by many factors such as the level of overloading
and navigation conditions. A nonlinear cost function would be more meaningful
in this case.
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Bât. 650, 91405 Orsay Cedex, France
houda@ef.jcu.cz, lisser@lri.fr

Abstract. We investigate the problem of linear joint probabilistic con-
straints with normally distributed constraints in this paper. We assume
that the rows of the constraint matrix are dependent, the dependence is
driven by a convenient Archimedean copula. We describe main properties
of the problem, show how dependence modeled through copulas trans-
lates to the model formulation, and prove that the resulting problem is
convex for a sufficiently high probability level. We further develop an
approximation scheme for this class of stochastic programming problems
based on second-order cone programming.

Keywords: Chance-constrained programming · Dependence · Archi-
medean copulas · Second-order cone programming

1 Introduction

Consider an uncertain linear optimization problem

min cT x subject to Ξx ≤ h, x ∈ X (1)

where x ∈ X ⊂ R
n is a decision vector of the problem, Ξ ∈ R

K × R
n is an

uncertain (unknown) data matrix, c ∈ R
n, h = (h1, . . . , hK)T ∈ R

K are fixed
deterministic vectors, dimensions n, K are structural elements of the optimiza-
tion problem (1). If a realization of the data element Ξ is known and fixed in
advance (before a decision is taken), we can solve the problem (1) as classical lin-
ear optimization problem. This situation is rarely the case. More often, we have
to consider uncertainty of the data as natural element of the modeling phase.

During the history of mathematical optimization, various methods were deve-
loped to deal with the uncertainty: ex-post sensitivity analysis, parametric
programming, or robust optimization. In our paper, we concentrate on the sto-
chastic programming approach assuming that the data matrix Ξ is a random
matrix whose probabilistic characteristics are known in advance. For example,
if the constraints of (1) are required to be satisfied with a prescribed sufficiently
high probability p ∈ [0; 1], then the problem (1) can be reformulated as

min cT x subject to P{Ξx ≤ h} ≥ p, x ∈ X (2)
c© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 126–139, 2015.
DOI: 10.1007/978-3-319-17509-6 9
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where p ∈ [0; 1] is a prescribed probability level. The problem (2) is known as
probabilistically (or chance) constrained linear optimization problem. The prob-
lem was treated many times in literature; for a thorough review of methods and
bibliography we refer to the classical book [1] and recent chapters [2,3].

The chance constrained optimization problems are very challenging in their
general (linear or nonlinear) form. Two main issues of the stochastic optimization
theory concerning these problems are the convexity of the set of feasible solutions,
and a very high computational effort to be accomplished. In detail: even for the
“nice” linear program (2) the feasible set may be nonconvex, and the probability
P can result in an intractable computation of multivariate integrals.

In our paper, we restrict our consideration to a problem with linear normally
distributed constraint rows, namely, the rows ΞT

k of Ξ follow n-dimensional nor-
mal distributions with means μk and positive definite covariance matrices Σk.
To further simplify the situation we assume that X = R

n (only the probabilistic
constraints are in question). Denote

X(p) :=
{
x ∈ R

n | P{Ξx ≤ h} ≥ p
}
. (3)

We are interested in an equivalent formulation of the set X(p) convenient for
numerical purposes. To this end, we first present a result for the set

M(p) :=
{
x ∈ R

n | P {gk(x) ≥ ξk, k = 1, . . . , K} ≥ p
}
, (4)

where ξ := (ξ1, . . . , ξK) is an absolutely continuous random vector and gk(x) are
continuous functions. M(p) is usually referred to as the set of feasible solutions
for a continuous chance-constrained problem with random right-hand side.

The convexity of the sets X(p) and M(p) is treated several times in the
literature; we mention [4–6] as the first classical results, and [7–9] as recently
published papers. These results are simplified either by restricting considera-
tion to one-row problem only, or by assuming independence of matrix rows. In
our paper we demonstrate the use of copula theory to deal with dependence of
rows in (2). This was done first by [10] for the set M(p) using a class of so-
called logexp-concave copulas. We extend their results to another large, more
usual class of copulas and formulate an equivalent description of the problem
(2) convenient to be solved by methods of second-order cone programming.

2 Dependence

2.1 Basic Facts About Copulas

Theory of copulas is well known for the people of probability theory and math-
ematical statistics but, to our knowledge, was not used up to these days in sto-
chastic programming to describe the structure of the problem. In this section, we
mention only some basic facts about copulas necessary for our following inves-
tigation. Most of the notions here (up to Proposition 4) were taken from the
book [11].
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Definition 1. A copula is the distribution function C : [0; 1]K → [0; 1] of
some K-dimensional random vector whose marginals are uniformly distributed
on [0;1].

Proposition 1. (Sklar’s Theorem). For any K-dimensional distribution func-
tion F : RK → [0; 1] with marginals F1, . . . , FK , there exists a copula C such that

∀z ∈ R
K F (z) = C(F1(z1), . . . , FK(zK)). (5)

If, moreover, Fk are continuous, then C is uniquely given by

C(u) = F (F−1
1 (u1), . . . , F−1

K (uK)). (6)

Otherwise, C is uniquely determined on range F1 × · · · × range FK .

Through Sklar’s Theorem, we have in hand an efficient general tool for
handling an arbitrary dependence structure. First, if we know the marginal
distributions Fk together with the copula representing the dependence we can
unambiguously determine the joint distribution. On the other hand, the copula
can be uniquely derived from the knowledge of the joint and all marginal distri-
butions. Our first example is the independent (product) copula which is nothing
else than the independence formula for distribution functions:

CΠ(u) =
∏

k

uk. (7)

The second important example is the Gaussian copula which is given by Sklar’s
Theorem applied to a joint normal distribution and its normally distributed
marginals:

CΣ(u) = ΦΣ(Φ−1(u1), . . . , Φ−1(uK)) (8)

where ΦΣ is the distribution function of the multivariate normal distribution
with zero mean, unit variance and covariance matrix Σ, and Φ−1(uk) are stan-
dard one-dimensional normal quantiles. For illustration purposes, we provide a
set of figures (Figs. 1, 2, 3, 4 and 5) of some popular copulas. From the left-hand
side, the reader can always find the distribution function of the copula (i. e., the
copula itself), its density, and the density of the distribution given by the copula
applied to the standard normal marginals. Figure 1 represents the independent
copula; compare it to the Gaussian copula in Fig. 2. Note that the Gaussian
copula is the only copula that can represent the joint normal distribution.

The following proposition provides the limits in which the copulas can be
located.

Proposition 2. (The Fréchet-Hoeffding Bounds). Every copula C satisfies
the inequalities

W (u) ≤ C(u) ≤ CM (u) (9)

where

W (u) := max
{∑

uk − K + 1, 0
}

,

CM (u) := min
k

{uk}.
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Fig. 1. Independent copula: distribution, density, and density with standard normal
marginals.
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Fig. 2. Gaussian copula (ρ = 0.55): distribution, density, and density with standard
normal marginals.

The function W represents the completely negative dependence between mar-
ginal distributions, but it is known not to be a copula if K > 2. CM repre-
sents the completely positive dependence and it is known under the name of the
comonotone (maximum) copula. These functions together with the independent
copula are often found to be limiting cases of some other classes of copulas.

The Gaussian copula has a rather complicated structure (even it is not
analytic) to be treated directly in our optimization problems. Instead, we need
a different, simpler class of copulas, which we found in so-called Archimedean
copulas.

Definition 2. A copula C is called Archimedean if there exists a continuous
strictly decreasing function ψ : [0; 1] → [0;+∞], called generator of C, such that
ψ(1) = 0 and

C(u) = ψ−1

(
n∑

i=1

ψ(ui)

)

. (10)

If limt→0 ψ(t) = +∞ then C is called a strict Archimedean copula and ψ is
called a strict generator.
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The inverse ψ−1 of a generator function is continuous and strictly decreasing on
[0;ψ(0)] (the value of ψ(0) is defined as +∞ if the copula is strict). Sometimes,
ψ−1 is defined as the generalized inverse on the whole positive half-line [0;+∞)
by setting ψ−1(s) = 0 for s ≥ ψ(0) but such a definition is not needed through
the context of our paper. To determine if some continuous strictly decreasing
function ψ is a copula generator we introduce the following notion.

Definition 3. A real function f : R → R is called completely monotonic on an
open interval I ⊆ R if it is nondecreasing, differentiable for each order k, and
its derivatives alternate in sign, i. e.,

(−1)k dk

dtk
f(t) ≥ 0 ∀k = 0, 1, . . . , and ∀t ∈ I. (11)

Proposition 3. Let ψ : [0; 1] → R+ be a strictly decreasing function with ψ(1) =
0 and limt→0 ψ(t) = +∞. Then it is a generator of a strict Archimedean copula
for each dimension K ≥ 2 if and only if ψ−1 is completely monotonic on (0;+∞).

The extension of Proposition 3 given by [12] has the following corollary:

Proposition 4. Any copula generator is convex.

The Archimedean copulas are considered as a favorable and useful class of copu-
las due to their possibly simple formulation by a simple analytic function ψ and
a small number of parameters (usually one or two). Many families adapted to
concrete problem settings were already given in the literature; for example, the
book [11] provides a table of 22 one-parameter families of Archimedean copulas.
We give some examples in Table 1 and Figs. 3, 4 and 5. The Gumbel-Hougaard
and Joe copulas are asymmetric (in the sense of density contours for normal
marginals) stressing the dependence of positive random variables; the Clayton
copula is in a similar view useful to model the positive dependence of nega-
tive random variables. The Frank copulas have symmetric density contours for
normal marginals.

The Archimedean copulas provide an easy equivalent formulation for feasible
sets (3) and (4). We start with the set M(p); assume (for each k = 1, . . . , K)
that the elements ξk of ξ have continuous distribution functions Fk, and the

Table 1. Selected Archimedean copulas with completely monotonic inverse generators.

Copula family Param. θ Gen. ψθ(t)

Independent (product) – − ln t

Gumbel-Hougaard θ ≥ 1 (− ln t)θ

Clayton θ > 0
1

θ
(t−θ − 1)

Joe θ ≥ 1 − ln[1 − (1 − t)θ]

Frank θ > 0 − ln

(

e−θt − 1

e−θ − 1

)
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Fig. 3. Gumbel-Hougaard copula (θ = 1.6): distribution, density, and density with
standard normal marginals.
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Fig. 4. Clayton copula (θ = 1.8): distribution, density, and density with standard
normal marginals.
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Fig. 5. Joe copula (θ = 2.1): distribution, density, and density with standard normal
marginals.
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whole vector ξ has the joint distribution induced by a copula C. With these
assumptions, we can rewrite the set M(p) as

M(p) =
{
x | C

(
F1(g1(x), . . . , FK(gK(x))

) ≥ p
}

(12)

and prove the following lemma.

Lemma 1. If the copula C is Archimedean with a (strict or non-strict) gener-
ator ψ then

M(p) =
{

x | ∃yk ≥ 0 : ψ[Fk(gk(x))] ≤ ψ(p)yk∀k,
K∑

k=1

yk = 1
}

. (13)

Proof. From basic properties of ψ it is easily seen that

M(p) =
{

x | ψ−1

( K∑

k=1

ψ[Fk(gk(x))]
)

≥ p

}

=
{

x ∈ R
n |

K∑

k=1

ψ[Fk(gk(x))] ≤ ψ(p)
}

.

(14)

Assume that there exists nonnegative variables y = (y1, . . . , yK) with
∑

k yk = 1
such that (13) holds. Then the inequality in (14) can be easily obtained by
summing up all the inequalities in (13). The existence of such vector y for the
case p = 1 is obvious; hence assume p < 1 and define

yk :=
ψ

[
Fk(gk(x))

]

ψ(p)
for k = 1, . . . , K − 1,

yK := 1 −
K−1∑

k=1

yk.

It is now easy to verify that such definition of yk satisfies (13). ��

2.2 Introducing Normal Distribution

Return our consideration to the set X(p) of the linear chance constrained prob-
lem defined by (3). Assume that the constraint rows ΞT

k have n-variate normal
distributions with means μk and covariance matrices Σk. For x = 0 define

ξk(x) :=
ΞT

k x − μT
k x

√
xT Σkx

, gk(x) :=
hk − μT

k x
√

xT Σkx
. (15)

The random variable ξk(x) has one-dimensional standard normal distribution
(in particular, this distribution is independent of x). Therefore the feasible set
can be written as

X(p) =
{

x | P[
ξk(x) ≤ gk(x) ∀k

] ≥ p
}

. (16)
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If K = 1 (i. e., there is only one row constraint), the feasible set can be simply
rewritten as

X(p) =
{

x | μT
1 x + Φ−1(p)

√
xT Σ1x ≤ h1

}
. (17)

where, again, Φ−1 is the one-dimensional standard normal quantile function.
Introducing auxiliary variables yk and applying Lemma 1, we derive the following
lemma which gives us an equivalent description of the set X(p) using the copula
notion.

Lemma 2. Suppose, in (3), that ΞT
k ∼ N(μk, Σk) (with appropriate dimen-

sions) where Σk � 0. Then the feasible set of the problem (2) can be equivalently
written as

X(p) =
{

x | ∃yk ≥ 0 :
∑

k

yk = 1,

μk
T x + Φ−1

(
ψ−1(ykψ(p))

) √
xT Σkx ≤ hk ∀k

}
(18)

where Φ is the distribution function of a standard normal distribution and ψ is
the generator of an Archimedean copula describing the dependence properties of
the rows of the matrix Ξ.

Proof. Straightforward using the arguments given above. The remaining case
x = 0 is obvious. ��

2.3 Convexity

It is not easy to show the convexity of the sets M(p) and X(p). The technique
is based on the theory presented in [8] for the case of independence, and [10]
for the case of dependence modeled via logexp-concave copulas. Our approach is
different and makes direct use of the convexity property of Archimedean gener-
ators. Before do that, we recall some necessary definitions needed to formulate
the convexity result.

Definition 4 ([1], Chap. 4 of [13]). A function f : R
s → (0;+∞) is called

r-concave for some r ∈ [−∞; +∞] if

f(λx + (1 − λ)y) ≥ [λfr(x) + (1 − λ)fr(y)]1/r (19)

is fulfilled for all x, y ∈ R
s and all λ ∈ [0; 1]. The cases r = −∞, 0,+∞ are to

be interpreted by continuity.

The case r = 1 is concavity in the usual sense. The case r = 0 correspond to the
so-called log-concavity, i.e., to the case in which the function ln f is concave. The
case r = −∞ is known as quasi-concavity and corresponding right-hand side of
(19) takes the form of min{f(x), f(y)}. If f is r-concave for some r, then it is
r′-concave for all r′ ≤ r; in particular, all r-concave functions are quasi-concave.
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Definition 5 ([8]). A function f : R → R is called r-decreasing for some r ∈ R

with the threshold t∗ > 0 if it is continuous on (0;+∞) and the function t �→
trf(t) is strictly decreasing for all t > t∗.

The threshold t∗ depends on the value of r, hence, in this view, it can be con-
sidered as a function of r. For simplicity, we have dropped this implicit depen-
dence from the notation. If the function f(t) is non-negative and r-decreasing
for some r, then it is r′-decreasing for all r′ ≤ r. In particular, if r > 0 then
f(t) is 0-decreasing, hence strictly decreasing for t > t∗. The table of prominent
one-dimensional r-decreasing densities together with their thresholds has been
given in [8].

Now we are ready to formulate a convexity result for M(p), the feasible set of
a chance-constrained programming problem with random right-hand side defined
by (4).

Theorem 1. Consider the set M(p) and the following assumptions for k =
1, . . . , K:

1. there exist rk > 0 such that gk are (−rk)-concave,
2. the marginal distribution functions Fk have (rk +1)-decreasing densities with

the thresholds t∗k, and
3. the copula C is Archimedean with a strict generator ψ, and ψ−1 is completely

monotonic function.

Then M(p) is convex for all p > p∗ := maxk Fk(t∗k).

Proof. Let p > p∗, λ ∈ [0; 1], and x, y ∈ M(p). We have to show that λx + (1 −
λ)y ∈ M(p), that is

C
(
F1[g1(λx + (1 − λ)y)], . . . , FK [gK(λx + (1 − λ)y)]

)

= ψ−1

{
K∑

k=1

ψ
(
Fk[gk(λx + (1 − λ)y)]

)
}

≥ p

or, equivalently,
K∑

k=1

ψ
(
Fk[gk(λx + (1 − λ)y)]

) ≤ ψ(p)

(c.f. the proof of Lemma 1). Denote, for k = 1, . . . , K,

qx
k := Fk[gk(x)], qy

k := Fk[gk(y)].

In the first part of the proof of Theorem1 in [10] it has been shown, based on
assumptions 1 and 2, that

Fk[gk(λx + (1 − λ)y)] ≥ [qx
k ]λ[qy

k ]1−λ,

hence

ψ
{
Fk[gk(λx + (1 − λ)y)]

} ≤ ψ
{
[qx

k ]λ[qy
k ]1−λ

}

= ψ
{
exp

[
λ ln qx

k + (1 − λ) ln qy
k

]}
.
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Assumption 3 implies that the function u �→ ψ(eu) is convex function on (−∞; 0].
This allows us to continue

ψ
{
Fk[gk(λx + (1 − λ)y)]

}

≤ λψ(eln qx
k ) + (1 − λ)ψ(eln qy

k )
= λψ(qx

k) + (1 − λ)ψ(qy
k).

Introducing auxiliary variables yk with
∑

yk = 1, and applying Lemma 1, we
conclude on

K∑

k=1

ψ
(
Fk[gk(λx + (1 − λ)y)]

)

≤
K∑

k=1

(
λψ(qx

k) + (1 − λ)ψ(qy
k)

)

≤
K∑

k=1

(
λψ(p)yk + (1 − λ)ψ(p)yk

)
= ψ(p).

��

3 Main Result

3.1 Convex Reformulation

In Lemma 2 we have already stated an equivalent formulation of the feasible set
X(p). Together with Theorem 1 we can formulate the following theorem.

Theorem 2. Consider the problem (2) where

1. the matrix Ξ has normally distributed rows ΞT
k with means μk and positive

definite covariance matrices Σk;
2. the joint distribution function of ξk(x) given by (15) is driven by an Archime-

dean copula with the generator ψ.

Then the problem (2) can be equivalently written as

min cT x subject to

μk
T x + Φ−1

(
ψ−1(ykψ(p))

) √
xT Σkx ≤ hk,

∑

k

yk = 1

x ∈ X, yk ≥ 0 with k = 1, . . . , K.

(20)

Moreover, if

3. the function ψ−1 is completely monotonic;
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4. p > p∗ := Φ
(
max{√3, 4λ

(k)
max[λ(k)

min]−3/2‖μk‖}
)
, where λ

(k)
max, λ

(k)
min are the

largest and lowest eigenvalues of the matrices Σk, and Φ is the one-dimensional
standard normal distribution function, then the problem is convex.

Proof. The first part of the theorem was proven as Lemma 2. Concerning convexity
assertion, transformation (15) converts the problem to that of Theorem 1. Notice
that the function gk of (15) is −2-concave and normal density is 3-decreasing with
the threshold

√
3. The remaining part of the proof (together with the exact form

of the required probability level p∗) repeats arguments of the proof of Theorem 5.1
of [8] without considerable changes. ��

3.2 SOCP Approximation

Second-order cone programming (SOCP) is a subclass of convex optimization in
which the problem constraint set is the intersection of an affine linear manifold
and the Cartesian product of second-order (Lorentz) cones [14]. Formally, a
constraint of the form

‖Ax + b‖2 ≤ eT x + f

is a second-order cone constraint as the affine function (Ax + b, eT x + f) is
required to lie in the second-order cone {(y, t) | ‖y‖2 ≤ t}. The linear and convex
quadratic constraints are nominal examples of second-order cone constraints. It
is easy to see that the constraint (17) is SOCP constraint with A := Σ1, b := 0,
e := − 1

Φ−1(p)μ1, and f := 1
Φ−1(p)h1 provided p ≥ 1

2 . For a details about SOCP
methodology we refer the reader to [14], and to the monograph [15].

Theorem 2 provides us an equivalent nonlinear convex reformulation of the
linear chance-constrained problem (2). Due to the decision variables yk appearing
as arguments to the (nonlinear) quantile function Φ−1, it is not still a second-
order cone formulation. To resolve this computational issue, we formulate a lower
and upper approximation to the problem (20) using the favorable convexity
property of the Archimedean generator. We first formulate an auxiliary convexity
lemma which gives us a possibility to find these approximations.

Lemma 3. If p > p∗ (given in Theorem 2), and ψ is a generator of an Archime-
dean copula, then the function

y �→ H(y) := Φ−1
(
ψ−1(yψ(p))

)
(21)

is convex on [0; 1].

Proof. The function ψ−1(·) is a strictly decreasing convex function on [0;ψ(0)]
with values in [p; 1]; the function Φ−1(·) is non-decreasing convex on (p∗; 1].
Hence, the function H(y) is convex. ��

The proposed approximation technique follows the outline appearing in
[16,17]. For both the approximations that follow, we consider a partition of
the interval (0; 1] in the form 0 < yk1 < . . . < ykJ ≤ 1 (for each variable yk).

Remark 1. The number J of partition points can differ for each row index k but,
to simplify the notation and without loss of generality, we consider this number
to be the same for each index k.
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Lower Bound: Piecewise Tangent Approximation. We approximate the
function H(yk) using the first order Taylor approximation at each of the partition
points; the calculated Taylor coefficients akj , bkj translate into the formulation
of the problem (20) as the linear and SOCP constraints with additional auxiliary
nonnegative variables zk and wk. The convexity of H(·) ensures that the resulting
optimal solution is a lower bound for the original problem.

Theorem 3. Given the partition points ykj, consider the problem

min cT x subject to

μk
T x +

√
zkT Σkzk ≤ hk,

zk ≥ akjx + bkjw
k (∀k,∀j)

∑

k

wk = x,

wk ≥ 0, zk ≥ 0 (∀k),

(22)

where

akj := H(ykj) − bkjykj ,

bkj :=
ψ(p)

φ(H(ykj))ψ′ (ψ−1(ykjψ(p)))
,

and φ be the standard normal density. Then the optimal value of the problem
(22) is a lower bound for the optimal value of the problem (2).

Remark 2. The linear functions akj +bkjy are tangent to the (quantile) function
Hk at the partition points; hence the origin of the name tangent approximation.
This approximation leads to an outer bound for feasible solution set X(p).

Upper Bound: Piecewise Linear Approximation. The line passing thro-
ugh the two successive partition points with their corresponding values H(ykj)
is an upper linear approximation of H(yk) between these two successive points.
Taking pointwise maximum of these linear functions we arrive to an upper
approximation of the function H, hence to an upper bound for the optimal
value of the original problem.

Theorem 4. Given partition points ykj, consider the problem

min cT x subject to

μk
T x +

√
zkT Σkzk ≤ hk,

zk ≥ akjx + bkjw
k (∀k, j < J)

∑

k

wk = x,

wk ≥ 0, zk ≥ 0 (∀k)

(23)
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where

akj := H(ykj) − bkjykj ,

bkj :=
H(yk,j+1) − H(ykj)

yk,j+1 − ykj
.

If an optimal solution of the problem (23) is feasible in (2) then the optimal value
of the problem (23) is an upper bound for the optimal value of the problem (2).

The last two problems are second-order cone programming problems and they
are solvable by standard algorithms of SOCP. We do not provide further details
in our paper; some promising numerical experiments were done by [16] for the
problem with independent rows. If the dependence level is not too high (for
example, if the parameter θ of the Gumbel-Hougaard copula approaches to one)
the resulting approximation bounds are comparable to this independent case.

The second-order cone programming approach to solve chance-constrained
programming problems opens a great variety of ways how to solve real-life prob-
lems. Many applications are modeled through chance-constrained programming:
among them we can choose for example

– applications from finance: asset liability management, portfolio selection (cov-
ering necessary payments through an investment period with high probability),

– engineering applications in energy and other industrial areas (dealing with
uncertainties in energy markets and/or weather conditions),

– water management (designing reservoir systems with uncertain stream inflows),
– applications in supply chain management, production planning, etc.

We refer the reader to the book [18] for a diversified set of applications from
these (and other) areas and for ideas how uncertainty is incorporated into the
models by the stochastic programming approach. The method proposed in this
paper shifts the research and open new possibilities as the constraint dependence
is in fact a natural property of constraints involved in all mentioned domains.

4 Conclusions

In our paper, we have presented an innovative use of the copula theory that is
used to translate a known result developed for chance-constrained optimization
problems with independent constraint rows to the case where the constraint
rows exhibit some dependence. In particular, we assume that the dependence
can be represented by a strict Archimedean copula with the generator which
inverse is completely monotonic. Then the convexity of the feasible set is proven
for sufficiently high values of p, and an equivalent deterministic formulation
can be given. Furthermore, a lower and an upper bound for the optimal value of
the problem can be calculated by introducing the piecewise tangent and piecewise
linear approximations of the quantile function, and by solving the associated
second-order cone programming problems.
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2. Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.)
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12. McNeil, A.J., Nešlehová, J.: Multivariate Archimedean copulas, d-monotone func-

tions and �1-norm symmetric distributions. Ann. Stat. 37, 3059–3097 (2009)
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Abstract. We consider the staffing and shift-scheduling problems in
call centers and propose a solution in one step. It consists in determining
the minimum-cost number of agents to be assigned to each shift of the
scheduling horizon so as to reach the required customer quality of service.
We assume that the mean call arrival rate in each period of the horizon
is a random variable following a continuous distribution. We model the
resulting optimization problem as a stochastic program involving joint
probabilistic constraints. We propose a solution approach based on linear
approximations to provide approximate solutions of the problem. We
finally compare them with other approaches and give numerical results
carried out on a real-life instance. These results show that the proposed
approach compares well with previously published approaches both in
terms of risk management and cost minimization.

Keywords: Queuing systems · Stochastic optimization · Joint chance
contraints · Staffing · Shift-scheduling · Call centers

1 Introduction

Staffing and shift-scheduling in call centers is a very challenging problem in
Operations Research. Call centers are expensive infrastructures for companies,
in which the staff agents represent 60 %–80 % of the total operating budget [1].
Thus an efficient workforce management is of primary importance to achieve
profitability of a call center. One of the most important problem is the short-term
staffing and scheduling problem: it consists in deciding how many staff members
handling the phone calls, i.e. “agents”, should work during the forthcoming days
or weeks in order to minimize manpower costs while ensuring that the required
customer quality of service is reached. The Quality of Service (QoS) can be for
instance a maximum expected abandonment rate, i.e. number of clients hanging
up without being served, or a maximum expected waiting time before entering
service in the queue.

The problem here is to decide how many people answering the phone, that
is to say agents, we need to assign each day. This problem comprises two steps.

The first step is the staffing problem, which involves computing the number
of required agents. These values come from a calculation based on an objective
c© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 140–156, 2015.
DOI: 10.1007/978-3-319-17509-6 10
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service level and estimations of arrival rates. The objective service level consid-
ered here is the maximum expected time of waiting before being served. The
estimations of arrival rates come from forecasts using historical data, in which
usually the main (and often only) information available is the number of calls
per period. As arrival rates strongly vary in time, estimations are given for short
periods of time (usually 30-minute periods).

In order to use all this information and compute the values of required agents
at each period, we model the call center at each period as an Erlang C queuing
system in stationary state and we use the Erlang C results, as commonly done
practice.

The second step is the scheduling problem. This optimization problem invol-
ves scheduling enough agents with respect to a given Quality of Service (QoS)
while respecting the inherent constraints of manpower work, like hiring a whole
number of agents, or following some working hours. The goal here is to assign
established shifts to the working agents through a given period.

There are several criteria in the establishment of the problem:

– Uncertainty management: how uncertainty is dealt with in the model?
– Risk management: how to modelize the penalty of not reaching the expected

QoS?
– Recourse: what possibility do we have to correct the solution in a second-stage

after observation?

Several approaches for staffing call centers considering uncertainty of arrival
rates forecasts exist in the literature. Jongbloed and Koole [9] focus on giving
a prediction interval for possible arrival rates, and then give an interval for the
associate required numbers of agents. Gurvich et al. [8] present and compare two
different approaches for dealing with uncertainty: the average-performance con-
straints problem considers the average of the uncertain variables and the chance
constraints problem deals with uncertainty and risk both together.

Robbins and Harrison [15] choose to model the mixed integer linear program
with several scenarios each defining a probability of reaching the QoS. Moreover,
they use piecewise linear approximations of their QoS function. The idea of using
scenarios through discretization of the probability distributions is used in several
papers, such as [6,11] for example, or [12] who consider a finite distribution from
the beginning.

The risk management can be modeled by a penalty cost in the objective
function, as in [15], or with joint chance constraints programs, as in [8].

Liao et al. [10] introduce a distributionally robust approach for the schedul-
ing problem and use discrete distributions for uncertainty.
While [8,11,15] use a one-stage approach, [4,6,13] allow a recourse on the solu-
tion, with a two-stage approach.

The contributions of the present paper are thus threefold. First, we model the
call arrival rate in each period as a random variable following a continuous nor-
mal distribution. This is in contrast with most previously published approaches
which rely on a discrete representation of the uncertainty through a finite set of
scenarios. Since we consider every possible variation of the arrival rate instead of
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a limited number, our approach leads to a better accuracy of the final solution.
Moreover, we keep this idea of continuity during all the process until the final
solving of the linear programs. Second, we propose a solution in order to solve
the staffing problem and the shift-scheduling problem as a one-stage stochastic
program involving joint probabilistic constraints. It allows to manage the risk of
not reaching the required quality of service at the scheduling horizon level rather
than on a period by period basis. Moreover, our approach relies on a dynamic
sharing out of the risk among all the periods and thus provides flexibility in
the risk management. Third we present a linear-approximation based solution
approach leading to approximate solutions for the problem.

The rest of this paper is organized as follows. In Sect. 2 we describe the
call center queuing model. In Sects. 3 and 4 we present our approach to model
and solve the stochastic staffing and shift-scheduling problem. First we define
the joint chance constraints program and then we linearize the inverse of the
cumulative distribution function in the constraints. Then we give in Sect. 5 com-
putational results on several instances and we compare them to results given
by simpler models. We propose to compare our results with another approach
based on two steps in Sect. 6. Finally we conclude and highlight future research
in Sect. 7.

2 Staffing Problem Modeling

The problem here is to decide how many people answering the phone, that is
to say agents, we need to assign each day. In order to do that, we are given a
number of required agents. These values of requirements come in fact from a
calculation based on an objective service level and estimations of arrival rates.
The objective service level is the customer Quality of Service. The estimations
of arrival rates come from forecasts using historical data. As arrival rates vary
in time, estimations are given for short periods of time, e.g. 30-minute periods.

In order to compute the values of required agents at each period, we model
the call center as a queueing system in stationary state and we use the Erlang
C model.

Call centers are typically modeled as queuing systems as we can see for exam-
ple in [7]. The day is divided into T periods. During each period, we assume that
the stationary regime is reached. Customer arrival process during each period
is Poisson and service times are assumed to be independent and exponentially
distributed with rate μ. This is a non-stationary queue Mt/M/Nt where Nt

represents the number of servers, i.e. the number of agents in our problem.
Customers are served in the order of their arrivals, i.e. under the First Come-

First Served (FCFS) discipline of service. The queue capacity is assumed to be
infinite. Finally, customers abandonment and retrials are ignored.

Since we consider uncertainty on arrival rates, we have to deal with stochastic
programs. We assume that the arrival rates are random variables, denoted by
Λt for the period t, following normal distributions where the expected values are
the forecast values.
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3 Problem Formulation

We propose here to describe and solve a mixed integer linear stochastic program
able to solve a joint staffing and scheduling problem.

As explained, we consider that the values we use are forecasts obtained from
historical data and may differ from the reality. We still want to guarantee a
Quality of Service, expressed with a risk of how much can be the forecasts and
reality different. In order to deal with a global problem, this risk will be set for
the entire horizon (for example one week or one month).

In Sect. 2 we explained that we computed the number of required agents for
each 30-minute-period (or 1-hour). We create several possible shifts, according to
real work days, which cover the schedule of the call center. As it is inconvenient
to ask an agent to come for only short periods of time, they have to follow
typical shifts (like full-time or part-time). This may lead to over-staffing on
some periods. In this model we consider shifts with breaks, like lunch breaks.

We want to define a risk level for the whole horizon. In order to deal with
this condition, we model our problem with joint chance constraints [14]:

min ctx (1)
s.t. P{Ax � B} � 1 − ε

xi ∈ Z
+, ε ∈]0; 1]

where x is the agents vector, and xi is the number of agents assigned to the shift
i ; c is the cost vector and A = (ai,j) is the matrix of shifts for i ∈ [[1;T ]] and
j ∈ [[1;S]]. The vector B is the vector of the staffed agents random variables Bt.

This program optimizes the cost of hired agents under the constraint that
the probability of reaching the requirement for the whole schedule is higher than
the quality interval 1 − ε.

We denote by A the matrix of possible shifts. The term ai,j is equal to 1 if
agents working during period i according to shift j and 0 if not. Thus Ax is the
vector defining the number of agents working at each period (Fig. 1).

Fig. 1. Example of a simple shifts matrix
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The variables Bt are computed with an Erlang C model. The arrival rates
values are independent random variables following continuous normal distribu-
tions for which the means are the forecast values. Since the Bt are function of
Λt, they are random variables.

Thus we now consider B a vector of random variables; for each period t,
Bt is function of the arrival rate Λt, and so we have to deal with the unknown
continuous distribution of Bt.

Since we consider independent random variables, we split the product of
probabilities and obtain the following Mixed Integer Program:

min ctx (2)

s.t.
T∏

t=1

FBt
(At ∗ x) � (1 − ε)

xi ∈ Z
+, ε ∈]0; 1]

where At is the t-th row of A matrix and FBt
(At ∗ x) = P (Bt � At ∗ x).

In order to solve this program, we need to separate the chance constraint
into several constraints for each period. This means dividing up the risk along
the horizon.

The simplest way is equally dividing the risk through the T periods, according
to Bonferroni method:

min ctx (3)

s.t. ∀t ∈ [[1;T ]], (Atx) � F−1
Bt

(
(1 − ε)

1
T

)

xi ∈ Z
+, ε ∈]0; 1],∀t ∈ [[1;T ]], yt ∈]0; 1]

We divide the quality interval and then apply the inverse of the normal
cumulative distribution function. The drawback of this idea is that we have to
decide how to distribute the risk in advance, before the optimization process.

In order to be able to optimize the risk through the periods, we decide to
include the sharing out of the risk in the optimization and put the risk levels as
problem variables. Instead of considering 1

T as the proportion of the risk for one
period, we introduce proportion variables denoted as yt. They are now variables
and the sum of yt still should be 1 in order to reach the global risk level.

The new problem, with a flexible sharing out of the risk is now:

min ctx (4)

s.t. ∀t ∈ [[1;T ]], (Atx) � F−1
Bt

((1 − ε)yt)
T∑

t=1

yt = 1

xi ∈ Z
+, ε ∈]0; 1],∀t ∈ [[1;T ]], yt ∈]0; 1]

In order to solve this problem, we propose two linearizations which give an
upper bound and a lower bound. These linearizations are based on piecewise
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approximations of y �→ F−1
Bt

(py). We cannot compute exact values of this func-
tion, thus we focus on linear approximations. This function is continuous and
differentiable (except on a countable number of points). We need to deal with a
convex function in order to apply the approximations.

4 Solution Approximations

4.1 Definition of ψ Function

We first introduce the function ψ which gives a relation between b and λ. We
consider the following continuous function ψ:

ψ :R →R
+ (5)

λ �→ψ(λ) = b(λ,ASA∗, μ)

The function ψ gives the minimum number of agents b required to ensure
that the targeted QoS ASA∗ is reached when the call arrival rate is λ and the
expected service rate is μ. The chosen QoS is the Average Speed of Answer
(ASA). The computed value of b is a real number and not an integer, which
is necessary to allow the linear approximations in the next parts: we need the
inverse of the cumulative distribution function to be continuous.

To the best of our knowledge, an analytical expression computing ψ is not
known. However, for a given value of λ, we propose to compute ψ(λ) with the
following algorithm.

First we consider this well-known Erlang C model’s function:

ASA(N,λ, μ) = E[Wait] =
1

N ∗ μ ∗ (1 − λ
N∗μ )

(

1 + (1 − λ
N∗μ )

N−1∑

m=0

N !
m! (

μ
λ )N−m

)

This formula gives the expectation of waiting time (ASA: Average Speed of
Answer) given the arrival rate λ, the service rate μ and the number of servers
N which is an integer. In order to consider ψ as function of a positive real value
of b, we use the algorithm below:

– We compute ASA(N,λ, μ) and ASA(N + 1, λ, μ) such that

ASA(N,λ, μ) � ASA∗ and ASA(N + 1, λ, μ) < ASA∗

We denote ASA(N,λ, μ) as ASAN,λ.
– The real value of N is computed by a linearization in the [ASAN,λ;ASAN+1,λ]

segment. The affine function is:

ASA∗ = (ASAN+1,λ − ASAN,λ) ∗ b + (N + 1) ∗ ASAN,λ − N ∗ ASAN+1,λ

and b is the real value ψ(λ) we are looking for. �
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Using this algorithm for the value of λ we are considering in the ψ function,
finally we obtain b.

ψ(λ) = b =
ASA∗ + N ∗ ASAN+1,λ − (N + 1) ∗ ASAN,λ

ASAN+1,λ − ASAN,λ

The ψ function allows us to determine the values of b as a function of λ, μ
and an objective QoS ASA∗. In a nutshell, we determine the number of agents
required to deal with the arrival rates of clients λ with respecting a Quality of
Service previously defined. This function is strictly increasing.

We can denote then
FB(b) = FΛ(ψ−1(b))

4.2 Convexity of y �→ F−1
Bt

(py)

We have previously defined FB(b) = FΛ(ψ−1(b)).
Thus we have FB(b) = FΛ(ψ−1(b)) = 1−ε and so F−1

B (1−ε) = ψ(F−1
Λ (1−ε)).

In our problem, we split the risk 1 − ε. Since 1 − ε represents a probability,
let’s call it p in this part. In our problem we want a high quality interval and thus
a small value of ε. We can consider from here that p > 0.5, which is necessary
for the following proof of convexity.

We need to consider py, y ∈]0; 1] in our optimization problem. So we consider
the equality, with y ∈]0; 1]:

F−1
B (py) = ψ(F−1

Λ (py))

Lemma. y �→ F−1
Λ (py) is convex.

Proof. Since f : y �→ py is convex and g : p �→ F−1
Λ (p) is convex for p > 0.5 and

increasing, thus y �→ F−1
Λ (py) is convex. �

This previous result and the strictly increasing function λ �→ ψ(λ) helped us
to note that y �→ F−1

B (py) is a generally convex function. We then consider an
approximated function of y �→ F−1

B (py) which is convex.
With this result we are able to linearize the approximated convex function

as in [3].

4.3 Piecewise Linear Approximation

Here we give an upper approximation of y �→ F−1
Bt

(py).
Let yj ∈]0; 1], j ∈ [[1;n]] be n points such that y1 < y2 < . . . < yn.
Let’s denote F̂−1

Bj (py) the linearized approximation of F−1
B (py) between yj

and yj+1.

∀j ∈ [[1;n − 1]], F̂−1
Bj (py) = F−1

B (pyj ) +
y − yj

yj+1 − yj
(F−1

B (pyj+1) − F−1
B (pyj ))

= δj ∗ y + αj (6)
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Since FB(b) = FΛ(ψ−1(b)), we have ∀p ∈]0; 1[, F−1
Bj (p) = ψ(F−1

Λj (p)), thus
the coefficients are:

δj =
ψ(F−1

Λj (pyj+1) − ψ(F−1
Λj (pyj ))

yj+1 − yj
(7)

αj =ψ(F−1
Λ (pyj )) − yj ∗ δj (8)

Because of the convexity of the approximation, the condition in our program
would be:

∀y ∈] 0; 1], F̂B
−1

(py) = max
j∈[[1;n−1]]

{F̂−1
Bj (py)} (9)

So our approximated program is now:

min ctx (10)
s.t. ∀t ∈ [[1;T ]],∀j ∈ [[1;n − 1]], Atx � αj + δj ∗ yt

T∑

t=1

yt = 1

∀i ∈ [[1;S]], xi ∈ Z
+,∀t ∈ [[1;T ]], yt ∈]α1; 1]

with n points for linear approximation with (αj , δj) coordinates. S is the number
of shifts and T the total number of periods.

4.4 Piecewise Tangent Approximation

Let’s now express a lower approximation of y �→ F−1
Bt

(py).
Let yj ∈]0; 1], j ∈ [[1;n]] be n points such that y1 < y2 < . . . < yn.
We apply a first-order Taylor series expansion around these n tangents points.

Let’s denote F̂−1
Bj (py) the linearized approximation of F−1

Bj (py) around yj .Then

∀j ∈ [[1;n]], F−1
Bj (py) = F−1

B (pyj ) + (y − yj)(F−1
B )′(pyj ) ∗ ln(p) ∗ pyj

= δj ∗ y + αj (11)

with (F−1
B )′(pyj ) = 1

F ′
B(F −1

B )(pyj )
= 1

fB(F −1
B (pyj ))

And since

fb(b) =
fΛ(ψ−1(b))
ψ′(ψ−1(b))

as a definition of composition of random variables:

fB(F−1
B )(pyj ) =

fΛ(ψ−1(F−1
B (pyj )))

ψ′(ψ−1(F−1
B (pyj )))

=
fΛ(ψ−1(ψ(F−1

Λ (pyj ))))
ψ′(ψ−1(ψ(F−1

Λ (pyj ))))

=
fΛ(F−1

Λ (pyj ))
ψ′(F−1

Λ (pyj ))
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The coefficients are:

δj = ln(p) ∗ pyj ∗ ψ′(F−1
Λ (py

j ))

fΛ(F−1
Λ (py

j ))
(12)

αj =ψ(F−1
Λ (pyj )) − yj ∗ δj (13)

Like previously for Eq. (9), we can assure that this piecewise tangent approx-
imations are always below the curve. Thus the condition in our approximated
program is:

F̂B
−1

(py) = max
j∈[[1;n]]

{F−1
Bj (py)} (14)

Finally the piecewise tangent approximated program is:

min ctx (15)
s.t. ∀t ∈ [[1;T ]],∀j ∈ [[1;n]], Atx � αj + δj ∗ yt

T∑

t=1

yt = 1

∀i ∈ [[1;S]], xi ∈ Z
+,∀t ∈ [[1;T ]], yt ∈]0; 1]

with n points for tangent approximation with (αj , δj) coordinates.

5 Numerical Experiments

5.1 Instance

We apply our model to an instance from a health insurance call center. We use
19 different shifts, both full-time and part-time and consider the scheduling for
one week (5.5 days, from Monday to Saturday midday).

We split the time horizon into 30-minute periods, considering 10 h a day from
Monday to Friday and 3.5 h for Saturday morning, which gives 107 periods.

We consider that the agents are paid according to the number of worked
hours. The cost of one agent is proportional to the number of periods worked.
Thus it depends on the shift the agent works on. Here we set the cost to 1 for the
fullest shifts (with the highest number of periods) and the costs of other shifts
are a strict proportionality of the number of worked periods.

The data used to staff and shift-schedule are arrival rates varying between
3 calls/min and 43 calls/min, following a typical daily seasonality, as described
in [5]. We denote ∀t ∈ [[1;T ]], λt the mean of the T random variables, which are
the given data. The variances σ2

t are random values generated between [λt

4 ; λt

2 ].
We apply the same instance to the programs (10) and (15) and, as a com-

parison, to the program (3) in which we divided the risk through the periods in
a pre-treatment.
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5.2 Comparison with Other Programs

We also add the results from simple programs:

– In the disjoint approach we want to reach the risk level at each period, not
through the whole horizon:

min ctx (16)
s.t. ∀t ∈ [[1;T ]], P{Atx � bt} � 1 − ε

xi ∈ Z
+, ε ∈]0; 1]

Thus we got this final program:

min ctx (17)

s.t. ∀t ∈ [[1;T ]], (Atx) � F−1
Bt

((1 − ε))
T∑

t=1

yt = 1

xi ∈ Z
+, ε ∈]0; 1]

– We also compare with the results of the deterministic program:

min ctx (18)
s.t. ∀t ∈ [[1;T ]], (Atx) � bt

xi ∈ Z
+

The values of bt here are computed with the Erlang C formula using the
mean forecasted values, considered as certain.

5.3 Results

We apply our models with the following parameters:

– μ = 1
– ASA∗ = 1
– ε = 0.05

In Table 1 we show the solutions for staffing and shift-scheduling of this
instance for 5 programs: column 1 gives the shift, column 2 (Deter) presents
the x vector obtained with the deterministic model (18), column 3 (Disjoint)
gives the results with the disjoint chance constraints model (17) and column 4
(Fixed) with the the fixed-risked model (3). Finally, columns 5 (LowerB) and 6
(UpperB) present the results obtained with the lower bound (15) and the upper
bound (10) approximations.

We used 5 points for computing both lower and upper bounds. The gap
between the two bounds is D = 5%.
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Table 1. Result for staffing and shift-scheduling.

Shift Deter Disjoint Fixed LowerB UpperB

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 2 2 1 1 1

7 0 0 0 0 0

8 0 0 0 0 0

9 0 0 0 0 0

10 0 0 0 0 0

11 13 14 18 18 19

12 9 10 9 9 12

13 5 6 8 9 11

14 0 1 3 2 4

15 5 6 7 6 3

16 6 7 8 7 7

17 0 0 0 0 0

18 4 5 6 4 3

19 4 4 5 4 3

Total 48 55 65 60 63

Cost function 47.44 54.44 64.72 59.72 62.72

Table 2. Percentage of violated scenarios.

Model % of violation

Deterministic model 100 %

Disjoint chance constraints model 49 %

JCC model with fixed risk level 0 %

JCC lower bound and flexible risk 3 %

JCC upper bound and flexible risk 1 %

Targeted maximal risk 5 %

In order to check the efficiency of these solutions, we randomly generated 100
scenarios according to the historical data we previously used and checked the
feasibility of the 5 solutions. If the number of agents scheduled in at least one
period of a scenario is insufficient, the latter is considered as violated.

In Table 2 are the results for a batch of 100 scenarios. JCC stands for “Joint
Chance Constraints”.
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Fig. 2. Violated scenarios for each model.

In the Fig. 2 we plotted for each model and each scenario the difference
between the number of agents in the previous solutions and the number of agents
actually needed bpresent − bneeded. When this value is negative for at least one
period, the model is invalidated for the scenario.

First we compare the schedules obtained by using the various models dis-
cussed in the paper based on the total staffing cost.

We note that the deterministic (18) and disjoint (17) models provide less
expensive schedules than the joint chance constraint models (10), (15) and (3).

However our approximated programs where the risk is dynamically divided
through the periods provide less expensive schedules than the joint chance con-
straint model where the risk is a priori divided equally between the scheduling
periods (3). This shows the interest of allowing some flexibility in the way the
risk is allocated between the scheduling periods.

In small instances we could have chosen another sharing out a priori of
the risk (by analysing wisely the risky periods) but it remains too complex
on instances like ours.

Second, we note that all the cheaper solutions than the two bounds of our new
model of joint chance contraints with a flexible sharing out of the risk does not
validate the condition of the targeted QoS. Thus they cannot be considered as
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Table 3. Results for different parameters.

Parameters Results

λ range μ ASA∗ Risk ε Gap Violations

3–43 1 1 10 % 0.05 3–1

3–43 1 1 05 % 0.04 2–1

3–43 2 1 30 % 0.0 13–5

3–43 1 2 30 % 0.03 18–12

6–86 1 2 10 % 0.004 6–5

6–86 1 1 10 % 0.005 6–5

6–86 1 1 01 % 0.003 0–0

possible alternatives. The robustness, i.e. the capability of providing the required
QoS over the whole scheduling horizon within the maximum allowable risk level,
is an essential criterion and its validation is mandatory to approve the model.

The last 3 programs which are joint chance constraints models are the only
models respecting the objective service level. Our approximated programs are
cheaper than the joint chance constraints model with a fixed sharing out of the
risk. Our approach allows us to save between 3.2 % (upper bound) and 8.4 %
(lower bound) compared to this program.

This shows the practical interest of the proposed modelling and solution
approach as we provide robust schedules at a lesser cost than previously joint
constraint models.

In Table 3, we present results for different values of λ, μ, ASA∗ and ε (illus-
trated in the table by the risk interval).

The “Gap” column gives the gap between the lower bound and the upper
bound solutions. The “violation” column gives the numbers of violated scenarios
for the lower and the upper bounds. We note that for higher values of λ, the
bounds are really close and give good results.

6 Staffing and Scheduling Problems in Two Steps

6.1 The Requirements Bt as Random Normal Variables

Since the consideration of the ψ function is rather advanced, we do not know
the exact distribution followed by the random variables Bt. In this section we
consider the initial problem as a two-step problem:

– Using the given data λ and Erlang C model’ formula, we compute the num-
ber of required agents b = min{N |ASA(N,λ, μ) � ASA∗}. We denote the
function

φ :R →N (19)
λ �→ψ(λ) = b(λ,ASA∗, μ) = min{N |ASA(N,λ, μ) � ASA∗}
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– we consider that b is a random variable following a continuous normal distri-
bution and we solve a problem similar to the previous one.

Note. The function φ is a strictly increasing piecewise constant function.

With this new approach, we would like to spot the differences and similarities
between our previous random variables whose distributions are complex and the
random variables following normal distributions.

For easier consideration, we decide to standardize the normal random vari-
able. The resulting program is the following:

min ctx (20)

s.t. ∀t ∈ [[1;T ]], (
Atx − bt

σt
) � F−1

βt∼N (0,1) ((1 − ε)yt)

T∑

t=1

yt = 1

xi ∈ Z
+, ε ∈]0; 1],∀t ∈ [[1;T ]], yt ∈]0; 1]

With bt = min{N |ASA(N,λt, μ) � ASA∗}, computed for each period, and
βt a random variable following a standard normal distribution.

Since we are considering the common normal distribution, the convexity of
the RHS is known for a probability p � 0.5. Hence, the same approximations as
in Sect. 4 are possible and a bit simpler. We obtain similarly the coefficients of
the approximations and the final programs have the exact same form.

The coefficients for the upper bound program are

∀j ∈ [[1;n − 1]], F̂−1
u,βj(p

y) = F−1
β (pyj ) +

y − yj

yj+1 − yj
∗ (F−1

β (pyj+1) − F−1
β (pyj ))

= δj ∗ y + αj (21)

Again, the coefficients for the lower bound program are

∀j ∈ [[1;n]], F̂ −1
l,βj(p

y) = F −1
β (pyj ) + (y − yj) ∗ (F −1

β )′(pyj ) ∗ pyj ∗ ln(p) = δj ∗ y + αj

where (F −1
β )′(pyj ) =

1

F ′
β(F

−1
β )(pyj )

=
1

fβ(F
−1
β (pyj ))

.

6.2 Results Comparison

We compared the costs for the one-step programs of Sect. 4 and two-step pro-
grams of Sect. 6, for several parameters. Results are given in Table 4. Several
other computations were made, with similar results.

We notice that the gap between the bounds is really tight for the one-
step approach and is less satisfactory for the two-step approach. The closer the
bounds, the less confusing it is for the manager to decide for a final solution.
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Table 4. Results for different parameters.

Resolution Parameters Cost functions Gap

λ range μ ASA∗ Risk ε Lower Upper

JCC 1Step 3–43 1 1 10 % 60.44 61.72 2.1 %

JCC 2Step 3–43 1 1 10 % 59.72 64.44 7.9 %

JCC 1Step 3–43 1 1 05 % 61.44 63.44 3.3 %

JCC 2Step 3–43 1 1 05 % 60.44 64.72 7.1 %

JCC 1Step 3–43 1 1 20 % 59.00 60.00 1.7 %

JCC 2Step 3–43 1 1 20 % 57.44 62.44 8.7 %

JCC 1Step 6–46 1 1 05 % 112.2 113.9 1.5 %

JCC 2Step 6–46 1 1 05 % 110.7 115.6 4.4 %

We also notice that the lower bound of the two-step approach is a bit better
than the lower solution of the one-step approach, while this is the contrary for
the upper bounds. On condition that all these solutions are robust, it’s safer to
consider the set of solutions with the cheapest upper bound.

Furthermore, we estimated the robustness of the solutions, like in Sect. 5.3.
The same process as in previous section was used, and we tested the solutions
of both approaches. Table 5 gives some results of our simulations, for which we
extract the percentage of violated scenarios. We ran between 4 and 8 sets of
simulations, each consisting in 100 of generated scenarios.

Table 5. Results for different parameters.

Resolution Parameters Violations

λ range μ ASA∗ Risk ε Lower Upper

JCC 1Step 6–46 1 1 01 % 0.5 0.33

JCC 2Step 6–46 1 1 01 % 2.5 1.67

JCC 1Step 6–46 1 1 05 % 3.4 2

JCC 2Step 6–46 1 1 05 % 6 2.8

JCC 1Step 6–46 1 1 20 % 15 10.75

JCC 2Step 6–46 1 1 20 % 21.25 9

JCC 1Step 6–46 1 1 30 % 20.33 19

JCC 2Step 6–46 1 1 30 % 37.33 16.67

According to Table 5, we notice that the upper bound of our simplified two-
step approach does not respect the accepted risk level. It is in adequation with
the idea of proposing a lower bound of a problem, but it may be confusing
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when we need to actually build a schedule that will indeed respect the set risk
level. This test however did not enable us to show a strong similarity between
our unknown random distribution for Bt (introduced in Sect. 3) and the normal
distribution.

We noticed an interesting feature on one simulation: the costs of the upper
bounds for the two different approaches were very close (118.2 for the two-step
and 118.4 for the one-step), but the number of violated scenarios were very
different. The one-step solution did respect the risk level whereas the two-step
solution was often jeopardised. This is actually the consequence of a different
distribution of the workforce through the possible shifts. The two-step solution
seemed to have chosen a worse distribution than the one-step solution.

7 Conclusion

In this paper we proposed a new procedure for solving the staffing and shift-
scheduling problem in one step with uncertain arrival rates. We introduced the
modelization of arrival rates as continuous normal distributions and we were able
to propose linear approximations and upper and lower bounds for our staffing
and shift-scheduling problem in call centers. The construction of the ψ function
made possible these piecewise approximations. Computational results show that
the two bounds give quite close results and both propose cheaper solutions than
the other chance constraints program, while respecting our targeted Quality of
Service. However we used a general convex shape for approximating the inverse
of the cumulative function, even though the real shape of this function can be
difficult to analyze.

We compared our one-step approach with a two-step approach in order to
check similarities between the unknown distribution of Bt and the normal dis-
tribution. Although we could not bring out strong resemblance between them,
we highlighted some interesting results.

As an improvement of our work in the future, we wish to theoretically analyse
and give a precise model of the shape of y �→ F−1

B (py) in order to improve the
precision of our approximated model. As we can see in our results, the two
bounds we proposed give a better QoS than expected and thus, probably an
over-staffing.

Moreover, we have several possibilities for improving the queuing system
model for the call center, for instance:

– Skills-based call centers: we can assume the agents are specialized in specific
fields and will answer the appropriate calls according to these skills. This
implies the creation of multiple queues which can be connected (see [2] for
example).

– Abandonments and retrials: some people may hung up before being served; if
on purpose, we consider this as abandonments (when people have reach their
patience limit) or if by accident, they may want to call again and we consider
this as retrials.
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Abstract. Evolution strategies belong to the best performing mod-
ern natural computing methods for continuous optimization. This paper
takes a new look at the covariance matrix adaptation, a mechanism which
is central to the algorithm. The adaptation focusses strongly on the sam-
ple covariance. However, as known from modern statistics, this estimate
may be of poor quality if certain conditions are not fulfilled. Unfortu-
nately, this is often the case in practice. This paper compares the estab-
lished methods for the covariance correction in evolution strategies with
the approaches in modern statistics. Furthermore, it introduces and eval-
uates new covariance correction schemes.

Keywords: Evolutionary algorithms · Continuous optimization · Evo-
lution strategies · Covariance · Shrinkage

1 Introduction

Black-Box optimization is an important subcategory of optimization. Over the
years, several methods have been developed - ranging from simple pattern search
over mesh adaptive methods to natural computing, see e.g. [1,8,10]. This paper
focuses on evolution strategies (ESs) which represent well-performing meta-
heuristics for continuous, non-linear optimization. In recent workshops on black-
box optimization, see e.g. [15], variants of this particular subtype of evolutionary
algorithms have emerged as one the best performing methods among a broad
range of competitors stemming from natural computing. Evolution strategies
rely primarily on random changes to move through the search space. These ran-
dom changes, usually normally distributed random variables, must be controlled
by adapting both, the extend and the direction of the movements.

Modern evolution strategies apply therefore covariance matrix and step-size
adaptation – with great success. However, most methods use the common esti-
mate of the population covariance matrix as one component to guide the search.
Here, there may be room for further improvement, especially with regard to com-
mon application cases of evolution strategies which usually concern optimization
in high-dimensional search spaces. For efficiency reasons, the population size λ,
that is, the number of candidate solutions, is kept below the search space dimen-
sionality N and scales usually with O(log(N)) or with O(N). In other words,
c© Springer International Publishing Switzerland 2015
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either λ � N or λ ≈ N which may represent a problem when using the sample
covariance matrix. This even more so, since the sample size used in the estima-
tion is just a fraction of the population size. Furthermore, the result is not robust
against outliers which may appear in practical optimization which has often to
cope with noise. This paper introduces and explores new approaches addressing
the first problem by developing a new estimate for the covariance matrix. To our
knowledge, these estimators have not been applied to evolution strategies before.

The paper is structured as follows: First, evolution strategies are introduced
and common ways to adapt the covariance matrix are described and explained.
Afterwards, we point out a potential dangerous weakness of the traditionally
used estimate of the population covariance. Candidates for better estimates
are presented and described in the following section. We propose and investi-
gate several approaches ranging from a transfer of shrinkage estimators over a
maximum entropy covariance selection principle to a new combination of both
approaches. The quality of the resulting algorithms is assessed in the experimen-
tal test section. Conclusions and possible further research directions constitute
the last part of the paper.

1.1 Evolution Strategies

Evolutionary algorithms (EAs) [10] are population-based stochastic search and
optimization algorithms including today genetic algorithms, genetic program-
ming, (natural) evolution strategies, evolutionary programming, and differential
evolution. As a rule, they require only weak preconditions on the function to be
optimized. Therefore, they are applicable in cases when only point-wise function
evaluations are possible.

An evolutionary algorithm starts with an initial population of candidate solu-
tions. The individuals are either drawn randomly from the search space or are
initialized according to previous information on good solutions. A subset of the
parent population is chosen for the creation of the offspring. This process is
termed parent selection. Creation normally consists of recombination and muta-
tion. While recombination combines traits from two or more parents, mutation
is an unary operator and is realized by random perturbations. After the offspring
have been created, survivor selection is performed to determine the next parent
population. Evolutionary algorithms differ in the representation of the solutions
and in the realization of the selection, recombination, and mutation operators.

Evolution strategies (ESs) [20,22] are a variant of evolutionary algorithms
that is predominantly applied in continuous search spaces. Evolution strategies
are commonly notated as (μ/ρ, λ)-ESs. The parameter μ stands for the size
of the parent population. In the case of recombination, ρ parents are chosen
randomly and are combined for the recombination result. While other forms
exist, recombination usually consists of determining the weighted mean of the
parents [4]. The result is then mutated by adding a normally distributed random
variable with zero mean and covariance matrix σ2C. While there are ESs that
operate without recombination, the mutation process is essential and can be seen
as the main search operator. Afterwards, the individuals are evaluated using the
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function to be optimized or a derived function which allows an easy ranking of
the population. Only the rank of an individual is important for the selection.

There are two main types of evolution strategies: Evolution strategies with
“plus”-selection and ESs with “comma”-selection. The first select the μ-best
offspring and parents as the next parent population, where ESs with “comma”-
selection discard the old parent population completely and take only the best
offspring. Methods for adapting the scale factor σ or the full covariance matrix
have received a lot of attention (see [19]). The main approaches are described in
the following section.

1.2 Covariance Matrix Adaptation

First, the update of the covariance matrix is addressed. In evolution strate-
gies two types exist: one applied in the covariance matrix adaptation evolution
strategy (CMA-ES) [14] which considers past information from the search and
an alternative used by the covariance matrix self-adaptation evolution strategy
(CMSA-ES) [5] which focusses more on the present population.

The covariance matrix update of the CMA-ES is explained first. The CMA-
ES uses weighted intermediate recombination, in other words, it computes the
weighted centroid of the μ best individuals of the population. This mean m(g) is
used for creating all offspring by adding a random vector drawn from a normal
distribution with covariance matrix (σ(g))2C(g), i.e., the actual covariance matrix
consists of a general scaling factor (or step-size or mutation strength) and the
matrix denoting the directions. Following usual notation in evolution strategies
this matrix C(g) will be referred to as covariance matrix in the following.

The basis for the CMA update is the common estimate of the covariance matrix
using the newly created population. Instead of considering the whole population
for deriving the estimates, though, it introduces a bias towards good search regions
by taking only the μ best individuals into account. Furthermore, it does not esti-
mate the mean anew but uses the weighted mean m(g). Following [14],

y(g+1)
m:λ :=

1
σ(g)

(
x(g+1)

m:λ − m(g)
)

(1)

are determined with xm:λ denoting the mth best of the λ particle according to
the fitness ranking. The rank-μ update the obtains the covariance matrix as

C(g+1)
μ :=

μ∑

m=1

wmy(g+1)
m:λ (y(g+1)

m:λ )T (2)

To derive reliable estimates larger population sizes are usually necessary which
is detrimental with regard to the algorithm’s speed. Therefore, past information,
that is, past covariance matrizes are usually also considered

C(g+1) := (1 − cμ)C(g) + cμC(g+1)
μ (3)

with parameter 0 ≤ cμ ≤ 1 determining the effective time-horizon. In CMA-
ESs, it has been found that an enhance of the general search direction in the
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covariance matrix is usual beneficial. For this, the concepts of the evolutionary
path and the rank-one-update are introduced. As its name already suggests, an
evolutionary path considers the path in the search space the population has
taken so far. The weighted means serve as representatives. Defining

v(g+1) :=
m(g+1) − m(g)

σ(g)

the evolutionary path reads

p(g+1)
c := (1 − cc)p(g)

c +
√

cc(2 − cc)μeff

(m(g+1) − m(g)

σ(g)

)
. (4)

For details on the parameters, see e.g. [12]. The evolutionary path gives a general
search direction that the ES has taken in the recent past. In order to bias the
covariance matrix accordingly, the rank-one-update

C(g+1)
1 := p(g+1)

c (p(g+1)
c )T (5)

is performed and used as a further component of the covariance matrix. A normal
distribution with covariance C(g+1)

1 leads towards a one-dimensional distribution
on the line defined by p(g+1)

c . With (5) and (3), the final covariance update of
the CMA-ES reads

C(g+1) := (1 − c1 − cμ)C(g) + c1C
(g+1)
1 + cμC(g+1)

μ . (6)

The CMA-ES is one of the most powerful evolution strategies. However, as
pointed out in [5], its scaling behavior with the population size is not good.
The alternative approach of the CMSA-ES [5] updates the covariance matrix
differently. Considering again the definition (1), the covariance update is a con-
vex combination of the old covariance and the population covariance, i.e., the
rank-μ update

C(g+1) := (1 − 1
cτ

)C(g) +
1
cτ

μ∑

m=1

wmy(g+1)
m:λ (y(g+1)

m:λ )T (7)

with the weights usually set to wm = 1/μ. See [5] for information on the free
parameter cτ .

1.3 Step-Size Adaptation

The CMA-ES uses the so-called cumulative step-size adaptation (CSA) to control
the scaling parameter (also called step-size, mutation strength or step-length) [12].
To this end, the CSA determines again an evolutionary path by summating the
movement of the population centers

p(g+1)
σ = (1 − cσ)p(g)

σ +
√

cσ(2 − cσ)μeff(C(g))− 1
2
m(g+1) − m(g)

σ(g)
(8)
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eliminating the influence of the covariance matrix and the step length. For a
detailed description of the parameters, see [12]. The length of the path in (8)
is important. In the case of short path lengths, several movement of the cen-
ters counteract each other which is an indication that the step-size is too large
and should be reduced. If on the other hand, the ES takes several consecutive
steps in approximately the same direction, progress and algorithm speed would
be improved, if larger changes were possible. Long path lengths, therefore, are
an indicator for a required increase of the step length. Ideally, the CSA should
result in uncorrelated steps.

After some calculations, see [12], the ideal situation is revealed as standard
normally distributed steps, which leads to

ln(σ(g+1)) = ln(σ(g)) +
cσ

dσ

(‖p(g+1)
σ ‖ − μχn

μχn

)
(9)

as the CSA-rule. The change is multiplicative in order to avoid numerical prob-
lems and results in non-negative scaling parameters. The parameter μχn

in (9)
stands for the mean of the χ-distribution with n degrees of freedom. If a random
variable follows a χ2

n distribution, its square root is χ-distributed. The degrees
of freedom coincide with the search space dimension. The CSA-rule works well
in many application cases. It can be shown, however, that the original CSA
encounter problems in large noise regimes resulting in a loss of step-size con-
trol and premature convergence. Therefore, uncertainty handling procedures and
other safeguards are advisable.

An alternative approach for adapting the step-size is self-adaptation first
introduced in [20] and developed further in [22]. It subjects the strategy para-
meters of the mutation to evolution. In other words, the scaling parameter or
in its full form, the whole covariance matrix, undergoes recombination, muta-
tion, and indirect selection processes. The working principle is based on an indi-
rect stochastic linkage between good individuals and appropriate parameters:
On average good parameters should lead to better offspring than too large or
too small values or misleading directions. Although self-adaptation has been
developed to adapt the whole covariance matrix, it is used nowadays mainly to
adapt the step-size or a diagonal covariance matrix. In the case of the mutation
strength, usually a log-normal distribution

σ
(g)
l = σbaseexp(τN (0, 1)) (10)

is used for mutation. The parameter τ is called the learning rate and is usually
chosen to scale with 1/

√
2N . The variable σbase is either the parental scale

factor or the result of recombination. For the step-size, it is possible to apply
the same type of recombination as for the positions although different forms –
for instance a multiplicative combination – could be used instead. The self-
adaptation of the step-size is referred to as σ-self -adaptation (σSA) in the
remainder of this paper.

The newly created mutation strength is then directly used in the mutation
of the offspring. If the resulting offspring is sufficiently good, the scale factor is
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passed to the next generation. The baseline σbase is either the mutation strength
of the parent or if recombination is used the recombination result. Self-adaptation
with recombination has been shown to be “robust” against noise [3] and is used
in the CMSA-ES as update rule for the scaling factor. In [5] it was found that
the CMSA-ES performs comparably to the CMA-ES for smaller populations but
is less computational expensive for larger population sizes.

2 Concerning the Covariance Estimator

The covariance matrix Cμ which appears in (2) and (7) can be interpreted as the
sample covariance matrix with sample size μ. Two differences are present. The
first using μ instead of μ−1 can be explained by using the known mean instead of
an estimate. The second lies in the non-identically distributed random variables
of the population since order statistics appear. We will disregard that problem
for the time being.

In the case of identically independently distributed random variables, the
estimate converges almost surely towards the “true” covariance Σ for μ → ∞.
In addition, the sample covariance matrix is related (in our case equal) to the
maximum likelihood (ML) estimator of Σ. Both facts serve a justification to
take Cμ as the substitute for the unknown true covariance for large μ. However,
the quality of the estimate can be quite poor if μ < N or even μ ≈ N .

This was first discovered by Stein [23,24]. Stein’s phenomenon states that
while the ML estimate is often seen as the best possible guess, its quality may
be poor and can be improved in many cases. This holds especially for high-
dimensional spaces. The same problem transfers to covariance matrix estimation,
see [21]. Also recognized by Stein, in case of small ratios μ/N the eigenstructure
of Cμ may not agree well with the true eigenstructure of Σ. As stated in [17],
the largest eigenvalue has a tendency towards too large values, whereas the
smallest shows the opposite behavior. This results in a larger spectrum of the
sample covariance matrix with respect to the true covariance for N/μ 	→ 0 for
μ,N → ∞ [2]. As found by Huber [16], a heavy tail distribution leads also to a
distortion of the sample covariance.

In statistics, considerable efforts have been made to find more reliable and
robust estimates. Owing to the great inportance of the covariance matrix in data
mining and other statistical analyses, work is still ongoing. The following section
provides a short introduction before focussing on the approach used for evolution
strategies.

3 Approaches for Estimating the Covariance

As stated above, the estimation of high-dimensional covariance matrices has
received a lot of attention, see e.g. [6]. Several types have been introduced, for
example: shrinkage estimators, banding and tapering estimators, sparse matrix
transform estimators, and the graphical Lasso estimator. This paper concen-
trates on shrinkage estimators and on an idea inspired by a maximum entropy
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approach. Both classes can be computed comparatively efficiently. Future resea-
rch will consider other classes of estimators.

3.1 Shrinkage Estimators

Most (linear) shrinkage estimators use the convex combination

Sest(ρ) = ρF + (1 − ρ)Cμ (11)

with F the target to correct the estimate provided by the sample covariance.
The parameter ρ ∈]0, 1[ is called the shrinkage intensity. Equation (11) is used
to shrink the eigenvalues of Cμ towards the eigenvalues of F. The shrinkage
intensity ρ should be chosen to minimize

E
(
‖Sest(ρ) − Σ‖2

F

)
(12)

with ‖ · ‖2
F denoting the squared Frobenius norm with

‖A‖2
F =

1
N

Tr
[
AAT

]
, (13)

see [17]. To solve this problem, knowledge of the true covariance Σ would be
required which is usually unobtainable.

Starting from (12), Ledoit and Wolf obtained an analytical expression for
the optimal shrinkage intensity for the target F = Tr(Cμ)/N I. The result does
not make assumptions on the underlying distribution. In the case of μ ≈ N or
vastly different eigenvalues, the shrinkage estimator does not differ much from
the sample covariance matrix, however.

Other authors introduced different estimators, see e.g. [7] or [6]). Ledoit and
Wolfe themselves considered non-linear shrinkage estimators [18]. Most of the
approaches require larger computational efforts. In the case of the non-linear
shrinkage, for example, the authors are faced with a non-linear, non-convex opti-
mization problem, which they solve by using sequential linear programming [18].
A general analytical expression is unobtainable, however.

Shrinkage estimators and other estimators aside from the standard case have
not been used in in evolution strategies before. A literature review resulted in one
application in the case of Gaussian based estimation of distribution algorithms
albeit with quite a different goal [9]. There, the learning of the covariance matrix
during the run lead to non positive definite matrices. A shrinkage procedure was
applied to “repair” the covariance matrix towards the required structure. The
authors used a similar approach as in [17] but made the shrinkage intensity
adaptable.

Interestingly, (3), (6), and (7) of the ES algorithm can be interpreted as a
special case of shrinkage. In the case of the CMSA-ES, for example, the esti-
mate is shrunk towards the old covariance matrix. The shrinkage intensity is
determined by

cτ = 1 +
N(N + 1)

2μ
(14)
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as ρ = 1 − 1/cτ . As long as the increase of μ with the dimensionality N is
below O(N2), the coefficient (14) approaches infinity for N → ∞. Since the
contribution of the sample covariance to the new covariance in (7) is weighted
with 1/cτ , its influence fades out for increasing dimensions. It is the aim of the
paper to investigate whether a further shrinkage can improve the result.

Transferring shrinkage estimators to ESs must take the situation in which the
estimation occurs into account since it differs from the assumptions in statistical
literature. The covariance matrix Σ = Cg−1 that was used to create the offspring
is known. The sample is based on rank-based selection, however, which differs
from the iid case usually considered. Only if there were no selection pressure,
the sample x1, . . . ,xμ would represent normally distributed random variables.
In this context, it is interesting to note that the argumentation in [12] with
respect to the setting of the CMA-ES parameter argues to choose the parameter
so that the distribution of the random variables remains unchained as long as
no selection pressure occurs. In other words, if p(g) ∼ N (0,C(g)) then also
p(g+1) for both evolution paths, (4) and (8). However, due to sampling and using
the covariance estimate, larger deviations may occur. Applying shrinkage could
improve the situation. However, the choice of the target remains. Most shrinkage
approaches consider diagonal matrices as shrinkage targets. If we were following
that approach, we could choose the matrix F = diag(Cμ). This would leave
the diagonal elements of the sample covariance matrix unchanged decreasing
only the off-diagonal entries. However, a shrinkage towards a diagonal does not
appear to be a good idea for optimizing functions that are not oriented towards
the coordinate system.

3.2 A Maximum Entropy Covariance Estimation

Therefore, we make use of another concept following [25]. Confronted with the
problem of determining a reliable covariance matrix by combining a sample
covariance matrix with a pooled variance matrix, the authors introduced a max-
imum entropy covariance selection principle. Since a combination of covariance
matrices also appears in evolution strategies, a closer look at their approach is
interesting. Defining a population matrix Cp and the sample covariance matrix
Si, the mixture

Smix(η) = ηCp + (1 − η)Si (15)

was considered. In departure from usual approaches, focus lay on the combina-
tion of the two matrixes that maximizes the entropy. To this end, the coordinate
system was changed to the eigenspace of Smix = Cp +(1− η)Si. Let MS denote
the (normalized) eigenvectors of the mixture matrix. The representations of Cp

and Si in this coordination system read

ΦC = MT
SCpMS

ΦS = MT
SSiMS . (16)
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Both matrices are usually not diagonal. To construct the new estimate for the
covariance matrix,

ΛC = diag(ΦC)
ΛS = diag(ΦS) (17)

were determined. By taking λi = max(λC
i , λS

i ), a covariance matrix estimate
could finally be constructed via MSΛMT

S . The approach maximizes the possible
contributions to the principal direction of the mixture matrix and is based on a
maximum entropy derivation for the estimation.

3.3 New Covariance Estimators

This paper proposes a combination of a shrinkage estimator and the basis trans-
formation introduced [25] for a use in evolution strategies. This paper focuses on
the CMSA-ES. The aim is to switch towards a suitable coordinate system and
then either to discard the contributions of the sample covariance that are not
properly aligned or to shrink the off-diagonal components. Two choices for the
mixture matrix represent themselves. The first

Smix = Cg + Cμ (18)

is be chosen in accordance to [25]. The second takes the covariance result that
would have been used in the original CMSA-ES

Smix = (1 − cτ )Cg + cτCμ (19)

and introduces a single step recursion which may be more appropriate for small
population sizes. Both choices will be investigated in this paper. They in turn can
be coupled with several further ways to proceed and to construct the new covari-
ance matrix. Switching towards the eigenspace of Smix, results in the covariance
matrix representations Φμ := MT

SCμMS and ΦΣ := MT
SC

gMS .

1. The first approach for constructing a new estimate of the sample covariance
is to apply the principle of maximal contribution to the axes from [25] and
to determine

Λμ = max
(
diag(Φμ),diag(ΦΣ)

)
(20)

The sample covariance matrix can then be computed as C′
μ = MSΛμMT

S .
2. Another approach would be to discard all entries of Φμ except the diagonal

Λμ = diag(Φμ) (21)

3. A third approach consists of applying a shrinkage estimator like

ΦS
μ = (1 − ρ)Φμ + ρdiag(Φμ). (22)

This approach does not discard the off-diagonal entries completely. The shrink-
age intensity ρ remains to be determined.
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4 Experimental Evaluation

This section describes the experiments that were performed to explore the new
approaches. For our investigation, the CMSA-ES version is considered since it
operates just with the population covariance matrix and effects from changing
the estimate should be easier to discerned. The competitors consist of algorithms
which use shrinkage estimators as defined in (18) to (22). This code is not opti-
mized for performance with respect to absolute computing time, since this paper
aims at a proof of concept. The experiments are performed for the search space
dimensions N = 2, 5, 10, and 20. The maximal number of fitness evaluations is
FEmax = 2 × 104N . The CMSA-ES versions use λ = �log(3N) + 8 offspring
and μ = �λ/4� parents. The start position of the algorithms is randomly chosen
from a normal distribution with mean zero and standard deviation of 0.5. A run
terminates prematurely if the difference between the best value obtained so far
and the optimal fitness value |fbest − fopt| is below a predefined precision set to
10−8. For each fitness function and dimension, 15 runs are used.

4.1 Test Suite

The experiments are performed with the black box optimization benchmarking
(BBOB) software framework and the test suite introduced for the black box
optimization workshops, see [13]. The aim of the workshop is to benchmark
and compare metaheuristics and other direct search methods for continuous
optimization. The framework allows the plug-in of algorithms adhering to a
common interface and provides a comfortable way of generating the results in
form of tables and figures.

The test suite contains noisy and noise-less functions with the position of the
optimum changing randomly from run to run. This paper focuses on the 24 noise-
less functions [11]. They can be divided into four classes: separable functions (func-
tion ids 1–5), functions with low/moderate conditioning (ids 6–9), functions with
high conditioning (ids 10–14), and two groups of multimodal functions (ids 15–24).

4.2 Performance Measure

The following performance measure is used in accordance to [13]. The expected
running time (ERT) gives the expected value of the function evaluations (f -
evaluations) the algorithm needs to reach the target value with the required
precision for the first time, see [13]. In this paper, we use

ERT =
#(FEs(fbest ≥ ftarget))

#succ
(23)

as an estimate by summing up the fitness evaluations FEs(fbest ≥ ftarget) of
each run until the fitness of the best individual is smaller than the target value,
divided by all successfull runs (Fig. 1).
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4.3 Results and Discussion

Due to space restrictions, Figure 3 and Table 1 and Fig. 2 show only the results
from the best experiments which were achieved for the variant which used (22)
together with (19) as the transformation matrix (called CMSA-shr-ES in the
following). First of all, it should be noted that there is no significant advantage
to either algorithm for the test suite functions. Table 1 and Fig. 2 show the ERT
loss ratio with respect to the best result from the BBOB 2009 workshop for
predefined budgets given in the first column. The median performance of both
algorithms improves with the dimension until the budget of 103 – which is inter-
esting. An increase of the budget goes along with a decreased performance which
is less pronounced for the CMSA-shr-ES in the case of the larger dimensional
space. This indicates that the CMSA-shr-ES may perform more favorable in
larger search spaces as envisioned. Further experiments which a larger maximal
number of fitness evaluations and larger dimensional spaces will be conducted
which should shed more light on the behavior. Furthermore, the decrease in
performance with the budget hints at a search stagnation probably due to con-
vergence into local optima. Restart strategies may be beneficial, but since they
have to be fitted to the algorithms, we do not apply them in the present paper.

Figure 3 shows the expected running time for reaching the precision of 10−8

for all 24 functions and search space dimensionalities. In the case of the sepa-
rable functions (1–5), both algorithms show a very similar behavior, succeed-
ing in optimizing the first two functions and exhibiting difficulties in the case
of the difficult rastrigin variants. On the linear slope, the original CMSA-ES
shows fewer expected function evaluations for smaller dimensions which starts
to change when the dimensionality is increased. For the functions with ids 6–9,
with moderate condition numbers, there are advantages to the CMSA-shr-ES,
with the exception of the rotated rosenbrock (9). Most of the functions with high
conditioning, ids 10–12, and 14, can be solved by both variants with slightly bet-
ter results for the CMSA-ES. The sharp ridge (id 13) appears as problematic,
with the CMSA-shr-ES showing fewer fitness evaluations for hitting the various
precisions goals in Table 1.

Interestingly, the CMSA-shr variant seems to perform better for the difficult
multimodal functions, e.g., Gallaghers 101 peak function, a finding which should
be explored in more detail. The results for the last two multimodal functions can
be explained in part in that the computing resources were insufficient for the
optimization. Even the best performing algorithms from the BBOB workshop
needed more resources than we used in our experiments.

Further experiments will be conducted in order to shed more light on the
behavior. Special attention will be given to the choice of the shrinkage factor,
since its setting is unlikely to be optimal and may have influenced the outcome
strongly. Furthermore, the question remains whether the population size should
be increased for the self-adaptation process. Also, larger search space dimension-
alities than N = 20 are of interest.
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Fig. 1. The CMSA-shr-ES. ERT loss ratio (in number of f -evaluations divided by
dimension) divided by the best ERT seen in GECCO-BBOB-2009 for the target ftar-
get, or, if the best algorithm reached a better target within the budget, the budget
divided by the best ERT. Line: geometric mean. Box-Whisker error bar: 25–75 %-ile
with median (box), 10–90 %-ile (caps), and minimum and maximum ERT loss ratio
(points). The vertical line gives the maximal number of function evaluations in a single
trial in this function subset.

Fig. 2. The CMSA-ES. ERT loss ratio (in number of f -evaluations divided by dimen-
sion) divided by the best ERT seen in GECCO-BBOB-2009 for the target ftarget, or,
if the best algorithm reached a better target within the budget, the budget divided by
the best ERT. Line: geometric mean. Box-Whisker error bar: 25–75 %-ile with median
(box), 10–90 %-ile (caps), and minimum and maximum ERT loss ratio (points). The
vertical line gives the maximal number of function evaluations in a single trial in this
function subset.
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Fig. 3. Expected running time ERT in number of f -evaluations) divided by dimension
for target function value as log10 values versus dimension. Different symbols corre-
spond to different algorithms given in the legend of f1 and f24. Light symbols give
the maximum number of function evaluations from the longest trial divided by dimen-
sion. Horizontal lines give linear scaling, slanted dotted lines give quadratic scaling.
Black stars indicate statistically better result compared to all other algorithms with
p < 0.01 and Bonferroni correction number of dimensions (six). Legend: .1: CMSA-S
is CMSA-shr-ES and 2: CMSA is CMSA-ES.
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Table 1. ERT in number of function evaluations divided by the best ERT mea-
sured during BBOB-2009 given in the respective first row with the central 80 % range
divided by two in brackets for different Δf values. #succ is the number of trials that
reached the final target fopt+10−8. 1:CMSA-S is CMSA-shr-ES and 2:CMSA is CMSA-
ES. Bold entries are statistically significantly better compared to the other algorithm,
with p = 0.05 or p = 10−k where k ∈ {2, 3, 4, . . .} is the number following the � sym-
bol, with Bonferroni correction of 48. A ↓ indicates the same tested against the best
BBOB-2009. 1: CMSA-S is CMSA-shr-ES and 2: CMSA is CMSA-ES.
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5 Conclusions

Evolution strategies are well performing variants of evolutionary algorithms used
in continuous optimization. They ultilize normally distributed mutations as their
main search procedure. Their performance depends on the control of the muta-
tion process which is governed by adapting step-sizes and covariance matrices.
One possible improvement concerns the covariance matrix adaptation which
makes use of the sample covariance matrix. In statistical research, this esti-
mate has been identified as not agreeing well with the true covariance for the
case of large dimensional spaces and small sample sizes, or more correctly for
sample sizes that do not increase sufficiently fast with the dimensionality.

While modern approaches for covariance matrix adaptation correct the esti-
mate, the question arises whether the performance of these evolutionary algo-
rithms may be further improved by applying other estimators for the covariance.

This paper took a closer look at covariance estimation in evolution strategies
and provided a comparison with approaches in modern statistics. Furthermore,
it introduced and discussed new adaptation schemes for use in optimization. In
cases, where the fitness function requires highly different eigenvalues and a rota-
tion other than the cartesian coordinate system. Therefore, a switch towards the
eigenspace of the covariance matrix was proposed in this paper and investigated
in experiments on the BBOB test suite. While work remains to be done, this
paper provided an important first step on the way.
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Pedro Henrique González1,2(B), Luidi Gelabert Simonetti1,
Carlos Alberto de Jesus Martinhon1, Edcarllos Santos1,

and Philippe Yves Paul Michelon2

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
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Abstract. Due to the constant development of society, increasing quan-
tities of commodities have to be transported in large urban centers.
Therefore, network planning problems arise as tools to support decision-
making, aiming to meet the need of finding efficient ways to perform such
transportations. This paper reviews a bi-level formulation, a one level
formulation obtained by applying the complementary slackness theorem,
Bellman’s optimality conditions, Big-M Linearization and also presents a
heuristic procedure, through combining a randomized constructive algo-
rithm with an improved Relax-and-Fix heuristic, so high quality solutions
could be found.

Keywords: Network design problem · Dynamic programming · Relax-
and-Fix · Bi-level problem

1 Introduction

The Fixed Charge Network Design Problem (FCNDP) involves selecting a sub-
set of edges from a graph, in such a way that a given set of commodities can
be transported from their origins to their destinations. The problem consists in
minimizing the sum of the fixed costs (due to selected edges) and variable costs
(depending on the flow of goods on the edges). Fixed and variable costs can
be represented by linear functions and arcs are not capacitated. The FCNDP
belongs to a large class of network design problems [1]. In the literature, one can
find several variations of FCNDP [2] such as shortest path problem, minimum
spanning tree problem, vehicle routing problem, traveling salesman problem and
network Steiner problem [1]. Moreover, as illustrated by several books and papers
[2]–[4], generic network design problem has numerous applications. Mathemati-
cal formulations for FCNDP not only represent the FCNDP, but also problems
of communication, transportation, sewage systems and resource planning. It also
appears in other contexts, such as flexible production systems [5] and automated
c© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 173–185, 2015.
DOI: 10.1007/978-3-319-17509-6 12
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manufacturing systems [6]. Finally, network design problems arise in many vehi-
cle fleet applications that do not involve the construction of physical facilities,
but rather model decision problems such as sending a vehicle through a road or
not [7,8].

In network planning problems, not only the simplest versions are NP-Hard
[9,10], but also the task of finding feasible solutions (for problems with budget
constraint on the fixed cost) is extremely complex [11]. Due to the natural dif-
ficulties of the problem, heuristics methods are presented as a good alternative
in the search for quality solutions.

In the paper, we intend to address a specific variation of FCNDP. The
Fixed-Charge Uncapacited Network Design Problem with User-optimal Flows
(FCNDP-UOF), which consists of adding multiple shortest path problems to
the original problem. The FCNDP-UOF can be modeled as a bilevel discrete
linear programming problem. This type of problem involves two distinct agents
acting simultaneously rather than sequentially when making decisions. On the
upper level, the leader (1st agent) is in charge of choosing a subset of edges to
be opened in order to minimize the sum of fixed and variable costs. In response,
on the lower level, the follower (2nd agent) must choose a set of shortest paths in
the network, resulting in the paths through which each commodity will be sent.
The effect of an agent on the other is indirect: the decision of the followers is
affected by the network designed on the upper level, while the leader’s decision
is affected by variable costs imposed by the routes setted in the lower level.

The inclusion of shortest path problem constraints in a mixed integer lin-
ear programming is not straightforward. Difficulties arise both in modeling and
designing efficient methods. As far as we know, there are few works done on
FCNDP-UOF in the literature, and most of them address to a particular vari-
ant. This problem or its variants could be seen on [12]–[18] and has been treated
as part of larger problems in some applications on [19].

The FCNDP-UOF problem appears in the design of a road network for haz-
ardous materials transportation [13,14,16,17]. During the solution of this prob-
lem the government defines a selection of road segments to be opened/closed
to the transportation of hazardous materials assuming that hazmat shipments
in the resulting network will be done along shortest paths. There are no costs
associated with the selection of roads to compose the network but the govern-
ment wants to minimize the population exposure in case of an incident during a
dangerous-goods transportation. This is a particular case of the FCNDP-UOF
problem where the fixed costs are equal to zero.

It is interesting to specify the contributions of each work cited above. Billheimer
and Gray [12] present and formally define the FCNDP-UOF. Kara and Verter
[13] and [14] works focus on exact methods, presenting a mathematical formu-
lation and several metrics for the hazardous materials transportation problem.
Mauttone et al. [15] not only presented a different model, but also presented a Tabu
Search for the FCNDP-UOF. Both, [16] and [17] presented heuristic approaches
to tackle the hazardous materials transportation problem. At last, [18], presented a
extension of the model proposed by Kara and Verter and also a GRASP
metaheuristic.
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This text is organized as follows. In Sect. 2, we start by describing the problem
followed by a bi-level and a one-level formulation, presented by [15]. Then in
Sect. 3 we present our solution approach. Section 4 reports on our computational
results and compare our results with the mathematical formulation and with
heuristic results found in the literature. At last, in Sect. 5 the conclusion and
future works are presented.

2 General Description of the FCNDP-UOF

In this section we describe the problem and present a bilevel and a one-level
formulation for the FCNDP-UOF proposed respectively by [20] and [15] for the
FCNDP-UOF, which we address as MLF Model.

Since the structure of the problem can be easily represented by a graph, the
basic structures to create a network are a set of nodes V that represents the
facilities and a set of uncapacited and undirected edges E representing the con-
nection between installations. Furthermore, the set K is the set of commodities
to be transported over the network, and these commodities may represent phys-
ical goods as raw material for industry, hazardous material or even people. Each
commodity k ∈ K, has a flow to be delivered through a shortest path between its
source o(k) and its destination d(k). The formulation presented here works with
variants presenting commodities with multiple origins and destinations, and for
treating such a case, it is sufficient to consider that for each pair (o(k), d(k)),
there is a new commodity resulting from the dissociation of one into several
commodities.

2.1 Mathematical Formulation

This subsection shows a small review of FCNDP-UOF in order to exemplify the
characteristics and make easier the understanding of it.

The model for FCNDP-UOF has two types of variables, one for the construc-
tion of the network and another related to representing the flow. Let yij be a
binary variable, we have that yij = 1 if the edge [i, j] is chosen as part of the
network and yij = 0 otherwise.

List of Symbol

V Set of nodes.
E Set of admissible edges.
K Set of commodities.
AE Set of arcs obtained by bi-directing the edges in E.
G Associated graph G(V,E).
δ+i Set of all arcs leaving node i.
δ−
i Set of all arcs arriving at node i.

ca Length of the arc a.
e(a) Edge e related to the arc a.
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o(k) Origin node for commodity k.
d(k) Destiny node for commodity k.
gk

ij Variable cost of transporting commodity k through the arc (i, j) ∈ E.
fij Fixed cost of opening the edge [i, j] ∈ E.
yij Indicates whether edge [i, j] belongs in the solution.
xk

ij Indicates whether commodity k passes through the arc (i, j).

Bi-level formulation. FCNDP-UOF is a variation of the FCNDP where each
k ∈ K has to be transported through a shortest path between its origin o(k) and
its destination d(k). This change entails adding new constraints to the general
problem. In FCNDP-UOF, besides selecting a subset of E whose sum of fixed
and variable costs is minimal (leading problem), each commodity k ∈ K must be
transported through the shortest path between o(k) and d(k) (follower problem).
The FCNDP-UOF belongs to the class of NP-Hard problems and can be modeled
as a bi-level discrete integer programming problem [20], as follows:

Bi-level formulation:

min
∑

(i,j)∈E

fijyij +
∑

k∈K

∑

(i,j)∈AE

gk
ijx

k
ij

s.t. yij ∈ {0, 1}, ∀(i, j) ∈ E, (1)

where xk
ij is a solution of the problem:

min
∑

k∈K

∑

(i,j)∈AE

cijx
k
ij

s.t.
∑

j∈δ+(i)

xk
ij −

∑

(j∈δ−(i)

xk
ij = bk

i , ∀i ∈ V,∀k ∈ K, (2)

xk
ij + xk

ji ≤ yij , ∀(i, j) ∈ E,∀k ∈ K, (3)

xk
ij ≥ 0, ∀(i, j) ∈ AE ,∀k ∈ K. (4)

where:

bk
i =

⎧
⎨

⎩

−1 if i = d(k),
1 if i = o(k),
0 otherwise.

Analyzing the model described by constraints (1)–(4), we can see that the set of
constraints (1) ensures that ye assume only binary values. In (2), we have flow
constraints. Constraints (3) do not allow flow into arcs whose corresponding
edges are closed. Finally, (4) imposes the non-negativity restriction of the vari-
ables xk

ij . An interesting remark is that solving the follower problem is equivalent
to solving |K| shortest paths problems independently.
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One-Level Formulation. The FCNDP-UOF can be formulated as an one-level
integer programming problem replacing the objective function and the con-
straints defined by (2), (3) and (4) of the follower problem for its optimality
conditions [15]. This could be done by applying the fundamental theorem of
duality and the complementary slackness theorem [21]. However, optimality con-
ditions for the problem in the lower level are, in fact, the optimality conditions
of the shortest path problem and they could be expressed in a more compact and
efficient way if we consider the Bellman’s optimality conditions for the shortest
path problem [22] and using a simple lifting process [23].

Unfortunately this new formulation loses the interesting feature of being
linear. To bypass this problem a Big-M linearization is applied. After these
modifications, one can write the model as an one-level mixed integer linear pro-
gramming problem, as follows:

min
∑

(i,j)]∈E

fijyij +
∑

k∈K

∑

(i,j)∈AE

gk
ijx

k
ij

s.t.
∑

j∈δ+(i)

xk
ij −

∑

j∈δ−(i)

xk
ji = bk

i , ∀i ∈ V,∀k ∈ K,

(5)

xk
ij + xk

ji ≤ yij , ∀e = [i, j] ∈ E,∀k ∈ K,

(6)

πk
i − πk

j ≤ Me(a) − ye(a)(Me(a) − ca) − 2caxk
ji, ∀a = (i, j) ∈ AE , k ∈ K,

(7)

πk
d(k) = 0, ∀k ∈ K,

(8)

πk
i ≥ 0, ∀i ∈ \{d(k)},∀k ∈ K,

(9)

xk
ij ∈ {0, 1}, ∀(i, j) ∈ AE ,∀k ∈ K,

(10)

ye ∈ {0, 1}, ∀e ∈ E.
(11)

where:

bk
i =

⎧
⎨

⎩

−1 if i = d(k),
1 if i = o(k),
0 otherwise.

The variables πk
i , k ∈ K, i ∈ V , represent the shortest distance between vertex i

and vertex d(k). Then we define that πk
d(k) will always be equal zero. Assuming

that constraints (6), (10) and (11) are satisfied, it is easy to see that constraints
(7) are equivalent to Bellman”s optimality conditions for |K| pairs (o(k), d(k)).
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3 Solution Approach

We address this section to present and explain the Partial Decoupling Heuristic
and the Relax and Fix Heuristics. Before explaining the improved Relax-and-
Fix heuristic, called PDRF, a small review of the Relax-and-Fix heuristic is
presented.

3.1 Partial Decoupling Heuristic

A total decoupling heuristic for the FCNDP-UOF, is based on the idea of dis-
sociating the problem of building a network from the shortest path problem.
However, as discussed in [16], the decoupling of the original problem can provide
worst results than when addressing both problems simultaneously. Therefore,
this algorithm proposes what we call partial decoupling, where certain aspects
of the follower problem are considered when trying to build a solution to the
leading problem. So in order to build the network the following cost is used:
(fij × (1−yij))+(α×gk′′

ij +(1−α)×ca), which means that we consider whether
the is edge open or not, plus a linear combination of the variable cost and the
length of the edge. The α factor works as a mediator of the importance of the
gk′′

ij and ce values. In the beginning of the iterations α prioritizes the variable
cost (gk′′

ij ), while in the end it prioritizes the edge length (ca).After building the
network, a shortest path algorithm is applied to take every product from its ori-
gin o(k) to its destination d(k), considering ca as the edge cost. It is important
to note that gk

ij = qkβij , where qk represents the amount of commodity k and
βij represents the shipping cost through the arc (i, j).

The algorithm presented here is a small variation of the Partial Decoupling
Heuristic presented in [18]. The procedure is further explained on Algorithm1.
The partial decoupling heuristic consists in using the Dijkstra algorithm for the
shortest path problem. Procedures DijkstraLeader and DijkstraFollower, sequen-
tially solve the problem of network construction, followed by the shortest path
problem for each commodity k ∈ K, so that in the end of the procedure, all com-
modities have been transported from its origin to its destination. The DLCost
and DSCost are respectively DijkstraLeader and DijkstraFollower procedures
costs. The notation s ← 〈y, x〉 represents that the solution s is storing the values
of the variables y and x that were just defined by DijkstraLeader and Dijk-
straFollower. The function CloseEdge closes all the edges that at the end of the
DijkstraFollower procedure are open and do not have flow. The random func-
tion returns a random element from the set passed as a parameter. In order to
choose the insertion order of |K| commodities, the procedure uses a candidate
list consisting of a subset of products not yet routed, whose amount is greater
than or equal to γ% times the largest amount of commodity not routed. The
function Rearm(K) adds all commodities to set K and makes all variables return
to its initial state.
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Algorithm 1. Partial Decoupling Heuristic.

Input: G;K;γ
Data: MinCost ← ∞, α ← 1, y ← 0, x ← 0;
begin

K̂ ← K;
for numIterDP in 1 . . . MaxIterDP do

while K �= ∅ do

K ← CandidateList(K, γ);
k′ ← Random(K);
for each e = (i, j) ∈ E do

DLCost(e, k′) ← (fe × (1 − ye)) + (α × gk
′

ij + (1 − α) × ce);

y ← DijkstraLeader(DLCost, k′);
K ← K\{k′};

for each e = (i, j) ∈ E do
DSCost(e) ← ce;

for k ∈ K̂ do
x ← DijkstraFollower(DSCost, k);

s ← 〈y, x〉;
CloseEdge(s);
if Cost(s) < MinCost then

sbest ← s;
MinCost ← Cost(sbest);

α ← α − 1
MaxIterDP

;
Rearm(K);

return sbest

3.2 Relax and Fix Heuristic

Given a mixed integer programming formulation:
⎧
⎨

⎩

min c1z1 + c2z2;
s.t. A1z1 + A2z2 = b;

z1 ∈ Z
n1
+ , z2 ∈ Z

n2
+ ; (12)

without loss of generality, let’s suppose that the variables z1j for j ∈ N1 are more
important than the variables z2j for j ∈ N2, with ni = |Ni| for i = 1, 2.

The idea of the Relax and Fix, consists in solving two (or more) easier LPs
or MIPs. The first one allows us to fix (i.e., zi

j = w, w ∈ Z
ni
+ ) or limit the range

of more important variables, while the second allows us to choose good values
for other variables z2.

In order to do so, first it is necessary to solve a relaxation like:
⎧
⎨

⎩

min c1z1 + c2z2;
s.t. A1z1 + A2z2 = b;

z1 ∈ Z
n1
+ , z2 ∈ R

n2
+ ; (13)

in which the integrality of z2 variables is dropped. Let (z̄1, z̄2) be the corre-
sponding solution. Thenceforth, fix the most important variables, according to



180 P.H. González et al.

criterias based on the problem peculiarity, and solve the new problem. After
that, (z̄1, z̄2) becomes the corresponding solution if the solution of the relaxed
model is feasible. At last, the algorithm returns zH = (z̄1, z̄2).

In terms of algorithm, the Relax and Fix procedure can be seen as:

Algorithm 2. Relax and Fix Heuristic.

Input: n1, n2, N1, N2

Data: MinCost ← ∞
begin

for i = 1 . . . 2 do
for j ∈ N2 do

zji ∈ {0, 1};
s ← SolveLR(N1, N2);
for j ∈ N1 do

if zji = w then

zji ← w;

if Cost(s) < MinCost and Feas(s) = TRUE then

sbest ← s ;
MinCost ← Cost(sbest) ;

return sbest

The function SolveLR(N1, N2) solves the linear relaxation of the Generalized
Model for the sets N1 and N2. The function Feas(s) returns true if the solution
s passed as parameter is a feasible solution to the problem and returns false
otherwise.

3.3 PDRF

In order to adapt the Relax and Fix for the FCNDP-UOF, we separate the set
of variables xk

ij , (i, j) ∈ AE , k ∈ K, in |K| disjoint sets, where |K| is the number
of commodities to be transported. At each iteration, the variables xk

ij ∈ Qk

are defined as binary. After solving the relaxed model, if it returns a feasible
solution, we fix the variables ye, that are both zero and attend to the reduced
cost criterion for variable fixing, as zero.

To choose the order of xk
ij variables to become binary, the procedure uses

a candidate list. In order to choose a commodity, a candidate list consisting of
the commodities whose amount is greater than or equal to γ% times the largest
amount of the commodity whose variables are not set as binary.

The function SolveLR(V,E,K,MinCost) solves the linear relaxation of the
MLF Model for the sets V , E and K, taking into consideration the primal bound
MinCost. The RCVF(yij) function returns TRUE if the value of the linear
relaxation plus the Reduced Cost of yij is greater than the current solution.
Since yij and xk

ij are decision variables in the integer programming model.
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Algorithm 3. PDRF.

Input: G;K;γ
Data: MinCost ← ∞
begin

s ← PartialDecoupling(γ);

MinCost ← Cost(s) ;
K̄ ← K;
while K̄ �= ∅ do

k ← CandidateList(K̄, γ);
for e ∈ E do

xk
e ∈ {0, 1};

s ← SolveLR(V, E, K, MinCost);
for e ∈ E do

if ye = 0 and RCV F (ye) = TRUE then

ye ← 0;

if Cost(s) < MinCost and Feas(s) = TRUE then

sbest ← s ;
MinCost ← Cost(sbest) ;

return sbest

Since the Partial Decoupling Heuristic provides a feasible solution, no recov-
ery strategy was developed in case the current fixing of the variables turns out
to be infeasible.

4 Computational Results

In this section we present computational results for the one-level model and for
the Relax-and-Fix presented in the previous section.

The algorithms were coded in Xpress Mosel using FICO Xpress Optimization
Suite, on an Intel R©Core TM 2 CPU 6400@2.13 GHz computer with 2 GB of RAM.
Computing times are reported in seconds. In order to test not only the perfor-
mance of the one-level model, but also the performance of the presented heuristic,
we used networks data obtained through communication with the authors of [15].

The instances are grouped according to the number of nodes in the graph (10,
20, 30), followed by the graph density (0.3, 0.5, 0.8) and finally the amount of
different commodities to be transported. For the presented tables, we report the
optimum value found by exact model (Opt), the best solution(Best Sol) and best
time(Best Time) reached by selected approach, and the gap value between best
solution and the solution found by the heuristic(GAP). We also reported the
average values for time(Avg Time) and for solutions(Avg Sol). Finally, reported
standard deviation values for time(Dev Time) and solution(Dev Sol). In all three
tables the results in bold represent the best solution found, while the underlined
ones represent that the optimum has been found.

In Tables 1 and 2, we present the results reached for the instances gener-
ated by [15]. For these five instances, three heuristics were compared: the Tabu
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Table 1. Computational results for Tabu Search and GRASP approach.

Tabu Search MLF GRASP

Opt Best Best GAP Avg Avg Dev Dev Best Best GAP

Sol Time Sol Time Sol Time Sol Time

30-0.8-30-001 4830 4927 1110 0.020 4871 332.144 0 9.227 4871 330.908 0.008

30-0.8-30-002 6989 7322 93 0.048 7122.2 328.295 182.39 4.115 6989 325.357 0.000

30-0.8-30-003 7746 8142 565 0.051 8124 337.191 16.43 33.634 8112 321.838 0.047

30-0.8-30-004 8384 8828 1287 0.053 8384 318.062 0 26.091 8384 338.249 0.000

30-0.8-30-005 7428 7502 794 0.010 7442.8 321.434 33.09 17.889 7428 344.367 0.000

Avg 769.8 0.04 327.42 46.38 18.18 332.14 0.01

Table 2. Computational results for Tabu Search and PDRF approach.

Tabu Search MLF PDRF

Opt Best Best GAP Avg Avg Dev Best Best GAP

Sol Time Sol Time Time Sol Time

30-0.800000-30-001 4830 4927 1110 0.02 4830 9.28 0.04 4830 8.36 0

30-0.800000-30-002 6989 7322 93 0.048 7322 29.49 0.02 7322 26.78 0.047

30-0.800000-30-003 7746 8142 565 0.051 8112 29.00 0.03 8112 26.35 0.04

30-0.800000-30-004 8384 8828 1287 0.053 8828 60.51 0.19 8828 54.86 0.05

30-0.800000-30-005 7428 7502 794 0.010 7585 13.07 0.03 7585 11.85 0.02

Avg 769.8 0.03 28.27 0.06 25.64 0.03

Search heuristic proposed by [15], the GRASP heuristic of [18] and the PDRF
algorithm. For the Tabu Search, the average time was high and no optimum solu-
tion was found. When observing the gap value, the table shows that the GRASP
heuristic obtained best solutions in general, however the computational time is
very high in comparison with the PDRF heuristic. Moreover, the standard devi-
ation obtained by GRASP presented high values suggesting the algorithm has a
irregular behavior and for the PDRF algorithm all standard deviation values for
solutions were 0. Although for those instances GRASP outperform the PDRF in
solution quality, when looking the best solutions obtained (3 out of 5), Table 2
shows that PDRF outperform the Tabu Search presented by [15].

In Table 3 were used another 45 instances generated by Mautonne, Labbé
and Figueiredo, whose results were not published by them. For this group of
instances, the computational results suggest the efficiency of PDRF heuristic.
On average, the PDRF was 20 times faster than GRASP. Also, PDRF found 29
optimal solutions, while GRASP found only 7 optimal solutions. Besides that,
the PDRF also improved or equaled GRASP results for 40 (36 improvements)
out of 45 instances.

4.1 Statistical Analysis

In order to verify whether or not the differences of mean values obtained by the
evaluated strategies shown in Table 3 are statistically significant, we employed
the Wilcoxon-Mann-Whitney test technique [24]. This test could be applied to
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Table 3. Computational results for GRASP and PDRF approach.

compare algorithms with some random features and identify if the difference of
performance between them is due to randomness.

According to [24], this statistical test is used when two independent samples
are compared and whenever it is necessary to have a statistical test to reject the
null hypothesis, with a significance θ level (i.e., it is possible to reject the null
hypothesis with the probability of (1 − θ × 100%)). For the sake of this analysis
we considered θ = 0.01. The hypotheses considered in this test are:

– Null Hypothesis (H0): there are no significant differences between the solutions
found by PDRF and the original method;

– Alternative Hypothesis (H1): there are significant differences (bilateral alter-
native) between the solutions found by PDRF and the GRASP.

In the 50 instances tested, GRASP found 4 better solution then PDRF, while
PDRF found 39. Concerning the statistical significance, the null hypotesis was
reject for all 4 wons of the GRASP and for 35 of the 39 better solutions found by
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PDRF. We notice that almost all differences of performance (86% of the tests)
are statistically significant. We can also observe that in 77% of tests the PDRF
obtained statisticaly significant results. These results indicate the superiority of
the proposed strategy.

5 Conclusion and Future Works

We proposed a new algorithm for a variant of the fixed-charge uncapacitated
network design problem where multiple shortest path problems are added to
the original problem. In the first phase of the algorithm, the Partial Decoupling
heuristic is used to build a initial solution. In the second phase, a Relax and Fix
heuristic is applied to improve the solution cost.

The proposed approach was tested on a set of instances grouped by graph
density, number of nodes and commodities. Our results have shown the efficiency
of PDRF in comparison with a GRASP and Tabu Search heuristic, once that the
proposed algorithm presented best average time for all instances, often reaching
optimum solutions. In a few cases, GRASP reached best solution values, however
the computational time spend was not good when compared with PDRF.

As future work, we intend to work on exact approaches as Benders decomposi-
tion and Lagrangian relaxation since both are very effective for similar problems,
as could be seen in [25,26].
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18. González, P.H., Martinhon, C.A.D.J., Simonetti, L.G., Santos, E., Michelon,
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Abstract. A hybrid production system is considered where both manufacture
of new product and remanufacture of returned items is performed. Due to
consumer perception, new and remanufactured products are treated as different
products with different costs and selling prices as well as separate demand
streams. Remanufactured products have a higher stock out risk because the
remanufacturing capacity is limited by the amount of returns available for
remanufacture. One way to cope with this risk is to use a downward substitution
strategy, i.e. a higher valued manufactured product is substituted for an out of
stock lower valued remanufactured product. We formulate this control problem
as an infinite-horizon hybrid manufacturing/remanufacturing system with
product substitution under stochastic demand and returns. We model it as a
Markov Decision Process in order to determine the optimal manufacturing and
remanufacturing decisions under product substitution. The effects of stochastic
demand/return distributions on the profitability of the substitution strategy are
investigated through numerical experimentation.

Keywords: Product substitution � Remanufacturing �Manufacturing � Inventory
control � Markov decision process

1 Introduction

In traditional production systems, manufacturers use virgin raw materials and parts
during the manufacturing process. Once the products’ ownership is transferred to the
customers, it is usually the customer’s responsibility to return or dispose of the products
at the end of their usable life. However, nowadays, more manufacturers are collecting
back their products from customers after usage or at the end of their life due to both
environmental regulations and concerns as well as the potential economic benefits of
product recovery. Product recovery in the form of remanufacturing can substantially
reduce the resource consumption and waste disposal resulting in savings in material,
energy and disposal costs.

Cost savings was the primary driver for manufacturers as they began to consider
remanufacturing operations. With increased product returns, the profitability of these
systems increase [1]. However, as governments tighten environmental laws and
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regulations, many manufacturers are required to incorporate product recovery activities
where a significant portion of production uses recovered material. While manufacturers
often consider remanufacturing as an obligation forced by government regulations, in
recent years, they have also realized that customers may also prefer remanufactured
products for the price advantage as well as environmental consciousness.

In this study, we consider inventory control of a hybrid manufacturing/remanu-
facturing system, which has two modes of supply in order to satisfy customer demand:
manufacture of new items and remanufacture of returned items. Production planning
and control focuses on the effective utilization of resources in order to satisfy customer
demand in a cost-efficient manner. In a hybrid system where the new and remanu-
factured items are viewed as not having the same value, there are typically three types
of inventories: manufactured items, returned items and remanufactured items. Here, we
consider product substitution among manufactured and remanufactured items to miti-
gate lost sales (backorders) in a cost effective way.

Typically in hybrid systems studies, the manufactured and remanufactured items
are assumed to be alike; therefore they are stored in the same serviceable inventory and
used to satisfy a common demand stream. In some cases though, customers may
perceive a lower quality in a remanufactured item and expect to pay less than for a new
item, resulting in a segmented market among the items. When manufactured and
remanufactured items are non-identical, product substitution may be used in case of a
stock-out. Under ‘upward substitution’ a customer demanding a new item agrees to
accept a remanufactured one. This is related to customer-driven substitution such that
when a customer’s first-choice product is out-of-stock, he/she buys a similar product
within same category [2]. Alternatively, ‘downward substitution’ (also called one-way
or firm-driven substitution [2]) is when a higher-value item is substituted for a stocked-
out lower-value item. This strategy is commonly used by automotive spare part
manufacturers, e.g. for parts such as injectors and engine starters [3].

In this study we determine the optimal manufacturing and remanufacturing decisions
for a periodically reviewed stochastic hybrid manufacturing/remanufacturing system
under downward substitution, extending earlier research of Ahiska and Kurtul [3]
by numerically investigating how the profitability is affected by the characteristics of the
demand/return distributions.

2 Literature Review

Many producers are taking back used items after usage and recovering them through
product recovery options such as remanufacturing due to environmental concerns as
well as regulatory obligations and economic benefits. Hybrid manufacturing and
remanufacturing systems are more difficult to control than the traditional manufacturing
systems due to many factors. First, the flow of product returns in terms of quantity and
timing is uncertain. Second, the manufacturing and remanufacturing processes are
usually interrelated either through sharing common production resources (such as
storage area, production line or workforce) or production of substitutable products.
Hence, for efficient control of manufacturing and remanufacturing systems, the coor-
dination between them is essential.
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Inventory management of hybrid production systems has received significant
attention in the literature over the last couple of decades. However, the studies that
specifically analyze the use of product substitution strategies in these systems are
scarce. Most of these studies consider a single-period setting. Inderfurth [4] investigates
analytically the structure of optimal inventory policy for a hybrid system under one-
way product substitution in a single-period setting. Kaya [5] considers partial substi-
tution of manufactured and remanufactured products in a single-period newsvendor
setting. Jin et al. [6] use a threshold level to control when to offer new products as
substitutes for remanufactured products in a single-period setting. Bayindir et al. [7]
use a continuous-review inventory policy to control the hybrid system, and they
determine whether the remanufacturing option is profitable under one-way substitution.
Their study is extended by adding a capacity constraint for the single-period version of
the problem, and they investigate the effect of substitution on the optimal utilization of
remanufacturing [8].

Some work on hybrid systems with substitution assumes deterministic demand and
returns. Pineyro and Viera [9] formulate an economic lot-sizing problem where new
items can substitute for remanufactured items. They find optimal or near optimal
solutions using a Tabu-search procedure. Li et al. [10] propose a dynamic program to
minimize manufacturing, remanufacturing, holding and substitution costs for an un-
capacitated multi-product production planning problem with time-varying demands in
a finite time horizon with no disposal or backlog. In another study by Li et al. [11], the
finite-horizon multi-period two-product capacitated dynamic lot sizing problem is
analyzed for deterministic time-varying demands. They develop a dynamic program-
ming approach to provide the optimal solution to the capacitated production planning
model with remanufacturing and substitution.

Inventory models with two-way substitution is another stream of research that
enable consumers to substitute products within the same category. Korugan and Gupta
[12] is among the earliest work on product substitution in a stochastic hybrid system.
They study a system where the demand for a product is satisfied with either new items
or remanufactured items. In a later work, Korugan [13] considers alternative substi-
tution policies for hybrid manufacturing/remanufacturing system using an MDP.

Recently, Ahiska and Kurtul [3] consider a multi-period periodic-review inventory
control problem for a hybrid manufacturing/remanufacturing system with product
substitution and find the optimal inventory policies both with and without one-way
product substitution using discrete-time MDPs under stochastic demands and returns.
In this paper, we extend the work of Ahiska and Kurtul [3] by analyzing the profit-
ability of the downward substitution strategy under different demand and return
settings.

3 Problem Description

We consider a recoverable system with two production processes: manufacturing and
remanufacturing. Manufacturing produces new items using externally supplied virgin
materials while remanufacturing uses returned items to produce remanufactured items.
Remanufactured items are viewed as having an inferior value by customers and
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therefore sold for a lower price than new items and have a different demand profile.
Hence, there is a segmented market for manufactured and remanufactured items.

Demand is stochastic, which may cause excessive inventory to build up or lost sales
to occur if poor production decisions are made. Downward substitution is considered to
reduce the lost sales risk for remanufactured products such that when the remanufac-
tured item is out of stock, a new item is sold to the customer at the remanufactured item
price (i.e. the discounted price). No explicit cost associated with substitution is con-
sidered other than the opportunity cost of selling the manufactured item at the dis-
counted price.

Figure 1 illustrates the hybrid system. There are three stocking points: recoverable
inventory that includes returned used items; remanufactured inventory; and manufac-
tured inventory. We assume ‘undesirable’ returns are first culled from the good quality
returned items before coming into the model. The returned items are disposed if the
recovered inventory is full, otherwise they are stored for later remanufacture. After
manufacturing and remanufacturing operations, the resulting items are stored in their
respective inventories. During each period, demand for the manufactured and reman-
ufactured items reduce the corresponding inventory levels. At the beginning of every
period, the quantities to manufacture and remanufacture must be determined.

This problem was formulated by Ahiska and Kurtul [3] as a discrete-time MDP to
find the optimal manufacturing and remanufacturing decisions. The MDP model for-
mulation is briefly described below.

The state of the system in a period, denoted by S, is represented by three variables
Iu, Ir, and Im which are the inventory levels of used (i.e. recoverable), remanufactured
and manufactured items, respectively. These inventory levels are bounded as Imin

m �
Im � Imax

m ; Imin
r � Ir � Imax

r and 0� Iu � Imax
u . If Imin

j \0 then backordering of the

demand is allowed up to �Imin
j for j = r,m.

In this system we have to make the decisions of how many units to manufacture
(dm), and to remanufacture (dr). For each system state, we find the feasible values for
(dm, dr) decisions considering the production and storage capacities.

Given that the current state is S = (Iu, Im, Ir), the manufacturing and remanufac-
turing decisions are (dm, dr), and manufactured item demand (Xm), remanufactured item

Fig. 1. Hybrid manufacturing/remanufacturing system under downward substitution.
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demand (Xr) and returns (Y) take the values xm, xr, y, respectively, the next state will be
S

0 ¼ I
0
u; I

0
m; I

0
r

� �
, where I

0
u; I

0
m, and I

0
r are calculated as follows.

First, the inventory level for used items decreases for each unit sent into the
remanufacturing process and increases by the amount of returned used items, but
cannot exceed the used item storage capacity, as shown below.

I 0u ¼ min Iu � dr þ y; Imax
u

� �

Next, the inventory levels for both products at the end of the period depend on
current inventories, demand for corresponding items, and manufacturing and reman-
ufacturing decisions, as well as on the product substitution strategy such that unfulfilled
remanufactured item demand is met from the manufactured item stock if stock is
available after first satisfying the demand for manufactured items. The amount of
remanufactured item demand satisfied from new item stock, i.e. substitution, f, is
computed as follows.

Clearly, if Ir > xr (no shortage for remanufactured items) or if Im < xm (no manu-
factured items left in stock after satisfying manufactured item demand), no product
substitution will occur (f = 0). In this case, the amount of remanufactured item demand
that remains unsatisfied, denoted as l, is l = max (xr − Ir, 0). If Ir < xr (i.e. there is a
shortage of xr − Ir remanufactured items) and if Im > xm, then there are Im − xm items
left in manufactured item stock that can be used to satisfy the remanufactured item
shortage. In this case, the amount of substitution is f = min (Im − xm, xr − Ir) and the
amount of remanufactured item demand that remains unsatisfied after product substi-
tution occurs is l = max (xr − Ir − f, 0). General formulations for f and l that cover all
the ‘if’ conditions defined in this paragraph are: f = [ min (Im − xm, xr − Ir)]

+ and
l = [xr − Ir − f]+ where [a]+ = max (a, 0).

Given the substitution amount f and unsatisfied remanufactured item demand l, the
inventory levels for manufactured and remanufactured items at the beginning of next
period are:

I 0m ¼ max Im � xm � f ; Imin
m

� �þ dm

I 0r ¼ max Ir � xr;�l; Imin
r

� �þ dr

The state transitions under a no substitution strategy can be simply obtained by
setting f = 0 in the formulations above.

The transition probability from S to S′ under decision (dm, dr), represented by P
[S, S′, (dm, dr)] equals the sum of the probabilities of occurrence for demands and
returns, (xm, xr, y), that lead to transition from S to S′ under decision (dm, dr). The
objective is to maximize the expected profit per period defined as the total revenue from
sales minus the total cost including manufacturing and remanufacturing cost, holding
costs for different stocking points, backordering cost, lost sales cost and disposal cost.

The following notation is used.

pm: unit price for manufactured product
pr: unit price for remanufactured product
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sm: setup cost for manufacturing
sr: setup cost for remanufacturing
cm: unit manufacturing cost
cr: unit remanufacturing cost
hm: unit holding cost per period for manufactured product
hr: unit holding cost per period for remanufactured product
hu: unit holding cost per period for used (returned) product
bm: unit backorder cost per period for manufactured product
br: unit backorder cost per period for remanufactured product
lm: unit lost sales cost for manufactured products
lr: unit lost sales cost for remanufactured products
k: unit disposal cost for used products
DSP: disposal amount for the current period

DSP ¼ Iu � dr þ y� Imax
u

� �þ

LSm: manufactured item lost sales in the current period

LSm ¼ Imin
m � ðIm � xmÞ

� �þ

LSr: remanufactured item lost sales in the current period

LSr ¼ Imin
r þ l

� �þ

BOm: backordered manufactured item demand in the current period

BOm ¼ �max Im � xm; Imin
m

� �
if Im\xm

0 otherwise

�

BOr: backordered remanufactured item demand in the current period

BOr ¼ min l;�Imin
r

� �

Qm: number of manufactured items sold in the current period

Qm ¼ xm if xm\Im
max Im; 0ð Þ otherwise

�

Qr: number of remanufactured items sold in the current period

Qr ¼
xr if xr\Ir

max Ir; 0ð Þ otherwise

�
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δm(dm): cost of manufacturing dm units

dmðdmÞ ¼
sm þ cmdm dm [ 0

0 dm ¼ 0

�

δr(dr): cost of remanufacturing dr units

drðdrÞ ¼
sr þ crdr dr [ 0

0 dr ¼ 0

�

Given that the system state is S, demand is xm and xr, y units of return occur, and
decisions dr and dm are made, the profit is calculated as:

Profit S; dm; drð Þ; xm; xr; yð Þð Þ ¼ pr Qr þ fð Þ þ pmQm

� dðdmÞ þ dðdrÞ½ � � hm I 0m
� �þþhr I 0r

� �þþ huI
0
u

h i

� bmBOm þ brBOr½ � � lmLSm þ lrLSr½ � � kDSP:

Then the expected profit in a given period is calculated as:

E Profit S; dm; drð Þð Þ½ � ¼
X

xm;xr ;y

P xm; xr; y½ �Profit S; dm; drð Þ; xm; xr; yð Þð Þ

where P[xm, xr, y] represents the joint probability mass function for the random vari-
ables Xm, Xr, and Y.

The formulation is solved with a variant of Howard’s [14] policy iteration method
using the fixed policy successive approximation method by Morton [15] for compu-
tational efficiency.

4 Numerical Experiments and Results

In this section, we analyze the profitability of using the downward substitution strategy
under different demand/return distributions. For the experimentation, we consider a
product produced by an international automotive spare part manufacturer. Due to
privacy concerns, the data is scaled and the identity of the firm is kept anonymous. Due
to the vigorous competition in the sector, over the last few years the firm noticed that
the lost sales due to stock-outs of remanufactured products were resulting in losses of
customers and damage to the image of the firm in the market. Hence, customer sat-
isfaction is very important, and in order to guarantee a high level of customer satis-
faction, the company is considering a substitution strategy. The product considered is
an ‘engine starter’ which is a type of electric motor. This product family was among the
firm’s first production, and a better service level for this product is considered to be
prestigious by the manufacturer [3].

The unit selling prices for the manufactured and remanufactured engine starter are
68.39€ and 51.85€, respectively, and the unit manufacturing and remanufacturing costs
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are 22.74€ and 17.46€. The manufacturer tolerates the backordering of manufactured
item demand up to a certain level (i.e. Im

min < 0) while backordering of remanufactured
item demand is not allowed (i.e. Ir

min = 0) due to the risks associated with receiving
returns. If some remanufactured item demand remains unsatisfied after substitution,
then it is lost. Unit backordering cost/period for the manufactured item is calculated as
20 % of its unit price while the lost sales cost for both items are calculated as 25 % of
the corresponding unit price. The annual holding costs for both items are calculated as
20 % of the corresponding unit cost, and the holding cost for a used item is considered
to be half of the holding cost for a remanufactured item. The lead times for manu-
facturing and remanufacturing are both one period. No set up cost exists for either
production option.

The first set of experiments is designed to investigate how profitability of product
substitution is affected by the means of the demand and return distributions. We use
bounded discrete stochastic distributions with three different shapes (Uniform, Normal,
and right skewed) for manufactured and remanufactured item demands and used item
returns. The mean of each different-shape distribution is assigned three different values:
low, medium and high, as shown in Table 1.

In all, 27 combinations of the means are created by assigning the different levels of
the mean of the distribution for manufactured item demand (E[Xm]), remanufactured
item demand (E[Xr]) and used item returns (E[Y]). These 27 combinations coupled with
the three distribution shapes yield a total of 81 scenarios. For each scenario, the optimal
expected profit per period for the hybrid system under substitution and no substitution
strategies is determined by solving the MDP as defined in the previous section.

The improvements in profit gained by substitution vs. no substitution are reported
in Table 2. We make the following observations: When the mean of remanufactured
item demand is at least as much as the mean of returns (E[Xr] ≥ E[Y]), the substitution
strategy results in additional profit for the manufacturer. Among the 54 scenarios where
E[Xr] ≥ E[Y], the highest improvement in profit was 85 %. When returns are sub-
stantially higher than the remanufactured item demand (i.e. E[Xr] < E[Y]), the use of
substitution is not economically justified. It caused loss of profit but only up to 3 %
among the 27 scenarios we considered (see Table 2). Further experimentation (not
shown here) reveals that if the average returns exceed the demand but at a lower level
than the amounts shown in Table 1, substitution is still profitable.

It is worth noting that the mean of manufactured item demand does not affect the
amount of change in profit by substitution. However because the profit of manufac-
turing is lower for lower manufactured item demand, a same amount of change in profit
by substitution corresponds to a higher percent change of profit over no substitution

Table 1. Mean values for different distributions.

Mean

Distribution shape High Medium Low
Uniform (Uni) 2.00 1.50 1.00
Normal (Nrm) 2.51 2.00 1.50
Right skewed (RS) 1.20 1.05 0.54
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case as the mean of manufactured item demand decreases. In short, the profitability of
product substitution strategy is mainly dependent on the size of remanufactured item
demand relative to that of returns.

Clearly, substitution results in a higher improvement in profit when the expected
remanufactured item demand gets higher and/or the expected return gets lower. For
representative results supporting this comment, see Fig. 2, which plots the %
improvements in profit by substitution for nine scenarios with the low level of mean
manufactured item demand and the Normal shaped distribution, and the mean of
remanufactured item demand and returns as low, medium and high. As the ratio of the

Table 2. The improvement in profit by substitution for different combinations of E[Xm], E
[Xr] and E[Y] under different-shape distributions.

Means The improvement in profit by substitution (in absolute
value-AV and %)

E[Xm] E[Xr] E[Y] Uniform Normal Right skewed
AV % AV % AV %

high High High 2.63 1.75 −0.01 0.00 2.00 2.29
high High Med 20.26 15.25 20.90 12.00 6.41 7.63
high High Low 40.77 37.11 41.64 27.61 27.06 43.84
high Med High −1.43 −1.06 −1.36 −0.77 −0.44 −0.53
high Med Med 1.57 1.16 0.01 0.00 1.80 2.18
high Med Low 20.33 17.49 20.49 13.02 20.86 32.81
high Low High −1.45 −1.24 −1.27 −0.80 −1.06 −1.63
high Low Med −1.45 −1.23 −1.26 −0.79 −1.07 −1.64
high Low Low 0.57 0.47 0.03 0.02 0.74 1.11
med High High 2.61 2.03 −0.01 0.00 1.99 2.47
med High Med 20.17 18.23 20.93 13.86 6.40 8.30
med High Low 40.66 46.42 41.68 32.63 27.07 49.31
med Med High −1.43 −1.27 −1.36 −0.89 −0.45 −0.59
med Med Med 1.56 1.38 0.01 0.01 1.79 2.37
med Med Low 20.27 21.58 20.52 15.28 20.85 36.74
med Low High −1.45 −1.53 −1.28 −0.95 −1.08 −1.86
med Low Med −1.45 −1.51 −1.27 −0.94 −1.09 −1.87
med Low Low 0.56 0.57 0.03 0.02 0.73 1.22
low High High 2.60 2.44 0.00 0.00 2.00 3.47
low High Med 20.09 22.73 21.08 16.43 6.42 11.84
low High Low 40.57 62.10 41.85 39.87 27.11 84.82
low Med High −1.43 −1.58 −1.35 −1.04 −0.44 −0.82
low Med Med 1.54 1.70 0.02 0.02 1.81 3.42
low Med Low 20.17 28.14 20.68 18.54 20.90 61.82
low Low High −1.45 −2.00 −1.27 −1.13 −1.06 −3.03
low Low Med −1.45 −1.97 −1.27 −1.12 −1.07 −3.02
low Low Low 0.55 0.73 0.04 0.03 0.74 2.01
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mean remanufactured item demand to the mean returns increases from lowest (E[Xr] =
low, E[Y] = high) to highest (E[Xr] = high, E[Y] = low), the percent change in profit
when using product substitution increases from −1.1 % to 39.9 %.

We performed a second set of experiments in order to clearly see how the economic
attractiveness of the substitution varies as the return distribution changes. For this
purpose, nine different return distributions are created with different coefficients of
variations (CVs) ranging from 0.2 to 1.0 with an increment of 0.1, which are plotted in
Fig. 3. All the distributions have a standard deviation of 0.5, hence they differ only by
their mean, which ranges from 2.5 to 0.5 as CV changes from 0.2 to 1.0. The stochastic
distribution with CV of 0.6 is used for the demand distributions for remanufactured and
manufactured items in this set of experiments.

Figure 4 shows how the expected profit for the hybrid system with/without product
substitution changes as the mean of the return distribution decreases from 2.5 to 0.5
(i.e. CV increases from 0.2 to 1). The expected profit is also plotted separately for the
no substitution case.

The following observations are made: Recall that the CV of remanufactured item
demand distribution was set 0.6. Hence, in all the scenarios with return distribution’s
CV < 0.6, the mean of return is higher than the mean of remanufactured item demand
(E[Y] > E[Xr]). When CV < 0.6, the use of substitution does not provide substantial
additional profit over no substitution case (only around 0.2 %) since the amount of
returns available are typically sufficient to meet remanufactured item demand. However
when CV exceeds 0.6 (i.e. E[Y] goes below E[Xr]), a decrease in returns increases the
economic attractiveness of product substitution from 0.6 % to nearly 28 %.

Another observation is that when CV < 0.6, an increase in CV (i.e. decrease in
expected returns) results in an increase in remanufacturing profit while the effect is
opposite for CV > 0.6. This can be explained as follows: For CV < 0.6, the expected
remanufacturing amount (consequently, the sales revenue for remanufactured items and
the remanufacturing cost) remains unchanged as expected returns decrease because the
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returns are sufficient to meet the remanufactured item demand and the expected
remanufacturing amount is just as much as remanufactured item demand. In this case
the increase in profit for remanufacturing is explained by the significant amount of
savings obtained in disposal cost since less disposal is needed as returns get lower (see
Fig. 5). For CV > 0.6 (i.e. returns are not sufficient to meet all remanufactured item
demand), a decrease in expected returns decreases the profit for remanufacturing due to
a decrease in revenue from remanufactured items and an increase in the lost sales cost
(see Fig. 5).
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Fig. 3. The return distributions with different coefficient of variations (CVs).
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5 Conclusions

We analyze a periodically reviewed stochastic manufacturing/remanufacturing system
where the remanufactured items have an inferior value from customers’ point of view
compared to newly manufactured items. A downward product substitution strategy is
employed in case of a stock-out for remanufactured items. The problem is formulated
as a discrete-time MDP in order to find the optimal inventory policies for both with and
without product substitution. Through a numerical study based on real data for a
product produced by an automotive spare part manufacturer, the profitability of sub-
stitution is investigated under different demand and return distributions. The results
show that the substitution strategy is economically attractive when the expected
demand for remanufactured items is at least as much of expected returns, and the
improvement in profit by substitution increases significantly as the size of returns
decreases relative to the size of remanufactured item demand. These results should
encourage the manufacturers operating hybrid systems to use the product substitution
strategy since it may increase significantly their profit along with improving the service
level by reducing the expected lost sales for remanufactured parts.
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research fund grant no. 13.402.002 and the Center for Additive Manufacturing and Logistics at
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Abstract. Oil and gas companies’ earnings are heavily affected by prices
fluctuations of crude oil, refined products and natural gas. The use of hedging
strategies should take into account the company’s risk tolerance, which
assessment has no consensual technique. The present research evaluates the risk
tolerance of an oil and gas company with four approaches: Howard’s, Delquie’s,
CAPM and a risk assessment questionnaire. Monte Carlo simulation with a
Copula-GARCH prices modeling and stochastic optimization are used to find
optimal derivatives portfolios according to the risk tolerances previously
obtained. The hedging results are then evaluated with a multi-criteria model
showing how this analysis can have a decisive role in the final hedging
recommendation.

Keywords: Portfolio hedging � Risk tolerance �Multi-criteria decision analysis

1 Introduction

Deregulation of the United States energy markets in the 1970’s provided the ingredi-
ents for the steady growth of derivatives in the energy markets [1]. Several studies have
focused on the pros-and-cons of hedging practices in oil and gas (O&G) companies,
but in general, there exists a common agreement on lower earnings unpredictability [2].
The introduction of the decision-maker utility as a decision criterion [3] assured the
foundations for risk and return concepts across economic thinking, including the early
use of utility functions in portfolio optimization [4].

This research evaluates the hedging options based on risk tolerance parameters and
confronts the results with a multi-criteria evaluation model to answer the following
question: which amount (if any) should an O&G company hedge with derivatives?

The remainder of this paper is organized as follows. Section 2 describes the problem
formulation, Sect. 3 presents the price variables stochastic modeling and correlation
fitting, Sect. 4 describes the risk tolerance evaluation, Sect. 5 shows the results obtained
by stochastic optimization with different risk tolerances, Sect. 6 presents a multi-criteria
evaluation of eight hedging options against four criteria (payout exposure, downside
gains, upside gains, and risk premium), and Sect. 7 presents the conclusions.

© Springer International Publishing Switzerland 2015
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2 Problem Formulation

The case study O&G company is organized in three business units: the Exploration and
Production unit (E&P) produces only a partial amount of the crude oil the Refining and
Distribution (R&D) unit needs (crude oil buying is regular), and the Natural Gas unit
(NG) imports natural gas from foreign suppliers and sells it to final consumers.
A corporate risk measure to align hedging operations with the company supposed risk
preferences do not exist. Since this research is focused on commodities price risk, we
take as reference the company’s revenues affected in first instance by price fluctuations,
i.e. the gross margin, calculated as the difference between the value of the goods sold
(crude oil, refined products and natural gas) and the value of acquired goods (crude oil
and natural gas). The hedging horizon considered is one year in line with next year
budget.

2.1 Physical Earnings Formulation

Crude oil production in oilfields of the Exploration and Production (E&P) business unit
takes place under the two most applied agreements, which regulate the division of
profits between O&G companies and host governments [5]: “Production Sharing
Contracts” (PSC) and “Concessions” (CON). PSC are common in African and non-
OECD countries and under this regime the O&G company receives a defined share of
the production remaining after cost recovery, the Entitled Production quantity ep (in
barrels of crude oil, bbl). In CON regimes, the O&G company receives an earning
e resulting from a defined percentage of the crude oil market price p affecting the
produced quantities. The general formula for the E&P earnings for both regimes me

(in $) is:

me ¼ eppþ e ð1Þ

The crude oil price has two major world reference indexes: the Brent price in
Europe and the Western Texas Intermediate price (WTI) in the U.S.A. The Refining
and Distribution (R&D) business unit is composed by the refining industrial complex
and the distribution network (wholesale and retail). Since any change in the refined
products price is quickly transferred to the final consumer, the price risk affects
essentially the refining business, which operates with very narrow gross margins,
resulting from the difference between the price’s outputs (refined products) and inputs
(crude oil). Due to the high prices volatility, negative refining margins can occur for
long periods, especially in older and less complex refineries, explaining why some of
them are being shut down. This makes it difficult to anticipate the yearly earnings of a
refinery and justifies why hedging is a common practice [6]. The refining gross margin
mr (in $/bbl) is given by:

mr ¼
Xn
i¼1

yixi � p

 !
qr ð2Þ
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where yi is the yield (the percentage of each i refined product taken from a unit of crude
oil), xi is the unitary price of each refined product i, p is the unitary price of crude oil
and qr is the yearly crude oil quantity refined (in tonnes). The Natural Gas (NG)
business unit buys natural gas from other countries, based on long-term contracts with
price formulas indexed to the prices of crude oil and refined products baskets. The
selling price formulas are diversified according to consumer’s types (households,
power plants and industrial consumers). The NG gross margin mg (in $) is given by:

mg ¼
Xn
i¼1

zisi �
Xn
j¼1

wjbj

 !
qg ð3Þ

where si and bj are respectively the selling and buying price indexes, zi and wj are
respectively the selling and buying weights, and qg is the yearly total quantity of natural
gas (measured in m3 or kWh).

2.2 Derivatives Payout Formulation

The goal underneath this research is one year term hedging, thus we will choose the
most common and tradable derivatives for each business unit, which include swaps and
european options priced in the OTC (“over the counter”) market through large banks,
and Brent crude oil futures (ICE Brent) priced in the ICE exchange (a NYSE com-
pany). For the E&P business unit we will consider selling crude oil futures. The unitary
payout de (in $/bbl) is given by:

de ¼ f � pt ð4Þ

where f is the future agreed price for selling the Brent crude oil ($/bbl), and pt is the
Brent crude oil spot price at future maturity time t (f at maturity time pt is lower than
the f pre-agreed price, E&P receives the difference between these two prices, otherwise
it pays the difference.) For Refining we will choose the following derivatives: selling
swaps, which allows protection from lower margins (even losing the potential benefit
of higher margins), and collars (i.e. selling calls and buying puts), since they provide a
price band to benefit from price movements without incurring in costs.

These derivatives have a simplified refining margin underlying (also known as
crack spread), based on the refined products with most traded forward prices. We will
name this simplified refining margin the “hedge margin” mh (in $):

mh ¼
X5
i¼1

yixi � p

 !
ð5Þ

where yi is the yield of product i entering the “hedge margin” (only 5 of the 18 products
from the production of the refinery have enough forward price liquidity to enter a hedge
basket), xi is the market price of product i and p is the Brent crude oil price.

The hedge margin swap is a derivative based on a fixed hedge margin price where
the swap seller (the company) receives or pays the price difference between the fixed
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agreed price fs and the spot price ph at each future t fixed time lags, usually monthly
until the end of the contract. The swap payout definition for the swap hedge margin ds
(in $/bbl) is given by:

ds ¼ fs � ph ð6Þ

The collar is a derivative instrument resulting from buying a put and selling a call.
If the spot price at maturity time t is lower than the floor price f fc the company receives
the difference from the counterparty, and if the spot price at maturity time t is higher
than the cap price f cc the company pays the difference. The collar payout dc (in $/bbl) is
given by:

dc ¼ minð f fc � ph; 0Þ þmaxð f cc � ph; 0Þ ð7Þ

where ph is the hedge margin spot price at maturity month t.
The NG business unit acts as an importer and distributor and is concerned with

natural gas prices increases that may not transfer to clients. With the same logic of the
refining margin, selling swaps of the natural gas margin allows protection from lower
natural gas margins. The monthly swap payout definition dg (in $/kWh) is given by:

dg ¼ fg � pg ð8Þ

where fg is the initial fixed agreed price for the natural gas margin, usually the average
forward natural gas margin mg for contract duration, and pg is the natural gas margin
spot price at each future maturity month t, until the end of the contract.

2.3 Company Earnings Formulation

The sum of the total derivatives payout d (where qeh, qsh, qch and qgh are the hedged
quantities) with the physical margin of each business unit (me, mr and mg) defines the
company’s gross margin m (in $):

m ¼ deqeh þ dsqsh þ dcqch þ dgqgh|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d

þme þ mr þ mg ð9Þ

The option to include all physical earnings and derivatives payouts to evaluate the
company’s risk reduction instead of doing it separately by business unit is based on
previous analyses [7].

3 Prices Modeling

Our method can be synthesized in three steps: first, modeling the price of each product
i (crude oil, refined products, natural gas) with a GARCH model; second, finding the
best copula function to correlate each price standardized returns residuals zit from the
GARCH model; and third, insert the copula function in the GARCH model.
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For this research we follow the main historic pricing reference [8] for energy
markets quoted for the Northwest Europe (a.k.a. Rotterdam prices) from 2006 to 2012.
For the OTC forward prices we follow the quoted monthly prices [9] for the Northwest
Europe in 2013 and the ICE Brent for future prices.

Historic prices are modeled by their monthly price returns for each product i. The
price returns rit in month t are given by:

rit ¼ ln
pit

piðt�1Þ
ð10Þ

where pit is the average price i in month t and pi(t–1) is the average price i in month t – 1.
The Generalized Autoregressive Conditional Heteroscedasticity model (GARCH)
proposed by Bollerslev [10] achieved the best fit for each of the prices returns (using
the SIC-Schwarz information criterion and the AIC-Akaike information criterion as
goodness of fit measures). For each price i in month t, the monthly prices returns rit for
a GARCH (1,1) are given by:

rit ¼ li þ ritzit ð11Þ

with

r2it ¼ xi þ aiðriðt�1Þ � liÞ2 þ bir
2
iðt�1Þ ð12Þ

where μi is the series trend (in our case the forward curve for price i), zit are inde-
pendent variables that follow a Normal distribution Ɲ(0,1), and the conditional variance
σit
2 assumes an autoregressive moving average process (ARMA), with αi weighing
the moving average part and βi affecting the auto-regressive part. The absence of
autocorrelation was confirmed by the Ljung-Box statistic.

Modeling correlation between the different products prices, assuring nonlinear and
complex interdependencies, leads us to copula’s functions. The Sklar theorem [11]
provides the theoretical foundation for the application of copulas’ functions. It assumes
a stochastic multi-variable vector Xn (in our case, the price return for each product n)
with continuous marginals and cumulative density function:

FnðxnÞ ¼ PðXn � xnÞ ð13Þ

Applying the probability integral transform to each component, gives

½U1;U2; . . .Un� ¼ ½F1ðX1Þ;F2ðX2Þ; . . .;FnðXnÞ� ð14Þ

The copula function C is defined as the joint cumulative distribution function

C u1; u2; . . . un½ � ¼ P U1 � u1; U2 � u2; . . . ;Un � un½ � ð15Þ

The copula C contains all information on the dependence structure between the
components of (X1, X2,…Xn), whereas the marginal cumulative distribution functions
Fn contain all information on the marginal distributions, making them especially
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adequate to portfolio risk analysis [12]. Applying the SIC and the AIC criteria we
obtain the Student’s copula (t-copula) as the best copula function to model the cor-
relation of the n prices returns residuals. The cumulative distribution function for the
Student’s t-copula is defined by:

C u1; un; q; dð Þ ¼ Cd;q t�1
d u1ð Þ; t�1

d unð Þ� � ð16Þ

where Γ is the t-copula with d degrees of freedom and correlation matrix ρ, t −1 is the
inverse Student’s distribution with d degrees-of-freedom, and un are the marginal
distributions of the standardized price returns residuals, zi in our case, as shown:

ui ¼ zi ¼ ri � li
ri

ð17Þ

The t-copulas have the advantage of preserving the tail dependence in extreme
events, and are steadily used in advanced hedging strategies [13]. The Copula-
GARCH model is given by:

rit ¼ xi þ ai riðt�1Þ � li
� �2þbir

2
i t�1ð Þ

h i1=2
�Cd;q t�1

d zitð Þ� � ð18Þ

4 Risk Modelling

4.1 Risk Measures

The axioms necessary and sufficient for a risk measure be coherent where defined by
Artzner [14]. The Conditional Value-at-Risk (CVaR) as a coherent risk measure was
proposed by Rockafellar and Uryasev [15] and is given by:

CVaR1�a ¼ E XjXa �VaR1�að Þ ð19Þ

where Xα is the value defined for having Value-at-Risk (VaR) for a significance level of
α. CVaR allows to measure the average losses (gains) below (above) a pre-defined
value of VaR. For our study we assumed the CVaR (left and right tail) for the gains’
probability density function.

4.2 Risk Tolerance

The selection of the optimal derivatives portfolio is influenced by the decision-maker’s
attitudes towards financial risk. This is the point where utility theory commands the
selection of the optimal portfolio, assessing the decision maker’s risk tolerance. The
exponential utility function is one of the most widely used, and is well tested on
portfolio risk management in the oil industry [16]:
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u xð Þ ¼ 1� e�
x
q ð20Þ

Its single parameter (the risk tolerance ρ), no initial wealth dependence and constant
absolute risk aversion [17] explain the exponential utility function wide use. In a lottery
game, the risk tolerance value ρ is the value that the decision maker is willing to accept
in order to play a game where there are only two outcomes: winning the amount ρ with
a 50 % probability or lose ρ/2 with 50 % probability. The exponential utility function
performs better than other utility functions [18] but advises a post sensitivity analysis to
assure the results coherence. The certainty equivalent is the amount that the decision
agent accepts in order to avoid the uncertain outcome. The exponential utility function
certainty equivalent CE for outcomes with normal distributions (which is our case, after
a K-S test) can be simplified to [19]:

CE � l xð Þ � r2x
2 � q ð21Þ

where μ(x) is the yearly average gross margin for the company according to expression
(9), σx

2 is the gross margin variance, ρ is the company’s risk tolerance considered. The
second right-hand side term (i.e. the ratio between the variance and two times the risk
tolerance) corresponds to the risk premium.

4.3 Risk Tolerance Evaluation Methods

The methods for company risk tolerance assessment were chosen according to their
past wide application in oil and gas companies, with the exception of the Delquie
method with an analytical formula, applicable to any business.

Howard. The most referred research for corporate values of risk tolerance suggests
setting the risk tolerance ρ at 6 % of sales, 1 to 1.5 times the yearly net income, or 1/6
of equity in the “O&G” companies [20]. We set it to the yearly net income (closer to
6% of sales) since the equity ratio did not adhere to current oil business reality.

Delquie. A more analytic approach [21] proposes the risk tolerance to be set to a
fraction of the maximum acceptable loss that the company can afford for a given
p significance level, which can be considered a proxy for the Value-at-Risk (VaR1–p):

q ¼ VaR pð Þ
�ln p

ð22Þ

With a significance level p = 5% and the company’s one year gross margin VaR95%

evaluated at $505 × 106, we computed a risk tolerance of $166 × 106.

Questionnaire. Another common way to estimate corporate risk tolerance is through a
questionnaire [22] answered by a decision-making group (DM), representing the
company’s point of view. We confronted the DM group with a set of questions to
assess the amount of money for which they were indifferent, as a company, in order to
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have a 50–50 chance of winning that sum or losing half of it. A complementary set of
questions was made on the risk premium that they were willing to pay in order to
receive, with certainty, the average gross margin estimated for next year’s budget. We
achieved a risk tolerance mean of $180 × 106 with a standard deviation of $42 × 106.

CAPM. Another risk tolerance method estimation, derived from the Capital Asset
Pricing Method-CAPM [23], is to assume the CE as the effective cash-flow when each
year t nominal cash-flow CFt is discounted through the ratio of the risk free rate rf to the
rate that the company demands for investments, the Weighted Average Cost of Capital
(WACC). We evaluated all the forecasted project cash-flows 10 years ahead (essentially
E&P based) achieving a risk tolerance of $220 × 106.

CEt ¼ CFt
1þ rf
� �t

1þWACCð Þt
" #

ð23Þ

The four risk tolerance methods, the respective reference measures and values, and
the risk tolerance results are presented in Table 1.

Delquie’s method has the most conservative risk tolerance, while Howard’s method
estimated the highest value. The CAPM and the Questionnaire method have inter-
mediate risk tolerance values.

5 Optimization Results

In order to evaluate the consequences of the risk tolerance estimates in Table 1, we run
stochastic optimizations with Optquest [24] for eight risk tolerance values, including
the four presented in Table 1, maximizing the company’s utility (which is equivalent to
maximizing the corresponding certainty equivalent):

maxCE � max m d;me;mr;mg
� �� r2m

2q

	 

ð24Þ

The notional quantities qeh, qsh, qch and qgh from expression (9) are the dependent
variables. The stochastic price pt of each product is embedded in the gross margin of
each business unit, me, mr, mg, and in the derivatives payout d, at the same time.

Table 1. Risk Tolerance results (in $106).

Method Measure Measure Value Risk Tolerance ρ

Howard Net Income 317 317
Delquie VaR95% 505 166
CAPM CE 370 220
Questionnaire Gross Margin 760 180
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After having achieved the optimal solution for each of the eight risk tolerance
values, we ran a Monte Carlo simulation using Model Risk [25]. Figure 1 shows the
risk tolerance impact in the company’s certainty equivalent and in the “left tail” gains
(minimum gains), measured by the risk measure CVaR95% .

As risk tolerance increases, the certainty equivalent increases. However, after a risk
tolerance level of $50 × 106, we see a drop in the company’s CVaR. Looking at Fig. 2,
the decrease in CVaR is explained by the decreasing amount of derivatives d in the
optimal solutions, which allows greater potential upside gains, but also greater potential
downside losses. We define wh, the “% Physical Hedged”, as the ratio between
the notional quantities of derivatives contracts and the total physical company’s
production.

wh ¼ qeh þ qsh þ qch þ qgh
qe þ qr þ qg

ð25Þ

Less hedging means that the minimum gains are lower. Looking at the risk toler-
ance vertical lines, the Delquie method recommends about 20% hedging, the risk
questionnaire about 15%, CAPM about 7% hedging and the Howard’s method only 3%

Fig. 1. CE and CVaR95% as a function of risk tolerance.

Fig. 2. CVaR95% and % Physical hedged as a function of risk tolerance ($106).
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hedging. Since different risk tolerances imply significant differences in terms of
potential derivatives losses, as shown in Fig. 3, which is then the “real” company’s risk
tolerance? Yearly potential derivatives losses may vary from $20 × 106 to $140 × 106,
which can have a heavy impact in the Mark-to-Market (MTM) company’s quarterly
financial statements and inherently in the company value, when compared with peer
companies.

6 Multi-criteria Evaluation

As we observe in the results presented in Sect. 5, the risk tolerance estimation widely
affects the hedging optimal solutions. In addition, it is not clear if the in-house risk
assessment questionnaire accurately defined the company’s risk tolerance. Therefore,
we will test in what extent the questionnaire reflects the decision maker’s risk
preferences.

The company is interested in selecting the most attractive hedging strategy from the
set of eight options previously built. However, the company’s decision-making group
(DM) is not sure about which one to select. In fact, the DM members suspect that there
is no option that is the best according to all points of view that came to their mind.
To help the DM, we developed a multi-criteria evaluation model [26] using the
MACBETH approach [27, 28], which required the group to: discuss their points of
view and select the criteria that should be used to evaluate the hedging options;
associate a descriptor of performance to each criterion; build a value function for each
criterion; and weigh the criteria.

The additive value function model was selected to provide an overall measure of
the attractiveness of each hedging option:

v x1; . . .; xnð Þ ¼
Xn
i¼1

wivi xið Þ with
Xn
i¼1

wi ¼ 1;wi [ 0 ð26Þ

where v is the overall score of an hedging option xi with the performance profile (x1,…,
xn) on the n criteria, vi (i = 1, …, n) are partial value functions, wi (i = 1, …, n) are the
criteria weights. Note that we are assuming, as working hypothesis, that the criteria are

Fig. 3. % Physical hedged and potential derivatives losses as a function of risk tolerance.
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compensatory, i.e., a bad performance of an option on a criterion may be compensated
by a good performance of that option in other criterion. However, this hypothesis must
be validated.

The DM members discussed the points of view they considered relevant for eval-
uating hedging options, having in mind the next year gross margin budget as overall
objective. After discussion, four evaluation criteria were selected: (1) downside gains
(the bellow budget possible gains), (2) upside gains (the above budget possible gains),
(3) payout exposure (the possible cash-out to pay derivatives) and (4) risk premium (the
difference between the expected earnings and the certainty equivalent, as described in
Eq. 21). Since all these criteria have monotonically increasing value functions, where
“more” is always preferred to “less” within the same criterion, no matter the values in
the other criteria, we assumed that they are mutually preferential independent, which is
a necessary condition to use an additive value function model [29].

A “good” and a “neutral” reference levels (which the DM members considered to
have a “very positive attractiveness” and “neither positive nor negative attractiveness”,
respectively) were defined in each descriptor of performance. The 5th and 95th per-
centiles from the Monte Carlo simulation results were used to define the upper and
lower performance levels, respectively, on each descriptor of performance. Other
intermediate levels, between the upper and the lower performance levels, were also
created on each descriptor of performance, resulting in five levels per descriptor. For
example, Fig. 4 presents the five performance levels defined on criterion “payout
exposure”, where 0 and 150 were defined as “good” and “neutral” reference levels,
respectively. The performances of the hedging alternatives in all the criteria are
expressed in $106.

A value function was built for each of the four criteria using the MACBETH method
and software (www.m-macbeth.com) [27, 28] fixing 100 and 0 as the value scores of the
“good” and “neutral” reference levels, respectively, on all four criteria. According to the
MACBETH questioning protocol, the decision-makers had to judge the difference in
attractiveness between each two levels of the descriptor of performance using the
semantic scale: very weak, weak, moderate, strong, very strong or extreme. For
example, in the matrix of judgments for criterion “payout exposure” presented in Fig. 5
the decision-makers considered the difference in attractiveness between 0 and 150 to be
very strong (“v. strong”, in Fig. 5). After, M-MACBETH proposed a value function
scale compatible with all the judgments inputted in the matrix of judgments, using the
linear programming procedure presented by Bana e Costa et al. [28].

Fig. 4. Performance levels for the “payout exposure” criterion (in $106).
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The decision-makers were then asked to validate the proposed scale in terms of the
proportions between the resulting scale intervals, and adjust them, if needed. Figure 6
shows the final (validated) value function for the “payout exposure” criterion.

The following step consisted in eliciting the criteria weights. For this purpose the
DM first ranked the “neutral to good” performance improvements on the four criteria.
In Fig. 7 we see (in the “overall references” column) that the DM considered the
“neutral to good” (500 to 600) performance improvement in criterion “Dwn Gains” as
the most attractive. The performance improvement from “neutral to good” (300 to 100)
in criterion “Risk Premium” was ranked second. The “neutral to good” improvement
on criterion “Up Gains” was ranked third and the “neutral to good” improvement on
criterion “PayoutExp” was ranked fourth.

Then the DM judged the attractiveness of each neutral to good improvement, which
allowed filling in the column “neutral all over” in the matrix presented in Fig. 8. For
example, the neutral to good improvement on criterion “Dwn Gains” was considered to
be “very strong” (“v. strong” in the first row of column “Neutral All Over” in Fig. 8).
Thereafter, the DM judged the differences in attractiveness between each two pairs of

Fig. 5. MACBETH matrix of judgments for the “payout exposure” criterion.

Fig. 6. Value function for the “payout exposure” criterion (performances in $106).

Fig. 7. Performance levels on the four criteria (in $106).
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neutral to good improvements. For example, the difference in attractiveness from
increasing the performance on criterion “Dwn Gains” from neutral to good (500 to 600)
against increasing the performance on criterion “Up Gains” from neutral to good
(950 to 1100) was deemed “moderate” (see the highlighted cell in Fig. 8). The answers
of the DM allowed filling in the MACBETH weighting judgments matrix presented in
Fig. 8. Note that by accepting to make this trade-offs between criteria, the DM is
validating our hypothesis of compensation between criteria.

M-MACBETH then generated the criteria weights by linear programming, which
were shown to the group for validation and possible adjustment. Column “Current
scale”, in Fig. 8, shows the resulting criteria weights.

In the last step, the performances on the four criteria of the eight hedging options
resulting from the eight risk tolerance levels – from A (no hedge) until H (risk tolerance
of $350 × 106) – were inputted in M-MACBETH (see Fig. 9). (Note that the perfor-
mances of the options are the results generated for each of the eight risk tolerance
scenarios in Sect. 5.)

With these data inputted the partial value scores (on each criterion) of the hedging
options and their overall value scores were calculated by M-MACBETH (see Fig. 10).

In Fig. 10 (column “Overall”) we see that the most overall attractive option,
considering the expressed preferences of the decision-makers, is option A (No hedge).
Option H (RT = 350), which corresponds to the highest risk tolerance (ρ = $350 × 106),
is ranked second, whereas B (RT = 25), which corresponds to the lowest risk tolerance
option (ρ = $25 × 106), is the least preferred.

Fig. 8. MACBETH weighting judgments.

Fig. 9. Performances of the eight options on the four criteria (in $106).
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7 Conclusions

The multi-criteria evaluation of the hedging options using the judgments of the decision-
makers, who also answered to the risk tolerance questionnaire, gave us different results
in terms of preferred hedging options. Since the multi-criteria evaluation takes into
account the intra-criterion and inter-criteria preference judgments of the DM, the results
obtained with the model reflect the overall attractiveness of the options for the DM. The
most preferred hedging option “A” (No hedge) is closer to the Howard risk estimation
(ρ ≈ $350 × 106) and confirms Smith [30] finding that “large companies with reasonably
diversified shareholders should have risk tolerances that are much larger than those
typically suggested in the decision analysis literature” (p. 114), including the risk tol-
erance levels initially estimated through the questionnaire.

With this research we show that it is possible to perform a structured approach to
model the entire O&G company business model and evaluate price risk management in
an integrated way. Gross margins from the three business units and a basket of
derivatives may be considered together in a certainty equivalent maximization problem,
and it becomes clear how the hedging solutions vary with different risk tolerances.

Defining a preliminary risk tolerance level for the company through a tailored risk
assessment questionnaire and comparing it with other methods for risk tolerance
estimation allows achieving preliminary solutions based on stochastic portfolio opti-
mization for each risk tolerance. However, a multi-criteria final assessment should be
done, using the Monte Carlo simulation results, in order to ascertain how decision-
makers valuate the underneath multiple consequences from each hedging option. This
multi-criteria risk tolerance evaluation can in fact help the company in the always
difficult decision “to hedge or not to hedge” and, if yes, which amount to hedge.

Finally, it is important to note that these results were obtained with data and
preference judgments concerning a specific moment in time. Using data from a few
months before or later, with different crude oil and refined products forward prices,
may lead to different results under this approach. Therefore, further research should be
done to evaluate the results of the model in different price conditions and involving
other decision makers, preferably also including board members.

Fig. 10. Overall and partial value scores of the options and criteria weights.
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Abstract. The real-time traffic management allows to solve unexpected
disturbances that occur along a railway line during the normal develop-
ment of the traffic. After a disturbance, the original timetable is restored
through the rescheduling process. Despite the improvements of off-line
decision support tools for trains dispatchers that enable a better use
of rail infrastructure, real-time traffic management received a limited
scientific attention. In this paper, we deal with the real time traffic man-
agement for regional railway networks, mainly single tracked, in which
a centralized traffic control system is installed. The rescheduling prob-
lem is presented as a Mixed Integer Linear Programming Model which
resolution allows to carry out the rescheduling process in a very short
computational time.

Keywords: Railway systems · Real-time optimization · Regional net-
works · Single-tracked · Centralized traffic control · Mixed Integer Linear
Programming

1 Introduction

A railway system is a complex system with many interacting processes that
depend on technical devices, human behavior, external environment, and there-
fore contains many risks of disturbances. The usual method how railways man-
age their traffic performance is through a carefully designed plan of operations,
defining several months in advance routes, orders and timing for all trains. This
process, called off-line timetabling, is followed by a real-time traffic management
which consists in managing disturbances that may occur during the ordinary
functioning of the network.

Once a delayed train deviates from its original schedule, it may propagate its
delay to other trains due to infrastructure, signaling or timing conflicts. Major
c© Springer International Publishing Switzerland 2015
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disturbances may influence the off-line plan of operations that should be subject
to short-term adjustments in order to minimize the negative effects of the distur-
bances. Possible traffic control actions include changing dwell times at scheduled
stops, changing train speeds along lines, or adjusting train orders at junctions,
stations and passing points. Other control actions involve major modifications
such as changing train routes or even canceling scheduled train journeys. The
main goal of the real-time dispatching is to minimize trains delays, while sat-
isfying the traffic regulation constraints, and ensuring compatibility with the
current position of each train, see [1].

Several approaches for re-scheduling railway traffic have been suggested.
They have quite different focus with respect to infrastructure characteristics,
objectives and organisation. Extensive surveys of approaches for railway traffic
scheduling and re-scheduling can be found in [2–5].

In this paper we deal with real-time traffic control problem for a regional
single-tracked railway where an operating system called Centralized Traffic Con-
trol (CTC) is installed. The CTC provides a centralized control for signals and
switches within a limited territory, controlled from a single control console. The
command is carried out by the Train Dispatcher (TD).

The TD observes the status of the territory – i.e. occupation of line sections,
location of trains, etc. – in a continuous manner and collects information; mean-
while, he communicates with the upper level decision-makers and the staff in
the territory in order to exchange decisions taken. In case of an unplanned event
and emergency he takes a decision and makes necessary actions in accordance
with the rules and regulations pre-defined by the railway authority, see [6].

The TD may benefit from appropriate decision support system, such as
scheduling algorithms, to perform a real-time simulation and evaluation of traffic
under disturbances in order to quickly reschedule train movements and to reduce
delays from a global perspective.

It is important to find a good compromise between the solution quality, the
time horizon of the traffic prediction, and the computational effort. If a short
time horizon is adopted, only few trains, and few conflicts, can be detected and
solved with short computation times. On the other hand, a longer time horizon
leads to a larger number of trains running in the system, inducing a longer
computational time needed in order to eliminate completely the propagation of
the disturbance. There is a tradeoff between the size of the time horizon of traffic
prediction (bigger time horizon meaning better quality) and the computational
time. In fact, in a small time horizon the real-time dispatching does not take
into account conflicting trains outside the time horizon. On the other hand, a
conflict arising far in the future may not be as relevant as a closer conflict, since
other unforeseen events could still affect the further conflict, see [1].

Usually the TD reschedules the involved trains, depending on the known
duration of the disturbance. He bases his decisions on his own knowledge, resolv-
ing a conflict at a time when it occurs, and then manually rebuilds the timetable,
with a considerable waste of time and no certainty that his decisions will lead
to an optimal solution.
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Building on the formalism given in [7], we present a model that solves the
rescheduling problem for regional passenger transport networks with stations of
equal importance, where the CTC system is installed. We formulate the problem
as a Mixed Integer Linear Programming Model (MILP).

The methodology given in [7] provides a decision support system to the train
dispatcher allowing to take decisions in order to restore traffic and limit ineffi-
ciencies for passengers. In this work, the new timetable after the disturbance is
obtained using an integer linear programming model, by minimizing train delays
in all stations programmed in their path, while considering constraints regarding
travel times, stop times at stations, safety standards and network capacity. The
model is applied to a limited time horizon that is choosen by the analyst. In
order to solve conflicts that may occur in the rescheduled timetable after the
time horizon, an iterative heuristic algorithm is proposed. The heuristic algo-
rithm solves a conflict at the time when it occurs. Priority is given to the train
with the highest traveling time, namely the longest presence on the line. The
computational time for limited time horizons is of the order of seconds, but the
heuristic algorithm may require an elevated computational time that depends
on the number of trains and the complexity of the railway line.

We adapt the previous methodology to regional networks mainly made of
single tracks. Our proposition consists in a single integer linear programming
model, taking into account the whole set of constraints imposed by the railway
infrastructure and the initial schedule. The revised model solves all conflicts
that arise along the railway line after the occurrence of the disturbance. The
heuristic algorithm is therefore no longer applied. The rescheduled timetable is
established in a shorter time, then discomfort for passengers is restricted and the
quality of the transport service is increased. To show its effectiveness, we study
the problem in a particular section of a railway network located in Southern
Italy, Ferrovie Del Sud Est (FSE), see [8]. The FSE network is made of single
tracks with few double-tracked segments.

The paper is organized as follows. In Sect. 2 we present the problem formal-
ization. In Sect. 3 the mathematical model for the resolution of the problem is
proposed. In Sect. 4 we present the application of the model to the case study
of the FSE network. Finally, Sect. 5 contains some concluding remarks and sug-
gestions for further research.

2 Problem Formalization

2.1 Initial Scheduling

Definition 1 (Railway Network). A railway network is defined by a set of
segments on which trains runs.

Segment (bi). A segment b is a railway section between two points. We define
by B = {b1, b2, . . . , bB} = {bi}i∈[[1,B]] the set of segments. B denote the car-
dinality of the set B. The set of segments is partitioned into the subset B

s

corresponding to segments into a station, and B
c corresponding to the subset

of rail connections outside stations.
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Track (vj). Let b be a segment ∈ B. We define by V
b = {vb

1, v
b
2, . . . v

b
Vb} =

{vb
j}j∈[[1,Vb]] the set of parallel tracks in b. The set of all tracks in the railway

network is denoted by V. V and Vb denote respectively the cardinality of V

and V
b for a given segment b. Given a track v ∈ V, we denote by bv its

corresponding segment.

Circulations in a railway network are defined by a set of trains. Train’s path is
made of an ordered set of movements.

Definition 2 (Trains and Movements). We assume that all train lengths are
compatible with the length of all tracks that compose the railway line. Trains are
thus defined as follows.

Train (tk). The set of trains using the railway network is denoted as
T = {t1, t2, . . . , tT} = {tk}k∈[[1,T]]. T denotes the cardinality of T.

Train Direction (dt). Each train is defined by a direction parameter refering
to its destination station. Let t be a train ∈ T. We denote by dt = 0 the
direction of a train going to the north (a.k.a. “even trains”) of the railway
line, and dt = 1 of a train running to the south (a.k.a. “odd trains”).

Movement (μp). A movement indicates the request for a track by a train.
Let t be a train ∈ T. We define by M

t = {μt
1, μ

t
2, . . . , μ

t
Mt} = {μt

p}p∈[[1,Mt]]

the ordered set of movements of train t. Mt denotes the cardinality of M
t.

μt
first = μt

1 and μt
last = μt

Mt denote respectively the first and the last element
in M

t. We define by M the set of all movements on the railway line and by
M

last the set of the last movements of each train.

Train movements are defined by several parameters.

Movement Direction. All movements μ of a train t share the same direction
as their train, denoted as dµ ∈ {0, 1}:

∀t ∈ T,∀μ ∈ M
t, dµ = dt. (1)

Track and Segment of a Movement (bµ, vµ). Each movement μ of a train
is scheduled in an unique segment bµ ∈ B. We denote by M

b the set of move-
ments scheduled in the same segment b ∈ B.

Each movement μ ∈ M must be scheduled in a track of the segment bµ,
denoted as vµ ∈ V, according to the following constraint:

∀t ∈ T,∀μ ∈ M
t, vµ ∈ V

bµ. (2)

Reference Schedule Times (αref
µ , δref

µ , γref
µ ). Each train movement μ is asso-

ciated to reference times corresponding to its initial schedule. Let t ∈ T be
a train and μ ∈ M

t one of its movements. We define three reference times
αref
µ , δrefµ , γref

µ ∈ N, where:
– αref

µ is the starting time of μ as established in the initial schedule,
expressed in minutes taking as reference a time T0 ∈ N.
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– δrefµ is the duration of μ (expressed in minutes) if it occurs in a rail
connection, i.e. the minimum running time defined in the initial schedule.
This quantity is equal to 0 if the movement occurs in a station. Formally:

∀t ∈ T,∀μ ∈ M
t, bµ ∈ B

s ⇒ δrefµ = 0. (3)

– γref
µ is the duration of a movement μ (in minutes) if it occurs in a

station, i.e. the minimum stopping time defined in the initial schedule.
This quantity is equal to 0 is the movement occurs in a rail connection.
Formally:

∀t ∈ T,∀μ ∈ M
t, bµ ∈ B

c ⇒ γref
µ = 0. (4)

Using such notations, the time interval during which a movement μ reserves
its track can be expressed as [[αref

µ , αref
µ +δrefµ +γref

µ = βref
µ ]]. Two consecutive

movements must be scheduled according to these intervals, thus we have:

∀t ∈ T,∀p ∈ [[1,Mt[[, αref
µp+1

= αref
µp

+ δrefµp
+ γref

µp
. (5)

Obviously, in order to reduce the size of the initial problem we could use only
one variable ζ = γ + δ to represent movements duration. However, even if such
formulation would reduce the number of initial variables, the size of the problem
after the presolve phase would remain unchanged, since modern solvers are able
to detect such redundant variables. For clarity, we decided thus to keep using
two different variables γ and δ to represent movement duration respectively in
a rail connection and in a station.

Definition 3 (Safety Constraints). Since several trains run at the same time
on a railway network, several constraints must be verified to ensure the security
of circulations.
Track Occupation Constraints. A track cannot be occupied by two trains at

the same time. Such restriction can be expressed formally by constraining any
pair of movements using the same track to be scheduled on disjoint timing
intervals:

∀t1, t2 ∈ T,∀μi ∈ M
t1 ,∀μj ∈ M

t2 ,

vµi
= vµj

⇒ [[αref
µi

, βref
µi

]] ∩ [[αref
µj

, βref
µj

]] = ∅. (6)

Separation Times (Δm,Δf). The separation time is a delay that has to elapse
between two movements μi, μj on the same track (i.e. between a train leaving
one track and another one entering the same track). We denote by Δm ∈ N

the safety time required if trains meet and Δf ∈ N if one train is following
the other one. Δm and Δf are expressed in the same time units as γref and
δref . These time delays must occur between the end of the first movement
(denoted as βref

µi
) and the start of the other one (denoted as αref

µj
). Formally,

separation time constraints can be expressed as follows:

∀b ∈ B,∀μi, μj ∈ M
b,

{
vµi

= vµj

dµi = dµj
⇒

{
αref
µj

≥ βref
µi

+ Δf

∨ αref
µi

≥ βref
µj

+ Δf
. (7)

{
vµi

= vµj

dµi �= dµj
⇒

{
αref
µj

≥ βref
µi

+ Δm

∨ αref
µi

≥ βref
µj

+ Δm
. (8)
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Note previous equations reinforce the constraint (6) since they induce a sepa-
ration delay between the time intervals of two movements on the same track.
Thus, there will be no need hereafter to model constraint (6) provided con-
traints (7) and (8) are expressed.

A rail transport service on a railway line is graphically represented by a carte-
sian graph, representing the safety constraints.

Graphic Timetable. The graphic timetable is a cartesian graph that represents
the situation of a railway schedule for a day, see [9]. This diagram shows all
movements, schedules and separation times.
The time line is plotted on the x axis. The railway line (space) is plotted
on the y axis. Inside stations, tracks are represented by dashed lines parallel
to the x axis. Inside connection segments, trains are represented by an oblique
broken line which orientation indicates train direction. For instance, train
lines are oriented from bottom to up for even trains that travel from South
to North (i.e. to the station on the upper end of the y axis).
(Fig. 1 - a) represents the graphic timetable of three trains t1, t2 and t4. Train
t1 is directed to the South, while t2 and t4 travel in the opposite direction. The
railway line is made of 5 segments: single-tracked stations b1 and b3, double-
tracked station b5 and single-tracked rail connections b2 and b4. Track sets
for these segments are defined by: V

b1 = {v1}, V
b2 = {v1}, V

b3 = {v1, v2},
V

b4 = {v1}, V
b5 = {v1}. Train’s paths are defined by: M

t1 = {μt1
1 , μt1

2 , μt1
3 },

M
t2 = {μt2

1 , μt2
2 , μt2

3 }, M
t4 = {μt4

1 , μt4
2 , μt4

3 }. All trains cross station b3 that
is single-tracked. As shown, separation times are applied when two trains
occupy the same track of a segment. Δf is the separation time that has to
elapse between the end of the movement μt2

2 and the beginning of μt4
2 , where

t2 and t4 travel in the same direction. Δm is the separation time that has
to elapse between the end of μt4

2 and the beginning of μt1
2 , where t1 and t4

travel in opposite directions.
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Fig. 1. Graphic timetables.
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2.2 Disturbances Issues

When a disturbance occurs along the railway network, compromising the nor-
mal traffic operation, a rescheduling process must be accomplished taking into
account time constraints imposed by the initial schedule.

Definition 4 (Disturbance). A disturbance denotes the deviation of a train
td ∈ T from its original schedule due to an unforeseen situation, concerning one
of its movements μd ∈ M

td .

Disturbance Duration and Reference Time. When a disturbance occurs,
a disturbance reference time Td is defined as the first time on which the dis-
turbance has an impact on the schedule of the others trains, i.e. the reference
ending time of the disturbed movement. If only one disturbance affects one
movement μtd

d ∈ M
td of a train td along the railway line, Td is defined as:

Td = βref
µd

Obvisously, such definition can be extended to several independent distur-
bances affecting some trains along the line. Then, Td is defined as the mini-
mum ending time of movements μi affected by the perturbation:

Td = min
perturbed movements µi

{
βref
µi

}

We denote by Δd the disturbance duration expressed in minutes. The impact
of a disturbance on the movement is expressed by an increase of the value
of parameter δ or γ depending on the nature of the segment on which the
disturbance occurs. For instance, if bµd

∈ B
c, δ′

µd
= δrefµd

+Δd. Conversely,
if bµd

∈ B
s, γ′

µd
= γref

µd
+ Δd. Again, in case of several disturbances, each

perturbed movement μ will be associated to in own disturbance duration Δµ.
(Fig. 1 - b) represents a railway line made of three stations (b1, b3 and b5)
and two single-tracked rail connections (b2 and b4). A disturbance occurs
in b2 and affects only the movement μt2

1 ∈ M
t2 . Reference time Td is thus

equal to βref

µ
t2
1

. The dashed line shows the movement μt2
1 after the end of

the rescheduling process. The recheduled crossing time δeff
µ
t2
1

is equal to the

reference time δref
µ
t2
1

increased by the disturbance duration Δd. The effective

path of movement μt2
1 interferes with the path of another movement in the

segment b2 that must be consequently rescheduled.

Time Horizon (H). The time horizon H is the time period in which the
rescheduling operations are carried out. It consists of a given number of
timetable minutes in which trains are scheduled on the railway line. To be
considered, trains to reschedule must have all their movements inside the
time horizon. Trains having some movements starting after the time hori-
zon are not taken into account in the rescheduling process even if their first
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movements belong to the time horizon. Formally, we define the set T
H of

trains that must be rescheduled in the following way:

T
H =

{
t ∈ T s.t. βref

µt
last

≤ Td + H
}

(9)

The set M
H of movements that must be rescheduled is defined accordingly,

as the set of movements of trains belonging to T
H :

M
H =

⋃

t∈TH

M
t. (10)

Obviously, some of these trains and movements may finish before the occurence
of the first disturbance. Additional constraints are added in the next paragraph
to keep them unchanged.

Effective Schedule Times. In order to take into account the effect of the
disturbance on the subsequent movements on the railway network, we intro-
duce for any movement its effective schedule times denoted by αeff , δeff

and γeff ∈ N. Obviously, movements of which ending dates β are scheduled
before Td are not altered. Formally:

∀μ ∈ M
H s.t. βref

µ ≤ Td,

⎧
⎨

⎩

αeff
µ = αref

µ

δeffµ = δrefµ

γeff
µ = γref

µ

. (11)

Note our mathematical models will be adjusted such that one considers trains
and movements before disturbance(s) only if they show effective conflicts with
the circulations to reschedule, in order to reduce the number of variables.
Again, the solver would have easily eliminated such variables anyway.

Effective Time Constraints. These new scheduled times must allow to absorb
the perturbation by delaying the initial reference times, according to their
respective segment types, following constraints (3) and (4). Formally, these
previous equations become:

∀μ ∈ M
H s.t. βref

µ > Td, bµ ∈ B
s ⇒

⎧
⎨

⎩

αeff
µ ≥ αref

µ

δeffµ = δrefµ = 0
γeff
µ ≥ γref

µ

. (12)

bµ ∈ B
c ⇒

⎧
⎨

⎩

αeff
µ ≥ αref

µ

δeffµ ≥ δrefµ

γeff
µ = γref

µ = 0
. (13)

Effective schedule times of movements belonging to M
H must also obviously

follow the sequencing constraint (5) and safety constraints (7) and (8).

Of course, depending on the density of traffic at the time of the disturbance,
and its duration, the number of disturbed movements can vary considerably.
In this paper, we consider all the scheduled movements of the day but one of
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our objective functions can be designed to minimize the number of rescheduled
trains.

In the following section, we present the Mixed Integer Linear Programming
Model that allows to solve the rescheduling problem, i.e. to give a value to each
effective scheduled time while respecting the safety constraints and optimizing
practical criteria.

3 Mathematical Modeling

3.1 Decision Variables

We introduce additional variables and constants used to express the problem in
a linear way.

– Xµ,v ∈ {0, 1}M×V is the variable that identifies the track v on which a move-
ment μ occurs. Xµ,v = ϕ(v = vµ) where the function ϕ(C) is the indicator
ϕ(C) = 1 if the condition C is verified, 0 otherwise.

– Xbefore
µi,µj

∈ {0, 1}M×M is the variable that characterizes the chronological order
of two movements μi �= μj if they use the same segment. Xbefore

µi,µj
= ϕ(μi is

scheduled before μj).
– Xdelay

t ∈ {0, 1}T is the variable that specify if a train t deviates from its
original schedule and is therefore delayed. Xdelay

t = ϕ(βeff
µt
last

> βref
µt
last

).

– Xdelay
µ ∈ {0, 1}T is the variable that specify if a movement μ deviates from its

original schedule and is therefore delayed. Xdelay
µ = ϕ(βeff

µ > βref
µ ).

– B ∈ N is a sufficiently large positive constant.
– H ∈ N is a parameter that defines the size of the time horizon.

By definition, the previous decisions variables are subject to constraints char-
acterizing their physical sense.

– Any movement can only be scheduled on one track of its segment, consequently:

∀μ ∈ M,
∑

v∈V
bµ

Xµ,v = 1. (14)

– Two movements scheduled on the same segment must be ordered:

∀b ∈ B,∀μi, μj ∈ M
b,Xbefore

µi,µj
+ Xbefore

µj ,µi
= 1. (15)

Safety constraints presented above must be expressed using those variables in
linear way.

3.2 Linearization of Safety Constraints

Safety constraints (7) and (8) express that a separation delay must elapse between
two movements occupying the same track. These conditions can be expressed
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through the use of additional variables and constraints in order to obtain a lin-
ear formulation:

∀b ∈ B,∀μi �= μj ∈ M
bs.t. dµi

= dµj
,∀v ∈ V

b, (16)

βeff
µi

− αeff
µj

+ Δf ≤ B ·
(
3 − Xbefore

µi,µj
− Xµi,v − Xµj ,v

)
.

∀b ∈ B,∀μi �= μj ∈ M
bs.t. dµi

�= dµj
,∀v ∈ V

b, (17)

βeff
µi

− αeff
µj

+ Δm ≤ B ·
(
3 − Xbefore

µi,µj
− Xµi,v − Xµj ,v

)
.

The previous equation expresses that if two movements μi, μj occurs on the
same track, and if Xbefore

µi,µj
= 1, then μi must end before the start of μj . If Xbefore

µi,µj
=

0 or μi and μj do not occur in the same track, Eqs. (16) and (17) are trivially
verified. The disjunction operator ∨ in Eqs. (7) and (8) is taken into account by
the boolean variable Xbefore

µi,µj
that denotes the two possible alternatives.

Note for any pair of movements μi, μj , two instances of Eqs. (16) and (17) are
considered in the mathematical model, depending on the order of movements:
(μi, μj) or (μj , μi).

3.3 Objective Functions

The optimization problem compares four alternative objective functions defined
as follows:

Obj1 : min
∑

µi∈M
H

(βeff
µi

− βref
µi

). (18)

Obj2 : min
∑

µi∈M
last∩M

H

(βeff
µi

− βref
µi

). (19)

Obj3 : min
∑

t∈T
H

Xt
delay. (20)

Obj4 : min
∑

µ∈M
H

Xµ
delay. (21)

– Obj1 minimizes the delay of the traffic (i.e. the sum of the delays of all the
movements trains in the railway line).

– Obj2 minimizes the total final delay of the traffic (i.e. the final delays when
trains arrive at their final destination, or rather the last stop considered within
the rescheduling time horizon).

– Obj3 minimizes the number of delayed trains.
– Obj4 minimizes the number of delayed movements for each train.

When Obj3 (resp. Obj4) is used, we introduce additional constraints (22) and
(23) (resp. (24) and (25)) as follows:
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∀t ∈ T
H , βeff

µt
last

− βref
µt
last

≤ B · Xt
delay. (22)

∀t ∈ T
H , βeff

µt
last

− βref
µt
last

> B ·
(
Xt

delay − 1
)

. (23)

∀μ ∈ M
H , βeff

µ − βref
µ ≤ B · Xµ

delay. (24)

∀μ ∈ M
H , βeff

µ − βref
µ > B ·

(
Xµ

delay − 1
)

. (25)

For instance, if the rescheduled ending time of the train coincides with its
reference time, the train is not delayed and constraint (23) implies Xt

delay = 0.
Conversly, if one movement of a train is delayed, the last movement is necessarily
delayed according to Eqs. (12) and (13). Equation (22) implies then Xt

delay = 1.
Finally, another constraint should be added, in order to prevent movements

being postponed for a long time and moving outside the considered time horizon.
Indeed: constraints considered in our mathematical model are only applied to
movements belonging to M

H , within the time horizon. A movement delayed after
the time horizon would thus not interfere with these movements. Then, since we
do not take into account sequencing considerations between trains, a simple yet
artificial way to handle disturbances and minimize the number of delayed trains
could consist in rejecting disturbed trains movements after the time horizon.

In order to avoid such spurious solutions, we add the following constraint:

∀μ ∈ M
H , αeff

µ + δeff
µ + γeff

µ ≤ Td + H. (26)

Constraint (26) means that movements scheduled in the analyzed time horizon,
after the rescheduling process, must still end within the same time horizon. Thus,
we are always searching for solutions allowing to absorb the disturbance(s) during
the considered period of time.

The full model is given in Fig. 2. Constraints (31) and (32) initiate the distur-
bance duration of the first perturbed movement. Constraint (33) specifies that
each train movement is directly succeeded by the next one, that means that when
a train leaves a track, it instantly begins to occupy the next one. Constraints
(34) to (36) ensure that movements ending before the occurrence of the distur-
bance (except the disturbed movement itself) remain unchanged. Constraints
(38) and (41) express that if a movement occurs in a station (resp. in a rail
connection) the effective running time (resp. the effective stopping time) is null.
Constraints (39) and (41) (resp. (38) to (40)) enforce the restrictions related
to planned stops (resp. to planned running times) and the consequent earliest
possible departure times. Constraint (42) means that each movement has to use
exactly one track of its segment. Constraint (43) implies that two movements
scheduled on the same segment must be ordered. Constraints (44) and (45) mean
that if several movements have to use the same track of a segment, a separation
time (Δf or Δm) must elapse between the end of the first movement and the
beginning of the second one.
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Fig. 2. Mixed Integer Linear programming model.
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Fig. 3. Railway ring used for the numerical experiments.

Constraints (46) and (47) (resp. (48) and (49)) allow to assess if a train (resp.
a movement) is delayed. Constraint (50) enforces each movement must end within
time horizon. These constraints are active only when Obj3 or Obj4 is used.

Finally, Eqs. (51) to (57) give the domain of variables.

4 Numerical Experiments

The presented model is applied to Ferrovie del Sud Est (FSE), the largest public
transport company operating in the Apulia region of Southern Italy. We analyze
the railway ring connecting Mungivacca and Putignano stations (Fig. 3), where a
CTC system is installed. The operation system is installed in Mungivacca station
that is independent, not controlled by the CTC, as is Putignano, whereby these
stations are not studied here. In particular, we refer to the line 1 of the railway
ring – passing through Conversano – that is single-tracked except for the line
connecting Noicattaro to Rutigliano, that is double-tracked. Moreover, Grotte
di Castellana is a single track station, not chaired by an operator. 24 even trains
and 22 odd trains run on the railway line during a day. We assume a safety time
Δm of 3 min for two trains traveling in opposite directions and a time Δf of
1 min for trains in the same direction. In attempt to evaluate the optimality of
the algorithm, we used IBM CPLEX 12.5 installed and run on an Intel Core 2
Duo 1.83 GHz CPU and 3 GB RAM, under Windows with the model formulated
in AMPL.

4.1 One Disturbance on the Line

We consider a real data set referring to a train going from Putignano to Mungi-
vacca that stops along the line that connects Castellana G. and Conversano due to
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a disturbance occurring at 7:50 am. That same disturbance event is used for all the
experiments but with different disturbance sizes Δd and solved with different time
horizons H. Various disturbance times are considered, ranging from 10 to 50 min.
Time horizons are expressed in minutes and take values equal to 30, 60, 90, 120,
180, 240, 300, 360, 420, 480, 540, 600 and 1440. The main aspects considered to
present results are Obj1, Obj2, Obj3, Obj4 that correspond respectively to sum of
delays for all train movements, delay of the last movement of each train, number of
rescheduled trains and number of rescheduled movements. All operational times
are given in minutes. CT refers to computational time given in seconds. N and V
refers to number of variables and constraints before and after the presolve phase.

Overall Analysis. When only one disturbance occurs on the railway line,
results from experiments using the four objective functions for all different dis-
turbance sizes (Δd) and time horizons (H) are presented in Table 5.

The methodology is applied to a real case study in which the occurence of
short-term disturbances on the railway line is frequent, this is not a trivial prob-
lem. The model provides a proactive approach to solve, in real time, problems
that occur on the railway line.

The computational time (CT) for all time horizons and disturbance sizes is of
the order of a few seconds. Comparison between different time horizons is done
in order to demonstrate that the model is able to quickly solve even considerables
problems that take into account all trains on the railway line. In fact, the highest
value of CT (equal to 69.77 s) is obtained using Obj1 for H = 1440 min and Δd =
45 min. This means that if a disturbance lasting 45 min occurs along the line, in
just over a minute the train dispatcher can obtain the rescheduled timetable for
the 24 hours following the occurrence of the fault. The speed of resolution is a
very important factor for the presented problem, since the main objective of the
real-time traffic management is to quickly establish a new timetable, in order to
minimize the inconvenience for passengers.

Compared to the previous methodology used in [7] there is an improvement
due to a reduction of total delay, number of rescheduled trains and computational
time. The objective of this model is the minimization of delays of all movements.
In Table 1 we compare results of the rescheduling process obtained with the
application of the actual and the previous methodology (AM, PM) when Δd =
30 min and H = 180 min. We noticed that Obj1 is unchanged for all subsequent
values of time horizon. This means that the delay caused by the disturbance is
absorbed within the 180 min after its occurrence. For the previous methodology,
we present values obtained for H = 30 min in addition to values obtained with
the application of the heuristic algorithm after the time horizon. CT refers only
to the optimization procedure.

By analyzing values we observe that with the actual methodology the new
timetable is computed in 0.72 s. Three trains are involved in the rescheduling
process for a total delay of 608 min. Previous methodology required 10.74 s to
obtain the new timetable within a 30 min window after the occurrence of the
fault. 10 trains are involved in the rescheduling process and total delay is equal
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Table 1. Comparison between actual and previous methodology.

Obj1 Obj3 CT

Our methodology 608 3 0.72

Dotoli et al. 665 10 10.74

to 665 min. Actual methodology allows to obtain the optimal solution with an
exact approach, without the application of the heuristic algorithm which does
not always provide optimal results. We should also take into account that solvers
used by the two methodology are different. MATLAB with GLPK used by the
previous methodology is replaced by IBM CPLEX in the actual one. Resolu-
tion methods used by the two solvers are different as well as their performance.
The previous methodology has obtained an improvement compared to the cur-
rent practice used by the train dispatcher; the actual methodology provides a
further amelioration. This is in line with the objectives of the real-time traffic
management.

Comparison Between Objective Functions. We compare values obtained
using the four objective functions for H = 1440 and Δd = 50 min, shown in
Table 2. We analyze the time horizon of 1440 min because the complexity of the
problem is high due to the presence, in the rescheduling process, of all trains
movements on the railway line until the end of the day.

Table 2. Comparison between the four objective functions with H = 1440 and Δd = 50.

Obj1 Obj2 Obj3 Obj4

Obj1 829 854 878 878

Obj2 81 81 91 91

Obj3 3 3 1 1

Obj4 33 39 11 11

CT 30.07 16.86 6.56 26.18

Lowest values in terms of total delay are obtained using Obj1. Compar-
ing results obtained with the first and the second objective function we notice
that although the value of Obj2 is the same, Obj1 changes. In particular, Obj1
obtained is greater while Obj2 is used. The reason is simple: in this case, mini-
mizing the delay of the last movement of a train, the second objective function
increases the number of its delayed movements. This means that although values
of Obj3 are unchanged using the first and the second objective function, values of
Obj4 varies. In general, Obj2 increases the arrival time at intermediate stations,
in order to minimize the delay at the last station of trains path. In this case,
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there are no differences between values of Obj1 and Obj2 obtained using Obj3
and Obj4. Extending the analysis to all time horizons, we notice that in some
cases (e.g. H = 180 and Δd = 50 min) there is a difference between the two val-
ues, due to the fact that these objective functions does not take into account the
exact delay of trains. Thus, any solution showing the same number of delayed
trains is optimal, whatever the value of Obj1 and Obj2 is. Multicriteria objective
functions should be used to obtain an unique optimal solution. The minimization
of the number of delayed trains (resp. movements) may imply an increase of the
total delay of rescheduled trains.

Extending the analysis to values obtained in all time horizons (H) and for all
disturbance sizes (Δd), we notice that minimizing Obj1 provides better results
in terms of Obj1 and Obj2. Minimizing Obj4 provides better values in terms of
Obj3 and Obj4.

Impact of Constraint (50). In order to prove the necessity of constraint (50)
when using Obj3 and Obj4, we present a simple railway line made by 7 segments
on which circulate 5 trains, represented in Fig. 4. Railway line is made by 4
single-tracked connection segments (b1, b3, b5 and b7) between 3 double-tracked
stations (b2, b4 and b6). Trains t1 and t3 are directed to the South, while t2, t4
and t6 travel in the opposite direction.

t1 t2t3 t4 t6

Td = 07 : 35

time

S
eg

m
en

t

b1

b2

b3

b4

b5

b6

b7

Fig. 4. Disturbance of t1.

A disturbance occurs in the segment b5 at 07:35 am and affects the train t1.
We analyze a problem with time horizon H = 25 min and a disturbance size
Δd = 10 min. The same scenarios have been solved without (WT) and with (W)
the additional constraint using Obj3. Results are presented in Table 3.
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Table 3. Results from experiments using Obj3 without and with additional con-
straint (50).

Obj1 Obj2 Obj3 Obj4 CT

WT 10040 10000 1 5 0.01

W 50 10 1 5 0.01

By analyzing values of Obj1 and Obj2 we notice that despite the number of
rescheduled trains is unchanged, without the additional constraints the depar-
ture or the duration of some movements is delayed for a long time. This means
that minimizing Obj3 tends to postpone movements of trains involved in the
rescheduling process at the end of the time horizon, in order to affect the lowest
number of trains on the line. In the example, t1 is the only delayed train. By
introducing the additional constraint, values of Obj1 (and consequently Obj2)
are lower because the system is forced to reschedule movements within the time
horizon. The number of rescheduled trains remains unchanged.

4.2 Two Disturbances on the Line

When two independent disturbances occur on the railway line, the rescheduling
process of the first disturbance does not influence the rescheduling process of
the second one. We consider the same railway line presented in Sect. 4 and we
suppose that two independent disturbances occur at Td = 09:00 a.m. respectively
in the line that connects Rutigliano to Conversano stations (segment b9) and
Conversano to Castellana G. (segment b11). We consider a time horizon H =
1440 min and a disturbance size Δd = 50 min.

First, we solve the problem considering only the disturbance that occurs in
the segment b9 and that affects a train directed from Putignano to Mungivacca
station. Then, we solve the problem considering only the disturbance that occurs
in the segment b11 and that affects a train directed from Mungivacca to Putig-
nano station. Finally, we solve the problem considering the two disturbances
at the same time. We compare results with those given by the sum of values
obtained solving the two problems separately. Table 4 presents values of Obj1,
Obj2, Obj3, Obj4 and CT for the four scenarios.

Table 4. Two independent disturbances.



232 A. Piconese et al.

Table 5. Results of analysis using Obj1, Obj2, Obj3 and Obj4 for all H and Δd.
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By comparing values obtained from simultaneous resolution with those
obtained from the sum of individual resolutions of disturbances, i.e. values pre-
sented in the third and the fourth block of Table 4, we notice that the simul-
taneous resolution provides a better result in terms of computational time for
all objective functions. However, the sum of individual resolutions provides an
improvement in terms of Obj1 and Obj4 using the four objective functions. In
particular by applying Obj1, there is a reduction of the number of rescheduled
movements and by applying Obj2, there is also a reduction of total delay. By
using Obj3 and Obj4, there is a decrease of values of Obj1. It is interesting
to note that when multiple independent disturbances occur on the line, it is
possible to decompose the problem in independent subproblems. In this way,
the train dispatcher can give priority to the rescheduling of trains which paths
include stations where a higher level of service is required or that have to comply
connections with other trains. One could expect that two disturbances would be
more difficult to solve but, according to the first experiments, this is not the case.
More particularly, the time needed to solve the first disturbance is greater than
the time needed to solve both, perhaps due to number of embedded variables.

5 Conclusions and Perspectives

In this paper, we propose a formalization of the rescheduling real-time problem
for a regional single-tracked railway network in which a CTC control system is
installed. We propose a mathematical model that operates as a decision support
system for the train dispatcher. The main goal is to find a decision support
system for the train dispatcher that is able to restore normal traffic conditions
after the occurrence of a disturbance and to provide an adequate level of service
to passengers. We analyze four alternative objective functions in order to find
the optimal solution that is a good compromise between total delay, number of
rescheduled trains and computational time.

There are many perspectives for this work:

– Increase the complexity of the analysis, considering a greater number of dis-
turbances on the line that occur at different times and have different sizes.

– Introduce robustness in the rescheduling process. A robust rescheduled
timetable is less subject to change if a new disturbance occurs on the rail-
way line.

– Perform a structural analysis of the railway line in order to verify if there
are independent sectors in which it is possible to predetermine an optimal
solution to apply when a disturbance occours.

– Introduce indicators of the complexity of the problem in order to assess the
sensibility of the computational time with these parameters.

– Include a resolution strategy that allow the cancellation of a train when the
delay that it would accumulate along the line exceeds a certain threshold.

– Study other resolution methods most suitable to the complexity of the problem,
such as constraints programming, able to produce a set of possible solutions.
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6. İsmail, S.: Railway traffic control and train scheduling based on inter-train conflict
management. Transp. Res. Part B 33, 511–534 (1999)

7. Dotoli, M., Epicoco, N., Falagario, M., Piconese, A., Sciancalepore, F., Turchiano,
B.: A real time traffic management model for regional railway networks under dis-
turbances. In: 9th annual IEEE Conference on Automation Science and Engineering,
Madison, USA (2013)

8. FSE - Ferrovie del Sud Est: Fse - ferrovie del sud est e servizi automobilistici (2013).
http://www.fseonline.it

9. Vicuna, G.: Organizzazione e tencica ferroviaria, vol. II. CIFI; Collegio Ingegneri
Ferroviari Italiani, Roma (1989)

http://www.fseonline.it


Applications



Solving to Optimality a Discrete Lot-Sizing
Problem Thanks to Multi-product Multi-period

Valid Inequalities
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Abstract. We consider a problem related to industrial production
planning, namely the multi-product discrete lot-sizing and scheduling
problem with sequence-dependent changeover costs. This combinatorial
optimization is formulated as a mixed-integer linear program and solved
to optimality by using a standard Branch & Bound procedure. However,
the computational efficiency of such a solution approach relies heavily
on the quality of the bounds used at each node of the Branch & Bound
search tree. To improve the quality of these bounds, we propose a new
family of multi-product multi-period valid inequalities and present both
an exact and a heuristic separation algorithm which form the basis of a
cutting-plane generation algorithm. We finally discuss preliminary com-
putational results which confirm the practical usefulness of the proposed
valid inequalities at strengthening the MILP formulation and at reducing
the overall computation time.

Keywords: Production planning · Lot-sizing · Mixed-integer linear pro-
gramming · Valid inequalities · Cutting-plane algorithm

1 Introduction

Capacitated lot-sizing arises in industrial production planning whenever change-
over operations such as preheating, tool changing or cleaning are required between
production runs of different products on a machine. The amount of the related
changeover costs usually does not depend on the number of products processed
after the changeover. Thus, to minimize changeover costs, production should be
run using large lot sizes. However, this generates inventory holding costs as the
production cannot be synchronized with the actual demand pattern: products
must be held in inventory between the time they are produced and the time they
are used to satisfy customer demand. The objective of lot-sizing is thus to reach
the best possible trade-off between changeover and inventory holding costs while
c© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 237–250, 2015.
DOI: 10.1007/978-3-319-17509-6 16
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taking into account both the customer demand satisfaction and the technical lim-
itations of the production system.

An early attempt at modelling this trade-off can be found in [12] for the prob-
lem of planning production for a single product on a single resource with an unlim-
ited production capacity. Since this seminal work, a large part of the research on
lot-sizing problems has focused on modelling operational aspects in more detail to
answer the growing industry need to solve more realistic and complex production
planning problems. An overview of recent developments in the field of modelling
industrial extensions of lot-sizing problems is provided in [7].

In the present paper, we focus on one of the variants of lot-sizing problems
mentioned in [7], namely the multi-product single-resource discrete lot-sizing and
scheduling problem or DLSP. As defined in [4], several key assumptions are used
in the DLSP to model the production planning problem:

– A set of products is to be produced on a single capacitated production resource.
– A finite time horizon subdivided into discrete periods is used to plan produc-

tion.
– Demand for products is time-varying (i.e. dynamic) and deterministically

known.
– At most one product can be produced per period and the facility processes

either one product at full capacity or is completely idle (discrete production
policy).

– Costs to be minimized are the inventory holding costs and the changeover
costs.

In the DLSP, it is assumed that a changeover between two production runs
for different products results in a changeover cost. Changeover costs can depend
either on the next product only (sequence-independent case) or on the sequence
of products (sequence-dependent case). We consider in the present paper the
DLSP with sequence-dependent changeover costs (denoted DLSPSD in what
follows). Sequence-dependent changeover costs are mentioned in [7] as one of the
relevant operational aspects to be incorporated into lot-sizing models. Moreover,
a significant number of real-life lot-sizing problems involving sequence-dependent
changeover costs have been recently reported in the academic literature: see
among others [9] for a textile fibre industry or [3] for soft drink production.

A wide variety of solution techniques from the Operations Research field
have been proposed to solve lot-sizing problems: the reader is referred to [2,6]
for recent reviews on the corresponding literature. The present paper belongs to
the line of research dealing with exact solution approaches aiming at providing
guaranteed optimal solutions for the problem. A large amount of existing exact
solution techniques consists in formulating the problem as a mixed-integer linear
program (MILP) and in relying on a Branch & Bound type procedure to solve
the obtained MILP. However the computational efficiency of such a procedure
strongly depends on the quality of the lower bounds used to evaluate the nodes
of the search tree. In the present paper, we seek to improve the quality of these
lower bounds so as to decrease the total computation time needed to obtain
guaranteed optimal solutions for medium-size instances of the problem.
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Within the last thirty years, much research has been devoted to the polyhe-
dral study of lot-sizing problems in order to obtain tight linear relaxations and
improve the corresponding lower bounds: see e.g. [8] for a general overview of
the related literature and [1,5,10] for contributions focusing specifically on the
DLSP. However, these procedures mainly focus on the underlying single-product
subproblems and thus fail at capturing the conflicts between multiple products
sharing the same resource capacity. This leads in some cases to significant inte-
grality gaps for multi-product instances of the DLSPSD. In what follows, we
propose a new family of multi-product valid inequalities to partially remedy this
difficulty and discuss both an exact and a heuristic algorithm to solve the cor-
responding separation problem. To the best of our knowledge, this is one of the
first attempts focusing on improving the polyhedral description of multi-product
lot-sizing problems.

The main contributions of the present paper are thus twofold. First we intro-
duce a new family of valid inequalities representing conflicts on multi-period
time intervals between several products simultaneously requiring production on
the resource. Second we formulate the corresponding separation problem as a
quadratic binary program and propose to solve it either exactly by relying on a
quadratic programming solver or approximately through a Kernighan-Lin type
heuristic algorithm. The results of the preliminary computational results carried
out on medium-size instances show that the proposed valid inequalities are effi-
cient at strengthening the linear relaxation of the problem and at decreasing the
overall computation time needed to obtain guaranteed optimal solutions of the
DLSPSD.

The remainder of the paper is organized as follows. In Sect. 2, we recall the
initial MILP formulation of the multi-product DSLPSD and the previously pub-
lished single-product valid inequalities. We then present in Sect. 3 the proposed
new multi-product multi-period valid inequalities and discuss in Sect. 4 both an
exact and a heuristic algorithm to solve the corresponding separation problem.
Preliminary computational results are discussed in Sect. 5.

2 MILP Formulation

We first recall the initial MILP formulation of the DLSPSD. We use the network
flow representation of changeovers between products, which was proposed among
others by [1], as this leads to a tighter linear relaxation of the problem. We then
discuss the valid inequalities first proposed by [10] to strengthen the underlying
single-product subproblems.

2.1 Initial MILP Formulation

We wish to plan production for a set of products denoted p = 1 . . . P to be
processed on a single production machine over a planning horizon involving
t = 1 . . . T periods. Product p = 0 represents the idle state of the machine and
period t = 0 is used to describe the initial state of the production system.
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Production capacity is assumed to be constant throughout the planning hori-
zon. We can thus w.l.o.g. normalize the production capacity to one unit per
period and express the demands as binary numbers of production capacity units:
see e.g. [4]. We denote dpt the demand for product p in period t, hp the inventory
holding cost per unit per period for product p and Spq the sequence-dependent
changeover cost to be incurred whenever the resource setup state is changed
from product p to product q.

Using this notation, the DLSPSD can be seen as the problem of assigning at
most one product to each period of the planning horizon while ensuring demand
satisfaction and minimizing both inventory and changeover costs. We thus intro-
duce the following binary decision variables:

– ypt where ypt = 1 if product p is assigned to period t, 0 otherwise.
– wpqt where wpqt = 1 if there is a changeover from p to q at the beginning of

t, 0 otherwise.

This leads to the following MILP formulation denoted DLSPSD0 for the problem.

ZLS0 =min

P∑

p=1

T∑

t=1

hp

t∑

τ=1

(ypτ − dpτ ) +
P∑

p,q=0

Sp,q

T−1∑

t=1

wp,q,t (1)

t∑

τ=1

ypτ ≥
t∑

τ=1

dpτ ∀p,∀t (2)

P∑

p=0

ypt = 1, ∀t (3)

yp,t =
P∑

q=0

wq,p,t ∀p,∀t (4)

yp,t =
P∑

q=0

wp,q,t+1 ∀p,∀t (5)

ypt ∈ {0, 1} ∀p,∀t (6)
wp,q,t ∈ {0, 1} ∀p,∀q,∀t (7)

The objective function (1) corresponds to the minimization of the inventory
holding and changeover costs over the planning horizon.

∑t
τ=1(ypτ − dpτ ) is the

inventory level of product p at the end of period t. Constraints (2) impose that
the cumulated demand over interval [1, t] is satisfied by the cumulated production
over the same time interval. Constraints (3) ensure that, in each period, the
resource is either producing a single product or idle. Constraints (4)–(5) link
setup variables ypt with changeover variables wpqt through equalities which can
be seen as flow conservation constraints in a network. They ensure that in case
product p is setup in period t, there is a changeover from another product q
(possible q = p) to product p to at the beginning of period t and a changeover
from product p to another product q (possible q = p) at the end of period t.
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2.2 Single-Product Valid Inequalities

We now recall the expression of the valid inequalities proposed by [10] for the
single product DLSP. We denote dp,t,τ the cumulated demand for product p in
the interval {t, . . . , τ} and Δp,v the vth positive demand period for product p.
Δp,dp,1,t+v is thus the period with the vth positive unit demand for product p
after period t occurs.

t∑

τ=1

(ypτ − dpτ ) +
w∑

v=1

[
yp,t+v +

Δp,dp,1,t+v∑

τ=t+v+1

∑

q �=p

wq,p,τ

]
≥ w

∀p,∀t,∀w ∈ [1, dp,t+1,T ] (8)

The idea underlying valid inequalities (8) is to compute a lower bound on
the inventory level of a product p at the end of a period t,

∑t
τ=1(ypτ − dpτ ),

by considering both the demands and the resource setup states for this product
in the forthcoming periods τ = t + 1...Δp,dp,1,t+v. The reader is refered to [10]
for a full proof of validity for these inequalities. In the computation experiments
to be presented in Sect. 5, we use a standard cutting-plane generation algorithm
to strengthen the formulation DLSPSD0 by adding violated valid inequalities of
family (8). The resulting improved formulation is denoted DLSPSD1.

Constraints (8) can be understood as a way to strengthen the demand sat-
isfaction constraints (2) by expressing in a more detailed way the need for each
individual product to access the resource in order to satisfy its own demand on
a given subinterval of the planning horizon. However, in the resulting DLSPSD1
formulation, the conflicts between different products simultaneously requiring
production on the resource will only be handled by the single-period capacity
constraints (3). In what follows, we propose to improve this representation of the
conflicts between different products by considering multi-period multi-product
valid inequalities.

3 New Multi-product Valid Inequalities

We now present the multi-period multi-product valid inequalities we propose to
strengthen the linear relaxation of the multi-product DLSPSD.

Proposition 1
Let SP ⊂ {0...P} be a subset of products.
Let t ∈ [1, T ] be a period within the planning horizon. Let (θ1, ..., θp, ..., θP ) ∈
[0, T ]P be a set of periods such that θp < t if p ∈ SP . For each period τ ∈ [1, T ],
we denote SDτ = {p = 1...P |θp > τ}.
The following inequalities are valid for the multi-product DLSPSD.

[ P∑

q=1

dq,1,θq

][ ∑

p∈SP

ypt

]
≤

T∑

τ=1

C̃τ (9)
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where C̃τ is defined by:

C̃τ = min
( ∑

q∈SDτ

yq,τ ,
∑

p∈SP

yp,t

)
if τ /∈ [t − 1; t + 1]

C̃t−1 =
∑

q∈SDt−1,p∈SP

wqpt

C̃t = 0

C̃t+1 =
∑

p∈SP,q∈SDt+1

wpq,t+1

Before providing the proof for Proposition 1, we briefly explain the idea
underlying valid inequalities (9). We choose a subset SP of products. If none
of these products is assigned for production in period t (i.e.

∑
p∈SP ypt = 0),

all corresponding valid inequalities are trivially respected. But if one of these
products is produced in period t (i.e.

∑
p∈SP ypt = 1), then we have to make

sure that we are able to satisfy the total cumulated demand
∑P

q=1 dq,1,θq
on the

remaining periods 1...t−1, t+1...T . In this case, the right hand side of inequalities
(9) computes a tight upper bound (

∑T
τ=1 C̃τ ) of the total production capacity

remaining to satisfy this cumulated demand.

Proof. Let (y, w) be a feasible solution of the DLSPSD. We arbitrarily choose a
subset of products SP , a period t and a vector of periods (θ1, ..., θp, ..., θP ) such
that θp < t if p ∈ SP and show that all proposed inequalities (9) are valid for
the considered feasible solution.

We distinguish two main cases:

– Case 1:
∑

p∈SP ypt = 0
In this case, the left hand side of the inequalities is equal to 0 whereas the
right hand side is nonnegative. All inequalities (9) are thus trivially true.

– Case 2:
∑

p∈SP ypt = 1
In this case, the left hand side of inequalities (9) is equal to the total cumulated
demand over intervals [1, θq] for products q = 1..P , i.e. to

∑P
q=1 dq,1,θq

.
∑

p∈SP ypt = 1 means that period t is devoted to the production of one of
the products in SP . As we have θp < t for each product p ∈ SP , period t cannot
be used to satisfy the cumulated demand dp,1,θp

of any product in SP . Hence
(y, w) can be a feasible solution of the DLSPSD if and only if the remaining total
cumulated production capacity over the periods 1...t− 1, t+1...T is sufficient to
satisfy the cumulated demand

∑P
q=1 dq,1,θq

.
We now seek to compute a tight upper bound for the production capacity

Cτ available in each period τ ∈ [1, t − 1] ∩ [t + 1, T ] to satisfy the cumulated
demand

∑P
q=1 dq,1,θq

:

– By capacity constraints (3), we have Cτ ≤ 1, i.e. Cτ ≤ ∑
p∈SP ypt.

– Moreover, the cumulated demand dq,1,θq
for a product q can only be sat-

isfied by a production for q in period τ if τ ≤ θq as demand backlogging
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is not allowed here. Hence period τ can be used to satisfy part of demand∑P
q=1 dq,1,θq

only if the resource is setup for one of products q = 1..P such
that τ ≤ θq. This gives Cτ ≤ ∑

q∈SDτ
yq,τ .

We thus obtain Cτ ≤ min(
∑

q∈SDτ
yq,τ ,

∑
p∈SP ypt) ∀τ ∈ [1, t−1]∩ [t+1, θ].

Now, we can exploit our knowledge of the setup state of the resource in
period t to further strengthen these inequalities. Namely, we know that a product
p belonging to SP is produced in period t. A changeover to (resp. from) this
product p thus has to take place at the beginning (resp. at the end) of period t.
This means that:

– If period t − 1 is to be used to satisfy the demand of one of the products
belonging to SDt−1, there must be a changeover from this product q ∈ SDt−1

to the product p ∈ SP at the beginning of period t. The production capacity
available in period τ = t − 1 for the products in SDt−1 is thus limited by
Ct−1 ≤ ∑

p∈SP,q∈SDt−1
wq,p,t.

– Similarly, if period t + 1 is to be used to satisfy the demand of one of the
products belonging to SDt+1, there must be a changeover from the product
p ∈ SP to this product at the end of period t. The production capacity
available in period τ = t + 1 for the products in SDt+1 is thus limited by
Ct+1 ≤ ∑

p∈SP,q∈SDt+1
wp,q,t+1.

We can thus strengthen the upper bound of Ct−1 (resp Ct+1) by replacing the
term min(

∑

q∈SDτ
yq,τ ,

∑

p∈SP ypt) by
∑

p∈SP,q∈SDt−1
wq,p,t (resp.

∑

p∈SP,q∈SDt+1

wp,q,t+1)
and obtain the inequalities (9) discussed in Proposition 1.

4 Separation Problem

The number of valid inequalities (9) grows very fast with the problem size. It
therefore not possible to include them a priori in the MILP formulation of the
problem. This is why we use a cutting-plane generation strategy to add to the
MILP formulation only the most violated valid inequalities of the family. This
requires solving the corresponding separation algorithm which, given a fractional
solution (y, w) of the DLSPSD, will either identify a violated valid inequality or
prove that no such inequality exists.

4.1 Exact Separation Algorithm

We first discuss an exact separation algorithm, i.e. an algorithm which is guaran-
teed to find an inequality violated by a fractional solution (y, w) of the DLSPSD
if one exists. We consider each period t and seek to identify the subset SP and the
vector (θ1, ..., θp, ..., θP ) which provide the largest violation of inequalities (9).
To achieve this, we formulate the separation problem for a given t as follows.

We introduce the following decision variables:

– αp = 1 if product p ∈ SP , 0 otherwise.
– βq,θ = 1 if θq = θ, 0 otherwise.
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– γτ = 1 if capacity Cτ is limited by
∑P

p=0 yptαp, 0 if Cτ is limited by
∑P

q=0

∑T
θ=τ yq,τβq,θ.

With this notation, the separation problem QBPt for a given t and a solution
(y, w) is formulated as:

max

P∑

p=0

P∑

q=1

T∑

θ=1

dq,1,θyptαpβq,θ −
P∑

p=0

P∑

q=1

T∑

θ=t−1

wq,p,tαpβq,θ

−
P∑

p=0

P∑

q=1

T∑

θ=t+1

wp,q,t+1αpβq,θ

−
∑

τ=1...t−2t+2...θ

[ P∑

p=0

yptαpγτ +
P∑

q=1

T∑

θ=τ

yq,τβq,θ(1 − γτ )
]

(10)

αp +
T∑

θ=t

βp,θ ≤ 1 ∀p (11)

T∑

θ=0

βp,θ = 1 ∀p (12)

αp ∈ {0, 1} ∀p (13)
βp,θ ∈ {0, 1} ∀p,∀θ (14)
γτ ∈ {0, 1} ∀τ (15)

The objective function (10) corresponds to the maximimization of the viola-
tion of the inequalities, i.e. we seek to identify SP and(θ1, ..., θp, ..., θP ) so as to
maximize the difference between the left and the right hand side of the inequality.
If this value is strictly positive, we obtain a violated valid inequality. In case this
value is less than or equal to 0, it means that all valid inequalities for period t are
satisfied by the fractional solution (y, w). Constraints (11) state that for a given
product p, we cannot simultaneously include it in SP and choose a period θp such
that θp ≥ t. Constraints (12) guarantee that for each product p, exactly one value
of θp is chosen .

Problem QBPt is a binary program with a quadratic objective function and a
series of linear constraints. It can be solved to optimality by a quadratic binary
programming solver such as the one embedded in CPLEX 12.5.

4.2 Heuristic Separation Algorithm

As can be seen from the computational experiments to be presented in Sect. 5,
solving to optimality a sequence of quadratic binary programs QBPt leads to pro-
hibitively long computation times for the cutting-plane generation algorithm, even
for small-size instances. We are thus currently investigating the development of
a heuristic separation algorithm capable of identifying violated valid inequalities
more quickly.
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We discuss here a first version of this separation algorithm which focuses on
a special case of the proposed multi-product valid inequalities. This special case
consists in choosing a period θ such that θ ≥ t, in restricting the possible values
for periods θ1,..., θp,...,θP to the set {0, θ} and in imposing θp = 0 if p ∈ SP .

In this case, for a given pair of periods (t, θ), the separation problem amounts
to finding a tripartition of the set of products {0...P} into 3 subsets: SP ,
SDemθ = {q = 1..P |θq = θ} and SDem0 = {q = 1..P |θq = 0} such that
the quadratic expression (10) is maximized. This problem shares some common
features with graph partitioning problems. We therefore propose to solve it using
the following Kernighan-Lin type heuristic as this type of algorithm is known to
be rather efficient at solving graph partitioning problems.

Choose a tripartition of {0...P}, Πref , and compute its violation Vref .
While (test =0):

Let test = 1, PossMove = P + 1 and Πcur = Πref .
Allow all possible moves to explore the neighbourhood of Πcur.
While (PossMove > 0):

Evaluate all partitions obtained by carrying out each of the allowed
moves in the neighbourhood of Πcur

Select the best partition obtained in this neighbourhood of Πcur,
Πbest, forbid the move used to obtain Πbest from Πcur, decrease
PossMove by 1 and set Πcur = Πbest

If Vbest > Vref , test = 0 and Πref = Πbest

The neighbourhood of a tripartition Π of {0...P} is defined as the set of tripar-
titions obtained by moving a single product from its current subset in Π to one of
the two other subsets. Moreover, in the computational experiments to be presented
in Sect. 5, five different types of partitions are used to initialize the heuristic.

4.3 Cutting-Plane Generation Algorithm

We now briefly describe the cutting-plane generation used to strengthen formu-
lation DLSPSD1 by adding to it some multi-product valid inequalities (9).

Compute the initial LP relaxation of the DLSPSD using formulation
DLSPSD1.
While (test = 0):

Denote (y, w) the solution of the current linear relaxation.
For t=1...T such that ∃p such that 0.0001 < ypt < 0.9999;

Let θ = t and found =0.
While (θ ≤ T ) and (found == 0),

Solve the separation problem for periods (t, θ) using either the exact
or the heuristic algorithm.
If a violated valid inequality has been found, let found = 1.
θ = θ + 1

If at least one violated valid inequality is found, add all the found
violated valid inequalities to the current formulation and compute its
LP relaxation.
Else set test = 1 to stop the cutting-plane generation.
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5 Computational Results

We now discuss the results of some preliminary computational experiments car-
ried out to evaluate the effectiveness of the proposed multi-product valid inequal-
ities at strengthening the formulation of the multi-product DLSPSD and to
assess their impact on the total computation time.

We randomly generated instances of the problem using a procedure similar
to the one described in [11] for the DLSP with sequence-dependent change-over
costs and times. More precisely, the various instances tested have the following
characteristics:

– Problem dimension. The problem dimension is represented by the number of
products P and the number of periods T : we solved medium-size instances
involving 4–10 products and 15–75 periods.

– Inventory holding costs. For each product, inventory holding costs have been
randomly generated from a discrete uniform DU(5, 10) distribution.

– Changeover costs. We used two different types of structure for the changeover
cost matrix S. Instances of sets A1–A7 have a general cost structure: the cost
of a changeover from product p to product q, Spq, was randomly generated
from a discrete uniform DU(100, 200) distribution. Instances of sets B1–B7
correspond to the frequently encountered case where products can be grouped
into product families: there is a high changeover cost between products of
different families and a smaller changeover cost between products belonging
to the same family. In this case, for products p and q belonging to differ-
ent product families, Spq was randomly generated from a discrete uniform
DU(100, 200) distribution; for products p and q belonging to the same prod-
uct family, Spq was randomly generated from a discrete uniform DU(0, 100)
distribution.

– Production capacity utilization. Production capacity utilization ρ is defined as
the ratio between the total cumulated demand (

∑P
p=1

∑T
t=1 dpt) and the total

cumulated available capacity (T ). We set ρ = 0.95 for all instances.
– Demand pattern. Binary demands dpt ∈ {0, 1} for each product have been

randomly generated according to the a procedure similare to the used by [11].

For each considered problem dimension, we generated 10 instances, leading
to a total of 140 instances.

All tests were run on an Intel Core i5 (2.7 GHz) with 4 GB of RAM, running
under Windows 7. We used a standard MILP software (CPLEX 12.5) with the
solver default settings to solve the problems with one of the following formula-
tions:

– DLPSD1: initial MILP formulation DLSPSD0, i.e. formulation (1)–(7), streng-
thened by single-product valid inequalities (8). We used a standard cutting-
plane generation strategy based on a complete enumeration of all possible
valid inequalities to add them into the formulation.
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– DLSPSD2e: formulation DLSPSD1 strengthened by multi-product valid in-
equalities (9). We used the cutting-plane generation algorithm presented in
Sect. 4.3 to add only the most violated valid inequalities and relied on the
exact separation algorithm discussed in Sect. 4.1.

– DLSPSD2h: formulation DLSPSD1 strengthened by multi-product valid in-
equalities (9). We used the cutting-plane generation algorithm presented in
Sect. 4.3 to add only the most violated valid inequalities and relied on the
heuristic separation algorithm discussed in Sect. 4.2.

Tables 1 and 2 display the computational results. We provide for each set of
10 instances:

– P and T : the number of products and planning periods involved in the pro-
duction planning problem.

– V and Cst: the number of variables and constraints in the initial formulation
DLSPSD0.

– SP : the number of single-product violated valid inequalities (8) added in the
three formulations.

– MPe and MPh: the number of multi-product violated valid inequalities added
in formulation DLSPSD2e by the exact separation algorithm and in formula-
tion DLSPSD2h by the heuristic separation algorithm.

– GapLP1 (resp. GapLP2e, GapLP2h): the average percentage gap between the
linear relaxation of formulation DLSPSD1 (resp. DLSPSD2e, DLSPSD2h) and
the value of an optimal integer solution.

– NIP1 (resp. NIP2e, NIP2h): the average number of nodes explored by the
Branch & Bound procedure before a guaranteed optimal integer solution is
found or the computation time limit of 2700 s is reached.

– TIP1 (resp. TIP2e, TIP2h): the total computation time (cutting-plane genera-
tion and Branch & Bound search) needed to find a guaranteed optimal integer
solution (we used the value of 2700s in case a guaranteed optimal integer solu-
tion could not be found within the computation time limit).

Results from Table 1 show that the proposed valid inequalities (9) are effi-
cient at strengthening formulation DLSPSD1. Namely, the integrality gap is

Table 1. Preliminary computational results: exact separation algorithm.

DLSPSD1 DLSPSD2e

P T V Cst SP GapLP1 NIP1 TIP1 MPe GapLP2e NIP2e TIP2e

A1 4 15 425 250 106 2.6 % 2 0.3s 9 0.0 % 0 38.5s

A2 6 15 840 315 108 0.9 % 0 0.3s 3 0.1 % 0 50.2s

A3 4 20 600 300 193 2.6 % 5 0.4s 13 0.1 % 0 2386.0s

B1 4 15 425 250 105 11.5 % 6 0.3s 12 0.02 % 0 51.2s

B2 6 15 840 315 107 5.3 % 1 0.3s 17 1.3 % 0 273.0s

B3 4 20 600 300 192 8.3 % 9 0.5s 20 0.3 % 2 3609.9s
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Table 2. Preliminary computational results: heuristic separation algorithm.

DLSPSD1 DLSPSD2h

P T V Cst SP GapLP1 NIP1 TIP1 MPh GapLP2h NIP2h TIP2h

A1 4 15 425 250 106 2.6 % 2 0.3s 9 0.0 % 0 0.1s

A2 6 15 840 315 108 0.9 % 0 0.3s 3 0.2 % 0 0.2s

A3 4 20 600 300 193 2.6 % 5 0.4s 15 0.2 % 0 0.3s

A4 6 25 1400 625 315 4.3 % 9 1.0s 27 0.7 % 4 1.0s

A5 6 50 2800 1050 1153 1.6 % 32 6.7s 20 0.9 % 11 4.7s

A6 10 50 6600 1650 1949 2.1 % 99 21.0s 51 1.1 % 30 22.7s

A7 8 75 6750 2025 2776 2.7 % 856 151.9s 23 2.5 % 660 147.5s

B1 4 15 425 250 105 11.5 % 6 0.3s 16 0.1 % 0 0.1s

B2 6 15 840 315 107 5.3 % 1 0.3s 10 2.1 % 1 0.3s

B3 4 20 600 300 192 8.3 % 9 0.5s 21 0.4 % 0 0.4s

B4 6 25 1400 625 307 9.2 % 13 1.2s 30 0.8 % 1 0.7s

B5 6 50 2800 1050 1248 12.2 % 1753 47.7s 48 9.5 % 983 37.6s

B6 10 50 6600 1650 1274 15.7 % 25937 901.0s 97 11.9 % 11284 496.0s

B7 8 75 6750 2015 2681 15.3 % 25015 1961.9s 53 10.7 % 22323 1904.7.0s

reduced from an average of 5.3 % with formulation DLSPSD1 (see GapLP1) to
an average of 0.3 % with formulation DLSPSD2e (see GapLP2e). We note that
this reduction is particularly significant for instances B1–B3 featuring a prod-
uct family changeover cost structure. Moreover this formulation strengthening
is obtained thanks to a relatively small number of multi-product inequalities as
can be seen from the average value of MPe (12). However, even if the number
of nodes needed by the Branch & Bound procedure to find a guaranteed optimal
solution is slightly reduced when using formulation DLSPSD2e, it does not lead
to an overall reduction of the computation time. This is mainly explained by the
fact that the cutting-plane generation algorithm based on an exact separation
algorithm requires prohibitively long computation times to identify the violated
multi-product valid inequalities to be added to the formulation. It is thus nec-
essary to resort to a heuristic separation algorithm such as the one proposed in
Sect. 4.2.

Comparison of the results obtained with the exact and the heuristic sepa-
ration algorithm for the instances A1–A3 and B1–B3 (Tables 1 and 2) shows
that the proposed heuristic is efficient at finding violated valid inequalities for
small size instances. Namely, the average integrality gap for these 60 instances
when using the heuristic algorithm is the GapLP2h = 0.5% which is close to
the one obtained when using the exact algorithm (GapLP2e = 0.3%). Moreover,
the number of violated valid inequalities found by the heuristic algorithm is
nearly the same as the number of violated valid inequalities found by the exact
algorithm.

Results from Table 2 also confirm that the proposed heuristic is rather effi-
cient at finding violated valid inequalities for larger instances. This can be seen
by looking at the results for instances A4–A7 and B4–B7. We first note that, for
these instances, the integrality gap is reduced from an average of 7.9 % while



Solving to Optimality a Discrete Lot-Sizing Problem 249

using formulation DLSPSD1 to an average of 4.7 % while using formulation
DLSPSD2h. Moreover a significant decrease in the overall computation time
is obtained for instances B4–B7 when using formulation DLSPSD2h.

6 Conclusions

We considered the multi-product discrete lot-sizing and scheduling problem with
sequence-dependent changeover costs and proposed a new family of multi-product
valid inequalities for this problem. This enabled us to better take into account
in the MILP formulation the conflicts between different products simultaneously
requiring production on the resource. We then presented both an exact and a
heuristic separation algorithm in order to identify the most violated valid inequal-
ities to be added in the initial MILP formulation within a cutting-plane generation
algorithm. Our preliminary results show that the proposed valid inequalities are
efficient at strengthening the MILP formulation and that their use leads to a signif-
icant reduction of the overall computation time for instances featuring a product
family changeover cost structure. Research work is currently ongoing in order to
extend the proposed heuristic separation algorithm so as to identify violated valid
inequalities from the whole family.

Acknowledgements. This work was funded by the French National Research Agency
(ANR) through its program for young researchers (project ANR JCJC LotRelax).
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Abstract. We consider the decision problem of a marketing manager
who has to decide on the best selection of advertising media to be used
in a promotional campaign. In this paper an optimization model is devel-
oped as part of the marketing management software solution MAR-
MIND. It estimates the effect of each single medium and each pair of
media from the evaluation data recorded for past campaigns. These eval-
uations are weighted by similarity measures which represent the distance
between campaigns based on their attributes and goals. Furthermore, a
memory effect is introduced to give lower weight to campaigns of the
more distant past and higher weight to more recent campaign valua-
tions. The resulting discrete optimization model is a Quadratic Knapsack
Problem (QKP) which can be solved almost to optimality by a genetic
algorithm. Then the given campaign budget is allocated to all selected
advertising media based again on estimations from previous campaigns.

Keywords: Advertising media optimization · Quadratic Knapsack
Problem · Genetic algorithm

1 Introduction

Every company striving to sell its products has to find the right way for their
marketing, whatever industry or market it is concerned with. In contrary to
classical production planning where a certain set of inputs is transformed into
a known and fixed set of outputs (disregarding aspects of unknown yields in
certain technologies), the task of marketing management is made much more
difficult by the lack of quantifiable cause and effect relationships between the
chosen advertising media and the obtained results, such as increase in sales etc.
Under this uncertainty, the central task of marketing management, namely how
to use the budget of a promotional campaign, becomes very challenging.
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The increase of available marketing options during the last decade with new
possibilities such as targeted social media advertising and context sensitive web
banners have further added to this difficulty. On the other hand, some electroni-
cally based advertising media also allow for a better monitoring of their reached
effect (e.g. click-rates). In this environment of increasing diversity in the mar-
keting decision space and partial but limited feedback information the suitable
selection of advertising media for a promotional campaign, i.e. deciding on the
media mix, definitely asks for an automated decision support system.

The software platform MARMIND1 produced and offered by UPPER Net-
work 2 provides a wide range of tools to support the daily tasks of a marketing
department from planning to realization. In collaboration with the University
of Graz, Austria, an optimization tool was developed and added to the solu-
tion which computes a suggestion for the media mix of a planned promotional
campaign. This tool is now an integral part of MARMIND and recently started
being used by marketing managers.

In the literature contributions to finding the best media mix were given for
particular industry sectors, e.g. in [1,2], and from an optimization point of view
in several papers going back to [3] and more recently e.g. by [4–6].

A central question of marketing planning concerns the effect and efficiency
of advertising media (see e.g. the survey paper [7,8] on internet advertisements).
While many statistical methods have been employed to find partial answers to
this questions, these require survey data or other means of market research,
which is usually not available for the full range of marketing options available
to the decision maker in a typical planning scenario. Therefore, we aim to gain
information from past campaigns.

Let us give a brief overview of our optimization tool: MARMIND keeps a
data base of all past promotional campaigns with ratings of their overall success
and the degree of attainment for the different goals of the campaign. These
valuations can also incorporate empirical data from electronic advertising media.
Based on these observations of past campaigns, we estimate the effect of every
advertising medium for the currently planned campaign. To this end we take
the “similarity” between planned and past campaigns into account. Moreover,
we derive estimations for the pairwise effect of advertising media, since many
media influence each other or are dependent on each other and thus cannot be
separated into unconnected decisions. Both kinds of effect estimations may also
be subject to a memory effect, which attributes less influence to campaigns of
the more distant past and more influence to quite recent campaigns. This allows
to incorporate changes in the general marketing landscape into the planning of
the current campaign.

Based on these effect estimations we draw up an optimization model which
turns out to be a classical Quadratic Knapsack Problem (QKP). After solving
this model by an improved genetic algorithm almost to optimality, we assign the
1 www.marmind.com/en.
2 www.uppernetwork.com.

www.marmind.com/en
www.uppernetwork.com
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available budget to the selected advertising media by considering the propor-
tional budget allocation of past campaigns.

In-house tests indicate that the media mix selected by the optimization tool
gets highly positive appraisals from experts in the field. The various possibilities
of para-metrization allow a flexible adaptation for every domain.

2 Formal Problem Formulation

In this paper a promotional campaign is described by a number of attributes,
some of them represented by nominal values such as target groups, product
classes and general strategic goals, others expressed by numerical values such as
desired market share, increase in revenue, etc.

Formally, a promotional campaign t is defined by a k-dimensional vector
of parameters t(1), . . . , t(k), where for some fixed k′ with 0 ≤ k′ ≤ k there
are nominal values t(1), . . . , t(k′) and positive cardinal values t(k′ + 1), . . . , t(k).
A campaign may also consist of only a subset of these parameters and leave the
remaining entries of the vector empty.

To express and measure the goals of promotional campaigns there is set of
operative goals g1, . . . , gl defined such as number of new customers, awareness
level, number of repeat customers, etc. Each promotional campaign t is assigned
a subset Gt of these operative goals with lt := |Gt|. For convenience we impose
an upper bound ltleqL on the number of selected goals, which is of moderate size
in practice (think of single digit numbers), i.e. L � l. Furthermore, the chosen
goals in Gt are ranked in a total ordering to indicate their relative importance.
This preference relation between goals is represented by a rank number rt(gj)
for each goal gj ∈ Gt, where rt = lt signifies the most important, i.e. highest
ranked, goal and rt = 1 the least important. Clearly, each number in 1, . . . , lt is
assigned to exactly one goal as a rank rt.

Finally, there is a total budget Bt given for the promotional campaign t.
After completion of the promotional campaign t the responsible manager

should be able to state the degree of achievement of each operative goal gj ∈ Gt

of the campaign by assigning a numerical value representing the achieved per-
centage of the goal. For simplicity we will assume that this value is scaled into an
achievement level at(gj) ∈ [0, 1] with at(gj) = 1 indicating perfect achievement
of goal gj . In addition, the marketing manager will be asked to evaluate the over-
all success of a completed promotional campaign by assigning a discrete value
st ∈ {1, . . . , S}, where S indicates the best outcome and 1 the worst. Usually, S
is a single digit number.

Of course, it would be desirable to extract more information on the impact of
the applied advertising media. However, one should keep in mind that an overly
complicated feedback system will often be ignored or filled with data of low
quality. Practical experience suggests to keep the evaluation system as simple as
possible.
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To reach the goals of a promotional campaign there are n different advertis-
ing media m1, . . . , mn, available (n ≈ 200), e.g. TV spots for different stations,
newspaper ads in various publications, flyers, catalogs, social media ads, promo-
tional events, etc., each with different characteristics.

After choosing the parameters and operative goals of a promotional campaign
the central task of the marketing manager as a decision maker consists of the
selection of a subset of advertising media and the allocation of a budget bi to
each selected medium mi, such that the defined goals are met to a high degree
while the available budget Bt is not exceeded. The decision on this so-called
media mix is crucial for the success of any campaign.

Unfortunately, the effect of each advertising medium on the defined goals
in connection with the selected parameters of the promotional campaign are
mostly impossible to be quantified. Moreover, the effects of different media can
not be separated but are highly interdependent, e.g., a promotional event with a
celebrity will hardly have any effect without appropriate news coverage, and an
evening TV spot will be better remembered if its tune is repeated by a morning
radio spot. Under these circumstances, only educated guesses and general rules
of thumb gained from experience can be used by the decision maker to allocate
the promotional budget.

The existing software solution MARMIND can keep track of all tasks involved
with the realization of a promotional campaign including accounting, managing
orders with advertisement companies, etc. In this contribution we describe an
optimization system developed to give the decision maker an automatically gen-
erated suggestion for the media mix.

There are two core features of our system: (1) an estimation of the direct
effect and the interdependencies between advertising media based on the evalu-
ation of past promotional campaigns by the managers, (2) the incorporation of
these values into a discrete optimization model, which is basically a Quadratic
Knapsack Problem (QKP), possibly with additional constraints.

3 Quadratic Knapsack Model

Given the parameters and operative goals of a promotional campaign t we will
derive in Sects. 4 and 5 an estimation of the following three values for all adver-
tising media. For simplicity of notation we omit the reference to the current
campaign t.

1. Direct effect pi on the promotional campaign caused by selecting medium mi.
2. Joint effect qij on the promotional campaign caused by selecting both media

mi and mj .
3. Estimated budget bi allocated to medium mi, if it is selected in the promo-

tional campaign.

With these estimations we can set up the following mathematical optimiza-
tion model with binary variables xi ∈ {0, 1} representing the selection of adver-
tising medium mi. The objective function consists of a convex combination of
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a linear (direct effect) and a quadratic (joint effect) term with a parameter
λ ∈ (0, 1) to be chosen appropriately. As a starting value we set λ = 0.5.

max λ

n∑

i=1

pixi + (1 − λ)
n∑

i=1

n∑

j=1

qij xixj (1)

s.t.
n∑

i=1

bixi ≤ Bt (2)

xi ∈ {0, 1} (3)

The model (1)–(3) is the well-known Quadratic Knapsack Problem (QKP),
see e.g. [9, Chap. 12] or [10].

It may seem reasonable to restrict the number of different advertising media
selected for one promotional campaign by adding a cardinality constraint

n∑

i=1

xi ≤ K. (4)

However, it will turn out that the estimation of budget allocations bi produces
values of a certain proportion w.r.t. Bt which implicitly restricts the number of
chosen advertising media and thus makes (4) redundant.

Practical considerations also suggest that certain advertising media (e.g. TV
spots) are more costly and require a minimum budget to make sense. Thus,
we will eliminate in a preprocessing step all advertising media whose minimum
budget requirement would consume most of the available budget Bt.

The final suggestion of the media mix presented to the user of the system
follows directly from the solution of (1)–(3). Exactly those advertising media
mi should be used whose decision variables have value xi = 1 in the solution.
Allocating the final budget b̄i to each selected medium mi requires a bit more
care and will be treated in Sect. 5.2.

4 Linear and Quadratic Effect Estimation

It should be pointed out that all our estimations are based on the evaluation
of past promotional campaigns and are not founded on some strict stochastic
model. They were developed in several rounds of interaction with practitioners
and validated with real-world case data. The fact that the convex combination
of several terms allows the setting of a number of weighting parameters should
be seen as an advantage since it permits the adaptation of the optimization
system to the special customs and practices of the particular domain the system
is applied in. By no means we can expect to deliver a “plug-and-play” system
ready for use in any domain for every type of company.

Let T (i) be the set of all past promotional campaigns containing advertising
medium mi. The linear profit value pi will be expressed by a convex combination
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of the general success attributed to medium mi in the past and the level of goal
achievement reached by similar campaigns if they included mi, i.e.

pi := λp psi + (1 − λp)pgi (5)

with λp ∈ (0, 1). The first term psi represents the average scaled success of all
past promotional campaigns containing medium mi. The underlying argument
says that every medium contributed in some way to the overall success of past
campaigns. Formally, we have:

psi :=
1

|T (i)|
∑

t∈T (i)

st

S
(6)

Clearly, psi is in [0, 1].

The second term pgi considers achievement of operative goals and similarity
of parameters in more detail and will be described in the following subsection.

4.1 Considering Similarity of Campaigns

The value pgi should reflect the principle that it is a good idea to repeat strategies
that worked well in the past for campaigns with similar parameters. To formalize
this principle we will express “working well” by the degree of goal achievement
and “similar parameters” by introducing a similarity measure between cam-
paigns.

Let T̃ (j) be the set of all past promotional campaigns containing operative
goal gj . Then the overall goal achievement at of a promotional campaign t will
be defined as follows:

at :=
1

∑
j∈Gt

rt(gj)

⎛

⎝
∑

j∈Gt

rt(gj)·
⎛

⎝1
2

⎛

⎝at(gj) − 1
|T̃ (j)|

∑

τ∈T̃ (j)

aτ (gj)

⎞

⎠ +
1
2

⎞

⎠

⎞

⎠

(7)

The term in the inner capital brackets computes the difference of the goal
achievement for goal gj from the average goal achievement over all promotional
campaigns τ containing goal gj . This number lies in (−1, 1) and is transformed
to lie in (0, 1). Finally, the terms are weighted by their rank number and scaled
by the sum of rank numbers.

Now we introduce a measure to express the similarity between two promo-
tional campaigns t and t′. Formally, we will define a function sim(t, t′) → [0, 1],
such that higher values of sim indicate closer similarity of two campaigns. Mea-
sures of distance and similarity are used in many fields of applied mathematics
and statistics, in particular in cluster analysis (see e.g. [11,12]). Our similarity
function will deal separately with a linear combination of nominal and cardinal
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parameters of campaigns expressed by sim par and with the similarity of the
ordinally ranked operative goals sim goal.

sim par(t, t′) := +
1

∑k
i=1 ci

⎛

⎝
k′

∑

i=1

ci · sim nom(t(i), t′(i))

+
k∑

i=k′+1

ci · sim card(t(i), t′(i))

)

(8)

The weighting parameters ci ∈ (0, 1) can be used to indicate the importance of
different parameters.

Comparing nominal parameters is done simply by an inverted Hamming dis-
tance, i.e. assigning sim nom(t(i), t′(i)) = 1 if t(i) = t′(i) and 0 otherwise, for
i = 1, . . . , k′. Clearly, also more complicated measures such as the Jaccard index,
the Sørensen coefficient or the Tanimoto distance might be used, see e.g. [13].

For cardinal parameters i = k′ +1, . . . , k the similarity is computed from the
relative deviation by

sim card(t(i), t′(i)) = 1 − |t(i) − t′(i)|
max{t(i), t′(i)} , (9)

which is clearly in [0, 1]. Basically, any Minkowski metric could be used and
scaled into the corresponding similarity measure.

For comparing the ordered selection of goals between two campaigns in a sim-
ilarity measure sim goal(t, t′), classical distance measures of orderings such as
Kendall tau rank distance (similar to Kemeny distance) could be used (see [14,15]
for recent contributions). In our case, out of the available set of l goals each cam-
paign is assigned only subset of goals of small, but varying size. Hence, we use the
following rather unorthodox approach.

Define a decreasing sequence of positive bonus points β1 > β2 > . . . > βL and
translate rank numbers into bonus points by assigning the goal g of a promotional
campaign t with rank rt(g) exactly βlt−rt(g)+1 points, i.e. the best ranked goal
receives β1 points and the lowest ranked goal with rt(g) = 1 gets βlt points. The
remaining points βlt+1, . . . , βL are not assigned at all.

For any pair (t, t′) of campaigns we determine the intersection of selected
goals and add the bonus points accrued by every such goal in both campaigns.
I.e. if some goal g′ is ranked on first position in t and on third position in t′,
then g′ contributes β1 + β3 to the total sum, while goals appearing in only
one of the two campaigns do not contribute at all. This sum is scaled by the
maximum possible number of points

∑min{lt,lt′}
j=1 2βj which guarantees a final

value sim goal(t, t′) in [0, 1], with the desired property that identical orderings
of goals yield a similarity of 1 while disjunctive sets of goals have similarity 0.
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Finally, we put together the two similarity measures with a weighting para-
meter λg.

sim(t, t′) := (1 − λg) sim par(t, t′)
+ λg · sim goal(t, t′) (10)

A drawback of the above definitions can be found in the “averaging effect”
which means that taking a linear combination over many different factors may
dilute the effect of strong similarity or deviance in some components and tends
to produce moderate values for almost any pair of promotional campaigns.

Thus, we aim at strengthening the influence of strong or weak similarities
by increasing values closer to 1 and decreasing values closer to 0. This will be
done by applying the following sigmoid function F (x) on every partial similarity
measure sim nom (t(i), t′(i)), sim card(t(i), t′(i)) and sim goal(t, t′). F (x) is
depicted in the following figure. It contains a tuning parameter k which we set
to k = 10 in our implementation.

F (x) =
1

1 + e(
k
2 −kx)

+
1

1 + e
k
2

· (2x − 1) (11)

It remains to put together the expressions of goal achievement and similar-
ity. This is done by simply summing up achievement values of past campaigns
weighted by their similarity to the current campaign tc. Formally, we have

pgi :=
1

|T (i)|
∑

t∈T (i)

sim(t, tc) · at. (12)

Again, pgi is in [0, 1].

constant f (x) = x

sigmoid function F(x)

1

10 0.5

0.5
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4.2 Estimation of Media Interaction

We proceed to estimate the effect of having two advertising media mi and mj

together in a promotional campaign. This is done by separating from the set of
all past campaigns a subset of particularly effective campaigns which stood out
among the remaining campaigns. Then we will simply count the occurrence of
every pair of advertising media in the effective campaigns relative to all its
occurrences. Thereby, we aim to detect a systematic effect of successful pairs
that happened to be chosen together in conspicuous frequency among the more
effective campaigns. Note that our existing sample of campaigns is too small to
allow statistical tests on this hypothesis.

Formally, we sort the set of past promotional campaigns in decreasing order
of their goal achievement at and determine a threshold aT such that only a
prescribed percentage of campaigns exceeds this achievement value, e.g. 25%.
Then we set:

qij :=
|T (i) ∩ T (j)with at ≥ aT |

|T (i) ∩ T (j)| (13)

It turned out that there are certain pairs of media that marketing managers
generally want to use together and which appear in pairs in almost all campaigns
(if they appear at all), no matter whether the campaigns worked well or not.
This effect is not captured by (13) which was hence extended to include the
presence of pairs of media in past campaigns with strong similarities to the
current campaign tc. For some similarity threshold δ let

T c := {t | sim(t, tc) ≥ δ}.

Then we define the final quadratic effect as:

q′
ij := λq qij + (1 − λq) · |(T (i) ∩ T (j)) ∩ T c|

|T c| (14)

5 Budget Allocation

5.1 Estimation of Budget Values

While it may seem quite reasonable that one can learn from past promotional
campaigns which advertising media, resp. which combination of media, worked
well to reach certain goals for campaigns with a certain set of parameters, it is
less clear how to assign a budget value to an advertising medium after deciding
to use it. However, one can not separate media selection from budget allocation
since one may end up with a collection of advertising media that can not be
realized within the given budget Bt considering the natural lower bounds on the
budget for each medium.

To allow a plausible estimation of the budget values bi in the optimization
model, we consider a subset of past campaigns TB with a budget in similar range
as the current campaign tc, i.e.

TB := {t | k1 Btc ≤ Bt ≤ k2 Btc} (15)
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with suitably chosen parameters k1 < 1, k2 > 1. Then we determine for each
advertising medium the relative proportion of budget allocated in the past
(depending on its assigned budget bt

i) and take the mean over these values as an
estimation of bi. Formally,

bi :=
Btc

|T (i) ∩ TB |
∑

t∈T (i)∩T B

bt
i

Bt
. (16)

Note that different from Sect. 4 we do not take similarity of campaigns into
account in this estimation. Discussions with marketing managers and analysis of
available data exhibit that the choice of advertising media is very much tailored
to the particular goals and parameters of a campaign. But once a medium is
selected the invested budget is mostly dependent on technical constraints and
the “size”, i.e. budget, of the overall campaign. But clearly, it would be straight-
forward to restrict the summation in (16) to campaigns in T c with a certain
similarity to tc.

5.2 Actual Budget Allocation

After solving the optimization model (1)–(3) we obtain a solution set S := {i |
xi = 1} of all selected advertising media. Assigning the actual budget values b̄i

to all media mi ∈ S could be done by simply resorting to the estimations bi

from (16).
We suggest a more refined procedure taking into account two aspects: First,

the discrete solution of optimization model will most likely leave a certain
amount of budget Bt − ∑

i∈S bi unused and thus miss chances for a better uti-
lization of the available budget. Secondly, and more important, it should make
sense to consider the particular combination of media in S, which we already
targeted specifically by the quadratic coefficients qij .

To do so, we give the relative budget proportions in a promotional campaign
t, i.e. bt

i

Bt
, more weight if t shares more advertising media with the solution for

the current campaign tc. This is achieved by the following formula for every
medium mi, i ∈ S:

b̄i :=
Btc

|S| − 1

∑

j∈S,j �=i

1
|T (i) ∩ T (j) ∩ TB|

∑

t∈T (i)∩T (j)∩T B

bt
i

Bt
(17)

Allocating budgets according to (17) may result in infeasible solutions or
(as before) in leftover budget. We propose the following allocation process to
overcome this issue.

The budget estimation bi in (16) can be seen as an estimator in the strict
statistical sense. Hence, we can also compute the associated empirical standard
deviation σi based on the sum of squared distances from the mean and defined
as follows:

σi :=

√
√
√
√

Btc

|T (i) ∩ TB| − 1

∑

t∈T (i)∩T B

(
bt
i

Bt
− bi

Btc

)2

(18)
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Now we start the budget allocation procedure by assigning each advertising
medium mi ∈ S in decreasing order of profit values pi a conservative budget
value of bi − σi, i.e. the estimated value reduced by one standard deviation.
Then we enter into a second round and increase the budget to bi as long as the
budget Bt permits, again in decreasing order of pi. Finally, if there is still budget
left, we take a third round and increase the allocated budget to bi + σi until Bt

is completely used up. Clearly, the last advertising medium considered by this
procedure may obtain a budget allocation in between the three prescribed values
by consuming all the remaining budget.

An analogous procedure is done for the more sophisticated budget values
b̄i (with the corresponding empirical standard deviation σ̄i) where it can be
expected to be more relevant, since there is a larger difference from the budget
values used in the optimization model. Note that in this case it may happen
that we run out of budget already in the first round of allocations, since the
values bi used in the weight constraint of the optimization model may deviate
considerably from b̄i.

6 Memory Perspective

The presented optimization system is clearly meant for long-term use within
a marketing department. In fact, since the estimations of input values for the
optimization model rely on data of past campaigns, the system can be expected
to deliver its full benefits only after a certain number of campaigns were entered
into the data base. Also for the first time use of the system, a sufficiently large
data set of past campaigns should be available.

On the other hand, the effects of advertising media can not be expected to
remain constant over a long time period but will be subject to change. Obviously,
technological possibilities and consumer behavior are constantly evolving and
thus the valuation of promotional campaigns completed years ago should not
have the same impact on the current decision as a very recent campaign.

To account for this time perspective we introduce a memory factor in our
model. Therefore, we introduce a time line starting at some initial point D = 0
and assign a point in time Dt > 0 to every promotional campaign t. Then a
memory factor μt ∈ [0, 1] will be defined for every past campaign t indicating
the influence level of that campaign. μt depends only on the current time Dc

and on time Dt, where μt = 0 implies total oblivion of campaign t while μt = 1
represents full consideration of t.

In the literature similar discount factors are used e.g. in the smoothing of
trend functions. Frequently, μt is defined by some exponential function depend-
ing on an exponent δ ∈ [0, 1], where δ = 1 means low rate of oblivion while δ = 0
indicates rapid oblivion. An obvious choice would be the following:

μt =
(Dc − Dt)δ

Dc − Dt
(19)
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A second possibility with a similar tendency is given by:

μt = e− (Dc−Dt)
δ (20)

Incorporating this memory factor into the profit estimations of pi and qij can
be done in a straightforward way taking scaling into account since the memory
factors of a certain profit estimation will usually not add up to 1. As an exam-
ple, the direct success psi attributed to medium mi as defined in (6) will be
transformed into:

p̃si :=
1

∑
t∈T (i) μt

∑

t∈T (i)

μt · st

S
(21)

7 Solution of the Quadratic Knapsack Problem

The model introduced in Sect. 3 is a standard Quadratic Knapsack Problem
(QKP) with no additional side-constraints. This is somewhat rare, since practical
applications usually require additional constraints and do not fit into the mould
of standard models.

Important exact solution methods for QKP were given by [16,17]. The former
approach uses Lagrangian relaxation and is able to solve instances containing
up to 200 variables. It is especially well suited for dense instances. [17] uses
Lagrangian decomposition and is able to solve instances of roughly the same
size, however it outperforms the previous approach on instances of medium and
low density.

The currently best working strategy was given by [18]. It succeeds in reduc-
ing the size of many instances dramatically by fixing items that will or will
not occur in an optimal solution. The reduced problem can then be solved by
any algorithm for QKP. Combining this approach with an exact solution algo-
rithm [18] were able to solve instances with up to 1500 items. Unfortunately, this
code is not available, therefore we used the implementation described in [16] for
solving benchmark problems of MARMIND and managed to solve instances to
optimality with up to n = 200 advertising media in less than 10 min on a simple
standard PC with 2.2 GHz and 2 GB Ram.

For ensuring a good user experience UPPER Network however requested that
the optimized marketing campaign of MARMIND has to be computed in less
than 3 s. Moreover, we recall that all data of our QKP instances is based on esti-
mates and does not represent assured values. Thus, we can easily settle for a good
approximate solution. Note that a theoretical analysis of the approximability of
QKP was recently given in [19].

For our optimization tool we implemented a genetic algorithm and imposed
a time limit of 3 s. It turned out that this gave solutions for all instances of
the required size (≥ 200 items) with an average deviation of less than 1 % from
optimality.

Our algorithm is a modified version of [20] which worked well for the ran-
dom test instances generated according to the same method used in [16]. Ref-
erence [20] reports test data for ten instances of 100 items and ten instances
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of 200 items. Every instance was solved 50 times and the algorithm was able
to find the optimal solution value in about 90 percent of the runs, although
the running time sometimes exceeds 1 min. Note that our implementation was
especially tuned for getting high quality results in a very short time but often
succeeded to yield results similar or better than [20].

Recently [21] published a well performing metaheuristic that combined GRASP
with tabu search. On 100 randomly generated benchmark instances that follow the
same scheme as in [16] the metaheuristic was able to find the optimal solution 99
times in less than 0.8 s. In the remaining case the gap to the optimal solution was
negligibly small. Moreover, they were able to get good solutions for instances of
up to 2000 variables (the solution quality was justified by comparison to known
upper bounds) in less than 300 s.

Currently, we are working on a project to systematically test our genetic
algorithm, compare it to the other existing methods listed above and to intro-
duce harder benchmark instances for QKP. The results of this comprehensive
computational study will be published as they become available.

8 Conclusions

We developed an optimization system to offer marketing managers an evidence-
based suggestion for the media mix to be used for a given promotional campaign.
It relies on a comparison of the current campaign to past campaigns based
on their parameters and goals. The direct and pairwise effect of advertising
media is computed in a fairly complicated estimation scheme by evaluating the
performance of these media in past campaigns. A special memory factor takes
into the account the time elapsed since these performance values were recorded.

Building an optimization model with these effect estimations gives rise to a
Quadratic Knapsack Problem which can be solved almost to optimality in all
real-world scenarios within a time limit of 3 s. The optimization tool is currently
used within the industrial software solution MARMIND.

Future developments include a revision of some of the effect estimations
by stochastic models as soon as a suitable set of test data derived from real
world applications is available. Furthermore, based on classical tools of statisti-
cal analysis it should be possible to detect certain trends of advertising media
increasing or decreasing in importance, or in their effect for certain goals or
target groups.
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Abstract. The logistics network has to be optimally designed for an effective
supply chain. The focus of this research is to solve network design problem
occurring in packaged gases (e.g., cylinder) supply chain. The integrated
logistics network design problem for packaged gases is defined as follows: given
a set of potential locations for filling plants and hubs, and customers with
deterministic demands, determine the configuration of the production-distribu-
tion system i.e., optimal facility locations, the filling plant production capacities,
the inventory at plants and hubs, and the number of packages to be routed in
primary and secondary transportation. The problem is modeled as a determin-
istic mixed integer program and a decomposition approach is developed which
allows a natural split of the production and distribution decisions. The proposed
framework is illustrated with numerical examples from real-life packaged gases
supply chain. The results show that the decomposition approach is effective in
solving a broad range of problem sizes. The results from the decomposition
approach are benchmarked by solving optimally the whole packaged gases
network design model for smaller test cases. In the end, we perform sensitivity
analysis for parameters that are likely to change in the future for better under-
standing of their impact.

Keywords: Network design � Optimization � Location-routing � Packaged
gases � Inventory management � Decomposition approach � Heuristics � Mixed
integer linear programming model � Cylinder gas distribution

1 Introduction

Supply chain networks are essential within the world wide economic activities. They are
fundamental to stay competitive in today’s markets through efficient delivery of prod-
ucts (e.g., energy, food, pharmaceutics, and clothing). The optimal supply chain net-
work design is the basis for its efficiency. Moreover, the network design is a complex
topic as it needs to take into account and integrate many aspects of real life problems.

© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 265–284, 2015.
DOI: 10.1007/978-3-319-17509-6_18



In this paper we consider the packaged gases supply chain with its specific char-
acteristics. Network configuration in packaged gases (also referred as cylinder distri-
bution) is a strategic decision that impacts the tactical delivery planning and daily
scheduling and transportation operations. A typical cylinder supply chain network
consists of filling plants, hubs/distribution centers, and customers. Filling plants supply
cylinders to hubs which distribute them to customers. It is also possible for filling
plants to directly supply the customers. Filling plants and hubs manage cylinder stocks
in order to enable the supply chain to maintain an adequate service level. The agility of
the supply chain and the operational efficiency are constrained by the structure of the
network determining the flow of material.

Optimizing the network design problem for cylinder distribution consists of deter-
mining the locations for filling plants/hubs, the production tools to be installed at the
plants, the primary and the secondary flows, as well as the inventory at plants and
customer locations. The framework based on a mixed-integer linear programming
(MILP) model is developed to capture a real-life packaged gases business model. The
mathematical model contains constraints on network structure, primary transportation,
i.e., flow of cylinders among different supplier locations, secondary transportation, i.e.,
flow of cylinders from supplier locations to customers, stock management and assets
management. The proposed framework has been developed by leveraging the best
practices and knowledge of logistics experts within packaged gases supply chain.
Therefore, the framework can be used to determine a new cylinder supply chain/logistics
network for a new market or to study the impact of change in different elements of the
supply chain, e.g., when new customer accounts are opened or old accounts are closed,
change in customer demand, impact of new filling centers/hubs and assets like filling
tools and manpower. We show the efficiency of the proposed framework for real-life test
cases provided by the packaged gases supply chain managers.

The paper is organized as follows. Section 2 outline the state of the art related to
integrated supply chain decision models. In Sect. 3, we provide the problem description
and in Sect. 4 we represent the mathematical model with the objective function and
the business constraints. In Sect. 5, we discuss the solution approaches used to solve
the integrated model. Section 6 presents the obtained results and Sect. 7 concludes the
paper with possible future research directions.

2 Literature Review

The network design problem in packaged gases consists of three main sub-problems:

• Facility location: It involves the improvement of the existing network and the
determination of the best configuration.

• Inventory management: It consists of determining the best inventory levels at hubs/
plants.

• Routing: Optimization of flows determining the optimal flows of goods through the
network.

The network design problems are complex as they involve strategic decisions which
influence tactical and operational decisions [3]. The strategic decisions are mainly
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related to facility locations, their capacities and what products need to be produced at
each plant, etc. The tactical decisions are related to inventory management and man-
power, and depend on the strategic decisions whereas operational decisions like routing
are directly related to tactical and strategic decisions made earlier. In other words, it
means that if facility location decisions are sub-optimal, even if production, inventory
and distribution plans are fully optimized, the supply chain may still be operating
inefficiently. Therefore, for determining the best network configuration, all the costs at
the three levels need to be taken into account to optimize the system-wide production,
inventory and distribution costs. One of the challenges in the network configuration is
that customer demands and cost parameters may change over time and it is very hard to
change the facility location decisions once a supply chain network is configured. Thus,
it is critical to design a supply chain network that is optimal and is not sensitive to
changes in the operational parameters. The integrated network design problem has been
usually solved by considering the integration of two sub-problems while approximating
the third one. We provide following few approaches in the literature for solving the
integrated network design problem.

The facility location problem integrated with routing is proved to be NP-complete
by [8]. The objective function and the constraints of the models they propose are linear.
The reader is referred to the reviews provided by [7, 10]. The facility location problem
and its variants have been widely researched on theoretical models but the problem is
rarely approached from a supply chain management and real-life perspective [9].

Most of the papers in the literature study the integration of two of the above three
important decisions: location-routing models (LR), inventory-routing models, and
location-inventory (LI) models. For reviews on location-routing models, readers can
refer to [2]. In LR models, both the location problem and the vehicle routing problem
(VRP) are typically NP-hard, which makes the integrated model even more complex. In
this paper, the VRP problem is solved by approximating the routes based on either a
heuristic approach or historical data. The resulting routing costs are then fed as an input
to the location model. For inventory-routing models, please refer to [1, 6]. LI models
also study the location, inventory and distribution coordination issues by either
ignoring the inventory costs or approximating the non-linear costs with linear func-
tions. In this paper, inventory costs are considered but assumed to be linear similar to
some papers that consider inventory costs. Refer to the papers [4, 5, 11], for a better
understanding of LI models.

The case that motivated this research deals with the network design for packaged
gases distribution. The problem addressed in the current paper combines some elements
of LR and LI models to determine an optimal network design by minimizing the sum of
the production costs, the transportation costs and the inventory costs. Our mathematical
model can be classified as a deterministic single-period MILP model with multiple
products applied to a three-level network. The main contribution of our work is that it
integrates supply chain network design decisions without fixing the fillings plant
locations with inventory and resource allocation decisions required at the plants. We
also consider the transportation costs for the entire supply chain including the trans-
shipment costs among different facilities by deciding the replenishment frequency.
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3 Problem Description

We address the network design problem specific to packaged gases supply chain
occurring in real-life. The problem consists of determining the number and the location
of the production plants and the distribution centers, the allocation of customer
demands to distribution centers, and the allocation of distribution centers to production
plants. The main goal is to identify the optimal configuration for producing and
delivering packaged gas products to customers at the lowest cost while satisfying the
network constraints.

More specifically, this network design problem aims in helping the decision making
on locations for building plants, the production tools to be installed at the filling plants,
the primary and the secondary flows, as well as the inventory at plants and hubs. A
diagram of the packaged gases distribution network is shown in the Fig. 1. The nodes
of the network are classified in four categories: filling plants, hubs, agent distributors,
and end users (or reseller). Each location has a certain inventory capacity to satisfy
customer demand. Customers manage their own inventories by placing orders at the
right time. Therefore, in the current problem we consider the inventory decisions only
at filling plants and hub locations.

The arrows in Fig. 1 represent the transport of packaged gases which is classified as:

• Primary transport which occurs between filling plants and hub locations.
• Secondary transport which represents the transport between hub/filling plants and

client/agent/reseller locations.
• Tertiary transport which happens between agent/reseller and client locations.

This paper will not handle the whole distribution network but rather will focus on the
primary and secondary transport. Agents/distributors, resellers and end users will all be

Fig. 1. Diagram of the distribution network.
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called customers without distinction in the rest of the paper. Since tertiary flows happen
between customers of different types, they are not considered in this problem. The word
“plant” by itself is referring to both hubs and filling plants. In this paper we also assume
that the vendor who supplies cylinders to the customers owns the whole packaged
gases supply chain network. Therefore, we do not consider any ordering costs between
different plants. We do consider the transportation cost of transshipments among dif-
ferent plants which is a function of replenishment periods for the primary flows. The
main goals of the proposed methodology are related to the location decisions of plants,
production, and to the hubs/filling plants transport and inventory. The primary goals of
the network design problem for packaged gases are as follows, see also Fig. 2:

• Determine the number and the locations of the hubs and the filling plants.
• Determine the production of different products at the filling plants.
• Determine the primary and the secondary transportation cylinder flows, i.e. the

customer-plant allocation decisions.
• Determine the inventory levels at plants consisting of working stock & the safety

stocks at the plants.

These four issues are fundamental in the structure of a supply chain. Nevertheless,
these issues are interrelated by the cylinders flows and it is clear that it would be a
source of improvement to treat them all at the same time. A general description of all

Fig. 2. Network design problem.
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the key aspects of the problem as well as the hypotheses assumed at this stage is
presented in the following sub-sections.

3.1 Multi-products Network

We assume that different products may be considered while designing the distribution
network. This means that different products are filled at a plant, and transported to
others plants and customers. Therefore, each product has to be characterized depending
on its package, its composition and the filling tools that are compatible with it.

3.2 Plant Locations and Filling Tools

The network design problem considers as input a set of potential locations already
identified. A hub or a filling plant may be built on a location if selected by the
optimizer. The total amount of cylinders distributed to the customers are filled on the
filling plants and delivered from the hubs (or the plants). The maximum numbers of
plants in the network is a function of the number of the potential locations provided in
the input.

A product is defined as a cylinder of a given size filled with different gases in
various percentages. The products are filled with gases using filling tools. Several
different tools may be used at a filling plant; each of them allows filling a given set of
products and has its own production capacity and cost.

3.3 Cylinder Flows

Two categories of cylinder flows are considered in this problem: primary and sec-
ondary. These two categories find their differences on two levels:

• Primary flows are an internal choice of optimization of the distribution without
direct income. They usually go from one vendor site to another and require handling
during the round trip: a tractor pulls a trailer of full products from site A to site B,
leaves the trailer on site B and takes back a trailer of empty products from site B to
site A.

• Secondary flows are a direct source of income for the vendor as customers have to
pay for the delivered cylinders. A secondary round trip is usually composed with
several drops on different customers’ sites where full products have to be unloaded
before empty products are loaded on the trailer.

The transport cost is usually composed of a fixed cost and a variable cost. The fixed
cost consists of truck costs, driver costs, and extra fees and the variable cost is
dependent on the distance and the duration of the round trips. However, we model the
cost of a round trip with an average variable cost per driver distance taking every cost
into consideration. The handling cost of the cylinders on plants is taken into consid-
eration independently. In this paper, we are approximating the routing costs to serve
each customer and therefore, do not consider the routing decisions in the model.
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3.4 Primary Transport Cost

The primary transport cost is quite straightforward to estimate. As primary trips are
defined as full trailer load deliveries in the model, the cost of primary round trips
between two identified plants can be known before solving the network design.

3.5 Secondary Transport Cost

Contrary to the primary transport, secondary transport cost is difficult to estimate
precisely. In the network design model, we do not consider day-to-day demand data
which implies that it is impossible to build actual secondary round trips. In the model,
each customer has a global demand over a year and it is not possible to know which
customers will order on the same day. Also, secondary unit transport costs are provided
as an input to the problem and therefore, the actual costs cannot be calculated until the
plant-customer allocation decisions are made. Therefore, we determine the cost to
deliver a unit cylinder to a customer from each potential location by modeling the
average round trips during which the customer will be delivered. The round trip does
not consist of a single delivery but multiple deliveries and this makes the secondary
transport cost approximation realistic. For a given customer, an average round trip
starting from a given plant is modeled by:

• The driven route split in one dispersion ring which represents the zone where the
delivered customers are located and an approach distance to go from the plant to the
dispersion ring.

• The average number of customers visited during such a round trip.
• The average number of cylinders delivered during such a round trip.

The radius of the dispersion ring (see Fig. 3) is set for every customer to a value
determined experimentally from real round trips or from round trips generated from a
heuristic approach used during the pre-processing of data. The heuristic approach used
is not discussed in this paper. The dispersion ring has its centre on the customer under
consideration. The approach distance is the shortest distance from the plant to the
dispersion ring. Another value found experimentally determines the percentage of
customers included in the same dispersion ring which can be delivered in the same

Fig. 3. Secondary round trip model.
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round trip. This coefficient aims at correcting the fact that one dispersion ring could
withhold several round trips. The secondary round trips have to respect the following
constraints:

• The average number of cylinders delivered during the round trip cannot exceed the
capacity of the trailer used.

• The duration of the round trip cannot overcome the maximum driver work time.
The round trip duration is mainly a function of the number of customers visited
during the trip.

3.6 Trucks

Only two standard trucks are considered in the problem. One truck type is dedicated to
primary transport and the other one to the secondary transport. Each type of truck is
characterized by its capacity, speed and cost per distance travelled. We assume no limit
on the number of trucks of each type that are available for distribution in the model.

3.7 Inventory Management

It is important for the cost evaluation of a plant to determine the investment cost
necessary for the stocks on its site. The required stock at a plant is composed of:

• Replenishment stock which includes the products filled on the plant everyday and
the products delivered from other plants at each primary round trip.

• Delivery stock which represents all the products which are being delivered to
customers and other plants every day. When calculating the size of this stock, we
assume that the same number of products is delivered every day for this plant.

The stocks take into consideration the variation of demands over a year through a
variance of the cylinder flows. The variance of the flows is supposed to be directly
proportional to the average volume delivered per day.

4 Mathematical Model

To solve the integrated network design problem we propose a mixed integer pro-
gramming model. In this section we present the main parameters, decision variables
and the corresponding mathematical model. We consider the design of a three-tiered
supply chain consisting of filling plants, hubs, and customers as described in Sect. 3.
Each customer has deterministic demand. The proposed model provides the needed
decisions on how many filling plants and hubs to locate, where to locate them among
the list of potential locations, how often to replenish the products at the hubs from the
filling plants, what level of working and safety stocks to maintain at the plants, so as to
minimize the total system costs consisting of total location, transportation and inven-
tory costs. In other words, the objective is to find the optimal trade-off between
transportation costs and all the other costs, mainly the location costs. Inventory costs
are a function of the replenishment periods and the demand allocation to the plants.
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To simplify the mathematical model, we define two units of measure. We define
Equivalent Cylinder (EqCyl) as the unit of area occupied by a 50-litre water capacity
compressed gas cylinder for transportation on a truck. As the model deals with more
than one product, and a truck is allowed to transport many products together, to
quantify the capacity of the trucks and also to define the demands of different cus-
tomers, EqCyl would be used. We also introduce a measure of time called Work Unit
(WU). A WU is a unit of time to a physical activity for which time is the main factor to
represent work e.g., filling and handling of cylinders. All parameters and variables that
denote time are expressed in terms of WU.

Inputs and Parameters

I: Set of customers
J: Set of potential locations
P: Set of products
T: Set of filling tools
R: Set of replenishment periods between plants
fj: Fixed cost (yearly) of locating a filling plant at location j, for each j ∈ J
gj: Fixed cost (yearly) of locating a hub at location j, for each j ∈ J
hj: Fixed inventory holding cost per EqCyl per year at location j, for each j ∈ J
χ: Fixed cost of a full time employee per year
α: Primary handling productivity at any plant (WU/year/employee)
β: Secondary handling productivity at any plant (WU/year/employee)
πp: Work time (in WU) needed to handle one package of product p at a plant for

primary transport, for each p ∈ P
θp: Work time (in WU) needed to handle one package of product p at a plant for

secondary transport, for each p ∈ P
wpt: Work time (in WU) necessary to fill one package of product p using tool t, for each

p ∈ P and t ∈ T
ap: Area (in EqCyl) occupied by one package of product p, for each p ∈ P
mt: Filling productivity (WU/employee/year) of a filling tool t, for each t ∈ T
bt: Fixed cost of using a tool t per year, for each tool t ∈ T
zt: Maximum time (in WU) available to fill packages with tool t per year, for each tool

t ∈ T
spt: Binary parameter, 1 if a filling tool t can fill a package of product p, for each p ∈

P and t ∈ T, 0 otherwise
μip: Average number of packages consumed (yearly) at customer i for product p, for

each i ∈ I and p ∈ P
σp: Variance of demand (yearly) for product p, for each p ∈ P
η: Constant representing number of working days per year (e.g. 250)
τ: Truck capacity for primary transportation
cr: Average cost per distance travelled during primary transport for a replenishment

period r, for each r ∈ R
λji: Average cost per EqCyl from location j to serve customer i, for each j ∈ J and i ∈ I
M: Maximum number of tools at any filling plant
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Decision Variables

pj: Binary variable, 1 if a filling plant is build on location j, for each j ∈ J, 0 otherwise
qj: Binary variable, 1 if a hub is build on location j, for each j ∈ J, 0 otherwise
ej: Total number of employees working on location j, for each j ∈ J
xjpt: Number of packages of product p filled per year at location j by tool t, for each j ∈

J, p ∈ P, and t ∈ T, a discrete variable
Ψjt: Number of filling tools of type t required at the location j, for each j ∈ J, and t ∈ T,

a discrete variable
ujkr: Binary variable, 1 if primary trips are used between locations j & k after replenish

period r such that j ≠ k, for each j ∈ J, k ∈ J and r ∈ R, 0 otherwise
vjkpr: Number of EqCyl of product p delivered from location j to location k during

primary trips undergone every replenish period r such that j ≠ k, for each j ∈ J, k ∈
J, p ∈ P, and r ∈ R

Φji: Binary variable, 1 if customer i can be delivered products from location j, for each
j ∈ J, i ∈ I, 0 otherwise

Ωjip: Number of EqCyl of product p delivered from location j to customer i during
secondary trips, for each j ∈ J, i ∈ I, p ∈ P

ωjp: Stock at location j of packages of product p, for each j ∈ J, p ∈ P

The objective function is composed of five main parts as shown below:

• Fixed costs of hubs and filling plants.
• Fixed costs of filling tools.
• Manpower cost dedicated to filling and handling packages.
• Total inventory cost.
• Transport cost, excluding the handling cost at the filling plants and hubs.

Location costs are strategic costs that are incurred when configuring the network. The
first two terms in the objective function ensure that fixed costs for either a hub or a
filling plant are applied to each selected location. Filling tool costs, manpower costs,
and inventory costs are the costs associated with the tactical decisions whereas trans-
port costs are the operational costs. The mathematical formulation of the objective
function is given below in Eq. (1).

Minimize
X

j2J qj � pj
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The business constraints which are related to the network structure and flow, pri-
mary and secondary transport, and inventory management are given below, (2)–(11):

pj � qj; 8 j 2 J ð2Þ
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5 Solution Approach

The mathematical formulation of network design is a MILP problem. As the traditional
facility location problem is NP-complete (Krarup & Pruzan, 1983), we simplify the model
by approximating the routing costs. Moreover, in this paper we are dealing with a real-life
large-scale problem occurring in packaged gases supply chain. Therefore, we analyzed
various solving techniques: from near-optimal methods up to approximate ones. The near-
optimal approach can be used for small problem instances whereas approximate methods
can be applied in the context of large-scale problems. Moreover, we can compare the near-
optimal solutions to the approximate ones to benchmark the approximate solutions. In this
paper, we provide details about the approximate approaches in order to achieve a rea-
sonable computation time.
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5.1 Mono-Product Approximation

As the number of products occurring in the packaged gases network design problem
implies high complexity, the first approximate approach considered consists of grouping
the multi-products into a single product which we call a mono-product problem. To that
aim, each product is treated relatively to its volume of equivalent cylinder (EqCyl) and
its type is ignored. Converting multiple product constraints into single product con-
straints may cause solution infeasibility; the constraints are modified carefully to min-
imize the likelihood of such infeasibility. As the modified model becomes a single-
product model, variables are no longer depending on the number of products available.
For example, consider the variable xjpt representing the number of packages of product
p filled per year at location j by tool t, for each j ∈ J, p ∈ P, and t ∈ T. In the mono-
product approximation, xjpt is changed to xjt defining the number of EqCyl of the single
product filled per year by tool t at location j. Similarly, constraints (3, 4, 7, 9, 10), and
(11) are modified along with the objective function to represent a single product network
design problem.

The resulting problem is also a MILP problem but we do not show the modified
model in this paper. The network design problem becomes a unique flow problem and
thus, it is easier to solve. We compare the results of this approach with the results
obtained by solving the complete model in Sect. 6. It is shown that this approach gives
good solutions especially for placing the hubs’ locations and satisfactory results for
secondary transport decisions. As this approach does not treat different types of prod-
ucts, the number offilling tools installed at the filling plants is underestimated compared
to the optimal solutions. This approach can be used when the problem size is very large
and the main interest is to find the network configuration i.e. location of hubs and
allocation of customers to hubs whereas resource/inventory optimization can be done
separately. Figure 4 shows the physical representation of the mono-product approach.

5.2 Two-Steps Decomposition

In order to reduce the computation time, a typical approach for large-scale problems is
based on problem decomposition. We consider a two-step decomposition approach to
generate an approximate solution. In the first step of the decomposition approach, the

Fig. 4. Scheme of mono-product approximation.
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hubs’ locations and the hub-customer allocation decisions are determined by solving
the mono-product flow problem with minimization of the secondary transportation
costs and the hub costs. Secondary transportation cost is more a function of number of
cylinders transported between hubs and customers and independent of different prod-
ucts. Therefore it is a safe approximation to determine hubs through optimization of
mono-product flow problem. In the second-step, the residual problem is solved based
on the multi-product model. The second step optimization determines if the hub built
on a given location is a filling plant or not and decides the tools associated with this
given filling plant by minimizing the production and the primary transportation costs
(tools, sourcing, manpower). Moreover, it optimizes the inventory management by
defining the frequency of trips between plants and the flow quantities for the primary
transportation. Figure 5 shows the two-step decomposition decisions graphically.

The size of the residual problem in the second step can be further reduced by
grouping the products into families of products. The product families are created by
selecting the products among the most requested customer’s products. Thus, the whole
set of products is aggregated into families of products. A family essentially is a set of
products that can be produced by the same tools. This further reduces the problem size
and helps to obtain good results in a reasonable time compared to the complete
problem. The grouping does not change the model as it is done in the input data. The
second-step model is also an MILP problem and is still hard to be solved to optimality
for large-scale network problems. One of the reasons of the complexity to solve the
second-step model optimally is that a significant number of binary variables still remain
to be optimized for primary transportation.

The MILP mathematical models in our testing are solved on a 2.66 GHz, 16 GB
RAM server using CPLEX®. By tuning the CPLEX parameters, the performance of the
CPLEX has been improved on the test cases used. The upper limit on the number of

Fig. 5. Two-step decomposition decisions.
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cutting plane passes CPLEX performs when solving the root node of a MILP model is
set to 1. The number of rows in the problem with cuts added is set to 30 times the
original number of rows. Relaxation Induced Neighborhood Search (RINS) heuristic
explores the neighborhood of the current incumbent solution to try to find a new,
improved incumbent after every 70 nodes are visited. It is also important to manage the
memory problems that occur on a server when solving a large-scale problem. There-
fore, the number of stored solutions kept in the solution pool on the server is set to 10.
If the node file parameter in CPLEX is set to 0, when the tree memory limit is reached,
optimization is terminated. By setting the node file parameter to 3, the node files are
transferred to disk in compressed form and CPLEX actively manages which nodes
remain in memory for processing. An optimality gap has been used for test cases as it is
hard to solve the test cases for full optimization. The optimality gap represents the
maximum ratio between the optimal solution of the MILP program and its Linear
Programming (LP) relaxation. In other words, optimality gap represents how far the
current solution is from its lower bound.

6 Numerical Results

In this section our objective is to assess the performance of the solution approaches
considered in this paper. The proposed solution approaches have been applied to 3 real-
life test cases (summarized in Table 1) characterizing the network design problems
occurring within the packaged gases distribution networks in different geographical
zones. The problem size of a test case is determined mainly by the number of cus-
tomers, potential locations, types of tools available, and the number of products to be
distributed. The given test cases are very different in terms of problem structure and
size. This provides a good opportunity to test the approaches for different problem
settings and evaluate their scalability.

Each test case in Table 1 has been solved by different approaches providing near-
optimal and approximate solutions. It has been observed for the small test cases (e.g.,
containing up to 2000 customers), a near-optimal solution can be reached in a rea-
sonable computation time (e.g., 60 min for test case 2).

For test cases 1 and 2, the facility location decisions i.e. the number and the set of
locations to be opened as filling plants/hubs from the mono-product and the two-steps
approaches are exactly the same as from the near-optimal solution. This shows that
both the approximate approaches are successful in determining optimal strategic
decisions. In the test results, mono-product approach underestimates the total network
cost which is expected due to the simplification of the model. Therefore, we do not

Table 1. Real-life network design test cases

Instance Customers Potential locations Tools Products

1 520 4 3 5
2 1,964 14 6 4
3 12,036 26 22 43
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consider mono-approach for tactical and operational decisions as it solves an
approximate model. For test case 1, two-steps approach provides the same network cost
as from the near-optimal method with the same optimality gap. For test case 2, the two-
steps approach provides a solution with 1.19 % higher network cost than the near-
optimal solution. For test case 3, the near-optimal solution was not generated as we
could not solve the complete problem within an acceptable optimality gap. For real-life
network design, we believe that the computation time in a few hours is acceptable due
to the fact that the opportunities to setup a new supply chain network or completing
overhauling an existing one are not very frequent. The computation time for test cases 1
and 2 with the two-steps is relatively small but test case 3 takes more than 15 hours to
obtain a solution within the optimality gap of 0.43 %. It is also possible to achieve a
solution in few hours by increasing the optimality gap to 5 % as shown in the Table 2.

For test case 3, the benchmarking of two-steps decomposition solution is done by
comparing the facility location decisions with a manual solution based on the network
designer’s experience. The gap analysis with the manual solution shows that the two-
steps solution for test case 3 provides a solution with total network cost which is 6.4 %
less than the manual solution.

Figure 6 shows the different cost components as percentages of the total network
design cost for test case 3 with optimality gap of 0.43 %. It also shows that the facility
location costs and the secondary transportation costs are the highest cost components of
the total network cost and therefore, have more influence on the network design
decisions. Since the network design model studied in this paper is deterministic, we
also perform sensitivity analysis to check the impact of different parameters on the
facility location and other network decisions. The parameters which are more likely to
change over time are demand, unit transportation cost, and manpower cost.

Figure 7 shows the location decisions of scenarios obtained by changing the
demand at each customer equally for test case 2 which is solved with near-optimal
approach. The results show that the facility location decisions i.e. the number and the
set of opened facilities do not change even with more than 5 % increase or decrease in

Table 2. Performance test results.

Case Gap
(%)

Solution
approach

Solver time
(min)

Total cost
(Є)

Filling
plants

Hubs

1 0.5 Mono-product 2 561,891 2 3
Two-steps 6 782,070 2 3
Near-optimal 4 782,070 2 3

2 0.5 Mono-product 11 2,147,515 6 11
Two-steps 593 2,276,267 6 12
Near-optimal 63 2,303,703 6 12

3 0.5 Mono-product 121 19,289,480 11 18
5.0 Two-steps 332 24,125,572 11 18
0.43 Two-steps 948 23,160,386 11 18

A Decomposition Approach to Solve Large-Scale Network Design Problems 279



demand at each customer location. The main reason for such stability is that we
increased the product demand equally for all the customers to perform sensitivity
analysis. In reality, the demand of different customers does not homogenously increase
or decrease over time. Also, the impact of demand change on inventory and trans-
portation costs (both primary and secondary) is more compared to the other costs.
When facility location decisions don’t change with modified demand, the change in
inventory and transportation costs is nearly linear with demand change. Table 3 pro-
vides similar sensitivity analysis results for unit transportation cost and manpower cost
for test case 2. Manpower is mainly a function of demand and therefore, does not
influence facility location decisions significantly as evident from the results.

For test case 2, manpower costs have to increase or decrease at least 20 % to make a
change in the facility location decisions. Since the primary and the secondary trans-
portation costs represent a significant portion of network design costs, the facility
location decisions are sensitive to the unit transportation cost. An increase in the unit
transportation cost causes more hubs to open along with filling plants which is expected
to minimize the secondary transportation costs. It is also quite easy to introduce

Fig. 6. Network design costs for 3 test cases.

Fig. 7. Demand sensitivity analysis.
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constraints to fix strategic decisions and just optimize for tactical decisions. We perform
such an analysis for test case 3 considering the decision to install new filling tools called
Type-F tools at already open filling plants. We also perform sensitivity analysis to check
whether the decision to install Type-F tools changes when some parameters are modi-
fied. Table 4 shows 5 parameters with standard values and possible potential values.

In the original test case 3, we had 22 filling tools and we introduce 6 new Type-F
tools in the problem and then re-solve using Two-Steps approach with standard
parameters. Figure 8 shows the allocation of 6 Type-F tools in the new optimal solution
which has a lower cost compared to the solution with no Type-F tools. Note that we
had 11 fillings plants in the optimal solution of original test case 3.

To validate the robustness of the above solution, we perform sensitivity analysis for
5 parameters in Table 4 with their potential values. When payback period is changed to
2 years, we get a completely different solution as shown in Fig. 9. The changed solution
is due to the reason that with the decrease in payback period, the annual savings have to
be more to justify the investment in the new tools. The results show that the decision to
invest into Type-F tools is sensitive to all 5 parameters which are summarized in
Table 5. In the first scenario, the reduction in the truck capacity causes a loss in the
primary transport efficiency: in order to deliver the same quantity of products more
transport is needed. In that way, primary transport cost increases and to compensate for
this, the solution favors the local production. When cylinder cost decreases, the overall

Table 3. Cost sensitivity analysis.

Standard Potential Value

Primary truck capacity 260 EqCyl 240 EqCyl
Cylinder cost 30 25
Primary transport cost 1.2 1.38
Primary handling Productivity 25,000 22,000
Payback period of type-F tools 3 years 2 years

Table 4. Parameter values.

Unit transportation cost Manpower cost
% Change Filling plants Hubs Filling plants Hubs

–20.0 % 4 10 7 13
–15.0 % 4 11 6 12
–10.0 % 5 11 6 12
−5.0 % 6 12 6 12
0.0 % 6 12 6 12
5.0 % 6 13 6 12
10.0 % 7 14 6 12
15.0 % 7 14 6 12
20.0 % 7 14 5 11
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cost including production, stock, handling and transport are reduced. Therefore, the
solver is comparing the profitability of installing tools with the depreciation cost of
tools. According to the results provided, the primary transport is favored instead of

Fig. 8. Type-F filling tools allocation.

Fig. 9. Solution with 2 years of payback period.

Table 5. Type-F filling tools sensitivity analysis.

Loc.
1

Loc.
2

Loc.
6

Loc.
9

Loc.
10

Loc.
11

Total cost

Standard parameters X X X X X X 23,070,000
Primary truck
Capacity = 240

X X X X X 23,230,000

Cylinder cost = 25 X 22,980,340
Primary transport
cost = 1.38

X X X X X X 23,560,000

Primary WU = 22,000 X X X X 23,380,000
Payback = 2 years X X 23,100,000
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production, hence the small number of tools added. In the third scenario, the production
is reduced and thus, the primary handling productivity is decreasing and more work has
to be done to satisfy the same production demand. The result recommends adding
several filling tools in order to reduce the primary transport and thus, the primary
handling activities. When fuel price increases transport cost rises as well so in order to
avoid transport cost, the solver takes advantage of installing many tools and develops
local production. By comparing the results on all scenarios, and analyzing where and
which production tools are frequently installed by solver, a final recommendation on
new assets investment is made. It consists of recommending at which locations more
filling tools should be added in order to reduce the total costs.

7 Conclusions

In practice supply chain network configuration typically involves optimizing strategic
decisions without considering their impact on all the tactical delivery planning and
daily scheduling decisions. In this paper we optimize not only strategic decisions but
also consider all tactical and operational decisions in the mathematical model for the
network configuration. We specifically consider the integrated network design problem
dedicated to the packaged gases distribution. The main goals for solving the integrated
network design problem include determining the locations of the hubs and the filling
plants, the production capacity of the filling plants, the primary and the secondary
cylinders flows and the inventory of both the filling plants and the hubs. To solve it, we
propose a mathematical model which combines both the location-routing and the
location-inventory integrated models and approximates the routing cost used in both
the integrated models. In order to solve real large-scale problems, we propose
approximate decomposition based approach. We applied near-optimal and approximate
approaches on 3 real-life test cases from packaged gases cylinder distribution. The
obtained solutions are within an acceptable optimality gap from the optimal solutions.
The results indicate that mono-approach and two-steps approaches are capable to
generate good facility location solutions in a reasonable time and are comparable to
near-optimal solutions on smaller test cases. The difference between mono-product and
two-steps is that two-steps method provides a better estimate of tactical and operational
costs. For large-scale test cases, it is hard to obtain near-optimal solutions whereas two-
steps approximation can generate good solutions in an acceptable time. Therefore,
near-optimal approach is suitable for smaller test cases and approximation approaches
for large-scale test cases.

In the future, further studies on improving the computation time to solve the
complete model without using decomposition approach can be envisioned. Also, fur-
ther analysis is needed to better benchmark the approximate approaches considered in
this paper for large-scale test cases. Even though we performed sensitivity analysis for
few input parameters, future work also needs to be focused on developing and solving a
robust model in designing a resilient packaged gases network.
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Abstract. As a type of scheduling problem, the flowshop problem has
been largely studied for 60 years. The total completion time is a very
interesting criterion because it reflects “the total manufacturing waiting
time experienced by all customers”(Emmons and Vairaktarakis). There
have been many studies in the past but they focused on a limited num-
ber of machines and/or on specific constraints. Therefore, this study
presents a new approach to tackle a general permutation flowshop prob-
lem, with various additional constraints, to elaborate on lower bounds for
the total completion time. These lower bounds can take into account sev-
eral constraints, like delays, blocking or setup times, but they imply solv-
ing a Traveling Salesman Problem. The theory is developed first, based
on a MaxPlus modeling of flowshop problems and experimental results
of a branch-and-bound procedure with a lower bound selection strategy
are then presented.

Keywords: Scheduling ·Flowshop ·Total completion time ·Lowerbound

1 Introduction

The m-machine flowshop scheduling problem has been largely studied for
60 years. The makespan is the most studied criterion, especially for permutation
flowshop problems. However, the total completion time criterion also receives a
great amount of attention. It reflects “the total manufacturing waiting time expe-
rienced by all customers” [10]. Even with only two machines, problem F2||

∑
Ci

is NP − hard in the strong sense and so are problems with more machines.
Therefore, results that help to solve these problems are interesting.

Total completion time criterion has also been greatly studied. A branch-and-
bound algorithm, incorporating a lower bound, dominance relation and an upper
bound is presented by Allahverdi and Al-Anzi in [1]. That study solves total com-
pletion time minimization problem F3|perm, Snsd|

∑
Ci where separate setup

times are taken into account. The number of visited nodes and the percentage
c© Springer International Publishing Switzerland 2015
E. Pinson et al. (Eds.): ICORES 2014, CCIS 509, pp. 285–299, 2015.
DOI: 10.1007/978-3-319-17509-6 19
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between this number and that of possible nodes are considered. This percentage
shows us that their lower bound is effective as the number of visited nodes is
quite small. Separate setup times are also investigated by Su and Lee [23] in a
two-machine flowshop no-wait scheduling problem with a single server in order
to minimize total completion time. In another research, eleven heuristics based
on the Shortest Processing Time (SPT) rule are implemented by Aydilek and
Allahverdi [3]. Their study is about minimizing total completion time of a two-
machine flowshop scheduling problem, in which processing times are bounded.
In [9], a lower bound based on the first machine of problem F2||

∑
Ci is pre-

sented as the sum of a previously existing lower bound and the optimum of an
asymmetric traveling salesman problem (ATSP). These aforementioned studies
only deal with limited number of machines and few constraints. It is not easy to
generalize them to any number of machines or any constraint.

In this study, the proposed approach is based on MaxPlus algebra (see
Sect. 2.1). It has been widely used in control systems, especially in relation with
Petri Nets but rarely in the scheduling theory. Nevertheless, some articles can be
cited on project scheduling problems [13], on cyclic parallel machine problems
[16], on cyclic flowshop scheduling problems [8,11] and on cyclic jobshop schedul-
ing problems [12]. The MaxPlus algebra is applied to modeling and scheduling
flowshop problems with minimal delays, setup and removal times [5,19]. It is also
applied to flowshop problems with minimal-maximal delays for two-machines [4]
or for any number of machines [2]. In these studies, jobs are associated to Max-
Plus square matrices and lower bounds, upper bounds and/or dominance condi-
tions are derived by applying transformations to those matrices. Moreover, this
approach is used effectively to model flowshop problems with minimal-maximal
delays, setup and removal times and to highlight a central problem [25].

The objective of this study is to address a general permutation flowshop prob-
lem in terms of constraints taken into account. We elaborate on lower bounds for
the total completion time that are based on the resolution of two sub-problems:
one problem similar to the one machine total completion time minimization prob-
lem and the other similar to a traveling salesman problem. These lower bounds
are incorporated in a branch-and-bound procedure to be tested. Additionally,
a selection strategy of adequate lower bounds is also implemented in order to
accelerate the branch-and-bound procedure.

The next section presents the background of the study: MaxPlus algebra
and flowshop scheduling problem. We recall in Sect. 3 how MaxPlus algebra
can be used to model a general flowshop problem. The lower bound construc-
tion is then explained in Sect. 4. Finally, a branch-and-bound algorithm with a
lower bound selection strategy is described and some tests concerning problem
F3|perm;Snsd|

∑
Ci (previously studied in [1]) and problem Fm|perm|∑ Ci are

presented as experimental results.

2 Context and Definitions

2.1 MaxPlus Algebra

MaxPlus algebra is briefly described as follows; a more detailed presentation can
be found in [15].
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In MaxPlus algebra, the maximum is denoted by ⊕ and the addition by ⊗.
The former, ⊕, is idempotent, commutative, associative and has a neutral ele-
ment (−∞) denoted by 0. The latter, ⊗, is associative, distributive on ⊕ and
has a neutral element (0) denoted by 1. The null element, 0, is an absorbing
element for ⊗. These properties can be summarized by stating that Rmax =
(R ∪ {−∞},⊕,⊗) is a dioid. It is important to note that in MaxPlus algebra in
particular, and in dioids in general, the first operator ⊕ can not be simplified,
that is a ⊕ b = a ⊕ c �⇒ b = c. Furthermore, in Rmax, the second operator ⊗
is commutative, and except 0, every element is invertible: the inverse of x is
denoted by x−1 or 1/x. For simplicity, we denote the ordinary subtractions by
x/y instead of x ⊗ y−1 and by xy the product x ⊗ y.

It is possible to extend these two operators to m × m matrices of elements
of Rmax. Let A and B be two matrices of size m × m, operators ⊕ and ⊗ are
defined by

∀(i, j) ∈ {1, . . . , m}2, [A ⊕ B]ij = [A]ij ⊕ [B]ij

∀(i, j) ∈ {1, . . . , m}2, [A ⊗ B]ij =
m⊕

k=1

[A]ik ⊗ [B]kj

where [.]ij is the element at the ith row and jth column of the corresponding
matrix. It is not difficult to show that the set of m × m matrices in Rmax is a
dioid. However, ⊗ is not commutative and not every matrix is invertible.

The two following lemmas can be derived from the previous definitions. They
will be useful for the development of the lower bound.

Lemma 1. ∀j ∈ {1, . . . , m} :

[A ⊗ B]1j =
m⊕

k=1

[A]1k ⊗ [B]kj ≥ [A]11 ⊗ [B]1j (1)

Lemma 2. ∀�, j ∈ {1, . . . , m} :

[A ⊗ B]1j ≥ [A]1� ⊗ [B]�j (2)
[A ⊗ B]�j ≥ [A]�� ⊗ [B]�j (3)

2.2 Flowshop Scheduling Problem

Since the paper of Johnson [18], flowshop problems have been studied largely
[10]. Basically, a flowshop scheduling problem consists of a set of n-jobs J =
{J1, . . . , Jn} and another set of m-machines {M1, . . . , Mm}. Each job must go
through all machines in the same predefined order, let us say from M1 to Mm and
each machine can load only one job at a time [6]. If all jobs must be executed in
the same order over all machines, the problem is called a permutation flowshop
problem. In this case, there exists an ordered list of jobs (or a sequence) σ that is
identically scheduled on all machines. We limit our current study to permutation
flowshop problems.

Each job Ji is composed of m operations Oik (1 ≤ k ≤ m): one per machine.
An operation is at least described by a processing time pik: the processing time of
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job Ji on machine Mk (or equivalently, the processing time of the kth operation
of job Ji). The completion time of job Ji on machine Mk (Cik) and the completion
time of job Ji (Ci) are related by Ci = Cim.

Over the years, several additional constraints have been taken into consider-
ation [10]. Some of them can be modeled using MaxPlus algebra [25]. One of the
most common constraints is the permutation constraint (perm) which has just
been mentioned above. A constraint of no−wait appears in problems where there
is no delay allowed between two successive operations of a job. On the contrary,
constraints of min − delay, max − delay, min − max delay indicate a flowshop
problem with delays between two successive operations of a job. Depending on the
case, these delays may have to meet a lower bound, an upper bound or both. It may
also exist separate non-sequence dependent setup times (Snsd) and/or removal
times (Rnsd) before and after each operation. Finally, some authors have consid-
ered blocking constraints, due to the non-existence of intermediate storage
between consecutive machines or to specific interactions between machines.
These constraints are referred to as RSb, RCb and RCb∗ in [24].

The most studied criterion is the makespan, or the maximal completion time
(Cmax). It is defined by the completion time of the last operation scheduled on the
last machine (Mm). In this article we focus on the total completion time (

∑
Ci)

which is the sum of the completion times of the different jobs in a given schedule.

3 MaxPlus Modeling of Flowshop Scheduling Problems

Our problem can be noted Fm|perm β|γ using notations proposed by Graham
et al. [14]. It is a m machine permutation flowshop problem with a set of
constraints β that is a subset of {min − max delay, no − wait, Snsd, Rnsd,
RSb,RCb,RCb∗}. Criterion γ can be whatever we desire since it does not inter-
fere in the modeling process. The total completion time criterion is investigated
in the following of this article.

Basically, the modeling process follows this scheme:

– Given the kth operation Oik of a job Ji, four dates are considered: date δk of
availability of machine Mk (before execution of operation Oik), starting time
Stik of operation Oik, its completion time Cik and date of liberation Dik of
machine Mk (after execution of operation Oik), that is the date when job Ji

leaves machine Mk to be placed in a stock or on the following machine. In
most flowshop problems, dates Cik and Dik are equal; however, they can be
different in case of blocking constraints or removal times. Date of liberation
of the last machine (Dim) is equal to the completion time Ci of the job,
except if there exist removal times. In this case Dim is equal to Ci plus the
removal time of operation Oim. Figure 1 shows an example of flowshop problem
Fm|perm,min − max delay, Snsd, Rnsd|

∑
Ci where triangles illustrate setup

and removal times and rectangles illustrate processing times.
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Fig. 1. Example of flowshop problem: Fm|perm,min − max delay, Snsd, Rnsd|
∑

Ci.

– Formulate the system (S) of inequalities that link these different variables.
– Calculate the smallest (Dik) (1 ≤ k ≤ m), (1 ≤ i ≤ n) solutions of the

system (S).

Whatever the set of constraints β is, these calculations lead to a MaxPlus
linear relation between dates of liberation Dik and dates of availability δk [20,25].
More precisely, we can state the following proposition:

Proposition 1 (Matrix Associated to a Job). Let δ (resp. Di) be the
line vector of the m dates δk (resp. Dik): it exists a m × m MaxPlus matrix Ti

computed from data of job Ji such that

Di = δ ⊗ Ti (4)

Matrix Ti is called the associated matrix of job Ji: it entirely characterizes job Ji.

Various elements of matrix Ti will be denoted ti�c, in other words, ti�c = [Ti]�c.
This matrix sums up the job data (processing times, setup times, delays and so
on) and the flowshop constraints.

Ti =

⎛

⎜
⎜
⎝

ti11 ti12 . . . ti1m

ti21 ti22 . . . ti2m

. . . . . . . . . . . .
tim1 tim2 . . . timm

⎞

⎟
⎟
⎠ (5)

These results can be generalized to a sequence of jobs [5,20].

Definition 1 (Matrix Associated to a Sequence). Let σ be a sequence of
ν jobs: its associated matrix is matrix Tσ defined by

Tσ =
ν⊗

i=1

Tσ(i) (6)

Proposition 2. If δ is the vector of dates of availability of machines and Dσ

the vector of dates of liberation of machines, after the execution of sequence σ,
we have the relation

Dσ = δ ⊗ Tσ (7)
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4 Proposed Lower Bounds

This section presents lower bounds for problem Fm|perm, β|∑ Ci, with β ⊂
{min − max delay, no − wait, Snsd, Rnsd, RSb,RCb,RCb∗}. To develop the
calculations, we assume that Ci = Dim (1 ≤ i ≤ n). It is true unless there exists
removal times: this particular case will be discussed at the end of this section.

4.1 The First Lower Bound

We first present a lower bound of the completion time of the kth job in a sequence
before elaborating on a lower bound for the total completion time.

Lower Bound of Completion Time of a Job

Proposition 3. Let σ a sequence of jobs and δ the line vector of dates of avail-
ability of the machines (δ = (δ1, δ2, . . . , δm)). The completion time of the job in
kth position in the sequence verifies relation:

if k = 1 : Cσ(1) ≥ δ1
[
Tσ(1)

]
1m

if k = 2 : Cσ(2) ≥ δ1
[
Tσ(1)Tσ(2)

]
1m

if k > 2 : Cσ(k) ≥ δ1

k−2⊗

j=1

(tσ(j)11 )
[
Tσ(k−1)Tσ(k)

]
1m

Proof. Let τ be the sub-sequence composed of the first k jobs of sequence σ.
Proposition 2 and definition 1 result in:

Dτ = δ ⊗ Tτ = δ ⊗
k⊗

i=1

Tτ(i) = δ ⊗
k⊗

i=1

Tσ(i) (8)

Moreover Dσ(k) = Dτ and by assumption Cσ(k) = Dσ(k)m, which is the last
element of vector Dσ(k), we have,

Cσ(k) = [Dτ ]1m =

[

δ ⊗
k⊗

i=1

Tσ(i)

]

1m

(9)

If k = 1, the application of Lemma 1 results in:

Cσ(1) ≥ [δ]11
[
Tσ(1)

]
1m

= δ1
[
Tσ(1)

]
1m

(10)

If k ≥ 2, by iteratively applying this lemma into Eq. (9), we obtain:

Cσ(k) ≥ [δ]11 ⊗
k−2⊗

j=1

[
Tσ(j)

]
11

[
Tσ(k−1)Tσ(k)

]
1m

(11)

Inequality (11) can be rewritten as

Cσ(k) ≥ δ1

k−2⊗

j=1

(tσ(j)11 )
[
Tσ(k−1)Tσ(k)

]
1m

(12)
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Lower Bound of the Total Completion Time

Definition 2 (Lower Bound LB1
V FL). Given a sequence σ of n-jobs, we

define:

A1(σ) =
n−1⊗

j=1

(tσ(j)11 )n−j

B1(σ) =
[
Tσ(1)

]
1m

⎛

⎝
n⊗

j=2

[
Tσ(j−1)Tσ(j)

]
1m

t
σ(j−1)
11

⎞

⎠

Proposition 4. ∀σ sequence :
n⊗

i=1

Cσ(i) ≥ δn
1 ⊗ A1(σ) ⊗ B1(σ)

Proof. Considering proposition 3, we have:

n⊗

i=1

Cσ(i) ≥ δ1
[
Tσ(1)

]
1m

⊗
n⊗

i=2

⎛

⎝δ1

i−2⊗

j=1

(tσ(j)11 )
[
Tσ(i−1)Tσ(i)

]
1m

⎞

⎠ (13)

Rearranging the factors on the right side of inequality (13):

n⊗

i=1

Cσ(i) ≥ (δ1)n ⊗
n−2⊗

i=1

(
t
σ(i)
11

)n−i−1

⊗ [
Tσ(1)

]
1m

n⊗

i=2

[
Tσ(i−1)Tσ(i)

]
1m

(14)

and then multiplying the inequality (14) by

n−1⊗

i=1

ti11

n−1⊗

i=1

ti11

, we complete the proof.

At this point, we can obtain a lower bound of the total completion time by
computing the optimal values of factors A1 and B1. The two following proposi-
tions explain how to do.

Proposition 5 (Minimisation of A1). Let σ1
SPT the sequence obtained by

sorting jobs in non-decreasing order of the coefficient t11. This sequence mini-
mizes criterion A1.

Proof.

A1(σ) =
n−1⊗

j=1

(tσ(j)11 )n−j =
n⊗

j=1

(tσ(j)11 )n−j+1.
1

n⊗

j=1

(tσ(j)11 )

(15)

The second factor is a constant, so we have to minimize
n⊗

j=1

(tσ(j)11 )n−j+1.

It is similar to the total completion time criterion in a one-machine problem
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(1||∑ Ci) where processing times are the ti11s. This criterion is minimized by
using Smith’s rule [22].

Proposition 6 (Minimisation of B1). Let us consider an Asymmetric Trav-
eling Salesman Problem (ATSP) defined by the following distances between n+1
towns, numbered from 0 to n:

⎧
⎪⎪⎨

⎪⎪⎩

∀i ∈ {1, . . . , n} : d(0, i) = [Ti]1m

∀i ∈ {1, . . . , n} : d(i, 0) = 1 (= 0)

∀(i, j) ∈ {1, . . . , n}2 : d(i, j) =
[TiTj ]1m

ti11

(16)

Let sequence σ1
ATSP be an optimal cycle of this ATSP: B1(σ1

ATSP ) is the optimal
value of criterion B1.

Proof. With these notations, B1(σ) can be rewritten as the length of a cycle:

B1(σ) = d(0, σ(1))

(
n−1⊗

i=1

d(σ(i), σ(i + 1))

)

d(σ(n), 0) (17)

All these results lead to the next proposition.

Proposition 7 (Lower Bound LB1
V FL). Let LB1

V FL = (δ1)n ⊗ A1(σ1
SPT ) ⊗

B1(σ1
ATSP ): LB1

V FL is a lower bound of the total completion time. In usual
notations, this lower bound is defined by:

LB1
V FL = nδ1 + A1(σ1

SPT ) + B1(σ1
ATSP ) (18)

It is needed to solve a traveling salesman problem to compute this lower bound;
however, the procedures for solving that problem are rather effective on medium
size instances.

This lower bound is similar to the one presented by Della Croce et al. [9] for
two machines, but it works with m machines and more constraints.

Existence of Removal Times. If there are removal times, the date of liber-
ation of machine Mm by job Ji (Dim) is equal to the sum of completion time
Ci of job Ji and removal time of the last operation of Oim of Ji. Thus, the total
sum of Dim (1 ≤ i ≤ n) is equal to the total completion time plus a constant
term which is equal to the sum of removal times of all last operations. Therefore,
to obtain a lower bound of the total completion time we only have to subtract
this constant from LB1

V FL.

4.2 Additional Similar Lower Bounds

A similar approach to the construction of the first lower bound can be developed
to achieve the �th lower bound (∀� ∈ {1, . . . , m}). Using iteratively Lemma 2,
we obtain:
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Cσ(1) ≥ δ�

[
Tσ(1)

]
�m

Cσ(2) ≥ δ�

[
Tσ(1)Tσ(2)

]
�m

∀i > 2 : Cσ(i) ≥ δ�

⎛

⎝
i−2⊗

j=1

t
σ(j)
��

⎞

⎠
[
Tσ(i−1)Tσ(i)

]
�m

(19)

Defining A�(σ) and B�(σ):

A�(σ) =
n−1⊗

j=1

(tσ(j)�� )n−j (20)

B�(σ) =
[
Tσ(1)

]
�m

⎛

⎝
n⊗

j=2

[
Tσ(j−1)Tσ(j)

]
�m

t
σ(j−1)
��

⎞

⎠ (21)

we have
n⊗

i=1

Cσ(i) ≥ δn
� A�(σ)B�(σ) (22)

Similarly to propositions 5 and 6, we can find σ�
SPT to minimize A�(σ) and

σ�
ATSP to minimize B�(σ).

The �th lower bound of the total completion time of the initial flowshop
problem is then:

LB�
V FL = (δ�)nA�(σ�

SPT )B�(σ�
ATSP ) (23)

5 Branch-and-Bound Algorithm

5.1 Proposed Branch-and-Bound Procedure

In order to validate the lower bounds we proposed, we have incorporated them in
a branch-and-bound procedure. A branch-and-bound procedure is an enumera-
tion method that builds dynamically a search tree. Lower bounds or other criteria
like dominance relations are used to cut some useless branches. We have used
the separation scheme introduced by Ignall and Schrage [17]: a partial sequence
is progressively built as we go deeper in the search tree. A node corresponds to
a partial sequence and a set of free jobs. The separation of a node consists in
adding a free job at the end of the sequence. A node has as many children as its
free jobs. The branching strategy is Depth-First-Search (DFS). An upper bound
is computed at the root node and updated at each node. For this purpose, we
have used heuristic PR4(15) presented by Pan and Ruiz [21].

The branch-and-bound procedure is detailed in Algorithm 1 and numerical
results are presented in Sect. 6. In this algorithm, L is the list of nodes that have
not yet been separated and LC the list of child nodes built after separation of a
node.
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Algorithm 1. Branch-and-Bound.

1: procedure Branch-and-Bound
2: BestUB ← ∞
3: Generate Root tree NRoot // an empty node
4: Compute LB(NRoot) and UB(NRoot)
5: Add NRoot to list L
6: while L is not empty do
7: N ← top(L) // move the first node of list L
8: BestUB ← min{BestUB,UB(N)}
9: if LB(N) < BestUB then

10: Generate children list LC of N
11: for each NChild in LC do
12: Compute LB(NChild)
13: Compute UB(NChild)
14: end for
15: Sort LC // in non-increasing order of LB(NChild)
16: for each NChild in LC do
17: if LB(NChild) < BestUB then
18: top(L) ← NChild
19: else
20: Delete NChild
21: end if
22: end for
23: else
24: Delete N
25: end if
26: end while
27: end procedure

5.2 Lower Bound Selection Strategy

It may take time to solve traveling salesman problems. It means that it is not
reasonable to compute all lower bounds LBV FLs at each node, especially when
the number of jobs is increasing. Therefore, we are looking for a strategy so
that we could avoid useless calculations and accelerate the branch-and-bound
procedure. It may be an improvement in the algorithm as well as a way to
combine lower bounds LBV FL according to each node.

Firstly, we decide to compute the upper bound only once at the root node.
This step seems to reduce the computation time for calculating upper bounds
although it increases the number of visited nodes.

Secondly, we propose a lower bound selection strategy (LBSS). For each of
the first ten thousand visited nodes, we compute all lower bounds LBV FLs. For
these whole ten thousand visited nodes, we compute the number of times αi that
lower bound LBi

V FL (1 ≤ i ≤ m) is dominant (i.e. the greatest). For the next
nodes, lower bound LBk

V FL (1 ≤ k ≤ m) is computed if and only if its relative
reference value (see (24)) exceeds a given threshold α∗:
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αk

max
1≤i≤m

(αi)
≥ α∗ (24)

A good choice of this threshold may help to avoid computing bad lower bounds.
The effectiveness of LBSS is shown in Table 1.

6 Experimental Results

There are few studies on exact resolution of flowshop scheduling problems with
criterion of total completion times. We decided to compare our branch-and-
bound procedure to the one developed by Allahverdi and Al-Anzi [1] for prob-
lem F3|perm;Snsd|

∑
Ci. According to the approach proposed by Allahverdi and

Al-Anzi, the processing and setup times values were randomly generated respec-
tively from the uniform distribution on the interval [1, 100] and on the inter-
val [0, 100k]. We considered problems of n-jobs (n=7,8,9,10,11,12,13,14,15,16,
17,18,20). A class of thirty instances was generated for each number of jobs and
each k value. The k value for each data set was assigned to 0.3, 0.5 and 0.8. It was
assumed that all machines were available from the time zero (δk =0, 1 ≤ k ≤ m).
To compute lower bounds LBV FLs, we used the ATSP solving procedure devel-
oped by G. Carpaneto, M. Dell’amico and P. Toth [7]. The used machine is based
on an Intel Duocore 2.6 GHz 4 GB RAM.

We have reported in Table 1 the mean computation times (in seconds) for
each class (n, k) of instances of three versions of the branch-and-bound proce-
dure: the basic one, in which all lower bounds LBV FLs are computed at each
nod, the LBSS one which uses the lower bound selection strategy presented in
5.2 and the SLB one which uses a simple lower bound (SLB). Lower bound
SLB of a node is equal to the total completion time of its corresponding par-
tial sequence. This SLB version allows us to evaluate the effectiveness of lower
bounds LBV FLs. When optimal solutions have never been found over the thirty
instances within the time limit, we indicate “> 1500” if 1500 s is the time limit.

Table 1 shows that the basic version of the branch-and-bound procedure is
more effective than the SLB version, despite the fact that LBV FLs need to solve
traveling salesman problems. It also confirms that lower bound selection strat-
egy LBSS reduces strongly computation times. In other words, LBV FLs with
the current lower bound selection strategy are effective to eliminate unworthy
branches. However, we still need to improve this strategy as we are now limited
to twenty jobs.

In their study, Allahverdi and Al-Anzi did not indicate computation times,
they prefer computing the percentage of visited nodes to solve an instance rela-
tively to the total number of nodes of the whole search tree. Therefore, we did
the same in order to perform a comparison. By default, the result is obtained
from thirty instances. However, in following tables, when optimum could not
be achieved within the time limit, the number of solved instances is indicated
between parentheses. Percentage of visited nodes and computation times are then
computed over these solved instances. We limited computation times to 1500
(3000 and 9000, respectively) seconds in case of n ∈ {7, 8, 9, 10, 11, 12, 13, 14, 15}



296 N.V. Vo et al.

Table 1. The mean computation time for each class.

Jobs k = 0.3 k = 0.5 k = 0.8 LB

7 0.010 0.010 0.010 LBSS

0.048 0.049 0.058 LB1
V FL, LB2

V FL, LB3
V FL

0.030 0.039 0.041 SLB

8 0.010 0.010 0.010 LBSS

0.100 0.098 0.176 LB1
V FL, LB2

V FL, LB3
V FL

0.099 0.102 0.121 SLB

9 0.011 0.012 0.012 LBSS

0.212 0.165 0.193 LB1
V FL, LB2

V FL, LB3
V FL

0.683 0.602 0.709 SLB

10 0.020 0.021 0.024 LBSS

0.291 0.285 0.353 LB1
V FL, LB2

V FL, LB3
V FL

6.654 5.629 6.748 SLB

11 0.041 0.043 0.054 LBSS

0.730 0.838 0.932 LB1
V FL, LB2

V FL, LB3
V FL

73.674 66.924 74.569 SLB

12 0.073 0.093 0.125 LBSS

1.313 1.779 2.330 LB1
V FL, LB2

V FL, LB3
V FL

906.030 1173.178 905.417 SLB

13 0.160 0.241 0.277 LBSS

4.589 7.593 7.995 LB1
V FL, LB2

V FL, LB3
V FL

> 1500 > 1500 > 1500 SLB

14 0.624 0.653 1.420 LBSS

16.317 15.306 34.569 LB1
V FL, LB2

V FL, LB3
V FL

> 1500 > 1500 > 1500 SLB

15 2.981 2.877 4.385 LBSS

68.559 50.609 68.467 LB1
V FL, LB2

V FL, LB3
V FL

> 1500 > 1500 > 1500 SLB

16 6.367 6.537 24.310 LBSS

152.996 155.756 404.959 LB1
V FL, LB2

V FL, LB3
V FL

> 3000 > 3000 > 3000 SLB

17 27.580 97.107 80.717 LBSS

419.347 1478.93 1894.091 LB1
V FL, LB2

V FL, LB3
V FL

> 3000 > 3000 > 3000 SLB

18 172.071 244.530 178.197 LBSS

7984.230 7638.810 2694.640 LB1
V FL, LB3

V FL

> 9000 > 9000 > 9000 SLB

20 774.506 (26) 508.405 (28) 1320.497 (26) LBSS

2850.320 (10) 346.510 (10) 1640.350 (10) LB2
V FL, LB3

V FL

> 9000 > 9000 > 9000 SLB
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Table 2. The performance of branch-and-bound procedure (percentage of visited
nodes) for different k values.

Jobs PV NAA PV NV FL PV NAA PV NV FL PV NAA PV NV FL

(k = 0.3) (k = 0.3) (k = 0.5) (k = 0.5) (k = 0.8) (k = 0.8)

7 5.12× 10−1 7.15× 10−1 4.39× 10−1 7.00× 10−1 0.51× 100 1.02× 100

8 2.20× 10−1 2.66× 10−1 2.74× 10−1 2.70× 10−1 2.92× 10−1 3.18× 10−1

9 5.11× 10−2 7.74× 10−2 6.46× 10−2 7.02× 10−2 6.05× 10−2 9.81× 10−2

10 3.56× 10−2 1.76× 10−2 2.79× 10−2 2.04× 10−2 2.40× 10−2 2.64× 10−2

11 1.63× 10−2 0.48× 10−2 1.28× 10−2 0.61× 10−2 1.43× 10−2 0.76× 10−2

12 3.08× 10−3 0.78× 10−3 2.74× 10−3 1.35× 10−3 3.12× 10−3 1.51× 10−3

13 6.31× 10−4 1.91× 10−4 6.30× 10−4 4.15× 10−4 4.71× 10−4 4.14× 10−4

14 5.02× 10−5 5.93× 10−5 1.22× 10−4 0.67× 10−4 1.37× 10−4 1.61× 10−4

15 2.38× 10−5 2.24× 10−5 2.19× 10−5 1.75× 10−5 2.46× 10−5 2.69× 10−5

16 1.20× 10−5 0.20× 10−5 1.21× 10−5 0.19× 10−5 1.24× 10−5 0.86× 10−5

17 5.70× 10−6 0.62× 10−6 5.30× 10−6 1.85× 10−6 5.60× 10−6 1.48× 10−6

18 5.40× 10−7 2.06× 10−7 5.00× 10−7 1.99× 10−7 5.20× 10−7 2.17× 10−7

20 − 0.19× 10−8 − 0.17× 10−8 − 0.47× 10−8

(26) (28) (26)

Table 3. The mean computation time for each class in problem Fm|perm|∑Ci.

Jobs m = 5 m = 10 Jobs m = 5 m = 10

7 0.010 0.010 14 4.442 17.033

8 0.010 0.014 15 16.945 21.677

9 0.019 0.031 16 71.446 292.969

10 0.044 0.104 17 136.281 533.667 (27)

11 0.121 0.238 18 824.754 1329.541 (23)

12 0.242 0.538 20 2517.159 (23) 1991.824 (5)

13 1.554 2.781

(n ∈ {16, 17} and n ∈ {18, 20}, respectively). We applied here the LBSS and
we set threshold α∗ to thirty percent.

We have reported in Table 2 the mean percentage of visited nodes over
the thirty instances of each class (n, k) of problems for our branch-and-bound
(columns PV NV FL(k = 0.3), PV NV FL(k = 0.5) and PV NV FL(k = 0.8)) and
for Allahverdi and Al-Anzi’s branch-and-bound (columns PV NAA(k = 0.3),
PV NAA(k = 0.5), PV NAA(k = 0.8)).

Table 2 shows that lower bounds LB1
V FL, LB2

V FL and LB3
V FL are useful in

reducing the number of visited nodes. They are really effective when compared
to the performance in the study of Allahverdi and Al-Anzi [1] for instances with
more than ten jobs.
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Finally, in order to test furthermore the lower bounds as well as the branch-
and-bound procedure, we decided to execute some tests concerning problem
Fm|perm|∑ Ci where m ∈ {5, 10} and n ∈ {7,8,9,10,11,12,13,14,15,16,17,18,20}.
As previously, processing times were generated between 1 and 100, time lim-
its have been set to 1500, 3000 or 9000 s depending on the number of jobs
({7, 8, 9, 10, 11, 12, 13, 14, 15},{16, 17} or {18, 20}). Lower bound selection strat-
egy LBSS is applied to four lower bounds LB1

V FL, LB2
V FL, LBm−1

V FL and LBm
V FL.

We have reported the mean computation time (in seconds) for each class of
thirty instances in Table 3. The table shows that the branch-and-bound proce-
dure with LBSS can solve problem Fm|perm|∑ Ci within acceptable time limit.
The result confirms that computation times depend not only on the number of
jobs but also on the number of machines.

7 Conclusions

We proposed a MaxPlus approach to tackle a m-machine flowshop problem with
several additional constraints. The MaxPlus approach enables the transforma-
tion of a general flowshop problem into a matrix problem. Then some compu-
tations over these matrices allow us to highlight new lower bounds for the total
completion time criterion, based on the resolution of a one-machine problem
and an asymmetric traveling salesman problem. Despite the necessity of solving
an NP − hard problem, experimental results and comparison to a previously
published research have shown the effectiveness of these lower bounds. Experi-
mental results are expanded to general cases and the effectiveness is once more
confirmed. A lower bound selection strategy has been proposed and has shown
its usefulness in reducing computation times.

Our further research will aim at improving these lower bounds LBV FLs as
well as improving the branch-and-bound algorithm. The current strategy is not
strong enough to shorten the computation time of the whole branch-and-bound
algorithm when the number of jobs is increasing. In particular, the strategy
has to be reformed. Moreover, tests can be executed to several constraints as
no − wait, min − max delay, (Snsd, Rnsd), limited stocks between machines or
blocking constraints since these constraints only modify matrix Ti associated to
job Ji and lower bounds LBV FLs are still valid. The study can be also extended

to the weighted total completion time criterion
n∑

i=1

wiCi.
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