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Abstract. High performance parallel kernels for solving graph problems
are complex and difficult to write. Some systems have been developed to
facilitate the implementation of these kernels but the code they produce
does not always perform as well as custom software. In this space, we
propose Tiled Linear Algebra (TLA), a multi-level system based on lin-
ear algebra but with explicit parallel extensions. Programs can be first
written in a conventional manner using linear algebra and then tuned
for parallel performance using our extension. This separation allows pro-
grammers with different expertise to focus on their strengths with writing
original codes that can then be tuned by parallel experts.

This paper presents the background on using linear algebra to express
graph algorithms and describes the extensions TLA provides to imple-
ment their parallel versions. The key extensions supported by TLA are:
data distribution, partial computation, delaying updates, and commu-
nication. With these extensions to the traditional linear algebra opera-
tors, we could produce linear algebra based versions of several problems
including single source shortest path that should preform close to cus-
tom implementations. We present results on several single source shortest
path algorithms to demonstrate the features of TLA.

1 Introduction

In recent years, the importance of graph algorithms has been on the rise. While
graph algorithms have always been a part of computer science, graph analytics
have become increasingly important in the recent past. Graph analytics is used
for the analysis of large network systems, capturing the interactions in social net-
works, natural language analysis, and cyber-security algorithms. Furthermore,
in many cases, the size of the graphs to be analyzed has grown and continues
to grow. For example, Facebook as a social network graph (with users as ver-
tices and friendships as edges) has grown from 1 million to 845 million users in 7
years (2004-2011). Analysis of graphs of this size requires large parallel machines
whose programming is a complex task due to correctness and performance.

Linear algebra operators can represent many graph algorithms in a concise
and clear manner as discussed in [3,12]. The use of this notation allows for rapid
development of complex algorithms. Today, the power and flexibility of using
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linear algebra primitives comes with drawbacks. Standard sparse linear algebra
kernels do not always take advantage of the structure of the graphs or parameters
of the target machine and, as a result, fall short of the performance of custom
implementations. To address this, we propose Tiled Linear Algebra (TLA) that
is a multi-level parallel system with high-level linear algebra structure. In TLA,
linear algebra primitives are used to construct a correct program and then per-
formance features controlled by “knobs” are used to tune the kernels. These
features include controlling distribution and communication frequency.

We organize this paper as follows. Section 2 describes the use of linear alge-
bra for graph algorithms and Sect. 3 describes our extensions. We describe the
algorithms to solve the Single Source Shortest Path (SSSP) problem and our
experiments in Sect.4. We wrap up with a discussion of related work in Sect.5
and our conclusions in Sect. 6.

2 Graph Algorithms Using Linear Algebra

Using linear algebra as an abstraction for programming parallel graph algorithms
is not new. CombBLAS [3] is perhaps the best known system using this approach.
This section overviews linear algebra for representing graph algorithms.

There is a correspondence between a graph and a matrix. A graph G = (V, E)
with n vertices (set V') and m edges (set E) can be represented by its adjacency
matrix A which is an n X n matrix such that A(i,j) = 1 if there is an edge
e;; from vertex v; to vertex v; and = 0 otherwise. This allows for directed and
undirected graphs and can be extended to weighted graphs by using the weight
rather than 1 to represent an edge. This representation is at the core of using
linear algebra to describe graph algorithms. It should be noted that typically
this matrix will be sparse and performance efficiency will depend, just as in
conventional linear algebra, on how sparsity is handled.

Reachability Example: Reachability is the problem of finding all the reachable
vertices in a directed graph G = (V,E) from a source vertex s € V. More
formally, Reach(G,s) = {v € V|Jvy,vs,...,0x € V,v;0;41 € E,v; = s,v;, = v}.
There exists a duality between reachability and matrix vector multiplication.
Consider a vector r with |V| elements (i.e. one element per vertex of the graph)
with values r(s) = 1 and 0 everywhere else and the adjacency matrix A of graph
G. All neighbors of s reachable in 1 step correspond to the non-zero entries of the
vector AT -r. Consider Fig. 1 which shows a graph with its transposed adjacency
matrix, AT, with non-zeros shown as dots. Vertex 7 is the source vertex, s, of
the reachability problem and as just mentioned, r has only one non-zero element
(represented by the dot in position 7 for s). The result of the matrix vector
multiplication will produce a vector v’ with non-zeros represented by dots which
corresponds to the non-zeros in the matrix shown by unfilled dots in the figure.
r" = AT .y computes the vertices that can be reached from 7 by traversing one
edge (shown by dotted arrows in the figure). r”” = r + 1’ = r + AT - r represents
all vertices that can be reached in 1 or fewer (0) edge traversals. In general,
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Fig. 1. Matrix-vector multiplication for reachability.

if ro includes 7 as a reachable vertex, an iterative matrix-vector multiplication
riv1 = 1 + A - r; will find all of the vertices which are in ¢ + 1 or fewer edge
traversals. The algorithm would terminate when a fixed point has been reached
which in this case means that r;; and r; has non-zeros in the same positions.
These non-zeros in the final vector corresponds to all vertices reachable in any
number of edge traversals. Note that, the elements of r; could have different
(positive) values and these values do not have a clear meaning. However, if
we had a different algebra and replaced 1 and 0 by true and false, regular
multiplication by A, and regular addition by V, the result would have been the
same except that all the non-zeros would all have been true.

A semiring is a five-tuple (D, ®,®,0, 1), where D is the set of elements of
the semiring and D is closed under @ and ®. 1 € D is the identity for ® which
means that Ve e D: 2 ® 1 =1® 2 = x and 0 € D is the identity for & which
means that Ve € D : @0 = 0 ® z = z. Also, 0 nullifies any elements of D
with ®: Ve € D:2® 0 =0® 2 = 0. Given two matrices, A;,, and By, ,, with
elements from a semiring, D, their product is denoted A ® B and results in an
I x n matrix defined such that

(A® B)(i,) = A(i,1) x B(1,j) + A(i,2) x B(2,7) + ... + A(i,m) x B(m, j)

In this notation, the semiring (R U {oo}, min, +, 00, 0) with the real numbers
extended with oo as the domain, min as the additive operation ®, and + as
the multiplicative operation ® is called the tropical semiring. Tropical semiring
is specifically useful for computing single source shortest path from a source
vertex to every other vertex in a graph which is discussed in more details below.
The other useful semirings for other algorithms are the real field (R, +, x,0,1)
for page-rank computation or the boolean semiring ({0,1},V, A,0,1) which, as
mentioned in the example above, is a natural algebra for reachability problems.

A directed and weighted graph G = (V, E) can be represented by its adja-
cency matrix Ag of size n x n where |V| = n and whose values are Ag(i,7) =
weight(v;v;) if v;v; € E and Ag(i,j) = oo otherwise. That is, the elements of
Ag are from the tropical semiring. Ag is a sparse matrix where the sparsity
comes from the 0 = co elements in the matrix which represent the non-existent
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edges in the graph. Let d be an n x 1 vector where its i*! element, d(i) is
the distance to v;, then d' = Ag ® d would also be a distance vector where
d'(i) = min, ., c p()(d(j) + weight(vv;)). d’ = d® AL © d = d ® d’ is another
distance vector where in the computation of d”(7), Vj : d(j) + w(v;v;) are con-
sidered as well d(7) itself. This is equivalent to first, computing a new distance
d' (i) for each vertex v; considering distance d of its incoming neighbors and the
weight of corresponding edge (Vj : d(v;) + w(v;v;)) and second, comparing this
new d'(i) distance with d(7) and setting d” (i) to the smaller one.

Using adjacency matrix representation, one can express algorithms to find
the shortest path using matrix-vector product in tropical semiring. For example,
assuming that do is a distance vector where do(s) = 0 and Vv € V(G)\{s} :
dp(v) = oo. At step 4, the well known Bellman-Ford algorithm computes d; 11 =
di & AL © d; and it iterates for |[V(G)| — 1 times. In Sect. 3.2, we will explain
how linear algebra can be used to express other algorithms.

3 Tiled Linear Algebra

One of the most important aspects of linear algebra for graph algorithms is
that the adjacency matrix of a graph G, Ag, is sparse and the system needs
to use sparse algorithms. Otherwise, for example, a matrix-vector multiplication
will require O(|V'|?) operations instead of O(|E|). Furthermore, different ways of
representing a sparse matrix can impact the performance. Therefore, we believe
that it is important for the programmer to have control over the representation.

Papers [3,8] discuss how graph algorithms can be represented in terms of
matrix operations on different semirings. However, there are many ways to par-
allelize a matrix operation. In particular, the parallelization of matrix opera-
tions can be represented using tiling which partitions an array into subarrays by
dividing each of the dimensions of the original array into segments. Each tile is
assigned to a processor which will be responsible for the values of that tile. This
assignment is done by a mapping function from tiles to processors.

In our notation, we tile and assign tiles to processors at the same time.
Let’s say matrix A is read from file input.txt (which, for example, contains
the edge list of a graph) and we want to divide the rows and columns into two
segments. We will use command A = ReadAndTile(’input.txt’, 2, 2, f);
to read from the file and tile it accordingly. £ is a function that assigns each
tile to a processor. Therefore, there are four tiles which we denote by A; i,
Aj 2, Az 1 and As . Each tile is conceived as having the size equal to the whole
matrix, but contain non-0 only in the regions associated with the tile. Therefore,
A1 @ Ao @ Az @ Azp = A. To create a vector of size n x 1 and tile it
into 2 segments, we will use command v = CreateArray(n,2,f2); where £2 is
another mapping function. Even though we explicitly ask the user for a tiling
pattern, we do not explicitly use the tiling when representing operations.

3.1 Delaying Updates

As is well known, we can use the tiling to control where each component of the
computation occurs and how the processors communicate. In regular parallel



120 S. Maleki et al.

[ R ] oo

I.- SRR FUN S (RO S R A - -
[ T TG

R L 4 19,0 4

= F-a--r-a--r-q4--r-a--r-a-- - =
[ R R [ |

I - T T e - L -
[T T R

IR r a1 o o

- F-a--r-a--r-q4--r-a--r-a-- - - -

[ R - X o

I @ ----L-=--L- ..L.—I.-L.J..O -

\vj [ P -

° IR &, ° °

- -Aa--r-as-r-q--r-a--r-a-- - - -

° [ R ] e I 1@ ° °

- RO R R RPN i T PR M J - L -

° [ ' ° °
[ I

- - -a--r-a--r-q--r-a--r-a-- - - -

° [ R R I X ° °

I.. RO R R R Y T P pu - L -
[T CoOT T g

° [ LA ° °

(a) Saving off-tile values locally to be communicated later.

clleieieieie] : 100 | blle 8:e:8:8] ' : ¢ ! |
@ =
2| 1o: ioiofereieieie] b2 11t ¢ [ere:8:8:e]

(b) Communicating off-tile values.

Fig. 2. Sparse matrix vector multiplication with delaying updates.

linear algebra, updates need to be visible by all the processors as soon as they
occur. However, the updates can be postponed as, for example, is done in asyn-
chronous algorithms [1,9].

Let Ag be the adjacency matrix of G and M = AL. As discussed above, if d
is a distance vector for the vertices of G, ¢ = d® M © d will be another distance
vector with distances updated by traversing 0 or 1 edges. Figure 2a represents
the computation of ¢ = d® M ©d. Let M be tiled 1x2 and f(x,y) = y be the tile
to processor mapping function such that tile (1, 1) is assigned to processor p; and
tile (1,2) is assigned to processor ps. Also assume that d and c are vectors of size
nx1 (n =|V(G)| which is 10 in Fig. 2a) and they are tiled 2x 1 and fa(z,y) =«
is their mapping function. Figure 2a shows these tilings and distributions of M,
d and c. The dots in the Figure represent the non-zeros. Processor 1 stores M1,
d1 and c1 and processor 2 stores M2, d2 and c2. Notice that M1 and M2 are each
the size of the original matrix M, but with zeros outside the tile each of them
represents. d1 and d2 have the same property. On the other hand, c1 and c2 are
the size of the original vector ¢ but there are non-zeros outside of the tiles that
they are representing shown by unfilled dots.

It is easy to see that c=d @ M ©d = (d1 @ M11 © dy) ® (d2 ® M12 © da).
Therefore, without any communication, p; can compute d; & M;,; © d; and p,
can compute da @ Ms 1 ©dy. However, since ¢; and ¢ have non-zeros everywhere,
it is necessary to do a global computation to prepare for the next iteration. The
value of d in the next iteration is ¢ = (di @ M1,1 © d1) ® (d2 & M; 2 © d2) which
requires adding ¢; and cs.

To save communication time, we assign ¢; to d; and co to do before going to
the next iteration. In this way, we do not carry out a global reduction. In other
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words, we do not add c¢; to co to get c. Instead, the values in the second tile
of ¢; and the first tile of ¢o continue accumulating separately. At some point in
time a global reduction is performed. As discussed below, by avoiding numerous
global reductions, the performance of the algorithm improves. Postponing the
reduction as just described is useful in the cases where it is not necessary to com-
municate the computed values immediately. This is the case of the reachability
problem in which a processor can compute multiple iterations locally and find
more reachable vertices before it communicates the remote reachable vertices.

To be able to postpone updates using our notation, we introduce «— as an
assignment operand which computes the linear algebra operation using only local
values on the processor. In the case where an element on the left hand side of «—
is assigned to a different process, that value is only updated locally. For example,
¢ <andthenaglobal- d+M*d will perform the local computation and will produce
values that go to another processor. These values are the unfilled dots shown in
Fig. 2a for both processors involved.

For communicating the values saved locally to the processor which owns the
value, we introduce the & = operation which communicates all of the saved
values to the owner processor where they are accumulated to the local copies of
the elements using @ as Fig. 2b depicts it. In the figure, bl and b2 are the values
assumed by c1 and c¢2 in the next iteration. After the owner processors update
their values, communicated values become 0.

3.2 Partial Computation

In the simple version of reachability described in Sect. 2, all the reached vertices
are processed in each iteration. Processing a vertex v in this problem means
that marking all neighbors of v as reachable. This is clearly suboptimal since
after one iteration all neighbors of a vertex have been reached. To improve upon
this, we limit the processing to only vertices who were reached for the first
time in the previous iteration. To be able to support this feature, we propose
using mask vectors with O representing false and 1 representing true from the
boolean semiring. Mask vectors are not different from other vectors except for the
purpose they are used. A mask vector is used with element-wise multiplication
represented by the operator “®.”. If @ and b are two vectors in a semiring, a ® .b
is another vector where (a ®.b)(7) = a(i) ® b(¢). Now if b is a mask vector, a ® .b
will be a sparse subvector of a with some elements set to 0.

Note that mask vectors are used to avoid unnecessary computation. There-
fore, the system should be aware of the fact that a vector can be sparse. For
example, in the case of A®wv where A is a sparse matrix and v is a sparse vector,
only a corresponding columns of non-zero elements of v should be considered.

Partial computation is important for many algorithms where an update to
a vertex will only affect a few neighboring vertices. For example, in the case of
SSSP, if a vertex is updated, an algorithm needs only to update its outgoing
neighbors. Another example is the PageRank problem where if an update to a
vertex is higher than the threshold, it only affects the neighbors of that vertex.
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4 Single Source Shortest Path

The Single-Source Shortest Path (SSSP) problem finds the shortest distance from
a source vertex to every other vertex in a graph. An instance of the problem is
denoted by (G, w,s) where G = (V, E) is a graph with the set of vertices, V,
and the set of edges, F, and a source vertex, s € V. Each edge vu € E has a
tail, v € V, and a head, u € V. The map w : F — R associates a weight for each
edge vu € E. Vertex s € V is the source whose distances to all other vertices
is desired. This section assumes that all the weights are positive. The shortest
distance from s to v is denoted by d(s,v).

There are several algorithms to solve SSSP which we will discuss about how
some of them can be expressed in TLA. In spite of their differences, the main
operation in these algorithms is matrix-vector multiplication in tropical semiring.

4.1 Algorithms

The four best-known algorithms to solve SSSP problem are: Dijkstra [6], Bellman-
Ford [2], Chaotic-Relaxation [5], and A-Stepping [13]. Bellman-Ford is the only
algorithm that is capable of solving SSSP with negative edge weights but this
aspect will not be discussed further in this paper and we assume all the graphs have
positive edge weights. The basic operation that all four algorithm use is relax-
ation which takes an edge vu and checks if d(s,v) + w(vu) < d(s,u) where d is
not necessarily the final minimum distance but the shortest path “so-far” in the
computation. If the check condition is true, d(s, u) is updated with d(s, v) +w(vu).
The difference between the algorithms mentioned above is in the order in which
relaxations are applied which directly affects the amount of work each algorithm
performs. We measure the amount of work done by each algorithm in terms of the
number of checks (for d(s, v) +w(vy) < d(s,u)) which is equal to the total number
of relaxations.

Below, we assume that G = (V, E) is the input graph and that the transpose
of its adjacency matrix is M. Initially, in all four algorithm d(s,v) = oo for all
v eV —{s} and d(s,s) = 0. The values of d are stored in a tiled vector. Next,
we will explain each algorithm and express them in TLA.

Bellman-Ford: Our implementation of the Bellman-Ford algorithm in TLA
(shown in Fig.3) relaxes all the vertices during each iteration. The algorithm
terminates after |V| — 1 iterations. As we discussed in Sect. 2, d+M*d which cor-
responds to the formula d & M ® d computes a new distance vector for G by
relaxing all the edges. Parallelizing this algorithm is straightforward by parti-
tioning the vertices and having each processor relax one or more of the resulting
subsets. As shown in Fig.3, in every iteration of the for loop, each processor
relaxes its own portion of edges assignment (“<-” in line 2) and then a global
communication (operation +=) sends remote updates (line 3).



Tiled Linear Algebra a System for Parallel Graph Algorithms 123

1 for (int i = 0; i < n-1; i++){
2 d <- d + Mx*d;
3 d += d; }

Fig. 3. Bellman-Ford algorithm main loop using TLA.

Chaotic-Relaxation: The Chaotic-Relaxation algorithm is the same as the
Bellman-Ford algorithm except that at each iteration, it only relaxes those
vertices which changed distances in the previous iteration. TLA code for this
algorithm is shown in Fig. 4. This algorithm is a small improvement over Bellman-
Ford obtained by avoiding redundant relaxations. To this end, we use the mask
vector r which has one element for each vertex and is used to keep track of the
vertices whose distances did not change in the previous iteration. The vector r is
initialized so that it is false everywhere except for the position corresponding the
vertex s. The element-wise multiplication (*.) on line 2 prunes elements which
did not change their distance and sparse matrix-sparse vector multiplication
(M*(d*.r)) takes advantage of it.

In the following algorithms, the scalar notDone (replicated across processors)
is used to decide when to terminate the algorithm. The last iteration is that in
which d(s,v) remain constant for all v € V. In other words, the algorithm is
finished when r (set on line 4) is all 0 (all false) for each tile. Note that r <-
b != dsets r(i) to 1 if b(i) != d(i) and sets it to O otherwise. Finding out
when r is all 0 is done by the local reduction notDone <- any(r) on line 6
followed by the global reduction notDone += notDone on line 7. If notDone is
0, it means that there was at least one 0 in one of the tiles of r.

1 do {

2 c <- d + Mx(d*.r);

3 b += c;

4 r <- (b != 4d);

5 d <- b;

6 notDone <- any(r);

7 notDone += notDone; /* global reduction */
8 } while (notDone != 0);

Fig. 4. Chaotic-Relaxation main loop using TLA.

Dijkstra’s Algorithm: Dijkstra’s algorithm is the fastest sequential SSSP algo-
rithm. At each iteration in this algorithm, only one vertex is processed which
is the vertex with minimum distance among the vertices not processed before.
Processing a vertex means relaxing all of its outgoing edges. The TLA code for
this algorithm is shown in Fig. 5.

The major difference between this algorithm and the previous two algorithms
is that the matrix-vector multiplication for this algorithm (line 3) is with a vector
which has only one non-0 element in it (d *. r) and that element corresponds
to the vertex with the minimum distance among the unprocessed vertices. Find-
ing the element with minimum distance is done with the help of vector m which
keeps track of the processed vertices (line 5). Lines 6 and 7 find the index and
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m <- 0;

for (int i = 0; i < n; i++){
d <- d + Mx(d*x.r);
d += d;
m <- m+r;
ind <- argmin(dx*.(!m));
minVal <- min(d*.(!m));
globalMinVal += minVal; /* global reduction */
r <- 0;
if (minVal == globalMinVal)

r(ind) = 1; ¥

HOOOTO Uk WN

=

Fig. 5. Dijkstra’s algorithm main loop using TLA.

the minimum distance vertex in each processor locally and it is communicated
globally on line 8. Lines 10 and 11 determines in each processor if the local min-
imum value is equal to the global minimum value and, if so, sets r accordingly.
The algorithm terminates after all n vertices are processed.

A-Stepping: A-Stepping is another SSSP algorithm which is half way between
the Dijkstra’s and the Chaotic relaxation algorithms. A-Stepping processes a
bucket of vertices in each iteration not just one as in the case of Dijkstra’s
algorithm nor all vertices as in the case of the Chaotic relaxation algorithm.
A-Stepping distributes vertices into buckets {bg, b1, ba, ...} where bucket b; =
{v|]Ai < d(v) < A(i + 1)}. Note that d(v) is dynamic and as the algorithm
advances, it changes value. Therefore, the algorithm should update the bucket
for each vertex that is updated. In iteration i, A-Stepping only considers vertices
from bucket b;. Since relaxing outgoing edges of a vertex from b; may add more
vertices in it, this process has to continue until there are no more vertices in b;
whose outgoing edges are not relaxed. The algorithm terminates when there are
no vertices to process. Note that if b; is completely processed and the algorithm
advances to b;41, it will never again need to process vertices from b; since all the
weights are positive.

Our version of A-Stepping in TLA code is shown in Fig.6. It is similar
to the code in Fig.4 with a few modifications. First, the main matrix-vector
multiplication for relaxation is different which is shown on line 2. There are
two mask vectors for this algorithm: (1) r which is similar to r from in Fig.4
and it holds the vertices that needs to be processed; (2) bucket which is set on
line 6 and contains the vertices that belong to bucket b;. Initially, it contains
vertices that are in the range of [0...A). To find out whether there are more
vertices in bucket b; to relax, the scalar notDoneBucket is used on line 7. Similar
to notDone scalar from Fig.4, a reduction on array bucket*.r determines if i
should be incremented (line 10) and bucket is set accordingly (line 11).

None of these 4 algorithms required delaying updates and all of them could
have been done by fusing local computation with global communication. Next, we
will describe our parallel SSSP algorithm which takes advantage of this feature.

Partially Asynchronous A-Stepping: This algorithm is similar to A-Stepping
with the exception that A-Stepping algorithm is used locally only. In other words,



Tiled Linear Algebra a System for Parallel Graph Algorithms 125

1 do {

2 c <- d + M*((d*.r)*.bucket);

3 c += c;

4 r <- (c != 4d);

5 d <- c;

6 bucket <- d >= i*A & d < (i+1)*A;
7 notDoneBucket <- any(bucket*.r);

8 notDoneBucket += notDoneBucket;

9 if (!notDoneBucket){

10 i++;

11 bucket <- d >= i*A & d < (i+1)*A;
12 }

13 notDone <- any(r);

14 notDone += notDone;

15 } while (notDone != 0);

Fig. 6. A-Stepping main loop using TLA.

each processor applies A-Stepping to process its own vertices. Local relaxation
occurs for multiple iterations (for pipeline iterations) and after that a global com-
munication exchanges the distance updates. The invariant from A-Stepping algo-
rithm explained before does not hold in here; in a processor, a global distance
update may add vertices for processing from lower buckets since other processors
may have been processing vertices from lower buckets. Therefore, after a global
update, each processor needs to start from the smallest bucket which has
unprocessed vertices.

The TLA code for this algorithm is shown in Fig.7. As described above,
the algorithm applies a local A-Stepping for its vertices as shown in lines 2-10.
The code in this loop is similar to the one from the original A-Stepping except
that every computation is local (note that only <- is used). After this loop, a
global update exchanges distances and updates mask vector r (line 12). After
that, the variable minDist will be computed which is the minimum distance
among all of the local unprocessed vertices. Line 15 finds the minimum bucket
with unprocessed vertices in it. The rest of the code is similar to the other SSSP
algorithms.

4.2 Performance Comparison

This Section compares the parallel performance of each of the SSSP algorithms
described in Sect.4.1. We will also how each feature of TLA affects the perfor-
mance.

Figure 8 shows the parallel performance of Chaotic Relaxation, Dijkstra, A-
Stepping and Partially Asynchronous A-Stepping. We excluded Bellman-Ford
from this figure since it is significantly slower than the other four algorithms
(~ 2000x%). The X axis in this figure represents different number of processors
and the Y axis is for running time. Each algorithms is specified by its color: blue
for Chaotic Relaxation, gray for Dijkstra, red for A-Stepping and purple for
A-Stepping with pipelining (Partially Asynchronous A-Stepping). The orange
color is for the communication cost. Therefore, each group of 4 bars represents
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1 do {
2 for (int j = 0; j < pipeline; j++){
3 b <- d + M*((d*.r)*.bucket);
4 r <- (b != 4d);
5 d <- b;
6 bucket <- d >= i*A & d < (i+1)x*xA;
7 notDoneBucket <- any(bucket*.r);
8 if (!'notDoneBucket){
9 i++;
10 bucket <- d >= i*A & d < (i+1)*xA; }}
11 b += d;
12 r <- (b '= 4d);
13 d <- b;
14 minDist <- min(d*.r);
15 i = minDist / A;
16 notDone <- any(r);
17 notDone += notDone;
18 } while (notDone != 0);
Fig. 7. Partially Asynchronous A-Stepping algorithm in TLA.
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the running time for each algorithm with one specific number of processors. The
input graph is an R-MAT graph with SCALFE = 20.

The fact that Bellman-Ford is significantly slower than Chaotic-Relaxation
(order of 2000x) shows that how crucial is partial computation for SSSP algo-
rithms. On the other hand, Chaotic Relaxation algorithm does not scale well
because of the communication cost. But as it can be seen, just the blue portion
of running time is scaling well. This is because the algorithm is massively par-
allel and the work is balanced well since each processor owns roughly the same
number of edges.

Dijkstra algorithm in Fig. 8 has a better sequential performance than Chaotic
relaxation but since it only processes one vertex at a time, the parallel perfor-
mance is poor and most of the communication cost is just the idle time. However,
A-Stepping is performing faster than both Dijkstra and Chaotic Relaxation and
it is providing decent speed up. A-Stepping with pipelining is almost as fast as
A-Stepping for 1, 2 and 4 processors. It is hard to see in Fig. 8 how they compare
with higher number of processors. Therefore, Fig. 9 directly compares them.
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Fig. 9. Delaying updates speed up.

Figure9 shows the speed up of Partially Asynchronous A-Stepping over
A-Stepping for different number of processors. As it can be seen, up to 16
processors, it does not provide significant improvement but for larger number
of processors, it is certainly effective which in this case is more than 4x faster.
This shows the importance of delaying updates feature in TLA. Next Section,
will study how pipeline factor itself can control the performance of our algorithm.

4.3 Delaying Updates Impact on Partially Asynchronous
A-Stepping

Our Partially Asynchronous A-Stepping has two tunable parameters: the A fac-
tor and the pipeline factor. The best A value can be experimentally found and
it will neither be affected by the number of processors used nor by the source
vertex. On the other hand, the pipeline factor which impacts the total number
of relaxations, has different best values for different number of processors. Again,
each relaxation is a check to find whether we can reach a vertex with a shorter
distance. We will use the number of checks as a measurement for the amount of
work the algorithm does. pipeline is a variable as shown in Fig. 7 that controls
the number of iterations of local A-Stepping between each global communica-
tion for updating distances. In other words, it controls the frequency of global
communication which impacts the performance in two ways. If the intercom-
munication interval is too long, a processor almost always computes distances
of paths that go through local vertices. This may result in useless checks and
updates for those vertices whose shortest path goes through vertices owned by
different processors. Thus, it is better for the exchange of relaxation requests
not to be too infrequent so that vertices can reach their final distance sooner.
However, updating too frequently may add significant overhead because of the
initial cost of each communication.

Figure 10a and b show the execution of Partially Asynchronous A-Stepping
algorithm of Fig. 7 with an R-MAT graph [4] with SCALE = 20,a = 0.55,b =
0.1,c =0.1,d = 0.25,M = 8 x N and A = 2'6 on a shared memory machine
with 40 cores as the value of the pipeline factor changes. Figure 10a shows the
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Fig. 10. Pipeline factor impact on the number of checks and the running time.

number of checks and Fig. 10b shows the running times. Each line corresponds
to a different number of processor. We use a value of A = 216 as it results in
the lowest execution time independent of the number of processors. Numbers
are computed by averaging the running times of the algorithm for 16 randomly
chosen source vertices. All axes are logarithmic. The error bars represent the
standard deviation. The marked points on the plot in Fig. 10b show the best
performing value of the pipeline factor.

The number of checks, increases with the pipeline factor, however, it is almost
constant at first and then increases drastically. The left most points represent
frequent global updates. On the other hand, a high pipeline factor has the same
effect as if there were no pipelining at all. With low pipeline factor the num-
bers of checks is the same for all number of processors. As the pipeline factor
increases, there is a factor of ~ 8 increase in the number of checks for all number
of processes (except, of course, for the case of 1 processor where it remains con-
stant). As it can be seen in Fig. 10b, low values for pipeline factor do not deliver
the best performance because for these values, the algorithm sends many short
messages. In fact, for low values, the algorithm is 6x slower than the optimal.
On the other hand, high values of the pipeline factor slows down the algorithm
because of the large number of checks (relaxations). In fact, for high pipeline
values the algorithm is ~ 8% slower than the best execution times. This tracks
the factor of 8 increase in the number of checks. The point at which the pipeline
factor delivers the best performance is different for each number of processors.
The best pipeline factors for different graphs are different but the optimum is
never at too low or too high values. This suggests that using the idea of delaying
updates is effective and it increases the performance by multiple factors.

5 Related Work

Our work is most similar to the combinatorial BLAS [3] but we differ in that
where they handle the parallelism entirely under the abstraction of linear algebra
but we make the parallelism and distribution explicit. In TLA, the programmer
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can write the same type of program that was expressible in the combinatorial
BLAS since we are both based on the linear algebra but in TLA the programmer
can directly control distribution, communication, and grain size. These features
allow an expert programmer to take code and tune it to take advantage of
hardware and algorithmic features that are not exposed in a system.

Another model of parallel graph computation is the vertex programing model.
This model is used by PowerGraph [7], Pregl [11], and GraphLab [10]. In this
model, the programmer thinks of graph algorithms as running in parallel and
interaction on the edges between vertices. Also, the very fine grained work is
aggregated by the runtime system and not under programmer control. It also
lacks the ability to restrict computation when available under programmer con-
trol. These limitations would prevent expressing algorithms such as A-Stepping
where the work does flow directly from neighboring vertices.

6 Conclusion

In this paper, we presented TLA, a system for graph algorithms using linear
algebra. We have demonstrated the express-ability of our library with imple-
mentations of several SSSP algorithms. Our experiments have shown that by
using the extensions in TLA, we achieve performance comparable to custom
implementations of the same algorithms.

In the future, we intend to develop TLA in to a full featured library with
more included semirings as well as support for user defined ones. We believe
that as we implement more algorithms with TLA, we will find more extensions
to the underlaying liner algebra. Extensions that we have considered included
asynchronous messaging, control over updating, and support for dynamic graphs.
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