
Efficient Exploitation of Hyper Loop Parallelism
in Vectorization

Shixiong Xu2(B) and David Gregg1,2

1 Lero, The Irish Software Engineering Research Centre,
Trinity College, University of Dublin, Dublin, Ireland

2 Software Tools Group, Department of Computer Science,
Trinity College Dublin, the University of Dublin, Dublin, Ireland

{xush,dgregg}@scss.tcd.ie

Abstract. Modern processors can provide large amounts of processing
power with vector SIMD units if the compiler or programmer can vector-
ize their code. With the advance of SIMD support in commodity proces-
sors, more and more advanced features are introduced, such as flexible
SIMD lane-wise operations (e.g. blend instructions). However, existing
vectorizing techniques fail to apply global SIMD lane-wise optimization
due to the unawareness of the computation structure of the vectorizable
loop. In this paper, we put forward an approach to automatic vectoriza-
tion based on hyper loop parallelism, which is exposed by hyper loops.
Hyper loops recover the loop structures of the vectorizable loop and help
vectorization to apply global SIMD lane-wise optimization. We imple-
mented our vectorizing technique in the Cetus source-to-source compiler
to generate C code with SIMD intrinsics. The preliminary experimen-
tal results show that our vectorizing technique can achieve significant
speedups up over the non-vectorized code in our test cases.

Keywords: Hyper loop parallelism · Automatic vectorization · Global
SIMD lane-wise optimization · SIMD

1 Introduction

The introduction of Single Instruction Multiple Data (SIMD) units in proces-
sors increases the levels of parallelism in hardware, and results in a three-level
hierarchy of parallelism, instruction level parallelism, SIMD parallelism, and
thread-level parallelism. In order to take advantage of the SIMD parallelism,
users usually resort to the automatic vectorization in compilers. So far, there
are mainly two vectorizing approaches available in compilers, classic loop vec-
torization [1] and super-word level parallelism (SLP) vectorization [2]. These
two methods usually supplement each other. Classic loop vectorization works
on each statement in the vectorizable loop while SLP vectorization attempts to

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I185
to Lero - the Irish Software Engineering Research Centre (www.lero.ie).

c© Springer International Publishing Switzerland 2015
J. Brodman and P. Tu (Eds.): LCPC 2014, LNCS 8967, pp. 382–396, 2015.
DOI: 10.1007/978-3-319-17473-0 25

www.lero.ie


Efficient Exploitation of Hyper Loop Parallelism in Vectorization 383

1 float y[128], x[128], C[128];
2 for (int i = 0; i < 64; i++) {
3 y[2*i] += x[2*i] * C[2*i] -
4 x[2*i+1] * C[2*i+1];
5 y[2*i+1] += x[2*i] * C[2*i+1] +
6 x[2*i+1] * C[2*i];
7 }

Fig. 1. C-Saxpy

1 y[0:126:2] += x[0:126:2] * C[0:126:2] -
2 x[1:127:2] * C[1:127:2];
3
4 y[1:127:2] += x[0:126:2] * C[1:127:2]
5 + x[1:127:2] * C[0:126:2];

Fig. 2. C-Saxpy by classic loop vector-
ization.

1 // take full lanes
2 tmp0[0:127] = x[0:127:1] * C[0:127:1];
3 tmp1[0:127] = SwapEvenOddLanes (tmp0);
4 // actual computation on the even lanes
5 tmp1[0:127:1] = tmp0 - tmp1;
6 tmp2[0:127:1] = SwapEvenOddLanes

(C[0:127:1]);
7 // take full lanes
8 tmp3[0:127:1] = x[0:127:1] *

tmp2[0:127:1];
9 tmp4[0:127:1] = SwapEvenOddLanes (tmp3);

10 // actual computation on the odd lanes
11 tmp5[0:127:1] = tmp3 + tmp4;
12 // merge the results from both even and

odd lanes
13 y[0:127:1] += MergeEvenOddLanes (tmp1,

tmp5);

Fig. 3. C-Saxpy by hyper-loop paral-
lelism vectorization

pack isomorphic operations in the basic blocks based on some heuristics (con-
tiguous memory access [2] or data reuse [3]). What these two methods have in
common is that they both ignore the overall computation structure exposed by
the vectorizable loop.

With the advance of SIMD support in modern commodity processors with
short vectors, more and more advanced features are introduced to programmers
and compiler designers to exploit the performance of SIMD, such as the flexible
lane-wise operations (e.g. masking load/store, blend instructions). When using
these SIMD lane-wise operations, we have to consider how the SIMD lanes change
between SIMD instructions. With the computation structure of the vectorizable
loop, we can have a global view of how the SIMD lanes can be allocated in each
SIMD instruction. This view of SIMD lanes helps us to achieve global SIMD
lane-wise optimization, which may reduce unnecessary shuffling operations on
SIMD lanes.

Take the C-Saxpy, which multiplies a complex vector by a constant complex
vector and adds it to another complex vector, as an example, as shown in Fig. 1.
When classic loop vectorization attempts to vectorize the loop, it tries to aggres-
sively squeeze all the data needed by each memory operation into a SIMD vector
regardless of how the data will be used throughout the loop body. As shown in
Fig. 2, all memory operations are either interleaved loads (gather) or interleaved
stores (scatter). The hardware support for native gather and scatter instructions
is still not popular [4], thereby, most compilers use data permutation instructions
to achieve gather and scatter operations.

If we carefully examine the computation structure of the loop body in Fig. 1,
we can derive a vectorizing scheme with fewer data permutation instructions
than the one by classic loop vectorization. As we can see from Fig. 3, all the
memory operations are contiguous memory loads and stores, and only three data
permutation instructions and one blend instruction are required to implement



384 S. Xu and D. Gregg

SwapEvenOddLanes and MergeEvenOddLanes operations. This vectorizing scheme
is obtained by putting in SIMD lane-wise operations to adjust the data needed
by the computation across SIMD lanes according to the overall computation
structure.

Two key components are required by the vectorizing scheme shown in Fig. 3.
One is the computation structure recognition and the other is SIMD lane-wise
mapping. Computation structures can be obtained by program slicing with
suitable slicing criteria. On the other hand, SIMD lane-wise mapping requires
detailed information on how to position data in SIMD lanes along the computa-
tion structure. For classic loop vectorization, as it strip-mines the vectorizable
loop for vectorization, the numbering of the loop iterations of the resulting loop
determines which SIMD lane a loop iteration will take. Inspired by this mapping
between loop iterations and SIMD lanes, we put forward hyper loops based on
program slices to recover the loop structure of the vectorizable loop. With hyper
loops, we can apply global SIMD lane-wise optimization by taking advantage of
the mapping between loop iterations and SIMD lanes.

We define the program slices that can be partitioned into groups with respect
to certain relationships (i.e. contiguous memory stores) as hyper loop iterations.
The computations in each hyper loop iteration of a group do not have to be
isomorphic. As all the program slices are independent of each other, hyper loop
iterations are all parallel. The parallelism exposed by the hyper loop iterations
is hyper loop parallelism. In this paper, we put forward a vectorizing technique
based on the hyper loop parallelism. Our vectorizing method addresses the prob-
lems of extracting hyper loop parallelism and efficiently mapping it onto the tar-
get processor. We implemented our vectorizing approach as a source-to-source
compiler in the Cetus source-to-source compiler. The preliminary experimental
results show that our vectorizing technique can achieve significant speedups over
the non-vectorized code.

In this paper, we make the following contributions:

– We put forward a vectorizing technique based on the hyper loop parallelism
revealed by hyper loops. Hyper loops build a mapping between hyper loop iter-
ations and SIMD lanes, and this mapping helps vectorization to take advan-
tage of the instructions that have flexible control on the SIMD lanes in modern
commodity processors.

– We implemented our presented vectorizing technique as a source-to-source
compiler based on the Cetus compiler infrastructure. The preliminary exper-
imental results show that our vectorizing technique can achieve significant
speedups over the non-vectorized code.

2 Hyper Loop Parallelism in Vectorization

2.1 Overview

Classic loop vectorization strip-mines vectorizable loops. The loop iterations of
the resulting loops correspond to the SIMD lanes in the SIMD vectors. In order
to take advantage of the instructions that have flexible control of the SIMD



Efficient Exploitation of Hyper Loop Parallelism in Vectorization 385

lanes in modern commodity processors, we put forward hyper loops to recover
the implicit loop structures of the loop body.

Fig. 4. Hyper loop parallelism for vectorization.

The loop body of a vectorizable loop generally can be partitioned into parts
in terms of the downwards-exposed definitions. Program slicing is a widely used
technique to compute a set of program statements, a program slice, which may
affect the values at some point of interest (aka. a slicing criterion). Choosing
the downwards-exposed definitions of the vectorizable loop as the set of slicing
criteria, with the backward program slicing, we can derive a set of program
slices, each of which represents a partition of statements of the loop. Without
considering control dependence, a program slice within a loop body is essentially
a sub-graph of the data dependence graph of the loop body. As each slice is
collected within the loop body, a slice is a direct acyclic graph (DAG) G(V,E),
where V is the set of computations within the slice, and E are the define-use
relationships between nodes in V .

There are three slices after program slicing in Fig. 4. Without considering
the relationships between the slices, we can treat each slice as a loop with only
one iteration. However, in real world applications, there usually exist relation-
ships between the slices. The relationships between the slices often come from
two aspects: (1) unrolled loops from the loops with no loop carried dependence;
and (2) computations on the tuples of data organized in an array of structures.
For the former case, each unrolled loop iteration is a slice and all the slices are
isomorphic. In other words, the DAGs representing the unrolled loop iterations
have the same structure and computations on each DAG are isomorphic cor-
respondingly. On the other hand, for the computations on the tuples of data
organized in an array of structures, the DAGs for the elements of the tuple may
have different structures depending on the computation (e.g. C-Saxpy in Fig. 1).
However, as each slice is for the computations regarding an element of the tuple,
the relationships between elements (aka. contiguous memory access) build the
relationships between the slices.

The relationships between slices (aka. contiguous downwards-exposed defini-
tions) can be used to group slices into grouped slices, or grouped DAGs. We can
deem a slice group as a hyper loop where the number of hyper loop iterations is
the same as the number of slices in the group. As each slice is an independent



386 S. Xu and D. Gregg

partition of the loop body, hyper loops are all parallel and eligible to vectoriza-
tion. Grouped slices help vectorization to achieve flexible control on SIMD lanes.
For instance, as shown in Fig. 4, according to the iteration number of the hyper
loop, when mapping the grouped slices to the SIMD vector, the two slices in
the grouped slices #1 prefer to take the even and odd lanes, respectively. With
this precise information on SIMD lanes, vectorization can apply global SIMD
lane-wise optimization when mapping the slices to the SIMD vector in order to
reduce the number of shuffling operations on SIMD lanes.

In this paper, we propose a vectorizing technique by exploiting the hyper loop
parallelism exposed by the hyper loop. Similar to other vectorization frameworks,
our vectorizing technique consists of two stages, vectorization analysis and vec-
torization transformation.

2.2 Vectorization Analysis

Before collecting program slices for hyper loop parallelism, we use existing data
dependence analysis to analyze whether a loop is vectorizable or not. Moreover,
we apply data-flow analysis to find the downwards exposed definitions in the
vectorizable loop and identify the types of the definitions, reduction definition
or ordinary definition.

Collect Slices. All the downwards-exposed definitions in the loop are used
as the slicing criteria for program slicing. As the data dependence graph is
already built in the vectorization analysis, backward program slicing can be
easily applied. As shown in Fig. 5, there are two ordinary definitions, y[2*i]
and y[2*i+1]. We can get two slices from program slicing. Note that, the dash
lines depict the define-use relationships among statements and connect a node
to its parent in the DAGs representing the slices.

Group Slices. Grouping slices is a key stage for discovering hyper loop paral-
lelism. In this stage, slices collected are first partitioned into two sets according
to the types of downward exposed definitions.

Grouping slices works similar to the super-word level parallelism (SLP) vec-
torization that tries to pack isomorphic instructions into groups for vectoriza-
tion [2]. In contrast to the SLP vectorization, the grouping of slices starts from

x0 = x[2*i] C0 = C[2*i] x1 = x[2*i+1] C1 = C[2*i+1] 

tmp0 = x0 * C0 tmp1= x1 * C1 

y0 = y[2*i] 

tmp6 = y0 + tmp4 

y[2*i] = tmp6 

x2 = x[2*i] C2 = C[2*i+1] x3 = x[2*i+1] C3 = C[2*i] 

tmp2 = x2 * C2 tmp3= x3 * C3 

tmp5= tmp2 + tmp3 
y1 = y[2*i+1] 

tmp7 = y1 + tmp5 

y[2*i+1] = tmp7 

Program Slice #0 from y[2*i] Program Slice #1 from y[2*i+1] 

#6 #7 

Fig. 5. Collect program slices.



Efficient Exploitation of Hyper Loop Parallelism in Vectorization 387

contiguous memory stores which are the downwards exposed definitions for pro-
gram slicing, and packs isomorphic operations from different slices. As stated in
Sect. 2.1, two slices in the same group do not necessarily have the same compu-
tation structure. Thus, it is possible that some computations are not isomorphic.
We define two types of grouping, fully grouped and partially grouped. If all the
computations from two slices are isomorphic correspondingly, we call it fully
grouped, otherwise partially grouped.

For partially grouped slices, in order to find more opportunities for vector-
ization, we apply grouping to the parts which are not grouped when grouping
different slices. For example, when grouping the node #6 and node #7 in Fig. 5,
as the computations from both nodes are not isomorphic. Hence, the grouping
on both slice #0 and slice #1 terminates. In order to find more grouping oppor-
tunities, the grouping continues on each slice separately, and groups nodes with
isomorphic operations within each slice.

Moreover, when dealing with partially grouping, we attach actions on the
edges between two nodes in the grouped DAGs. We put forward two actions,
extract and merge, to depict how the data flows. The extract(number) deals with
data-flow from a grouped node to a non-grouped node while the merge(number)
handles the data-flow from a non-grouped node to a grouped node. The para-
meter number in both actions specifies the position of definition in the source
node or the position of use in the destination node.

For the slices collected from the C-Saxpy, as shown in Fig. 5, Fig. 6 illustrates
the results of grouping slices. Because the computations for the definitions of the
two slices are different in some parts, the two slices are not fully grouped. Three
grouped nodes (node #0 - node #2) are created by the grouping on the two
slices while six grouped nodes (node #3 - node #8) are created by the grouping
on the parts of slices which cannot be grouped.

Calculate Computation Attributes. Slices for grouping may overlap with
each other depending on the computations. For fully grouped slices, the overlap-
ping may lead to a grouped DAG that is not efficient for directly vectorization

x0 = x[2*i] 
x1 = x[2*i+1] 

C0 = C[2*i] 
C1 = C[2*i+1] 

tmp0 = x0 * C0 
tmp1 = x1 * C1 

y0 = y[2*i] tmp6 = y0 + tmp4 y[2*i] = tmp6 
y[2*i+1] = tmp7 

x2 = x[2*i] 
x3 = x[2*i+1] 

C2 = C[2*i+1] 
C3 = C[2*i] 

tmp2 = x2 * C2 
tmp3 = x3 * C3 

tmp5= tmp2 + tmp3 

y1 = y[2*i+1] tmp7 = y1 + tmp5 

Extract(0) Extract(1) Extract(0) Extract(1) 

Merge(0) 

Slice #0 Slice #1 

Merge(1) 

#0 #1 #2 

#3 

#5 #6 

#4 

#7 #8 

Fig. 6. Group program slices.



388 S. Xu and D. Gregg

transformation. For example, the grouped DAG of vector normalization is shown
in Fig. 7. All the nodes in the dashed boxes are from the overlapped parts of the
three slices. If this grouped DAG is directly used for vectorization transforma-
tion, there would be a lot of redundant computation within SIMD lanes that
may not be optimized out by compilers.

points[i_24][0] = _15;
points[i_24][1] = _17;
points[i_24][2] = _19;

_15 = s_14 * x_4;
_17 = s_14 * y_5;
_19 = s_14 * z_6;

s_14 = d_13(D) / _12;
s_14 = d_13(D) / _12;
s_14 = d_13(D) / _12;

_12 = *__sqrtf_finite (s_11);
_12 = *__sqrtf_finite (s_11);
_12 = *__sqrtf_finite (s_11);

s_11 = _9 + powmult_23;
s_11 = _9 + powmult_23;
s_11 = _9 + powmult_23;

_9 = powmult_1 + powmult_22;
_9 = powmult_1 + powmult_22;
_9 = powmult_1 + powmult_22;

powmult_1 = x_4 * x_4;
powmult_1 = x_4 * x_4;
powmult_1 = x_4 * x_4;

x_4 = points[i_24][0];
y_5 = points[i_24][1];
z_6 = points[i_24][2];

x_4 = points[i_24][0];
x_4 = points[i_24][0];
x_4 = points[i_24][0];

powmult_22 = y_5 * y_5;
powmult_22 = y_5 * y_5;
powmult_22 = y_5 * y_5;

y_5 = points[i_24][1];
y_5 = points[i_24][1];
y_5 = points[i_24][1];

powmult_23 = z_6 * z_6;
powmult_23 = z_6 * z_6;
powmult_23 = z_6 * z_6;

z_6 = points[i_24][2];
z_6 = points[i_24][2];
z_6 = points[i_24][2];

Node 0 Node 1 Node 2

Node 3 Node 4 Node 5

Node 6

Node 7

Node 8

Node 9 Node 10

Node 11

Node 12

1.0
1.0
1.0

Fig. 7. Overlapping of fully grouped slices.

In order to achieve better vectorization transformation on the fully grouped
slices, we calculate the computation attributes from the data access of each
node in the grouped DAGs. As memory loads are in the leaf nodes of the DAGs,
calculation starts with leaf nodes, and propagates the computation attributes
to the root nodes. Each node by default has an implicit computation attribute
decided by the data accesses pattens (e.g. consecutive, gathering). Two more
explicit computation attributes are calculated for vectorization transformation,
reducible and scatterable, as shown in Fig. 8.

A[i] A[i] A[i] A[i] 

A[i] 

A[i] A[i+1] A[i+2] 

A[i] A[i+3] A[i+6] 

a) Reducible  b) Scatterable 

A[i+3] A[i+4] A[i+5] 

A[i+1] A[i+4] A[i+7] 

Fig. 8. Reducible and scatterable computation attributes.



Efficient Exploitation of Hyper Loop Parallelism in Vectorization 389

2.3 Vectorization Transformation

Expand Grouped Slices. After all the grouped DAGs have been collected and
computation attributes for each node in the fully grouped DAGs are calculated,
the vectorization transformation transforms each grouped DAG into a vectorized
DAG with virtual vector operations on virtual registers. We use the idea of
virtual vector registers and vector operations similar to [5]. The loop unrolling
factor for vectorization transformation is calculated by first finding the least
common multiple (L.C.M.) value of the width of the physical vector register and
the size of the grouped node with the minimum number of isomorphic operations,
then dividing the value by the size of the smallest grouped node. The width of
the virtual register of each node is decided by the multiplication of the loop
unrolling factor and the size of the node.

For the fully grouped DAGs, since each node is already annotated with
computation attributes, the vectorization transformation makes decisions on
how to schedule data operations and computation along with generating vir-
tual vector operations. In other words, the vectorization transformation decides
when, where, and which kind of data operation is needed, such as consecutive
load/store, gathered load.

vx0[0:16:1] = x[2*i:16:1] vC0[0:16:1]= C[2*i:16:1] 

vtemp0[0:16:1] = vx0[0:16:1] * vC0[0:16:1] 

vy0[0:16:1] = y[2*i: 16: 1] 

vtmp6[0:16:1] = vy0[0:16:1] + vtmp4_0[0:16:1] 

y[2*i:16:1] = vtmp6[0:16:1] 

vx2[0:16:1] = x[2*i:16:1] vC2[0:16:1] = vC2_0[0:16:1] 

vtmp2[0:16:1] = vx2[0:16:1] * vC2[0:16:1] 

vC2_0

vtmp5[0:8:1] = vtmp2[0:16:2] + vtmp2[1:16:2] 

vtmp4_0[0:16:1] =Merge (vtmp4, vtmp5)

#7 #8 

Fig. 9. Expand program slices.

The data and computation scheduling is made by the simple heuristics as
follows: (1) All the reducible leaf nodes of the DAGs are always reduced into
nodes with a single operation; the data accesses in the reduced leaf nodes can
be gatherable, consecutive (or replicable for constants) depending on the data
access pattern; (2) According to the cost of data permutation, consecutive loads
have higher priority than gathered loads; consecutive stores have higher priority
than scattered stores. (3) If the child nodes of a node are all reduced, the node is
also reduced; (4) If one of the child nodes of a node is reduced and expanded as
gathered and the other child nodes are not reduced and but scatterable, all these
non-reduced child nodes will be scattered and the corresponding computation
sequence in the parent node will be scattered as well.



390 S. Xu and D. Gregg

For the fully grouped DAG in Fig. 7, according to the heuristics mentioned
above, the reducible leaf nodes 0–2 are first reduced. As the data accesses in the
nodes 0–2 are interleaved with stride 3, data gathering operations are introduced
when these reduced nodes are expanded. According to the rule 3, the reducible
nodes 3–9 are reduced and expanded with gathered data thanks to the reduced
child nodes. For the join node 11, according to the rule 4, although node 10 has
consecutive data accesses, it is transformed into a node with scattered loads. As a
result, the computation sequence in node 11 is skewed correspondingly. Because
node 12 requires a consecutive store, data permutation is needed to transform
the data from the skewed computation in node 11 back to consecutive data for
the store operation. As we can see, rule 4 helps defer the data permutation
operations needed to the final store operation, which may cut the number of
vector registers required by data reorganization optimization and reduce the
register pressure in the generated code.

When expanding the grouped DAGs into the vectorized DAGs, we use SIMD
lane descriptors to describe the patterns of SIMD lanes for each node. SIMD lane
descriptors have the format of id[start position: size: stride], where id
is the name of an array, a pointer or a virtual vector, size is the number of
lanes, stride is the lane pattern. In this paper, we consider strided SIMD lane
pattens. The support for arbitrary SIMD lane patterns is beyond the scope of
this paper. For the grouped DAGs in Fig. 6, the vectorized DAG after expanding
is shown in Fig. 9.

Global SIMD Lane-Wise Optimization. If all the nodes in the expanded
grouped DAGs have valid SIMD lane descriptors, the vectorization transfor-
mation applies global SIMD lane-wise optimization on the expanded grouped
DAGs. The global SIMD lane-wise optimization tries to optimize the allocation
of SIMD lanes according to the changes of SIMD lanes between nodes in the
DAGs by inserting new nodes for four SIMD lanes operations - pack, unpack,
merge and permute. pack and unpack deal with the changes of the vector size.
merge performs blending of two vectors with the given SIMD lane information.
permute handles the changes of ordering of SIMD lanes between two vectors in
the same size. The operations SwapEvenOddLanes and MergeEvenOddLanes in
Fig. 10 are concrete instances of the operations permute and merge, respectively.

The global SIMD lane optimization consists of two passes, a top-down pass
and a bottom-up pass on the expanded DAGs. The top-down pass tries to adjust
the widths of virtual vectors and SIMD lane patterns according the memory
loads in the leaf nodes in the grouped DAGs. For example, the node #8 in the
expanded grouped DAG shown in Fig. 9 has a destination vector vtmp5 with
the SIMD lane pattern of [0:8:1]. The top-down pass changes the SIMD lane
pattern into [0:16:2] according to the operand vtmp2[0:16:2] because both
operands have strided SIMD lane patterns. Note that, since there is no other
information to guide the choosing of SIMD lane patterns, the top-down pass
always picks the SIMD lane pattern of the first operand as the pattern of the
destination vector.



Efficient Exploitation of Hyper Loop Parallelism in Vectorization 391

vx0[0:16:1] = x[2*i:16:1] vC0[0:16:1] = C[2*i:16:1] 

vtemp0[0:16:1] = vx0[0:16:1] * vC0[0:16:1] 

vy0[0:16:1] = y[2*i: 16: 1] 

vtmp6[0:16:1] = vy0[0:16:1] + vtmp4_0[0:16:1] 

y[2*i:16:1] = vtmp6[0:16:1] 

vx2[0:16:1] = x[2*i:16:1] vC2[0:16:1] = vC2_0[0:16:1] 

vtmp2[0:16:1] = vx2[0:16:1] * vC2[0:16:1] 

vtmp5[1:16:2] = vtmp2_0[1:16:2] + vtmp2[1:16:2] 

vtmp4_0[0:16:1] =MergeEvenOddLanes (vtmp4, vtmp5)

Lane(0:16:1) 

Lane(0:16:1) 

Lane(0:16:2) Lane(1:16:2) 

vtmp2_0 = SwapEvenOddLanes(vtmp2[0:16:2]) 

Lane(1:16:2) Lane(1:16:2) 

Lane(0:16:1) Lane(0:16:1) 
Lane(0:16:1) Lane(0:16:1) 

vtmp7 = SwapEvenOdd(vtmp0[1:16:2]) 

Lane(0:16:2) 

#8 #7 

Lane(0:16:1) 

Lane(0:16:2) 

#9 #10 

#12 

Fig. 10. Global SIMD lane-wise optimization.

On the other hand, the bottom-up pass propagates the SIMD lane infor-
mation of the root nodes to the leaf nodes and inserts the four SIMD lane
operations accordingly. The bottom-up pass, in particular, takes care of the join
nodes represented by Merge. For instance, after the top-down pass, the destina-
tion vectors vtmp4 and vtmp5 have the same SIMD lane pattern of [0:16:2].
When comes to the merge node #12 in Fig. 10, according to the relationships
between hyper loop iterations and SIMD lanes, the optimization will assign the
even lanes to the vtmp4 while giving odd lanes to the vtmp5. Thus, the desir-
able SIMD lane pattern [0:16:2] and [1:16:2] are propagated to the node
#9 and node #10, respectively. Guided by the desirable SIMD lane patterns, a
SwapEvenOddLanes operation is introduced to transform the SIMD lane pattern
of vtmp2 from [0:16:2] to [1:16:2] as the node #8.

3 Implementation

We implemented our proposed vectorization approach as a source-to-source com-
piler based on the Cetus compiler infrastructure [6]. The compilation flow for
our vectorization approach is shown in Fig. 11. The Cetus compiler uses a single
level internal representation (IR) which contains all the information needed for
high-level loop optimization. Although the IR closely conforms to the source
code, expressions in this IR may have multiple levels which hinders compilers
from detecting whether the expressions in two statements are isomorphic or not.
To tackle this problem, we introduce a Statement Simplification pass to lower
each statement into short statements with only one unary, binary or ternary
expression and add temporary variables to hold the immediate values of these
resulting expressions. In addition, we introduce a simple If-conversion pass to
eliminate part of control dependence by replacing if statements with conditional
statements.



392 S. Xu and D. Gregg

Statement Simplification 

If Conversion 

Loop Parallelization Analysis 

Vectorization Analysis 

Vectorization Transformation 

Data Dependence Analysis 

Reduction Analysis 

Privatization Analysis 

Alias Analysis 

Induction Analysis 

Front-end 

Cetus IR 

IR with SIMD intrinsic 

Vectorized IR 

C
om

pi
le

r B
ac

ke
nd

 

Fig. 11. Compilation flow of hyper
loop parallelism vectorization.

vtmp0[0:8:1] = x[i:8:1] 

y[2*i:16:2] = vtmp0[0:16:2] 

Lane(0:16:2) 

1  vx1[0:8:1] = vload(&x[i], 8) 
2  vx2[0:8:2] = unpack_lower(vx1); 
3  vx3[0:8:2]  =unpack_upper(vx1); 
4  vy1[0:8:1]  = vload(&y[2*i], 8) 
5  vy2[0:8:1]  = vload(&y[2*i+8], 8) 
6  vy1[0:8:1]  = vblend_even(vx2, vy1) 
7  vy2[0:8:1]  = vblend_even(vx3, vy2) 
8  vstore(&y[2*i], vy1); 
9  vstore(&y[2*i+8], vy2); 

a) Vectorized DAG after 
lane-wise optimization 

b) Code Generation. Assume the size 
of the target SIMD vector size is 8. 

vtmp0[0:16:2] = 
unpack(vtmp0[0:8:1], [0:16:2]) 

Fig. 12. An example of code genera-
tion.

The vectorization analysis and transformation are applied as described in
Sect. 2. After vectorization transformation, we lower the virtual vector operations
to Intel AVX2 SIMD intrinsics. As the code generator is independent of the target
architecture, our vectorizer can be easily extended to support other architectures
(e.g., Intel AVX-512). When lowering the SIMD lane-wise operations to the
SIMD intrinsics, our compiler uses data permutation and blend instructions to
implement these operations. As shown in Fig. 12, when dealing with strided
stores, the code generator emits contiguous vector loads (line 4–5), blends the
results to be stored with the load vectors according to the stride (line 6–7), and
stores the blended results with contiguous vector stores (line 8–9).

In the code generation, data permutation optimization is applied to the inter-
leaved data access as well. Instead of general optimization on data permutation
[7,8], such as the one specific to strides of power-of-two [7], we treat each spe-
cific case of interleaved data access separately. For example, when dealing with
interleaved data accesses with stride 3, we adopt the data permutation scheme
considered optimal for this case [9].

4 Preliminary Experimental Results

4.1 Experimental Setup

As our compiler generates C code with SIMD intrinsics for Intel AVX2, all the
experiments are conducted on an Intel Haswell platform, Intel(R) Core(TM) i7-
4770, with Intel AVX2 running Ubuntu Linux 13.10. We use the Intel C compiler
(ICC) 14.02 for automatic vectorization with compiler options -march=core-avx2
-O3 -fno-alias for performance comparison. The non-vectorized execution time
is collected by ICC with compiler options -march=core-avx2 -O3 -no-vec-fno-
alias.



Efficient Exploitation of Hyper Loop Parallelism in Vectorization 393

4.2 Benchmarks

We choose two groups of benchmarks to evaluate the effectiveness of our proposed
vectorizing technique based on the hyper-loop parallelism. The Group I bench-
marks are all suitable for fully grouping and some of them require the data and
computation scheduling guided by the computation attributes (Sect. 2.3). The
Group II benchmarks contain some vectorizable loops that can only be partially
grouped, and most of the vectorizable loops can benefit from the global SIMD
lane-wise optimization.

– Group I: Five basic operations on 3D-vectors, multiplication, dot produc-
tion, normalization, rotation and cross production, are often encap-
sulated as library functions in widely used libraries, such as Open Source
Computer Vision Library (OpenCV). YUVtoRGB and RGBtoYUV are
important applications in image processing. The 3D-vectors used in these
benchmarks is organized in an array of structures.

– Group II: C-Saxpy, which multiplies a complex vector by a constant com-
plex vector and adds it to another complex vector. Two benchmarks from
the NAS Parallel Benchmarks, FT and MG. FT contains the computational
kernel of a 3-D Fast Fourier Transform (FFT). MG uses a V-cycle Multi Grid
method to compute the solution of the 3-D scalar Poisson equation.

4.3 Performance

The overall performance of the Group-I benchmarks is given in Fig. 13. As we can
see, the performance of vectorized vector multiplication, dot production, rotation
and cross production, YUVtoRGB, RGBtoYUV by ICC is all worse than the
non-vectorized code. The reasons for the performance degradation are (1) ICC
by default chooses gather instructions (aka. vgather) to deal with interleaved
data accesses with stride 3, and these instructions are not efficiently supported

0 

0.5 

1 

1.5 

2 

2.5 

3 

Vec Mul Vec Dot Vec Norm Vec Rotate Vec Crossproduct YUVtoRGB RGBtoYUV Sp
ee

ds
 u

p 
ov

er
 n

on
-v

ec
to

ri
ze

d 
co

de
 w

ith
 A

V
X

2 

Hyper-loop Parallelism Vectorization Performance of Group I Benchmarks 

Non-vectorization ICC Vectorization Hyper-loop Parallelism Vectorization 

Fig. 13. Performance of Group I benchmarks.



394 S. Xu and D. Gregg

by the hardware [10]; (2) ICC has no support of optimization on data scat-
tering with stride 3, thereby it generates a sequence of scalar instructions to
extract data out of vector registers. The vectorized vector normalization by our
method outperforms ICC because of the data permutation optimization specific
to interleaved access with stride 3.

59.01% 

12.88% 3.90% 
17.44% 

0 

0.5 

1 

1.5 

2 

2.5 

3 

C-Saxpy FT (Class A)-Swarztrauber MG (Class A)-rprj3 MG (Class A)-interp Sp
ee

ds
 u

p 
ov

er
 n

on
-v

ec
to

ri
ze

d 
co

de
 w

ith
 A

V
X

2 

Hyper-loop Parallelism Vectorization Performance of Group II Benchmarks 

Non-vectorization ICC Vectorization Hyper-loop Parallelism Vectorization 

Fig. 14. Performance of Group II benchmarks.

Figure 14 presents the overall performance of the Group-II benchmarks. This
group of benchmarks mainly test the effectiveness of the global SIMD-lane wise
optimization. For the C-Saxpy, as we can see from Fig. 3, fewer data permutation
instructions are required by the SIMD lane-wise optimization than the loop
vectorization in Fig. 2. The reduction of data permutation instructions leads
to a great speedup. Similar to the C-Saxpy, our vectorizing technique achieves
up to 17.44 % performance improvement over the non-vectorized execution for
the functions from FT and MG while the vectorization by ICC degrades the
performance of FT-Swarztrauber and MG-rprj3. The performance gains of the
Group-II benchmarks by our vectorizing technique demonstrate the effectiveness
of the global SIMD-lane wise optimization.

5 Related Work

Most prior work on automatic vectorization is performed on the loop level [1,11–
13], the basic block level [2,3], and the whole function level [14]. Some of these
vectorizing techniques are adopted in both commercial and open-source compil-
ers such as Intel Compiler, Open64 [15], GCC, LLVM. There is also extensive
work on automatic vectorization with polyhedral model [16]. Our hyper loop par-
allelism (HLP) vectorization resembles the classic loop vectorization by taking
advantage of the mapping between loop iterations and SIMD lanes.

Super-word level parallelism (SLP) [2] vectorization is the closest related
work but it cannot handle complex computation patterns, such as intra-loop



Efficient Exploitation of Hyper Loop Parallelism in Vectorization 395

reduction. Although the variant of SLP in GCC handles intra-loop reduction,
it may incur redundant computations similar to the one in Fig. 7. Besides, the
implementation of SLP in GCC [7] is limited to only the cases where the number
of operations for packing is power-of-two. Our work is inspired by Wu et al. [17],
which introduces sub-graph level parallelism (SGLP), a coarser level of vector-
ization within basic blocks. Our proposed HLP is similar to the SGLP, but we
consider HLP as a complement to classic loop parallelism. Besides, SGLP tries
to identify opportunities for vectorization within the already vectorized basic
blocks, while our work focuses on vectorization of non-vectorized code. The most
significant difference between HLP and SGLP is that when mapping the SIMD
parallelism to the target architecture, our method takes into account the instruc-
tions that flexibly control the SIMD lanes.

An integrated SIMDization framework [18] is put forward to address several
orthogonal aspects of SIMDization, including SIMD parallelism extraction from
different program scopes (from basic blocks to inner loops), etc. Our HLP vec-
torization achieves the same goal of the basic block aggregation in this work.
Furthermore, our vectorization transformation and code generation is similar to
the length de-virtualization in [18] which also works on virtual vector registers.

General code generation for interleaved data accesses with strides of power-
of-two is presented in [7] and implemented in GCC. This approach achieves
portability but not always gives the optimal code for a specific target architec-
ture. Ren et al. [8] work on optimizing data permutations on vectorized code.
Instead of general data permutation optimization, our approach directly gen-
erates well-known optimal code for a specific case of interleaved data access in
order to achieve high performance.

6 Conclusion and Future Work

In this paper, we put forward a vectorizing technique based on the hyper loop
parallelism, which is revealed by the hyper loops. The hyper loops recover the
loop structures of the vectorizable loop and help vectorization to employ global
SIMD lane-wise optimization. We implemented our vectorizing technique in
the Cetus source-to-source compiler to generate C code with SIMD intrinsics.
The preliminary experimental results show that our vectorizing technique can
achieve significant speedups over the non-vectorized code in our test cases. One
possible direction for future work is to extend the usage of hyper loop parallelism
from innermost loop vectorization to outer-loop vectorization [11].

References

1. Kennedy, K., Allen, J.R.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

2. Larsen, S., Amarasinghe, S.: Exploiting superword level parallelism with multime-
dia instruction sets. In: The 2000 Conference on Programming Language Design
and Implementation, PLDI 2000 (2000)



396 S. Xu and D. Gregg

3. Liu, J., Zhang, Y., Jang, O., Ding, W., Kandemir, M.: A compiler framework for
extracting superword level parallelism. In: Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2012,
pp. 347–358. ACM, New York (2012)

4. Ramachandran, A., Vienne, J., Van Der Wijngaart, R., Koesterke, L., Sharapov,
I.: Performance evaluation of NAS parallel benchmarks on Intel Xeon Phi. In:
2013 42nd International Conference on Parallel Processing (ICPP), pp. 736–743,
October 2013

5. Bocchino, Jr., R.L., Adve, V.S.: Vector LLVA: a virtual vector instruction set for
media processing. In: The 2006 International Conference on Virtual Execution
Environments (2006)

6. Bae, H., et al.: The cetus source-to-source compiler infrastructure: overview and
evaluation. Int. J. Parallel Program. 41(6), 753–767 (2013)

7. Nuzman, D., et al.: Auto-vectorization of Interleaved Data for SIMD. In: The 2006
Conference on Programming Language Design and Implementation, PLDI 2006
(2006)

8. Ren, G., et al.: Optimizing data permutations for SIMD devices. In: The 2006
Conference on Programming Language Design and Implementation (2006)

9. Melax, S.: 3D Vector Normalization Using 256-Bit Intel R© Advanced Vector Exten-
sions. Intel Developer Zone (2012)

10. Pennycook, S.J., et al.: Exploring SIMD for molecular dynamics, using Intel Xeon
processors and Inte Xeon Phi coprocessors. In: The 27th International Symposium
on Parallel and Distributed Processing, IPDPS 2013 (2013)

11. Nuzman, D., Zaks, A.: Outer-loop vectorization: revisited for short SIMD architec-
tures. In: The 2008 Conference on Parallel Architectures and Compilation Tech-
niques (2008)

12. Nuzman, D., et al.: Vapor SIMD: auto-vectorize once, run everywhere. In: The
2011 International Symposium on Code Generation and Optimization (2011)

13. Kim, S., Han, H.: Efficient SIMD code generation for irregular kernels. In: The
2012 Symposium on Principles and Practice of Parallel Programming, PPoPP 2012
(2012)

14. Karrenberg, R., Hack, S.: Whole-function vectorization. In: The 9th International
Symposium on Code Generation and Optimization (2011)

15. Das, D., Chakraborty, S.S., Lai, M.: Experience with partial SIMDization in
Open64 compiler using dynamic programming. In: Open64 Workshop (2012)

16. Trifunovic, K., et al.: Polyhedral-model guided loop-nest auto-vectorization. In:
The 2009 International Conference on Parallel Architectures and Compilation
Techniques (2009)

17. Park, Y., et al.: SIMD defragmenter: efficient ILP realization on data-parallel archi-
tectures. In: Proceedings of the Seventeenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS XVII
(2012)

18. Wu, P., et al.: An integrated simdization framework using virtual vectors. In: The
2005 Annual International Conference on Supercomputing, SC 2005 (2005)


	Efficient Exploitation of Hyper Loop Parallelism in Vectorization
	1 Introduction
	2 Hyper Loop Parallelism in Vectorization
	2.1 Overview
	2.2 Vectorization Analysis
	2.3 Vectorization Transformation

	3 Implementation
	4 Preliminary Experimental Results
	4.1 Experimental Setup
	4.2 Benchmarks
	4.3 Performance

	5 Related Work
	6 Conclusion and Future Work
	References


