
Automatic Streamization of Image Processing
Applications

Pierre Guillou(B), Fabien Coelho, and François Irigoin

MINES ParisTech, PSL Research University, Paris, France
{pierre.guillou,fabien.coelho,francois.irigoin}@mines-paristech.fr

Abstract. New many-core architectures such as the Kalray MPPA-256
provide energy-efficiency and high performance for embedded systems.
However, to take advantage of these opportunities, careful manual opti-
mizations are required. We investigate the automatic streamization of
image processing applications, implemented in C on top of a dedicated
API, onto this target accessed through the ΣC dataflow language. We
discuss compiler and runtime design choices and their impact on perfor-
mance. Our compilation techniques are implemented as source-to-source
transformations in the PIPS open-source compilation framework. Exper-
iments show lowest energy consumption on the Kalray MPPA target
compared to other hardware targets for a range of 8 test applications.

1 Introduction

As predicted by Moore’s law, billions of transistors can be integrated today into
a single chip, enabling multi-core or even many-core architectures, with hundreds
of cores on a chip. The low energy consumption Kalray MPPA-256 processor [17],
released in 2013, offers 256 computing VLIW-cores for 10 W. Task and/or data
parallel approaches can be used to take advantage of such parallel processing
power for a given application domain.

We show how to use this innovative hardware to run image processing appli-
cations in embedded systems such as video cameras. In order to enable fast time-
to-market developments of new products, applications must be ported quickly
and run efficiently on these targets, a daunting task when done manually. To
alleviate this issue, we have built a compiler chain to automatically map an
image processing application developed on top of a dedicated software interface,
FREIA [14], considered as a domain specific language, onto the MPPA processor
using the ΣC dataflow language and runtime. Images are streamed line-by-line
into a task graph whose vertices are image operators.

Streaming languages [31] have been studied for a long time, and have recently
received more attention [28] for exposing pipelining, data parallelism and task
paralellism, as well as hiding memory management. The Kahn Process Net-
works [22] are one of the first streaming model, relying on FIFOs for interprocess
communication. As subclasses of this model, Synchronous DataFlow [25,26] lan-
guages are statically determined in order to avoid deadlocks and to ensure safety.

c© Springer International Publishing Switzerland 2015
J. Brodman and P. Tu (Eds.): LCPC 2014, LNCS 8967, pp. 224–238, 2015.
DOI: 10.1007/978-3-319-17473-0 15



Automatic Streamization of Image Processing Applications 225

Common SDF languages include LUSTRE [20], Signal [24] and StreamIt [1].
The latter shares some ground concepts with the ΣC dataflow language such as
decomposing programs in a graph of basic interconnected units which consume
and produce data or focusing on easing programming onto multi-core and many-
core targets. In particular, some optimizations of StreamIt applications (operator
replication to enable data parallelism, operator fusion to reduce communication
overheads [18]) are close to those presented in this paper. Other projects such as
DAGuE [9] or FlumeJava [10] propose frameworks for managing and optimizing
tasks targetting current multi-core architectures.

Optimization of image processing applications on massively parallel architec-
tures have been the subject of multiple studies. Ragan-Kelley [29] proposes an
image processing Domain Specific Language and an associated compiler for opti-
mizing parallelism onto standard CPUs or GPUs. Clienti [12] presents several
dataflow architectures for specific image analysis applications. Stencil operators
are the most limitating operators in our implementation. Several alternative
techniques for optimizing this class of operators have been proposed [6,16].

This paper focusses on the design of a compiler and a runtime using the
MPPA chip as an accelerator, including: (1) domain specific transformations on
the input code to expose larger image expressions; (2) code generation for a
dataflow language; (3) automatic operator aggregation to achieve a better task
balance; (4) a small runtime to provide streaming image operators; (5) data-
parallel agents for slower operators. We also demonstrate the effectiveness of our
approach with a source-to-source implementation in PIPS [15,21] by reporting
the time and energy consumption on a sample of image applications.

We first describe the overall compilation chain in Sect. 2, then in Sect. 3 we
focus on our hardware and software targets. Section 4 presents our key contri-
butions about the compiler and runtime designs. Section 5 reports our time and
energy performance results.

2 Compilation Chain Overview

The starting point of our compilation chain (Fig. 1) is an image processing appli-
cation, built on top of the FREIA C language API. This provides a 2D image
type, I/Os abstractions and dozens of functions to perform basic image opera-
tions (arithmetics, logical, morphological, reductions), as well as composed oper-
ators which combine several basic ones. Typical applications locate text in an
image, smooth visible blocks from JPEG decoding, or detect movements in an
infra-red surveillance video. An example of FREIA code is shown in Fig. 2. Our
test case applications typically include up to hundreds of basic image operations,
with 42 as a median. These operations are grouped in few (1–3, up to 8) inde-
pendent static image expressions that can be accelerated, stuck together with
control code.

The ANR FREIA [7] project developed a source-to-source compilation
chain [14] from such inputs to various hardware and software targets: the SPoC
image processing FPGA accelerator [13], the TERAPIX 128 processing ele-
ments SIMD array FPGA accelerator [8], and multi-cores and GPUs using



226 P. Guillou et al.

Fig. 1. Overview of our compilation chain

Fig. 2. Example FREIA code with a sequence of 3 operations

OpenCL [23]. This new development adds Kalray’s MPPA-256 chip as a tar-
get hardware by providing a new code generation phase and its corresponding
runtime.

The FREIA compiler chain is made of three phases. The first two phases
are generic, and the last one is the target specific code generation. Phase 1
builds sequences of basic image operations, out of which large image expressions
can be extracted. For this purpose, inlining of composed and user operators,
partial evaluation, loop unrolling, code simplifications and dead code suppres-
sion are performed. An important preliminary transformation for a dataflow
hardware target such as SPoC and MPPA is while-loop unrolling as detailed
below in Sect. 4. Phase 2 extracts and optimizes image expressions, as directed
acyclic graphs (DAG) of basic image operations. Optimizations include detecting
common subexpressions, removing unused image computations, and propagating
copies forwards and backwards.

The target execution model depicted in Fig. 3 uses the parallel hardware as an
accelerator for heavy image computation, while the host processor runs the con-
trol code and I/Os. The runtime environment includes functions for manipulating
images such as allocate, receive, emit, and the various operators. The accelerated
version has to manage the transfers between the host and the device used for
operator computations. For our MPPA target, this is achieved by using named
pipes to send images to agents on the host. Theses images are first streamed to
the device for computation, then streamed back on a host agent, then back to
the main program.



Automatic Streamization of Image Processing Applications 227

Fig. 3. Summary of our runtime environment

3 Hardware and Software Target

We are targetting the Kalray MPPA-256 many-core architecture through the
ΣC dataflow language, compiler and runtime, which allows us to build a runtime
for streaming image operators that can be connected to process large expressions.

3.1 MPPA-256 Architecture

Kalray MPPA-256 [17] is a high-efficiency 28 nm System-on-Chip featuring 256
compute cores providing 500 GOPs with a typical power consumption of 10 W.
Competing MPPA architectures include the Tilera TILEPro64 [3], the Adapteva
Epiphany [4], or the TSAR Project [2]. This massively parallel processor aims
at a wide range of embedded applications and boasts a fast time-to-market for
complex systems.

Figure 4 shows MPPA-256’s computes cores divided into sixteen compute
clusters. Each of these clusters includes a 2 MB non-coherent shared L2 cache.
The compute cores offer instruction parallelism as 32 bits multithreaded Very
Long Instruction Word cores. SIMD instructions operating on pairs of fixed-
point and floating-point instructions are also supported. Every compute cluster
also runs a minimalistic real-time Operating System (NodeOS ) on a separate
and dedicated core. This OS manages the 16 compute cores of one cluster by
executing multithreaded binary programs onto them. The compute clusters com-
municate with each other through a high-speed toroidal Network-on-Chip.

The MPPA-256 chip also includes four additional clusters for managing exter-
nal communications. These input/output clusters provide several interfaces, such
as PCI-Express for connecting to a host machine, DDR interface to access local
RAM, Ethernet or Interlaken for directly connecting several chips together.

We used the MPPA-256 as a hardware accelerator. The chip is placed aside
a 4 GB dedicated RAM onto a PCI-Express extension card. This card is then
accessed through the PCI-Express bus of a typical computer workstation.



228 P. Guillou et al.

Fig. 4. The MPPA-256 chip and its environment

Fig. 5. A ΣC agent with two inputs and one output (see code in Fig. 6)

3.2 The ΣC Programming Language

To ease the programming on their manycore chip [5], Kalray offers the clas-
sic parallel libraries PThread and OpenMP [27] as well as a specific dataflow
programming language called ΣC [19]. ΣC is a superset of C which provides
a dataflow programming model and relies on the concept of agents, which are
basic compute blocks similar to Kahn Processes [22]. These blocks receive and
consume a fixed amount of data from input channels, and produce data on their
output channels. The agent represented in Fig. 5 has two input channels and one
output channel. When two pieces of data are available on the first input channel
and one on the second, the agent produces three pieces of data on its sole output.
The corresponding ΣC code is shown in Fig. 6.

This model has two consequences. First, the scheduling of agents on avail-
able cores and the inter-agent buffer allocation requires the ΣC compiler to
know the number of input/output channels of an agent, and the number of data
items processed. This implies that image sizes must be known at compile time.



Automatic Streamization of Image Processing Applications 229

Fig. 6. ΣC example: a basic agent merging two integer streams (see Fig. 5)

Fig. 7. A ΣC subgraph composed of 4 agents and one subgraph (see code in Fig. 8)

Then, when several independent graphs are mapped, the compiler assumes that
these graphs may be active at the same time, thus the mapping reserves non-
overlapping memory and cores for the tasks. If only one graph at a time is really
active, resources can be under-used.

The performance model implies that tasks must provide significant compu-
tations in order to amortize communication costs. In particular, communication
times include a constant overhead, which must be amortized with significant
data volumes. However, as memory is scarse, it is best to require small inter-
task buffers: a trade-off must be made. Another key point of the static dataflow
model is that the slowest task in the graph determines the overall performance.
Therefore, elementary tasks must be as fast and as balanced as possible.

Agents can be connected to each other in order to compose a ΣC subgraph
which can recursively compose upper-level subgraphs. A subgraph representation
and the corresponding ΣC code are respectively showed in Figs. 7 and 8. The
top-level subgraph is called root and corresponds to the classic C main function.
A ΣC agent can be executed either by one of MPPA-256’s compute cores or by
a core of an input/output cluster. Agents can also be executed by the processor
of the host machine, therefore providing access to files. Kalray provides also a
ΣC compiler for MPPA-256, which handles the mapping of ΣC agents on the
compute cores of their chip.



230 P. Guillou et al.

Fig. 8. ΣC example: a basic subgraph (see graph in Fig. 7)

The ΣC programming language provides an effective way to take advantage
of the MPPA-256, and serves as the main target language for demonstrating our
automatic streamization compiler and runtime.

4 Compiler and Runtime Design

A DAG produced by our compilation chain has a structure similar to stream-
ing programs. Indeed, image analysis operators can be directly transposed as
ΣC agents, and DAGs as ΣC subgraphs.

4.1 ΣC Image Processing Library

Aside from our compilation chain, we developed a ΣC library of elementary
image analysis operators. Each operator is implemented as one ΣC agent, such
as: (1) arithmetic operators performing elementary operations onto pixels of
input images; (2) morphological operators [30], which are the more compute
intensive operators; (3) reduction operators returning a scalar value.

The 2 MB per compute cluster memory limit implies that our ΣC agents
cannot operate on a whole image. Since the transition between two states of an
agent is rather slow, we cannot afford to operate on one pixel at a time. Thus our
agents process images line by line. Measuring per pixel execution time of several
applications for several input image sizes (see Fig. 9) reveals that larger lines are
computed more efficiently than shorter ones, as communication times are better
amortized. This also simplifies the implementation of stencil operators by easing
the access to neighboring pixels.



Automatic Streamization of Image Processing Applications 231

Fig. 9. Impact of the image size on the average execution time per pixel

Fig. 10. Analysed cases of data parallelism for morphological operators

The morphological agents, the most complex operators, have a direct impact
on the performance of our applications. Consisting of an aggregate function
(min, max, average) on the value of a subset of the neighbor pixels, they are
often used in large pipelines in image analysis applications. We used several
optimizations during their implementation. Firstly, as stencil operators, they
need to access not only the current processed line, but also the previous and the
next lines. As a consequence, each agent has a 3-line internal buffer to store the
input lines needed for computation. Also, the incoming input lines are stored
into this 3-lines buffer and processed in a round-robin manner, avoiding time-
consuming copies. Finally, these agents benefitted from an optimized assembly
kernel to use guarded instructions not automatically generated by the compiler.

We also investigated data parallelism by splitting input lines and computing
each portion with several morphologic agents. This approach allows us to take
advantage of the MPPA-256 unused compute cores, since application DAGs are
usually much smaller than the number of available cores. Because morphological
operators are stencils, we use overlapping lines when splitting and joining. Our
measures showed that having several stages of computing agents in the (d) and
(e) cases of Fig. 10 slows down the whole process, so we focused on comparing



232 P. Guillou et al.

Fig. 11. Execution times with parallel morphological operators

Fig. 12. Corresponding ΣC code to FREIA code in Fig. 2

the (a), (b) and (c) 1-stage cases represented in Fig. 10. As shown in Fig. 11, the
results are quite mixed and application-dependent. Replacing one morphological
agent by four or more agents induces more inter-cluster communications, leading
to a loss in performance, even if computed data is reduced by half.

4.2 ΣC Code Generation

As stated in Sect. 2, our compilation chain produces DAGs of elementary image
analysis operators from which we generate ΣC subgraphs using our image analy-
sis agents. For example, Fig. 12 shows an extract of the generated ΣC code from
the FREIA source code in Fig. 2.

In order to be correctly transposed into a running dataflow program, we must
ensure that there is no scalar dependency between two agents of the same sub-
graph. Indeed, since images are processed on a per line basis, a scalar produced
from a whole image cannot be applied on the lines of the same image by an other
agent on the same subgraph without causing lines accumulation in inter-agent
buffers, and thus major performance loss. A split-on-scalar-dependencies pass is
used ahead of our ΣC generator to provide scalar-independent DAGs, which can
then be transposed directly to ΣC subgraphs.

Some complex image analysis operators involve a convergence loop over an
image-dependent parameter. Such operators, being idempotents, can be unrolled
with no consequences on the final result. However, this unrolling pass leads to



Automatic Streamization of Image Processing Applications 233

a greater number of generated ΣC agents, and thus an increase occupation of
the MPPA compute cores. We measured the influence of the unrolling factor of
these particular loops on the execution times of the relevant applications (see
Fig. 13). Our results show that unrolling dramatically increases the performance
of our applications. For these applications, an unrolling factor of 8 leads to a fair
speedup while mobilizing a reasonable amount of compute cores.

Split and unrolled image expression DAGs are then encoded as ΣC subgraphs.
Our implementation of the generation of ΣC subgraphs is pretty straighforward:
for each vertex of one image expression DAG, our compiler PIPS generates a ΣC
instantiation statement for the corresponding ΣC agent first, then connection
statements between the agent instance and its predecessors or successors in the
DAG. Small differences between the input DAGs structure and the ΣC dataflow
model have been addressed during this implementation: (1) since the number of
inputs and outputs of our ΣC agents are predetermined, we have to insert replica-
tion agents when required; (2) DAG inputs and outputs are specific cases and must
be dealt with separately; (3) scalar dependencies must be provided to the correct
agents by a dedicated path. Similarly, scalar results must be sent back to the host.

In the dataflow model, the slowest task has the greatest impact on the global
execution. Since arithmetic operators do little computation compared to mor-
phologic ones, we investigated the fusion of connected arithmetic operators into
compound ΣC agents, thus freeing some under-used compute cores. We imple-
mented this pass on top of our ΣC generator. We tested our optimization pass
onto several applications with a variable number of merged operators. Execu-
tion time results (Fig. 14) show little to no difference in performance compared
to the reference one agent/operator application. These measures confirm that
aggregated operators are not limiting the global execution while freeing comput-
ing power, therefore validating our approach.

4.3 Runtime Environment

ΣC code generated by our compilation chain often includes several independant
and non-connected subgraphs that are all mapped on the MPPA cores. In order
to launch the adequate subgraphs at the right time and to control the I/Os, we
developed a small runtime in C. It runs on top of the generated ΣC applications

Fig. 13. Relative execution time as a function of unrolling factor



234 P. Guillou et al.

Fig. 14. Influence of the fusion of connected arithmetic operators on execution times

and communicates with them through Unix named pipes, as depicted in Fig. 3.
For each function of this runtime, we added a dedicated ΣC subgraph with
agents mapped on the host CPU and the I/O clusters cores to handle the task.
This runtime is also used for loading and saving images from the host hard drive.
To this end, we use a software implementation of FREIA, called Fulguro [11].

The other dedicated control functions allow us to allocate and free the accel-
erator embedded RAM, to send or receive images to or from the MPPA, and to
launch a compute subgraph onto one or more images. On the ΣC side of the
application, several independant subgraphs manage control signals sent through
named pipes and transfer them to the chip.

The general design of our compilation chain, based on a source code gen-
erator, an elementary library and a small runtime environment, allowed us to
quickly get functionnal applications on the MPPA-256. With the implementation
of a set of specific optimizations (loop unrolling, fusion of fast tasks, splitting of
slow tasks, bypassing of the MPPA RAM), we were able to take better advan-
tage of the compute power of this processor. Once this was done, we compared
the MPPA-256 to a set of hardware accelerators running the same applications
generated by the same compiler.

5 Performance Results

We have evaluated our compilation chain with eight real image analysis applica-
tions covering a wide range of cases. Table 1 shows that our applications contain
from 15 elementary operators (toggle) to more than 400 (burner), most of them
morphological operators. Table 1 also illustrates the number of ΣC subgraphs
generated by our compilation chain, and the number of occupied compute clus-
ters when running on the MPPA-256. These applications generally include less
than three independent image expression DAGs.

Our compilation chain targets several software and hardware accelerators: a
reference software implementation, Fulguro [11], on an Intel Core i7-3820 quad-
core CPU running at 3.6 GHz with an average power consumption of 130 W;
ΣC code running directly on the same CPU (iΣC); the MPPA-256 processor
(10 W) using ΣC; SPoC [13] and Terapix (TPX) [8], two image processing accel-
erators implemented on a FPGA (26 W); two CPUs using OpenCL [23]: an



Automatic Streamization of Image Processing Applications 235

Table 1. Characteristics of used image analysis applications

Apps. #operators #subgraphs #clusters image size

arith morph reduc total

anr999 0 20 3 23 1 2 224 × 288

antibio 8 41 25 74 8 6 256 × 256

burner 18 410 3 431 3 16 256 × 256

deblocking 23 9 2 34 2 10 512 × 512

licensePlate 4 65 0 69 1 5 640 × 383

oop 7 10 0 17 1 2 350 × 288

retina 15 38 3 56 3 4 256 × 256

toggle 8 6 1 15 1 1 512 × 512

Intel dual-core (i2c - 65 W) and an AMD quad-core CPU (a4c - 60 W); and
three NVIDIA GPUs again with OpenCL [23]: a GeForce 8800 GTX (120 W), a
Quadro 600 (40 W) and a Tesla C 2050 (240 W).

We compared the output of our compilation chain from the previously
described applications onto these 8 hardware targets, both in terms of execution
times and energy consumption. For the MPPA-256 chip, time and energy mea-
sures were obtained using Kalray’s k1-power utility software, ignoring transfers
and control CPU consumption. Time figures for the FPGAs, CPUs and GPUs
were taken from [14]. Energy figures were derived from target power consump-
tion. Results are shown in Tables 2 and 3, with best performances in bold. Com-
pared to the Fulguro monothreaded sofware implementation, ΣC on CPU is
relatively slow, due to the numerous threads communicating with each other.
To take individual MPPA-256 compute cluster power supply into account, we
added in Table 3 a column “MPPA ideal” representing the energy of clusters

Table 2. Execution times (ms) of our applications on the different hardware targets

Software Hardware

Apps FPGA OpenCL

Flgr iΣC MPPA SPoC TPX i2c a4c GTX Quadro Tesla

anr999 4.3 36.5 8.3 0.9 3.5 12.2 7.2 9.8 1.5 0.9

antibio 80.2 1026 670 41.9 88.5 254.1 135.3 204.3 57.4 93.4

burner 795.3 814.4 113 17.2 83.8 162.2 124.4 321.0 576.2 142.0

deblocking 141.4 121.0 84 30.7 11 25.1 16.7 11.1 3.5 1.3

licensePlate 483.9 152.7 20.2 13.3 36.8 32.2 21.9 36.6 7.3 2.3

oop 4.0 39.3 11.3 124.6 63.3 12.3 8.3 5.8 1.8 1.0

retina 149.0 222.5 95 7.4 32.4 93.5 55.4 75.5 60.8 33.9

toggle 6.2 69.8 22.6 12.6 4.3 15.0 9.0 6.3 1.4 0.7

AVG/MPPA 1.13 3.28 1.00 0.32 0.49 0.85 0.54 0.64 0.23 0.12



236 P. Guillou et al.

Table 3. Energy (mJ) used by our test cases on different targets

Software Hardware

Apps. MPPA FPGA OpenCL

Flgr iΣC real ideal SPoC TPX i2c a4c GTX Quadro Tesla

anr999 559 4745 50 6 23 91 793 432 1176 60 221

antibio 10425 133380 3500 1313 1089 2301 16517 8118 24516 2296 22883

burner 103390 105900 388 388 447 2179 10543 7464 38520 23048 34790

deblocking 18382 15730 431 269 798 286 1632 1002 1332 140 319

licensePlate 62907 24284 120 38 354 957 2093 1314 4392 292 564

oop 520 5110 59 7 3240 1646 800 498 696 72 245

retina 19370 28925 487 122 192 842 6078 3324 9060 2432 8306

toggle 806 9074 119 7 328 112 975 540 756 56 172

AVG/MPPA 28.78 83.38 1.00 0.25 1.65 2.52 10.81 6.33 15.01 1.79 5.45

actually used for the computations, according to Table 1. Disconnecting unused
compute cores would provide us an extra reduction in energy consumption.

These results show that although MPPA/ΣC is not faster than dedicated
hardware targets, it provides the lowest average energy consumption for tested
applications. The high degree of task parallelism induced by the use of the
ΣC dataflow language on the 256 cores of the MPPA-256 processor is thus a
strength facing dedicated hardware in low energy and embedded applications.

6 Conclusion and Future Work

We added a new hardware target to the FREIA ANR project: a 256 cores proces-
sor with a power consumption of 10 W through the use of the ΣC dataflow
programming language. Using the PIPS source-to-source compiler, we generated
ΣC dataflow code based upon a small image analysis library written in ΣC. The
execution of the generated applications relies on a small runtime environment
controlling the execution of the different ΣC subgraphs mapped on the cores of
the MPPA-256 processor. We implemented a set of specific optimizations from
automatic fast operator aggregation to data-parallel slow operators to achieve
better performance. The performance of our approach is shown by comparing
the MPPA-256 results to other hardware accelerators using the same compi-
lation chain. MPPA/ΣC proves to be the most energy-efficient programmable
target, which competes in performance with specific image-processing dedicated
hardware such as the SPoC FPGA processor.

In the current approach, several subgraphs are mapped onto different com-
pute cores, meaning only a fraction of the chip is used at a given time. Future
work includes the investigation of dynamically mapping distinct ΣC subgraphs
on the same cores when they do not need to be run concurrently. Another way to
save energy, especially for small applications, would be the ability to disconnect
unused clusters within the chip, as shown in column “MPPA ideal” in Table 3.
More performance improvements could also be obtained on some applications



Automatic Streamization of Image Processing Applications 237

by generating automatically kernel-specific convolutions, which would reduce
execution time by skipping altogether null-weighted pixels.

Aknowledgements. Thanks to Danielle Bolan and Pierre Jouvelot for proof-reading,
Antoniu Pop for his advises and bibliography pointers, Kalray engineers Frédéric Blanc,
Jérôme Bussery and Stéphane Gailhard for their support and to anonymous reviewers
whose comments greatly helped to improve this paper.

References

1. The streamit language (2002). http://www.cag.lcs.mit.edu/streamit/
2. Tera-scale architecture (2008). https://www-asim.lip6.fr/trac/tsar/wiki
3. The TilePro64 many-core architecture (2008). http://www.tilera.com/
4. The Epiphany many-core architecture (2012). http://www.adapteva.com/
5. Aubry, P., Beaucamps, P.E., Blanc, F., Bodin, B., Carpov, S., Cudennec, L.,

David, V., Dore, P., Dubrulle, P., Dupont de Dinechin, B., Galea, F., Goubier, T.,
Harrand, M., Jones, S., Lesage, J.D., Louise, S., Chaisemartin, N.M., Nguyen, T.H.,
Raynaud, X., Sirdey, R.: Extended cyclostatic dataflow program compilation and
execution for an integrated manycore processor. In: Alexandrov, V.N., Lees, M.,
Krzhizhanovskaya, V.V., Dongarra, J., Sloot, P.M.A. (eds.) ICCS. Procedia Com-
puter Science, pp. 1624–1633. Elsevier, Amsterdam (2013)

6. Bandishti, V., Pananilath, I., Bondhugula, U.: Tiling stencil computations to max-
imize parallelism, November 2012

7. Bilodeau, M., Clienti, C., Coelho, F., Guelton, S., Irigoin, F., Keryell, R.,
Lemonnier, F.: FREIA: Framework for Embedded Image Applications (2008–
2011). freia.enstb.org, French ANR-funded project with ARMINES (CMM, CRI),
THALES (TRT) and Télécom Bretagne

8. Bonnot, P., Lemonnier, F., Edelin, G., Gaillat, G., Ruch, O., Gauget, P.: Definition
and SIMD implementation of a multi-processing architecture approach on FPGA.
In: Design Automation and Test in Europe, pp. 610–615. IEEE, December 2008

9. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
Parallel Comput. 38(1–2), 37–51 (2012). http://linkinghub.elsevier.com/retrieve/
pii/S0167819111001347

10. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R.,
Weizenbaum, N.: FlumeJava: easy, efficient data-parallel pipelines, p. 363. ACM
Press (2010). http://portal.acm.org/citation.cfm?doid=1806596.1806638

11. Clienti, C.: Fulguro image processing library. Source Forge (2008)
12. Clienti, C.: Architectures flots de données dédiées autraitement d’images par la

Morphologie MATHÉMATIQUE. Ph.D. thesis, MINES ParisTech, September 2009
13. Clienti, C., Beucher, S., Bilodeau, M.: A system on chip dedicated to pipeline

neighborhood processing for mathematical morphology. In: EUSIPCO: European
Signal Processing Conference, August 2008

14. Coelho, F., Irigoin, F.: API compilation for image hardware accelerators. ACM
Trans. Archit. Code Optim. 9(4), 1–25 (2013)

15. CRI, MINES ParisTech: PIPS (1989–2012). pips4u.org, open source research com-
piler, under GPLv3

http://www.cag.lcs.mit.edu/streamit/
https://www-asim.lip6.fr/trac/tsar/wiki
http://www.tilera.com/
http://www.adapteva.com/
https://www.freia.enstb.org
http://linkinghub.elsevier.com/retrieve/pii/S0167819111001347
http://linkinghub.elsevier.com/retrieve/pii/S0167819111001347
http://portal.acm.org/citation.cfm?doid=1806596.1806638
http://pips4u.org


238 P. Guillou et al.

16. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In: SC 2008: Conference on Supercomputing, pp.
1–12. IEEE Press (2008)

17. Dupont de Dinechin, B., Sirdey, R., Goubier, T.: Extended cyclostatic dataflow
program compilation and execution for an integrated manycore processor. In: Pro-
cedia Computer Science, vol. 18 (2013)

18. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. ACM SIGPLAN Not. 41(11), 151
(2006). http://portal.acm.org/citation.cfm?doid=1168918.1168877

19. Goubier, T., Sirdey, R., Louise, S., David, V.: ΣC: a programming model and
language for embedded manycores. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou,
W. (eds.) ICA3PP 2011, Part I. LNCS, vol. 7016, pp. 385–394. Springer, Heidelberg
(2011)

20. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

21. Irigoin, F., Jouvelot, P., Triolet, R.: Semantical interprocedural parallelization: an
overview of the PIPS project. In: Proceedings of ICS 1991, pp. 244–251. ACM
Press (1991)

22. Kahn, G.: The semantics of a simple language for parallel programming. p. 5 (1974)
23. KHRONOS group: OpenCL computing language v1.0, December 2008
24. Le Guernic, P., Benveniste, A., Bournai, P., Gautier, T.: Signal-a data flow-oriented

language for signal processing. IEEE Trans. Acoust. Speech Signal Process. 34(2),
362–374 (1986)

25. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. 36(1), 24–35 (1987)

26. Murthy, P.K., Lee, E.A.: Multidimensional synchronous dataflow. IEEE Trans.
Signal Process. 50, 3306–3309 (2002)

27. OpenMP architecture review board: OpenMP application program interface, Ver-
sion 3.0, May 2008

28. Pop, A.: Leveraging streaming for deterministic parallelization - an integrated lan-
guage, compiler and runtime approach. Ph.D. thesis, MINES ParisTech, September
2011

29. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: PLDI 2013, p. 12, June 2013

30. Soile, P.: Morphological Image Analysis. Springer, Heidelberg (2003)
31. Stephens, R.: A Survey Of Stream Processing. Springer, Heidelberg (1995)

http://portal.acm.org/citation.cfm?doid=1168918.1168877

	Automatic Streamization of Image Processing Applications
	1 Introduction
	2 Compilation Chain Overview
	3 Hardware and Software Target
	3.1 MPPA-256 Architecture
	3.2 The CProgramming Language

	4 Compiler and Runtime Design
	4.1 CImage Processing Library
	4.2 CCode Generation
	4.3 Runtime Environment

	5 Performance Results
	6 Conclusion and Future Work
	References


