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Abstract. Partitioned Global Address Space (PGAS) languages are a
popular alternative when building applications to run on large scale par-
allel machines. Unified Parallel C (UPC) is a well known PGAS language
that is available on most high performance computing systems. Good
performance of UPC applications is often one important requirement
for a system acquisition. This paper presents the memory management
techniques employed by the IBM XL UPC compiler to achieve optimal
performance on systems with Remote Direct Memory Access (RDMA).
Additionally we describe a novel technique employed by the UPC run-
time for transforming remote memory accesses on a same shared mem-
ory node into local memory accesses, to further improve performance.
We evaluate the proposed memory allocation policies for various UPC
benchmarks and using the IBMR© PowerR© 775 supercomputer [1].

1 Introduction

Partitioned Global Address Space languages (PGAS) [2–6] have been proposed as
viable alternatives for improving programmer productivity in distributed mem-
ory architectures. A PGAS program executes as one or more processes, distrib-
uted across one or more physical computers (nodes) connected by a network.
Each process has an independent virtual address space called a partition. The
collection of all partitions in a program is called the Partitioned Global Address
Space or PGAS. A PGAS process can access both data from the local parti-
tion as well as remote partitions. Accessing remote data employs the network
via a transport Application Interface (API). The network read and write opera-
tions, are typically several orders of magnitude slower than local read and write
operations to memory.

The global shared array is a data abstraction supported by most PGAS lan-
guages that allows users to specify arrays physically distributed across all
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processes. Compiler and runtime support are subsequently employed to map from
the high-level, index-based, access to either local or remote memory accesses. The
PGAS runtime or the compiler translates the sharedmemory addresses to a process
identifier and to a virtual address on the remote process. There are three different
methods commonly used for computing remote memory addresses:

Sender Side Lookup: For every shared array instantiated the sender maintains
a translation table with a list of virtual base addresses, one for each process
partition, pointing to the memory block used in that partition. The downside
of this approach is the non-scalable memory requirement for every shared array
declared. Assuming there are N shared arrays and P processes in a computation,
this solution requires O(N × P 2) storage.

Receiver Side Lookup: In this case, each process only maintains a local trans-
lation table with an entry for every shared array instantiated. The table maps
from a shared array identifier to the address of the local memory block used
for storage. The downside of this approach is the difficulty of exploiting remote
direct memory access (RDMA) hardware features where the memory address
must be known on the process initiating the communication.

Identical Virtual Address Space on all Processes: A third solution requires
all processes to maintain symmetric virtual address spaces and the runtime allo-
cates each shared array at the same virtual address on all processes. This tech-
nique is often more complex, but it provides the benefits of the other two methods
we already introduced: efficient address inference on the sender side for RDMA
exploitation and minimal additional storage for shared arrays tracking.

The XLUPC compiler and its runtime implementation [7] fits into the third
category. The performance of accessing a shared array is a function of two main
factors: the latency of address translation and the latency of remote accesses.
RDMA and the large shared memory nodes present on a modern HPC system
are two hardware features that need to be carefully exploited in order to reduce
the latency of these operations. This work presents a symmetric memory alloca-
tor that allows easy inference of the remote address for shared array data and
subsequently low latency access using either RDMA or direct memory access
depending on the remote element location. More specifically, the paper makes
the following novel contributions:

– Describe the symmetric heap, a memory allocator that guarantees same vir-
tual memory address for shared arrays on all processes of a PGAS computa-
tion, enables more efficient address translation and it allows efficient RDMA
exploitation. The allocator does not require kernel support for allocating sym-
metric partitions.

– Describe the symmetric heap mirroring, a novel solution for transforming
remote array accesses into local memory accesses, for processes collocated
within same shared memory address space.
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2 Unified Parallel C Background

The UPC language follows the PGAS programming model. It is an extension
of the C programming language designed for high performance computing on
large-scale parallel machines. UPC uses a Single Program Multiple Data (SPMD)
model of computation in which the amount of parallelism is fixed at program
startup time.

Listing 1.1 presents the computation kernel of a parallel vector addition. The
benchmark adds the content of three vectors (A, B, and D) to the vector C.
The programmer declares all vectors as shared arrays. Shared arrays data can
be accessed from all UPC threads using an index or shared pointer interface.
In this example, the programmer does not specify the layout qualifier (blocking
factor). Thus, the compiler assumes that the blocking factor is one. The con-
struct upc forall distributes loop iterations among UPC threads. The fourth
expression in the upc forall construct is the affinity expression, that specifies
that the owner thread of the specified element will execute the ith loop iteration.

1 #define N 16384
2 shared int A[N], B[N], C[N], D[N]
3
4 upc_forall(i=0; i<N-1; i++; i)
5 C[i] = A[i+1] + B[i+1] + D[i];

Listing 1.1. A parallel upc forall

loop.

The compiler transforms the upc
forall loop in a simple for loop and the
shared accesses to runtime calls to fetch
and store data (Listing 1.2). Each run-
time call may imply communication, creat-
ing fine-grained communication that leads
to poor performance. In this example, the
compiler privatizes [8] accesses C[i] and D[i] (Listing 1.2). The compiler does
not privatize the A[i+1] and B[i+1] accesses because it is possible that these
elements belong to other UPC threads. Before accessing shared pointers, the
compiler also creates calls for shared pointer arithmetic ( xlupc ptr arithmetic).

1 #define N 16384
2 shared int A[N], B[N], C[N], D[N]
3
4 local_ptr_C = __xlupc_local_addr(C); local_ptr_D = __xlupc_local_addr(D);
5 for (i=MYTHREAD; i < N; i+= THREADS){
6 tmp0 = __xlupc_deref( __xlupc_ptr_arithmetic(&A[i+1]) );
7 tmp1 = __xlupc_deref( __xlupc_ptr_arithmetic(&B[i+1]) );
8 *(local_ptr_C + OFFSET(i)) = tmp0 + tmp1 + *(local_ptr_D + OFFSET(i));
9 }

Listing 1.2. Transformed upc forall loop.

In Unified Parallel C Language shared arrays can be allocated either statically
or dynamically. In the static scheme, the programmer declares the memory on
the heap using the keyword shared, as presented in Listing 1.1. Alternatively,
the programmer can use the runtime for shared memory allocation:

– upc all alloc(size t blocks,size t bytes): Allocates blocks × bytes of shared
space with blocking factor bytes. This is a collective call and it must be invoked
from all UPC threads.

– upc global alloc(size t blocks,size t bytes): Allocates blocks × bytes of
shared space with blocking factor bytes. The call uses one-side communication
and it must be invoked from only one UPC thread.
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– upc alloc(size t bytes): Allocates nbytes of shared space with blocking fac-
tor bytes with affinity to the calling thread.

– upc free(shared void *ptr): Frees dynamically allocated shared storage.

3 Symmetric Heap Allocation

Modern 64-bit systems have a virtual address space that is several orders of mag-
nitude larger than available physical memory. In a virtual memory system, phys-
ical memory may be mapped to any virtual address. Two independent processes
on the same computer may have distinct physical memory with the same vir-
tual address in their respective virtual address spaces. Since most of the virtual
address space is unused, and virtual addresses are reserved systemically in well-
known regions on a system, a region of memory to reserve for symmetric partition
use is typically available.

Fig. 1. Layout of the symmetric heap.

Figure 1 depicts the main concepts
we use throughout this section. Each
process has its own heap (memory
partition), and the union of all indi-
vidual partitions is called global heap.
A section, called the symmetric parti-
tion, is reserved for storing distributed
data structures within each partition.
Each symmetric partition is contiguous
in virtual memory and begins at the
same virtual address. The collection of
all symmetric partitions is called the
symmetric heap. The starting address in each partition is, by design, chosen to
be common across all partitions and is called the symmetric origin. The lowest
unmapped address greater than the origin is called the partition break. Unlike
the origin, we do not require the break to be identical across all symmetric
partitions.

3.1 Allocation

Allocation is a distinct process from mapping memory in the methodology we
propose. One process, labeled the allocating process, maintains all book-keeping
information within its partition. All other partitions maintain a mirror of the
memory regions as defined by the allocating process. A span of bytes that is
unused in one symmetric partition is unused in all symmetric partitions.

The implementation uses the Two-Level Segregated Fit memory allocator
(TLSF) [9], adapted to enable symmetric allocation. The symmetric partition
of the allocating process is fragmented in one or more contiguous blocks. Two
blocks can’t overlap and the collection of all blocks covers the entire address space
of the symmetric partition. Each block is either free or used. Each block exists
isomorphically in every symmetric partition. A block marked as used (resp. free)
in one partition is used (resp. free) in every other partition. There is a collection
of all unused blocks called the freelist.
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Fig. 2. Operations for collective (left) and independent allocation (right).

3.2 Collective Allocation

An allocation that is executed by all processes concurrently is called collective
allocation (e.g., upc all alloc). The process receives a pointer to the newly cre-
ated data structure upon completion. Each process begins the allocation request
concurrently for an unambiguous count of bytes per partition and waits at a
barrier until all processes have started. The allocator process searches for an
unallocated block of memory that is at least as large as the requested size. If a
sufficiently large block can not be found, then the allocating process increases
the global symmetric break and issues a grow operation on the local symmet-
ric partition. The extended bytes are added to the free store guaranteeing the
existence of a block to accommodate the request.

The memory block is then removed from the symmetric free store. If it
exceeds the original request it is split and the residue is returned to the free
store. The address for the block is broadcasted to all other processes together
with the new global symmetric break. The remaining processes issue a grow
operation if the global symmetric break exceeds their local partition breaks. At
this point, they all agree upon an address that is within the range of their sym-
metric partition. As a last step, the runtime registers the memory of the shared
array with the operating system (memory is pinned, as required by the RDMA
protocol).

Figure 2(a) presents two scenarios for the collective allocation. When success-
ful (i), the process issues a Remove-block operation to mark the block as used and
remove it from the freelist. The allocation process issues a Split-block operation
to create a block and possibly a residue block. It issues an Insert-block operation
to return the block to the freelist. Finally, the allocating process sends the virtual
address of the block to all processes with a broadcast collective operation. In the
second example, Fig. 2(a)(ii), the allocating process is unable to find any free
blocks in the freelist. The allocating process increases the global symmetric break
by the requested size and issues a Grow operation on its local symmetric partition.
The newly mapped memory is inserted into the freelist with a Create-block oper-
ation. Allocating process broadcasts the virtual address of the block together with
the global symmetric break and the remaining processes issue Grow operations on
their local partitions.
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3.3 Independent Allocation

If a single process needs to issue a global allocation request without collaboration
of other processes, the process of allocation is different from collective alloca-
tion. The allocating process maintains all book-keeping information within its
partition. If the requesting process is not the allocating process, a request is
sent to the allocating process. In either case, all requests for independent alloca-
tion are serialized by the allocating process. The allocator process searches for
an unallocated block that accommodates the request. If a block is found, it is
removed from the free-store and split as necessary. The address is returned to
the requester in an acknowledgment message. If no block is found that accom-
modates the request, then the global symmetric break is increased to guarantee
sufficient space in the free store. A local grow operation is executed to map
memory into the partition. When all processes acknowledge the updated global
symmetric break, the address is returned to the requester in an acknowledgment
message.

Figure 2(b) presents two scenarios of independent allocation. InFig. 2(b)(i), the
allocation success and the allocating process returns the address to the requested
process. However, if the allocation fails, the allocating process exchanges messages
to globally grow the symmetric partitions (Fig. 2(b)(i)). In order to maintain the
global symmetric break invariant, process 1 issues interrupting requests to each
other process to issue a grow to their local symmetric partitions.

4 Heap Mirroring for Shared Memory Optimizations

In this section we present an extension to the symmetric heap introduced in
Sect. 3 we call heap mirroring. This extension addresses the need to access quickly
the memory which is collocated on the same node, but in a different process.
It should be stressed that improving intranode communication will not show
improvements in UPC programs that uses both intra and inter-node communi-
cation as the later will often dominate the overall communication time.

As with the symmetric heap, each process maintains a local partition at
a fixed origin which is common across all processes. In addition, each process
maintains a view of every partition from collocated nodes. We call these views,
mirrored partitions or mirrored heaps. The mirrored partitions are not memory
replicas that need to be maintained; rather they maintain the same physical
memory pages mapped into multiple processes virtual address spaces.

At this point we must clarify that symmetric allocation maps distinct memory
at identical virtual addresses between distinct processes. In contrast, mirroring
maps identical memory at distinct virtual addresses within each process. Both
are used for accessing shared memory of a remote process or UPC thread.

4.1 Arrangement of Mirrors

If N UPC threads are collocated on the same node, each thread has a symmetric
partition and N − 1 mirrored partitions each separated by sym gap. We always
place the process’s symmetric heap at the symmetric origin.
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For each thread i, we introduce a function, mirrori(j), mapping a UPC
thread j, to a value called a mirror-index with the following properties:

– mirrori(j) = −1 if threads i and j are not collocated,
– mirrori(i) = 0,
– mirrori(j) ∈ {1, . . . , N − 1} if i and j are collocated,

We build this function dynamically into a hash table at startup time. This guar-
antees fast lookup by checking at most two locations of an array. The function
is used to test whether threads are collocated, and if so, the location of the mir-
rored partition. The mirrored partition of process j within process i is located
at sym origin + mirrori(j) × sym gap.

4.2 Implementation Challenges Using SystemV Shared Memory

Most common solutions for implementing shared memory across processes are
Unix System V, BSD anonymous mapped memory or kernel extensions [10]. Due
to portability and availability reasons we selected System V shared memory and
next we discuss some key challenges for the implementation.

In System V, for multiple processes to allocate the same physical memory
in their address spaces, they need a shared secret called the key. Inside XLUPC
memory allocator, the key is a 16-bit integer, alive only during the brief time
period when same node processes are mapping the shared memory.

If N collocated processes need to extend the symmetric heap, they each
map the new memory in via shmget, and additionally they map the memory
of the other N − 1 processes into their heap. Each of the N memory leases
has a shared memory key. They are all valid at the same time, and none of
them may collide. To further complicate things, a second instance of the same
or other UPC program could be running concurrently also allocating another
M segments and they should not collide either. So we need to make collisions
impossible between threads in the same program, unlikely between instances of
UPC programs running on the same node, but have a resolution scheme that is
fast if collisions happen anyway.

The algorithm employed uses the parallel job unique identifier (PID) as a seed
from which the keys are inferred. On IBM systems this is the PID of the parallel
job launcher (e.g., poe or mpirun) that starts the parallel computation. The algo-
rithm uses the following formula: keyspace = 0 × 10000u+atoi(env(PID)) <<
14u. PID’s are a 16 bit value and the keyspace is a 32 bit value. This spreads
keyspaces with distinct values of PID by at least 16k and avoids the most com-
monly used first 64k of keys.

Next a scratch space is created in all collocatedprocesses usingkeykeyspace+0.
This is used for communication and synchronization between collocated processes.
If there are N collocated processes, each of them is given an index from 0..N − 1
called their hub index. Each process will use keyspace+1+hub index to attempt
allocation. In the event of a key collision among the N keys in the scratch pad,
detected during allocation of the symmetric heap, we increment the key used by
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N (the number of collocated processes) and try again. We record the key used in
the scratch space. During mirroring, the runtime looks in the scratch space for the
key used by the owner of the symheap. A failure to find the key here is an unrecov-
erable error.

4.3 Collective and Independent Allocation

The main difference from initial allocation algorithm introduced in Sect. 3.2 is
mirroring the collocated heaps. First, while all processes enter the call, only one
process will look for a free block. If found its address is broadcasted to all other
processes and the function returns. If a block large enough to accommodate this
request is not found we calculate the new symmetric heap size that will guarantee
a free block large enough and we broadcast the size.

Independent allocation requires the allocator process to asynchronously inter-
rupt all other UPC processes to enter a state where they can collectively work to
extend the symmetric and mirrored heaps. When all threads reach the common
allocation function than we employ the same mechanism as for collective allo-
cation. Special care is taken to ensure the node-barriers do not deadlock with
system-wide barriers.

5 Shared Address Translation

UPC shared objects, such as shared arrays, reside in the shared memory section
local to the thread. Shared pointers are actually fat-pointers: a structure that
represents the shared address which allows the program to reference shared
objects anywhere in the partitioned global address space.

1 typedef struct xlpgas_ptr2shared_t
2 {
3 xlpgas_thread_t thread; /* Thread index */
4 size_t offset; /* Offset inside thread */
5 xlpgas_local_addr_t base; /* Base address */
6 size_t allocsize; /* Allocated bytes */
7 } xlpgas_ptr2shared_t ;

Listing 1.3. Shared pointer structure.

Listing 1.3 presents the
structure containing the infor-
mation. In contrast with the
traditional SVD approaches
the structure contains all the
necessary information for the
program to access the data.
Due to symmetric memory allocator, the base address is the same in all nodes.
Thus, the runtime calculates the virtual offset using arithmetic operations.
Before accessing shared data, the compiler automatically creates runtime calls
to modify the thread and the offset fields. The runtime call (pointer increment)
calculates the thread containing the data and the relative offset inside it. The
runtime updates the shared pointer with the calculated information.

Thus, this approach avoids SVD lookup for local access (less overhead) and
the SVD lookup during remote access (guarantees RDMA). Furthermore, this
approach increases the possibility of compiler shared pointer arithmetic inlining.

Listing 1.4 presents the naive algorithm for the calculation of the thread and
the relative offset. At compile time the compiler linearizes the offset of the shared
pointer (idx ). The blocking factor (BF) and element size (ES) can be calculated
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at compile time or runtime. The first step of the runtime is the calculation of
the phase and the block. The runtime uses the block information to calculate
the thread that contains the shared data and the phase to calculate the local
offset. Note that this simplified example ignores the case of using local offsets:
when accessing a structure fields from a shared array of structures. Furthermore,
during the linearization the compiler also take into calculation the element access
size that can be different from the array element size. Unfortunately, this naive
approach is computation intensive.

1 phase = (idx % BF);
2 block = (idx / BF);
3 ptr.thread = block % THREADS;
4 ptr.addrfield = ES * (phase + block / THREADS);
5 ptr.base = /* address of A */;

Listing 1.4. Naive virtual address calculation.

Runtime Optimizations.
A first optimization is for the
case where the blocking fac-
tor is zero, the shared incre-
ment is zero, or the increment
is the array element size mul-
tiplied by the blocking factor. In this case the runtime makes an addition to the
offset and returns to the program. When the number of threads and the blocking
factor multiplied by the size of elements are power of two, the runtime uses shifts
and masks to calculate the offset and the thread containing the data.

Inlining. The runtime optimizations significantly improve the performance of
shared pointer increment. However a large fixed overhead is associated with run-
time calls. The PowerPC Application Binary Inerface (ABI) mandates significant
cost for a function call due to memory operations. Moreover, the branching code
in the runtime is required to check for special cases and inserts additional over-
head. To solve this challenge the compiler inlines the shared pointer increment
when possible and there is enough information at compile time.

6 Experimental Results

This section analyzes the overhead of memory allocation and presents the per-
formance evaluation of symmetric heap and mirroring optimizations. We first
use microbenchmarks to examine the cost of allocation, and six benchmarks to
examine the performance of applications with regular and irregular communica-
tion patterns. For certain experiments we make a comparison of the latest release
with an older version of the compiler employing the Shared Variable Directory
(SVD) solution.

The evaluation uses the Power R©775 [1] system. Each compute node (octant-
shared memory address space) has a total of 32 POWER7 R©cores (3.2 GHz),
128 threads, and up to 512 GB memory. A large P775 system is organized, at a
higher level, in drawers consisting of 8 octants (256 cores) connected in an all-to-
all fashion for a total of 7.86 Tflops/s. The most relevant aspect of the machine
for the current paper is the availability of RDMA hardware.

The SVD version uses both active messages and RDMA depending on the
data size and available opportunities for symmetric allocation. The active mes-
sages use the immediate send mechanism on P775 which allows small packets to
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be sent by injecting them directly into the network. Thus, the SVD implemen-
tation achieves lower latency than the RDMA for small messages. For messages
larger than 128 bytes, the SVD implementation uses RDMA if the array happens
to be allocated symmetrically. This is an opportunistic optimization whose suc-
cess depends on the history of previous allocation/deallocations on the system.
The main difference relative to the solution we present in this paper is that the
symmetric memory implementations always guarantee that shared arrays are
allocated symmetrically.

The evaluation uses microbenchmarks and four applications:

Microbenchmarks: A first microbenchmark allocates a large number of small
arrays to evaluate the cost of memory allocation. The second microbenchmark
contains streaming-like local shared accesses to evaluate the cost of address trans-
lation and access latency relative to the SVD solution.

Guppie: The guppie benchmark performs random read/modify/write accesses
to a large distributed array. The benchmark uses a temporary buffer to fetch the
data, modify it, and write it back. The typical size of this buffer is 512 elements
and it is static among different UPC threads.

Sobel: The Sobel benchmark computes an approximation of the gradient of the
image intensity function, performing a nine-point stencil operation. In the UPC
version [11] the image is represented as a one-dimensional shared array of rows
and the outer loop is a parallel upc forall loop.

Bucketsort: The benchmark sorts an array of 16-byte records using bucket-
sort [12] algorithm. Each node generates its share of the records. Each thread
uses a 17

16 × 2GB buffer to hold records received from other threads, which are
destined to be sorted on this thread.

UTS: The Unbalanced Tree Search benchmark [13] belongs in the category of
state-space search problems. The Unbalanced Tree Search benchmark measures
the rate of traversal of a tree generated on the fly using a splittable random
number generator.

GUPS: The GUPS benchmark contains accesses in the form of read-modify-
write, distributed across a shared array in random fashion. The compiler opti-
mizes the benchmark using the remote update optimization [8].

6.1 Allocator Performance
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To evaluate the overhead of allocating shared
memory dynamically we created a simple ker-
nel that repeatedly allocates shared arrays using
either the collective upc all alloc() or the one
sided upc global alloc(). For the one sided
case only UPC thread zero is performing the
allocation while all other threads are waiting
in a barrier. We allocate a total of 100 shared
arrays and report the average execution time
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per allocation. Figure 3 presents the performance of the global alloc and
all alloc runtime calls without the mirroring optimization and the perfor-
mance of the same allocations but using a previous version of the runtime that
uses SVD. As expected the all alloc runtime call incurs higher overhead
than the global alloc call, due to global synchronization. The all alloc has
an additional internal barrier in the beginning. The latency of global alloc
increases in two cases: one when the number of UPC increases from 32 to 64 and
one when the number of UPC threads increases from 1024 to 2048. These ”cliffs”
are the result of higher latency communication. Finally, the overhead of using the
mirroring optimization is less than 1 %, and for this reason we excluded it from
the plot. For reference only, we also include the allocation performance when
SVD is used for address translation. However the results can not be compared
directly as more optimizations and changes were added it to the latest version
of the compiler framework.

6.2 Local Shared Accesses Performance

Many PGAS loops work almost entirely on local data but the compiler is unable
to prove this. The SVD implementation has a heavy penalty on these type of
loops. Figure 4(a) and (b) presents the results in aggregated MBytes/s. The pri-
vatization is a compiler optimization that could interfere with this experiment
and for this reason we disable it. The results show that the symmetric implemen-
tation is an order of magnitude better than the SVD version. The improvements
are mainly due to the fact that symmetric heap solution avoids the SVD table
lookup.

6.3 Regular Applications

The Bucketsort and Sobel benchmarks contain regular communication patterns
and usually coarse grain messages. The Sobel implementation includes the sta-
tic coalescing optimization that aggregates the data statically. The mirroring
optimizations gives a significant performance improvement on the Bucketsort
benchmark, up to +90 %, when running within one node. On the other hand,
the Sobel benchmark benefits less than then Bucketsort with the mirroring opti-
mization because most of the shared accesses are local and are privatized by the
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compiler. In regular applications we keep constant the computation per UPC
thread.

6.4 Irregular Applications

Figure 5(a) presents the results of the Guppie benchmark. The performance bot-
tleneck is mainly the network latency. The mirroring optimization has the best
results for intra node communication. On the other hand, the SVD achieves
slightly better performance than the symmetric version for small number of
cores. This is because the SVD uses active messages that are optimized to use
shared memory within an octant. Symmetric always uses RDMA which is slower
than direct shared memory access. The GUPS benchmark uses a different com-
munication mechanism: the remote update packets. In GUPS benchmark, the
message creation rate and the address resolution burdens the performance. Thus,
the symmetric memory approach is an order of magnitude better than the SVD
implementation. There are not any significant differences in the cases of the UTS
benchmark. The good shared data locality and in combination with the priva-
tization optimization of the compiler provide good performance, independent
from the implementation approach.

6.5 Summary

This benchmark-based performance study shows that he overhead of allocating
memory on 2048 UPC thread is less than 35 usec with one side allocation and
less than 180 usec for the global allocation. The benchmarks evaluation shows
significant improvements in local and shared memory node accesses when using
shared pointers due to RDMA exploitation and improved address translation.

7 Related Work

PGAS Allocators. Berkeley UPC compiler [14] uses the GASNet [15] runtime
to implement a collective upc all alloc call. In high performance machines, the
GASNet runtime uses the Firehose [16] technique, an explicit DMA registration.
Furthermore, the Berkeley framework supports also collective deallocation. At
the program startup, each UPC thread reserves a fixed portion of the address
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space for shared memory using the mmap() system call. This address range is the
maximum value on the amount of shared memory per-thread that the program
can use. In contrast our implementation does not contain any restriction on
dynamic memory allocation. The Berkeley UPC framework also uses fat pointers
for accessing shared structures. Michigan UPC runtime (MuPC) [17] and CRAY
compilers [18,19] use a symmetric heap way to allocate memory for shared arrays.
The main differences compared to our work is the fact that the size of the
symmetric heap is fixed and controlled using an environment variable and to
the best of our knowledge no in-depth details on how memory is managed are
provided.

Cray SHMEM [20] introduces another popular PGAS paradigm that pro-
vides the notion of shared arrays. The IBM implementation of SHMEM library
employs a symmetric heap allocator similar to the one presented in Sect. 3 to
efficiently exploit RDMA. It doesn’t however employ the mirroring capability of
the allocator presented here.

PGAS Shared Pointer Translation. Researchers also use Memory Model
Translation Buffer (MMTB), conceptual similar to the Translation Look Aside
Buffers (TLBs). The idea is to use a caching that contains the shared pointer
values along with the corresponding virtual addresses [21]. In other approaches,
that use a distributed shared variable directory (SVD), an address cache is imple-
mented. The caching of remote addresses reduces the shared access overhead and
allows better overlap of communication and computation, by avoiding the SVD
remote access [8,22]. Another approach is to simplify the shared pointer arith-
metic by removing some fields of the shared pointer structure. Experimental
results [23] show that cyclic and indefinite pointers simplification improves the
performance of pointer-to-shared arithmetic up to 50 %. Machine specific imple-
mentations, such as Cray X1 [18] use this approach. Other researchers focus on
techniques for minimized the address translation overhead for multi-dimensional
arrays [24]. The authors use an additional space per array to simplify the trans-
lation for multi-dimensional arrays. In contrast, our approach does not allocate
additional space for the translation of multi-dimensional arrays.

Allocators for Efficient Migration. The techniques presented in this paper
are similar with the thread or process data migration used from different run-
times. For example, Charm++ [25] implements “isomalloc” stacks and heaps,
which are similar technique with ours. However, they focus on the migration
of stack and heap to a different node and not for effectively translating virtual
addresses to remote addresses. PM2 runtime system [26] implements a similar
technique that guarantees the same virtual address that simplifies the migration.
Thus, there is no need to keep pointers in a directory. However, the focus of the
runtime is the efficient migration of the working unit rather the exploitation of
the RDMA.

Shared Memory with MPI. Shared memory exploitation is also a well know
technique for MPI programs that are written for distributed memory systems.
For example, MPI-3 interface for RMA can be efficiently implemented on
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networks supporting RDMA as shown in [10]. The key mechanism the authors
of [10] employ for this is a symmetric heap and remote address space mirror-
ing similar to the ones presented in this work. However, this approaches differs
in the language targeted, and the protocols used for mirroring. The XPMEM
Linux kernel module was not available on the particular machine targeted in our
work [1] so we relied on a novel protocol built around the more portable Sys-
temV calls as described in Sect. 4. Other approaches requiring kernel support are
addressed in the literature [27] with the drawback that they require a slightly
different MPI interface.

8 Conclusion

This paper demonstrates the importance of proper design of memory allocator
in PGAS languages. The architecture of the allocator and the remote addresses
translation to virtual addresses play an important role on application perfor-
mance. The evaluation shows that both versions can scale with high number of
UPC threads. However, the performance of the symmetric memory allocation is
better than the SVD in local shared accesses and guarantees the RDMA usage.
Furthermore, the mirroring optimization provides an order of magnitude bet-
ter performance than the simple symmetric version when running in one node.
The current implementation is integrated on the latest version of the XLUPC
compiler.
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