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Abstract. This paper describes the STAPL Skeleton Framework, a high-
level skeletal approach for parallel programming. This framework
abstracts the underlying details of data distribution and parallelism from
programmers and enables them to express parallel programs as a com-
position of existing elementary skeletons such as map, map-reduce, scan,
zip, butterfly, allreduce, alltoall and user-defined custom skeletons.

Skeletons in this framework are defined as parametric data flow
graphs, and their compositions are defined in terms of data flow graph
compositions. Defining the composition in this manner allows dependen-
cies between skeletons to be defined in terms of point-to-point depen-
dencies, avoiding unnecessary global synchronizations. To show the ease
of composability and expressivity, we implemented the NAS Integer Sort
(IS) and Embarrassingly Parallel (EP) benchmarks using skeletons and
demonstrate comparable performance to the hand-optimized reference
implementations. To demonstrate scalable performance, we show a trans-
formation which enables applications written in terms of skeletons to run
on more than 100,000 cores.

1 Introduction

Facilitating the creation of parallel programs has been a concerted research effort
for many years. Writing efficient and scalable algorithms usually requires pro-
grammers to be aware of the underlying parallelism details and data-distribution.
There have been many efforts in the past to address this issue by providing
higher-level data structures [6,29], higher-level parallel algorithms [8,19,21],
higher-level abstract languages [5,19,27], and graphical parallel programming
languages [25]. However, most of these studies focus on a single paradigm and
are limited to specific programming models.
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Algorithmic skeletons [9], on the other hand, address the issue of parallel
programming in a portable and implementation-independent way. Skeletons are
defined as polymorphic higher-order functions, that can be composed using func-
tion composition and serve as the building blocks of parallel programs. The
higher-level representation of skeletons provides opportunities for formal analy-
sis and transformations [26] while hiding underlying implementation details from
end users. The implementation of each skeleton in a parallel system is left to
skeleton library developers, separating algorithm specification from execution.
A very well-known example of skeletons used in distributed programming is the
map-reduce skeleton, used for generating and processing large data sets [10].

There are many frameworks and libraries based on the idea of algorithmic
skeletons [14]. The most recent ones include Miiesli [23], FastFlow [2], SkeTo [20],
and the Paraphrase Project [15] that provide implementations for several skele-
tons listed in [26], such as map, zip, reduce, scan, farm. However, there are two
major issues with existing methods that prevent them from scaling on large
systems. First, most existing libraries provide skeleton implementations only
for shared-memory systems. Porting such codes to distributed memory systems
usually requires a reimplementation of each skeleton. Therefore, the work in this
area, such as [1], is still very preliminary. Second, in these libraries, composition
of skeletons is not projected into the implementation level, requiring skeleton
library developers to provide either new implementations for composed skele-
tons [23] or insert global synchronizations between skeleton invocations resulting
in a Bulk Synchronous Parallel (BSP) model, as in [20] which generally cannot
achieve optimal performance.

In this work, we introduce the STAPL Skeleton Framework, a framework that
enables algorithmic skeletons to scale on distributed memory systems. Skele-
tons in this framework are represented as parametric data flow graphs that
allow parallelism to be expressed explicitly. Therefore, skeletons specified this
way are inherently ready for parallel execution regardless of the underlying run-
time execution model. These parametric data flow graphs are expanded over
the input data and are executed in the STAPL data flow engine known as the
PARAGRAPH. We show that parallel programs written this way can scale on more
than 100,000 cores.

Our contributions in this paper are as follows:

O a skeleton framework based on parametric data flow graphs that can easily
be used in both shared and distributed memory systems.

O a direct mapping of skeleton composition as the composition of parametric
data flow graphs, allowing skeletons to scale on large supercomputers without
the need for global synchronizations.

[0 an extensible framework to which new skeletons can be easily added through
composition of existing skeletons or adding new ones.

[0 a portable framework that can be used with data flow engines other than the
STAPL PARAGRAPH by implementing an execution environment interface.

This paper is organized as follows: In Sect. 2, we present the related work in the
area of algorithmic skeletons. In Sect. 3, we provide an overview of the STAPL
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Skeleton framework where we show how to break the task of writing paral-
lel programs into algorithm specification and execution. In Sect. 4, we show a
transformation that allows fine-grain skeletons to execute and perform well in
a parallel environment. In Sect. 5, we present a case study showing expressiv-
ity and composability using the NAS EP and IS benchmarks. We evaluate our
framework using experiments over a wide set of skeletons in Sect. 6. Conclusions
and future work are presented in Sect. 7.

2 Related Work

Since the first appearance of skeleton-based programming in [9], several skeleton
libraries have been introduced. The most recent efforts related to our approach
are Miesli [23], FastFlow [2], Quaff [11], and SkeTo [20].

The Miinster skeleton library (Miiesli) is a C++ library that supports poly-
morphic task parallel skeletons such as pipeline, farm, and data parallel skeletons
such as map, zip, reduce, and scan on array and matrix containers. Miiesli can
work both in shared and distributed memory systems on top of OpenMP and
MPI, respectively. Skeleton composition in Miiesli is limited in the sense that
composed skeletons require redefinitions and cannot be defined directly as a
composition of elementary skeletons.

FastFlow is a C++ skeleton framework targeting cache-coherent shared-
memory multi-cores [2]. FastFlow is based on efficient Single-Producer-Single-
Consumer (SPSC) and Multiple-Producer-Multiple-Consumer (MPMC) FIFO
queues which are both lock-free and wait-free. In [1] the design and the imple-
mentation of the extension of FastFlow to distributed systems has been proposed
and evaluated. However, the extension is evaluated on only limited core counts
(a 2 x 16 core cluster). In addition, the composition is limited to task parallel
skeletons with intermediate buffers, which limits their scalability.

Qualff is a skeleton library based on C++ template meta-programming tech-
niques. Quaff reduces the runtime overhead of programs by applying transfor-
mations on skeletons at compile time. The skeletons provided in this library are
seq, pipe, farm, scm (split-compute-merge), and pardo. Programs can be written
as composition of the above patterns. However, Quaff only supports task parallel
skeletons and is limited to shared-memory systems.

SkeTo is another C++ skeleton library built on top of MPI that provides par-
allel data structures:list, matriz, and trees, and a set of skeletons map, reduce,
scan, zip. SkeTo allows new skeletons to be defined in terms of successive invoca-
tions of the existing skeletons. Therefore, the approach is based on a Bulk Syn-
chronous Parallel model and requires global synchronization in between skeleton
invocations in a skeleton composition. In our framework, we avoid global syn-
chronizations by describing skeleton compositions as point-to-point dependencies
between their data flow graph representations.

3 STAPL Skeleton Framework

The sTAPL Skeleton Framework is built on top of the Standard Template Adap-
tive Parallel Library (STAPL) [6,7,16,29] and is an interface for algorithm
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developers as depicted in Fig.7. STAPL is a framework for parallel C++ code
development with interfaces similar to the (sequential) ISO C++ standard library
(sTL) [24]. sTAPL hides the notion of processing elements and allows asyn-
chronous communication through remote method invocations (RMIs) on shared
objects. In addition, STAPL provides a data flow engine called the PARAGRAPH,
which allows parallelism to be expressed explicitly using data flow graphs (a.k.a.
task graphs). The runtime system of STAPL is the only platform specific com-
ponent of STAPL, making STAPL programs portable to different platforms and
architectures without modification Fig. 1.
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Fig. 1. The sTAPL library component diagram.

Using the STAPL Skeleton Framework, algorithm developers only focus on
defining their computation in terms of skeletons. As we will see in this section,
each skeleton is translated to a parametric data flow graph and is expanded
upon the presence of input data. The data flow representation of skeletons allows
programs to run on distributed and shared memory systems. In addition, this
representation formulates skeleton composition as point-to-point dependencies
between parametric data flow graphs, allowing programs to execute without the
need for global synchronization.

3.1 Algorithm Specification

Parametric Dependencies. In our framework, skeletons are defined in terms
of parametric data flow graphs. We name the finest-grain node in a parametric
data flow graph a parametric dependency (pd). A parametric dependency defines
the relation between the input and output elements of a skeleton as a parametric
coordinate mapping and an operation.

The simplest parametric dependency is defined for the map skeleton:

map(®)[ar ... an] = [B(ar) - © (an)]
map-pd(®) = {< i >—<i>,®} (1)

In other words, the element at index i of the output is computed by applying
@ on the element at index 7 of the input. This representation carries spatial
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information about the input element. As we will see later, it is used to build
data flow graphs from parametric dependencies.
The zipy skeleton is a generalization of the map skeleton over k lists:

zipﬂ@)[a},...,ai]...[a’f,...,am = [@(a%,...,a’f),...,@(a}l,...,a’;)]
2ip-pdp (@) = {< i,...,i >—<i>0)} (2)
~——

k

Elem Operator. Parametric dependencies are expanded over the input size
with the data parallel elem compositional operator. An elem operator receives
a parametric dependency (of type ¢) and expands it over the given input, with
the help of span (of type 9), to form a list of nodes in a data flow graph:

elem :: ¢ — § — [0]
elemspqan (parametric-dependency) (3)

For ease of readability in Eq. 3, we show span as a subscript and the parametric
dependency in parenthesis.

A span is defined as a subdomain of the input. Intuitively, the default span
is defined over the full domain of the input and is omitted for brevity in the
default cases. As we will see later in this section, there are other spans, such as
tree-span and rev-tree-span, used to define skeletons with tree-based data flow
graphs.

With the help of the elem operator, map and zip skeletons are defined as:

map(®) = elem(map-pd(&))
zipr (@) = elem(zip-pdy(@)) (4)

Given an input, these parametric definitions are instantiated as task graphs in
the sTAPL Skeleton Framework.

Repeat Operator. Many skeletons can be defined as tree-based or multilevel
data flow graphs. Our repeat operator allows such skeletons to be expressed sim-
ply as such. The repeat operator is a function receiving a skeleton and applying
it to a given input successively for a given number of times specified by a unary
operator of type 8 — [ called &:

repeat :: [a] — [a] — (8 — B) — [a] — [q]
repeat(S,&)[a1,...,an] = (S...(S(S[a1,...,a,]))) (5)
&(n) times

An example of the repeat operator is a tree-based data flow graph definition
of the reduce skeleton (Fig.2). In a tree-based reduce, each element at level j
depends on two elements at level j — 1. Therefore, the parametric dependency
for each level of this skeleton can be specified as:

reduce-pd(®) ={(< 2i,j —1>,<2i+1,j—1>) —<i,j > &} (6)
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Fig. 2. The process of creating the tree-based representation of the reduce skeleton.

Each level of this tree representation is then expanded using the elem operator.
However, the expansion is done in a different way than the default case used in
Egs. 1 and 2. In a tree, the span of the elem operator at each level is half of its
previous level, starting from the span over the domain of the input at level 0.
We name this span a tree-span and we use it to define a tree-based reduce:

reduce(®) = repeat(elemyiyee-span (reduce-pd(®)), loga(n)) (7)

Similarly, other skeletons can be defined using the elem and repeat operators
such as scan, butterfly, reverse-butterfly, and broadcast as shown in Fig. 4. For
brevity, we show only the simultaneous binomial tree implementation of the scan
skeleton in Figs. 3(a) and 4. However, we support two other scan implementations
in our framework, namely the exclusive scan implementation introduced in [4]
and the binomial tree scan [28], which are expressed in a similar way.

@Q: O~ (D)—(8)
SN ke
@<: (1909 570,

O~ @9

scan(t) = repeat(elemspan(scan-pd(+)), logz(_J)) allreduce(+) = butterfly(+)

(a) Simultaneous binomial tree scan(+). (b) Butterfly-based allreduce.

Fig. 3. Data flow representation of the binomial scan and butterfly skeletons.

Compose Operator. In addition to the data flow graph composition operators
presented above, we provide a skeleton composition operator called compose. The
compose operator, in its simplest form, serves as the functional composition used
in the literature for skeleton composition and is defined as:

compose(S1,S2,...,8,)x =8,0..085 085 x = S,(...(517))) (8)

The map-reduce and the allreduce skeleton are skeletons which can be built from
the existing skeletons (Fig.4) using the compose operator.
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The binomial tree representation of the scan skeleton

{(< i,level —1 >, < i— 2" Jevel — 1 >) —< i,level >, @} if i > 2level

-pd =
scan-pd(®) {{(< i level — 1 >—< i, level >), id} if i < olevel

scan(®) = repeat(elem(scan-pd(®)), logz(size))

The k-ary tree and reverse-tree skeletons:

treey (pd) = 'repeat(elen@t,,.“,b,][,LLTL)c (pd), logk(n))
rev-treeg (pd) = repeat(elemmv,trce,spank (pd), logy (size))
The broadcast skeleton:

broadcast-pd = {(< i/2 >—< i >),  z.x}

broadcast = rev-tree(broadcast-pd)

The butterfly and reverse-butterfly skeletons:

n—level—1

butter fly-pd(®) = {(< i, level — 1 >, < 1+ 2 >) =< 1, level >, ®)}
rev-butter fly-pd(®) = {(< i,level — 1 >, < i+ alevel Sy i level >, ®}
butter fly(®) = repeat(elem(butter fly-pd(®)), loga(size))
rev-butter fly(®) = repeat(elem(rev — butter fly-pd(®)), logz (size))
Skeletons composed from the existing skeletons:
allreducey (®) = butter fly(P)
allreduces (@) = broadcast o reduce(®)
alltoall(*) = butter fly(x)
fft-DIT = butter fly(f ft-DIT-op)
fft-DIF = ref-butter fly(f ft-DIF-op)
map-reduce(®, ®) = reduce(®) o map(d)
The do-while skeletons:
whilep Sz = ifpx
then while p S (S z)

else x

Fig. 4. A list of skeletons compositions

Do-While Operator. The compositional operators we mentioned so far cover
skeletons that are static by definition. A do-while skeleton is intended to be used
in dynamic computations which are bounded by a predicate p as in [17]. The
do-while skeleton applies the same skeleton S to a given input until the predicate
is satisfied. It is defined as shown in Fig. 4.

The execution of the do-while skeleton requires its corresponding data flow
graph to be dynamic, as the number of iterations are not known a priori. This
functionality is allowed in our framework with the help of the memento design
pattern [12], as we will see later in Sect. 3.2.

Flows. So far, we have only showed the skeletons that are composed using
repeat and compose using simple functional composition. In these compositions, a
skeleton’s output is passed as the input to the subsequent skeleton. Similar to the
let construct in functional programming languages, input/output dependencies
between skeletons can be defined arbitrarily as well (e.g., Fig.5). To represent
such compositions in our internal representation of skeletons, we define one input
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and one output port (depicted as red filled circles in Figs.2 and 5) for each
skeleton. We formulate the skeleton composition as the connections between
these ports and refer to them as flows. Flows are similar to the notion of flows
in flow-based programming [22].

With the help of ports and flows, skeleton composition is directly mapped
to point-to-point dependencies in data flow graphs, avoiding unnecessary global
synchronizations commonly used in BSP models. As a concrete example, Fig. 5
shows a customized flow used for NAS IS skeleton-based representation.

3.2 Algorithm Execution

In the previous section we looked at algorithm specification. In this section, we
explain how an input-size independent algorithm specification is converted to a
data flow graph through the spawning process.

Skeleton Manager. The Skeleton Manager orchestrates the spawning process
in which a skeleton composition is traversed in a pre-order depth-first-traversal,
in order to generate its corresponding data flow graph. The nodes of this data
flow graph correspond to the parametric dependency instances in a composition.
If a PARAGRAPH environment is used, these data flow graphs will represent a
taskgraph and will be executed by the data flow engine of STAPL called the
PARAGRAPH. The creation and execution of taskgraphs in a STAPL PARAGRAPH can
progress at the same time, allowing overlap of computation and communication.

Environments. An environment defines the meaning of data flow graph nodes
generated during the spawning process. As we saw earlier, in a PARAGRAPH envi-
ronment each data flow graph node represents a task in a taskgraph. Similarly,
other environments can be defined for execution or additional purposes, making
our skeleton framework portable to other libraries and parallel frameworks.

For example, we used other environments in addition to the PARAGRAPH envi-
ronment for debugging purposes such as (1) a GraphViz environment which
allows the data flow graphs to be stored as GraphViz dot files [13], (2) a debug
environment which prints out the data flow graph specifications on screen, and
(3) a graph environment which allows the data flow graphs to be stored in
a STAPL parallel graph container [16]. Other environments can also be easily
defined by implementing the environment interface.

Memento Queue. The Skeleton Manager uses the memento design pattern [12]
to record, pause, and resume the spawning process allowing the incremental
creation of task graphs, and execution of dynamic skeletons. For example, the
continuation and the next iteration of a do-while skeleton are stored in the
back and the front of the memento queue, respectively, in order to allow input-
dependent execution.
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4 Skeleton Transformations

As mentioned earlier, various algorithms can be specified as compositions of
skeletons. Since skeletons are specified using high-level abstractions, algorithms
written using skeletons can be simply analyzed and transformed for various
purposes, including performance improvement.

In this section, we define the coarsening transformation operator C which
enables efficient execution of skeletons using hybrid (a.k.a. macro) data flow
graphs [18] instead of fine-grained data flow graphs.

4.1 Definitions

Before explaining the coarsening transformation, we need to explain a few terms
that are used later in this section.

Dist and Flatten Skeletons. A dist skeleton [17] partitions the input data and
a flatten (projection) skeleton unpartitions the input data. They are defined as:

dist [a1,...,an] = [la1,...,ak),...,[aj,...,an]]

flatten [[a1, ... ak), ..., [aj, ... an]] = [a1,...,an] (9)

Homomorphism. A function % on a list is a homomorphism with respect to
a binary operator @ iff on lists « and y we have [26]:

fle+y) = flz)® f(y) (10)

in which 4 is the list concatenation operator.

The skeletons that are list homomorphisms can be defined as a composition of
the map and the reduce skeletons, making them suitable for execution in parallel
systems. However, as mentioned in [26], finding the correct operators for the map
and reduce can be difficult even for very simple computations. Therefore, in our
transformations of skeletons which are list homomorphisms, we use their map-
reduce representation only when the operators can be devised simply, and in
other cases we define a new transformation.

4.2 Coarsening Transformations (C)

As we saw earlier, skeletons are defined in terms of parametric data flow graphs.
Although fine-grained data flow graphs expose maximum parallelism, research
has shown [18] that running fined-grained data flow graphs can have significant
overhead on program execution on Von Neumann machines. This is due to the
lack of spatial and temporal locality and the overhead of task creation, execution,
and pre/post-processing. In fact, the optimum granularity of data flow graphs
depends on many factors, one of the most important being hardware charac-
teristics. Therefore, we define the coarsening transformation in this section as a
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transformation which is parametric on the input size where granularity can be
tuned per application and machine.

The coarsening transformations, listed in Eq. 11, use dist skeleton to make
coarser chunks of data (similar to the approach used in [17]). Then they apply
an operation on each chunk of data (e.g., map(map(®)) in C(map(d))). Subse-
quently, they might apply a different skeleton on the result of the previous phase
to combine the intermediate results (e.g., reduce(®) in C(reduce(®))). Finally,
they might apply a flatten skeleton to put the result in its original fine-grain
format:

C(map(®)) = flatten o map(map(P)) o dist

C(zip(©)) = flatten o zip(zip(®)) o dist

C(reduce(®)) = reduce(®) o map(reduce(®)) o dist (11)
C(butter fly(®)) = flatten o map(butter fly(®)) o butter fly(zip(®)) o dist
C(rev-butter fly(®)) = flatten o butter fly(zip(®)) o map(rev-butter fly(®)) o dist

The coarsening transformation of the map-reduce can be defined in two ways:

C(map-reduce(®, ®)) = C(reduce(®) o map(®)) = C(reduce(®)) o C(map(E))
C(map-reduce(®, ®)) = reduce(®) o map(map-reduce(®,®)) o dist  (12)
For performance reasons, it is desirable to choose the second method in Eq. 12

as the first one might require intermediate storage for the result of C(map(®)).
Similarly, the coarsening transformation for scan can be defined as:

C(scan(@)) = let 11 « scan(®) o map(reduce(®)) o dist
Tg < SCaMepclusive © map(last) ry
in flatten o zip(¥(®)) ri ro (13)

In Eq. 13 ¥ is a function of type a@ — [a] — [a] and is defined as:
U(D)clat,...,an] =[a1 Dec,...,an D (] (14)

The coarsening transformation in Eq.13 is more desirable than the map-
reduce transformation listed in [26]. The reason is that the reduce operation
used in [26] is defined in an inherently sequential form while in Eq. 13 we define
the transformation in terms of other parallel skeletons.

Limitation. Similar to the approach in [26], our coarsening transformation is
currently limited to input-independent skeletons which are list homomorphisms.

5 Composition Examples

The goal in this section is to show the expressivity and ease of programmability
of our skeleton framework. As a case study we show the implementation of two
NAS benchmarks [3] (Embarrassingly Parallel (EP) and Integer Sort (IS)) in
terms of skeletons.
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5.1 NAS Embarrassingly Parallel (EP) Benchmark

This benchmark is designed to evaluate an application with nearly no inter-
processor communication. The only communication is used in the pseudo-random
number generation in the beginning and the collection of results in the end. This
benchmark provides an upper bound for machine floating point performance.
The goal is to tabulate a set of Gaussian random deviates in successive square
annuli.

The skeleton-based representation of this benchmark is specified with the
help of the map-reduce skeleton. The map operator in this case generates n pairs
of uniform pseudo-random deviates (x;,y;) in the range of (0,1), then checks
if ;2 4+ y;2 < 1. If the check passes, the two numbers X, = z;+/(—2log t;)/t;

Y = yj\/(—2log t;)/t; are used in the sums S; = ZXk and Sy = ZYk The

reduce operator computes the total sum for S; and Sg and also accumulates the
ten counts of deviates in square annuli.

5.2 NAS Integer Sort (IS) Benchmark

In this benchmark N keys are sorted. The keys are uniformly distributed in
memory and are generated using a predefined sequential key generator. This
benchmark tests both computation speed and communication performance.

XI XZ Xj Xé
Bucket- Bucket- Prepare-for- .
Cardinality (éa”'ed“e“);) %7 Redistr- Info (% alitoall ;) » (é alitoall ;) >() Final-Sort J

(a) Graphical representation of NAS IS flows.

integer-sort input =
let compose<flows::nas_is>(

21 < map(Bucket-Cardinality) input map (bucket_cardinality<int_t>()),

allreduce<std::vector<int_t>>(),

z2 < allreduce(+) x1 map (bucket_redistr_info()),

23 < zips(Bucket-Redistr-Info) x1 2 |:> zip<3>(prepare_for_alltoall<int_>(),
alltoall<int_t>(),

x4 < zip2(Prepare-for-alltoall) x3 input 2ip<3>(final_sort ()

x5 < alltoall x4 )
xg < zip2(Final-Sort) x3 x5

6

(b) The Nas IS composition.

Fig. 5. The NAS Integer Sort Benchmark

The IS benchmark is easily described in terms of skeletons as shown in Fig. 5.
Similar to other skeleton compositions presented so far, the IS skeleton compo-
sition does not require any global synchronizations between the skeleton invoca-
tions and can overlap computation and communication easily. As we show later
in the experimental results, avoiding global synchronizations results in better
performance on higher core counts.
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(C) Weak scalability of Generate as an example (d) Comparison of the scalability of the NAS EP
of the map skeleton. benchmark with the reference implementation.

Fig. 6. Experimental results for elementary skeletons and the NAS EP benchmarks.

The IS benchmark skeleton composition as presented in Fig.5 is based on
the well-known counting sort. First, the range of possible input values are put
into buckets. Each partition then starts counting the number of values in each
bucket (map(Bucket-Cardinality)). In the second phase, using an allreduce skele-
ton (defined in Fig.4), the total number of elements in each bucket is computed
and is globally known to all partitions. With the knowledge of the key dis-
tribution, a partitioning of buckets is devised (map(Bucket-Redistr)) and keys
are prepared for a global exchange (zip(Prepare-for-allToall)). Then with the
help of the alltoall skeleton (Figs.4 and 7) the keys are redistributed to par-
titions. Finally, each partition sorts the keys received from any other partition
(zip(Final-Sort)).

6 Performance Evaluation

We have evaluated our framework on two massively parallel systems: a 153,216
core Cray XE6 (HOPPER) and a 24,576 node BG/Q system (VULCAN). Each
node contains a 16-core IBM PowerPC A2, for a total of 393,216 cores. Our
results in Fig. 6 show excellent scalability for the map, reduce, and scan skeletons
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Fig. 7. The three versions of the alltoall representations used in the NAS IS benchmark.
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Fig. 8. The NAS IS benchmarks strong scaling results.

and also the NAS EP benchmark on up to 128k cores. These results show that
the ease of programmability in the STAPL Skeleton Framework does not result
in performance degradation and our skeleton-based implementation can perform
as well as the hand-optimized implementations.

To show a more involved example, we present the result for the NAS IS
benchmark. The IS benchmark is a communication intensive application and is
composed out of many elementary skeletons such as map, zip, and alltoall. It
is therefore a good example for the evaluation of composability in our frame-
work. We compare our implementation of the IS benchmark to the reference
implementation in Fig. 8(b).

Having an efficient alltoall skeleton is the key to success in the implementa-
tion of the IS benchmark. We have implemented alltoall in three ways (Fig. 7).
Our first implementation uses the butterfly skeleton. The second is a flat alltoall
in which all communication happen at the same level. The third method is a
hybrid of butterfly and flat alltoalls. In both the flat and hybrid implementa-
tions, we use a permutation on the dependencies to avoid a node suffering from
network congestion.

Our experiments show that the best performance for our skeleton-based
implementation of the IS benchmark is achieved using the hybrid version in both
C and D classes of the benchmark. Our implementation of the IS benchmark
using the hybrid alltoall shows comparable performance to the hand-optimized
reference implementation (Fig.8(b)). We have an overhead on lower core counts
which is due to the copy-semantics of the STAPL runtime system. The STAPL run-
time system at this moment requires one copy between the user-level to the MPI
level on both sender and receiver side. These extra copies result in a 30-40 %
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overhead on lower core counts. However, this overhead is overlapped with compu-
tation on higher core counts. In fact, in the class D of the problem, our implemen-
tation is faster than the reference implementation. This improvement is made
possible by avoiding global synchronizations and describing skeleton composition
as point-to-point dependencies.

7 Conclusions

In this paper, we introduced the STAPL Skeleton Framework, a framework which
simplifies parallel programming by allowing programs to be written in terms of
algorithmic skeletons and their composition. We showed the coarsening transfor-
mation on such skeletons, which enables applications to run efficiently on both
shared and distributed memory systems. We showed that the direct mapping of
skeletons to data flow graphs and formulating skeleton composition as data flow
graph composition can remove the need for global synchronization. Our exper-
imental results demonstrated the performance and scalability of our skeleton
framework beyond 100,000 cores.

Acknowledgments. We would like to thank Adam Fidel for his help with the exper-
imental evaluation.
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