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Abstract. We present a new information-theoretic result which we call
the Chaining Lemma. It considers a so-called “chain” of random vari-
ables, defined by a source distribution X(0) with high min-entropy and a
number (say, t in total) of arbitrary functions (T1, . . . , Tt) which are ap-

plied in succession to that source to generate the chainX(0) T1−→ X(1) T2−→
X(2) · · · Tt−→ X(t). Intuitively, the Chaining Lemma guarantees that, if
the chain is not too long, then either (i) the entire chain is “highly ran-
dom”, in that every variable has high min-entropy; or (ii) it is possible
to find a point j (1 ≤ j ≤ t) in the chain such that, conditioned on the

end of the chain i.e. X(j) Tj+1−→ X(j+1) · · · Tt−→ X(t), the preceding part

X(0) T1−→ X(1) · · · Tj−→ X(j) remains highly random. We think this is an
interesting information-theoretic result which is intuitive but neverthe-
less requires rigorous case-analysis to prove.

We believe that the above lemma will find applications in cryptogra-
phy. We give an example of this, namely we show an application of the
lemma to protect essentially any cryptographic scheme against memory-
tampering attacks. We allow several tampering requests, the tampering
functions can be arbitrary, however, they must be chosen from a bounded
size set of functions that is fixed a priori.

1 Introduction

Assume that we have a uniform random distribution over some finite set X ,
represented by a discrete random variable X . Let us now apply an arbitrary
(deterministic) function T to X and denote the output random variable by
X ′ = T (X). Since T is an arbitrary function, the variable X ′ can also be ar-
bitrarily distributed. Consider now the case where X ′ is “easy to predict”, or
more concretely where X ′ has “low” min-entropy. A natural question, in this
case, is how much information can X ′ reveal about X? or more formally, how
much min-entropy can X have if we condition on X ′?
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Intuitively, one might expect that since X ′ has low entropy, it cannot tell us
much about X , so X should still be “close to random” and hence have high
entropy. While this would be true for Shannon entropy, it turns out to be com-
pletely false for min-entropy. This may seem a bit counter-intuitive at first, but
is actually easy to see from an example: Let T be the function which maps
half of the elements in X to one “heavy” point but is injective on all the other
elements. For this T , the variable X ′ has very small min-entropy (namely 1)
because the heavy point occurs with probability 1/2. But on the other hand,
X ′ reveals everything about X half the time, and so the entropy of X in fact
decreases very significantly (on average) when X ′ is given. So despite having
very low min-entropy, X ′ = T (X) does reveal a lot about X .

There is, however, a more refined statement that will be true for min-entropy:
Let E be the event that X takes one of the values that are not mapped to
the “heavy point” by T , while Ē is the event that X is mapped to the heavy
point. Now, conditioned on E , both X|E and X ′

|E have high min-entropy. On the

other hand, conditioned on Ē , X|Ē will clearly have the same (high) min-entropy
whether we are given X ′

|E or not.
This simple observation leads to the following conjecture: there always exists

an event E such that: (i) Conditioned on E , both X and X ′ have “high” min-
entropy, (ii) conditioned on Ē , X ′ reveals “little” about X . In this paper, from a
very high-level, we mainly focus into settling (a generalization of) this conjecture,
which results in our main contribution: the information-theoretic lemma which
we call the Chaining Lemma.

Main Question. Towards generalizing the above setting let us rename, for no-
tational convenience, the above symbols as follows: X(0) ≡ X , T1 ≡ T and
X(1) ≡ X ′. We consider t (deterministic) functions T1, T2, . . . , Tt which are ap-
plied to the the variables sequentially starting from X(0). In particular, each Ti is
applied to X(i−1) to produce a new variableX(i) = Ti(X

(i−1)) for i ∈ [t]. We call
the sequence of variables (X(0), . . . , X(t)) a “chain” which is completely defined
by the “source” distribution X(0) and the sequence of t functions (T1, . . . , Tt). It

can be presented more vividly as follows: X(0) T1−→ X(1) T2−→ X(2) · · · Tt−→ X(t).
We are now interested in the min-entropy of X(1), . . . , X(t). Of course, each

variable X(i) has min-entropy less than (or equal to) the preceding variable
X(i−1) (as a deterministic function can not generate randomness). Assume now
that we fix some threshold value u and consider any value of min-entropy less
than u to be “low”. Assume further that the source has min-entropy much larger
than u. As a motivation, one may think of a setting where each X(i) is used as
key in some cryptographic application, where, as long X(i) has high min-entropy
we are fine and the adversary will not learn something he should not. But if X(i)

has low min-entropy, things might go wrong and the adversary might learn X(i).
Now, there are two possible scenarios for the above chain: either (i) all the

variables (hence the last variable X(t)) in the chain have high min-entropy; or
(ii) one or more variable (obviously including the last variableX(t)) has low min-
entropy. In case (i), everything is fine. But in case (ii), things might go wrong
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at a certain point. We now want to ask if we can at least “save” some part of
the chain, i.e., can we find a point in the chain such that if we condition on all
the variables after that point, all the preceding variables (obviously including the
source X(0)) would still have high min-entropy? This hope might be justified if t
is small enough compared to the entropy of X(0): since the entropy drops below
u after a small number of steps, there must be a point (say j) where the entropy
falls “sharply”, i.e.,X(j) has much smaller min-entropy thanX(j−1). However, as
the above example shows, even if there is a large gap in min-entropy between two
successive variables (X(j) and X(j−1) in this case), the succeeding one (X(j))
might actually reveal a lot about the preceding one (X(j−1)) on average. So
it is not clear that we can use j as the point we are looking for. However,
one could hope that a generalised version of the above conjecture might be
true, namely there might exist some event, further conditioning on which, all
variables would have high min-entropy, and on the other hand, conditioning
on the complement, X(j−1) (and hence the entire preceding chain) would have
high min-entropy. Essentially that is what our Chaining Lemma says, which we
present next although in an informal way. We give the formal statement and
proof of the lemma in Section 3.

Lemma 1 (The Chaining Lemma, Informal). Let X(0) be a uniform ran-
dom variable over X and (T0, . . . , Tt) be arbitrary functions mapping X → X
and defining a chain X(0) T1−→ X(1) T2−→ X(2) · · · Tt−→ X(t). If the chain is “suf-
ficiently short”, there exists an event E such that (i) if E happens, then all the
variables (X(0), . . . , X(t)) (conditioned on E) have “high” min-entropy; other-
wise (ii) if E does not happen there is an index j such that conditioning on X(j)

(and also on Ē) all the previous variables namely X(0), . . . , X(j−1) have “high”
min-entropy.

Application to Tamper-resilient Cryptography. Although we think that the Chain-
ing Lemma is interesting in its own right, in this paper we provide an application in
cryptography, precisely in tamper-resilient cryptography. In tamper-resilient cryp-
tography themain goal is to “theoretically” protect cryptographic schemes against
so-called fault attacks which are found to be devastating (as shown by [5,12] and
many more). In this model, the adversary, in addition to standard black-box ac-
cess to a primitive, is allowed to change its secret state [9,28,23,32,8], or its inter-
nals [30,27,18,19], and observes the effect of such changes at the output. In this
paper we restrict ourselves to the model where the adversary is not allowed to alter
the computation, but only the secret state (i.e. only the memory of the device, but
not the circuitry, is subject to tampering).

To illustrate such memory tampering, consider a digital signature scheme
Sign with public/secret key pair (pk , sk). The tampering adversary obtains pk
and can replace sk with T (sk) for arbitrary tampering function T . Then, the
adversary gets access to an oracle Sign(T (sk), ·), i.e., to a signing oracle run-
ning with the tampered key T (sk). As usual the adversary wins the game by
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outputting a valid forgery with respect to the original public key pk .1 In the
most general setting, the adversary is allowed to ask an arbitrary polynomial
number of tampering queries. However, a general impossibility result by Gen-
naro et al. [28] shows that the above flavour of tamper resistance is unachievable
without further assumptions. To overcome this impossibility one usually relies
on self-destruct (e.g., [23,15,1,14,13,24,25,26,17,2,3,4,16,31]), or limits the power
of the tampering function (e.g., [9,33,7,6,29,34,36,10,11,31,35]).

Recently Damg̊ard et al. [20] proposed a different approach where, instead
of limiting the type of allowed modifications, one assumes an upper bound on
the number of tampering queries that the adversary can ask, so that now the
attacker can issue some a-priori fixed number t of arbitrary tampering queries.
As argued by [20], this limitation is more likely to capture realistic tampering
attacks. They also show how to construct public key encryption and identification
schemes secure against bounded leakage2 and tampering (BLT) attacks.

The above model fits perfectly with the setting of the Chaining Lemma, as
we consider a limited number of tampering functions (T1, . . . , Tt), for some fixed
bound t, applied on a uniform (or close to uniform) secret-state X(0). Now recall
that Lemma 1 guarantees that, for “small enough” t, the source distribution
stays unpredictable in essentially “any” case. Therefore, the source can be used
as a “highly unpredictable” secret-key resisting t arbitrary tampering attacks.
As a basic application of the Chaining Lemma, we show in Section 4 that any
cryptographic scheme can be made secure in the BLT model. To the best of our
knowledge, this is the first such general result that holds for arbitrary tampering
functions and multiple tampering queries. The price we pay for this is that the
tampering functions must be chosen from a bounded-size set that is fixed a
priori.

Previous work by Faust et al. [26], shows how to protect generically against
tampering using a new primitive called non-malleable key-derivation. This result
also works for arbitrary tampering functions, does not require that a small set
of functions is fixed in advance, but works only for one-time tampering.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] := {1, . . . , n}. Given a set S, we write s ← S to denote
that element s is sampled uniformly from S. If A is an algorithm, y ← A(x)
denotes an execution of A with input x and output y; if A is randomized, then
y is a random variable.

We denote with k the security parameter. A machine A is called probabilistic
polynomial time (PPT) if for any input x ∈ {0, 1}∗ the computation of A(x) ter-
minates in at most poly(|x|) steps and A is probabilistic (i.e., it uses randomness

1 Notice that T may be the identity function, in which case we get the standard
security notion of digital signature scheme as a special case.

2 The adversary is also allowed to leak a bounded—yet arbitrary—amount of infor-
mation on the secret key; we refer the reader to Section 4 for the details.



The Chaining Lemma and Its Application 185

as part of its logic). Random variables are usually denoted by capital letters.
We sometimes abuse notation and denote a distribution and the corresponding
random variable with the same capital letter, sayX . We write sup(X) for the sup-
port of X . Given an event E, we let X|E be the conditional distribution of X con-
ditioned on E happening. The statistical distance of two random variablesX and
Y , defined over a common set S is Δ(X ;Y ) = 1

2

∑
s∈S |Pr [X = s]−Pr [Y = s]|.

Given a random variable Z, the statistical distance of X and Y conditioned on
Z is defined as Δ(X ;Y |Z) = Δ((X,Z); (Y, Z)).

2.2 Information Theory Basics

The min-entropy of a random variable X over a set X is defined as H∞(X) :=
− logmaxx Pr [X = x], and measures how X can be predicted by the best (un-
bounded) predictor. The conditional average min-entropy [22] of X given a ran-
dom variable Z (over a set Z) possibly dependent on X , is defined as

H̃∞(X |Z) := − logEz←Z [2
−H∞(X|Z=z)] = − log

∑

z∈Z
Pr [Z = z] · 2−H∞(X|Z=z).

We say that a distribution X over a set X of size |X | = 2n is (α, n)-good if
H∞(X) ≥ α and Pr [X = x] ≥ 2−n for all x ∈ sup(X).

We will rely on the following basic property (see [22, Lemma 2.2]).

Lemma 2. For all random variables X,Z and Λ over sets X , Z and {0, 1}λ
such that H̃∞(X |Z) ≥ α, we have that

H̃∞(X |Z,Λ) ≥ H̃∞(X |Z)− λ ≥ α− λ.

The above lemma can be easily extended to the case of random variables Λ with
bounded support, i.e., H̃∞(X |Z,Λ) ≥ H̃∞(X |Z)− log |sup(Λ)|.

3 The Chaining Lemma

Before presenting the statement and proof of the Chaining Lemma, we state and
prove two sub-lemmas. We do not provide any intuitions at this point regarding
the whole proof of the Chaining Lemma due to involvement of rigorous case-
analysis. Instead, we take a modular approach presenting intuitions step-by-step
for each of the sub-lemmas and finally providing an intuition of the Chaining
Lemma after the proof of these sub-lemmas.

The first lemma states that if the support of a distribution is sufficiently large
then there always exists an event E such that, conditioned on E, the conditional
distribution has high min-entropy.

Lemma 3. For n ∈ N>1 let c be some parameter such that
√
n < c < n. Let

X be a set of size 2n = |X | and X be a distribution over X with |sup(X)| > 2c

such that for all x ∈ sup(X) we have Pr[X = x] ≥ 1
2n . There exists an event E

such that:
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(i) H∞(X|E) > c− 2
√
n, and

(ii) |sup(X|E)| < |sup(X)|.
Proof. Intuitively, the lemma is proven by showing that if a distribution has
sufficiently large support, then over a large subset of the support the distribution
must be “almost” flat. We will describe below what it means for a distribution
to be “almost flat”. We then define an event E that occurs when X takes some
value in the almost flat area. Clearly, X conditioned on E must be “almost”
uniformly distributed, and if furthermore the support of X conditioned on E is
still sufficiently large, we get that H∞(X|E) must be large. We proceed with the
formal proof.

We introduce a parameter b which is a positive integer such that c > n/b. We
explain how to set the value of b later. For ease of description we assume that n
is a multiple of b. We start by defining what it means for an area to be flat. For
some probability distribution X we define k ∈ [2n/b − 1] sets as follows:

– Ik :=
{
x ∈ sup(X) : kb

2n ≤ Pr[X = x] < (k+1)b

2n

}
, for k ∈ [2n/b − 1] and

– I2n/b := {x ∈ sup(X) : Pr[X = x] = 1}.
These sets characterize the (potential) flat areas in the distribution X as the
probability of all values in some set Ik lies in a certain range that is bounded from
below and above. Clearly, the sets Ik are pairwise disjoint and cover the whole
space between 1/2n and 1. Therefore, each x ∈ sup(X) with some probability
Pr[X = x] must fall into some unique set Ik.

We denote by Im the set that contains the most elements among all sets Ik,
and define the event E as the event that occurs when x ∈ sup(X) falls into Im,
i.e., X takes a value that falls in the largest set Im. We now lower bound the
probability that E occurs.

Pr[E] ≥ |Im|m
b

2n
(1)

≥ 2c−n/bm
b

2n
. (2)

Inequality (1) holds as for all x ∈ Im we have Pr[X = x] ≥ mb

2n . (2) follows from

the fact that Im must have size at least 2c−n/b, as there are 2n/b sets and there
are at least 2c elements in the support of X .

As H∞(X|E) = − logmaxx Pr[X = x|E], we can give a lower bound for the
min entropy of X|E by upper bounding Pr[X = x|E]. More precisely,

Pr[X = x|E] =
Pr[X = x ∧ E]

Pr[E]

<
(m+ 1)b/2n

2(c−n/b)mb/2n
(3)

=

(

1 +
1

m

)b

2−c+n/b

≤ 2b−c+n/b. (4)
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Inequality (3) uses (2) and the fact that Pr[X = x ∧ E] < (m+1)b

2n by definition
of Im. (4) follows from m ≥ 1. This implies that H∞(X|E) > c− n/b− b. Now
we observe that the loss in min-entropy, given by (b + n/b) is minimum when
b =

√
n. Since b is a free parameter, we fix b :=

√
n (note that, since c >

√
n,

the constraint c > n/b holds) to get H∞(X|E) > n− 2
√
n as stated in part (i)

of the lemma.
For part (ii), it is easy to see from the definition of E that the support of the

conditional probability distribution X|E decreases by at least 2(c−n/b) points (as

these points belong to E). Clearly, |sup(X|E)| ≤ |sup(X)| − 2c−n/b < |sup(X)|
as stated in the lemma. 
�

In the following lemma we consider an arbitrary distribution X with suffi-
ciently high min-entropy and some arbitrary function T . We show that if the
support of Y = T (X) is sufficiently large, then there exists an event E such that
one of the following happens:

(i) The min-entropy of Y conditioned on the event E is high, i.e., Y condi-
tioned on E has an almost flat area with large support;

(ii) If E happens, then the average min-entropy of X given Y is high. Intu-
itively, this means that Y conditioned on E has small support as then it
does not “reveal” too much about X .

We formalize this statement in the lemma below.

Lemma 4. For n ∈ N>1 let c, α be some parameters such that
√
n < c < α ≤ n.

Let X be some set of size 2n = |X | and X be an (α, n)-good distribution over X .
For any function T : X → X , let Y = T (X) be such that |sup(Y )| > 2c. There
exists an event E such that the following holds:

(i) H∞(Y|E) > c− 2
√
n.

(ii) H̃∞(X|E |Y|E) ≥ α− c− log 1
1−Pr[E] .

Proof. Intuitively, in the proof below we apply Lemma 3 iteratively to the dis-
tribution Y to find flat areas in Y . We “cut off” these flat areas until we have a
distribution (derived from Y ) which has sufficiently small support. Clearly such
restricted Y cannot reveal too much information about X . To formalize this ap-
proach, we construct iteratively an event E by combining the events Ei obtained
by applying Lemma 3 to Y . If E happens then Y takes values that lie in a large
flat area. On the other hand E characterizes only a relatively small support, and
hence giving such Y does not reveal much information (on average) about X .
The formal proof with an explicit calculation of the parameters follows.

We will define the event E depending on events {Ei, E
′
i, E

′′
i }i∈{0,...,m−1} (for

some integer m) which we will specify later. These events partition the proba-
bility space as follows (cf. Figure 1):

E′
i :=

i∧

j=0

Ej = Ei ∧ E′
i−1 E′′

i := Ei ∧
⎛

⎝
i−1∧

j=0

Ej

⎞

⎠ = Ei ∧ E′
i−1. (5)
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Ω

E′
1 E′′

1

E′
2 E′′

2

E′
3 E′′

3
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E′′
1E′

3

E′′
2E′′

3

Fig. 1. Events covering the probability space in the proof of Lemma 4 and Lemma 5

We will rely on some properties of the above partition. In particular, note that
for all i ∈ {0, . . . ,m− 1} we have

E′
i ∨E′′

i = E′
i−1 E′

i ∧ E′′
i = ∅. (6)

We start by constructing the events {Ei, E
′
i, E

′′
i } and conditional probability

distributions Y (i) that are derived from Y by applying Lemma 3. Lemma 3
requires the following two conditions:

– |sup(Y (i))| > 2c, and
– Pr[Y (i) = y] ≥ 2−n, for all y ∈ sup(Y (i)).

Clearly these two conditions are satisfied by Y (0) = Y , since Y (0) is computed
from X by applying a function T and for all x ∈ sup(X) the statement assumes
Pr[X = x] ≥ 2−n. Hence, Lemma 3 gives us an event E0. We set and we define

Y (1) = Y
(0)

|E0
. For all i ≥ 1 we proceed to construct events Ei and conditional

distributions Y (i+1) = Y
(i)

|Ei
as long as the requirements from above are satisfied.

Notice that by applying Lemma 3 to distribution Y (i) we get for each event Ei:

– H∞(Y
(i)
|Ei

) > c− 2
√
n, and

– |sup(Y (i+1))| < |sup(Y (i))|.
Clearly, there are only finitely many (say m) events before we stop the itera-

tion as the size of the support is strictly decreasing. At the stopping point we have
|sup(Y (m−1))| > 2c and |sup(Y (m))| ≤ 2c. We define E =

∨m−1
i=0 Ei =

∨m−1
i=0 E′′

i

and E =
∧m−1

i=0 Ei = E′
m−1 and show in the claims below that they satisfy

conditions (i) and (ii) of the lemma.

Claim. H∞(Y|E) > c− 2
√
n.

Proof. Recall that for each 0 ≤ i ≤ m− 1 we have

Y
(i)
|Ei

= Y|Ei∧Ei−1...∧E0
(7)

= Y|E′′
i

(8)
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Eq. (7) follows from the definition of the conditional probability distribution

Y
(i)
|Ei

. Eq. (8) from the definition of the constructed events. From Eq. (8) and

Lemma 3 we have for each 0 ≤ i ≤ m−1 that H∞(Y|E′′
i
) > c−2

√
n. As for each

0 ≤ i ≤ m−1 we have |sup(Y|E)| ≥ |sup(Y|E′′
i
)| we get that H∞(Y|E) > c−2

√
n.

This concludes the proof of this claim. 
�
Claim. H̃∞(X|E |Y|E) ≥ α− c− log 1

1−Pr[E] .

Proof. We first lower bound H∞(X|E).

H∞(X|E) = − log

(

max
x

Pr[X = x ∧ E]

Pr[E]

)

(9)

≥ − log

(
1

Pr[E]
max
x

Pr[X = x]

)

(10)

= H∞(X)− log
1

Pr[E]
≥ α− log

1

1− Pr[E]
. (11)

Eq. (9) follows from the definition of min-entropy and the definition of condi-
tional probability. Eq. (10) follows from the basic fact that for any two events
Pr[E∧E′] ≤ Pr[E]. Finally, we get Eq. (11) from our assumption that H∞(X) ≥
α. To conclude the claim we compute:

H̃∞(X|E |Y|E) ≥ H∞(X|E , Y|E)− log |sup(Y|E)| (12)

= H∞(X|E)− log |sup(Y|E)| (13)

≥ α− log
1

1− Pr[E]
− c = α− c− log

1

1− Pr[E]
. (14)

Eq. (12) follows from Lemma 2 and (13) from the fact that Y|E is computed as

a function from X|E . Inequality (14) follows from (11) and the fact that the size

of sup(Y|E) is at most c. The latter follows from the definition of the event E =

E′
m−1 which in turn implies that |sup(Y|E)| = |sup(Y|E′

m−1
)| = |sup(Y (m−1)

|Em−1
)| =

|sup(Y (m))| ≤ 2c, which concludes the proof. 
�
The above two claims finish the proof. 
�

We now turn to state and prove the Chaining Lemma.

Lemma 5 (The Chaining Lemma). For n ∈ N>1 let α, β, t, ε be some pa-
rameters where t ∈ N, 0 < α ≤ n, β > 0, ε ∈ (0, 1] and t ≤ α−β

β+2
√
n
. Let X be

some set of size |X | = 2n and let X(0) be a (α, n)-good distribution over X . For
i ∈ [t] let Ti : X → X be arbitrary functions and X(i) = Ti(X

(i−1)). There exists
an event E such that:
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(i) If Pr [E] > 0, for all i ∈ [t], H∞(X
(i)
|E ) ≥ β.

(ii) If Pr
[
E
] ≥ ε there exists an index j ∈ [t] such that

H̃∞(X
(j−1)

|E |X(j)

|E ) ≥ β − log
t

ε
.

Proof. Consider the chain of random variables X(0) T1−→ X(1) T2−→ . . .
Tt−→ X(t).

Given a pair of random variables in the chain, we refer to X(i−1) as the “source
distribution” and to X(i) as the “target distribution”. The main idea is to con-
sider different cases depending on the characteristics of the target distribution.
In case the min-entropy of X(i) is high enough to start with, we get immediately
property (i) of the statement and we can immediately move to the next pair
of random variables in the chain. In case the min-entropy of X(i) is small, we
further consider two different sub-cases depending on some bound on the sup-
port of the variable. If the support of X(i) happens to be “small”, intuitively we
can condition on the target distribution since this cannot reveal much about the
source; roughly this implies property (ii) of the statement. On the other hand,
if the support happens to be not small enough, we are not in a position which
allows us to condition on X(i).

In the latter case, we will invoke Lemma 4. Roughly this guarantees that there
exists some event such that, conditioned on this event happening, the target lies
in a large “flat” area and the conditional distribution has high min-entropy; this
yields property (i) of the statement. If instead the event does not happen, then
conditioning on the event not happening we get a “restricted” distribution with
small enough support which leads again to property (ii) of the statement.

Whenever we are in those cases where (possibly conditioning on some event)
the target distribution has high min-entropy, we move forward in the chain
by considering X(i) as the source and X(i+1) as the target. However, when
we reach a situation where we can “reveal” the target distribution we do not
proceed further, since the remaining values can be computed as a deterministic
function of the revealed distribution and, as such, do not constrain the min-
entropy further. We now proceed with the formal proof.

Similar to Lemma 4, we will define the event E depending on events {Ei, E
′
i,

E′′
i }i∈[t] which we will specify later. These events partition the probability space

as follows (cf. Figure 1):

E′
i :=

i∧

j=1

Ej = Ei ∧ E′
i−1 E′′

i := Ei ∧
⎛

⎝
i−1∧

j=1

Ej

⎞

⎠ = Ei ∧ E′
i−1. (15)

We will rely on some properties of the above partition. In particular, note that
for all i ∈ [t] we have

E′
i ∨E′′

i = E′
i−1 E′

i ∧ E′′
i = ∅. (16)

For all i ∈ [t+ 1], define the following parameters:

si = (t− i+ 1)(β + 2
√
n) (17)

αi−1 = β + si. (18)
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Note that using the bound on t from the statement of the lemma, we get α ≥ α0;
moreover, it is easy to verify that αi−1 > si >

√
n for all i ∈ [t].

In the next claim we construct the events {Ei, E
′
i, E

′′
i }i∈[t].

Claim. For all i = 0, . . . , t − 1, there exist events E′
i+1 and E′′

i+1 (as given in
Eq. (16)) such that the following hold:

(*) If Pr
[
E′

i+1

]
> 0, H∞(X

(i+1)
|E′

i+1
) ≥ αi+1.

(**) If Pr
[
E′′

i+1

] ≥ ε′, H̃∞(X
(i)
|E′′

i+1
|X(i+1)

|E′′
i+1

) ≥ β − log 1
ε′ . where 0 < ε′ ≤ 1.

Proof. We prove the claim by induction.

Base Case: In this case we let E0 denote the whole probability space and thus

Pr [E0] = 1. Note that H∞(X
(0)
|E0

) = H∞(X(0)) = α ≥ α0. The rest of the proof

for the base case is almost the same to that of the inductive step except the use
of the above property instead of the induction hypothesis. Therefore we only
prove the induction step in detail here. The proof details for the base case are a
straightforward adaptation, with some notational changes.

Induction Step: The following holds by the induction hypothesis :

(*) If Pr [E′
i] > 0, then H∞(X

(i)
|E′

i
) ≥ αi.

(**) If Pr [E′′
i ] ≥ ε′ then, H̃∞(X

(i−1)
|E′′

i
|X(i)

|E′′
i
) ≥ β − log 1

ε′ where 0 < ε′ ≤ 1.

By construction of the events, E′
i is partitioned into two sub-events E′

i+1 and
E′′

i+1 (cf. Eq. 16). From the statement of the claim we observe that, since we
are assuming Pr

[
E′

i+1

]
> 0 in (*) and Pr

[
E′′

i+1

] ≥ ε′ > 0 in (**), in both cases
we have Pr [E′

i] > 0. Hence, property (*) from the induction hypothesis holds:

H∞(X
(i)
|E′

i
) ≥ αi, which we use to prove the inductive step. We will define the

events E′
i+1 and E′′

i+1 differently depending on several (complete) cases. For each
of these cases we will show that property (*) and (**) hold.

Suppose first that H∞(X
(i+1)
|E′

i
) ≥ αi+1. In this case we define E′

i+1 to be

E′
i, which implies E′′

i+1 = ∅ by Eq. (16). Moreover property (*) holds since, if

Pr
[
E′

i+1

]
> 0, then Pr [E′

i] > 0 and H∞(X
(i+1)
|E′

i+1
) = H∞(X

(i+1)
|E′

i
) ≥ αi+1; as for

property (**) there is nothing to prove, since Pr
[
E′′

i+1

]
= 0 in this case.

Consider now the case that H∞(X
(i+1)
|E′

i
) < αi+1. Here we consider two sub-

cases, depending on the support size of X(i+1).

1. |sup(X(i+1)
|E′

i
)| ≤ 2si+1 . We define E′′

i+1 = E′
i, which implies E′

i+1 = ∅ by

Eq. (16). As for property (*) there is nothing to prove, since Pr
[
E′

i+1

]
=

0. To prove property (**) we observe that if Pr
[
E′′

i+1

] ≥ ε′ > 0, then



192 I. Damg̊ard et al.

Pr [E′
i] > 0. Hence,

H̃∞(X
(i)
|E′′

i+1
|X(i+1)

|E′′
i+1

) = H̃∞(X
(i)
|E′

i
|X(i+1)

|E′
i

) (19)

≥ H∞(X
(i)
|E′

i
, X

(i+1)
|E′

i
)− log(|sup(X(i+1)

|E′
i

)|) (20)

≥ αi − si+1 (21)

= β + si+1 − si+1 = β.

Eq. (19) follows as E′′
i+1 = E′

i. Eq. (20) follows from Lemma 2. Eq. (21)

follows from two facts: (i) X(i+1) is a deterministic function of X(i), which

means H∞(X
(i)
|E′

i
, X

(i+1)
|E′

i
) = H∞(X

(i)
|E′

i
) ≥ αi (plugging-in the value from

induction hypothesis), and (ii) |sup(X(i+1)
|E′

i
)| ≤ 2si+1 .

2. |sup(X(i+1)
|E′

i
)| > 2si+1 . By the induction hypothesis H∞(X

(i)
|E′

i
) ≥ αi; we now

invoke Lemma 4 on the distribution X
(i+1)
|E′

i
(recall that αi > si+1 >

√
n), to

obtain the event Ei+1 such that:

H∞(X
(i+1)
|E′

i∧Ei+1
) > si+1 − 2

√
n (22)

H̃∞(X
(i)

|E′
i∧Ei+1

|X(i+1)

|E′
i∧Ei+1

) > αi − si+1 − log
1

1− Pr [Ei+1]
. (23)

Note that by our definitions of the events E′
i, E

′′
i (cf. Eq. (15)), we have

E′
i ∧ Ei+1 = E′

i+1 and E′
i ∧ Ei+1 = E′′

i+1.
To prove (*) we consider that if Pr

[
E′

i+1

]
> 0, then Pr [E′

i] > 0 and
Pr [Ei+1] > 0. Plugging the values of αi and si+1 from Eq. (18) and (17)
into Eq. (22), we get

H∞(X
(i+1)
|E′

i+1
) > si+1 − 2

√
n

= (t− i)(β + 2
√
n)− 2

√
n

= β + (t− i− 1)(β + 2
√
n)

= β + si+2 = αi+1,

Similarly, to prove (**), we consider that if Pr
[
E′′

i+1

] ≥ ε′, then Pr [E′
i] ≥

ε′ > 0 and Pr
[
Ei+1

] ≥ ε′. Using Eq. (23), we obtain:

H̃∞(X
(i)
|E′′

i+1
|X(i+1)

|E′′
i+1

) > αi − si+1 − log
1

Pr
[
Ei+1

]

= β − log
1

Pr
[
Ei+1

]

≥ β − log
1

ε′
,

This concludes the proof of the claim. 
�
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We define the event E to be E = E′
t =

∧t
i=1 Ei =

∧t
i=1 E

′
i. It is easy to verify

that this implies E =
∨t

i=1 E
′′
i . We distinguish two cases:

– If Pr [E] > 0, by definition of E we get that Pr [E′
i] > 0 for all i ∈ [t]. In

particular, Pr [E′
t] > 0. Hence, H∞(X

(t)
|E ) = H∞(X

(t)
|E′

t
) ≥ αt = β, where the

last inequality follows from property (*) of the above Claim, using i = t− 1.

Also, we observe that for all i ∈ [t], H∞(X
(i−1)
|E ) ≥ H∞(X

(i)
|E ). This proves

property (i) of the lemma.
– If Pr

[
E
] ≥ ε, then we get

Pr

[
t∨

i=1

E′′
i

]

≥ ε. (24)

t∑

i=1

Pr [E′′
i ] ≥ ε. (25)

Eq. (24) follows from the definition of E and Eq. (25) follows applying union
bound. Clearly, from Eq. (25), there must exists some j such that Pr

[
E′′

j

] ≥
ε/t.
Hence, putting i = j − 1 and ε′ = ε/t in property (**) of the above Claim,
we get:

H̃∞(X
(j−1)
|E′′

j
|X(j)

|E′′
j
) ≥ β − log

t

ε
.

From the definition of E, E′′
j implies E and hence property (ii) of the lemma

follows.

�

4 Application to Tamper-Resilient Cryptography

We show that any cryptographic primitive where the secret key can be chosen
as a uniformly random string can be made secure in the BLT model of [20] by
a simple and efficient transformation. Our result therefore covers pseudorandom
functions, block ciphers, and many encryption and signature schemes. However,
the result holds in a restricted model of tampering: the adversary first selects an
arbitrary set of tampering functions of bounded size and, as he interacts with the
scheme, he must choose every tampering function from the set that was specified
initially. We call this the semi-adaptive BLT model. Our result holds only when
the set of functions is “small enough”.3

The basic intuition behind the construction using the Chaining Lemma is easy
to explain. We use a random stringX0 as secret key, and a universal hash function
h as public (and tamper proof) parameter. The construction then computes

3 In particular, the adversary can choose a “short enough” sequence of tampering
functions, from a set containing polynomially many such sequences.
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K0 = h(X0), and uses K0 as secret key for the original primitive. The intuitive
reason why one might hope this would work is as follows: each tampering query
changes the key, so we get a chain of keys X0, X1, . . . , Xt where Xi = Ti(Xi−1)
for some tampering function Ti. Recall that the chaining lemma guarantees that
for such a chain, there exists an event E such that: (i) when E takes place then
all Xi have high min-entropy, and, by a suitable choice of h, all the hash values
K0 = h(X0),K1 = h(X1), . . . ,Kt = h(Xt) are statistically close to uniformly
and independently chosen keys; (ii) when E does not happen, for some index
j ∈ [t] we are able to reveal the value of Xj to the adversary as the Xi’s with
i < j still have high entropy, and hence hash to independent values. On the
other hand the Xi’s with i ≥ j are a deterministic function of Xj and hence the
tampering queries corresponding to any subsequent key can be simulated easily.

Due to its generality the above result suffers from two limitations. First, as
already mentioned above, the tampering has to satisfy a somewhat limited form
of adaptivity. Second, the number of tampering queries one can tolerate is up-
per bounded by the length n of the secret key. While this is true in general
for schemes without key update, for our general result the limitation is rather
strong. More concretely, with appropriately chosen parameters our transforma-
tion yields schemes that can tolerate up to O( 3

√
n) tampering queries. We discuss

the application in full detail in the full version of this paper [21].

Comparison with Faust et al. [26]. Very recently, Faust et al. [26] introduced
the concept of non-malleable key derivation which is similar in spirit to our
application of the Chaining Lemma. Intuitively a function h is a non-malleable
key derivation function if h(X) is close to uniform even given the output of h
applied to a related input T (X), as long as T (X) �= X . They show that a random
t-wise independent hash function already meets this property, and moreover that
such a function can be used to protect arbitrary cryptographic schemes (with a
uniform key) against “one-time” tampering attacks (i.e., the adversary is allowed
a single tampering query) albeit against a much bigger class of functions.4

We stress that the novelty of our result is in discovering the Chaining Lemma
rather than this application, which can be instead thought of as a new technique,
fundamentally different from that of [26], to achieve security in the BLT model.
We believe that the Chaining Lemma is interesting in its own right, and might
find more applications in cryptography in the future.
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